PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

CONSTANCE VAN EEDEN

A One-Sample Analogue of a Theorem of Jurečkova

Publications des séminaires de mathématiques et informatique de Rennes, 1969-1970, fascicule 2

« Séminaire de probabilités et statistiques », , exp. nº 5, p. 1-20

http://www.numdam.org/item?id=PSMIR_1969-1970___2_A5_0

© Département de mathématiques et informatique, université de Rennes, 1969-1970, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

- 1-

bу

Constance van Eeden

Université de Montréal

I. INTRODUCTION.

The purpose of this note is to prove that if, for each $v=1,2,\ldots,X_{v,1},\ldots,X_{v,n_v}$ are a random sample from a distribution symmetric around o, then the signed-rank statistic

$$T_{v}(\theta) = \sum_{i=1}^{n_{v}} p_{v,i} + \left(\frac{R|X_{v,i} - q_{v,i}\theta|}{n_{v} + 1}\right) \operatorname{sgn} (X_{v,i} - q_{v,i}\theta),$$

where $R_{|X_{v,i} - q_{v,i}\theta|}$ is the rank of $|X_{v,i} - q_{v,i}\theta|$ among

 $|X_{v,1} - q_{v,1}\theta|, \dots, |X_{v,n} - q_{v,n}\theta|$, is under certain conditions on the

common distribution of the $X_{\nu,i}$, on the constants $p_{\nu,i}$, $q_{\nu,i}$ and on the function \forall , asymptotically approximately a linear function of θ in the sense that

$$\lim_{n \to \infty} P \left\{ \sup_{\theta \in C} |T_{\nu}(\theta) - T_{\nu}(\theta) + \theta K \sum_{i=1}^{n} p_{i,i} q_{i,i} | \ge \sigma(T_{\nu}(0)) \right\} = 0$$

for every C>o and every ϵ >o, where K is a constant depending on the common distribution of the $X_{v,i}$ and on the function Ψ .

^{*)} This paper was written while the author was visiting the University of Rennes. It was partially supported by the National Research Council of Canada wider Grant # A 3 114.

An analogous result was proved by Jureckova [2] for the

statistic

$$S_{v}(\theta) = \sum_{i=1}^{n_{v}} C_{v,i} \varphi \left(\frac{R_{x_{v,i}} - d_{v,i}\theta}{n_{v} + 1} \right),$$

where $R_{X_{v,i}} = d_{v,i} e^{is}$ is the rank of $X_{v,i} = d_{v,i} e^{is}$ among

 $X_{v,1} = d_{v,1}\theta, \dots, X_{v,n_v} = d_{v,n_v}\theta$ and where, for each v=1,2,..., the $X_{v,i}$ are independently and identically distributed.

for the proof of our result some lemmas are needed which are given in section 2; one of these lemmas is a generalization of Theorem 5 of Lehmann [6]; two of the lemmas are analogous to Corollary 1 and 2 of Lehmann [6]. The main results and their proofs are given in section 3.

II. SOME LEMMAS.

Let i_1, \dots, i_n and j_1, \dots, j_n each be a permutation of the numbers 1,...,n and let $\varepsilon_1,\dots,\varepsilon_n$, δ_1,\dots,δ_n each be + 1 or - 1 such that $(i_k, \epsilon_k, j_k, \delta_k)_{k=1}^{n}$ satisfies

Condition
$$A_n:$$

$$\begin{cases}
1. & \delta_k = 1 \longrightarrow \epsilon_k = 1 \\
2. & \{\ell < k, \delta_k = 1, j_{\ell} < j_k\} \longrightarrow i_{\ell} < i_k \\
3. & \{\ell < k, \epsilon_k = -1, j_{\ell} > j_k\} \longrightarrow i_{\ell} > i_k
\end{cases}$$

For fixed M(1 ≼M ≼n) define

as the ordered values of those i_k among i_{n-M+1} , i_{n-M+2} , ..., i_n for which $\varepsilon_{k} = +1$ and

$$(2, 2)$$
 $b_{M,1} > b_{M,2} > ... > b_{M,L_{M}}$

as the ordered values of those j_k among j_{n-M+1} , j_{n-M+2} ,..., j_n for which

 $\delta_{\mathbf{k}}$ = +1. Obviously, by Condition A_n.1, K_M \geqslant L_M , further K_M \leq M.

Further define

(2; 3)
$$c_{M,1} > c_{M,2} > ... > c_{M,M-K_M}$$

as the ordered values of those i_k among i_{n-M+1} , i_{n-M+2} ,..., i_n for which $\varepsilon_{\mathbf{k}} = -1$ and

(2 , 4)
$$d_{M,1} > d_{M,2} > \cdots > d_{M,M-L_M}$$
 as the ordered values of those j_k among j_{n-M+1} , j_{n-M+2} , ..., j_n for which $\delta_k = -1$.

Lemma 2 , 1. If
$$(i_k, \epsilon_k, j_k, \delta_k)_{k=1}^n$$
 satisfies Condition A_n , then
$$\begin{cases} b_{M,\ell} \leq a_{M,\ell} & \ell=1,\dots,L_M \\ c_{M,\ell} \leq d_{M,\ell} & \ell=1,\dots,M-K_M \end{cases}$$

Proof: The proof will be given in four parts.

1) The lemma is true for M = 1 and any n \ge 1. To prove this, notice that by Condition A_n.1 it is sufficient to prove that

$$\begin{cases}
j_n \leq i_n & \text{if } \delta_n = 1 \\
j_n \geq i_n & \text{if } \epsilon_n = -1
\end{cases}$$

This can be seen as follows.

(2,7)
$$\begin{cases} j_n = (\# \text{ of } j_k \le j_n) = n - (\# \text{ of } j_k > j_n) \\ i_n = (\# \text{ of } i_k \le i_n) = n - (\# \text{ of } i_k > i_n) \end{cases}$$

By Condition A_n.2

(2 , 8)
$$(\neq \text{ of } j_k \leq j_n) \leq (\neq \text{ of } i_k \leq i_n) \text{ if } \delta_n = 1$$

and by Condition $A_n \cdot 3$

(2,9)
$$(\# \text{ of } j_k > j_n) \leq (\# \text{ of } i_k > i_n) \text{ if } \epsilon_n = -1$$

2) If the lemma is true for some (n,M) then the lemma is true for (n+1, M). To see this consider, for some $n \ge 1$, $(i_k, \ \epsilon_k, \ j_k, \ \delta_k)_{k=1}^{n+1} \text{ satisfying Condition A}_{n+1}. \text{ From } (i_k, \ \epsilon_k, \ j_k, \delta_k)_{k=1}^{n+1} \text{ derive } (i_k', \ \epsilon_k, \ j_k', \ \delta_k)_{k=2}^{n+1}, \text{ satisfying Condition A}_n, \text{ as follows. Let}$

(2 ; 10)
$$\begin{cases} r_k = \text{rank of } i_k \text{ among } (i_1, i_k) \\ s_k = \text{rank of } j_k \text{ among } (j_1, j_k) \end{cases}$$
 $k = 2, \dots, n+1$

and let

(2 ; 11)
$$\begin{cases} i'_k = i_k - (r_k-1) \\ j'_k = j_k - (s_k-1) \end{cases}$$
 $k = 2,...,n+1$

Then i_2,\ldots,i_{n+1} and i_2,\ldots,j_{n+1} are each permutations of the numbers 1,...,n and from

$$\begin{cases} i_{k} < i_{\ell} & \longleftrightarrow & i'_{k} < i'_{\ell} \\ j_{k} < j_{\ell} & \longleftrightarrow & j'_{k} < j'_{\ell} \end{cases}$$

$$k, \ell = 2, \dots, n+1$$

it then follows that $\{i_k', \epsilon_k, j_k', \delta_k\}_{k=2}^{n+1}$ satisfies Condition A_n.

For fixed M \leq n let $a_{M,\ell}'$, $b_{M,\ell}'$, $c_{M,\ell}'$, $d_{M,\ell}'$, L_M' and K_M' be defined, as in (2 , 2) - (2 , 4), for $(i_k', \epsilon_k', j_k', \delta_k)_{k=n+2-M}^{n+1}$ and let $a_{M,\ell}'$, $b_{M,\ell}'$, $c_{M,\ell}'$, $d_{M,\ell}'$, k_M' and k_M' be so defined for

 $(i_k, \epsilon_k, j_k, \delta_k)_{k=n+2-M}^{n+1}$, then $L_M = L_M'$ and $K_M = K_M'$. Assuming the lemma to be true for (n,M) we have

(2, 13)
$$\begin{cases} b_{M,\ell}^* \leq a_{M,\ell}^* & \ell = 1, \dots, L_M \\ c_{M,\ell}^* \leq d_{M,\ell}^* & \ell = 1, \dots, M - K_M \end{cases}$$

Now let ℓ_0 be the number of $b_{M,\ell} > j_1$; then by (2; 11)

(2 , 14)
$$b_{M,\ell}^{*} = \begin{cases} b_{M,\ell} - 1 & \ell = 1, \dots, \ell_{0} \\ b_{M,\ell} & \ell = \ell_{0} + 1, \dots, \ell_{M}^{*} \end{cases}$$

Let k_0 be the number of $a_{M,\ell} > i_1$; then by (2; 11)

(2, 15)
$$a_{M,\ell}^* \begin{cases} a_{M,\ell} - 1 & \ell = 1,...,k_0 \\ a_{M,\ell} & \ell = k_0 + 1,...,k_M \end{cases}$$

Further, by Condition A_{n+1} -2, $\ell_0 \le k_0$. From (2 ; 13) - (2 ; 15) it then follows that

$$(2, 16) \qquad b_{M, \ell} \leq a_{M, \ell} \qquad \ell = 1, \dots, L_{M}.$$

The proof that

$$(2; 17)$$
 $c_{M,l} \leq d_{M,l}$ $l = 1, ..., M - K_{M}$

is analogous, using Condition $A_{n+1} \cdot 3$.

3) If the lemma is true for som $n \ge 2$ with M = n-1, then the lemma is true for the same n with M = n. This can be seen as follows. Assuming the lemma to be true for M = n-1 we have

(2 ; 18)
$$\begin{cases} b_{n-1,\ell} \le a_{n-1,\ell} & = 1, \dots, L_{n-1} \\ c_{n-1,\ell} \le d_{n-1,\ell} & = 1, \dots, n-1-K_{n-1} \end{cases}$$

and it will be proved that

(2, 19)
$$\begin{cases} 1.b_{n,k} \leq a_{n,k} & l = 1,...,L_n \\ 2.c_{n,k} \leq d_{n,k} & l = 1,...,n-K_n \end{cases}$$

The following three cases can be distinguished

a) $\delta_1 = \epsilon_1 = -1$. Then $L_n = L_{n-1}$, $K_n = K_{n-1}$, $b_{n,\ell} = b_{n-1,\ell} \{\ell=1,\ldots,L_n\}$ and a_n , $\ell=a_{n-1,\ell} \{\ell=1,\ldots,K_n\}$, so that (2 ; 19.1) is obvious. Further $(a_{n,\ell},\ell=1,\ldots,K_n)$, $c_{n,\ell},\ell=1,\ldots,n-K_n$ and $(b_{n,\ell},\ell=1,\ldots,L_n)$ are each permutations of the numbers 1,...,n so that (2 ; 19.2) follows from (2 ; 19.1)

b) $\delta_1=-1$, $\epsilon_1=1$. Then $L_n=L_{n-1}$, $K_n=K_{n-1}+1$, $b_{n,\ell}=b_{n-1,\ell}(\ell=1,\ldots,L_n)$ and $c_{n,\ell}=c_{n-1,\ell}(\ell=1,\ldots,n-K_n)$. To prove (2 ; 19.1) let k_0 be the number of $a_{n-1,\ell}(\ell=1,\ldots,K_{n-1})$ larger than i_1 ; then

If $L_n < k_0 < K_{n-1}$ then (2 , 19.1) is immediate. If $0 < k_0 < L_n = L_{n-1}$ then (2 , 19.1) is immediate for $\ell=1,\ldots,k_0$. Further

(2, 21)
$$b_{n,k_0+1} = b_{n-1,k_0+1} \le a_{n-1,k_0+1} \le a_{n-1,k_0+1}$$

and for $l = k_0 + 2, \dots, L_n$

(2, 22)
$$b_{n,\ell} = b_{n-1,\ell} < a_{n-1,\ell} = a_{n,\ell+1} < a_{n,\ell}$$

The proof of (2; 19.2) is analogous.

c)
$$\delta_1 = \epsilon_{n-1} = 1$$
. Then $L_n = L_{n-1} + 1$, $K_n = K_{n-1} + 1$, $C_{n,\ell} = C_{n-1,\ell} (\ell = 1, \dots, n - K_n)$ and $d_{n,\ell} = d_{n-1,\ell} (\ell = 1, \dots, n - L_n)$ so that $(2 : 19.2)$ is obvious. Further (see a)) $(2 : 19.1)$ follows from $(2 : 19.2)$

4) The lemma now follows by induction on M. According to part 1 of the proof, the lemma is true for M = 1 and any $n \ge 1$. Let M_o be an integer ≥ 1 and assume the lemma is true for M = M_o and any $n \ge M_o$, then it will be proved that the lemma is true for M = M_o+1 and any $n \ge M_o+1$. This can be seen as follows. According to the induction hypothesis the lemma is true for $n = M_o+1$ and $M = M_o$; according to part 3 of the proof this implies the truth for $n = M_o+1$ and $M = M_o+1$; according to part

2 of the proof this implies the truth for M = M_0+1 and any $n \ge M_0+1$. Q. E. D.

In Lemma 2 , 1 it was shown that Condition A_{α} is sufficient for (2; 5) to hold for each M = 1,...,n. For (2; 5) to hold for a particular value of M it is obviously sufficient that $(i_k, \epsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies

$$\begin{cases} \text{For each } k \geqslant n-M+1 \\ 1. \ \delta_k=1 \Longrightarrow \epsilon_k=1 \\ 2. \ \text{for each} \ \ \ell \leqslant k-1 \ (\delta_k=1,j_\ell < j_k) \Longrightarrow i_\ell < i_k \\ 3. \ \text{for each} \ \ \ell \leqslant k-1 \ (\epsilon_k=-1,j_\ell > j_k) \Longrightarrow i_\ell > i_k \end{cases}$$

Further, if $(i_k, \epsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for $M = M_0$ then $(i_k, \epsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for all $M \in M_0$, which proves the following lemma.

Lemma 2 , 2. If $(i_k, \epsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for $M = M_0$, then

(2, 23)
$$\begin{cases} a_{M,\ell} \leq b_{M,\ell} & \ell=1,...,L_{M} \\ c_{M,\ell} \leq d_{M,\ell} & \ell=1,...,M-K_{M} \end{cases}$$

Lemma 2 , 3. If h is mondecreasing and nonnegative and if $(i_k, \epsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for $M = M_o$, then

for $1 \leq M \leq M_{\odot}$.

$$\begin{cases} 1. \ h(b_{ML}) \leq h(a_{M,L}) \\ 2. \ h(c_{M,L}) \leq h(d_{M,L}) \end{cases}$$
 l=1,...,M-K_M.

From (2 , 25.1) and the fact that h is non negative it follows that, for $M \leq M_0$,

(2,26)
$$\sum_{\ell=n+1-M}^{n} h(j_{\ell}) = \sum_{\ell=1}^{n} h(b_{M,\ell}) \leq \sum_{\ell=1}^{n} h(a_{M,\ell}) \leq \sum_{\ell=1}^{n} h(a_{M,\ell}) = \sum_{\ell=1}^{n} h(i_{\ell})$$

$$= \sum_{\ell=n+1-M}^{n} h(i_{\ell})$$

$$= \sum_{\ell=n+1-M}^{n} h(i_{\ell})$$

From (2 , 25.2) and the fact that h is non negative it follows that, for 1 \leq M \leq M $_{_{\rm O}}$,

(2; 27)
$$\sum_{\ell=n+1-M}^{n} h(i_{\ell}) = \sum_{\ell=1}^{M-K_{M}} h(c_{M,\ell}) \leq \sum_{\ell=1}^{M} h(d_{M,\ell}) \leq \sum_{\ell=1}^{M} h(d_{M,\ell}) = \sum_{\ell=1}^{M} h(j_{\ell}).$$

$$= \sum_{\ell=n+1-M}^{n} h(j_{\ell}).$$
Q. E. D.
$$\delta_{0} < 0$$

Remark. In the two special cases, where δ_k =1 for all k or ϵ_k =-1 for all k, Lemma 2; 1 reduces to Theorem 5 of Lehmann [6]. Further, in each of these special cases, Lemma 2; 3 is analogous to Corollary 1 af Lehmann [6].

Lemma 2 , 4. Let
$$\alpha_1$$
 , α_2 ,..., α_n be n numbers satisfying (2 , 28) $0 \le \alpha_1 \le ... \le \alpha_n$

let h be non decreasing and non negative and let $(i_k$, ϵ_k , j_k , $\delta_k)_{k=1}^n$ satisfy

$$\begin{cases}
1. \{\delta_{k}=1, \alpha_{k} > 0\} & \Longrightarrow \epsilon_{k}=1 \\
2. \{\delta_{k}=1, \alpha_{k} > 0, \ell < k, j_{\ell} < j_{k}\} & \Longrightarrow i_{\ell} < i_{k} \\
3. \{\epsilon_{k}=-1, \alpha_{k} > 0, \ell < k, j_{\ell} > k\} & \Longrightarrow i_{\ell} > j_{k}
\end{cases}$$

then

(2,30)
$$\sum_{k=1}^{n} \alpha_{k} \epsilon_{k} h(i_{k}) \geq \sum_{k=1}^{n} \alpha_{k} \delta_{k} h(j_{k}).$$

 \underline{Proof} : The following proof is analogous to Lehmann's proof of his Corollary 2 in $\begin{bmatrix} 6 \end{bmatrix}$.

(2 , 30) is obviously true if α_k = o for all k = 1,...,n, so in the following it will be supposed that α_k > o for at least one k. Further, since h is non negative,

 $\sum_{\ell=1}^{n} h(\ell) \ge 0 \text{ and } \sum_{\ell=1}^{n} h(\ell) = 0 \text{ if and only if } h(\ell) = 0 \text{ for all } \ell = 1, \ldots, n,$ $\ell = 1$ in which case (2 , 30) is obvious. In the following it will be supposed that $\sum_{\ell=1}^{n} h(\ell) > 0.$

Let $\alpha < \beta_1 < \beta_2 < \dots < \beta_T$ be the different values of $\alpha_1, \dots, \alpha_n$ and let $n_t(t=1,\dots,T)$ be the number of α_k equal β_t . Further let

 $N_t = \sum_{s=1}^t n_s$ (t=1,...,T) and $N_o = o$. Con ider the random variables X and Y each taking the values (- β_T , - β_{T-1} , ..., - β_1 , β_1 , ..., β_{T-1} , β_T) with

where, if β_1 = 0, P(X < 0) and P(Y < 0) are defined by (2 ; 31.2) and (2 ; 32.2) respectively.

If $\beta_1 > {\rm o}$, condition (2 , 29) reduces to Condition A_n and from Lemma 2 , 3 it then follows that

(2, 33)
$$P(X \le x) \le P(Y \le x) \text{ for all } x.$$

If β_1 = 0, condition (2; 29) is Condition $A_{n,M}$ for $M = N_T - N_1 = n - n_1$, so that in this case (2; 24) holds for $M < n - n_1$, which proves (2; 33) From (2; 33) it follows that

$$\{2,34\}$$
 $\{x \geq x \}$

which is equivalent to

$$(2,35) \sum_{s=1}^{T} \beta_{s} \sum_{\ell=N_{s-1}+1}^{N_{s}} \epsilon_{\ell} h(i_{\ell}) \geqslant \sum_{s=1}^{T} \beta_{s} \sum_{\ell=N_{s-1}+1}^{N_{s}} \delta_{\ell} h(j_{\ell}),$$

which is equivalent to

(2; 36)
$$\sum_{k=1}^{n} \alpha_{k} \epsilon_{k} h(i_{k}) \geqslant \sum_{k=1}^{n} \alpha_{k} \delta_{k} h(j_{k})$$
 Q. E. D.

III; MAIN RESULTS.

Let, for each $v=1,2,\ldots,X_{v,1},\ldots,X_{v,n_v}$ be independently and identically distributed random variables with common distribution function F(x) satisfying

(3 ; 1)
$$\begin{cases} 1. F(x) \text{ has an absolutely continuous density } f(x) \\ 2. \int_{0}^{1} \varphi_{F}^{2}(u) du < \infty, \text{ where } \varphi_{F}(u) = -\frac{f'(F^{-1}(u))}{f(F^{-1}(u))} (o \le u \le 1) \\ \text{ and where } f' \text{ is the derivative of } f \end{cases}$$

$$(3 ; 1) \begin{cases} 3. f(x) = f(-x) \text{ for all } x. \end{cases}$$

Let \forall (u) (o \leftarrow 1) be a function satisfying

Let p_{v,n_v} and $q_{v,1}$,..., q_{v,n_v} be vectors of constants satisfying

$$\begin{cases}
1. & \sum_{j=1}^{n} p_{v,j} > 0 \\
 & i=1
\end{cases}$$

$$\frac{1}{\max p_{v,j}^{2}} = 0,$$

$$\frac{1}{\min \frac{1}{\min p_{v,j}^{2}}} = 0,$$

$$\frac{1}{\min p_{v,j}^{2}} = 0,$$

$$\frac{1}{\min p_{v,j}^{2}} = 0,$$

(3;4)
$$\begin{cases} 1. & \sum_{i=1}^{n} q^{2}_{v,i} \le 11 \text{ for some positive number M} \\ & \text{independent of } v \end{cases}$$

$$2. \lim_{v \to \infty} \max_{1 \le i \le n} q^{2}_{v,i} = 0$$

and, for each v = 1, 2, ..., either

(3,5)
$$\begin{cases} 1. \ p_{v,i} \ q_{v,i} \ge 0 & \text{for all } i = 1,..., n_{v} \\ 2.(|p_{v,i}| - |p_{v,i}|) \ (|q_{v,i}| - |q_{v,i}|) \ge 0 & \text{for all } i,i'=1,...,n_{v} \end{cases}$$
 or,

(3,6)
$$\begin{cases} 1. p_{v,i} q_{v,i} \leq o & \text{for all } i = 1,...,n_{v} \\ 2. (|p_{v,i}| - |p_{v,i}|) (|q_{v,i}| - |q_{v,i}|) \geq o & \text{for all } i,i'=1,...n_{v} \end{cases}$$

Let $R_{|X_{i,i} - q_{i,i}\theta|}$ be the rank of $|X_{i,i} - q_{i,i}\theta|$ among

$$|X_{v,1} - q_{v,1}\theta|$$
,..., $|X_{v,n} - q_{v,n}\theta|$, let

(3;7)
$$\operatorname{sgn} u = \begin{cases} 1 \text{ if } u > 0 \\ -1 \text{ if } u < 0 \end{cases}$$

and let

(3,8)
$$T_{v}(\theta) = \sum_{i=1}^{n} P_{v,i} \Psi \left(\frac{R |X_{v,i} - q_{v,i}\theta|}{n_{v} + 1} \right) \operatorname{sgn}(X_{v,i} - q_{v,i}\theta).$$

Theorem 3; 1. If F(x) is continuous, if \bigvee (u) is non decreasing and non negative then, for each $v=1, 2, \ldots, T_v(\theta)$ is with probability one a non increasing step function of θ if (3; 5) holds and a non decreasing step function of θ if (3; 6) holds:

<u>Proof</u>: In the proof the index ν will be omitted. The proof will be given for the case that (3 , 5) holds. The result for the case that (3 , 6) holds is then obvious.

If F(x) continuous, T(θ) is, with probability one, not well defined only for those values of θ satisfying $\theta = -\frac{X_1}{q_1}$ for some i with $q_1 \neq 0$ and for those values of θ satisfying $|X_1 - q_1\theta| |X_1, -q_1, \theta|$ for some pair (i,i') with $q_1 \neq 0$ or $q_1 \neq 0$. These values of θ where T(θ) is not well defined, define a finite number of intervals for θ within each of which T(θ) is independent of θ .

Now consider two values θ_1 and θ_2 of θ for which $T(\theta)$ is well defined and let $\theta_1 < \theta_2$. Then it will be proved that $T(\theta_1) \geqslant T(\theta_2)$. Without loss of generality the X_1 can be numbered in such a way that $|p_1| \leqslant \cdots \leqslant |p_n|$ Then, by (3; 5.2), $|q_1| \leqslant \cdots \leqslant |q_n|$. Write $T(\theta)$ as

(3,9)
$$T(\theta) = \sum_{k=1}^{n} |p_{k}| |\sqrt{\frac{R|x_{k} - q_{k}\theta|}{n+1}} \operatorname{sgn} p_{k}(x_{k} - q_{k}\theta),$$

where, for p_k = 0, sgn $p_k(X_k - q_k\theta)$ is defined as 1. Now apply Lemma 2 , 4 with, for k = 1,..., n

(3; 10)
$$\begin{cases} \alpha_{k} = |p_{k}| \\ \epsilon_{k} = sgn |p_{k}(x_{k} - q_{k}\theta_{1}) & \delta_{k} = sgn |p_{k}(x_{k} - q_{k}\theta_{2}) \\ i_{k} = R|x_{k} - q_{k}\theta_{1}| & j_{k} = R|x_{k} - q_{k}\theta_{2}| \end{cases}$$

Then $T(\theta_1) \ge T(\theta_2)$ if (2 , 29) is satisfied. That (2 , 29) is satisfied can be seen from the following steps a), b) and c)

a) (2 ; 29.1) is identical with $\left\{ p_k(X_k - q_k \theta_2) > 0, p_k \neq 0 \right\} \longrightarrow p_k(X_k - q_k \theta_1) > 0$ which follows immediately from (3 ; 5.1) and

$$p_k(X_k - q_k \theta_1) = p_k(X_k - q_k \theta_2) + p_k q_k (\theta_2 - \theta_1)$$

b) (2 ; 29.2) is identical with
$$\left\{ p_{k}(X_{k} - q_{k} \theta_{2}) > 0, p_{k} \neq 0, \ell < k, |X_{\ell} - q_{\ell} \theta_{2}| < |X_{k} - q_{k} \theta_{2}| \right\} \Rightarrow |X_{\ell} - q_{\ell} \theta_{1}| < |X_{k} - q_{k} \theta_{1}|$$

This can be seen as follows. We have

$$-\frac{p_{k}}{|p_{k}|}(x_{k}-q_{k}\theta_{2}) < x_{k}-q_{k}\theta_{2} < \frac{p_{k}}{|p_{k}|}(x_{k}-q_{k}\theta_{2})$$

so that, using (3 , 5),

$$x_{\ell} - q_{\ell} \theta_{1} < \frac{p_{k}}{|p_{k}|} (x_{k} - q_{k} \theta_{1}) + (\theta_{2} - \theta_{1}) (q_{\ell} - \frac{p_{k}}{|p_{k}|} q_{k})$$

$$= \frac{p_{k}}{|p_{k}|} (x_{k} - q_{k} \theta_{1}) + (\theta_{2} - \theta_{1}) (q_{\ell} - |q_{k}|) \le \frac{p_{k}}{|p_{k}|} (x_{k} - q_{k} \theta_{1})$$

so that $|X_{\varrho} - q_{\varrho} \theta_1| \le |X_k - q_k \theta_1|$.

c) (2; 29.3) is identical with

$$\left\{ p_{k}(X_{k} - q_{k} \theta_{2}) < 0, p_{k} \neq 0, \ell < k, |X_{\ell} - q_{\ell} \theta_{2}| > |X_{k} - q_{k} \theta_{2}| \right\} \longrightarrow |X_{\ell} - q_{\ell} \theta_{1}| > |X_{k} - q_{k} \theta_{1}|.$$

The proof of this is analogous to that for (2 . 29.2). Q. E. D.

A special case of Theorem 3 , 1 with \forall (u) = u and $p_{v,i} = q_{v,i} \quad (i = 1,...,n_v) \text{ was proved by Koul } (5), \text{ Lemma 2 , 2}.$

Theorem 3; 2. If (3; 1) - (3; 4) and (3; 5) or (3; 6) are satisfied then

(3, 11)
$$\lim_{\theta \to \infty} P \left\{ \sup_{\theta \in C} \left| T_{\nu}(\theta) - T_{\nu}(\theta) + \theta K \sum_{i=1}^{n} p_{\nu,i} q_{\nu,i} \right| > \epsilon \sigma \left(T_{\nu}(\theta) \right) \right\} = 0,$$
where $K = \int_{0}^{1} \left| V(u) \right| V_{F}(\frac{u+1}{2}) du$.

<u>Proof</u>: The index ν will be emitted in the proof. It is sufficient to prove the theorem for the case where $\psi_2(u)$ = o for all u. Further the proof will be given for the case where (3 , 5) holds ; the result for

the case where (3 ; 6) holds is then obvious.

The proof is analogous to the proof of Jureckova of her Theorem 3 , 1 in $\begin{bmatrix} 2 \end{bmatrix}$. As in her case it can be supposed without loss of generality that $\int\limits_{1}^{n} p_{1}^{2} = 1$ and it can be seen, using the result of Hajek and Sidak $\begin{bmatrix} 1 \end{bmatrix}$, Theorem 1. 7) that it is sufficient to prove

$$v \xrightarrow{\lim_{n \to \infty} P} \left\{ \sup_{|\theta| \le C} |T(\theta) - T(\alpha) + \theta K \sum_{i=1}^{n} p_{i} q_{i} | > \epsilon \right\} = 0$$

As in Jureckova's proof and using the results of Hajek and Sidak ([1], section VI. 2. 5) it can be proved that for any fixed set of points θ_1,\ldots,θ_r

$$v \xrightarrow{\lim_{n \to \infty} P} \left\{ |T(\theta_i) - T(o) + \theta_i K \sum_{i=1}^{n} p_i q_i | \leq \varepsilon \text{ for all } i = 1...r \right\} = 1$$

Further, for a fixed C > 0, choosing θ_1 , ..., θ_r with

$$-C = \theta_1 < \theta_2 < \cdots < \theta_{r-1} < \theta_r = C$$

and

$$|K| |\theta_{i+1} - \theta_i| \leq \frac{1}{2} \sqrt{\frac{1}{M}}$$

where M is the constant in (3; 4), it can be seen, as in Jureckova's proof and using theorem 3;1 above, that

$$\left\{ \left| T(\theta_{1}) - T(0) + \theta_{1}K \right| \sum_{i=1}^{n} p_{i} q_{i} \right| \leq \frac{\varepsilon}{2} \text{ for all } i = 1, \dots, r \right\} \xrightarrow{\text{sup}} \left| T(\theta) - T(0) + \theta K \right| \sum_{i=1}^{n} p_{i} q_{i} \right| \leq \varepsilon$$

$$\left| \theta \right| \leq C$$

$$Q. E. D.$$

The conditions on the p_{v,i} and q_{v,i} in Theorem 3 , 2 can be weakened as follows. (see also Jureckova [2] , Remark, page 1897). For every sequence of pairs of vectors (p_{v,1},...,p_{v,n}), (q_{v,1},...,q_{v,n}) it is possible to find a sequence of quadruplets of vectors $(p_{v,1},...,p_{v,n},...,p_{v,n})$, $\ell=1,2,3,4$ such that for each $\nu=1,2,...$

$$\begin{cases}
1. & p_{v,i} = \sum_{k=1}^{4} p_{v,i}^{(k)} & i = 1, ..., n_{v} \\
2. & p_{v,i}^{(k)} q_{v,i} \ge 0 \text{ for } k = 1, 2, i = 1, ..., n_{v} \\
p_{v,i}^{(k)} q_{v,i} \le 0 & \text{for } k = 3, 4, i = 1, ..., n_{v} \\
3. & (|p_{v,i}^{(k)}| - |p_{v,i}^{(k)}|) (|q_{v,i}| - |q_{v,i}|) \ge 0 \ k = 1, 2, 3, 4 \\
& \text{and } i, i' = 1, ..., n_{v}
\end{cases}$$

That this is possible can be seen as follows. For every pair of vectors $(p_{v,1},\dots,p_{v,n_v})$, $(q_{v,1},\dots,q_{v,n_v})$ one can find $\alpha_{v,1},\dots,\alpha_{v,n_v}$, $\beta_{v,1},\dots,\beta_{v,n_v}$ such that $p_{v,1}=\alpha_{v,1}+\beta_{v,1}$ and $(\alpha_{v,1}-\alpha_{v,1})$, $(|q_{v,1}|-|q_{v,1}|)\geq 0$ for all $i,i'=1,\dots,n_v$, $(\beta_{v,1}-\beta_{v,1})$, $(|q_{v,1}|-|q_{v,1}|)\leq 0$

Further one can find $\chi \ge 0$ such that $\alpha_{v,i} + \chi \ge 0$, $\beta_{v,i} - \chi \le 0$ for all $i = 1, \ldots, n_v$. By taking $p'_{v,i} = \alpha_{v,i} + \chi$, $p''_{v,i} = \beta_{v,i} - \chi$ one has found $p'_{v,1}, \ldots, p'_{v,n_v}$ and $p''_{v,1}, \ldots, p''_{v,n_v}$ such that $p_{v,i} = p'_{v,i} + p''_{v,i}$, $p'_{v,i} \ge 0$, $p''_{v,i} \le 0$ ($i = 1, \ldots, n_v$) and $(|p'_{v,i}| - |p'_{v,i}|) (|q_{v,i}| - |q_{v,i}|) \ge 0$ all $i,i' = 1, \ldots, n_v$

Further, if p ,1 ,..., p ,n and q ,1 ,..., q ,n satisfy the condition that the p ,i all have the same sign and

 $(3 , 13) \qquad (|p_{v,i}| - |p_{v,i}|) \; (|q_{v,i}| - |q_{v,i}|) \geq o \quad \text{all i,i'=1,..n}_{v}$ then one can find $p'_{v,1} \ldots p'_{v,n_{v}} \cdot p''_{v,n_{v}} \cdot p''_{v,n_{v}} \quad \text{such that}$

$$\begin{cases} 1. \ p_{v,i} = p'_{v,i} + p''_{v,i} \\ \\ 2. \ p'_{v,i} \ q_{v,i} \cdot p_{v,i} \geqslant 0 \cdot p''_{v,i} \ q_{v,i} \cdot p_{v,i} \leqslant 0 & i=1,...n_{v} \\ \\ 3. \ (|p'_{v,i}| - |p'_{v,i}|) \ (|q_{v,i}| - |q_{v,i}|) \geqslant 0 \\ \\ (|p''_{v,i}| - |p''_{v,i}|) \ (|q_{v,i}| - |q_{v,i}|) \geqslant 0. \end{cases}$$

This can be done as follows. Suppose, without loss of generality,

 $|q_{i}| \le |q_{i+1}|$ i = 1,..., q_{i} 1 and take

$$p'_{v,i} = 2i p_{v,i} \frac{q_{v,i}}{|q_{v,i}|}$$
 $p''_{v,i} = \left[1 - 2i \frac{q_{v,i}}{|q_{v,i}|}\right] p_{v,i}$

where $\frac{q}{|q_{i,i}|}$ is taken as 1 if $q_{i,i} = 0$. Then

$$p'_{v,i} q_{v,i} p_{vi} = 2i p_{v,i}^{2} |q_{v,i}| \ge 0$$

$$p_{v,i}^{"} q_{v,i} p_{vi} = [q_{v,i} - 2i | q_{v,i}] p_{v}^{2}, i \le 0$$

Further, using (3; 13),

$$|P'_{v,i+1}| - |P'_{v,i}| = (2i+1) |P_{v,i+1}| - 2i |P_{v,i}| \ge |P_{v,i}| \ge 0$$

and, again using (3; 13),

$$|P_{v,i+1}^{"}| - |P_{v,i}^{"}| \ge |P_{v,i}|$$
 $\left\{ \left| 1 - (2i+2) \frac{q_{v,i+1}}{|q_{v,i+1}|} - \left| 1-2i \frac{q_{v,i}}{|q_{v,i}|} \right| \right\} \ge 0$

because $\left| \frac{q_{v,i}}{|q_{v,i}|} \right|$ is non decreasing in i.

Further it is clear that, if $p_{v,1}, \dots, p_{v,n}$ satisfies $\sum_{i=1}^{n} p_{v,i}^2 > 0$ for each v (condition 3 , 3.1), then, for each v, there exists an k (k=1, 2, 3, 4) such that $\sum_{i=1}^{n} \left\{ p_{v,i}^{(k)} \right\}^2 > 0$. Also, if

 $p_{v,i}$ is written as $\sum_{\ell=1}^{4} p_{v,i}^{(\ell)}$, $T_{v}^{(\theta)}$ can be written as the sum of four

statistics and (3; 11) remains true, if it is true for each of these

four statisties and n
$$\left\{p_{v,i}^{(\ell)}\right\}^2 \leq M_1 \sum_{i=1}^{n_v} p_{v,i}^2$$

for some M_1 independent of ν . Further (3:11) is true for each of these four statisties if (3;1),(3;2) and (3;4) are satisfied and the $p_{v,i}^{(l)}$ satisfy (3;12)and

This proves the following theorem.

Theorem 3 , 3 : If (3 , 1) , (3 , 2) and (3 , 4) are satisfied, if there exist p(0) ..., p(0) (£1, 2, 3, 4) such that (3;12), (3;15) and (3;16) are satisfied then (3; 11) holds

A special case v_3 . Theorem 3 , 2 with $p_{v,i} = q_{v,i} = \sqrt{n}$ was used by Kraft and van Eeden [3], [4] to find the asymptotic properties of linearized estimates based on signed ranks for the one sample location problem .

Koul [5] proves a theorem analogous to Theorem 3 , 2 for the p variate case where $R_{|X_{v,i} - q_{vi} \theta|}$ is replaced by

$$R[X_{v,i} - \sum_{j=1}^{p} q_{v,i,j} \theta_j]$$
 . He considers the case where $p_{v,i} = q_{v,i,j}$

for some j and all i = 1 ,..., n_{ν} ; further in his case $\Psi(u)$ = u and his conditions on F are stronger than (3 , 1)

REFERENCES.

- [1] Hajek, J. and Sidak, Z. (1967). Theory of rank tests.

 Academic Press, New-York
- [2] Jurecková, J. (1969). Asymptotic linearity of a rank statistic in regression parameter. Ann. Math. Stat. 40 1889-1900
- [3] Kraft, C. H. and van Eeden, C. (1969). Efficient linearized estimates based on ranks. Proceedings of the First International Symposium on Nonparametric Techniques in Statistical Inference, Bloomington, Indiana.
- [4] Kraft, C. H. and van Eeden, C. (1969). Relative efficiences of quick and efficient methods of computing estimates from rank tests. Submitted.
- [5] Koul, H. L. (1969). Asymptotic behavior of Wilcoxon type confidence regions in multiple linear regression.

 Ann. Math Stat. 40 1950-1979
- [6] Lehmann, E. L. (1966). Seme concepts of dependence, Ann. Math. Stat. 37 1137-1153.