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A one=sample analogue of a theorem of Jurockaova

by
t 4
Constance van Eedsn

Université de Montréal

I, INTROBUCTION,

The purposs of this note is to prove that if, for each

V1,2, 008, X senesX are a random sample from a distribution
v,1 v,nv

symmetric around o, then the signed=rank statistic
R
va,i qv,iel

n
\Y
Tv(e] = i§1 p\),i sgn (X\,'i -q. .6),

n_+ 1 Vel
\Y]
where R - is the rank of |X_ , = q_ . 8|among
‘x\),i q\).ie| Vpi Vli
'XV‘.‘ - qvne‘.--..‘an\: qv.nvel' is under certain conditions on the

common distribution of the xv 1 on the constants p and on the
»

vwi® Tyt
function ‘V. asymptotically approximately a linear function of 6 in the

sanse that

2]

\Y]
1im P [Ty -1 +ek ¥ p_.q,,lze00T (031}’ o
sup 7
n oo {'elsc v Y 1= W3 wE v

for every C>o and avsery €>0, whers K is a constant depending on the

caommon distribution of the Xv and on the function H’.

.1

¥) This paper was written while the author was visiting the University
of Rennes. It was partially supported by the National Research Council
of Canada wider Grant #£ A 3 14.
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v [l
An analoguus rosult was proved by Jureckova LZ] for the

statistic R
v 'xv g~ d, 40

. 2 F ]
C‘,)li\/o J

1 n. o+ 1
v

S (o) =
v

U~ 3

i

where R . i% the rznk of X, - d ,6 among
X -d .3 V,1 v, 1

X = d L0,.44,X - d 6 and where, for each v=1,2,..., the Xv

v, 1 v,1 vin v,n ,1

are independently ond id;ntia;lly distributed.

For the preof o7 nur result some lemmas are needed which are
given in section 2 ; one cf these lemmas is a generalization of Theorem
5 of Lehmenn [8} ;3 two of the lemmas are analogous to Corollary 1 and 2

of Lehmann [ﬁl . The main r=sults and their proofs are given in section 3.
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ITI., SOME LEMMAS.

Le| 11.....in‘and J1""’Jn sach be a permutation of the
numbers 1,...,n and let e1,....en. 61,...,6n each be + 1 or = 1 such

that (ik' € satisfies

n

K’ Jk’ Gk]k=1
1. 5k=1 ====; €k=1

Condition An s 2. {£<k. 6k=1, quk} =312<1K

3. {z«. e =1, ‘j£>Jk} —11

For fixed M{1 €M «n) define

(2 5 1) aM,1>BM,2>"'>aM.KM

as the ordered values of those i, among in-M+1' 1n-M¢2""‘1n fcr which
€, = *1 end
(2 3 2] bM.1 > bM,Z Pens > bM,LM

as the ordered values of those Jk among jn-M+1' Jn-M+2""' Jn for which

GK = +1, Obviously, by Condition An.1, K z.LM 3 further K, £ M.

M M

Further define

(25 3) ,1 > Sm,2 Trrr CM,M—KM

as the orderad values of those ik among in-M+1' in-M+2""‘in for which
€ = -1 and

(23 4) d

M1 %2 7 e ey

as the ordered values of thoss jk among Jn-M+1‘ Jn-M+2""'Jn

for which Gk = -1,

n
Lemma 2 ;3 1. If [ik. €.’ Jk' Gk)k=1 satisfies Condition An. then

By, § B, g 21,0000ty
(2‘5) M=1‘-n¢)n

(o} = saeslt™

Mg S g R=1saesMeK,

Proof : The proof will be given in four parts,.
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1) The lemma is true for M = 1 and any n 2 1. To prove this,

notice that by Condition An.1 it is sufficient to prove that
J
J

in if Gn =1

LY

(2 ; 6) n

i if e = -1
n n

v

n

This can be seen as follows.

(23 7) (3 = (& of J, £3) =n= (#of 3§ >3)

in s (/o of 1, < in] = n

K< (% of 1k > in]

By Condition An.2
(2, 8) (Mt of J, <3 ) s (Mofi $1)1F8 =1
and by Condition An'3

(2 ; 9) (7 of Jk > Jn]~; (# of ik > in) if €, " -1

2) If the lemma is true for some (n,M) tten the lomma is

true for (n+1, M). To see this consider, for somg n 3 1,

n+1

n+1
(ik. €2 Jk‘ Gk]k=1 satisfying Condition An+1' From [ik. € Jk’sklk-

1

n+1

v ’ §
derive [ik' € Jk’ Gk]ktz , satisfying Condition An, as follows. Let

r, = rank of ik among (11. 1k)
(2 H 10) . K = 2,000,n+1
S, = rank of Jk among (J1. Jkl

and let
i} =1, = (r_=1)
(2 1) 11) k k k K ® 2,00esn*1

Then 15.....1;+1 and ﬁé'---'15+1 are each permutations of the numbers

1,e0+sn and from

iK < iz === i"‘ < i;'
[2 3 12) k,R. = 2.-.-.“*1
'
<3y &= <3

n+1

’ ’
it then follows that {‘a‘-‘ exe Ik 5k}k=2 satisfies Condition A .
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s 1} ? [} ’
For fixed M n let aM,2 ’DM,E ’ cm.l ,dm’g

defined, as in (2 3 2) - (2 ;3 4), for (iL

’ 1]
‘LM and KM be

n+14

[ ]
18 +3k +8k)k=nez-n @Nd

let aM ,» b ,d and LM be so defined for
s .

L M2 'm0 2,0 tFy

n+1 . 1 e K?
(1 o6 o 3y s § ) opepay ? then L Ly end K Kye Assuming the

M M

lemma to be true for (n,M) we have

’ 1] =
bM,E é amlz ') 130--.LM

(2 5 13)
' L} = -
CM,E é dM,l L 1.--.,” KM
Now let & be the number of b, ., > J, 3 then by (2 ; 11)
o M, L 1
bM.Q -1 2 = 1;.}0,&0
(2 5 14) b! =
M, 4 . .
HM.Q E 20 +1..-.;LM-
Let ko be the number of 3,2 > 11 3 then by (2 3 11)
a.. -1 L= 1...'.k
(2415 ', = o4 °
4 =
am.l 2 ko +1'I.I‘Kml

Further, by Condition An+ -2, Eo s ko. From (2 3 13) = [2 3 15) it then

1
follows that

[2 3 16] b 2= 1;-..;Lma

Me S M,
The proof that

[2 3 17) d L= 1;--..” - K

°M,2 § %M, 2 M

is analogous, using Condition An+i'3'

3) If the lemma is true for som~ n 3 2 with M = n=1, then the
lemma is true for the sama n with M = n. This can be sean as follows.
Assuming the lemma to be true for M = n-1 we have

b L = 1.-.-;Ln_

n=1,2 < 81,2 1

L= 1..--.“‘1‘Kn_

{2  18)

c

n=1,2 S 91,2 1

and it will be proved that

2 10 L P AT
2°Cn,2 é dn‘z E = 1.-...n-Kn
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The following three cases can be distinguished

8) 8,=e,==1. Then L = L, » K =K _, »b o =b o (=10l )

and a (2=1....,Kn). so that (2 3 19.1) 1is obvious. Further

n, & %n-1,2

(an‘ﬂ.‘ 2=1ll.l‘Kn » Cn,g » 2=1,..-.n"Kn) and

(b [] 2=1‘ncoan , d

s £=14444,n=L_)} ars each permutations cf the
n.ﬂ n

n,%

numbers 1,...,0 s0 that (2 ;3 19.2) follows from (2 3 19.1)

b) 8,==1, e,=1. Then L_ = L__

n=-1’ Kn =K

1, b = b (2=1p-o¢.Ln]

+
n-1 n.2 n=1,%

and Ch,e " ch-1,£(2=1""'n-Kn)' To prove (2 ; 19.1) let ko be the

number of an-1,2(2=1""'Kn-1) larger than 1, ; then

1

81,4 AL I PN 8
(2 3 20) an.l = 11 L = K0*1
La
=1, 2=1 k0+2,...,Kn
If L < k, €K _, then (2 5 19.1)1s immediate. If o ko Ly = Laaq s
then (2 3 19,1) is immediate for 2=1....,ko. Further
(25 21 Brok +1 " Ptk +1 € Fnaq,k s S 14T 3 ¢ g
o 0 o 0

and for &= k0+2.....Ln

(2 } 22] bn.!. = bn"‘:ﬂ« < an"1;2;

n.2+1 S 80,2
The proof of (2 ;3 19.2) is analogous.

c) §yme 1w Then Lo = Lo_g* 1 Ky = Koog*ts e cn-1.£[£=1""'n-Kn)

and d d (2=1.....n-Ln] so that (2 ;3 19.2) is cbvious, Further

=
n,2 n=1,%

(see a)) (2 ;3 19.1) foliows from (2 ;3 19.2)

4} The lemma now follows by induction on M. According to part. 1
of the proof, the lemma is true for M = 1 and any n21,. Let Mo be an
1nteger'2 1 and assume the lemma is true for M = "o and any n ¥ Mo, then
it will bs proved that the lemme {s true for M = M°¢1 and any n 2 M0+1.
This can be seen as follows. According to the induction hypothesis the
lerma is true for n = M0+1 and M = Mo s accordiqg toc part 3 of the proof

this implies the truth for n = Mo+1 and M = MO+1 3 according to part
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2 of the proof this implies the truth for M = M0+1 and any n ;;M°+1.

Q. E. Ds

In Lemma 2 3 1 it was shown that Condition An is sufficient
for (2 3 5) to hold for each M = 1,,,,.,n. For (2 3 5) to hold for a

perticular value cf M it is obviously sufficient that (1., €, +6,)p.

satisfies
For each k % n=M+1
1, 6k=1 = ek=1

Condition An, 2. for each  2gk=1 (5k=1'32<1k] sena)) 1£<ik

M
3, for eech  fLgk=1 (ek=-1,J2>jK]==$i2>ik

n
Further, 1f (ik‘ek'Jk’ék)k=1 satisfies Condition An, for M = MD then

M

n
(i .6,03,08, ) .4 sotisfias Condition A, for ell M g M,, which proves

M

the following lemma.

n =
Lemma 2 3 2., If (1k‘€k'Jk'6k]k=1 satisfies Condition An,M for M Mo. then
a ib 2=1'IOO)L
(2 5 23) M2 ="M, 8 M tghe_

Gy, S g 251, 00 e M=Ky

Lemma 2 3 3, If h is i.ondecreasing and nonnegative and if (1k‘€k‘Jk’6k]E=1

satisfies Condition An for M = MO. then
»

M
n n
) hti ) 3 )) h(j,)
L=n+1=M L=n+1=M
(2 5 24) €470 8470 15MEM_
n n
I nig) ¢ I hiyy)
L=n+1=M L=n+1=M
€,<0 § <o

Proof : Because h %s nondecreasing, it follows from Lemma 2 3 2 that,

for 1 £ ML I"Io.
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1 h[bl“lﬂ,] { htam,ﬁ] 2‘-'1..-.;[.”

24 h[CM,Q] < h(dm'z] l’1,-nlpM‘KM.

(2 3 25)

From (2 3 25.1) and the fact that h is non negative it follows that, for

1 6” éM »

[u]
gene1=n L gaq e oy T TLET T oy TLE
6£>o
)
= hi(i,)
ge=ns1=h  *
€£>0

From (2 3 25.2) and the fact that h is non negetive it follows that,

for 1 &M SMD.

M=K M=K M=-L
E ZM ZN 2M
(2 ; 27) h(i,}) = h(c ) & h{d ) & h{d ] =
L3n+1=-M o £=1 M, & =1 Ma & 2=1 M, 2
€2<0
n
= 1 heg,. Q. E. D,
L=n+1-M
61<0

Remark., In the two special cases, where 6k=1 for all k or sk=-1 for
all k, Lemma 2 3 1 reduces to Thecorem 5 of Lchmann [6}. Further, in each
of these special cases, Lcmma 2 3 3 is analogous to Corollary 1 af

Lehmann [8] .

Lemma 2 5 4. Let a Gy seees O be n numbers satisfying

1° 72

(2 y 28) 0£ a, Seeela_ ,

n
let h be non decreasing and ncn negative and let (ik ¢ € o Jk ’ sk]k=1

satisfy

1. (6k=1 s ay > 0) e €k=1
(2 3 29) 2, (6k=1 ’ ak >0, i<k, Jz < jk} ::912 < ik

3. (e ==1, a >0, <k, I, >, J==1> 3



than

(2 3 30) a, € h(ik] 2

a 6 h(J J.
1 K k 'k

1 k

e~3
i >3

k
Proof : The following proof 1s enalogous to Lehmann's proof of his

Corollery 2 in [S] .

{2 » 30) is obviously true if @ =0 for all k = 1,...,n, so in the

following it will be supposed that a, > o for at lecast one k. Further,

3

since h is non negative,

n n

I hie) 3 0 and § h{2) = o if and only if h(L) = o for &ll £ = 1,...,n,
L =1 =1
in which case (2 3 30) is obviocus. In the following it will be suppcsed

n
that I hg) > o.
2=1

Let o0 g 31 < 32 €ane < BT be the different values of L PYETEPL

and let nt(t=1.....T) be the number of o aqual By Further let

t
Nt = Z nS (t=1,44.,T) and NO = o, Con idser the random variables X and
s=1
Y each taking the values (-BT s Eqaq reres T By s Byasees B g s Bl

with

N

]

h[iz)
LN, _ 1
€, <0

1. PXg =8 )
° n
1 h(2)
=1
(2 3 31) 5=1,000,7

N

1hti)

RN *1 L

2. Pig B) = 1 - —52C

n
¥ hig)

\\~ 2=1




1=
and (/
NT

{ 1.p (Vg -8)

[2 } ] 32) 8 = 1,....1‘

Y hiJ,)
2=N_+1
S

§ >o
24 P(Y‘g Bs) =] - 2

n
Y hs)

=1

where, if 3' = g, P(Xg 0) and P(Y g 2) are defined by (2 ;3 31.2) and
(2 5 32.2) respectively,

If By > O condition (2 3 29) reduces to Condition A, end from Lemma

2 5 3 it then follows that

(2 5 33) PIX g x) g PlY & x) fer all x.

If By = Os condition (2 ; 29) is Condition An,M for M = NT - N1 = n=n,,
so that in this case (2 ; 24) holds for M« n=n,. which proves (2 3 33)
From {2 ;3 33) it follows that

(2 5 34) Fx 2%,

which is equivalent to

N N
E ZS ) % ZS §,h(J,)
(2 3 35) ] e, h(i 3 8 hij,l,
S=1 S Q=Ns-1+1 2 e S=1 =] 2=NS-1+1 £ ')

whigh is equivalent to

n n
(2536 [ o €h(i) 3 ] o 6 hig)) 9. E. D.
221 221
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III; MAIN RESULTS.

Let, for each v= 1, 2, sess X seess X be independently
v,1 v,n

v

and identically distributed random variables with common distribution

function F{x)} satisfying

(3 ;1 {

(1. F({x) has an absolutely continuous density f(x]

1
2, J \fﬁ(ul du < o, where‘fF(u) = -
0

and where f' is the derivative of

£ F N u))

< U<
mr (ogus1)

f(F "(u))

KB. fi{x) = f(-x) for all x.

Let“y (u) (oguel) be a function satisfying

(1, \y(u) can be written as the sum of two functions "Vﬂu]

and thu] whero \Hl(ul is non decreasing and non negative

(332) 3 and ‘Yz(u] is non increasing and ncn positive
Tw? T2
L2. j Yi[u] du < o (i1 =1, 2) andj Y (u) du> o
o) o
Let pv svea, pv,n\) and q\"‘l se0as qv.nvbe vectors of constants
satisfying
ni) 2
1. p >0
1=1 " max
8] , 1
184
2, lim = 0
(3 ;5 3) y 3 v ’
N
=1 Wi
n
Y2
14 Z qv 1 &M for some positive number M
i=1 " independent of v
(3 ; 4)

2. 1lim max q2 = 0

V Yoo 161.4'\:’1



=12~

and, for each v = 1, 2,..., eithser

1. pv,i q\).i 20 for all 1 = 1,404, nv

(3 4, 5)
2.[lpv'i| - |pv‘1,|) [qu,1| - IqV'i,l];o for all 1,1'=1,.4usn,
or,
3, 6) 1. pv.i qv’jﬂé o for all i = 1.....nv
2. ey g |- Ipy gol3 Ua, (| = la, 441) 3 0 for all 1,1'=1,..n,
Let R _ be the rank of |X , - el among
I, 4 - a4l voi = N1
va‘1 - qv',lel 2888, ‘X\)‘nv- q\)‘nvel r] let
1 if u> o0
(37) Sgn u =
-1 ifu<o
and let
n RIx ., =-q .8
v v,1 v,1
3 8 = X - .
(3 5 8) Tv(e] 121 pv,i\*} — sgn { v, 1 qv.ie )

Vv

Theorem 3 3 1, If F(x) is continuous, if qjtu] is non decreasing end non

negative then, for each v= 1, 2,444, vael is with probability one a

non_increasing step function of ¢ if (3 3 5) holds and 3 non decreasing

step function of 8 if (3 ; 6) holds :

Proof : In the proof the index v will be omitted. The proof will be
given for the case that (3 3 5} holds. The result for the case that
(3 5 8) holds is then obvious.

If F(x) continuous, T(e) 1is, with probability one, not well
defined only for those values of 9§ satisfying o = --;i-for some i with
q; ¥ 0 and for those values of 6 satisfying |x1 - qieklxi,-qi,el
for some pair (i,1i') with qy ¥ o or Qs # o. Thess values of 8 where

T(8 ) is not well defined, define a finite number of intervals for 6

within each of which T(8) is indspendent of 6.
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Now consider two values 61 and 62 of 8 for which T(8) 1is well

defined and let 6, < 6,. Then it will be proved that T(61) 2 T(Gzl.

1 2

Without loss of generality the X, can be numbered in such a way that

i
Ip1 [€aee 5|pn| Then, by (3 ; 5.2}, |q1| Sooe slqnl. Write T(8) as
R
oy
{3 5 9]} T(e) = B sgn p, (X, - g,8)
1Pk T Kk T T

where, for Pk = ©» sgn pk(xk - qke] is defined as 1.

Now apply Lemma 2 3 4 with, for k = 1,...s, N

oy ® lpk|
[3 3 10] = - = % -
€ sgn pk(Xk qke1l GK sgn pktxk qK62]
i = R - J = R -
S LR R S RN

Then T(e1l 2 T(ez] 1f (2 3 29) is satisfied. That (2 ; 29) is satisfied

can be seen from the following steps al, b) and c)
a) (2 3 29.1) is identical with
pK[Xk = a9 92] >0, P 7 0) == pk(xk - 91] >0
which follows immediately from (3 5 5.1) and

pk(XK - g, 61) = pK[Xk - q, 62) * Py 9 [62 - 61]

b} (2 ;3 29.,2) is identical with

{pk(xk = G 0,0 >0, p F o, &<k, |X-qp8,[<|X ~q6,] (=D

Xg= ageql < Ix = a 0,4l

This can be seen as follows. We have

Pk
Pk
=X =g 8)) <Xp =gy 8y <—{X =g 6]
o | P |

so that, using (3 ; &),
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Pk Pk
X2 -q 61 <-——--—-[XK - a 61) + (92 - 61] (ql - T—_T qk)
kal %
Pk
= ]—-](xk -q 8,0+ (e, -6 (q - |a]) g
Pk
Pk
& (X, = ay 8,)
|Dk|
also ]
Pk Pk
xE - ql 61 > - T—-T(Xk - q 01) + [92 - 81] (ql + ' qu]
Pk Pk
Pk

= - TE:T(XK - Gy 911 + (92 - 011 (q2 M |qk|] z

Py
= ——(X, = gy 0,0,
le |

WV

so that |X2 = a, 6, &l¥% -a o,l.

c) (2 5 29,3) is identical with
{pk[xk-qk 6,) <0, p # 0, 2 <K, |X2 - q, ezl > lxk- a 62|} Te—
Xy =gy o4l > 1% - a8yl
The preof of this is analogcus te that for (2 . 29.2). Q. E. D.

A spscial case of Thecrem 3 ; 1 wiﬂw\y {(u) = u and

o] = q (i = 1....,nv) was proved by Koul ([5], Lemma 2 5 2],

Theorem 3 3 2, If (3 3 1) - (3 ; 4) and (3 ; 5) or (3 3 6) are satisfied

then

n
v

(34 11) Mn P ) sup [T (6) = T (o) + 0K [ p
v lojsc’ ¥ ? 1=1

1
1
whers K fu[ u) GEI—) du.
| Yo Y

Proof : The indexV will be omitted in the proof. It is sufficient to

qv'i|>eo(Tv(o]] =0

v,1 /

prove the theorem for the case where\vztu] = o for all u., Further the

proof will be given for the case where (3 ; S) holds ; ths result for
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the case where (3 3 6) holds is then obvious.

The proof is analogous to the procf of Jurdékov; of her Theorem
33 11in [2] » As in her case it can be supposed without lcss of generality
that E pi = 4 and it can be seen, using the‘result of H;Jek and gidék

i=1
( [1] , Theorem 41, 7) that it is sufficient to prove

n
lim P) sup |T(e) = T(c) + 6K Ip,a]>e}=o0
v__§o 'BI&C i=1 1 i

/ v g
As in Jureckova's proof and using the results of Hajek and Sidak

( [ﬁ] , section VI, 2, 5] 1t can be proved that for any fixad set cof

pcints 61...., Gr

n
vl_jﬂ\)w p g |T[ei] - T(o) + eiK 1§1 Py qil £ € for all 1 = 1...r}= 1

Further, for a fixed C »> o, choosing 61. ceees B r with

and

v /
whers M is tha constant in (3 3 4), it can be seen, as in Jureckova's

proof and using theorem 331 above, that

n . €
{|T(ei) - T(o) + K 12:1 Py qilé—z—-for all 1 = 150000 T} wwcemd

n
sup |T(g) = T(o) *gK [ p, g ]sce¢
Jelsc 5 Pl

Q. E. O

The conditions on the Qv.i and q“‘1 in Theorem 3 3 2 can be
v /
weakened as follows. (see alsc Jureckova [2] » Remark, page 1887), For

every sequence of pairs of vectors (p q #0000 P Jo (@ Lse00s G )
v vnnv vel YL
v
it is possible to find a sequence of myadruplets of vectors

(%) (%) )

(pv.1oclo. pV)nv] » = 1. 2 » 3. 4 such that for sach v = 10 2‘...
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4
(2)
» = 1= 1,000 n
1 pVoi £§1 pV:i ! ’ \Y)
2. pt&) >0 forf =1, 2, 1 =1 n
. pv.i qv.i 3 s £ seeesn
(3 5 12)
b a0 forn =3, 4,131 n
vol v, ¥ P Y
(2) (2)

3. (e, 5l - Ipv.1,|] (|qv‘1| - |qv‘i,|] >0 % =1,2,3,4

and 1, 1' = 1,444, nv

That this is possible can be sesn as follows., For every pair
of vectors (pv‘1..... pv.nv] ’ (qv‘1..... qv.n ) one can find
» Bv.1 PP Bv.nv such that pv,i =

Gv‘1 20088 O + BV’i and

v,n vs1
\Y

\v
o

(a ~a .) [' | - Iq I]
vl v'i' qv'i v, 1! for all 151.’100--0nv

A
o

(BVai - BV:i'] [|qui| - quai'lj'-

—

Further one can find Ka 20 sych that av.i + X); o, Bv.i - sz o]

- ’ = ” = -
for all 1 Tounes nv. By taking p\“i a g + X, ¢ Dv.i B\“i “

and p" Y p; N such that

\',.n \),1
Vv
- [} ” ' " -
pv‘i—pv‘i+pvi lpv‘i;olpv.iéo [1 1)...5“\’] and
ey gl = Ip) 4010 Uay gl = la, 4011 20
all 1,i®* = 1..,nv
(el gl = 1py, 40D Ua, 41 = la, 13 30

F f [N ] a0
urther, i pv‘1 ’ ’ pv,nv and q\“1 . P qv,nv satisfy the condition
that the pv 1 all have the same sign and
»

(3 5 13) Upy, gl = Ipy 4012 Uay 41 = o, 4013 20 all dit=t,00ny

L ’ ” ”
then one can find pv.1 sveus P V'nv s P vl 2t pv.nv such that



2, p' 19,1 *Py.i %% pv 168,71 pv.i“ o 1=1.-..nv

\)J V‘l \);l
(3 ; 14) -4
3. ey gl = Iey 1) dag (1= lay .00 po
(lpg‘il - IDC,i-!J ilqv,il - qu‘i.ll.z G
\

This can be dons as follows., Suppose, without lcss of generality,

Iq\) I\!q i"'1| = 1)...5 n_v- 1 and take
q
p;.i =21 p 'i.__lili_ p:‘i = {1 21 _32.3; »
. .

q
where ._:L:i__is taken as 1 1if qv i = 0. Then

- »

o 1 |

' =
PO, %,1 Pug =4 pv 119, il 2o

P* . 9 . P q ,=-2i|a | p%,1 < o
val v,i Tvi v, 1 v,1 v
Further, using (3 ; 13) ,

e

vai*l !- |p;‘i |= (21+1) !pVoi*1I -2 lpVaiI ; |pV:i| = ©

and, again using (3 ; 13} ,

[ q
[P0 saql = 0P0 5l 2 [Py 4l '1 - (21+2) __!:i114 - \1-21 Vel
|q\)‘i+1| ’q\).i'

q,1

Vsl

because }1-2i is non decreasing in i.

|g

Further it is clear that, if p se0as P satisfies
v, 1 v,n

n \Y

Z pi 420 for each v(condition 3 ; 3.1), then, for each v, there
- F

v
exists an & (2= 1, 2, 3, 4) such that [1] > o, Also, 1if

pv 1 is written es Z ptl] ’ Tv(el can be written as the sum of four
s

statistics and (3 ; 11) remains true, Zf it is true fur each of these
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four statisties and

4 v
(3;15) ) {pili}%g M,
p=1 1=1 :

ié1 pv.i

for some M1 independent of v. Further (3;11) is true for each of these four

1)

statisties if (3;1),(3;2) and (3;4) are satisfied and the p satisfy (3;12?

and
(<, for at least one

n

A

2
‘Y {Di}i > o
i=1

2. For each 2 for which 1. is nct satisfied

n 2
Z" NS

3. For each £ for which 1. is satisfied

max {p
124 €Ny

L

for each v

for each Vv

(9)?
wi

lim
oo

\

v—
n
Zv (9 2
1=1 Vi

This proves the following theorem,

Theorem 3 3 3 : If (3 5 1) 53 (3 3 2) and (3 ; 4) are satisfisd, 1f there

{9 ()

exist p NPIERLY p {#1. 2, 3, 4) such that (3;12),(3;15) and (3;16)
»

va N

v

are satisfied then (3 ; 11) holds.

A special case »y Theorem 3 3 2 with pv 1 =

was

1
qv,i =\7§:
v

used by Kraft and van Eeden [3] R [4 to find the asymptotic properties

of linearized estimates based on signed ranks for the one sample locaticn

problem .

Kaul [é] proves a theorem analogcus to Theorem 3 3 2 for the

X - Q.0

p varlats case where R‘
wi V8

- He considers the case where p,, i =
?

is replaced by

q“ij
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for scme j and all 1 = 1,444, n, 3 further in his case ﬂ’(u] =y

v

and his conditicns ¢n F are stronger than (3 3 1)
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