PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

P. BOLLEY

J. CAMUS

Étude de la régularité de certains problèmes elliptiques dégénérés dans des ouverts non réguliers, par la méthode de réflexion

Publications des séminaires de mathématiques et informatique de Rennes, 1968-1969, fascicule 1

« Séminaires d'analyse fonctionnelle », , exp. nº 4, p. 1-17

http://www.numdam.org/item?id=PSMIR_1968-1969 1_A4_0>

© Département de mathématiques et informatique, université de Rennes, 1968-1969, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

DANS DES OUVERTS NON REGULIERS, PAR LA METHODE DE REFLEXION

par P. BOLLEY et J. CAMUS

INTRODUCTION.

L'objet essentiel de ce travail est l'application de la méthode de réflexion pour l'étude d'un "problème avec coin" du type suivant : problème de Dirichlet associé à un opérateur elliptique dégénéré d'ordre 2.

Cette méthode permet aussi de retrouver les résultats de régularité du problème de Dirichlet associé à l'opérateur Δ dans un cube de R^n , pour n appartenant à N, donnés dans [4].

1. Un opérateur de prolongement.

Soient
$$\Omega_1 = \{(x,y) \in \mathbb{R}^2, x < 0, y > 0\}$$

$$\Omega_2 = \{(x,y) \in \mathbb{R}^2, x > 0, y > 0\}$$

$$\mathbb{R}^2 = \{(x,y) \in \mathbb{R}^2, y > 0\}.$$

Pour une fonction u définie sur Ω_1 , on désigne par Pu la fonction définie sur ${\rm I\!R}_+^2$ par :

$$Pu(x,y) = u(x,y)$$
 si x < 0
 $Pu(x,y) = -u(-x,y)$ si x > 0.

L'opérateur P possède les propriétés suivantes :

Proposition 1.1. Pour toute fonction u de $H^1(\Omega_1)$ telle que u(0,.) = 0 (dans $H^{1/2}(0,+\infty)$), alors Pu appartient à $H^1(\mathbb{R}^2_+)$ et

$$\frac{\partial Pu}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,y) \quad \text{si } x < 0$$

$$\frac{\partial Pu}{\partial x}(x,y) = \frac{\partial u}{\partial x}(-x,y) \quad \text{si } x > 0$$

$$\frac{\partial Pu}{\partial y}(x,y) = P \frac{\partial u}{\partial y}(x,y)$$

Soit φ appartenant à $\mathfrak{D}(\mathbb{R}^2)$.

$$\langle \frac{\partial Pu}{\partial x}, \varphi \rangle$$
 = $-\langle Pu, \frac{\partial \varphi}{\partial x} \rangle$ $\mathfrak{D}'(\mathbb{R}^2_+) \times \mathfrak{D}(\mathbb{R}^2_+)$

$$=-\int_{\Omega_1} u(x,y) \frac{\partial \varphi}{\partial x} (x,y) dx dy + \int_{\Omega_2} u(-x,y) \frac{\partial \varphi}{\partial x} (x,y) dx dy.$$

Or u et $\frac{\partial u}{\partial x}$ appartienment à $L^2(-\infty,0;L^2(0,+\infty))$, on peut donc faire une intégration par parties par rapport à x dans chaque intégrale et comme u(0,.) est nul on en déduit que :

$$<\frac{\partial Pu}{\partial x}, \varphi > = \int_{\Omega_1} \frac{\partial u}{\partial x} (x,y) \varphi(x,y) dx dy + \int_{\Omega_2} \frac{\partial u}{\partial x} (-x,y) \varphi(x,y) dx dy.$$

Enfin la dérivation en y est immédiate.

Proposition 1.2. Pour toute fonction u de $H^1(\Omega_1)$ telle que

(i)
$$u(0,.) = 0$$
 (dans $H^{1/2}(0,+\infty)$)

(iii)
$$\forall \varphi \in \mathfrak{D}(\mathbb{R}^2_+), \quad \varphi = |_{\Omega_1} \in H^2(\Omega_1),$$

$$\frac{\partial^2 Pu}{\partial x^2} (x,y) = P \frac{\partial^2 u}{\partial x^2} (x,y)$$

$$\frac{\partial^{2} P u}{\partial x^{2}} (x,y) = P \frac{\partial^{2} u}{\partial x^{2}} (x,y)$$

$$\frac{\partial^{2} P u}{\partial y^{2}} (x,y) = P \frac{\partial^{2} u}{\partial y^{2}} (x,y).$$

La vérification se fait comme précédemment.

2. Le problème.

Soit
$$w = \{(x,y) \in \mathbb{R}^2, |x| < 1, |y| < 1\}.$$

On désigne par V l'espace :

$$\{u \in \mathcal{D}'(w), \sqrt{1-y^2} \ D^{\alpha} \ u \in L^2(w), \ 0 \le |\alpha| \le 1\}$$

où
$$D^{\alpha} = D_{x}^{\alpha_{1}} D_{y}^{\alpha_{2}} = \frac{\partial^{\alpha_{1} + \alpha_{2}}}{\partial^{\alpha_{1}} \partial^{\alpha_{2}}}$$
 pour $\alpha = (\alpha_{1}, \alpha_{2})$ appartenant à N^{2} et $|\alpha| = \alpha_{1} + \alpha_{2}$.

Pour m appartenant à N, on désigne par H^{m} (-1,1) l'espace : $\{u \in \mathfrak{D}'(-1,1), \sqrt{1-y^2} \quad \mathbb{D}_v^p \ u \in L^2(-1,1), \ 0 \le p \le m\}$.

C'est un espace de Hilbert pour la norme :

$$u \longrightarrow ||u||_{H^{m}_{\sqrt{1-y^{2}}}} = (\sum_{0 \le p \le m} ||\sqrt{1-y^{2}} p_{y}^{p} u||_{L^{2}(-1,1)}^{2})^{\frac{1}{2}}.$$

On a le résultat suivant :

Proposition 2.1. (i) $\mathfrak{D}(\overline{\mathsf{w}})$ est dense dans V.

(ii) l'application $u \longrightarrow \{u(-1,.), u(1,.)\}$ définie sur $\mathfrak{D}(\overline{w})$ se prolonge par continuité en une application linéaire continue de V dans $Z \times Z$ où $Z = \left[H^1 / 1 - y^2\right] (-1,1)$, $H^0 / 1 - y^2$ $\left[-1,1\right] \frac{1}{2}$. Cette application est surjective et admet un relèvement linéaire continu.

Pour la définition de Z on renvoie à [3].

La densité de $\mathfrak{D}(\overline{w})$ dans V se démontre de la façon suivante : avec une partition de l'unité convenable on isole chaque coin $(\varepsilon,\varepsilon')$ avec $\varepsilon=-1,1$ et $\varepsilon'=-1,1$, de l'ouvert w et ensuite à l'aide d'un prolongement de Babitch [6], on se ramène à l'espace

$$W_{\pm}^{1,2}(\mathbb{R}^{2}_{+}) = \{u \in \mathfrak{D}'(\mathbb{R}^{2}_{+}), \sqrt{y} \mid D^{\alpha} u \in L^{2}(\mathbb{R}^{2}_{+}), 0 \leq |\alpha| \leq 1\}$$

muni de la norme

$$u \longmapsto ||u||_{W_{\frac{1}{2}}^{1,2}(\mathbb{R}_{+}^{2})} = (\sum_{0 \leq |\alpha| \leq 1} ||\sqrt{y}|_{\mathbb{L}^{2}(\mathbb{R}_{+}^{2})}^{\alpha}|_{\mathbb{L}^{2}(\mathbb{R}_{+}^{2})}^{\frac{1}{2}}$$

Dans [2], on démontre que $\mathfrak{D}(\overline{\mathbb{R}}_+^2)$ est dense dans $\mathbb{W}_{\frac{1}{2}}^{1,2}(\mathbb{R}_+^2)$.

Remarque 2.1. On peut montrer en résultat de densité plus précis que celui que l'on vient de voir : si l'on désigne par $\mathfrak{D}^*(w)$ l'espace des fonctions de $\mathfrak{D}(\overline{w})$ nulles dans un voisinage de y = 1 et de y = -1, cet espace est dense

dans V. Pour cela on utilise la technique précédente et le fait que, d'après [3], $\mathfrak{D}(\mathbb{R}^2_+)$ est dense dans $\mathbb{W}^{1,2}_{\frac{1}{2}}(\mathbb{R}^2_+)$.

Proposition 2.2. V est inclus dans L²(w) avec injection continue.

Soit u dans V nulle au voisinage de y \approx -1 (ce qu'on peut toujours supposer en introduisant sur w une partition de l'unité convenable). Pour presque tout x appartenant à]-1,1[on a :

$$u(x,y) = \int_{-1}^{y} \frac{\partial u}{\partial y} (x,y) dy.$$

L'inégalité de Hardy [5] montre que :

$$||u||_{L^{2}(w)} \le c ||(1-y^{2})^{\frac{1}{2}} \frac{\partial u}{\partial y}||_{L^{2}(w)} \le c||u||_{V}.$$

On désigne par V l'adhérence de Ձ(w) dans V. On peut caractériser V par :

Proposition 2.3. V coı̈ncide avec l'ensemble des éléments de V tels que u(-1,.) = u(1,.) = 0 (dans Z).

Toute fonction u de V vérifie u(-1,.) = u(1,.) = 0.

Inversement soit una fonction u de V telle que u(-1,.) = u(1,.) = 0. D'après la remarque 2.1, il existe une suite de fonctions Ψ_n de $\mathfrak{D}^*(w)$ qui approchent u dans V. Soit la suite de fonctions φ_n paires sur]-1,1[définies par :

$$\varphi_{n}(x) = 1 \text{ pour } 0 \le x \le 1 - \frac{2}{n}$$

$$= -nx \text{ pour } 1 - \frac{2}{n} \le x \le 1 - \frac{1}{n}$$

$$= 0 \text{ pour } 1 - \frac{1}{n} \le x \le 1.$$

On vérifie que la suite de fonctions ϕ_n définies par $\phi_n(x,y) = \phi_n(x) \ \Psi_n(x,y) \ \text{et qui sont continues et à support compact dans w,}$ convergent vers u dans V. Il suffit ensuite de régulariser ces fonctions.

Le dual $\overset{\circ}{\mathsf{V}}$ de $\overset{\circ}{\mathsf{V}}$ est un espace de distributions sur w et

$$\overset{\circ}{\mathsf{V}}\subset \mathsf{L}^2(\mathsf{W})\subset\overset{\circ}{\mathsf{V}}'$$

les injections étant continues.

On considère la forme intégro-différentielle définie sur V par :

$$a(u,v) = \sum_{0 \le |\alpha| \le 1} \int_{w} (1-y^2) D^{\alpha} u D^{\alpha} v dx dy.$$

Cette forme est V-coercive. Le lemme de Lax Milgram montre alors que : pour tout f dans \mathring{V} , il existe u unique dans \mathring{V} tel que pour tout V dans \mathring{V} , on a a(u,v) = $\langle f, \overline{V} \rangle$. L'interprétation de ce problème conduit $V' \times V$ au problème aux limites suivant : pour tout f dans \mathring{V} , il existe u unique dans \mathring{V} tel que

où A est l'opérateur différentiel associé à a i.e. :

$$A = \sum_{0 < |\alpha| < 1} (-1)^{|\alpha|} D^{\alpha}((1-y^2)D^{\alpha}).$$

3. Un théorème de régularité.

Pour m appartenant à N, on désigne par H^m 2(w) l'espace $\{u \in \mathfrak{D}'(w), (1-y^2) \ D^\alpha \ u \in L^2(w), \ 0 \le |\alpha| \le m\}.$

C'est un espace de Hilbert pour la norme :

$$u \longrightarrow ||u||_{H^{m}} = (\sum_{0 \le |\alpha| \le m} ||(1-y^{2})|^{\alpha} u||_{L^{2}(w)}^{2})^{\frac{1}{2}}.$$

Pour m appartenant à N, on désigne par H^m 2(-1,1) l'espace $1-y^2$ {u \in $\mathfrak{D}'(-1,1)$, $(1-y^2)$ D^p_y u \in $L^2(-1,1)$, $0 \le p \le m$ }.

C'est un espace de Hilbert pour la norme

$$u \longrightarrow ||u||_{1-y^{2}}^{m} = (\sum_{0 \le p \le m} ||(1-y^{2}) p_{y}^{p} u||_{L^{2}(-1,1)}^{2})^{\frac{1}{2}}.$$

Pour m et k appartenant à iN, avec m < k, on désigne par $X_{m,k}$

l'espace :

$$X_{m,k} = \left[H_{1-y^2}^{k}(-1,1), H_{1-y^2}^{o}(-1,1)\right]_{\frac{2m+1}{2k}}.$$

Pour la définition de ces espaces on renvoie à [3].

On désigne enfin par B l'opérateur différentiel défini sur 🕽'(-1,1)

par :

$$g \in \mathcal{D}'(-1,1)$$
, $Bg = -\frac{1}{1-y^2} D_y ((1-y^2) D_y g) + g$.

On a le théorème de régularité suivant :

Théorème 3.1. Pour tout k appartenant à \mathbb{N} , l'opérateur A est un isomorphisme de H^{k+2} (w) \bigwedge° , muni de la norme induite par celle de H^{k+2} (w) sur l'espace $1-y^2$

Y^K(w) défini par :

pour
$$k = 0$$
, $Y^{k}(w) = L^{2}(w)$,
pour $k \ge 1$, $Y^{k}(w) = \{f \in H^{k}(w), \sum_{h=0}^{m-1} B^{h}(-\frac{1}{1-v^{2}}, \frac{\partial^{2m-2-2h}f}{\partial x^{2m-2-2h}}(\varepsilon, y)) \in X_{2m,k+2}$

$$\varepsilon$$
 = -1,1; m = 1,2...,p si k = 2p ou si k = 2p-1},

et muni de la norme canonique.

lère étape. On démontre que si u appartient à $H^{k+2}(w)$, alors Au appartient à $Y^k(w)$, pour k appartement à N.

On montre d'abord que si u appartient à $H^{k+2}_{2}(w)$, alors Au appartient à $H^{k}(w)$. Avec une partition de l'unité convenable, on isole chaque coin $(\varepsilon,\varepsilon')$ avec $\varepsilon=-1,1$ et $\varepsilon'=-1,1$, de l'ouvert w et à l'aide d'un prolongement de Babitch, on se ramène à l'espace :

$$W_1^{k+2,2}(\mathbb{R}^2_+) = \{ u \in \mathfrak{D}'(\mathbb{R}^2_+), \ y \ \mathbb{D}^\alpha \ u \in L^2(\mathbb{R}^2_+), \ 0 \leq |\alpha| \leq k+2 \}.$$

Dans [2] on montre que si u appartient à $W_1^{k+2,2}(\mathbb{R}^2_+)$, alors u(resp. yu) appartient à $H^{k+1}(\mathbb{R}^2_+)$ (resp. $H^{k+2}(\mathbb{R}^2_+)$). On en déduit facilement que si u appartient à $H^{k+2}(\mathbb{R}^2_+)$, alors Au appartient à $H^k(\mathbb{W})$.

On examine ensuite les conditions aux limites pour $k \ge 1$. On applique l'opérateur $\frac{\partial^m}{\partial x^m}$ à la relation Au = f puis l'opération trace sur les bords x = 1 et x = -1 de w et comme on peut permuter cette opération trace et la dérivation en y, on obtient que :

pour m = 0, 1, ..., k-1,

$$\frac{\partial^{m+2} u}{\partial x^{m+2}} (\varepsilon, y) = -\frac{1}{1-y^2} \frac{\partial^m f}{\partial x^m} (\varepsilon, y) + B(\frac{\partial^m u}{\partial x^m} (\varepsilon, y)).$$

Par récurrence, on établit que pour m • 1,2,..,p si k = 2p~1 ou si k = 2p et pour ϵ = -1,1.

(3.1)
$$\frac{\bar{\partial}^{2m} u}{\partial x^{2m}} (\varepsilon, y) = -\frac{1}{1-y^2} \frac{\partial^{2m-2} f}{\partial x^{2m-2}} (\varepsilon, y) + B(-\frac{1}{1-y^2} \frac{\partial^{2m-4} f}{\partial x^{2m-4}} (\varepsilon, y)) + ... +$$

+ B^{m-1} (-
$$\frac{1}{1-y^2}$$
 f (e,y)).

(avec la convention suivante : B° g = g et pour m = 1, la relation (3.1)

s'écrit
$$\frac{\partial^2 u}{\partial x^2}$$
 (ε,y) = $-\frac{1}{1-y^2}$ f(ε,y)).

Or si u appartient à
$$H^{k+2}_{1-y^2}(w)$$
, alors
$$\begin{cases} u \in L^2(-1,1; H^{k+2}_{1-y^2}(-1,1)) \\ \frac{\partial^{k+2} u}{\partial^{k}} \in L^2(-1,1; H^{\circ}_{1-y^2}(-1,1)) \end{cases}$$

donc pour m = 0,1,...,k+1 et ε = -1,1 on a :

$$\frac{\partial^m u}{\partial x^m}$$
 (\varepsilon,y) \varepsilon X_m,k+2.

Ainsi les relations (3.1) ou bien un sens et la fonction f (=Au) vérifie les conditions aux limites de l'espace $Y^k(w)$.

<u>2ème étape</u>. On démontre maintenant que pour tout f appartenant à $Y^k(w)$ la solution u du problème

appartient à $H_{1-v^2}^{k+2}(w)$.

L'idée de la démonstration est la suivante : en adaptant l'opérateur P introduit précédemment, on se ramène au problème de M.M. BACUENDI et GOULACUIC traité dans [1]. Utilisant les notations de [1], on montre grâce à [2], que l'espace

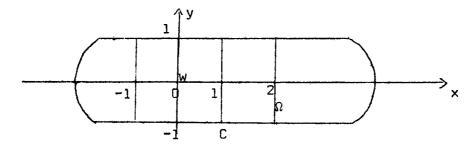
$$\mathsf{D}^{\mathsf{k}}(\Omega) = \{\mathsf{u} \in \mathsf{H}^{\mathsf{k}+1}(\Omega), \ \varphi \mathsf{u} \in \mathsf{H}^{\mathsf{k}+2}(\Omega)\}$$

coïncide avec l'espace :

$$\mathsf{H}^{\mathsf{k}+2}_{\varphi}(\Omega) \,=\, \{\mathsf{u} \in \mathfrak{D}'(\Omega), \, \varphi \, \mathsf{D}^{\alpha} \,\, \mathsf{u} \in \mathsf{L}^{2}(\Omega), \,\, 0 \, \leq \, \left|\alpha\right| \, \leq \, \mathsf{k}+2\}.$$

Il est bien évident que les seuls ennuis de régul**a**rité proviennent des coins de w. On localisera par la suite au voisinage d'un coin, par exemple C = (+1,-1), de telle façon que le support des nouvelles fonctions soit contenu dans $\{(x,y) \in \mathbb{R}^2, x > 0\}$. On introduit alors un ouvert Ω borné de \mathbb{R}^2 ,

dont le bord $\partial\Omega$ est de classe C^∞ , et prolongeant l'ouvert w de la façon suivante :



Soit φ une fonction de classe C^∞ sur R^2 telle que

$$\begin{cases} \Omega = \{(x,y) \in \mathbb{R}^2, \quad \phi(x,y) > 0\}, \\ \partial \Omega = \{(x,y) \in \mathbb{R}^2, \quad \phi(x,y) = 0\}, \\ d\phi(x,y) \neq 0 \text{ pour } (x,y) \in \partial \Omega \qquad \text{ (où d}\phi \text{ est la différentielle de }\phi\}, \\ \phi(x,y) = 1-y^2 \text{ dans } w.$$

Le cas où k=0 se traite à part, puisqu'il n'y a pas de conditions aux limites dans $Y^{\circ}(w)$. Après localisation du problème au voisinage de D, on étudie la solution u du problème :

$$\begin{cases} u \in V \\ Au = f \text{ dans } w, f \in L^{2}(w) \\ \text{supp } u \subset \{(x,y) \in \overline{w}, 0 < x \le 1\}. \end{cases}$$

On adapte l'opérateur de prolongement introduit précédemment, au cas présent, on pose :

$$\begin{cases} Pu(x,y) = u(x,y) \text{ si } x < 1. \\ Pu(x,y) = -u(2-x,y) \text{ si } x > 1. \end{cases}$$

On définit par $V(\Omega)$ l'espace : $\{u\in \mathfrak{D}'(\Omega), \ \sqrt{\varphi}\ D^{\alpha}\ u\in L^2(\Omega), \ 0\le |\alpha|\le 1\}.$

La proposition 1.1 montre que Pu appartient à $V(\Omega)$ et la proposition 1.2 montre que :

A(x,y;D) Pu = P(Au) et donc appartient à
$$L^{2}(\Omega)$$
, où A(x,y;D) = $\sum_{0 \le |\alpha| \le 1} (-1)^{|\alpha|} D^{\alpha} (\varphi D^{\alpha})$

Or d'après [1], cet opérateur est un isomorphisme de D^k(Ω) sur H^k(Ω) pour k dans \mathbb{N} . Donc ici, Pu appartient à H²(Ω) et par restriction à w, u appartient à H²_{1-v²}(w).

Pour $k \geq 1$, la démonstration se fait par récurrence, en distinguant les cas où k est pair et impair.

k = 1.

Soit f appartenant à $H^1(w)$ tel que $-\frac{1}{1-y^2}$ f(ϵ ,y) appartienne à $X_{2,3}$. Soit W appartenant à $H^3_{1-y^2}(w)$ tel que

$$\begin{cases} W(\varepsilon,y) = 0 \\ \frac{\partial^2 W}{\partial x^2} (\varepsilon,y) = -\frac{1}{1-y^2} f(\varepsilon,y). \end{cases}$$

La fonction $\beta = u - W$ vérifie :

$$\begin{cases} \beta \stackrel{\circ}{\ni} V \\ A\beta = f - AW \in H^{1}(w) \\ A\beta (\epsilon, y) = 0. \end{cases}$$

On va montrer que β appartient à H^3 $_2(w)$ et par différence, on en $_{1-y}^{2}$ déduira que u appartient à H^3 $_{1-y}^{2}(w)$. On utilise la méthode employée pour $_{1-y}^{2}$ k = 0. Après localisation au voisinage de C, on étudie la solution β du problème :

$$\begin{cases} \beta \in V \\ A\beta \in H^{1}(w) \\ A\beta (1,y) = 0 \\ supp \beta \subset \{(x,y) \in \overline{w}, x > 0\}. \end{cases}$$
A l'aide de l'opérateur de

D'après [1], Pß appartient à H_{φ}^3 (Ω) et par restriction à w, ß appartient à $H_{-\sqrt{2}}^3$ (w).

k = 2.

Soit f appartenant à $H^2(w)$ tel que $-\frac{1}{1-y^2}$ f(ϵ ,y) appartient à $X_{2,4}$. Soit W appartenant à $H^4_{1-y^2}(w)$ tel que :

$$\begin{cases} W(\varepsilon,y) = 0 \\ \frac{\partial^2 W}{\partial x^2} (\varepsilon,y) = -\frac{1}{1-y^2} f(\varepsilon,y). \end{cases}$$

La fonction $\beta = u - W$ vérifie

$$\begin{cases} \beta \in V \\ A\beta = f - AW \in H^2(w) \\ A\beta (\epsilon, y) = 0. \end{cases}$$

On termine comme précédemment.

k > 2.

Ecrivant k sous la forme 2h+1 ou 2h+2 suivant la parité de k, avec $h \ge 1$, on fait la démonstration par récurrence sur h. On vient de vérifier la

propriété pour h = 0. L'hypothèse de récurrence est la suivante : pour tout ℓ appartenant à (N, $0 \le \ell \le h-1$, pour tout f appartenant à $Y^{2\ell+1}(w)$ (resp. $Y^{2\ell+2}(w)$), la solution u du problème

appartient à $H_{1-y}^{2\ell+3}(w)$ (resp. $H_{1-y}^{2\ell+4}(w)$).

On fait la démonstration maintenant pour k = 2h+1. Soit donc f appartenant à $Y^{2h+1}(w)$. Puisque $X_{2m,2h+3}$ est inclus dans $X_{2m,2h+2}$, l'hypothèse de récurrence appliquée avec $\ell = h-1$ et avec l'espace $Y^{2h}(w)$, montre que u appartient à $H^{2h+2}(w)$. Il reste à vérifier que $\frac{\partial^2 u}{\partial x^2}$ appartient à $H^{2h+1}(w)$.

Soit W appartenant à $H^{2h+1}(w)$ tel que $1-y^2$

$$\begin{cases} W(\varepsilon,y) = 0 \\ \frac{\partial^{2m} W}{\partial x^{2m}}(\varepsilon,y) = \sum_{p=0}^{m-1} B^{p}(-\frac{1}{1-y^{2}} \frac{\partial^{2m-2-2p} f}{\partial x^{2m-2-2p}}(\varepsilon,y)) \text{ pour } m = 1,2,...,h+1 \end{cases}$$

La fonction $\beta = \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 w}{\partial x^2}$ vérifie

$$\begin{cases} \beta \in V \\ A \beta = \frac{\partial^2 f}{\partial x^2} - A \left(\frac{\partial^2 W}{\partial x^2} \right) \in H^{2h-1} . \end{cases}$$

On examine le deuxième membre $F = \frac{\partial^2 f}{\partial x^2} - A \left(\frac{\partial^2 W}{\partial x^2}\right)$. Soit m appartenant à $\{1,2,\ldots,h\}$. On a :

$$-\frac{1}{1-v^2}\frac{\partial^{2m-2-2p}F}{\partial x^{2m-2-2p}}(\varepsilon,y) = -\frac{1}{1-v^2}\frac{\partial^{2m-2p}F}{\partial x^{2m-2p}}(\varepsilon,y) - \frac{\partial^{2m-2p-2}W}{\partial x^{2m-2p-2}}(\varepsilon,y) + B\left(\frac{\partial^{2m-2p}W}{\partial x^{2m-2p}}(\varepsilon,y)\right)$$

d'où:

$$\sum_{p=0}^{m-1} B^{p} \left(-\frac{1}{1-y^{2}} \frac{\partial^{2m-2-2p} F}{\partial x^{2m-2-2p}} (\varepsilon, y)\right) = 0.$$

L'hypothèse de récurrence appliquée avec ℓ = h-1 et avec l'espace ℓ montre alors que β appartient à ℓ appartient à

Pour montrer que u appartient à $H^{2h+3}(w)$, il suffit de vérifier que $1-y^2$

$$\left[(1-y^2) \frac{\partial^{2h+3} u}{\partial y^{2h+3}} \in L^2(w) \right]$$

$$\left[(1-y^2) \frac{\partial^{2h+3} u}{\partial y^{2h+2} \partial x} \in L^2(w) \right].$$

De l'équation Au = f on déduit que $\frac{\partial}{\partial y}$ ((1-y²) $\frac{\partial u}{\partial y}$) appartient à $H^{2h+1}(w)$ (car u appartient à $H^{2h+2}(w)$ qui est inclus dans $H^{2h+1}(w)$.) et donc que

$$\frac{\partial^{2h+2}}{\partial y^{2h+2}} ((1-y^2) \frac{\partial u}{\partial y}) \text{ appartient à } L^2(w).$$

Or :

(3.2)
$$\frac{\partial^{2h+2}}{\partial y^{2h+2}} ((1-y^2) \frac{\partial u}{\partial y}) = (1-y^2) \frac{\partial^{2h+3}u}{\partial y^{2h+3}} - 2(2h+2)y \frac{\partial^{2h+2}u}{\partial y^{2h+2}} + K \frac{\partial^{2h+1}u}{\partial y^{2h+1}}$$

$$\frac{1}{(1-y^2)^{2h+1}} \frac{\partial}{\partial y} \left((1-y^2)^{2h+2} \frac{\partial^{2h+2} u}{\partial y^{2h+2}} \right) = (1-y^2) \frac{\partial^{2h+3} u}{\partial y^{2h+3}} - 2(2h+2) y \frac{\partial^{2h+2} u}{\partial y^{2h+2}}$$

Comme $\frac{\partial^{2h+1}u}{\partial v^{2h+1}}$ appartient à L²(w) on **e**n déduit que :

(3.3)
$$\frac{1}{(1-y^2)^{2h+1}} \frac{\partial}{\partial y} ((1-y^2)^{2h+2}) \frac{\partial^{2h+2}u}{\partial y^{2h+2}} \in L^2(w).$$

Par suite pour presque tout x appartenant à 1-1,1 on a :

$$\left[\begin{bmatrix} y \longrightarrow \frac{1}{(1-y^2)} & ((1-y^2)^{2h+2} & \frac{\partial^{2h+2}u}{\partial y^{2h+2}} \end{bmatrix} \in L^2(-1,1) \right]$$

$$\left[y \longrightarrow \frac{1}{(1-y^2)^{2h+1}} \frac{\partial}{\partial y} ((1-y^2)^{2h+2} \frac{\partial^{2h+2}u}{\partial y^{2h+2}} \right] \in L^2(-1,1).$$

$$\left[y \longrightarrow \frac{1}{(1-y^2)} \xrightarrow{\frac{\partial}{\partial y}} ((1-y^2)^{\frac{2h+2}{\partial y^{2h+2}}}\right] \in L^2(-1,1).$$

La trace de $(1-y^2)$ $\frac{\partial^{2h+2}u}{\partial x^{2h+2}}$ (x,.) est donc nulle sur les bords y = 1 et y = -1 et on peut alors écrire pour presque tout x appartenant à]-1,1[:

$$(1-y^2)^{\frac{2h+2}{\partial y^{2h+2}}} (x,y) = \int_{-1}^{y} \frac{\partial}{\partial y} ((1-y^2)^{\frac{2h+2}{\partial y^{2h+2}}} (x,y)) dy$$

$$\frac{\partial^{2h+2} u}{\partial y^{2h+2}} (x,y) = \frac{1}{(1-y^2)^{\frac{2h+2}{\partial y^{2h+2}}}} \int_{-1}^{y} \frac{\partial}{\partial y} ((1-y^2)^{\frac{2h+2}{\partial y^{2h+2}}} (x,y)) dy.$$

On suppose que l'on a localisé u au voisinage, par exemple, du bord y = -1. L'inégalité de Hardy [5] permet d'écrire que :

$$\int_{-1}^{+1} \left| \frac{\partial^{2h+2} u}{\partial y^{2h+2}} (x,y) \right|^2 dy \le K \int_{-1}^{+1} \frac{1}{(1+y)^{4h+2}} \left| \frac{\partial}{\partial y} ((1-y^2)^{2h+2} \frac{\partial^{2h+2} u}{\partial y^{2h+2}} (x,y)) \right|^2 dy$$

En intégrant ensuite par rapport à x, la relation (3.3) montre que :

$$\frac{\partial^{2h+2}u}{\partial y^{2h+2}} \in L^2(w) .$$

Par différence la relation (3.2) montre que :

$$(1-y^2) \frac{\partial^{2h+3} u}{\partial y^{2h+3}} \epsilon L^2(w).$$

Il reste à vérifier que :

$$(1-y^2) \frac{\partial^{2h+3} u}{\partial y^{2h+2} \partial x} \in L^2(w).$$

Du fait que $\frac{\partial}{\partial y}$ (1-y²) $\frac{\partial u}{\partial y}$) appartient à H^{2h+1}(w) on déduit que

$$\frac{\partial^{2h+1}}{\partial y^{2h+1}}$$
 ((1-y²) $\frac{\partial^2 u}{\partial x \partial y}$) appartient à L²(w).

$$\frac{\partial^{2h+1}}{\partial y^{2h+1}} \left((1-y^2) \frac{\partial^2 u}{\partial x \partial y} \right) = (1-y^2) \frac{\partial^{2h+3} u}{\partial x \partial y^{2h+2}} - 2(2h+1) y \frac{\partial^{2h+2} u}{\partial y^{2h+1} \partial x} + K \frac{\partial^{2h+1} u}{\partial y^{2h} \partial x}$$

$$(3.4) \frac{1}{(1-y^2)^{2h}} \frac{\partial}{\partial y} ((1-y^2)^{2h+1} \frac{\partial^{2h+2}u}{\partial y^{2h+1}\partial x}) = (1-y^2) \frac{\partial^{2h+3}u}{\partial x \partial y^{2h+2}} - 2(2h+1)y \frac{\partial^{2h+2}u}{\partial y^{2h+1}\partial x}.$$

Comme $\frac{\partial^{2h+1}u}{\partial v^{2h}x}$ appartient à L²(w) on déduit que

$$\frac{1}{(1-y^2)} \frac{\partial}{\partial y} ((1-y^2)^{\frac{2h+1}{\partial y^{2h+1}}} \frac{\partial}{\partial y^{2h+1}}) \text{ appartient à } L^2(w).$$

On termine comme précédemment : l'inégalité e Hardy permet de a²h+2... 2

montrer que $\frac{\partial^{2h+2}u}{\partial v^{2h+1}\partial x}$ appartient à L²(w) et on en déduit d'après que (3.4)

que
$$(1-y^2) \frac{\partial^{2h+3} u}{\partial y^{2h+2} \partial_x}$$
 appartient à L²(w).

On a donc la régularité pour k=2h+1. Pour k=2h+2, la démonstration est du même type.

BIBLIOGRAPHIE

[1]	M.S. BAOUENDI C. GOULADUIC	Compte-rendus tome 226. Série A; 1968 p. 336.
[2]	G. GEYMONAT P. GRISVARD	Problemi ai limiti lineari ellitici negli spazi di Sobolev con peso. Le Matematiche. Vol. XXII. Fasc. 2. 1967.
[3]	P. GRISVARD	Espaces intermédiaires entre espaces de Sobolev avec poids. Ann. Scuola Norm. Sup. Pisa ; série 3 ; t. 17 ; 1963 ; p. 255.
[4]	P. GRISVARD	Equations différentielles abstraites. Nice.
[5]	G.H. HARDY H.E. LITTLEWOOD	Inequalities. Cambridge.

[6] J.L. LIONS Problèmes aux limites non homogènes.
E. MAGENES Dunod. 1968.

G. POLYA

[7] J. NECAS

Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa. t. 16; 1962; p. 305.

Univ. Press. 1934.