
DIOPHANTINE GEOMETRY OVER GROUPS I:
MAKANIN-RAZBOROV DIAGRAMS

by ZLIL SELA (1)

This paper is the first in a sequence on the structure of sets of solutions to systems of equations in a
free group, projections of such sets, and the structure of elementary sets defined over a free group. In the first
paper we present the (canonical) Makanin-Razborov diagram that encodes the set of solutions of a system of
equations. We continue by studying parametric families of sets of solutions, and associate with such a family
a canonical graded Makanin-Razborov diagram, that encodes the collection of Makanin-Razborov diagrams
associated with the individual members in the parametric family.

Sets of solutions to equations defined over a free group have been studied
extensively, mostly since Alfred Tarski presented his fundamental questions on the
elementary theory of free groups around 1945. Considerable progress in the study of
such sets of solutions was made by G. S. Makanin, who constructed an algorithm that
decides if a system of equations defined over a free group has a solution [Ma1], and
showed that the universal and positive theories of a free group are decidable [Ma2].
A. A. Razborov was able to give a description of the entire set of solutions to a system
of equations defined over a free group [Ra1], a description that was further developed
by O. Kharlampovich and A. Myasnikov [Kh-My].

A set of solutions to equations defined over a free group is clearly a discrete set,
and all the previous techniques and methods that studied these sets are combinatorial
in nature. Naturally, the structure of sets of solutions defined over a free group is
very different than the structure of sets of solutions (varieties) to systems of equations
defined over the complexes, reals or a number field. Still, perhaps surprisingly, concepts
from complex algebraic geometry and from Diophantine geometry can be borrowed
to study varieties defined over a free group.

In this paper we start a sequence that borrows concepts and techniques from
geometric group theory, low dimensional topology, and Diophantine geometry to study
the structure of varieties defined over a free group. Our techniques and point of
view on the study of these varieties is rather different than any of the pre-existing
techniques in this field, though, as one can expect, some of our preliminary results
overlap with previously known ones. As we will see in this paper and mostly in the
following ones, the techniques and concepts we use enable the study of the structure
of varieties defined over a free group and their projections, and in particular, give us
the possibility to answer some questions that seem to be essential in any attempt to
understand the structure of elementary sentences and predicates defined over a free
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group. At this stage, at least as it seems to us, none of the pre-existing (combinatorial)
techniques can approach the difficulties involved in tackling these questions.

The sequence of papers on Diophantine geometry over groups is organized as
follows. In the first paper we associate a canonical Makanin-Razborov diagram with a
given system of equations defined over a free group. This Makanin-Razborov diagram
encodes the entire set of solutions to the system. Later on we study systems of equations
with parameters. With each such system we associate a (canonical) graded Makanin-
Razborov diagram, that encodes the Makanin-Razborov diagrams of the systems of
equations associated with each specialization of the defining parameters. In the second
paper of the sequence, we generalize Merzlyakov theorem on the existence of a formal

solution associated with a positive sentence [Me]. We first construct a formal solution to
a general AE sentence which is known to be true over some variety, and then develop
tools that enable us to analyze the collection of all such formal solutions. In the
third paper, we use techniques developed in the first two, to further study exceptional
solutions of parametric systems of equations, which are one of the inherent pathologies
in the theory that must be understood in studying the first order theory of a free group.
Perhaps the main result of this paper is the existence of a global bound (independent of
the parameters specialization) on the number of families of exceptional solutions. In the
fourth paper we study AE sentences, and present a terminating iterative procedure for
validation of such sentences. This terminating iterative procedure is the basis for our
analysis of elementary sets defined over a free group presented in the last two papers.
In the fifth paper we analyze the Boolean Algebra of AE sets and show that this
Boolean algebra is invariant under projections. This implies that every elementary set
defined over a free group is in the Boolean algebra of AE sets. The sixth paper uses the
results of the fifth one to study elementary sets defined over a free group. In particular,
we answer affirmatively some of A. Tarski’s problems on the elementary theory of a
free group, and obtain a classification of the f.g. groups that are elementary equivalent
to a non-abelian f.g. free group. Throughout this paper, we use the abbreviation f.g.
for finitely generated and f.p. for finitely presented.

We start the first paper of the sequence by studying limit groups that are obtained
from (Gromov) limits of sequences of homomorphisms. In section 2 we study the
(canonical) abelian JSJ decomposition of these groups, which is shown to be non-
trivial. In the third section we study the (canonical) cyclic JSJ decomposition of a
limit group, and show that this cyclic decomposition can not be trivial as well. In the
fourth section we use the canonical cyclic JSJ decomposition to associate an analysis

lattice with a limit group, which, in particular, implies that limit groups are finitely
presented, and that a f.g. group is a limit group if and only if it is an ω-residually free
group (f.g. ω-residually free groups were also shown to be f.p. by Kharlampovich and
Myasnikov in [Kh-My]). The fifth section associates a canonical Makanin-Razborov
diagram with a limit group. The properties of this diagram are similar to the ones
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obtained by Razborov [Ra2], and Kharlampovich and Myasnikov [Kh-My]. However,
for the structure theory we develop, and for analyzing elementary predicates, it seems
essential to have its canonical properties (which can not be guaranteed by combinatorial
approaches), and to be able to have a “close relation” between the algebraic structure
of a limit group and some of its (canonical) quotients with the structure of the diagram
and the modular groups associated with it. In the sixth section we present a family
of ω-residually free groups that is more geometric in nature. The family of towers

we present, plays an essential role when we classify f.g. groups that are elementary
equivalent to a non-abelian free group in the last paper in the sequence. In section 7
we use our study of limit groups to study residually free groups.

At this point we begin our study of systems of equations with parameters. In
section 10 we present graded limit groups, and in section 11 we associate a canonical
graded Makanin-Razborov diagram with a graded limit group. We view the set of
solutions to a system of equations with parameters as a bundle, where the groups of
parameters lies in the base of this bundle. The graded Makanin-Razborov diagram
is then a (flat) “connection” that allows one to compare different fibers associated
with different specializations of the defining parameters. Section 11 studies the singular
locus of that bundle, which is equivalent to studying the degeneracies in the graded
Makanin-Razborov diagram. Section 12 generalizes our study of graded limit groups
and diagrams to the study of multi-graded ones. Graded and multi-graded limit groups
and diagrams are the basic objects needed in our analysis of sentences and elementary
sets defined over a free group.

Quite a few people helped us while this work was conducted. We would like
to thank Mladen Bestvina, Mark Feighn, Etienne Ghys, and the referees for their
comments, corrections and suggestions that improved the presentation considerably.
Especially, I am indebted to my former advisor Eliyahu Rips who introduced me
to Tarski’s problems, shared his knowledge and ideas with me, and suggested the
possibility of a connection between the JSJ theory and the study of varieties defined
over a free group, not long after the JSJ decomposition was introduced.

1. Limit Groups

Following [Ra1] with a finite system of equations Φ over a free group Fk =
< a1, ..., ak > it is natural to associate a f.p. group G (Φ). If the system Φ is defined by
the coefficients a1, ..., ak, the unknowns x1, ..., xn and the equations:

w1(a1, ..., ak , x1, ..., xn) = 1
...

ws(a1, ..., ak , x1, ..., xn) = 1
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we set the associated f.p. group G (Φ) to be:

G (Φ) = < a1, ..., ak , x1, ..., xn |w1, ..., ws >

Clearly, every solution of the system Φ corresponds to a homomorphism h : G (Φ)→ Fk

for which h(ai) = ai, and every such homomorphism corresponds to a solution of the
system Φ. Therefore, the study of sets of solutions to systems of equations in a free
group is equivalent to the study of all homomorphisms from a fixed f.p. group G into
a free group Fk for which a given prescribed set of elements in G is mapped to a fixed
basis of the free group Fk.

Throughout this paper, this is the point of view we adapt in order to study sets
of solutions to systems of equations in a free group. Since the techniques we use and
the structure theory we obtain are valid for f.g. groups and not only for f.p. ones, we
set G to be a f.g. group G = < g 1, ..., g m >, γ1, ..., γk ∈ G to be a prescribed set of
elements in G, and Fk to be a free group with a fixed basis Fk = < a1, ..., ak >. With
these notation our main goal is to get a structure theory for understanding the set of
all homomorphisms:

Hom ( (G, {γi}) , (Fk , {ai}) ) = { h | h : G→ Fk , h(γi) = ai }

which for brevity we will denote Hom (G, Fk). We set X to be the Cayley graph of Fk

with respect to its given basis a1, ..., ak. Given any homomorphism h ∈ Hom (G, Fk), G
admits a natural action λh on X given by λh( g , x) = h( g )(x) for every g ∈ G and x ∈ X.

For presentation purposes, we start our analysis with the entire set of homomor-
phisms { h | h : G → Fk }, without restricting the image of a finite subset of elements
of the f.g. group G in the free group Fk. As we will see in the sequel, the results we
obtain for the entire (unrestricted) set of homomorphisms can be slightly modified in
order to study the set of restricted homomorphisms.

Let {hj} ⊂ Hom (G, Fk) be a set of (unrestricted) homomorphisms from G to Fk,
and suppose that the homomorphisms {hj} belong to distinct conjugacy classes (i.e.,
for every j1 , j2, 1 6 j1 < j2, and every f ∈ Fk, f hj1 f −1 |= hj2 ). For each index j we fix an
element fj ∈ Fk having “minimal displacement” under the action λhj

and set µj to be:

µj = max
16u6m

dX (id. , fjhj ( g u) fj
−1) = min

f∈Fk

max
16u6m

dX (id. , f hj ( g u) f −1).

Since the homomorphisms in the sequence {hj} ⊂ Hom (G, Fk) are distinct, the sequence
of stretching factors {µj} does not contain a bounded subsequence. We set {(Xj , xj)}∞j = 1
to be the pointed metric spaces obtained by rescaling the metric on the Cayley graph
of Fk, (X, id.), by µj. (Xj , xj) is endowed with a left isometric action of our f.g. group
G via the homomorphisms τfj

◦ hj where τfj
is the inner automorphism of Fk defined
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by fj. This sequence of actions of G on the metric spaces {(Xj , xj)}∞j = 1 allows us to
obtain an action of G on a real tree by passing to a Gromov-Hausdorff limit.

Proposition 1.1 ([Pa], 2.3). — Let {Xj}∞j = 1 be a sequence of δj-hyperbolic spaces with

δ∞ = lim δj = 0. Let H be a countable group isometrically acting on Xj. Suppose there exists a base

point xj in Xj such that for every finite subset P of H, the sets of geodesics between the images of xj

under P form a sequence of totally bounded metric spaces. Then there is a subsequence converging in

the Gromov topology to a δ∞-hyperbolic space X∞ endowed with a left isometric action of H.

Our spaces {(Xj , xj)}∞j = 1 endowed with the left isometric action of G, satisfy
the assumptions of the proposition and they are all trees, so they are 0-hyperbolic,
hence, X∞ is a real tree endowed with an isometric action of G. By construction the
action of G on the real tree X∞ is non-trivial. Let { jn}∞n = 1 be the subsequence for
which {(Xjn

, xjn
)}∞n = 1 converge to the limit real tree X∞ and let (Y, y0) denote this

(pointed) limit real tree. For convenience for the rest of this section we denote the
homomorphism fjn hjn

fjn
−1 : G→ Fk by hn.

With the limit tree we obtained by using the Gromov-Hausdorff topology we
associate natural algebraic objects, the kernel of the action of G on this (limit) real tree
and the quotient of G by this kernel which we call the limit group. The first goal
in our approach to the structure of sets of solutions to equations in a free group is
understanding some of the basic properties of limit groups, and in particular to show
they are f.p. groups and that every maximal abelian subgroup of them is a f.g. free
abelian group.

Definition 1.2. — The kernel of the action of the group G on the limit tree Y is defined

to be:

K∞ = { g ∈ G | ∀ y ∈ Y g ( y ) = y}.

Having the kernel of the action we define the limit group to be: L∞ = G/K∞ and set η : G→ L∞
to be the natural quotient map.

The following simple facts on the kernel of the action and the limit group are
important observations and will serve us throughout the rest of the paper.

Lemma 1.3. — With the notation of definition 1.2:

(i) L∞ is a f.g. group.

(ii) If Y is isometric to a real line then the limit group L∞ is f.g. free abelian.

(iii) If g ∈ G stabilizes a tripod in Y then for all but at most finitely many n’s g ∈ ker (hn)
(recall that a tripod is a finite tree with 3 endpoints). In particular, if g ∈ G stabilizes

a tripod then g ∈ K∞.
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(iv) Let g ∈ G be an element which does not belong to K∞. Then for all but at most finitely

many n’s g ∈/ ker (hn).
(v) L∞ is torsion-free.

(vi) Let [ y1 , y2] ⊂ [ y3 , y4] be a pair of non-degenerate segments of Y and assume the

stabilizer of [ y3 , y4] in L∞, stab ([ y3 , y4]), is non-trivial. Then stab ( [ y3 , y4] ) is an

abelian subgroup of L∞ and:

stab ( [ y1 , y2] ) = stab ( [ y3 , y4] )

Hence, the action of L∞ on the real tree Y is stable.

Proof. — L∞ is a quotient of the f.g. group G, so it is f.g. as well. To prove (ii)
note that if Y is isometric to a real line, then L∞ is a f.g. subgroup of Isom (R).
If g ∈ G preserves the orientation of Y and g ′ ∈ G reverses it, then for large
enough n, hn( g ′)hn( g )hn( g ′)−1 = hn( g−1), and since the image of the homomorphisms
hn is a subgroup of the free group Fk, necessarily hn( g ) = 1 for all but finitely many n’s,
hence, g ∈ K∞. In addition, since g ′

2 preserves the orientation of Y, hn( g ′
2) = 1 for all

but finitely many n’s, so hn( g ′) = 1 for all but finitely many n’s and g ′ ∈ K∞. Therefore,
the ambient group G preserves the orientation of Y, and since L∞ is a f.g. subgroup
of Isom (R), L∞ is f.g. free abelian group.

To prove (iii) let T (A, B, C ) be a tripod in Y and let N be the three va-
lence vertex in that tripod. Let g ∈ G fix T (A, B, C ) and let (An , Bn , Cn) ⊂ Xn

be a sequence of triples of points converging into the triple (A, B, C ). Let
` = min{dY (A, N ), dY (B, N ), dY (C, N )}. From the convergence of the metric spaces
{(Xn , xn)}∞n = 1 to the real tree (Y, y0) we get for large enough n:

max{dXn
(An , hn( g )(An) ) , dXn

(Bn , hn( g )(Bn) ) , dXn
(Cn , hn( g )(Cn) )} <

`

3
.

Let Nn be the center of a tripod with vertices An , Bn , Cn in Xn. By the bound on the
displacement of An , Bn , Cn by hn( g ), for large enough n hn( g )(Nn) = Nn, so hn( g ) = 1 for
all but finitely many n’s, and in particular g ∈ K∞.

To prove (iv) suppose hnv
( g ) = 1 for an infinite subsequence of indices {nv}. Since

the actions of G on the metric spaces (Xn , xn) via the homomorphisms hn converge in
the Gromov-Hausdorff topology into an action of G on the real tree Y, the subsequence
of actions of G on the metric spaces (Xnv

, xnv
) via the homomorphisms hnv

converges
into the same action of G on the real tree Y. Since we assume hnv

= 1 for all v, g acts
trivially on the limit tree Y, so g ∈ K∞ and we may conclude part (iv) of the lemma.

To prove L∞ is torsion-free suppose g ∈ G and g p ∈ K∞. Note that if the limit
tree Y is isometric to a real line then L∞ is a f.g. free abelian group, and in particular
torsion-free. Hence, we may assume Y is not isometric to a real line, which implies that
g p stabilizes a tripod in Y so by part (iii) of the lemma hn( g p) = 1 for all but finitely
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many n’s, and necessarily hn( g ) = 1 for all but finitely many n’s and g ∈ K∞ which
concludes part (v). The proof of part (vi) is identical with the proof of proposition 4.2
of [Ri-Se1]. ¤

Lemma 1.3 gives us the basic properties of the action of the limit group L∞ on
the real tree Y. These properties are essential in applying Rips’ classification of (stable)
actions of groups on real trees which is going to be used extensively in the sequel. In
addition to the properties of the action we will need the following basic algebraic facts
on the limit group L∞.

In a free group every solvable subgroup is infinite cyclic and every maximal
cyclic subgroup is malnormal. These properties are naturally inherited by the limit
group L∞.

Lemma 1.4. — With the notation of definition 1.2:

(i) Let u1 , u2 , u3 be non-trivial elements of L∞, and suppose that [u1 , u2] = 1 and

[u1 , u3] = 1. Then [u2 , u3] = 1. It follows that every abelian subgroup in L∞ is contained

in a unique maximal abelian subgroup.

(ii) Every maximal abelian subgroup of L∞ is malnormal.

(iii) Every solvable subgroup of the limit group L∞ is abelian.

Proof. — Let g1 , g2 , g3 ∈ G be elements for which η( g1) = u1, η( g2) = u2, η( g3) = u3.
Since g1 , g2 , g3 project to non-trivial elements in L∞, part (iv) of lemma 1.3 implies
that for all but finitely many n’s hn maps g1 , g2 , g3 to non-trivial elements in Fk. Since
η( g1) commutes with both η( g2) and η( g3), part (iii) of lemma 1.3 implies that for all
but finitely many n’s hn( g1) commutes with both hn( g2) and hn( g3). Hence, for all but
finitely many n’s the subgroup generated by hn( g1) , hn( g2) , hn( g3) is infinite cyclic, and, in
particular, hn( g2) commutes with hn( g3). By part (iv) of lemma 1.3 u2 = η( g2) commutes
with u3 = η( g3) and we get part (i) of the lemma.

To prove part (ii) let A be a maximal abelian subgroup of L∞. If A is not
malnormal there must exist elements g1 , g2 , g ∈ G so that η( g1) , η( g2) ∈ A, η( g1) |= 1
and η( g ) η( g1) η( g −1) = η( g2). Since by part (iii) of lemma 1.3 if r ∈ K∞ then for all
but finitely many n’s hn(r) = 1, for all but finitely many n’s hn( g )hn( g1)hn( g −1) = hn( g2) and
[hn( g1) , hn( g2)] = 1, so < hn( g1) , hn( g2) > is a cyclic subgroup of Fk. Since a maximal
cyclic subgroup of Fk is malnormal, for all but finitely many n’s hn( g ) commutes with
both hn( g1) and hn( g2), so part (iv) of lemma 1.3 implies that η( g ) commutes with both
η( g1) and η( g2) so η( g ) ∈ A and A is malnormal.

To prove part (iii) let S be a solvable subgroup of L∞. By induction we may
assume that its derived subgroup S′ is abelian. By part (i) every (non-trivial) abelian
subgroup of L∞ is contained in a unique maximal abelian subgroup, hence, the derived
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subgroup S′ is contained in a (unique) maximal abelian subgroup M of L∞, and by part
(ii), M is malnormal in L∞. Since S′ is normal in S, every element u ∈ S normalizes
S′, so u Mu−1 intersects M non-trivially. Since M is malnormal, u ∈M, so u commutes
with S′. Therefore, S is abelian. ¤

Proposition 1.3 shows the action of L∞ on the real tree Y is stable. The original
analysis of stable actions of groups on real trees applies to f.p. groups ([Be-Fe1]), and
the limit group L∞ is only known to be f.g. at this point, by part (i) of lemma 1.3. Still,
given the basic properties of the action of L∞ on the real tree Y that we already know,
we are able to apply a generalization of Rips’ work to f.g. groups obtained in [Se3]. In
[Se3], the real tree Y is divided into distinct components, where on each component
a subgroup of L∞ acts according to one of several canonical types of actions. The
theorem from [Se3] we present is going to be used extensively in the next sections and
its statement uses the notions and basic definitions appear in the appendix of [Ri-Se1].
Hence, we refer a reader who is not yet familiar with these notions to that appendix
and to [Be-Fe1] and [Be].

Theorem 1.5 ([Se3], 3.1). — Let G be a freely indecomposable f.g. group which admits a

stable isometric action on a real tree Y. Assume the stabilizer of each tripod in Y is trivial.

1) There exist canonical orbits of subtrees of Y: Y1 , ... , Yk with the following properties:

(i) gYi intersects Yj at most in one point if i |= j.

(ii) gYi is either identical with Yi or it intersects it at most in one point.

(iii) The action of stab (Yi) on Yi is either discrete or it is of axial type or IET type.

2) G is the fundamental group of a graph of groups with:

(i) Vertices corresponding to orbits of branching points with non-trivial stabilizer in Y.

(ii) Vertices corresponding to the orbits of the canonical subtrees Y1 , ... , Yk which are

of axial or IET type. The groups associated with these vertices are conjugates of the

stabilizers of these components. To a stabilizer of an IET component there exists an

associate 2-orbifold. All boundary components and branching points in this associated

2-orbifold stabilize points in Y. For each such stabilizer we add edges that connect

the vertex stabilized by it and the vertices stabilized by its boundary components and

branching points.

(iii) Edges corresponding to orbits of edges between branching points with non-trivial

stabilizer in the discrete part of Y with edge groups which are conjugates of the

stabilizers of these edges.

(iv) Edges corresponding to orbits of points of intersection between the orbits of

Y1 , ... , Yk.

Before concluding our preliminary study of limit groups and their action on the
limit real tree, we present the following basic fact which is necessary in the sequel.
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Lemma 1.6. — If L∞ is a limit group acting on a limit tree Y obtained from a converging

sequence of homomorphisms from a f.g. group G into a free group Fk and L∞ is freely-indecomposable,

then stabilizers of non-degenerate segments which lie in the complement of the discrete parts of Y are

trivial in L∞. Stabilizers of segments in the discrete components of Y are abelian subgroups of L∞.

Proof. — Identical to the proof of part (iii) of proposition 1.8 in [Se4]. ¤

2. The Canonical Abelian JSJ Decomposition of a Limit Group

In the previous section we defined limit groups and studied their basic algebraic
structure. To further study the algebraic structure of a limit group L∞, and in
particular to understand what are all the possible splittings of L∞ along abelian
subgroups, we need to construct the canonical JSJ decomposition of L∞. A canonical
JSJ decomposition was first introduced in [Se2] in the case of hyperbolic groups, then
generalized to cyclic splittings of f.p. groups in [Ri-Se2], and to splittings of f.p. groups
over more general (slender) groups in [Du-Sa] and [Fu-Pa]. Until this point, we only
know that L∞ is f.g. (lemma 1.3), still the JSJ theory can be applied using acylindrical
accessibility [Se3] (cf. ([Se4], 2)).

To construct the JSJ decomposition of L∞ we need to study some basic properties
of abelian splittings. We first look how maximal abelian subgroups of L∞ act on
(simplicial) Bass-Serre trees corresponding to abelian splittings of L∞. Recall that by
lemma 1.4 every maximal abelian subgroup of L∞ is malnormal.

Lemma 2.1. — Let L∞ be a limit group, let M be a maximal abelian subgroup in L∞,

and let A be an abelian subgroup of L∞. Then:

(i) If L∞ = U ∗A V and M is not cyclic then M can be conjugated into either U or V.

(ii) If L∞ = U∗A and M is not cyclic then either M can be conjugated into U, or M can

be conjugated to M′, so that L∞ = U ∗A M′.

Proof. — A non-cyclic abelian subgroup of L∞ is elliptic in any free decomposition
of L∞, hence, we may assume that A is a non-trivial abelian subgroup of L∞. To prove
(i) suppose that M is not cyclic and M can not be conjugated into U or V in the
amalgamated product L∞ = U ∗A V. Let T be the Bass-Serre tree corresponding to
this amalgamated product. Since M is abelian and is not elliptic when acting on T, it
either preserves an axis or it preserves a point in the boundary of T. If it preserves a
point in the boundary of T and not an axis in T, then the stabilizers of edges along
a ray that approaches the point at the boundary of T that is preserved by M, form
an increasing sequence of abelian subgroups of L∞, A1 < A2 < A3 < ..., so that the
union of these subgroups is M. But all the edge groups in the Bass-Serre tree T are
conjugates of A, and M is malnormal in L∞, hence, in this case A1 = A2 = ... = M, so
M must be elliptic. Therefore, we may assume that M preserves an axis in T.
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By conjugating M we may assume that A fix an edge in the axis of M. Since M is
a maximal non-cyclic abelian subgroup of L∞, and by lemma 1.4 an abelian subgroup
in L∞ is contained in a unique maximal abelian subgroup, the abelian subgroup A is
a subgroup of M, and A fixes the entire axis preserved by M. This last observation
implies that there must exist an element u ∈ U so that u ∈/ A and u commutes with A.
u centralizes A, so by proposition 1.4 it must be an element of the maximal abelian
subgroup containing A, so u ∈ M. But u can not be an element of M, since the only
elliptic elements in M are the elements of A, a contradiction.

To prove (ii) suppose M is non-cyclic and M can not be conjugated into the vertex
group U in the abelian splitting L∞ = U∗A. Let T be the Bass-Serre tree corresponding
to that HNN extension. M is abelian and not elliptic so by the argument used to prove
part (i), it must preserve an axis in T, and by conjugating M to M′, we may assume
the abelian subgroup A fixes that entire axis of M′. By the argument used to prove
part (i), the vertex group U intersects M′ only in the subgroup A, so by replacing
the Bass-Serre generator t by tu for some u ∈ U we may assume that the Bass-Serre
generator t is an element of M′. Since the Bass-Serre generator t centralizes the cyclic
subgroup A, L∞ = U ∗A M′. ¤

By lemma 2.1 if we replace each abelian splitting of L∞ of the form L∞ = U∗A

in which A is a subgroup of a non-elliptic maximal abelian subgroup M by the
amalgamated product L∞ = U ∗A M′, we get that every non-cyclic abelian subgroup of
L∞ is elliptic in all the abelian splittings under consideration. This will allow us to use
acylindrical accessibility in analyzing all the abelian splittings of L∞.

Definition 2.2 [Se3]. — A splitting of a group H is called k-acylindrical if for every element

h ∈ H which is not the identity, the fixed set of h when acting on the Bass-Serre tree corresponding

to the splitting has diameter at most k.

If a limit group L∞ = V1 ∗A1 V2 ∗A2 V3 ∗A3 V4, where A1 , A2 , A3 are subgroups
of a maximal abelian subgroup M that is a subgroup of V1, then one can modify
the corresponding graph of groups to a tripod of groups with V1 in the center,
and V2 , V3 , V4 at the 3 roots. Since by lemma 1.4 every maximal abelian subgroup
of L∞ is malnormal, the Bass-Serre tree corresponding to this tripod of groups is
2-acylindrical. This sliding operation generalizes to an arbitrary (finite) abelian splitting
of a limit group.

Lemma 2.3. — A splitting of L∞ in which all edge groups are abelian and all non-

cyclic abelian groups are elliptic can always be modified (by modifying boundary monomorphisms by

conjugations and sliding operations) to be 2-acylindrical.
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Lemma 2.3 shows that if in all abelian splittings of L∞ under consideration all
non-cyclic abelian subgroups are elliptic, these abelian splittings are 2-acylindrical. By
lemma 2.1 if we replace abelian splittings of L∞ having the form L∞ = U∗A in which A
is a subgroup of a non-elliptic maximal abelian subgroup by the amalgamated product
L∞ = U ∗A M, we get that every non-cyclic abelian subgroup of L∞ is elliptic in all the
abelian splittings under consideration. Hence, we may assume that all abelian splittings
of L∞ under consideration are 2-acylindrical.

Following [Se2] and [Ri-Se2] in order to understand all possible splittings of L∞
along abelian subgroups, we need to study carefully the “interaction” between any two
given one-edge splittings of L∞ over abelian subgroups.

Let H be a group and T a (simplicial) H-tree. An element h ∈ H is either elliptic

in which case it fixes a point in T, or hyperbolic, in which case it preserves a line in T
and acts along it as a translation. We consider two elementary splittings of L∞ along
abelian subgroups H∞ = D1∗A1E1 (or L∞ = D1∗A1 in which case we assume that A1 is
a subgroup of a maximal abelian subgroup M in L∞ and M is a subgroup of the
vertex group D), and L∞ = D2∗A2E2 (or L∞ = D2∗A2 under the above conditions on
A2) where A1 and A2 are abelian subgroups. Let T1 and T2 be the Bass-Serre trees
corresponding to the given splittings. The two given splittings are called elliptic-elliptic if
A1 is elliptic in T2 and A2 is elliptic in T1, elliptic-hyperbolic if A1 is elliptic in T2 and
A2 is not elliptic in T1 and hyperbolic-hyperbolic if A1 is not elliptic in T2 and A2 is not
elliptic in T1.

Lemma 2.1 shows that an abelian subgroup of L∞ which is not cyclic is
necessarily elliptic in all abelian splitting of L∞ under consideration. Following [Se2]
we can also exclude the case of elliptic-hyperbolic maximal abelian splittings in case
L∞ is freely indecomposable (the arguments given in [Se2] and [Ri-Se2] for cyclic
splittings of groups remain valid for abelian splittings of L∞).

Theorem 2.4 ([Se2], 2.2), ([Ri-Se2], 2.1). — If L∞ is freely indecomposable then any

two one-edge abelian splittings of L∞ in which all non-cyclic abelian subgroups are elliptic, are either

elliptic-elliptic or hyperbolic-hyperbolic.

Since by lemma 2.1 every abelian subgroup of L∞ which is not cyclic is ellip-
tic in all abelian splittings of L∞ under consideration, pairs of hyperbolic-hyperbolic
one edge splittings of L∞ along abelian subgroups are splittings along cyclic sub-
groups. Hence, we may borrow the canonical quadratic decomposition constructed in
[Ri-Se2] in order to understand all the hyperbolic-hyperbolic splittings of L∞ along
cyclic subgroups.

By a Z-splitting of a group we mean a splitting in which all edge groups are
infinite cyclic. For the notion of a CMQ (canonical maximal QH ) subgroup, and a
weakly essential s.c.c. on a 2-orbifold we refer the reader to section 4 of [Ri-Se2].
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Theorem 2.5 ([Ri-Se2], 5.6). — Let H be a f.g. group with a single end which is not a

2-orbifold group. There exists a (canonical) reduced Z-splitting of H which we call the quadratic

decomposition of H with the following properties:

(i) Every canonical maximal QH subgroup (CMQ) of H is conjugate to a vertex group in

the quadratic decomposition. In particular, there are only finitely many conjugacy classes of

CMQ subgroups. Every edge group is a cyclic boundary subgroup of one of the CMQ
subgroups, and every vertex with a non-CMQ vertex group is adjacent only to vertices

stabilized by CMQ subgroups in the canonical quadratic decomposition.

(ii) An elementary Z-splitting H = A ∗C B or H = A∗C which is hyperbolic in another

elementary Z-splitting is obtained from the quadratic decomposition of H by cutting a

2-orbifold corresponding to a CMQ subgroup of H along a weakly essential s.c.c.

(iii) The edge group of any elementary Z-splitting H = A∗C B or H = A∗C can be conjugated

into a vertex group of the quadratic decomposition. In case it can be conjugated into a vertex

group which is not a CMQ subgroup, the given elementary Z-splitting is elliptic-elliptic

with respect to any other elementary Z-splitting of H.

(iv) The quadratic decomposition of H is unique up to sliding, conjugation and modifying

boundary monomorphisms by conjugation (see section 1 of [Ri-Se2] for the definition of

these notions).

To construct the JSJ decomposition of L∞ we need to further refine the quadratic
decomposition to include the set of elliptic-elliptic abelian decompositions. In general,
such refinement can not be obtained for a f.g. group as was shown by M. Dunwoody
[Du]. Fortunately, the abelian splittings of L∞ we consider are 2-acylindrical according
to lemma 2.3, which allows us to apply acylindrical accessibility in order to complete
the construction of the JSJ decomposition.

Theorem 2.6 ([Se3], [We]). — Let H be a f.g. freely indecomposable group. For a given k

there exists an integer λ(k, H) so that the number of vertices and edges in all k-acylindrical splittings

of H does not exceed λ(k, H).

(Note that in [We], the bound λ(k , H) is given explicitly.) To construct the abelian
JSJ decomposition of a freely indecomposable limit group L∞, we start with the
collection of all cyclic splittings of L∞ in which every non-cyclic abelian subgroup is
elliptic, from which we construct the cyclic JSJ decomposition of L∞. To construct
this cyclic JSJ decomposition of L∞, we start with the quadratic decomposition of L∞,
and successively refine the quadratic decomposition using all the cyclic splittings of L∞
for which their (cyclic) edge groups are elliptic in the quadratic decomposition, and in
which every non-cyclic abelian subgroup of L∞ is elliptic (see section 7 of [Ri-Se2]
for a description of this refinement procedure). In the construction of the cyclic JSJ
decomposition for f.p. groups presented in [Ri-Se2], this refinement procedure is shown
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to terminate using the generalized accessibility of M. Bestvina and M. Feighn [Be-Fe2].
The limit group L∞ is not known to be f.p. so generalized accessibility can not be
applied. However, acylindrical accessibility (theorem 2.6) guarantees the termination of
the refinement procedure, from which we obtain the cyclic JSJ decomposition of the
limit group L∞ (note that at this point we do not know if the cyclic JSJ decomposition
of L∞ is trivial or not).

Having the cyclic JSJ decomposition of L∞, we construct the abelian JSJ
decomposition of L∞ by successively refining the non-QH, non-abelian vertex groups in
the cyclic JSJ decomposition using the collection of non-cyclic abelian decompositions
of L∞. Again, acylindrical accessibility (theorem 2.6) guarantees that this refinement
procedure terminates, and we finally obtain the abelian JSJ decomposition of a freely
indecomposable limit group. Note that since a limit group admits a faithful stable
action on a real tree, in which segment stabilizers are abelian and stabilizers of tripods
are trivial (lemma 1.3), theorem 1.5 implies that if L∞ is non-cyclic it admits a non-
trivial abelian splitting in which all non-cyclic abelian subgroups are elliptic. Hence,
if L∞ is not a surface group or an abelian group, its abelian JSJ decomposition is
necessarily non-trivial.

Theorem 2.7 (cf. [Ri-Se2], 7.1). — Suppose L∞ is a freely indecomposable limit group.

There exists a reduced unfolded splitting of L∞ with abelian edge groups, which we call an abelian

JSJ (Jaco-Shalen-Johannson) decomposition of L∞ with the following properties:

(i) Every canonical maximal QH subgroup (CMQ) of L∞ is conjugate to a vertex group

in the JSJ decomposition. Every QH subgroup of L∞ can be conjugated into one of the

CMQ subgroups of L∞. Every vertex group in the JSJ decomposition which is not a

CMQ subgroup of L∞ is elliptic in any abelian splitting of L∞ under consideration.

(ii) A one edge abelian splitting L∞ = D ∗A E or H∞ = D ∗A under consideration which

is hyperbolic in another elementary abelian splitting is obtained from the abelian JSJ
decomposition of L∞ by cutting a 2-orbifold corresponding to a CMQ subgroup of L∞
along a weakly essential s.c.c.

(iii) Let Θ be a one edge splitting along an abelian subgroup L∞ = D ∗A E or L∞ = D∗A

under consideration, which is elliptic with respect to any other one edge abelian splitting

of L∞ under consideration. Then Θ is obtained from the JSJ decomposition of L∞ by a

sequence of collapsings, foldings, and conjugations.

(iv) If JSJ1 is another JSJ decomposition of L∞, then JSJ1 is obtained from the JSJ decom-

position by a sequence of slidings, conjugations and modifying boundary monomorphisms

by conjugations (see section 1 of [Ri-Se2] for these notions).

Theorem 2.7 gives us the canonical abelian JSJ decomposition of L∞ which
essentially describes all the abelian splittings of L∞ along abelian subgroups. This
decomposition is a basic tool in our approach to obtaining a structure theory for sets
of solutions of equations in a free group.
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3. The Canonical Cyclic JSJ Decomposition of a Limit Group

In section 2 we have constructed the (canonical) abelian JSJ decomposition of a
limit group L∞, which includes (in an appropriate sense) all abelian splittings of L∞. To
analyze sets of solutions to systems of equations in a free group we will be interested
not in all abelian splittings but rather in cyclic ones. Theorem 1.5 shows that if L∞
is freely indecomposable and not abelian it must admit a non-trivial abelian splitting,
hence, in case it is not abelian nor a surface group it’s abelian JSJ decomposition
is not the trivial one. In this section our goal is to prove analogous statements for
cyclic splittings of L∞, i.e., we prove that if L∞ is freely indecomposable and not
abelian it must admit a cyclic splitting, and we define it’s non-trivial canonical cyclic
JSJ decomposition. We prove the existence of a cyclic splitting of L∞ by showing that
if the JSJ decomposition of L∞ contains only non-cyclic abelian edge groups, one
may further refine the abelian JSJ decomposition of L∞, which clearly contradicts the
canonical properties of the JSJ (theorem 2.7).

With the notation of the first section let G be a f.g. group, let {hn | hn : G→ Fk}
be a convergent sequence of homomorphisms, and let L∞ be the corresponding limit
group and (Y, y0) the corresponding limit tree.

Definition 3.1. — We say that a cyclic splitting of a limit group, L∞ = A∗ZB or L∞ = A∗Z ,

is essential, if both vertex groups A and B are not cyclic. We say that it is principal if it is essential,

and either A is abelian or the centralizer of the edge group Z in L∞ is cyclic.

Theorem 3.2. — Let L∞ be a non-abelian and freely-indecomposable limit group. Then L∞
admits a principal cyclic splitting.

Proof. — Since L∞ is freely indecomposable it admits a canonical abelian JSJ
decomposition by theorem 2.7. Note that since every abelian subgroup in L∞ is
contained in a unique maximal abelian subgroup by lemma 1.4, all vertex groups
which are adjacent to an abelian vertex group in the abelian JSJ decomposition of
L∞ are non-abelian. We construct an abelian splitting ΛL∞ of L∞ in the following
way. If the abelian JSJ decomposition of L∞ contains no cyclic vertex groups we set
ΛL∞ to be the abelian JSJ decomposition. Otherwise, for each cyclic vertex group in
the abelian JSJ decomposition we collapse an edge which connects the cyclic vertex
group to a neighbor. We set ΛL∞ to be the obtained abelian decomposition. Since L∞
is a limit group, i.e., it is obtained from a convergent sequence of homomorphisms
{hn|hn : G→ Fk}, ΛL∞ is a non-trivial abelian decomposition. Indeed, from the sequence
of homomorphisms {hn} we can extract a subsequence that converges to an action of
L∞ on some real tree Y. From this action, we get a graph of groups Θ with abelian
edge groups and fundamental group L∞. Since the real tree Y was obtained from a
sequence of homomorphisms {hn|hn : G→ Fk}, if C is a cyclic subgroup of L∞, C fixes
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a point in Y, and if a non-trivial subgroup C′ < C fixes a non-degenerate segment in
Y, then C fixes that segment as well. Hence, if L∞ inherits a cyclic splitting from its
action on the real tree Y, then this cyclic splitting is essential. Therefore, there exists
either a non-cyclic abelian splitting of L∞, or an essential cyclic splitting of L∞, so
Λ L∞ is non-trivial.

Clearly, if ΛL∞ contains an edge with cyclic stabilizer, L∞ admits an essential
cyclic splitting. If the centralizer of this edge stabilizer is also cyclic, L∞ admits a
principal cyclic splitting. Hence, we may assume that the centralizers of all edge groups
in ΛL∞ are abelian and non-cyclic, and that Λ L∞ contains no vertex with an abelian
non-cyclic vertex group A so that all edge stabilizers connected to this vertex generate
a cyclic subgroup in A.

Recall that if ∆ is a (finite) graph of groups with fundamental group H, and T is
a maximal subtree in the graph of groups ∆, then ∆ is generated by the vertex groups
in the maximal tree T, and elements that correspond to edges in ∆ that are not in the
maximal tree T, that are called Bass-Serre generators.

Let g1, ..., gq be a set of generators of G. Clearly, L∞ = < η( g1), ..., η( gq) >. We
fix a maximal subtree of the graph of groups ΛL∞ , set V1

∞, ..., Vm
∞ to be the vertex

groups in that maximal subtree, E1
∞, ..., Es

∞ to be the (abelian) edge groups in ΛL∞ ,
and t 1

∞, ..., t b
∞ to be the set of Bass-Serre generators in ΛL∞ with respect to our fixed

maximal subtree. Since we assume that L∞ admits no principal cyclic splitting, the
centralizers of all the edge groups E j

∞ are abelian and non-cyclic and, in particular,
the abelian JSJ decomposition of L∞ contains no CMQ subgroups.

Let v
1
1, ..., v

1
` 1

, ..., v
m

1 , ..., v
m

`m
, t1, ..., tb be elements in G for which η(vi

1), ..., η(vi

` i
) ∈ Vi

∞

for every 1 6 i 6 m, η(tj) = t j
∞ and for every generator g j of G:

g j = wj (v
1
1, ..., v

m

`m
, t1, ..., tb).

Clearly, we may assume that each of the vertex groups Vi
∞ is generated by

η(vi

1), ..., η(vi

` i
) and the edge groups E j

∞ connected to the vertex stabilized by Vi
∞ in

ΛL∞ . For each j let e
j

1 , e
j

2 , ... ∈ G be a set of elements for which η(e j

p) ∈ E j
∞ and in

addition η(e j

1) , η(e j

2) , ... generate the edge group E j
∞.

Our strategy in proving theorem 3.2 is to show that if ΛL∞ contains no principal
cyclic splitting, then the abelian JSJ decomposition of the limit group L∞ can be
further refined, which clearly contradicts its canonical properties. If we could have
assumed that all the vertex groups in the graph of groups ΛL∞ are f.g. then since a
f.g. subgroup of a limit group is a limit group, each of the vertex groups of ΛL∞ is a
limit group. Hence, every non-abelian vertex group in ΛL∞ admits a non-trivial abelian
JSJ decomposition, and the abelian edge groups of ΛL∞ , that are all assume to have
non-cyclic centralizers, are elliptic in these abelian JSJ decompositions. Therefore, the
abelian JSJ decompositions of the non-abelian vertex groups in ΛL∞ can be used to
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construct a proper refinement of the graph of groups ΛL∞ , that gives rise to a proper
refinement of the abelian JSJ decomposition of L∞.

Unfortunately, the edge groups in the abelian JSJ decomposition of ΛL∞ may
not be f.g. and so are the vertex groups in ΛL∞ . To construct a proper refinement of
the abelian JSJ decomposition of L∞ in the presence of vertex groups that may not
be f.g. we apply the shortening argument presented in section 3 of [Se4] for proving
the Hopf property of hyperbolic groups. Using the shortening argument we construct
an action of a quotient of the limit group L∞, Q∞, on some real tree R, where the
vertex groups in the given abelian JSJ decomposition of L∞ are embedded into Q∞,
and at least one of those vertex groups act non-trivially on the real tree R. This gives
us an abelian decomposition of that vertex group, that can be used to obtain a proper
refinement of the given abelian JSJ decomposition of the original limit group L∞.

The shortening argument we apply is rather involved technically because we can
not assume that vertex groups are finitely generated. A reader who is not familiar with
the shortening argument may choose to look first at an excellent presentation of the
shortening argument in case the vertex groups are f.g., that appears in M. Bestvina’s
survey paper on R-trees ([Be], 7.4).

Our goal is to construct a proper refinement of the abelian JSJ decomposition of
L∞. We start by defining a sequence of finitely presented groups {Un} together with
homomorphisms τn : Un−1 → Un which approximate the f.g. group L∞. The groups
Un admit homomorphisms into Fk, and the abelian decomposition ΛL∞ of L∞ can be
“lifted” to (f.g. abelian) decompositions of each of the Un’s. This lifting property of
the Un’s is crucial in applying our shortening argument ([Se3], [Ri-Se1]) for obtaining
further refinements of the abelian JSJ decompositions of L∞ in case L∞ does not admit
a principal cyclic splitting, and was first introduced in proving the Hopf property for
hyperbolic groups [Se4].

We define the groups Un iteratively. We set U1 to be a free group generated by
the elements:

U1 = < x
1
1, ..., x

1
` 1

, ..., x
m

1 , ..., x
m

`m
, y1, ..., yb , z

1
1, ..., z

s

1 > .

Clearly, the homomorphism h1 : G → Fk lifts to a homomorphism λ1 : U1 → Fk by
setting: λ1(xi

p) = h1(vi

p), λ1( yr) = h1(tr) and λ1(z j

1) = h1(e j

1). We define U2 to be the group
generated by:

U2 = < x
1
1, ..., x

1
` 1

, ..., x
m

1 , ..., x
m

`m
, y1, ..., yb , z

1
1, ..., z

s

1 , z
1
2, ..., z

s

2 >

together with the relations [z j

1 , z
j

2] = 1 for j = 1, ..., s. Clearly, there exists a natural
homomorphism τ1 : U1 → U2. By part (iii) of lemma 1.3, for a2 large enough the
homomorphism ha2 : G → Fk lifts to a homomorphism λ2 : U2 → Fk by setting:

λ2(xi

p) = ha2 (vi

p), λ2( yr) = ha2 (tr), λ2(zj

1) = ha2 (e j

1) and λ2(z j

2) = ha2 (e j

2).
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Defining U1 and U2 we continue by defining the groups Un, the homomorphisms
τn and the homomorphisms λn iteratively. We first define the group Hn to be the group
generated by:

Hn = < x
1
1, ..., x

1
` 1

, ..., x
m

1 , ..., x
m

`m
, y1, ..., yb , z

1
1, ..., z

s

1, ..., z
1
n , ..., z

s

n >

together with the relations [z j

p1
, z

j

p2
] = 1 for j = 1, ..., s and p1 , p2 = 1, ..., n. The group Hn

admits a natural epimorphism σn onto L∞ defined by setting σn(x
i

p) = η(vi

p), σn( yr) = t r
∞,

and σn(z
j

d) = η(e j

d). We define the group Un to be a quotient of the group Hn. To the
existing set of relations of Hn we add all words w in the given defining generators of
Hn for which σn(w) = 1, the length of w in the defining generators of Hn is at most n,
and all the generators appear in the word w are mapped by σn into the same vertex
group Vi

∞ in the abelian decomposition ΛL∞ of L∞.
Clearly, there exists a natural map τn : Un−1 → Un, and by part (iii) of lemma

1.3, there exists some integer an > an−1 so that the homomorphism hn : G → Fk

lifts to a homomorphism λn : Un → Fk defined by: λn(x
i

p) = han
(vi

p), λn( yr) = han
(tr), and

λn(z
j

d) = han
(e j

d).
Since the second set of defining relations of the group Un are all words in

generators which are mapped by σn into the same vertex group in ΛL∞ , each of
the groups Un admits an abelian splitting Λn which projects by σn into the abelian
decomposition ΛL∞ of L∞, i.e., each of the vertex groups Vi

n in Λn satisfies σn(V
i

n) < Vi
∞,

each of the edge groups E j

n = < z
j

1, ..., z
j

n > satisfies σn(E
j

n) < E j
∞, and each of the Bass-

Serre generators in Λn satisfies σn( yr) = t r
∞. We will denote by Mod(Un) the subgroup

of Aut(Un) generated by inner automorphisms and Dehn twists along edges of Λn.
We set Wn to be the subgroup of Un generated by the x

i

p’s and the yr’s. Clearly, the
homomorphism τn : Un−1 → Un restricts to an epimorphism from Wn−1 onto Wn, and
λn restricts to a homomorphism from Wn into Fk. Defining the groups Un’s and Wn’s
and the homomorphisms between them we have obtained the following diagram:

W1
τ1−−→ W2 · · ·

τn−1−−→ Wn−1
τn−−→ Wny y y y

U1
τ1−−→ U2 · · ·

τn−1−−→ Un−1
τn−−→ Un

λ1

y λ2

y λn−1

y λn

y
Fk Fk Fk Fk

where the direct limit of the {Wn}’s and the maps τn’s is the limit group L∞.

At this stage we are finally ready to modify the shortening argument of ([Se3],
[Ri-Se1]) in order to further refine the abelian JSJ decomposition of L∞ in case L∞
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does not admit a principal cyclic splitting. Let T be a maximal tree in ΛL∞ . We may
order the m vertices qi in T, so that q1 is connected to q2, q3 is connected to the
subtree of T spanned by q1 and q2, and in general qp is connected to the subtree of T
spanned by the pre-chosen vertices q1 , q2, ..., qp−1.

Without loss of generality we may assume that this is the original order defined
on the vertex groups Vi

∞ of the abelian decomposition ΛL∞ of L∞. Let X be the
Cayley graph of the free group Fk with respect to a (fixed) finite set of generators, and
let dX be the standard simplicial metric on X. For each element f ∈ Fk, each positive
integer n, and each automorphism ϕ ∈ Mod (Un) we define the following (stretching)
constants:

µi(n , f , ϕ) = max (dX (id. , f λn(ϕ(xi

1) ) f −1), ..., dX (id. , f λn(ϕ(xi

` i
) ) f −1) )

χr(n , f , ϕ) = dX (id. , f λn(ϕ( yr) ) f −1)

and the corresponding (m + b)-tuple:

tup (n , f , ϕ) = (µ1(n , f , ϕ), ..., µm (n , f , ϕ) , χ1(n , f , ϕ), ..., χb (n , f , ϕ) ).

On the set of (m + b)-tuples we define the natural lexicographical order, and
for each n we choose fn ∈ Fk and ϕn ∈ Mod (Un) for which tup (n , fn , ϕn) is a minimal
(m + b)-tuple in the set {tup (n , f , ϕ)} with respect to the lexicographical order. We set
dispn to be the sum of the elements in the (m + b)-tuple tup (n , fn , ϕn).

If w1 , w2 ∈W1 are a pair of elements for which σ1(w1) , σ1(w2) ∈ Vi
∞ for some i,

then for some index n0 and for every n > n0, τn ◦ ... ◦ τ0(w1) and τn ◦ ... ◦ τ0(w2) belong
to the same (i-th) vertex group Vi

n in the (f.g. abelian) splitting Λn of Un. Hence, for
every n > n0 both τn ◦ ... ◦ τ0(w1) and τn ◦ ... ◦ τ0(w2) are being mapped to their (same)
conjugates by every modular automorphism ϕ ∈ Mod (Un), and in particular, by the
chosen one ϕn. Since in addition at least one of the vertex groups Vi

∞ contains abelian
non-cyclic subgroups, there could not exist a sequence of indices n1 < n2 < ... and
corresponding elements fnj

∈ Fk so that for every index j, fnj
conjugates λnj

◦ ϕnj
(xi

p) into

λn1 ◦ ϕn1 (xi

p) for i = 1, ..., m and p = 1, ..., ` i and conjugates λnj
◦ ϕnj

( yr) into λn1 ◦ ϕn1 ( yr)
for every r = 1, ..., b. Therefore, in particular, the sequence of displacement constants
{dispn} does not contain a bounded subsequence, i.e., dispn →∞.

The groups Wn admit a natural action on the Cayley graph X of Fk which we
denote ρn : Wn×X→ X, by setting ρn(w , x) = λn ◦ϕn(w)(x) for every w ∈Wn and x ∈ X.
Since the sequence of displacements {dispn} is not bounded, and the group Wn is a
natural quotient of the group W1, we may rescale the metric on the Cayley graph
X by dispn, and apply proposition 1.1 ([Pa], 2.3) for the sequence of actions {ρn} to
obtain a subsequence (still denoted {ρn}) converging into a (pointed) real tree (R, r0)
equipped with a non-trivial isometric action of W1. We set KW∞ to be the kernel
of the action of W1 on the real tree R, and the f.g. group Q∞ to be the quotient
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Q∞ = W1/KW∞. Q∞ is also a limit group so it satisfies lemmas 1.2, 1.3 and 1.4 and
its action on the pointed limit tree (R, r0) satisfies the properties given in theorem 1.5.

L∞ is the direct limit of the groups {Wn} and the epimorphisms {τn} between
them. Since if w1 , w2 ∈W0 are a pair of elements for which η◦ λ1(w1) , η◦ λ1(w2) ∈ Vi

∞
for some i, then for some index n0 and for every n > n0, τn ◦ ...◦τ0(w1) and τn ◦ ...◦τ0(w2)
belong to the same (i-th) vertex group Vi

n in the (f.g. abelian) splitting Λn of Un, for
every n > n0 both τn ◦ ... ◦ τ0(w1) and τn ◦ ... ◦ τ0(w2) are being mapped to their (same)
conjugates by the chosen automorphism ϕn. Hence, Vi

∞ is naturally embedded in the
group Q∞. By our construction, Q∞ is generated by the subgroups Vi

∞ and the
images of the elements yr ∈W1 in Q∞.

Proposition 3.3. — If all the subgroups V1
∞, ..., Vm

∞ (the vertex groups in the abelian

decomposition ΛL∞ of L∞) fix points in the pointed real tree (R , r0), then they all fix the base point

r0 ∈ R.

Proof. — By our assumptions V1
∞ fixes a point r ∈ R. For fixed index n, the

conjugating elements { fn} and the modular automorphisms {ϕn} were chosen to
minimize the (m + b)-tuple tup (n , f , ϕ), so in particular for fixed n, the chosen elements
have to minimize the stretching constant µ1(n , f , ϕ).

If V1
∞ does not fix the base point r0 ∈ R, then for some n0 and all n > n0 it is

possible to find elements hn ∈ Fk for which:

max
16p6` 1

dX (id. , hn fn λn(ϕn(x
1
p ) )fn −1h

−1
n ) < max

16p6` 1

dX (id. , fn λn(ϕn(x
1
p ) ) fn

−1).

Hence, µ1(n , hn fn , ϕn) < µ1(n , fn , ϕn), which implies tup (n , hn fn , ϕn) < tup (n , fn , ϕn), a
contradiction to the choice of the pair fn , ϕn. Therefore, V1

∞ fixes the base point
r0 ∈ R.

V1
∞ fixes the base point r0 ∈ R, so if the claim of proposition 3.2 does not hold

there must exist a minimal index i0, so that V1
∞, ..., V

i0−1
∞ fix the base point r0 ∈ R

whereas V
i0
∞ does not fix r0 ∈ R. To prove the proposition we adapt the shortening

argument of [Se3] and [Ri-Se1] to show that in this last case it is possible to find a
sequence of modular automorphisms {αn ∈ Mod (Un)} so that for some index n0 and
every n > n0:

tup (n , fn , ϕn ◦ αn) < tup (n , fn , ϕn).

Lemma 3.4. — If V1
∞, ..., V

i0−1
∞ fix the base point r0 ∈ R and V

i0
∞ does not fix the

point r0, then there exists some index n0 so that for all n > n0 there exist modular automorphisms

αn ∈ Mod (Un) for which:



50 ZLIL SELA

(i) αn(V
i

n) = Vi

n for i = 1, ..., i0 − 1.

(ii) µi0 (n, fn , ϕn ◦ αn) < µi0 (n, fn , ϕn).

Proof. — Identical to the proof of theorem 6.10 in [Ri-Se1]. ¤

By lemma 3.4, if i0 is the first index for which V
i0
∞ does not fix the base

point r0 ∈ R, then for some index n0 and all n > n0 it is possible to find modular
automorphisms αn ∈ Mod (Un) for which:

(1) µi(n , fn , ϕn ◦ αn) = µi(n , fn , ϕn) for i = 1, ..., i0 − 1
(2) µi0 (n , fn , ϕn ◦ αn) < µi0 (n , fn , ϕn).

Hence, tup (n , fn , ϕn◦αn) < tup (n , fn , ϕn) in the lexicographical order on the (m+b)-
tuples tup (n , f , ϕ), which clearly contradicts the way the pair ( fn , ϕn) were chosen.
Therefore, all the groups Vi

∞ have to fix the base point r0 ∈ R and the proof of
proposition 3.3 is concluded. ¤

Showing that all vertex groups Vi
∞ fix the base point r0 ∈ R, we continue by

showing that the images of the elements y1, ..., yb in Q∞ fix r0 as well. Since Q∞ is
generated by the Vi

∞’s and the images of the yj’s, we will get that the entire group
Q∞ fixes the base point r0, a contradiction to the non-triviality of the action of Q∞
on the real tree R, hence, at least one of the groups V1

∞, ..., Vm
∞ does not fix a point

while acting on the real tree R.

Lemma 3.5. — Suppose that not all the elements y1, ..., yb fix the base point r0, and let j0
be the minimal index for which yj0 does not fix the base point r0 ∈ R. Then there exists some index

n0 so that for all n > n0 there exist modular automorphisms βn ∈ Mod (Un) for which:

(i) βn(V
i

n) = Vi

n for i = 1, ..., m.

(ii) βn( yj) = yj for j = 1, ..., j0 − 1.

(iii) χj0 (n, fn , ϕn ◦ βn) < χj0 (n, fn , ϕn).

Proof. — Identical to the proof of theorem 6.13 in [Ri-Se1]. ¤

By lemma 3.5 if j0 is the first index for which yj0 does not fix the base point
r0 ∈ R, then for some index n0 and all n > n0 it is possible to find modular
automorphisms βn ∈ Mod (Un) for which:

(1) µi(n , fn , ϕn ◦ βn) = µi(n , fn , ϕn) for i = 1, ..., m

(2) χ j(n , fn , ϕn ◦ βn) = χ j(n , fn , ϕn) for j = 1, ..., j0 − 1
(3) χ j0 (n , fn , ϕn ◦ βn) < χ j0 (n , fn , ϕn).

Hence, tup (n , fn , ϕn ◦βn) < tup (n , fn , ϕn) in the lexicographical order on the (m+b)-tuples
tup (n , f , ϕ), which clearly contradicts the way the pair ( fn , ϕn) were chosen. Therefore,
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if all the groups V1
∞, ..., Vm

∞ fix points in the real tree (R, r0) then all the groups Vi
∞

and all the elements yj have to fix the base point r0 ∈ R. Since Q∞ is generated by
the groups Vi

∞ and the elements yj, the entire group Q∞ fixes the base point r0 ∈ R.
This clearly contradicts the non-triviality of the action of Q∞ on the real tree R, and
therefore:

Proposition 3.6. — At least one of the vertex groups in the abelian decomposition ΛL∞ of

L∞, V1
∞, ..., Vm

∞, acts non-trivially on the pointed real tree (R , r0).

Since the limit group L∞ was assumed non-abelian, and since by lemma 1.4
every abelian subgroup of L∞ is contained in a unique maximal abelian subgroup
and every maximal abelian subgroup is malnormal, not all vertex groups in ΛL∞ ,
V1
∞, ..., Vm

∞ are abelian.

Lemma 3.7. — Let A be an abelian subgroup of one of the groups Vi
∞. Then either A

fixes a point in the real tree R, or A can be written as a direct sum A = Â + < a1, ..., ac > where

< a1, ..., ac >' Zc, Â fixes a point in the real tree R and no non-trivial element a ∈< a1, ..., ac >

fixes a point in R.

Proof. — The lemma is obvious if A is cyclic, so suppose A is non-cyclic. Since
A < Vi

∞ it is naturally embedded in Q∞. If Q∞ is freely decomposable, A is a
subgroup of one of the freely-indecomposable factors of Q∞, Q̂∞. The action of Q̂∞
on the real tree (R, r0) can be analyzed using theorem 1.5 ([Se3], 3.1). It follows from
that theorem that an abelian subgroup can either fix a point in (R, r0), preserve an
axial component in (R, r0), or fix an axis of one of its elements and this axis is not an
axial component in (R, r0).

If A fixes an axial component, then A can be expressed as a subgroup Stab < A
that pointwise stabilizes this component, direct sum with a f.g. free abelian subgroup
of A, where this f.g. free abelian subgroup acts faithfully on the axial component
preserved by A. If A preserves a line in (R, r0) which is not an axial component, A
can be expressed as a subgroup Stab < A which fixes this line direct sum with a cyclic
subgroup C of A that acts discretely on the line preserved by A. ¤

Proposition 3.6 proves that at least one of the vertex groups Vi
∞ acts non-

trivially on the limit tree (R, r0). To get a contradiction, we show that if the abelian
JSJ decomposition of L∞ contains no principal cyclic splittings, then each of the non-
abelian vertex groups Vi

∞ admits a fixed point when acting on the limit tree (R, r0).

Proposition 3.8. — If ΛL∞ contains no principal cyclic splittings, then every non-abelian

vertex group Vi
∞ in ΛL∞ fixes a point ri ∈ R when acting on the real tree (R , r0).
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Proof. — Suppose Vi
∞ is not abelian and it does not fix a point in the real tree

(R, r0). Vi
∞ is generated by the abelian edge groups E j

∞ together with the finite set
of elements v

i

1, ..., v
i

` 1
. Hence, by lemma 3.7, Vi

∞ is generated by finitely many abelian

subgroups Ai

1, ..., Ai

u that admit fix points while acting on (R, r0) together with a finite
set of elements v

i

1, ..., v
i

` ′1
. Therefore, by theorem 1.5 Vi

∞ inherits a finite graph of

groups from its action on (R, r0), a graph of groups which is non-trivial and in which
all edge stabilizers are abelian.

By lemma 2.1 we can modify this finite graph of groups to get a non-trivial
abelian splitting Γi of Vi

∞ in which all non-cyclic maximal abelian subgroups are
elliptic, and by theorem 1.5 if Γi contains a cyclic edge group then Vi

∞ admits a
principal cyclic splitting in which all non-cyclic maximal abelian subgroups are elliptic.
Now, we can properly refine the abelian decomposition Λi

∞ by replacing the vertex
stabilized by Vi

∞ with Γi. If Γi contains a cyclic edge group, L∞ admits a principal
cyclic splitting and the theorem follows. Otherwise, the obtained proper refinement can
not be obtained from the abelian JSJ decomposition of L∞ by a sequence of foldings,
collapsings, slidings, and modifying boundary monomorphisms which clearly contradicts
the canonical properties of the abelian JSJ decomposition of L∞ (theorem 2.7) and the
proposition follows. ¤

Since by proposition 3.8 all non-abelian vertex groups Vi
∞ in the abelian

decomposition ΛL∞ are elliptic when acting on the real tree (R, r0), and since by
proposition 3.6 not all the vertex groups V1

∞, ..., Vm
∞ fix points in (R, r0), there must

exist at least one abelian vertex group V
i0
∞ that does not fix a point in (R, r0). By

lemma 3.7 V
i0
∞ = Ai0 + Di0 where Ai0 fixes a point in the real tree (R, r0) and Di0 is a

f.g. free abelian group that acts faithfully on the line preserved by V
i0
∞.

Since every maximal abelian subgroup in L∞ is malnormal, all adjacent vertex
groups to an abelian vertex group in ΛL∞ are non-abelian. Since all non-abelian vertex

groups fix points in (R, r0) all edge groups connected to V
i0
∞ are subgroups of Ai0 . If

Ai0 is an infinite cyclic subgroup of V
i0
∞ we have found a principal cyclic splitting of

the limit group L∞, hence, we may assume that Ai0 is non-cyclic.
We set L1

∞ to be the fundamental group of the graph of groups obtained from
ΛL∞ by replacing the vertex group V

i0
∞ with its subgroup Ai0 . Clearly, L1

∞ is a subgroups

of L∞, and since V
i0
∞ = Ai0 +Di0 , L1

∞ is also a quotient of L∞. Hence, L1
∞ is f.g. as well,

and the first Betti number of L1
∞ is strictly smaller than that of L∞: b1(L1

∞) < b1(L∞). If
L1
∞ is freely decomposable, then the abelian subgroup Ai0 can be conjugated into one of

the free factors, so necessarily L∞ must be freely decomposable as well, a contradiction
to our assumptions. Hence, we may conclude that L1

∞ is freely indecomposable.
L1
∞ is also a limit group, so we may repeat the shortening argument for L1

∞ and
the abelian splitting it inherits from the abelian decomposition ΛL∞ of L∞ to obtain a
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new limit group Q1
∞ acting on a new real tree (R1 , r

1
0). By propositions 3.3-3.8 either

one of the non-abelian groups Vi
∞ acts non-trivially on the new limit tree (R1 , r

1
0), in

which case it is either possible to obtain a principal cyclic decomposition of L∞ or to
refine the abelian JSJ decomposition of L∞ which contradicts its canonical properties
(theorem 2.7), or we obtain a new limit group L2

∞ which is a subgroup and a quotient
of L1

∞, and b1(L2
∞) < b1(L1

∞) < b1(L∞). Therefore, after repeating this process finitely
many times (depending on the first Betti number of L∞) we must obtain a non-trivial
abelian splitting of one of the non-abelian groups Vi

∞, which allows us to either obtain
a principal cyclic decomposition of L∞ or to refine the abelian JSJ decomposition
of L∞ and contradict its canonical properties. This finally concludes the proof of
theorem 3.2. ¤

Theorem 3.2 proves the existence of a principal cyclic splitting of a freely-
indecomposable non-abelian limit group. In [Ri-Se2] a canonical (cyclic) JSJ decompo-
sition that “encodes” all cyclic splittings of a f.p. freely-indecomposable group is being
constructed. Since all cyclic splittings can be modified to be 2-acylindrical, we may
replace the generalized accessibility of M. Bestvina and M. Feighn [Be-Fe2] used in the
construction of the cyclic JSJ decomposition of f.p. groups in [Ri-Se2] by acylindrical
accessibility (theorem 2.6) to obtain the canonical cyclic decomposition of a limit group.
The cyclic JSJ decomposition is obtained by collapsing all the edges with non-cyclic
edge groups in the abelian JSJ decomposition of a limit group. Theorem 3.2 shows it
is non-trivial in case the limit group is not abelian.

Theorem 3.9 (cf. ([Ri-Se2], 7.1). — Suppose L∞ is freely indecomposable. There exists

a reduced unfolded Z-splitting of L∞, which we call the cyclic JSJ (Jaco-Shalen-Johannson)

decomposition of L∞ with the following properties:

(i) Every canonical maximal QH subgroup (CMQ ) of L∞ is conjugate to a vertex group

in the JSJ decomposition. Every QH subgroup of L∞ can be conjugated into one of the

CMQ subgroups of L∞. Every vertex group in the cyclic JSJ decomposition which is not

a CMQ subgroup of L∞ is elliptic in any Z-splitting of L∞ under consideration.

(ii) A one edge Z-splitting L∞ = D ∗Z E or H∞ = D∗Z under consideration which is

hyperbolic in another elementary Z-splitting is obtained from the cyclic JSJ decomposition

of L∞ by cutting a 2-orbifold corresponding to a CMQ subgroup of L∞ along a weakly

essential s.c.c.

(iii) Let Θ be a one edge Z-splitting L∞ = D ∗Z E or L∞ = D∗Z, which is elliptic with

respect to any other one edge Z-splitting of L∞. Then Θ is obtained from the cyclic JSJ
decomposition of L∞ by a sequence of collapsings, foldings, and conjugations.

(iv) Let Λ be a general Z-splitting of L∞. There exists a Z-splitting Λ1 obtained from the

cyclic JSJ decomposition by splitting the CMQ subgroups along weakly essential s.c.c.

on their corresponding 2-orbifolds, so that there exists a L∞-equivariant simplicial map

between a subdivision of the Bass-Serre tree TΛ1 to TΛ.
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(v) If JSJ1 is another cyclic JSJ decomposition of L∞, then JSJ1 is obtained from the

JSJ decomposition by a sequence of slidings, conjugations and modifying boundary

monomorphisms by conjugations (see section 1 of [Ri-Se2] for these notions).

(vi) If L∞ is non-abelian then the cyclic JSJ decomposition of L∞ is non-trivial. Furthermore,

the cyclic JSJ decomposition can be collapsed to give a principal cyclic splitting of L∞ in

this case.

4. Finite Presentability of Limit Groups and ω -Residually Free Groups

In the first section we defined limit groups and studied the basic properties of
their action on the corresponding limit tree. Since a limit group is a quotient of a
f.g. group, it is naturally f.g. as well. To get a structure theory for sets of solutions
of equations in a free group, we will have to show limit groups are f.p. and not
only f.g. This will imply, in particular, that a limit group is a ω-residually free group
(definition 4.5 below).

To study some of the basic algebraic properties of limit groups we prove that
limits groups are strongly accessible. Strong accessibility for certain classes of splittings
of f.p. groups was recently proved by T. Delzant and L. Potyagailo [De-Po]. However,
limit groups are assumed to be f.g. and we still do not know they are f.p. so the results
of [De-Po] can not be applied. To prove that limit groups are strongly accessible, we
prove an analogue of a Haken hierarchy for a limit group, and associate with such a
group a canonical analysis lattice, from which some basic algebraic properties of limit
groups can be deduced.

Let L∞ be a limit group. We construct the analysis lattice associated with L∞ as
follows. At the 0-th level of the hierarchy we place L0 = L∞. If L∞ is either a free
group, a surface group, or an abelian group this 0-th level is the entire analysis lattice.
Otherwise, we first factor L0 = L∞ into freely indecomposable groups, then in each
factor which is not abelian or a surface group, we define the groups in the 1-st level
of the analysis lattice of L∞, L1

1, ..., L1
m1

to be the vertex groups in the canonical cyclic
JSJ decompositions of the freely indecomposable factors of L∞. Note that since L∞ is
f.g., the groups L1

i are f.g. as well, hence, they are also limit groups.

To define the next levels we continue iteratively. If a group in the i-th level Li

j

is either a free group, a surface group or an abelian group we don’t continue to the
i + 1-st level from this branch. Otherwise, we first factor Li

j into freely indecomposable
factors, and then define the successive groups in the i + 1-level to be the vertex groups
in canonical JSJ decompositions of the freely indecomposable factors of Li

j.

Our main technical goal in this section is to show that the construction of the
analysis lattice of a limit group terminates. To do that we will show that the complexity
of limit groups that appear in higher levels in the lattice is smaller than the complexity
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of limit groups in lower levels. To measure the complexity of the limit groups Li

j we
will use their first Betti number which we denote b1.

Theorem 4.1. — Let L∞ be a limit group. The construction of the analysis lattice of L∞
terminates after finitely many steps.

Proof. — Since we are going to use the first Betti number to measure the
complexity of a limit group, our first step in obtaining theorem 4.1 is showing that the
first Betti number of a non-cyclic limit group is at least 2.

Lemma 4.2. — Let G be a f.g. group, let hn be a convergent sequence of homomorphisms of

G into Fk, and let L∞ be the corresponding limit group and Y the corresponding limit tree. If L∞
is non-cyclic then b1(L∞) > 2.

Proof. — We may assume L∞ is non-abelian. The image of the homomorphisms
hn : G → Fk is a subgroup of the free group Fk. If there exists a sequence of indices
for which the image is cyclic, then by part (iv) of lemma 1.3 L∞ is abelian, which
contradicts our assumptions. Hence, except for at most finitely many n’s the image of
the homomorphisms hn is a non-abelian free subgroup of Fk.

The limit group L∞ is f.g. and a quotient of the f.g. group G, so let
L∞ = G/ < r1 , r2, ..., >. We denote by Gi the group Gi = G/ < r1, ..., ri >. Clearly there
is a canonical epimorphism from Gi onto Gi+1, and the direct limit of the groups {Gi}
is L∞. Since for each fixed index i, for all but finitely many n’s, the homomorphisms
hn : G → Fk split through Gi, i.e., they can be written as a composition hn = f

i

n ◦ pi

where pi is the canonical quotient map from G onto Gi, and f
i

n is a homomorphism
from Gi into Fk, Gi admits a non-abelian free quotient, so b1(Gi) > 2. Since L∞ is the
direct limit of the groups Gi and the canonical epimorphisms between them:

b1(G ) > b1(G1) > b1(G2) > ... > b1(Gi) > ... > b1(L∞).

If A1 , A2 , A3 , ... is a sequence of f.g. abelian groups so that there exist
epimorphisms from As to As+1 for every s, then there must exist some s0 for which
As0 ' As0+1 ' As0+2 ' .... Applying that for the first homology groups of the Gi’s it
follows that there exists some index i0 for which:

b1(Gi0 ) = b1(Gi0+1) = b1(Gi0+2) = ... = b1(L∞)

so b1(L∞) > 2. ¤

We will prove theorem 4.1 by induction on the first Betti number of a limit
group. By lemma 4.2 a limit group L∞ with b1(L∞) = 1 is cyclic, the analysis lattice of
a cyclic group has only 1 level, so theorem 4.1 is valid for limit groups with first Betti
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number 1. To be able to use the inductive hypothesis for proving the termination of
the construction of the analysis lattice, we need the following fact.

Proposition 4.3. — Let L∞ be a limit group. If Li

j is a group in the i-th level of the analysis

lattice of the limit group L∞, Li+1
j ′ is connected to Li

j and Li+2
j ′′ is connected to Li+1

j ′ in this lattice,

then either Li+2
j ′′ is abelian or a surface group or a free group or:

(i) b1(Li+2
j ′′ ) < b1(Li

j).

(ii) Li+1
j ′ is a subgroup of another limit group Di+1

j ′ for which: b1(Di+1
j ′ ) < b1(Li

j).

(iii) Li+2
j ′′ is a subgroup of another limit group Di+2

j ′′ for which: b1(Di+2
j ′′ ) < b1(Li

j).

(iv) Li+1
j ′ is a subgroup of another limit group Mi+1

j ′ for which: b1(Mi+1
j ′ ) = b1(Li

j), and the first

Betti number of the graph corresponding to the canonical cyclic JSJ decomposition of Mi+1
j

is strictly bigger than the first Betti number of the graph corresponding to the canonical

cyclic JSJ decomposition of Li

j .

Proof. — We will assume that Li+2
j ′′ is not abelian, nor a surface group nor a free

group. Since Li

j is connected to groups in the i + 1-level of the analysis lattice, Li

j, and
similarly Li+1

j ′ , are not abelian. If M = A ∗B then b1(M) = b1(A) + b1(B). Since the groups
connected to Li

j in the i + 1-level are vertex groups in the cyclic JSJ decomposition of
freely indecomposable factors of Li

j, if Li+1
j ′ is connected to Li

j in the analysis lattice
then b1(Li+1

j ′ ) 6 b1(Li

j). If b1(Li+1
j ′ ) = b1(Li

j) then Li

j must be freely indecomposable, and by
lemma 4.2 and a simple homological computation only one vertex in its canonical cyclic
JSJ decomposition is non-cyclic. By theorem 3.2 a limit group admits a principal cyclic
splitting, so if b1(Li+1

j ′ ) = b1(Li

j) the cyclic JSJ decomposition of Li

j is not a tree of groups
with one non-cyclic vertex group. Hence, if we suppose case (i) of the proposition does
not hold, i.e., b1(Li

j) = b1(Li+1
j ′ ) = b1(Li+2

j ′′ ), then the cyclic JSJ decompositions of Li

j and
Li+1

j ′ contain one vertex with non-cyclic vertex group, bouquet of circles based on this
vertex and, perhaps, some additional vertices with cyclic stabilizers located either in
the interior of a circle or connected by a unique edge to the vertex with non-trivial
stabilizer.

To simplify notation we set L1 = Li

j, L2 = Li+1
j ′ and L3 = Li+2

j ′′ . We set Λ1 to be the
cyclic JSJ decomposition of L1, and Λ2 to be the cyclic JSJ decomposition of L2. The
cyclic splitting Λ1 has one vertex group, L2, bouquet of circles, with cyclic edge groups
< c1 > , ..., < ck > and Bass-Serre generators t1, ..., tk so that ticit

−1
i = c′i , and perhaps

some additional vertices stabilized by cyclic vertex groups each connected by a single
edge to the vertex stabilized by L2. We set L̂2 to be the subgroup of L1 generated by
L2 and the cyclic vertex groups connected to the vertex stabilized by L2. The cyclic
splitting Λ2 has one vertex group, L3, and bouquet of circles, with cyclic edge groups
< e1 > , ..., < e` > and Bass-Serre generators b1, ..., b` so that bjejb

−1
j = e′j , and perhaps
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some additional vertices stabilized by cyclic vertex groups each connected by a single
edge to the vertex stabilized by L3. Let e1, ..., eq be the entire collection of edge groups
in Λ2. We set L̂3 to be the subgroup of L2 generated by L3 and the cyclic vertex
groups connected to the vertex stabilized by L3.

At this point we use the shortening process used in proving theorem 3.2, applied
to the cyclic splitting Λ1 of L1, and obtain a (new) limit group D∞, together with a
canonical map ν : L1 → D∞. By construction ν maps the group L̂2 monomorphically
into D∞. If D∞ is freely decomposable, then either L̂2 is freely decomposable or
b1(L2) 6 b1(L̂2) < b1(D∞) 6 b1(L1), so in both cases part (i) of the proposition holds.
Hence, we may assume that D∞ is freely indecomposable, and D∞ is clearly not
abelian, so D∞ admits a canonical (non-trivial) cyclic JSJ decomposition. If D∞ = U∗CM
where C is cyclic and M is non-cyclic abelian, then L3 < U and b1(U ) 6 b1(L∞) − 1,
so if we set Di+2

j ′′ to be the subgroup U of D∞, part (ii) of the proposition follows.
Hence, we may assume that every non-cyclic abelian subgroup of D∞ is elliptic in its
canonical cyclic decomposition. We denote the cyclic JSJ decomposition of D∞, ΛD.
Note that by lemma 2.3, ΛD is a 2-acylindrical splitting.

D∞ is generated by the images (under the homomorphism ν) of L2, the Bass-
Serre generators t1, ..., tk and the cyclic vertex groups in Λ1. By the way the shortening
argument was defined if ν(L2) fixes a vertex in ΛD, or more generally, if all the elements
ν(c1), ..., ν(ck) fix the same vertex in ΛD, the cyclic splitting ΛD is either degenerate or
it is a tree of groups with only one non-cyclic vertex group, so D∞ does not admit a
principal cyclic splitting, a contradiction to theorem 3.2. Furthermore, since Λ1 contains
a unique non-cyclic vertex group, if all the elements ν(c1), ..., ν(ck) are elliptic in ΛD,
they must fix the same vertex in ΛD. Hence, ν(L2) does not fix a vertex in ΛD, so it
inherits a cyclic decomposition Γ2 from ΛD, L3 fixes a vertex in Γ2, this vertex is the
only one stabilized by a non-cyclic group in Γ2, and at least some of the elements ν( ci)
are not elliptic in Γ2.

Let VD be the vertex group stabilized by L3 in ΛD. Since the cyclic JSJ
decomposition of L2 contains a unique non-cyclic vertex group (L3), if ν( ci) is elliptic
in ΛD for some i, ν( ci) fixes either the vertex stabilized by VD or a vertex connected
to VD and stabilized by a cyclic vertex group in Γ2.

Since ν( ci) = ν(ti)ν( c ′i )ν(t−1
i ), if ν( ci) is hyperbolic in ΛD so is ν( c′i ). Since L2 is

freely indecomposable, and the cyclic JSJ decomposition of L2 is Λ2, each edge in
the axis of ν( ci) and ν( c′i ) has to be stabilized by some conjugates (by elements in the
subgroup ν(L2)) of the elements ν(e1), ..., ν(eq). ν(ti) maps the axis of ν(ci) to the axis of
ν(c′i ).

First, suppose that ν(ti) maps an edge E stabilized by ν(a1eja
−1
1 ) for some a1 ∈ L2

in the axis of ν( ci), to an edge E′ stabilized by ν(a2eja
−1
2 ) for some a2 ∈ L2. If we denote

a3 = a2a
−1
1 then the element di = ν(ti)ν(a−1

3 ) fixes the edge E. Hence, there exists some
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element e in the (cyclic) stabilizer of the edge E, for which di = e and ν(ti) = eν(a−1
3 ).

Since e and ν(a1eja
−1
1 ) belong to the same cyclic subgroup in D∞, and ν(ti) conjugates

ν(ci) to ν(c′i ), b1(< e , ν(L2) >) 6 b1(L2) − 1 < b1(L1). Hence, in this case we set Di+1
j ′ to

be the subgroup < e , ν(L2) > of D∞, b1(Di+1
j ′ ) < b1(L1), and case (ii) holds.

Let c1, ..., ck′ be the cyclic edge groups in Λ1 for which ν( c1), ..., ν( ck′ ) are not
elliptic in ΛD. Let E1, ..., Es be the orbits of edges in ΛD under the action of L2,
that intersect non-trivially the axes of ν( c1), ..., ν( ck′ ) , ν( c′1), ..., ν( c′k′ ). Each of the (images
of the) Bass-Serre generators ν(ti) maps the axis of the element ν( ci) to the axis of
the element ν( c′i ), for i = 1, ..., k′, so each of the elements ν(ti) maps edges from the
orbits E1, ..., Es to edges from these orbits. We construct a (labeled) finite graph ∆ with
vertices corresponding to the orbits E1, ..., Es, and we connect two vertices Ej1 , Ej2 by
an edge, if an element ν(ti) maps an edge that is in the orbit of Ej1 to an edge that
is in the orbit of Ej2 . In this case we label the edge Ej1 , Ej2 with the label ν(ti). Note
that for each label ν(ti), there is at least one edge in ∆ that is labeled by ν(ti).

If there are loops in ∆, then the argument given above implies that L2 can
be embedded in a limit group Di+1

j ′ , for which b1(Di+1
j ′ ) < b1(Li

j), and case (ii) of the
proposition holds. Hence, we may assume that ∆ contains no loops. If there is a circle
in ∆ for which the edges in this circle are labeled by distinct labels, then the same
argument applies, so we may assume that there are no such circles. Therefore, the
number of orbits E1, ..., Es is strictly bigger than the number of labels ν(t1), ..., ν(tk′ ).

L2 inherits a graph of groups Γ2 from ΛD, that has one non-abelian vertex group
and a bouquet of s circles, in which the elements ck′+1, ..., ck and c′k′+1, ..., c′k are elliptic.
We set the limit group M, that is a subgroup of Li

j, to be the fundamental group of
the graph of groups obtained from Γ2 by adding loops with edge groups ck′+1, ..., ck

and Bass-Serre generators tk′+1, ..., tk that conjugate ci to c′i in correspondence, for
i = k′ + 1, ..., k.

By construction, b1(M ) 6 b1(Li

j) and L2 is embedded in M. If b1(M ) < b1(Li

j) then
case (ii) of the proposition holds, hence, we may assume that b1(M ) = b1(Li

j). If M is
freely decomposable, then either L2 is freely indecomposable or L2 can be embedded
into a limit group with a strictly smaller Betti number, so either case (i) or case (ii) of
the proposition hold. Hence, we can assume that M is freely indecomposable. If the
cyclic JSJ decomposition of M contains more than one non-cyclic vertex group, then
L3 can be embedded into a limit group with a strictly smaller Betti number, and case
(iii) of the proposition holds. Hence, we may assume that the cyclic JSJ decomposition
of M, that we denote ∆1, contains a unique non-cyclic vertex group, and at least k + 1
loops based on the vertex that is stabilized by that non-cyclic vertex group. In this
case, b1(M ) = b1(Li

j), L2 = Li+1
j ′ is embedded into M, and the Betti number of the graph

associated with the cyclic JSJ decomposition of M, ∆1, is strictly bigger than the first
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Betti number of the graph associated with the cyclic JSJ decomposition of Li

j, hence,
case (iv) holds. ¤

At this point we are ready to complete the proof of theorem 4.1 by induction on
the first Betti number of L∞. If b1(L∞) = 1, L∞ is cyclic by lemma 4.2 and its analysis
lattice contains only one level. Suppose b1(L∞) > 1. Let L2

j ′ , L3
j ′′ be the beginning of

a branch of the analysis lattice. If L2
j ′ or L3

j ′′ are abelian, free or surface groups, then
they are terminal points in the analysis lattice, and the construction of the analysis
lattice terminates along the given branch. If cases (i)-(iii) of proposition 4.3 hold, then
L2

j ′ or L3
j ′′ can be embedded into a limit group with strictly smaller Betti number, so

the construction of the analysis lattice along our given path terminates after finitely
many steps by our inductive hypothesis. If case (iv) of proposition 4.3 holds, then L2

j ′

can be embedded in a limit group M2
j ′ , with the same Betti number as that of L∞, but

for which the Betti number of the graph corresponding to the cyclic JSJ decomposition
of M2

j ′ is strictly bigger than the Betti number of the graph corresponding to the cyclic
JSJ decomposition of L∞. Since the Betti number of the graph corresponding to a
graph of groups is bounded by the Betti number of the fundamental group of the
graph of groups, case (iv) of proposition 4.3 can be iteratively applied only finitely
many times before one of the cases (i)-(iii) applies, and our inductive hypothesis can be
applied to imply the termination of the construction of the analysis lattice after finitely
many steps. ¤

The termination of the construction of the analysis lattice is the key technical tool
for understanding the algebraic structure of limit groups. In fact it can be viewed as a
(canonical) “Haken Hierarchy” for limit groups. The following algebraic properties of
limit groups are an immediate corollary. Similar properties of ω-residually free groups
(that are shown to be limit groups in the sequel) were proven by O. Kharlampovich
and A. Myasnikov (see corollaries 3 and 4 of theorem 6 in [Kh-My]).

Corollary 4.4. — Let L∞ be a limit group. Then:

(i) L∞ is finitely presented.

(ii) An abelian subgroup of L∞ is a f.g. free abelian group. The rank of a free abelian

subgroup is bounded by the first Betti number of L∞.

(iii) If L∞ does not contain a non-cyclic abelian subgroup then L∞ is (Gromov) hyperbolic.

Proof. — The analysis lattice shows that a limit group can be constructed from
abelian, free, and surface groups by a finite sequence of amalgamated products and
HNN extensions over cyclic groups and free products, hence, it is finitely presented,
and we get (i). Every abelian subgroup of a limit group which is not cyclic or Z + Z is
elliptic in its cyclic JSJ decomposition. Therefore, such abelian subgroup of L∞ must
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appear as a terminal vertex group in the analysis lattice, so it must be f.g. and its
rank is bounded by the first Betti number of L∞. A limit group is torsion-free by
lemma 1.3 which gives us part (ii). If L∞ does not contain non-cyclic abelian groups,
it is constructed from free and surface groups by a sequence of amalgamated products
and HNN extensions along cyclic groups and free products, and since every cyclic
subgroup of a limit group is contained in a unique maximal cyclic one by lemma 1.4
and part (ii), such limit group is a hyperbolic group by the combination theorem of
M. Bestvina and M. Feighn [Be-Fe3]. ¤

The finite presentability of limit groups is a key tool in our analysis of sets of
solutions to equations. It is the source for all the finiteness results we will get both for
these sets and in dealing with the elementary theory of free groups in our continuation
papers. An immediate implication of the finite presentability is equivalence between
limit groups and f.g. ω-residually free groups.

Definition 4.5. — Let H be a group. H is called residually free if for every element h |= 1
in H, there exists a free group Fk and a homomorphism φ : H→ Fk so that φ(h) |= 1. H is called

ω-residually free if for any integer m and every set of m elements h1, ..., hm |= 1 in H, there exist an

integer k and a homomorphsim φ : H→ Fk so that φ(h1), ..., φ(hn) |= 1.

Theorem 4.6. — A f.g. group R is a limit group if and only if it is ω-residually free.

Proof. — The theorem is obvious for f.g. free abelian groups, so we may assume
the f.g. group R is not abelian.

Suppose R is a limit group. By definition there exists a f.g. group G, an integer k

and a sequence of homomorphisms hn : G → Fk, so that the limit of the actions of
G on the Cayley graph of Fk via the homomorphisms hn is a faithful action of R on
some real tree Y.

By corollary 4.4 R is f.p. so by lemma 1.3 for all but finitely indices n, the
homomorphisms hn split through the limit group R, i.e., hn = ψn ◦ p where p : G → R
is the canonical projection map, and the ψn’s are homomorphisms ψn : R → Fk. By
lemma 1.3, if r |= 1 in R, then for all but finitely many n’s ψn(r) |= 1. Hence, for every
integer m and every set of m elements r1, ..., rm |= 1 in R, for all but finitely many
indices n, ψn(r1), ..., ψn(rm) |= 1, so R is ω-residually free.

To prove the other direction, suppose R = < r1, ..., rs > is f.g. and ω-residually
free. Since R is ω-residually free there exists a sequence of homomorphisms φn :
R→ F2, so that φn maps the elements in a ball of radius m in the Cayley graph of R
to distinct elements in F2. By rescaling the metric on F2, proposition 1.1 implies that
there exists a subsequence of the homomorphisms φn which converges to an action of
a limit group L on a real tree Y. In general, the limit group L is a quotient of the f.g.
group R, but since the homomorphisms were chosen so that φn maps a ball of radius n
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“monomorphically” into F2, part (iii) of lemma 1.3 implies that R is isomorphic to L
and, therefore, R is a limit group. ¤

Clearly, since f.g. ω-residually free groups are limit groups and vice versa, all
the algebraic properties proven for limit groups are valid for ω-residually free groups.
In particular, they admit a principal cyclic decomposition (theorem 3.2), a canonical
cyclic JSJ decomposition (theorem 3.9), a (canonical) analysis lattice, they are f.p., every
abelian subgroup of a f.g. ω-residually free group is a f.g. free abelian group and its
rank is bounded by the first Betti number of the ambient ω-residually free group,
and if a f.g. ω-residually free group does not contain a non-cyclic abelian subgroup
it is (Gromov) hyperbolic. Also, since a f.g. ω-residually free group is, in particular,
residually finite, it satisfies the Hopf property.

5. The (Canonical) Makanin-Razborov Diagram

The algebraic properties of limit groups proved in the previous sections introduce
tools that initialize the analysis of these groups, but are still short of obtaining any
kind of classification of them. i.e., the cyclic JSJ decomposition and the analysis lattice
associated with a limit group, are helpful in proving properties of limit groups but they
are not enough for getting a necessary and sufficient conditions for a f.p. group to
be a limit group (or equivalently an ω-residually free group). To get such criteria, we
need to introduce canonical resolutions of limit groups, resolutions which will capture
all the possible homomorphisms from a limit group into a free group and which are
similar in nature to the ones appear in works of Makanin [Ma] and Razborov [Ra1],
obtained there under some additional combinatorial hypothesis (bounded periodicity),
and generalized later by Razborov in his dissertation [Ra2], and by Kharlampovich
and Myasnikov in [Kh-My].

On the set of limit groups (ω-residually free groups) we define a partial order.
Given two limit groups R1 , R2 we say that R1 > R2 if R2 is a proper quotient of R1.
Note that since a limit group is Hopf, if R2 is a proper quotient of R1 then R1 can
not be a quotient of R2. A first implication of the finite presentability of limit groups
to their partial order is the termination of decreasing sequences.

Proposition 5.1. — Every sequence of decreasing limit groups R1 > R2 > R3 > ...

terminates.

Proof. — Suppose there is a decreasing sequence which does not terminate. The
limit groups {R m} are all quotients of R1, so we may assume their fixed finite set of
generators is the image of a fixed finite set of generators of R1. The limit groups Rm

are ω-residually free by theorem 4.6, so for each fixed m we can define a sequence of
homomorphisms h

m

n : Rm → Fk so that h
m

n maps the n-ball in the Cayley graph of Rm to
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distinct elements in Fk. From the sequences {hm

n } we extract the diagonal sequence of
homomorphisms φm : R1 → Fk by setting φm = h

m

m ◦pm where pm : R1 → Rm is the natural
projection. By rescaling the metric on Fk, proposition 1.1 implies that the actions of R1

on the Cayley graph of Fk via the homomorphisms {φm} subconverge into an action
of a limit group R on a real tree Y (see section 1).

R is a quotient of all the groups Rm in the decreasing sequence and it is a limit
group by construction. By corollary 4.4 R is f.p. and by part (iii) of lemma 1.3 for
all but finitely many indices m, the (finite) defining relations of R are mapped to the
trivial element by the homomorphisms φm. Since the homomorphisms h

m

m were chosen
to map the ball of radius m in the Cayley graph of Rm into distinct elements, and
since the defining relations of R are mapped to the identity by φm, for all but finitely
many m’s, there exists some index m0, so that Rm0 , Rm0+1 , ... are all quotients of the
limit group R. But R is a proper quotient of the Rm’s, so we obtain a contradiction
to the Hopf property of the limit group R, and a decreasing sequence must
terminate. ¤

To get an understanding of the structure of limit groups (ω-residually free groups)
we need to find a way to “encode” all possible homomorphisms from a limit group into
free groups. To get such “encoding” we will construct a canonical diagram associated
with a limit group. To construct this canonical diagram we need to introduce shortening

quotients of a limit group. To construct a shortening quotient of a limit group we need
to define its associated modular group.

Definition 5.2. — Let R be a freely-indecomposable limit group. We define the modular group

Mod (R) to be the subgroup of Aut(R) generated by the following families of automorphisms of R :

(i) Inner automorphisms.

(ii) Dehn twists along edges of the cyclic JSJ decomposition of R.

(iii) Dehn twists along essential s.c.c. in CMQ (canonical maximal quadratically hanging)

vertex groups in the cyclic JSJ decomposition of R.

(iv) Let A be an abelian vertex group in the cyclic JSJ decomposition of R, and let A1 < A
be the subgroup generated by all the edge groups connecting A to the other vertex groups in

the cyclic JSJ decomposition of R. Every automorphism of A that fixes A1 (elementwise)

can be naturally extended to an automorphism of the ambient limit group R. We call these

generalized Dehn twists and they form the fourth family of automorphisms that generate

Mod (R).

At this stage we are ready to modify the shortening argument, presented in ([Be],
7.4) and in section in order to obtain the shortening quotients of a freely-indecomposable
limit group R. Let {hn | hn : R → Fk} be a sequence of homomorphisms from R into
a free group Fk. Let r1, ..., rm ∈ R be a generating set of R, and let V1, ..., V` be the
vertex groups in the cyclic JSJ decomposition of R.
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Let X be the Cayley graph of the free group Fk with respect to a (fixed) finite
set of generators, and let dX be the standard simplicial metric on X. For each element
f ∈ Fk, each positive integer n, and each automorphism ϕ ∈ Mod (R) we define the
following (stretching) constant:

µ(n , f , ϕ) = max (dX (id. , f hn(ϕ(r1) ) f −1), ..., dX (id. , f hn(ϕ(rm) )f −1) ).

For each n we choose fn ∈ Fk and ϕn ∈ Mod (R) for which µ(n , fn , ϕn) is minimal in the
set {µ(n , f , ϕ)}. We set dispn = µ(n , fn , ϕn).

The limit group R admits a natural action on the Cayley graph X of Fk which
we denote ρn : R × X → X, by setting ρn(r , x) = τfn

◦ hn ◦ ϕn(r)(x) for every r ∈ R and
x ∈ X, where τfn

is the inner automorphism of Fk defined by fn. Since X is a simplicial
tree, for the n-th action ρn we may rescale the metric on the Cayley graph X by
dispn, and apply proposition 1.1 ([Pa], 2.3) for the sequence of actions {ρn} to obtain
a subsequence (still denoted {ρn}) converging into a (pointed) real tree (T, t0) equipped
with a non-trivial isometric action of R. We set K S∞ to be the kernel of the action of
R on the real tree T, and the limit group S∞ to be the quotient S∞ = R/K S∞. We
say that the limit group S∞ associated with the canonical quotient map η : R → S∞
is a shortening quotient of the limit group R. Note that the construction of a shortening
quotient of R does depend on the sequence of homomorphisms hn : R → Fk and the
specific generating set r1, ..., rm ∈ R pre-chosen for R.

We say that two shortening quotients S1 , S2 of the limit group R are equivalent,
if there exists an isomorphism τ : S1 → S2, and the canonical map η2 : R → S2

can be expressed as η2 = τ ◦ η1 ◦ ϕ where ϕ ∈ Mod (R) and η1 : R → S1 is the
canonical map associated with the (maximal) shortening quotient S1. The notion of
equivalent shortening quotients is clearly an equivalence relation on the set of couples
of shortening quotients and their associated canonical maps: {(Si , ηi : R→ Si)} of the
limit group R.

Since all the homomorphisms hn map the limit group R into a free group Fk,
a shortening quotient of a limit group R is indeed a quotient of R. In fact, it is a
proper quotient of it.

Claim 5.3. — Let R be a freely-indecomposable limit group. Then every shortening quotient

of R is a proper quotient of R.

Proof. — Let R be a freely-indecomposable limit group, let {hn : R → Fk} be
a sequence of homomorphisms, suppose the sequence of actions of R on the Cayley
graph of Fk via the homomorphisms {hn} converge into an action of a shortening
quotient S of R on some real tree YS, and suppose each of the homomorphisms hn

is the “shortest” possible under compositions with modular automorphisms of R and
inner automorphisms of Fk.
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Now, assume that the shortening quotient S is isomorphic to R, so the canonical
map η : R → S is an isomorphism. Let ΓR be the abelian JSJ decomposition of R
(see theorem 2.7). By theorem 3.2 R obtains a principal cyclic splitting, so some of the
edge groups in ΓR are cyclic.

To obtain a contradiction to the isomorphism between R and its shortening
quotient S, suppose first that all the edge groups in the abelian JSJ decomposition of
R are cyclic. By theorem 1.5, the shortening quotient S inherits an abelian splitting
from its action on the limit tree YS. Since R is assumed isomorphic to its shortening
quotient S, R inherits an abelian splitting from its action on YS.

The limit action of S on YS was obtained from a sequence of homomorphisms
{hn : R → Fk} that were assume the “shortest” possible under compositions with
modular automorphisms of R and inner automorphisms of Fk. Therefore, the real
tree YS can not contain an IET component, since otherwise, for large enough n, it
was possible to “shorten” the homomorphism hn by pre-composing with a modular
automorphism of R by the canonical properties of the abelian JSJ decomposition of R
(theorem 2.7) and the shortening argument given in ([Ri-Se1], 5.1), which contradicts
our assumptions on the homomorphisms {hn}. By a similar argument YS does not
contain an axial component. Hence, the action of R on YS is discrete. But again,
when the action of R on YS is discrete, for large enough n, it is possible to “shorten”
the homomorphisms hn by precomposing with a modular automorphism of R by the
canonical properties of the abelian JSJ decomposition of R (theorem 2.7) and the
shortening argument given in ([Se3], 2.5), a contradiction to our assumptions on the
homomorphisms {hn}. Hence, the abelian JSJ decomposition of R, ΓR, must contain
some abelian, non-cyclic, edge groups.

Let E1, ..., E` be the abelian non-cyclic edge groups in ΓR, let Λ1, ..., Λq be the
subgraphs of ΓR which are the connected components of the graph obtained from ΓR

by deleting the edges stabilized by E1, ..., E` . Since R admits a principal cyclic splitting
by theorem 3.2, the abelian JSJ decomposition ΓR contains an edge with cyclic edge
group which corresponds to a principal cyclic splitting of R, and this edge must be
contained in one of the connected subgraphs Λ1, ..., Λq, without loss of generality, Λ1.

Let R1 be the subgroup of R which is the fundamental group of the subgraph
Λ1. Let {h1

n : R1 → Fk} be the restrictions of the homomorphisms {hn : R→ Fk} to the
subgroup R1. From the sequence of actions of R1 on the Cayley graph of Fk via the
homomorphisms {h1

n} it is possible to extract a subsequence (still denoted {h1
n}) that

converge into an action of R1 on some real tree Y1. By theorem 1.5 R1 inherits a
(non-trivial) abelian splitting Γ1 from its action on Y1.

Let E1, ..., Eu be the abelian non-cyclic edge groups in ΓR which are the stabilizers
of edges connected to Λ 1, i.e., E1, ..., Eu are the edge groups in ΓR which are also
subgroups of R1. If any of the groups E1, ..., Eu is not elliptic when acting on the
limit tree Y1, it is possible to further refine the abelian JSJ decomposition ΓR of R,
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which contradicts its canonical properties (theorem 2.7). Hence, the subgroups E1, ..., Eu

can all be conjugated into vertex groups in Γ1, so Γ1 can be extended to an abelian
splitting on the ambient group R, so by the canonical properties of the abelian JSJ
decomposition of R, Γ1 can be obtained from the connected subgraph Λ1 of the abelian
JSJ decomposition of R, ΓR.

Now, modifying the “shortening argument” in case all edge groups in ΓR

are cyclic, if the real tree R1 contains an IET component, for large enough n, it
is possible to “shorten” the homomorphisms h

1
n by pre-composing with a modular

automorphism of R that preserve R1 by the canonical properties of the abelian JSJ
decomposition of R (theorem 2.7) and the shortening argument given in ([Ri-Se1],
5.1). By construction a composition of these shortening modular automorphisms with
the ambient homomorphisms {hn : R → Fk} make these “shorter”, which contradicts
our assumptions on the homomorphisms {hn}. By a similar argument Y1 does not
contain an axial component. Hence, the action of R1 on Y1 is discrete. But again,
when the action of R1 on Y1 is discrete, for large enough n, it is possible to “shorten”
the homomorphisms h

1
n by precomposing with a modular automorphism of R by the

canonical properties of the abelian JSJ decomposition of R (theorem 2.7) and the
shortening argument given in ([Se3], 2.5). By construction a composition of these
shortening modular automorphisms with the ambient homomorphisms {hn : R → Fk}
make these “shorter”, a contradiction to our assumptions on the homomorphisms
{hn}. ¤

Let SQ (R, r1, ..., rm) be the set of shortening quotients of R. On the set
SQ (R, r1, ..., rm) we define a partial order as follows. For given elements S1 , S2 ∈
SQ (R, r1, ..., rm) we say that S1 > S2 if S2 is a proper quotient of S1 and the canonical
map η2 : R → S2 splits as η2 = ν ◦ η1 where η1 : R → S1 is the canonical map
associated with S1 and ν : S1 → S2 is a homomorphism.

Lemma 5.4. — Let R be a freely-indecomposable limit group. Let S1 < S2 < S3 < ...

(where Sj ∈ SQ (R , r1, ..., rm)) be a properly increasing sequence of shortening quotients of R. Then

there exists a shortening quotient S ∈ SQ (R , r1, ..., rm) so that S > Sj for every shortening quotient

Sj in the increasing sequence.

Proof. — Let S1 < S2 < S3 < ... be an infinite properly increasing sequence
of shortening quotients of the freely-indecomposable limit group R. Since each of
the groups Sj is a shortening quotient of R, for each j there exists a sequence of
homomorphisms h

j

n : R → Fk, so that h
j

n can not be shortened by compositions with
both a modular automorphism of R and an inner automorphism of Fk, and if r ∈ R
for which η j (r) is not the identity element in Sj and η j (r) is contained in the ball of
Radius n in the Cayley graph of Sj, then h

j

n(r) |= 1.
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Now, we look at the diagonal sequence h
j

j : R→ Fk. By the construction used in
section 1, we may choose a converging subsequence (to simplify notation still denoted
h

j

j), so that the sequence of homomorphisms h
j

j : R → Fk converges into an action
of a limit group S on some real tree Y. By our assumptions on the homomorphisms
h

j

n : R→ Fk, the diagonal sequence h
j

j : R→ Fk can not be shortened by compositions
with both a modular automorphism of R and an inner automorphism of Fk, so the
limit group S is a shortening quotient of R, hence, S ∈ SQ (R, r1, ..., rm).

The shortening quotient S is in particular a limit group, so by corollary 4.4 it
is f.p. By lemma 1.3 there must exist some index j0 so that for all indices j > j0, the
homomorphisms h

j

j map the (finite set of) defining relations of S to the trivial element
in Fk. Since by the way the homomorphisms h

j

n were chosen, h
j

j maps a ball of radius
j/2 in Sj monomorphically into Fk, all the defining relations of S must be trivial in
Sj for large enough j. Therefore, S > Sj for large enough j which clearly implies that
S > Sj for all indices j. ¤

Lemma 5.4 proves the existence of maximal elements with respect to the partial
order on the set of shortening quotients SQ (R, r1, ..., rm). The next lemma shows that
there are only finitely many equivalence classes of maximal elements in the set of
shortening quotients.

Lemma 5.5. — Let R be a freely-indecomposable limit group. The set of shortening quotients

of R, SQ (R , r1, ..., rm), contains only finitely many equivalence classes of maximal elements with

respect to its partial order.

Proof. — Suppose there are infinitely many non-equivalent maximal shortening
quotients S1 , S2 , S3, ..., of some freely-indecomposable limit group R. As we did in
the proof of lemma 5.4 since each of the groups Sj is a shortening quotient of R, for
each j there exists a sequence of homomorphisms h

j

n : R → Fk, so that h
j

n can not
be shortened by compositions with both a modular automorphism of R and an inner
automorphism of Fk, and if r ∈ R for which η j (r) is not the identity element in Sj and
η j (r) is contained in the ball of Radius n in the Cayley graph of Sj, then h

j

n(r) |= 1.

From the diagonal sequence h
j

j : R→ Fk we can extract a convergent subsequence
(still denote h

j

j), so that the sequence of homomorphisms h
j

j : R → Fk converges into
an action of a limit group S on some real tree Y, and by our assumptions on the
homomorphisms h

j

n : R → Fk the limit group S is a shortening quotient of R, i.e.,
S ∈ SQ (R, r1, ..., rm).

The shortening quotient S is in particular a limit group, so by corollary 4.4 it
is f.p. By lemma 1.3 there must exist some index j0 so that for all indices j > j0, the
homomorphisms h

j

j map the (finite set of) defining relations of S to the trivial element
in Fk. Since by the way the homomorphisms h

j

n were chosen, h
j

j maps a ball of radius
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j/2 in Sj monomorphically into Fk, all the defining relations of S must be trivial in
Sj for some j > j1. Therefore, for every j > j1 either S > Sj or S is equivalent to Sj.
But all the shortening quotients Sj are assumed maximal in SQ (R, r1, ..., rm), so for all
j > j1 S is equivalent to Sj, and that contradicts our assumption on the Sj’s being from
different equivalence classes of shortening quotients of R. ¤

The main significance of maximal shortening quotients is the way they “encode”
and simplify all homomorphisms from a freely-indecomposable limit group into a free
group.

Proposition 5.6. — Let R be a freely-indecomposable limit group. Let r1, ..., rm ∈ R be a

generating set of R, let M1, ..., Mk be a collection of representatives of the (finite) set of equivalence

classes of maximal shortening quotients in SQ (R , r1, ..., rm), and for i = 1, ..., k let ηi : R → Mi

be the canonical projection maps.

Let h : R→ Fk be a homomorphism. Then there exists some index 1 6 i 6 k (not necessarily

unique!) and a modular automorphism ϕh ∈ Mod (R) so that h ◦ ϕh splits through the maximal

shortening quotient Mi, i.e., h ◦ ϕh = hMi
◦ ηi where hMi

: Mi → Fk is a homomorphism.

Proof. — Given a homomorphism h : R → Fk we can choose a modular
automorphism ϕh ∈ Mod(R) and an inner automorphism τf ∈ Inn(Fk) so that the
composition ĥ = τf ◦ h ◦ ϕh is the shortest possible among all such compositions. The
constant sequence of homomorphisms ĥ , ĥ , ... converges into a free limit group F which
is a subgroup of Fk. By our assumption on ĥ, F is a shortening quotient and the map
ĥ : R → F is its associated canonical map. By lemmas 5.4 and 5.5, either there exists
some maximal element Mi > F, or one of the Mi’s is equivalent to F. In both cases
the homomorphism ĥ : R→ F splits through the maximal shortening quotient Mi and
the proposition follows. ¤

The shortening procedure and the lemmas and propositions proved so far in
this section finally allow us to present the main goal of this section, the (canonical)
Makanin-Razborov diagram associated with a limit group (ω-residually free group). The
Makanin-Razborov diagram “encodes” all possible homomorphisms from a limit group
into a free group, and as we will later show, some of its properties can be stated as a
criteria for a general f.g. group to be a limit group.

Let R be a limit group and let R = R1 ∗ ... R` ∗Fg1 be a factorization of R, where
each of the Ri’s is a freely-indecomposable non-cyclic subgroup of R and Fg1 is a free

group. Let r
1
1, ..., r

1
m1
∈ R be a generating set of R1, r

2
1, ..., r

2
m2

be a generating set of R2,
etc. By lemma 5.4 the sets of shortening quotients of the freely-indecomposable limit
groups R1, ..., R` contain maximal elements (with respect to the partial order defined
above) and by lemma 5.5 there are only finitely many equivalence classes of maximal
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shortening quotients of each of the limit groups R1, ..., R` . For i = 1, ..., ` let Mi

1, ..., Mi

ki

be a collection of representatives of equivalence classes of maximal shortening quotients
in SQ (Ri , r

i

1, ..., r
i

mi
), and let ηi

j : Ri →Mi

j be the canonical projection maps.
We define the Makanin-Razborov diagram of the limit group R iteratively. We

start by factoring R into its freely-indecomposable factors R1, ..., R` and the free
factor Fg. From each of the factors Ri we associate ki directed edges, starting at
Ri and terminating at the maximal shortening quotient Mi

j. To each such directed
edge we associate the canonical projection ηi

j. Note that we do not proceed from the
free factor Fg1 .

We proceed iteratively. We factor each of the Mi

j’s into freely-indecomposable
factors and associate with each such factor representatives for its equivalence classes
of maximal shortening quotients. Since each (maximal) shortening quotient of a limit
group is a proper quotient of that limit group by claim 5.3, and each sequence
of properly decreasing sequence of limit groups terminates by proposition 5.1, the
construction of the Makanin-Razborov diagram terminates.

By proposition 5.6 all the homomorphisms from a limit group R into a free
group Fk are encoded by the canonical Makanin-Razborov diagram.

Theorem 5.7. — Let R be a limit group. All the homomorphisms h : R→ Fk are given by

compositions of modular automorphisms of the limit groups in the diagram with the canonical maps

from the limit groups into their maximal shortening quotients and finally with general homomorphisms

(“substitutions”) of the terminal free groups that appear in the diagram into the target free group.

By Grushko’s theorem the factorization of a f.g. group into freely-indecomposable
factors is canonical. Once we fix a generating set of the limit group R, the (equivalence
classes of) the maximal shortening quotients constructed along the various levels of the
Makanin-Razborov diagram are canonical as well, hence, the entire Makanin-Razborov
diagram associated with a limit group R and a fixed generated set of R, is canonical.

R1

M1
1

Ml
1
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The (canonical) Makanin-Razborov diagram associated with a limit group
encodes all the homomorphisms from that limit group into free groups. Some specific
subdiagrams of it can be viewed as a criteria for a general f.g. group to be a limit
group (ω-residually free group).

Definition 5.8. — A subdiagram of the Makanin-Razborov diagram in which for each free

factor Ri of the limit group R we choose a unique edge connecting Ri to one of its maximal shortening

quotients, and proceed iteratively choosing only one maximal shortening quotient at each stage, is called

a Makanin-Razborov resolution.

To present a criteria for a f.g. group to be a limit group we need to show the
existence of special type of Makanin-Razborov resolutions which we call strict Makanin-
Razborov resolutions.

Definition 5.9. — Let R be a freely-indecomposable limit group. We say that a shortening

quotient S of R is a strict shortening quotient if:

(i) The subgroups generated by each non-CMQ, non-abelian vertex group together with

centralizers of edge groups connected to it in the graph of groups obtained from the cyclic

JSJ of R by replacing each abelian vertex group by the direct summand containing the

edge groups connected to it, and the cyclic edge groups in the cyclic JSJ decomposition

of R are mapped monomorphically into the shortening quotient S by the canonical map

η : R→ S..

(ii) Each CMQ subgroup of R is mapped to a non-abelian subgroup of S by the canonical

map η, and each boundary element of a CMQ subgroup of R is mapped to a non-trivial

element in S by η.

(iii) Let A be an abelian vertex group in the JSJ decomposition of R, and let A1 < A be the

subgroup generated by all edge groups connected to the vertex stabilized by A. Then A1 is

mapped monomorphically into S by the canonical map η.

A Makanin-Razborov resolution is called strict if all the maximal shortening quotients appear

in it are strict shortening quotients.

Finally, the existence of a strict Makanin-Razborov resolution is a criteria for
a f.g. group to be a limit group (ω-residually free group). We first show that a limit
group admits a strict Makanin-Razborov resolution.

Proposition 5.10. — Let R be a limit group. Then the (canonical) Makanin-Razborov

diagram of R contains a strict Makanin-Razborov resolution.

Proof. — Let R be a freely-indecomposable limit group. R is an ω-residually free
group, so there exists a sequence of homomorphisms hn : R→ Fk so that hn maps the
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ball of radius n in R monomorphically into Fk and the sequence of actions of R on
the Cayley graph of Fk via the sequence of homomorphisms {hn} converges into a
faithful action of R on some real tree Y.

By composing each of the elements hn with an appropriate modular automor-
phism ϕn ∈ Mod (R) and an inner automorphism τfn

∈ Inn(Fk) we obtain homomor-

phisms ĥn : R → Fk, ĥn = τfn
◦ hn ◦ ϕn, which are the shortest with respect to all such

compositions. From the sequence ĥn we can extract a subsequence (still denoted ĥn) that
converge into an action of a shortening quotient S on some real tree T. Let η : R→ S
be the canonical map from R onto its shortening quotient S.

If r ∈ R is contained in a non-CMQ, non-abelian vertex group or a in a cyclic
edge group in the cyclic JSJ decomposition of R, then ϕ(r) is conjugate to r for all
ϕ ∈ Mod (R), hence, for all indices n > nr: hn(r) |= 1 in Fk, so by lemma 1.3 η(r) |= 1 in
the shortening quotient S and every non-CMQ, non-abelian vertex group and every
cyclic edge group in the cyclic JSJ decomposition of R is mapped monomorphically
into S by the canonical map η.

Similarly, if A is an abelian vertex group in the cyclic JSJ decomposition of R and
A1 < A is the subgroup generated by all edges connected to the vertex stabilized by A in
the cyclic JSJ decomposition, then every modular automorphism ϕ ∈ Mod (R) maps the
subgroup A1 into a conjugate, hence, the canonical map η maps A1 monomorphically
into the shortening quotient S.

Let V be a CMQ-vertex group in the cyclic JSJ decomposition of R. Since the
homomorphism hn is supposed to map the ball of radius n in R monomorphically
into Fk, and since V is non-abelian in R, there must exist some index n0, so that for
all indices n > n0, hn(V ) is a non-abelian subgroup of Fk. Since for every modular
automorphism ϕ ∈ Mod (R), ϕ(V ) is conjugate to V, ĥn(V ) is non-abelian subgroup
of Fk for all n > n0 as well. By lemma 1.3 this implies that η(V ) is a non-abelian
subgroup of Fk. A modular automorphism of R map the edge groups in the canonical
JSJ decomposition of R into their conjugates, hence, the edge groups in the cyclic JSJ
decomposition of R are mapped to non-trivial subgroups of S by the canonical map η.

So far we have shown that the shortening quotient S is a strict shortening
quotient of R. If S is not a maximal shortening quotient of R, then there must exist
a maximal shortening quotient M of R so that M > S. Clearly, since S is a strict
shortening quotient of R, the maximal shortening quotient M > S must be strict as
well.

Therefore, we have shown that for every freely-indecomposable limit group there
exists a strict maximal shortening quotient. Now, by the way the Makanin-Razborov
diagram of a limit group is constructed together with the existence of a strict maximal
shortening quotient for every freely-indecomposable limit group, it follows that every
Makanin-Razborov diagram contains a strict Makanin-Razborov resolution. ¤
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Proposition 5.10 shows that a limit group admits a strict Makanin-Razborov
resolution. To state a criteria for a f.g. group to be a limit group we need to define an
analogue of a strict Makanin-Razborov resolution in the general context of f.g. groups.

Definition 5.11. — Let G be a f.g. group, and let:

G = G0
ν0−−→ G1

ν1−−→ G2
ν2−−→...

νm−2−−→ Gm−1
νm−1−−→ Gm = Fu

be a resolution of G. We say that the given resolution of G is a strict MR resolution if the

epimorphisms νi have the following properties.

First, we start with a (possible) free factorization of G, G = G1 ∗ ... ∗Gn ∗Fs, where Fs is a

free subgroup of G. Each of the factors G j of G = G0 is mapped by the epimorphism ν0 : G→ G1

onto the factor Q j in a free factorization G1 = Q1 ∗ ... ∗Qn of G1. We further assume that each

G j admits a non-trivial cyclic splitting ΛG j with the following properties:

(i) Each cyclic edge group in ΛG j is a maximal abelian subgroup in at least one of the vertex

groups it is connected to.

(ii) ν0 maps each of the subgroups generated by a non-QH (quadratically hanging), non-

abelian vertex groups and the centralizers of the edges connected to it in the graph of

groups obtained from the given cyclic splitting by replacing each abelian vertex group with

the direct summand containing the edge groups connected to it, and each of the cyclic edge

groups in ΛG j monomorphically into Q j.

(iii) ν0 maps each QH vertex group in ΛG j into a non-abelian subgroup of Q j.

(iv) Every abelian vertex group in ΛG j is non-cyclic free abelian, and if A is an abelian vertex

group in ΛG j , and A1 < A is the subgroup generated by all edge groups connected to

the vertex stabilized by A in ΛG j , then A1 is mapped monomorphically into Q j by the

map ν0.

Finally, we assume that the epimorphisms νi associated with the next levels of the resolution

of G satisfy similar conditions to the ones listed for ν0, and the resolution terminates when the target

groups are free (like in the construction of a Makanin-Razborov resolution of a limit group).

Note that a strict Makanin-Razborov resolution of a limit group R is a strict MR
resolution of R, so by proposition 5.11 a limit group admits a strict MR resolution.
Theorem 5.12 shows that this is also a sufficient condition for a f.g. group to be a
limit group.

Theorem 5.12. — A f.g. group G is a limit group (ω-residually free group) if and only if

it admits a strict MR resolution

Proof. — Let:

G = G0
ν0−−→ G1

ν1−−→ G2
ν2−−→ ...

νm−2−−→ Gm−1
νm−1−−→ Gm = Fu
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be a strict MR-resolution of a f.g. group G, and let {ΛGi
} be the cyclic splittings

associated with each of the subgroups Gi. We need to show the existence of sequences
of modular automorphsims {ϕi(n) ∈ Mod (Gi)} for i = 0, ..., m− 1 so that the limit group
corresponding to the sequence of homomorphisms:

{hn : G→ Fk | hn = νm−1 ϕm−1(n) νm−2 ϕm−2(n) ... ν1 ϕ1(n) ν0 ϕ0(n)

is the group G itself.
If none of the cyclic splittings ΛGi

contains a QH vertex groups, we may pick
the automorphisms {ϕi(n)} to be an increasing sequence of Dehn twists corresponding
to the edges in the cyclic splittings ΛGi

. In the presence of QH vertex groups we need
the following technical lemma.

Lemma 5.13. — Let Q be the fundamental group of a (possibly punctured) surface SQ of

Euler characteristic at most −2. Let µ : Q → Fk be a homomorphism and suppose Q is mapped

into a non-abelian subgroup of Fk and the image of every boundary component of Q is non-trivial.

Then either:

(i) There exists a separating s.c.c. γ ⊂ SQ such that γ is mapped non-trivially into Fk, and

the image in Fk of the fundamental groups of each of the connected components obtained

by cutting SQ along γ is non-abelian.

(ii) There exists a non-separating s.c.c. γ ⊂ SQ such that γ is mapped non-trivially into Fk,

and the image of the fundamental group of the connected component obtained by cutting

SQ along γ is non-abelian.

Proof. — First, assume SQ is orientable. If SQ is a closed surface or a surface
with a single puncture then clearly either (i) or (ii) holds. If SQ has more than one
boundary component and SQ is not a planar surface, then SQ is the connected sum of
two orientable surfaces S1 and S2, so that S1 has only one boundary component and
S2 is a planar surface. If the fundamental group of S1 is mapped into a non-abelian
subgroup of Fk, then either (i) or (ii) hold as in the case of a surface with at most
one puncture. If the fundamental group of S1 is mapped into a cyclic subgroup of Fk,
then the cyclic subgroup corresponding to the boundary of S1 is necessarily mapped
into the trivial subgroup in Fk. If the fundamental group of S1 is mapped into a
non-trivial cyclic subgroup of Fk, then there must exists a non-separating s.c.c. in S1

that is mapped non-trivially into Fk, so case (ii) holds. If the fundamental group of S1

is mapped trivially into Fk, then there exists a non-boundary-parallel non-separating
s.c.c. in SQ that is mapped non-trivially into Fk, and again case (ii) holds.

If SQ is a planar surface, we order its boundary components b1, ..., bn. Note that
by our assumptions each boundary component bi is mapped non-trivially into Fk, and
not all the images of the bi’s in Fk commute. It is not hard to see that there must exist a
couple of consecutive boundary components bi , bi+1 so that the images of bi and bi+1 in
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Fk do not commute, and the images of the elements b1, ..., bi−1 , bibi+1 , bi+2, ..., bn generate
a nonabelian subgroup in Fk. Hence, the separating s.c.c. in SQ corresponding to the
element bibi+1 is mapped to a non-trivial element in Fk, and the fundamental groups of
each of the connected components obtained by cutting SQ along this separating s.c.c.
are mapped onto non-abelian subgroups of Fk.

Now assume SQ is non-orientable. We can view SQ as the connected sum of an
orientable surface O (with boundary) and a Mobius band M. If the fundamental group
of M is mapped non-trivially into Fk, all the boundary components of O are mapped
non-trivially into Fk, and the fundamental group of O is mapped onto a non-abelian
subgroup of Fk, so our arguments above apply for the orientable surface O, and there
exists a s.c.c. γ with the required properties.

If SQ is a closed non-orientable surface, then O is an orientable surface with
only one boundary component, and the fundamental group of O is mapped to a non-
abelian subgroup of Fk, hence, there exists a non-separating s.c.c. γ ⊂ O so that γ is
mapped non-trivially into Fk and the fundamental group of the connected component
obtained by cutting SQ along γ is mapped to a non-trivial subgroup of Fk.

If SQ has boundary, and the fundamental group of M is mapped to the identity
in Fk, then there exists a non-separating s.c.c. γ ⊂ SQ that cuts the Mobius band M,
so that γ is mapped non-trivially into Fk and the fundamental group of the connected
component obtained by cutting SQ along γ is mapped to a non-abelian subgroup
of Fk. ¤

By recursively applying lemma 5.13, for each surface SQ j
corresponding to a

QH-vertex group in the cyclic splitting ΛGi
, we can find a finite set of s.c.c. on SQ j

,
so that each connected component of the surface obtained by cutting SQ j

along this
family of s.c.c. has Euler characteristic −1, and the fundamental group of each of
these connected components is mapped monomorphically into Gi+1 under the map νi.

If we extend each of the cyclic splittings ΛGi
by further splitting the QH-vertex

groups along the families of s.c.c. chosen according to lemma 5.13, the argument used
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to prove theorem 5.12 in the absence of QH-subgroups generalizes to a give a proof
in their presence. ¤

6. An Example: ω-Residually Free Towers

In the first 5 sections of this paper we studied the structure of ω-residually free
groups, using their JSJ decomposition, the analysis lattice and the Makanin-Razborov
diagram and resolutions. Before applying the results and techniques used in studying
ω-residually free groups to study residually free groups and sets of solutions to equations
in a free group which is the goal of this paper, we devote this section to some natural
families of examples of ω-residually free groups.

If R1 and R2 are ω-residually free groups then R1 ∗R2 is clearly an ω-residually
free group as well. If R is an ω-residually free group, and r ∈ R is an element with
cyclic centralizer and no non-trivial roots in R, then the “double of R along < r >”,
DR = R ∗<r> R, admits an obvious strict MR resolution, so by theorem 5.12 it is ω-
residually free. In particular, since a free and surface groups are ω-residually free, every
double of a free or a surface group along a maximal cyclic subgroup is an ω-residually
free group. Another more “geometric” family of ω-residually free groups, which in
some way is the motivation for most of the objects we have associated with a general
ω-residually free group, is the family of ω-residually free towers. Note that an ω-
residually free tower is similar to the notion of a coordinate group of a non-degenerate
quasiquadratic system introduced in [Kh-My].

Definition 6.1. — We say that a f.p. group G is an ω-residually free tower, if it is possible

to find a finite set set of generators G = < { y`j } > and defining relations {ϕ`b} for G, where

1 6 ` 6 ` (G ), 1 6 j 6 m` and 1 6 b 6 r` , so that G can be presented using the following

hierarchical structure which we define inductively:

(i) G 0 is the trivial subgroup of G.

(ii) With each level ` of the hierarchy we associate a group G `. G ` is the subgroup of G
generated by the elements G ` = < { y

i

j} > where 1 6 i 6 ` and 1 6 j 6 mi in G.

G ` is the quotient of the free group generated by the elements { y
i

j} for 1 6 i 6 ` and

1 6 j 6 mi divided by the normal closure of the set of relations ϕi

b where 1 6 i 6 ` and

1 6 b 6 ri.

(iii) To define the `-th level, the generators y`1 , ..., y`m`
are divided into s` disjoint blocks

y`1 , ..., y`
b`1

, y`
b`1 +1

, ..., y`
b`2

, ..., y`
b`
s`−1

+1
, ..., y`m`

where to the p-th block of y`j ’s one of the

following sets of defining relations is associated:

(1) a free block. No relation is associated to a free block of generators.

(2) an Abelian block. The relations [y`j1 , y`j2] = 1 for every b`p−1+1 6 j1 < j2 6 b
i

p,

and in addition the relation [r−, y`j ] = 1 for every b`p−1 + 1 6 j 6 b`p and some
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element r−∈ G`−1 where r− may be the identity element, if r− is non-trivial it

can not be conjugated into an Abelian block in lower levels, and r− is not a

proper power of an element in G`−1.

(3) a quadratic block. A single relation which is in one of the following two

forms is being associated with a quadratic block. To save notation we denote

the set of generators in the p-th block of y`j which is a quadratic block by

y1, ..., y2g , z1, ..., zn in the first case and by y1, ..., yg , z1, ..., zn in the second.

With this notation the relation associated with a quadratic block is either

(orientable):

[ y1 , y2] ... [ y2g−1 , y2g]z1r−1z
−1
1 ... znr

−
nz
−1
n =

[ y−1 , y−2] ... [ y−2g−1 , y−2g]z−1r−1z−
−1
1 ... z−nr

−
nz
−−1

n

or (non-orientable):

y
2
1 ... y

2
2gz1r−1z

−1
1 ... znr

−
nz
−1
n =

y−
2
1 ... y−

2
2gz
−

1r−1z−
−1
1 ... z−nr

−
nz
−−1

n

where r−j, y−j and z−j are elements in the group G`−1, the subgroups

< {r−j} , {y−j} > and < {r−j} , {z−j} > are non-abelian subgroups of G`−1, the

element ri is conjugate to the element r−i in G` , and the (punctured) surface

corresponding to one of the above relations has Euler characteristic at most

−2, or it is a punctured torus.

Since the tower G can be described as an iterated sequence of amalgamated
products, its level groups G` are naturally embedded in the ω-residually free tower G.
From the definition of towers it is clear they admit a strict MR resolution, so by
theorem 5.12 they are ω-residually free groups. It is also easy to find their cyclic JSJ
decomposition and their analysis lattice.
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With an ω-residually free tower G we can naturally associate a 2-complex
T(G ), constructed hierarchically by adding a bouquet of circles for each free block, a
collection of 2-tori for each Abelian block, and a (punctured) surface for each quadratic
block. Clearly, π1(T (G ) ) = G.

7. Residually Free Groups

In the previous 6 sections we have studied the algebraic structure of limit groups
which are ω-residually free groups. When we get to study the structure of sets of
solutions to equations in a free group in the next section, which we view as the
analogue of algebraic varieties, ω-residually free groups are going to serve as the (dual
of the) analogue of irreducible varieties.

As we have already pointed out in the first section sets of solutions to a system
of equations Φ in a free group Fk are equivalent to the set of all homomorphisms from
the naturally associated group G (Φ) into Fk (if the system Φ is with coefficients, we
look only at homomorphisms that send the coefficients to the appropriate elements in
Fk). In studying all homomorphisms from G (Φ) into a free group Fk, we are not really
recovering the algebraic structure of the group G (Φ) itself, but rather the algebraic
structure of its residually free quotient.

Definition 7.1. — Let G be a f.g. group. We denote by KF (G ) the intersection of all the

kernels of homomorphisms from G into a free group. We call RF (G ) = G/KF (G ) the residually

free quotient of G.

Clearly, a residual free quotient is always a residually free group (see definition
4.5) and the residually free quotient of a residually free group H is the group H itself.
Therefore, to understand the structure of residually free quotients of f.g groups, which
is equivalent to the understanding of sets of solutions to equations in a free group, we
need to study the algebraic structure of residually free groups. In this section we will
use some of the arguments and results obtained in earlier sections on the structure of
ω-residually free groups, to recover the structure of residually free groups.

Let RF be a f.g. freely-indecomposable residually free group. On the set of
ordered couples {(τ , R)}, where R is an ω-residually free quotient of RF, and τ is an
epimorphism τ : RF → R, we define an equivalence relation. We say that (R1 , τ1) is
equivalent to (R2 , τ2) if there exists an isomorphism ν : R1 → R2 so that τ2 = ν ◦ τ1.

On the same set of ordered couples we also define a partial order. We say that
(R1 , τ1) > (R2 , τ2) if R2 is a proper quotient of R1 and there exists some epimorphism
λ : R1 → R2 so that τ2 = λ ◦ τ1.
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An algebraic variety over an algebraically closed field is a union of irreducible
varieties. The following, which is the main result of this section, is the analogue of this
statement for varieties of solutions over a free group.

Theorem 7.2. — Let RF be a f.g. residually free group. Then there exists a (canonical)

finite collection of ω-residually free quotients of RF : R1, ..., R` and for each i an epimorphism

τi : RF→ Ri with the following properties:

(i) For each homomorphism h : R → Fk there exists some index i (not necessarily unique!)

and a homomorphism f : Ri → Fk so that h splits as: h = f ◦ τi.

(ii) If R is an ω-residually free quotient of RF, and τ is an epimorphism τ : RF → R,

then there exists some index i and an epimorphism λ : Ri → R so that τ = λ ◦ τi.

(iii) The couples {(Ri , τi)} represent distinct equivalence classes, and if i |= j then the couple

(Ri , τi) can not be compared with (Rj , τj) in the partial order defined on these couples.

(iv) If R̂1, ..., R̂u and {τ̂j : RF→ R̂j} is another collection of ω-residually free quotients of

RF and epimorphisms from RF to the R̂i’s that satisfy properties (i)-(iii) then u = ` and

up to permutation the couple (Ri , τi) is equivalent to the couple (R̂i , τ̂i).

Proof. — The collection of ordered couples {(R, τ)} where R is an ω-residually
free quotient of RF and τ : RF→ R is an epimorphism, has similar properties to the
partial order defined on shortening quotients of an ω-residually free group in section 5.

Lemma 7.3. — Let RF be a f.g. residually free group. Let (R1 , τ1) , (R2 , τ2) , (R3 , τ3), ..., be

a sequence of ω-residually free quotients of RF and suppose (R1 , τ1) < (R2 , τ2) < (R3 , τ3) < ...

is an infinite properly increasing sequence.

Then there exists an ω-residually free quotient R of RF and an epimorphism τ : RF → R
so that (R , τ) > (Rj , τj) for every ω-residually free quotient (Rj , τj) in the increasing sequence.

Proof. — Identical with the proof of lemma 5.4. ¤

Lemma 7.3 proves the existence of maximal elements with respect to the partial
order on the set of ω-residually free quotients of the residually free group R. The next
lemma shows that there are only finitely many equivalence classes of maximal elements
in the set of ω-residually free quotients of RF.

Lemma 7.4. — Let RF be a f.g. residually free group. The set of ordered couples {(R , τ)},
where R is an ω-residually free quotient of RF and τ : RF→ R is an epimorphism, contains only

finitely many equivalence classes of maximal elements with respect to its partial order.

Proof. — Identical with the proof of lemma 5.5. ¤
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Now, if (R1 , τ1), ..., (Rk , τk) are representatives for the distinct equivalence classes
of maximal ω-residually free quotients of the residually free group RF, then
(R1 , τ1), ..., (Rk , τk) satisfy the conclusion of theorem 7.2.

We will call the groups R1, ..., Rk together with the epimorphisms τi : RF → Ri

that appear in the formulation of theorem 7.2, the (canonical) (maximal) ω-residually
free groups associated with the f.g. residually free group RF. By theorem 7.2 these are
canonically defined up to equivalence.

In section 5 we have associated a Makanin-Razborov diagram with each
ω-residually free group. This diagram was canonically defined and encodes all
homomorphisms from an ω-residually free group into free groups. Theorem 7.2 allows
us to generalize the construction of the Makanin-Razborov diagram to residually free
groups.

Let RF be a f.g. residually free group. We start with one vertex labeled RF and
continue the diagram by adding an edge from this vertex to each of its associated
maximal ω-residually free quotients, and from each of the maximal ω-residually free
quotients we continue by adding its Makanin-Razborov diagram. By theorem 7.2
and the properties of the Makanin-Razborov diagram of ω-residually free groups (see
theorem 5.7), each homomorphism from the residually free group RF into some free
group Fk can be “read” from the Makanin-Razborov diagram of RF.

In theorem 5.12 we have shown that a f.g. group is ω-residually free if and
only if it admits a strict MR resolution. Theorem 7.2 allows us to get corresponding
classification of residually free groups. Note that a similar result is obtained in [Kh-My]
(corollary 2).

Claim 7.5. — A f.g. group G is a residually free group if and only if G is a sub-direct

product of a finite collection of ω-residually free groups.

Proof. — Clearly, a sub-direct product of a finite collection of residually free
groups is residually free, so one direction is obvious. The other direction of the claim
follows from theorem 7.2, since a residually free group is a sub-direct product of its
associated maximal ω-residually free quotients. ¤

Remarks.

(i) Corollary 4.4 shows that ω-residually free groups are f.p. However f.g.
residually free groups need not be f.p. If Fg is a free group then Fg + Fg

is residually free, so every subgroup of Fg + Fg is residually free, and Fg + Fg

contains f.g. subgroups which are not f.p.
(ii) There is no global bound for the length of a sequence of proper residually

free quotients of a residually free group.
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8. Sets of Solutions to Equations in a Free Group

In the first section we have pointed out that the sets of solutions to a system
of equations Φ in a free group is equivalent to the sets of homomorphisms from a
corresponding f.p. group G (Φ) to a free group.

If the system of equations is without coefficients, then the sets of homomorphisms
from G (Φ) into a free group can be “read” from the Makanin-Razborov diagram
corresponding to G (Φ) as was shown in the previous section. If the system Φ is with
coefficient one needs to modify the whole theory developed in the previous sections
to the presence of prescribed coefficients. The rest of this section is devoted to this
modification.

Let Φ be a finite system of equations defined over a free group Fk = < a1, ..., ak >.
Recall that with Φ it is natural to associate a f.p. group G (Φ). If the system Φ is defined
by the coefficients a1, ..., ak, the unknowns x1, ..., xn and the equations:

w1(a1, ..., ak , x1, ..., xn) = 1
...

ws(a1, ..., ak , x1, ..., xn) = 1

we set the associated f.p. group G (Φ) to be:

G (Φ) = < a1, ..., ak , x1, ..., xn |w1, ..., ws >

Clearly, every solution of the system Φ corresponds to a homomorphism h : G (Φ)→ Fk

for which h(ai) = ai, and every such homomorphism corresponds to a solution of the
system Φ. Therefore, the study of sets of solutions to systems of equations in a free
group is equivalent to the study of all homomorphisms from a fixed f.p. group G into
a free group Fk for which a given prescribed set of elements in G is mapped to a fixed
basis of the free group Fk.

For the rest of this section, we set G to be a f.g. group G = < g1, ..., gm >,
γ1, ..., γk ∈ G to be a prescribed set of elements in G, and Fk to be a free group with a
fixed basis Fk = < a1, ..., ak >. With these notation our main goal is to get a structure
theory for understanding the set of all homomorphisms:

Hom ( (G, {γi}) , (Fk , {ai}) ) = { h | h : G→ Fk , h(γi) = ai }

which for brevity we will denote Hom (G, Fk). We set X to be the Cayley graph of Fk

with respect to its given basis a1, ..., ak. Given any homomorphism h ∈ Hom (G, Fk), G
admits a natural action λh on X given by λh( g , x) = h( g )(x) for every g ∈ G and x ∈ X.

Let {hj} ⊂ Hom (G, Fk) be a set of distinct homomorphisms from G to Fk

satisfying the prescribed conditions. We set µj to be: µj = max16u6m dX (id. , hj ( gu) ) (note
that unlike what we did in section 1, here, due to the presence of coefficients, we
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do not compose with an inner automorphism of Fk). Since the homomorphisms in
the sequence {hj} ⊂ Hom (G, Fk) are distinct, the sequence of stretching factors {µj}
does not contain a bounded subsequence. We set {(Xj , xj)}∞j = 1 to be the pointed metric
spaces obtained by rescaling the metric on the Cayley graph of Fk, (X, id.), by µj. (Xj , xj)
is endowed with a left isometric action of our f.g. group G via the homomorphisms
{hj}. This sequence of actions of G on the metric spaces {(Xj , xj)}∞j = 1 allows us to
obtain an action of G on a real tree (Y, y0) by passing to a Gromov-Hausdorff limit
of a convergent subsequence (proposition 1.1).

With the limit tree we obtained by using the Gromov-Hausdorff topology we
associate natural algebraic objects, the kernel of the action of G on this (limit) real
tree and the quotient of G by this kernel which we call the restricted limit group. We
will denote the restricted limit group by RL∞, and the canonical quotient map by
η : G→ RL∞. Note that since a restricted limit group is a limit group in the sense of
section 1, all the algebraic properties of limit groups hold for restricted limit groups.
Still, for the purpose of understanding the set of all restricted homomorphisms from
G to the (fixed) free group Fk we will need to modify some of the algebraic objects
associated in the previous sections with limit groups, to study restricted limit groups.

The abelian JSJ decomposition of a freely-indecomposable limit group “encodes”
all the possible splittings of such limit group with abelian edge groups. In studying
restricted limit groups we will be interested only abelian splittings in which the subgroup
< η(γ1), ..., η(γk) > is elliptic. The construction of the abelian JSJ decomposition of
a limit group described in section 2, naturally generalizes to a restricted abelian JSJ
decomposition of a restricted limit group.

Theorem 8.1 (cf. theorem 2.7). — Suppose RL∞ is a restricted limit group which does

not split to a non-trivial free decomposition in which the subgroup η(Γ) = < η(γ1), ..., η(γk) > is

contained in one of the factors. Suppose that η(Γ) is a proper subgroup of RL∞. Then there exists a

reduced unfolded splitting of RL∞ with abelian edge groups, which we call an abelian restricted JSJ
(Jaco-Shalen-Johannson) decomposition of RL∞ with the following properties:

(i) η(Γ) is elliptic in the restricted abelian JSJ decomposition.

(ii) Every (restricted) canonical maximal QH subgroup (CMQ) of RL∞ is conjugate to a

vertex group in the JSJ decomposition. Every (restricted) QH subgroup of RL∞ can be

conjugated into one of the CMQ subgroups of RL∞. Every vertex group in the JSJ
decomposition which is not a CMQ subgroup of RL∞ is elliptic in any abelian splitting

of RL∞ under consideration (i.e., in one in which η(Γ) is elliptic).

(iii) A one edge abelian splitting RL∞ = D ∗A E or RL∞ = D∗A in which η(Γ) is elliptic

which is hyperbolic in another such elementary abelian splitting is obtained from the

restricted abelian JSJ decomposition of RL∞ by cutting a 2-orbifold corresponding to a

CMQ subgroup of RL∞ along a weakly essential s.c.c.
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(iv) Let Θ be a one edge splitting along an abelian subgroup A, RL∞ = D ∗A E or

RL∞ = D∗A in which η(Γ) is elliptic, so that A is elliptic with respect to any other

one edge abelian splitting of RL∞ in which η(Γ) is elliptic. Then Θ is obtained from

the restricted JSJ decomposition of RL∞ by a sequence of collapsings, foldings, and

conjugations.

(v) If JSJ1 is another restricted abelian JSJ decomposition of RL∞, then JSJ1 is obtained

from the restricted abelian JSJ decomposition by a sequence of slidings, conjugations and

modifying boundary monomorphisms by conjugations (see section 1 of [Ri-Se2] for these

notions).

From the canonical properties of the abelian JSJ decomposition of a limit group
we were able to show in section 3 that a non-abelian, freely indecomposable limit
group admits a principal cyclic splitting. The arguments used in proving theorem 3.2
naturally generalize to prove the existence of a (restricted) principal cyclic splitting of
a restricted limit group.

Theorem 8.2. — Let RL∞ be a restricted limit group which does not split to a non-trivial

free product in which the subgroup η(Γ) is contained in one of the factors. Suppose that η(Γ) is a

proper subgroup of RL∞. Then there exists a principal cyclic splitting of RL∞ in which η(Γ) is

elliptic.

The restricted abelian JSJ decomposition together with the existence of a
restricted principal splitting allow us to generalize the arguments of section 3 to
construct the restricted cyclic JSJ decomposition of a restricted limit group (cf.
theorem 3.9).

Since a restricted limit group is in particular a limit group, it is finitely presented
(in fact, it is also possible to modify the construction of the analysis lattice to the
restricted setup). Like in the case of limit groups, the finite presentability of restricted
limit groups also shows that restricted limit groups are restricted ω-residually free
groups. i.e., that for every finite set of elements in a restricted limit group RL∞ there
exists a restricted homomorphism h : RL∞ → Fk that maps the elements in this finite
set to distinct elements in Fk.

In section 5 we have used the canonical cyclic JSJ decomposition of a limit
group to construct its canonical Makanin-Razborov diagram. We continue by modifying
the notions and arguments appear in section 5 to construct the restricted Makanin-
Razborov diagram of a restricted limit group.

Definition 8.3. — Let RL∞ be a restricted limit group which does not split to a non-trivial

free product in which the subgroup η(Γ) is contained in one of the factors. Suppose that η(Γ) is a

proper subgroup of RL∞. We define the restricted modular group RMod (RL∞) to be the subgroup

of Aut(R) generated by the following families of automorphisms of R :
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(i) Dehn twists along edges of the restricted cyclic JSJ decomposition of RL∞. The Dehn

twists are assumed to fix (elementwise) the vertex stabilized by η(Γ).
(ii) Dehn twists along essential s.c.c. in CMQ (canonical maximal quadratically hanging)

vertex groups in the restricted cyclic JSJ decomposition of RL∞. Again, these Dehn twists

are assume to fix (elementwise) the vertex stabilized by η(Γ).
(iii) Let A be an abelian vertex group in the restricted cyclic JSJ decomposition of RL∞. Let

A1 < A be the subgroup generated by all edge groups connected to the vertex stabilized

by A in the cyclic JSJ decomposition of R. Every automorphism of A that fixes A1

(elementwise) can be naturally extended to an automorphism of the ambient limit group

RL∞ that fixes the vertex stabilized by η(Γ). We call these generalized Dehn twists and

they form the third family of automorphisms that generate RMod (R).

Given a sequence of homomorphisms of a limit group into a free group, we used
the modular group of automorphisms of that limit group to modify the sequence of
homomorphisms and obtain a shortening quotient of the limit group we started with.
Given a restricted limit group, and a sequence of homomorphisms of that restricted
limit group into Fk, we may use the restricted modular group of automorphisms of
that restricted limit group to modify the sequence of homomorphisms and obtain a
restricted shortening quotient of a restricted limit group. By the same argument used to
prove claim 5.3 a restricted shortening quotient of a restricted limit group is a proper
quotient of it.

On the set of restricted shortening quotients of a restricted limit group we can
naturally define a partial order and an equivalence relation, similar to the ones defined
in section 5 for shortening quotients of limit groups. By the same argument used to
prove lemma 5.4 the set of restricted shortening quotients of a restricted limit group
contains maximal elements with respect to the partial order, and by the same argument
used to prove lemma 5.5 there are only finitely many equivalence classes of maximal
restricted shortening quotients of a restricted limit group. Like in proposition 5.6 and
using an identical argument, for every restricted homomorphism RL∞ → Fk there exists
some index 1 6 i 6 k (not necessarily unique!) and a restricted modular automorphism
ϕh ∈ R Mod (R) so that h ◦ ϕh splits through the maximal restricted shortening quotient
R Mi. I.e., h ◦ ϕh = hR Mi

◦ ηi where hR Mi
: R Mi → Fk is a restricted homomorphism.

These basic facts concerning restricted limit groups and their restricted shortening
quotients allow us to present the main goal of this section, the (canonical) restricted

Makanin-Razborov diagram associated with a restricted limit group (restricted ω-residually
free group). The restricted Makanin-Razborov diagram “encodes” all possible restricted
homomorphisms from a limit group into the (fixed) free group Fk, and like for limit
groups some of its properties can be stated as a criteria for a general f.g. group to be
a restricted limit group.

Let RL∞ be a restricted limit group (a restricted ω-residually free group). By
definition in RL∞ there exists a (distinguished) finite set of elements < γ1, ..., γk > so
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that for any finite set U of elements in RL∞ there exists a (restricted) homomorphism
h : RL∞ → Fk that sends γi to ai, the i-th basis element of Fk, and sends the elements
of U to distinct elements of Fk. Let Γ = < γ1, ..., γk >.

Let RL∞ = RL1 ∗ ... RL` ∗ Fg 1 be a factorization of R, where Γ < RL1, RL1 can
not be written as a free product in which Γ is contained in one of the factors, each
of the RLi’s for 2 6 i 6 ` is a freely-indecomposable non-cyclic subgroup of RL and
Fg 1 is a free group. It follows from Grushko’s theorem that such a free decomposition
of RL∞ is canonical. By an analogue of lemma 5.4 to the restricted case, the set
of restricted shortening quotients of the restricted limit group RL1 contains maximal
elements (with respect to the partial order defined above) and by an analogue of
lemma 5.5 to the restricted case there are only finitely many equivalence classes of
maximal restricted shortening quotients of RL1. Let R M1, ..., R Ms be a collection of
representatives of equivalence classes of maximal restricted shortening quotients of RL1,
and let ηj : RL1 →Mj be the canonical projection maps.

We define the restricted Makanin-Razborov diagram of the restricted limit group
RL∞ iteratively. We start by factoring RL∞ as above. From each of the factors
RL2, ..., RL` we continue by adjoining its Makanin-Razborov diagram presented in
section 5. From RL1 we continue along s edges going from RL1 to each of its
maximal restricted quotients R M1, ..., R Ms. To each such directed edge we associate
the canonical projection ηj.

We proceed iteratively. Since a restricted shortening quotient of a restricted limit
group is a proper quotient of it, the construction terminates. Each terminal vertex is
either a free group (as in the Makanin-Razborov diagram presented in section 5) or
it is the (image of the) “distinguished” free group Γ = < γ1, ..., γk >. At least one of
the terminal vertices in a restricted Makanin-Razborov diagram must be labeled with
an image of the “distinguished” subgroup Γ. By construction, up to the equivalence
relation of restricted shortening quotients, the restricted Makanin-Razborov diagram of
a restricted limit group is canonical. By an analogue of theorem 5.7 to the restricted
case, all the restricted homomorphisms from a restricted limit group RL∞ into the
free group Fk are encoded by the canonical restricted Makanin-Razborov diagram.
I.e., they are all given by compositions of (restricted) modular automorphisms of the
(restricted) limit groups in the diagram with the canonical maps from the (restricted)
limit groups into their maximal (restricted) shortening quotients and finally with either
the fixed map from (an image of) the distinguished subgroup Γ onto Fk, or general
homomorphisms (“substitutions”) of the terminal (non-distinguished) free groups appear
in the diagram into the target free group Fk.

The (canonical) restricted Makanin-Razborov diagram associated with a restricted
limit group encodes all the restricted homomorphisms from that restricted limit group
into a free group Fk. Like in the non-restricted case (definitions 5.8 and 5.9) using
the restricted Makanin-Razborov diagram we can define restricted Makanin-Razborov
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resolutions and restricted strict Makanin-Razborov resolutions of a restricted limit
group. Like in the non-restricted case (theorem 5.12) the existence of a restricted
strict MR resolution for a f.g. group G with a distinguished subgroup Γ = < γ1, ..., γk >

is a criteria for G to be a restricted limit group (restricted ω-residually free group). The
proofs are all direct modifications of the ones given in section 5 in the non-restricted
case.

Like restricted limit groups (restricted ω-residually free groups) we may define in a
similar way restricted residually free groups. The study of sets of solutions to equations
with coefficients is naturally equivalent to study of all restricted homomorphisms from
a f.g. restricted residually free group into the free group generated by the coefficients.
For studying this collection of restricted homomorphisms we have an analogue of
theorem 7.2. The proof is a direct modification.

Theorem 8.4. — Let RF be a f.g. restricted residually free group. Then there exists a

(canonical) finite collection of restricted ω-residually free quotients of RF : R1, ..., R` and for each i

an epimorphism τi : RF→ Ri with the following properties:

(i) For each restricted homomorphism h : R → Fk there exists some index i (not necessarily

unique!) and a restricted homomorphism f : Ri → Fk so that h splits as: h = f ◦ τi.

(ii) If R is a restricted ω-residually free quotient of RF, and τ is an epimorphism

τ : RF → R, then there exists some index i and an epimorphism λ : Ri → R so

that τ = λ ◦ τi.

(iii) The couples {(Ri , τi)} represent distinct equivalence classes, and if i |= j then the couple

(Ri , τi) can not be compared with (Rj , τj) in the partial order defined on these couples.

(iv) If R̂1, ..., R̂u and {τ̂j : RF → R̂j} is another collection of restricted ω-residually free

quotients of RF and epimorphisms from RF to the R̂i’s that satisfy properties (i)-(iii)

then u = ` and up to permutation the couple (Ri , τi) is equivalent to the couple (R̂i , τ̂i).

We have already modified the construction of the Makanin-Razborov diagram of
a ω-residually free group to the restricted case. Having such diagram for restricted ω-
residually free group, theorem 8.4 allows us to modify the construction of the Makanin-
Razborov diagram associated with a residually free group presented in section 7 to the
restricted case. This restricted Makanin-Razborov diagram of restricted residually free
groups finally concludes our study of the structure of sets of solutions to systems of
equations with coefficients.
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9. Graded Limit Groups

In the previous sections we have analyzed the structure of sets of solutions to
systems of equations in a free group by studying the algebraic structure of limit groups
which turned out to be ω-residually free groups. To understand the elementary theory
of free groups and, in particular, to study the structure of sets defined by elementary
predicates (elementary sets), we will need to study the structure of sets of solutions
to systems of equations with parameters, i.e., we will examine how the (restricted)
Makanin-Razborov diagrams and resolutions vary with a change of the values of the
defining parameters.

With a finite system of equations with parameters Φ over a free group
Fk = < a1, ..., ak > it is natural to associate a f.p. group G (Φ). If the system Φ is
defined by the coefficients a1, ..., ak, the parameters p1, ..., pu, the unknowns x1, ..., xn

and the equations:

w1(a1, ..., ak , p1, ..., pu , x1, ..., xn) = 1
...

ws(a1, ..., ak , p1, ..., pu , x1, ..., xn) = 1

we set the associated f.p. group G (Φ) to be:

G (Φ) = < a1, ..., ak , p1, ..., pu , x1, ..., xn |w1, ..., ws > .

Clearly, every solution of the system Φ corresponds to a homomorphism h : G (Φ)→ Fk

for which h(ai) = ai, and every such homomorphism corresponds to a solution of the
system Φ. Therefore, the study of sets of solutions to systems of equations in a free
group is equivalent to the study of all homomorphisms from a fixed f.p. group G into
a free group Fk for which a given prescribed set of elements in G is mapped to a fixed
basis of the free group Fk.

In the previous sections we studied the global set of (restricted) homomorphisms
from a f.g. group G into a free group Fk, and later showed the existence of effective
tools which enabled us to study the structure of this global set. In studying parametric
systems of equations we will analyze the variation of this structure with a change of the
defining parameters. Our whole study of the global set of restricted homomorphisms
was based on understanding the algebraic structure of limit groups (ω-residually free
groups). To analyze the variation in this structure with a change of the parameters
we will need to look at a special class of limit groups which we call graded limit groups.
Our study of graded limit groups is based on the tools we developed for studying
(restricted) limit groups. However, as we will see in the sequel, not all the results we
have obtained for (restricted) limit groups have analogues for graded limit groups, and
the treatment of the new phenomenas that appear in studying graded limit groups
require new notions and techniques.
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We set G = < x1, ..., xk , p1, ..., pu , a1, ..., ak > to be a f.g. group. For brevity we will
denote this (fixed) generating set by G = < g1, ..., gm >, and Fk to be a free group with
a fixed basis Fk = < a1, ..., ak >. With this notation our goal is to get a structure theory
for understanding the set of all homomorphisms:

Hom ( (G, {pj} , {ai}) , (Fk , {ai}) ) = { h | h : G→ Fk , h(ai) = ai }

with a change in the values of the parameters { pj}. We set X to be the Cayley graph
of Fk with respect to its given basis a1, ..., ak. Given any homomorphism h ∈ Hom (G, Fk),
G admits a natural action λh on X given by λh( g , x) = h( g )(x) for every g ∈ G and
x ∈ X.

Definition 9.1. — Let G be a f.g. group and let hn : G (x, p, a) → Fk be a sequence of

homomorphisms. If { λhn
}, a sequence of actions of G on X, the Cayley graph of Fk, that corresponds

to the sequence of homomorphisms {hn}, converges in the Gromov-Haussdorff topology, we say that

the sequence {hn} converges. We call the obtained limit group, a graded limit group.

A graded limit group is in particular a limit group, so every f.g. graded limit
group is f.p. and every f.g. graded limit group is ω-residually free by theorem 4.6. To
construct the (canonical) graded Makanin-Razborov diagram of a graded limit group
which is the fundamental tool in our analysis of the variation of sets of solutions to
systems of equations with parameters, we need to study the algebraic structure of
graded limit groups “relative” to their grading. To do that we need to construct the
graded abelian JSJ decomposition of a graded limit group, and the graded analysis
lattice of a graded limit group. These constructions are all generalizations of their
restricted analogues presented in section 8.

For the rest of this section let G (x , p , a) be a f.g. group, let {hm : G (x , p , a) →
Fk} be a convergent graded sequence of homomorphisms, and let Glim (x , p , a)
be the corresponding graded limit group. We set η : G (x , p , a) → Glim (x , p , a)
to be the canonical epimorphism and AP < Glim (x , p , a) to be the subgroup:
AP = < η( p1), ..., η( pu) , η(a1), ..., η(ak) >. The abelian JSJ decomposition of a freely-
indecomposable limit group “encodes” all the possible splittings of such limit group
with abelian edge groups. In studying graded limit groups we will be interested only in
abelian splittings in which the subgroup AP is elliptic. The construction of the abelian
JSJ decomposition of a limit group described in section 2 naturally generalizes to a
graded abelian JSJ decomposition of a graded limit group.

Theorem 9.2 (cf. 8.1). — Suppose Glim (x, p, a) is a graded limit group which does not split

to a non-trivial free decomposition in which the subgroup AP is contained in one of the factors. Then

there exists a (relatively) reduced unfolded (perhaps trivial) splitting of Glim (x, p, a) with abelian edge

groups, which we call a graded abelian JSJ (Jaco-Shalen-Johannson) decomposition of Glim (x, p, a)
with the following properties:
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(i) AP is elliptic in the graded abelian JSJ decomposition.

(ii) Every (graded) canonical maximal QH subgroup (CMQ) of Glim (x, p, a) is conjugate

to a vertex group in the graded JSJ decomposition. Every (graded) QH subgroup of

Glim (x, p, a) can be conjugated into one of the CMQ subgroups of Glim (x, p, a).
Every vertex group in the graded JSJ decomposition which is not a CMQ subgroup of

Glim (x, p, a) is elliptic in any abelian splitting of Glim (x, p, a) under consideration (i.e.,

in one in which AP is elliptic).

(iii) A one edge (graded) abelian splitting Glim (x, p, a) = D ∗A E or Glim (x, p, a) = D∗A

in which AP is elliptic which is hyperbolic in another such elementary abelian splitting

is obtained from the graded abelian JSJ decomposition of Glim (x, p, a) by cutting a

2-orbifold corresponding to a (graded) CMQ subgroup of Glim (x, p, a) along a weakly

essential s.c.c.

(iv) Let Θ be a one edge (graded) splitting along an abelian subgroup Glim (x, p, a) = D∗A E
or Glim (x, p, a) = D∗A in which AP is elliptic, which is elliptic with respect to any other

one edge (graded) abelian splitting of Glim (x, p, a) in which AP is elliptic. Then Θ is

obtained from the graded JSJ decomposition of Glim (x, p, a) by a sequence of collapsings,

foldings and conjugations.

(v) If JSJ1 is another graded abelian JSJ decomposition of Glim (x, p, a), then JSJ1 is

obtained from the graded abelian JSJ decomposition by a sequence of slidings, conjugations

and modifying boundary monomorphisms by conjugations (see section 1 of [Ri-Se2] for

these notions).

10. Graded Makanin-Razborov Resolutions and Diagram

In section 5 we have used the canonical cyclic JSJ decomposition of a limit group
to construct its canonical Makanin-Razborov diagram. In section 8 we modified this
construction to obtain the restricted Makanin-Razborov diagram for analyzing sets of
solutions to equations with coefficients. To understand the variation of the restricted
Makanin-Razborov diagram with a change of the defining parameters we need to
further modify the construction of the Makanin-Razborov diagram to obtain the graded

Makanin-Razborov diagram of a graded limit group. As we have already indicated, some of
the results that were essential in the construction of the (ungraded) Makanin-Razborov
diagram do not hold when graded limit groups and their graded decompositions are
concerned. Hence, to construct the graded Makanin-Razborov diagram of a graded
limit group, some new types of graded limit groups that do not have analogues in
the ungraded case are presented, and the structure of the graded diagram as a whole
requires far more delicate analysis than in the ungraded case. This analysis is presented
in the rest of this paper and in the third paper of this sequence.

Definition 10.1. — Let Glim (x, p, a) be a graded limit group which does not split to a non-

trivial free product in which the subgroup AP = < p1, ..., pu , a1, ..., ak > is contained in one of the
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factors. Suppose that the principal graded abelian JSJ decomposition of Glim (x, p, a) is non-trivial.

We define the graded modular group GMod (Glim (x, p, a) ) to be the subgroup of Aut(Glim (x, p, a) )
generated by the following families of automorphisms of Glim (x, p, a):

(i) Dehn twists along edges of the principal graded abelian JSJ decomposition of Glim (x, p, a).
The Dehn twists are assumed to fix (elementwise) the vertex stabilized by AP.

(ii) Dehn twists along essential s.c.c. in (graded) CMQ (canonical maximal quadratically

hanging) vertex groups in the principal graded abelian JSJ decomposition of Glim (x, p, a).
Again, these Dehn twists are assume to fix (elementwise) the vertex stabilized by AP.

(iii) Let A be an abelian vertex group in the principal graded abelian JSJ decomposition of

Glim (x, p, a). Let A1 < A be the subgroup generated by all edge groups connected to the

vertex stabilized by A in the principal graded abelian JSJ decomposition of Glim (x, p, a).
Every automorphism of A that fixes A1 (elementwise) can be naturally extended to an

automorphism of the ambient limit group Glim (x, p, a) that fixes the vertex stabilized by

AP. We call these generalized Dehn twists and they form the third family of automorphisms

that generate GMod (Glim (x, p, a) ).

We say that a homomorphism h : Glim (x, p, a) → Fk is in the graded modular class of the

homomorphism ĥ : Glim (x, p, a)→ Fk if ĥ = h ◦ ϕ, where ϕ is a graded modular automorphism of

Glim (x, p, a), i.e., ϕ ∈ GMod (Glim (x, p, a) ). Clearly, a graded modular class is an equivalence

class of homomorphisms from the graded modular group Glim (x, p, a) to the free group Fk.

Let Glim (x , p , a) be a graded limit group that admits a non-trivial graded
abelian JSJ decomposition. Once we fix a generating set for the graded limit group
Glim (x , p , a), given a homomorphism h : Glim (x , p , a)→ Fk we can choose the shortest
homomorphisms in the graded modular class of h. A graded limit group obtained from
a convergent sequence of homomorphisms h : Glim (x , p , a)→ Fk which are the shortest
in their graded modular class, is called a graded shortening quotient of the graded limit
group Glim (x , p , a).

On the set of graded shortening quotients of a graded limit group we can
naturally define a partial order and an equivalence relation, similar to the ones defined
in section 5 for shortening quotients of limit groups. By the same argument used to
prove lemma 5.4 the set of graded shortening quotients of a graded limit group contains
maximal elements with respect to the partial order, and by the same argument used to
prove lemma 5.5 there are only finitely many equivalence classes of maximal graded
shortening quotients of a graded limit group.

So far we have modified the construction of maximal shortening quotients
presented in section 5 to the graded setup. However, since in general the graded
modular group of a graded limit group does not contain the (ungraded) modular
group of the graded limit group (as a limit group), graded shortening quotients of a
graded limit group need not be proper quotients of it. Furthermore, to get graded
shortening quotients we naturally require that the graded abelian JSJ decomposition is
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non-trivial. However, in general the graded abelian JSJ decomposition of a graded limit
group may be trivial. To view some of these phenomenas we present the following two
examples:

(1) Let G (x , p) be a graded limit group that is isomorphic to a non-abelian free
group, and suppose that the graded abelian JSJ decomposition of G (x , p)
is: G (x , p) = P ∗C B, where C is cyclic and P is the parameter subgroup.
Since G (x , p) is isomorphic to a free group, there is clearly an embedding:
h : G (x , p) → Fk, for which the image of the generator of the cyclic group
C has no non-trivial roots in Fk. In this case for every graded modular
automorphism ϕ ∈ GMod (G (x , p) ), h ◦ ϕ is an embedding of G (x , p) into Fk.
Hence, G (x , p) has a shortening quotient that is isomorphic to it.

(2) Let G (x , p) be a surface group, and suppose that G (x , p) = P ∗C B, where
C is cyclic and P is the parameter subgroup. Then it is possible to find a
sequence of homomorphisms hn : G (x , p) → Fk, for which the corresponding
sequence of graded shortest homomorphisms hn ◦ϕn converge to a group that
is isomorphic to G (x , p).

As we have already indicated, unlike (ungraded) limit groups, to understand the
variation of the set of restricted homomorphisms from a graded limit group to Fk with
a change of the defining parameters, we will need to study the structure of graded
limit groups with a trivial principal graded abelian JSJ decomposition.

Definition 10.2. — Let Glim (x, p, a) be a graded limit group that does not split into a

free product in which AP can be conjugated into one of the factors. If Glim (x, p, a) has a trivial

graded abelian JSJ decomposition it is called rigid graded limit group. If Glim (x, p, a) has a

non-trivial graded abelian JSJ decomposition, and a (unique) maximal graded shortening quotient

GMSQ (x, p, a) that is isomorphic to Glim (x, p, a), Glim (x, p, a) is called solid graded limit

group.

To study rigid and solid graded limit groups we need to introduce the notion of
flexible graded limit groups.

Definition 10.3. — Let Glim (x, p, a) be either a rigid or a solid graded limit group. A

sequence of homomorphisms {hm : Glim (x, p, a) → Fk} is called flexible graded sequence if one of

the following holds:

(i) Each homomorphism hm factors as hm = νm ◦ τm, where τm : Glim (x, p, a)→ Fk∗ < v >,

τm is an epimorphism that maps the subgroup AP onto the factor Fk, and νm :
Fk∗ < v >→ Fk restricts to the identity map on Fk. Furthermore, τm can not be shortened

(in Fk∗ < v >) by an element from the graded modular group GMod (Glim (x, p, a) ).
(ii) Each homomorphism hm does not factor through a free product in which AP is mapped

into one of the factors, and can not be shortened by an element from the graded modular
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group GMod (Glim (x, p, a) ). In addition, for each index m:

max
g∈Bm

dX (hm ( g ) , id.) > 2m · (1 + max
16j6u

dX (hm (pj) , id.) )

where Bm is the ball of radius m in the Cayley graph of Glim (x, p, a).

A graded limit group which is the limit of a flexible graded sequence is called a flexible graded

quotient of the rigid or solid graded limit group Glim (x, p, a).

Lemma 10.4. — Let FlxGlim (x, p, a) be a flexible graded quotient of the rigid or solid

graded limit group Glim (x, p, a). Then:

(i) FlxGlim (x, p, a) is not a rigid graded limit group.

(ii) FlxGlim (x, p, a) is a proper quotient of Glim (x, p, a).

Proof. — If FlxGlim (x , p , a) splits into a free product in which AP can be
conjugated into one of the factors, then FlxGlim (x , p , a) is not rigid nor solid, and
it can not be isomorphic to Glim (x , p , a). Hence, we may assume that FlxGlim (x , p , a)
does not split into a free product in which AP can be conjugated into one of the
factors.

By the way a flexible graded sequence of homomorphisms of FlxGlim (x , p , a) is
defined, it has a subsequence that converges into a stable action of FlxGlim (x , p , a) on
a real tree Y (see section 1), so that the subgroup AP fixes a point in Y.

By (([Se3], 3.1), see theorem 1.5) FlxGlim (x , p , a) admits a (non-trivial) graph of
groups Λ from its action on the real tree Y. By that same theorem if the action of
FlxGlim (x , p , a) on Y contains an IET component, then FlxGlim (x , p , a) admits a graded
abelian splitting. If the action contains an axial component, FlxGlim (x , p , a) inherits a
graded abelian splitting and if the stabilizer of some (non-degenerate) segment in Y
is non-trivial, it is maximal abelian by lemma 1.3, so FlxGlim (x , p , a) splits over a
maximal abelian subgroup, hence, FlxGlim (x , p , a) admits a graded abelian splitting.

Therefore, in all cases FlxGlim (x , p , a) admits a (non-trivial) graded abelian
splitting, so the graded abelian JSJ decomposition of FlxGlim (x , p , a) is non-trivial,
and we get part (i) of the lemma.

If Glim (x , p , a) is rigid it has a trivial graded abelian JSJ decomposition. Hence,
by part (i) FlxGlim (x , p , a) is a proper quotient of it. If Glim (x , p , a) is solid and
FlxGlim (x , p , a) is isomorphic to Glim (x , p , a), then for large enough m, it is possible
to shorten the homomorphisms hm : Glim (x , p , a) → Fk or the homomorphism
τm : Glim (x , p , a) → Fk∗ < v > by pre-composing with elements of the graded modular
group GMod (Glim (x , p , a) ), which contradicts the properties of homomorphisms in a
flexible sequence. Hence, a flexible graded quotient is a proper quotient of a graded
limit group. ¤
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The following is an example of a flexible quotient of a solid limit group. Let
G (x , p) = < x1 , x2 , p | p = x

3
1x
−2
2 >. G (x , p) is a graded limit group and its graded abelian

decomposition is the amalgamated product:

G (x , p) = < p > ∗
<p = x

3
1x
−2
2 >

< x1 , x2 > .

G (x , p) is isomorphic to a free group of rank 2, hence, as in the first example presented
above it is a solid limit group.

The solid limit group G (x , p) admits a flexible quotient. Its flexible quotient is a
limit group of the form

Flx (x , p) = < x1 , x2 , p | p = x
3
1x
−2
2 , [x1 , x2] = 1 >

= < p > ∗
<p = x

3
1x
−2
2 >

< x1 , x2 | [x1 , x2] = 1 > .

Let Glim (x , p , a) be a rigid or solid graded limit group. On the set of flexible
graded quotients of Glim (x , p , a) we can naturally define a partial order and an
equivalence relation, similar to the ones defined on graded limit groups. By the same
argument used to prove lemma 5.4, the set of flexible graded quotients of Glim (x , p , a)
contains maximal elements with respect to the partial order, and by the same argument
used to prove lemma 5.5 there are only finitely many equivalence classes of maximal
flexible graded quotients of Glim (x , p , a). In the sequel we will need the following
definitions associated with rigid and solid graded limit groups and their associated
maximal flexible limit quotients.

Definition 10.5. — Let Rgd (x, p, a) be a rigid limit group and let:

Flx1(x, p, a), ..., Flxv(x, p, a)

be the maximal flexible graded quotients of it. A homomorphism h : Rgd (x, p, a)→ Fk that does not

factor through any of the maximal graded flexible quotients

Flx1(x, p, a), ..., Flxv(x, p, a)

of Rgd (x, p, a) is called a rigid homomorphism (solution, specialization) of the rigid graded limit

group Rgd (x, p, a). A homomorphism that does factor through one of the maximal flexible quotients

is called a flexible homomorphism (solution, specialization).

Definition 10.6. — Let Sld (x, p, a) be a solid graded limit group and let

Flx1(x, p, a), ..., Flxv(x, p, a)

be the maximal flexible quotients of it. A homomorphism h : Sld (x, p, a)→ Fk for which h = h′ ◦ ϕ
where h′ factors through one of the maximal graded flexible quotients of Sld (x, p, a), and ϕ is a graded

modular automorphism of Sld (x, p, a), is called a flexible homomorphism (solution, specialization) of
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the solid graded limit group Sld (x, p, a). Note that every homomorphism h : Sld (x, p, a)→ Fk that

factors through a free product of the form Fk∗ < v > so that AP is mapped into Fk, is flexible.

A non-flexible homomorphism h : Sld (x, p, a) → Fk is called a solid homomorphism (solution,

specialization) of the solid graded limit group Sld (x, p, a).

Flexible quotients of rigid graded limit groups and flexible quotients of solid
graded limit groups contain all the “generic infinite families” of specializations of these
graded limit groups. Rigid solutions of rigid graded limit groups are the exceptional
single solutions, and solid solutions of solid graded limit groups are the exceptional
families of solutions.

Proposition 10.7. — Let Rgd (x, p, a) be a rigid graded limit group, let Sld (x, p, a) be a

solid graded limit group, and let p0 be a specialization of the defining parameters p. Then:

(i) There are at most finitely many rigid solutions: h : Rgd (x, p, a)→ Fk for which h( p) = p0.

(ii) Up to pre-composing with a graded modular automorphism of the solid graded limit group

Sld (x, p, a) there are at most finitely many solid homomorphisms: h : Sld (x, p, a)→ Fk

for which h( p) = p0.

Proof. — Suppose that for some specialization p0 of the defining parameters p

there are infinitely many rigid homomorphisms of Rgd (x , p , a). From this infinite set
of homomorphisms it is possible to extract a flexible subsequence, from which it is
possible to extract a convergent flexible subsequence of homomorphisms. Now, this last
flexible sequence converges into a flexible graded quotient of Rgd (x , p , a). Hence, all
but at most finite of the rigid homomorphisms of the convergent subsequence factors
through a flexible graded quotient of Rgd (x , p , a), a contradiction to their rigidity, and
we get part (i) of the proposition. Part (ii) follows by the same argument starting with
an infinite family of solid homomorphisms that are the shortest possible under the
action of the graded modular group GMod (Sld (x , p , a) ). ¤

We will call the (ungraded) Makanin-Razborov diagram of a graded limit group
obtained using the (ungraded) abelian JSJ decompositions of the various limit groups
that appear along the various resolutions, the ungraded Makanin-Razborov diagram.
We call each resolution of the ungraded Makanin-Razborov diagram of a graded limit
group, an ungraded resolution. The above basic facts concerning graded limit groups and
their graded shortening quotients and graded flexible quotients allow us to present the
main goal of this section, the (canonical) graded Makanin-Razborov diagram associated with
a graded limit group. The graded Makanin-Razborov diagram “encodes” all possible
homomorphisms from a graded limit group into the (fixed) free group Fk in a form
“compatible” with the parametric description of the set of solutions.

Let Glim (x , p , a) be a graded limit group. Let Glim (x , p , a) = Glim1 ∗ ... Glim` ∗ Fg1

be a factorization of Glim (x , p , a), where AP < Glim1, Glim1 can not be written as a
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free product in which AP is contained in one of the factors, each of the Glimi’s for
2 6 i 6 ` is a freely-indecomposable non-cyclic subgroup of Glim (x , p , a) and Fg1 is
a free group. It follows from Grushko’s theorem that such a free decomposition of
Glim (x , p , a) is canonical.

Suppose first that Glim1 is not rigid or solid. By an analogue of lemma 5.4 the
set of graded shortening quotients of the graded limit group Glim1 contains maximal
elements (with respect to the partial order defined above) and by an analogue of lemma
5.5 in the graded case, there are only finitely many equivalence classes of maximal
graded shortening quotients of Glim1. Since Glim1 is not a solid graded limit group
each maximal graded shortening quotient of it is a proper quotient. Let GM1, ..., GMs

be a collection of representatives of equivalence classes of maximal graded shortening
quotients of Glim1, and let ηj : Glim1 → GMj be the canonical projection maps.

Now, suppose Glim1 is rigid or solid. In this case, Glim1 has finitely many
equivalence classes of maximal flexible graded quotients. Let FlxGlim1, ..., FlxGlimv be a
collection of representatives of equivalence classes of maximal flexible graded quotients
of Glim1, and let νj : Glim1 → FlxGlimj be the canonical projection maps.

We define the graded Makanin-Razborov diagram of the graded limit group
Glim (x , p , a) iteratively. We start by factoring Glim (x , p , a) as above. From each of
the factors Glim2, ..., Glim` we continue by adjoining its (ungraded) Makanin-Razborov
diagram. If Glim1 is not rigid we continue along s edges going from Glim1 to each of
its maximal graded shortening quotients GM1, ..., GMs. To each such directed edge we
associate the canonical projection η j.

If Glim1 is rigid or solid we continue along v edges going from Glim1 to each of
its maximal flexible graded quotients FlxGlim1, ..., FlxGlimv. To each such directed edge
we associate the canonical projection νj.

We proceed iteratively. Since a graded shortening quotient of a non-solid graded
limit group, and a flexible shortening quotient of a solid or rigid graded limit groups are
proper quotients of the graded limit group, the construction terminates by proposition
5.1. Each terminal vertex is either a free group (as in the Makanin-Razborov diagram
presented in section 5), or it is a rigid graded limit group RgdGlim (x , p , a) for
which for every value of the parameters p0 there are at most finitely many possible
homomorphisms h : RgdGlim (x , p , a) → Fk that satisfy h( p) = p0, or a solid graded limit
group Sld (x , p , a) with no flexible quotients. By construction, up to the equivalence
relation of graded and restricted shortening quotients, and flexible graded quotients,
the graded Makanin-Razborov diagram of a graded limit group is canonical.

As in the case of (ungraded) limit groups (definition 5.8), we can use the graded
Makanin-Razborov diagram to define graded Makanin-Razborov resolutions of a
graded limit group. The main purpose of defining graded Makanin-Razborov diagrams
and resolutions is the fact these “encode” all the (ungraded) restricted resolutions for
every specialization of the defining parameters of the graded limit group. A better
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understanding of this “encoding” requires a better understanding of rigid and solid
limit groups and will be obtained in the following sections of this paper and the
following papers in the sequel.

As we pointed out in section 8, the study of sets of solutions to equations with
coefficients is naturally equivalent to the study of all restricted homomorphisms from
a f.g. restricted residually free group into the free group generated by the coefficients.
For studying this collection of homomorphisms we have an analogue of theorems 7.2
and 8.4 in the graded case. The proof is a direct modification.

Theorem 10.8. — Let RF (x, p, a) be a f.g. (graded) residually free group. Then

there exists a (canonical) finite collection of graded limit group quotients of RF (x, p, a):
Glim1(x, p, a), ..., Glim` (x, p, a), and for each i an epimorphism τi : RF (x, p, a)→ Glimi(x, p, a)
with the following properties:

(i) For each restricted homomorphism h : RF (x, p, a) → Fk there exists some index i (not

necessarily unique!) and a restricted homomorphism f : Glimi(x, p, a) → Fk so that h

splits as: h = f ◦ τi.

(ii) If Glim (x, p, a) is a graded quotient of RF (x, p, a), and τ is an epimorphism

τ : RF (x, p, a) → Glim (x, p, a), then there exists some index i and an epimorphism

λ : Glimi(x, p, a)→ Glim (x, p, a) so that τ = λ ◦ τi.

(iii) The couples {(Glimi(x, p, a) , τi)} represent distinct equivalence classes, and if i |= j then

the couple (Glimi(x, p, a) , τi) can not be compared with (Glimj (x, p, a) , τj) in the partial

order defined on these couples.

(iv) If ^Glim1(x, p, a), ..., ^Glimu(x, p, a) and {τ̂j : RF (x, p, a)→ ^Glimj (x, p, a)} is another

collection of graded quotients of RF (x, p, a) and epimorphisms from RF (x, p, a) to the

graded limit groups ^Glimi(x, p, a)’s that satisfy properties (i)-(iii) then u = ` and up to

permutation, the couple (Glimi(x, p, a) , τi) is equivalent to the couple ( ^Glimi(x, p, a) , τ̂i).

We have already modified the construction of the Makanin-Razborov diagram
of a limit group to the graded case. Having such diagram for a graded limit group,
theorem 10.9 allows us to modify the construction of the Makanin-Razborov diagram
associated with a residually free group presented in section 8 to the graded case.

11. The Singular Locus

The main purpose for modifying limit groups and their Makanin-Razborov
diagrams and resolutions to the graded category is the ability to use the graded
objects in order to understand the variation of sets of solutions with a change in the
values of the defining parameters. Such analysis is crucial in studying the structure of
elementary sets and elementary predicates as we will see later in the sequel.
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Since the collection of graded resolutions of a graded limit group Glim (x , p , a)
“encodes” all the restricted homomorphisms of the group Glim (x , p0 , a) for any possible
specialization p0 of the set of defining parameters p, to understand the variation in the
set of solutions with a change of the defining parameters we need to look closely at
all the possible degenerations in the graded resolutions of Glim (x , p , a) for all possible
values of the defining parameters. Our aim in this section is to associate finitely many
singular graded limit groups with each rigid and solid limit group in a graded resolution of
the graded Makanin-Razborov diagram. The finite collection of singular limit groups
associated with a rigid (or solid) limit group in a graded resolution describe all the
possible degenerations in the part of the graded resolution that terminates at the rigid
(or solid) graded limit group.

Let Glim (x , p , a) be a graded limit group, let GResi be a graded resolution in the
graded Makanin-Razborov diagram of Glim (x , p , a) and let RgdGlim( y , p , a) be a rigid
limit group in this resolution.

Definition 11.1. — We say that the specialization ( y0 , p0 , a) of the rigid limit group

RgdGlim( y, p, a) belongs to the singular locus of the tuple (RgdGlim( y, p, a) , GResi) if for all

homomorphisms h : Glim (x, p, a)→ Fk that factor through the resolution GResi and the specialization

( y0 , p0 , a) at least one of the graded abelian JSJ decompositions of the graded limit groups along the

graded resolution GResi remains degenerate, i.e., at least one of the following possible degenerations in

the graded abelian JSJ decompositions occurs:

(i) An edge group is always mapped to the trivial group in Fk.

(ii) A non-abelian vertex group is always mapped to a cyclic subgroup in Fk.

(iii) A QH vertex group is always mapped to a cyclic subgroup in Fk.

(Note that (iii) can be viewed as a special case of (ii), but we prefer to list it as an additional

separate case.)

Clearly, there are only finitely many ways in which one of the graded abelian JSJ
decompositions of the graded limit groups along the graded resolution GResi can get
degenerate, so the singular locus of (RgdGlim (x , p , a) , GResi) can be stratified according
to the degenerate parts of these graded abelian JSJ decompositions.

Theorem 11.2. — There exist finitely many systems of equations Σ1( y, p, a), ..., Σq( y, p, a)
so that a specialization ( y0 , p0 , a) of the rigid limit group RgdGlim( y, p, a) belongs to the singular

locus of the tuple (RgdGlim( y, p, a) , GResi) if and only if it satisfies one of the systems Σ1, ..., Σq.

Proof. — Given the resolution GResi and elements in the graded modular groups
of each of the graded limit groups in the resolution GResi, a degeneration in one
of the graded abelian JSJ decomposition of one of the graded limit groups can be
expressed as an equation in the variables ( y , p). Hence, a specialization ( y0 , p0 , a) of
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RgdGlim( y , p , a) belongs to the singular locus of the tuple (RgdGlim( y , p , a) , GResi) if
( y0 , p0 , a) satisfies an infinite system of equations parameterized by the product of the
graded modular groups of the different graded limit groups in the graded resolution
GResi. Since by Guba’s theorem [Gu] every infinite system of equations in a free group
is equivalent to a finite one, the theorem follows. ¤

Definition 11.3. — We say that a graded limit group SngGlim( y, p, a) is a singular

graded limit group of the tuple (RgdGlim( y, p, a) , GResi) if it is a maximal graded limit group

corresponding to one of the systems of equations Σ1, ..., Σq constructed in theorem 11.2. Clearly, this

associates canonically finitely many singular limit groups with every tuple (RgdGlim (x, p, a) , GResi).

In a similar way we associate (canonically) finitely many singular limit groups
with every tuple of a graded resolution and a solid graded limit group in it. Let
Glim (x , p , a) be a graded limit group, let GResi be a graded resolution in the graded
Makanin-Razborov diagram of Glim (x , p , a) and let SldGlim( y , p , a) be a rigid limit
group in this resolution.

Definition 11.4. — We say that the specialization ( y0 , p0 , a) of the solid limit group

SldGlim( y, p, a) belongs to the singular locus of the tuple (SldGlim( y, p, a) , GResi) if for all

homomorphisms h : Glim (x, p, a)→ Fk that factor through the resolution GResi and the specialization

( y0 , p0 , a), at least one of the abelian graded JSJ decompositions of the graded limit groups along

the graded resolution GResi remains degenerate (note that by all homomorphisms that factor through

graded resolution GResi and the specialization ( y0 , p0 , a) we allow a possible pre-composition with

a graded modular automorphism of the solid graded limit group SldGlim( y, p, a) itself).

Like in the rigid case there exist finitely many systems of equations Σ1( y, p, a), ..., Σq( y, p, a)
so that a specialization ( y0 , p0 , a) belongs to the singular locus of the tuple (SldGlim( y, p, a) , GResi)
if and only if it satisfies one of the systems Σ1, ..., Σq.

We say that a graded limit group SngGlim( y, p, a) is a singular graded limit group of the

tuple (SldGlim( y, p, a) , GResi) if it is a maximal graded limit group corresponding to one of the

systems of equations Σ1, ..., Σq. Clearly, this associates canonically finitely many singular limit groups

with every tuple (SldGlim (x, p, a) , GResi).

12. Multi-graded Makanin-Razborov Diagrams

In the previous sections 9-11 we have analyzed the structure of parameterized
sets of solutions to systems of equations in a free group, where the sets of solutions
were parameterized by some subgroup of parameters P = < p1, ..., pu >. The goal
of this section is a generalization of the objects introduced in the previous sections,
to study sets of solutions to systems of equations parameterized by one subgroup, to
the study of sets of solutions to systems of equations parameterized by finitely many
subgroups. As we will see in the sequel such parameterization appears in the analysis
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of projections of varieties (Diophantine sets), that is crucial in the analysis of sentences
and elementary sets defined over a free group.

With a finite system of equations with parameters Φ over a free group
Fk = < a1, ..., ak > it is natural to associate a f.p. group G (Φ). If the system Φ is
defined by the coefficients a1, ..., ak, the parameters p1, ..., pu and r

1
1, ..., r

1
m1

, ..., r `1 , ..., r `m`
,

the unknowns x1, ..., xn and the equations:

w1(a1, ..., ak , p1, ..., pu , r
1
1, ..., r `m`

, x1, ..., xn) = 1
...

ws(a1, ..., ak , p1, ..., pu , r
1
1, ..., r `m`

, x1, ..., xn) = 1

we set the associated f.p. group G (Φ) to be:

G (Φ) = < a1, ..., ak , p1, ..., pu , r
1
1, ..., r `m`

, x1, ..., xn |w1, ..., ws > .

Clearly, every solution of the system Φ corresponds to a homomorphism h : G (Φ)→ Fk

for which h(ai) = ai, and every such homomorphism corresponds to a solution of the
system Φ.

In sections 9-11 we studied the variation of the structure of the set of solutions
with a change of the defining parameters. In this section we study the variation
of the set of solutions with a change of the specialization of defining parameters
P = < p1, ..., pu >, and the conjugacy classes of the specializations of the subgroups
R1 = < r

1
1, ..., r

1
m1

> , ..., R` = < r `1 , ..., r `m`
. To analyze the variation in the structure

of the set of solutions with a change of the specialization of the defining parameters
P and the conjugacy classes of the specializations of the subgroups R1, ..., R` we will
need to look at a special class of graded limit groups which we call multi-graded limit

groups.
We set G = < x1, ..., xk , p1, ..., pu , r

1
1, ..., r `m`

, a1, ..., ak > to be a f.g. group. For
brevity we will denote this (fixed) generating set by G = < g1, ..., gm >, and Fk to be a
free group with a fixed basis Fk = < a1, ..., ak >. With this notation our goal is to get
a structure theory for understanding the set of all homomorphisms:

Hom ( (G, {pj} , {rq} , {ai}) , (Fk , {ai}) ) = { h | h : G→ Fk , h(ai) = ai }

with a change in the specializations of the parameters {pj} and the conjugacy classes
of the specializations of the subgroups R1, ..., R` . We set X to be the Cayley graph of
Fk with respect to its given basis a1, ..., ak. Given any homomorphism h ∈ Hom (G, Fk),
G admits a natural action λh on X given by λh( g , x) = h( g )(x) for every g ∈ G and
x ∈ X.

Definition 12.1. — Let G be a f.g. group and let hn : G (x, r , p, a)→ Fk be a sequence of

homomorphisms. If { λhn
}, a sequence of actions of G on X, the Cayley graph of Fk, that corresponds
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to the sequence of homomorphisms {hn}, converges in the Gromov-Haussdorff topology, we say that

the sequence {hn} converges. We call the obtained limit group, a multi-graded limit group.

A multi-graded limit group is in particular a limit group, so every f.g. multi-
graded limit group is f.p. and every f.g. graded limit group is ω-residually free by
theorem 4.6. To construct the (canonical) multi-graded Makanin-Razborov diagram
of a multi-graded limit group, which is the fundamental tool in our analysis of the
variation of sets of solutions to systems of equations with a change in the specialization
of the parameters P and the conjugacy class of the specializations of the subgroups
R1, ..., Rm, we need to study the algebraic structure of multi-graded limit groups
“relative” to their multi-grading. To do that we need to construct the multi-graded
abelian JSJ decomposition of a multi-graded limit group. These constructions are all
generalizations of their graded analogues presented in sections 9-11.

For the rest of this section let G (x , r , p , a) be a f.g. group, let {hm :
G (x , r , p , a)→ Fk} be a convergent multi-graded sequence of homomorphisms, and let
MGlim (x , r , p , a) be the corresponding graded limit group. We set η : G (x , r , p , a) →
MGlim (x , r , p , a) to be the canonical epimorphism and AP < MGlim (x , r , p , a) to be
the subgroup: AP = < η( p1), ..., η( pu) , η(a1), ..., η(ak) >. The abelian JSJ decomposition
of a freely-indecomposable limit group “encodes” all the possible splittings of such limit
group with abelian edge groups. In studying multi-graded limit groups we will be inter-
ested only in abelian splittings in which the subgroup AP and the subgroups R1, ..., Rm

are elliptic. The construction of the abelian JSJ decomposition of a limit group de-
scribed in section 2 naturally generalizes to a multi-graded abelian JSJ decomposition of a
multi-graded limit group.

Theorem 12.2 (cf. 9.2). — Suppose MGlim (x, r , p, a) = L0 ∗ ...∗Lv is the most refined free

decomposition in which AP < L0 and each of the subgroups Rj can be conjugated into one of the

factors Li. With each of the factors we associate a multi-graded abelian JSJ decomposition. If none

of the subgroups Rj can be conjugated into Li we associate with it its abelian JSJ decomposition.

If Li is L0 or it contains a conjugate of one of the subgroups Rj then there exists a (relatively)

reduced unfolded (perhaps trivial) splitting of the factor Li with abelian edge groups, which we call a

multi-graded abelian JSJ (Jaco-Shalen-Johannson) decomposition of the factor Li with the following

properties:

(i) AP is elliptic in the multi-graded abelian JSJ decomposition of L0. If a subgroup Rj

can be conjugated into the factor Li, then Rj is elliptic in the multi-graded abelian JSJ
decomposition of Li.

(ii) Every (multi-graded) canonical maximal QH subgroup (CMQ) of Li is conjugate to a

vertex group in the multi-graded JSJ decomposition. Every (multi-graded) QH subgroup

of MGlim (x, r , p, a) can be conjugated into one of the CMQ subgroups of Li. Every

vertex group in the multi-graded JSJ decomposition which is not a CMQ subgroup of Li
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is elliptic in any abelian splitting of Li under consideration (i.e., in one in which AP and

the Rj’s are elliptic).

(iii) A one edge (multi-graded) abelian splitting MGlim (x, r , p, a) = D ∗A E or Li = D∗A in

which AP and the Rj’s are elliptic which is hyperbolic in another such elementary abelian

splitting is obtained from the multi-graded abelian JSJ decomposition of Li by cutting

a 2-orbifold corresponding to a (multi-graded) CMQ subgroup of Li along a weakly

essential s.c.c.

(iv) Let Θ be a one edge (multi-graded) splitting along an abelian subgroup Li = D ∗A E or

Li = D∗A in which AP and the Rj’s are elliptic, which is elliptic with respect to any

other one edge (multi-graded) abelian splitting of Li in which AP and the Rj’s are elliptic.

Then Θ is obtained from the multi-graded abelian JSJ decomposition of Li by a sequence

of collapsings, foldings and conjugations.

(v) If JSJ1 is another multi-graded abelian JSJ decomposition of Li, then JSJ1 is obtained

from the multi-graded abelian JSJ decomposition by a sequence of slidings, conjugations

and modifying boundary monomorphisms by conjugations (see section 1 of [Ri-Se2] for

these notions).

In section 5 we have used the canonical cyclic JSJ decomposition of a limit
group to construct its canonical Makanin-Razborov diagram. In section 10 we modified
this construction to obtain the graded Makanin-Razborov diagram for analyzing the
variation of the restricted Makanin-Razborov diagram with a change of the defining
parameters. To understand the variation of the (ungraded) Makanin-Razborov diagram
with a change of the specialization of the parameter subgroup P, and the conjugacy
classes of the specializations of the subgroups Rj, we need to further modify the
construction of the graded Makanin-Razborov diagram to obtain the multi-graded

Makanin-Razborov diagram of a multi-graded limit group.

Definition 12.3. — Let MGlim (x, r , p, a) be a multi-graded limit group and let

MGlim (x, r , p, a) = L0 ∗ ... ∗ Lv be the most refined free decomposition in which AP < L0 and

the subgroups Rj can be conjugated into the different factors Li. Let Li be one of those factors and

suppose that the multi-graded abelian JSJ decomposition of Li is non-trivial. We define the multi-

graded modular group MGMod (Li) to be the subgroup of Aut(Li) generated by the following families

of automorphisms of the factor Li:

(i) Dehn twists along edges of the multi-graded abelian JSJ decomposition of Li. The Dehn

twists are assumed to fix (elementwise) the vertex stabilized by AP in case Li is the factor

L0.

(ii) Dehn twists along essential s.c.c. in (multi-graded) CMQ (canonical maximal quadrati-

cally hanging) vertex groups in the multi-graded abelian JSJ decomposition of Li. Again,

these Dehn twists are assume to fix (elementwise) the vertex stabilized by AP in case Li

is the factor L0.
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(iii) Let A be an abelian vertex group in the multi-graded abelian JSJ decomposition of Li.

Let A1 < A be the subgroup generated by all edge groups connected to the vertex stabilized

by A in the multi-graded abelian JSJ decomposition of Li. Every automorphism of A that

fixes A1 (elementwise) can be naturally extended to an automorphism of the ambient factor

Li that fixes the vertex stabilized by AP and conjugates of the other subgroups Rj. We

call these generalized Dehn twists and they form the third family of automorphisms that

generate MGMod (Li).

We say that a homomorphism h : MGlim (x, r , p, a) → Fk is the same multi-graded modular class

as the homomorphism ĥ : MGlim (x, r , p, a) → Fk if ĥ = h ◦ ϕ, and ϕ is a multi-graded modular

automorphism of MGlim (x, r , p, a), i.e., ϕ ∈ MGlim (x, r , p, a).

Let Li be a factor in the most refined free decomposition of the multi-graded
limit group MGlim (x , r , p , a) in which the subgroups AP and Rj’s can be conjugated
into the various factors. Once we fix a generating set for the factor Li, given a
homomorphism h : Li → Fk we can choose the shortest homomorphisms in the multi-
graded modular class of h. A multi-graded limit group obtained from a convergent
sequence of homomorphisms h : Li → Fk which are the shortest in their multi-graded
modular class, is called a multi-graded shortening quotient of the factor Li.

On the set of multi-graded shortening quotients of the factor Li we can naturally
define a partial order and an equivalence relation, similar to the ones defined in
section 5 for shortening quotients of limit groups. By the same argument used to
prove lemma 5.4 the set of multi-graded shortening quotients of Li contains maximal
elements with respect to the partial order, and by the same argument used to prove
lemma 5.5 there are only finitely many equivalence classes of maximal multi-graded
shortening quotients of the factor Li.

So far we have modified the construction of maximal shortening quotients
presented in section 5 to the multi-graded setup. However, multi-graded shortening
quotients of a multi-graded limit group need not be proper quotients of it. Furthermore,
to get multi-graded shortening quotients we naturally require that the multi-graded
abelian JSJ decomposition of the factor Li is non-trivial. Unlike (ungraded) limit groups,
to understand the variation of the set of restricted homomorphisms from a graded limit
group to Fk with a change of the specialization of the defining parameters P and the
conjugacy classes of the specializations of the subgroups Rj, we will need to study
the structure of multi-graded limit groups with a trivial principal graded abelian JSJ
decomposition.

Definition 12.4. — Let Li be a factor in the most refined free decomposition of a multi-graded

limit group MGlim (x, r , p, a) in which the subgroups AP and R1, ..., Rm can be conjugated into the

various factors. If the factor Li has a trivial multi-graded abelian JSJ decomposition it is called rigid

multi-graded limit group. If Li has a non-trivial multi-graded JSJ decomposition, and a (unique)
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maximal multi-graded shortening quotient GMSQ (x, r , p, a) that is isomorphic to Li, Li is called

solid multi-graded limit group.

To study rigid and solid multi-graded limit groups we need to introduce the notion
of flexible multi-graded limit groups.

Definition 12.5. — Let Li be either a rigid or a solid factor of a multi-graded limit group

MGlim (x, r , p, a). A sequence of homomorphisms {hm : Li → Fk} is called flexible multi-graded

sequence if one of the following holds:

(i) Each homomorphism hm factors as hm = νm ◦ τm, where τm : Li → Fk∗ < v > and τm is

an epimorphism that maps the subgroup AP onto the factor Fk and the subgroups Rj into

a conjugate of Fk in Fk∗ < v >, and νm : Fk∗ < v >→ Fk restricts to the identity on

Fk. Furthermore, τm can not be shortened (in Fk∗ < v >) by an element from the graded

modular group MGMod (Li).
(ii) Each homomorphism hm does not factor through a free product as in (i), and can not be

shortened by an element from the multi-graded modular group MGMod (Li). In addition,

if Li = L0 then for each index m:

max
g∈Bm

dX (hm ( g ) , id.) > 2m · (1 + max
16j6u

dX (hm ( pj) , id.)+

max
16j6`

min
f∈Fk

(dX ( f hm (r j

1) f −1 , id.) + ... + (dX ( f hm (rj

mj
) f −1 , id.) )

where Bm is the ball of radius m in the Cayley graph of Li. If Li is not the factor L0,

i.e., if AP is not a subgroup of Li, then for each index m:

min
f∈Fk

max
g∈Bm

dX ( f hm ( g ) f −1 , id.) > 2m · (1 + max
16j6`

min
f∈Fk

(dX ( f hm (rj

1) f −1 , id.)

+... + (dX ( f hm (r j

mj
) f −1 , id.) ).

A multi-graded limit group which is the limit of a flexible multi-graded sequence is called a flexible

multi-graded quotient of the rigid or solid multi-graded limit group Li.

Lemma 12.6. — Let Flx (x, r , p, a) be a flexible multi-graded quotient of the rigid or solid

graded limit factor Li. Then:

(i) FlxGlim (x, p, a) is not a rigid multi-graded limit group.

(ii) FlxGlim (x, p, a) is a proper quotient of Li.

Proof. — Identical with the proof of lemma 10.5. ¤

Let MGlim (x , r , p , a) be a rigid or solid multi-graded limit group. On the set of
flexible multi-graded quotients of MGlim (x , r , p , a) we can naturally define a partial
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order and an equivalence relation, similar to the ones defined on multi-graded limit
groups. By the same argument used to prove lemma 5.4, the set of flexible graded
quotients of MGlim (x , r , p , a) contains maximal elements with respect to the partial
order, and by the same argument used to prove lemma 5.5 there are only finitely many
equivalence classes of maximal flexible multi-graded quotients of MGlim (x , r , p , a). For
the sequel we will need the following definitions associated with rigid and solid multi-
graded limit groups and their associated maximal flexible limit quotients.

Definition 12.7. — Let Rgd (x, r , p, a) be a rigid limit group and let

Flx1(x, r , p, a), ..., Flxv(x, r , p, a)

be the maximal flexible multi-graded quotients of it. A homomorphism h : Rgd (x, r , p, a) → Fk

that does not factor through any of the maximal multi-graded flexible quotients Flx1(x, r , p, a), ...,
Flxv(x, r , p, a) of Rgd (x, r , p, a) is called a rigid homomorphism (solution) of the rigid multi-graded

limit group Rgd (x, r , p, a). A homomorphism that does factor through one of the maximal flexible

quotients is called a flexible homomorphism (solution).

Definition 12.8. — Let Sld (x, r , p, a) be a solid multi-graded limit group and let

Flx1(x, r , p, a), ..., Flxv(x, r , p, a) be the maximal flexible quotients of it. A homomorphism

h : Sld (x, r , p, a) → Fk for which h = h′ ◦ ϕ where h′ factors through one of the maximal

multi-graded flexible quotients of Sld (x, r , p, a), and ϕ is a multi-graded modular automorphism of

Sld (x, r , p, a), is called a flexible homomorphism (solution) of the solid multi-graded limit group

Sld (x, r , p, a). Note that every homomorphism of Sld (x, r , p, a) → Fk that factors through a free

product of the form Fk∗ < v > so that AP and the subgroups Rj are mapped into Fk, is flexible. A

non-flexible homomorphism h : Sld (x, r , p, a)→ Fk is called a solid homomorphism (solution) of the

solid multi-graded limit group Sld (x, r , p, a).

Flexible quotients of rigid multi-graded limit groups and flexible quotients of solid
multi-graded limit groups contain all the “generic infinite families” of specializations of
these multi-graded limit groups. Rigid solutions of rigid multi-graded limit groups are
the exceptional single solutions, and solid solutions of solid multi-graded limit groups
are the exceptional families of solutions.

Proposition 12.9. — Let Rgd (x, r , p, a) be a rigid multi-graded limit group, let

Sld (x, r , p, a) be a solid multi-graded limit group, and let p0 be a specialization of the defining

parameters p. Then:

(i) There are at most finitely many rigid solutions: h : Rgd (x, r , p, a) → Fk for which

h( p) = p0 and each of the subgroups Rj are mapped to a conjugate of h(Rj) (elementwise).

(ii) Up to pre-composing with a graded modular automorphism of the solid graded limit group

Sld (x, r , p, a) there are at most finitely many solid homomorphisms: h : Sld (x, r , p, a)→
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Fk for which h( p) = p0 and each of the subgroups Rj are mapped to a conjugate of h(Rj)
(elementwise).

Proof. — Identical with the proof of proposition 10.7. ¤

The above basic facts concerning multi-graded limit groups and their multi-
graded shortening quotients and multi-graded flexible quotients allow us to present the
main goal of this section, the (canonical) multi-graded Makanin-Razborov diagram associated
with a multi-graded limit group.

Let MGlim (x , r , p , a) be a multi-graded limit group. Let MGlim (x , r , p , a) = L0 ∗
...∗Lv be the most refined free decomposition of MGlim (x , r , p , a) so that AP < L0 and
each of the subgroups Rj can be conjugated into one of the Li’s. Suppose first that a
factor Li contains either the subgroup AP or a conjugate of one of the subgroups Rj.
Suppose Li is not rigid or solid. Then by claim 13.2 the set of multi-graded shortening
quotients of the factor Li contains maximal elements (with respect to the partial order
defined above) and by an analogue of lemma 5.5 to the multi-graded case there are
only finitely many equivalence classes of maximal multi-graded shortening quotients
of Li. Since Li is not a solid multi-graded limit group each maximal multi-graded
shortening quotient of it is a proper quotient. Let MGM1, ..., MGMs be a collection
of representatives of equivalence classes of maximal multi-graded shortening quotients
of the factor Li, and let ηq : Li →MGMq be the canonical projection maps. Note that
MGMq is a multi-graded limit group with respect to some subset of the subgroups P
and R1, ..., R` .

Now, suppose Li is rigid or solid. In this case, Li has finitely many equivalence
classes of maximal flexible multi-graded quotients. Let Flx1, ..., Flxt be a collection of
representatives of equivalence classes of maximal flexible graded quotients of Li, and
let νq : Li → Flxq be the canonical projection maps.

We define the multi-graded Makanin-Razborov diagram of the multi-graded limit group
MGlim (x , r , p , a) iteratively. We start by factoring MGlim (x , r , p , a) as above. From each
of the factors Li that does not contain the subgroup AP or a conjugate of one of
the subgroups Rj we continue by adjoining its (ungraded) Makanin-Razborov diagram
presented in section 5. If Li contains the subgroup AP or a conjugate of one of the
Rj’s, and Li is not rigid or solid we continue along s edges going from Li to each of its
maximal multi-graded shortening quotients MGM1, ..., MGMs. To each such directed
edge we associate the canonical projection ηq.

If Li is rigid or solid we continue along t edges going from Li to each of its
maximal multi-graded flexible quotients Flx1, ..., Flxt. To each such directed edge we
associate the canonical projection νq.

We proceed iteratively. Since a multi-graded shortening quotient of a non-
solid multi-graded limit group, and a flexible shortening quotient of a solid or rigid
multi-graded limit groups are proper quotients of the multi-graded limit group, the
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construction terminates by proposition 5.1. Each terminal vertex is either a free group
(as in the Makanin-Razborov diagram presented in section 5), or it is a rigid multi-
graded limit group Rgd (x , r , p , a) for which for every value of the parameters P and
given conjugacy classes of the subgroups Rj, there are at most finitely many possible
homomorphisms h : Rgd (x , r , p , a) → Fk that obtaining these values and conjugacy
classes, or a solid multi-graded limit group Sld (x , r , p , a) with no flexible quotients. By
construction, up to the equivalence relation of multi-graded and restricted shortening
quotients, and multi-graded flexible quotients, the multi-graded Makanin-Razborov
diagram of a multi-graded limit group is canonical. As in the case of (ungraded) limit
groups (definition 5.8), we can use the multi-graded Makanin-Razborov diagram to
define multi-graded Makanin-Razborov resolutions of a multi-graded limit group.
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