
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S.

ALEXANDER NABUTOVSKY

SHMUEL WEINBERGER
Variational problems for riemannian functionals and arithmetic groups

Publications mathématiques de l’I.H.É.S., tome 92 (2000), p. 5-62
<http://www.numdam.org/item?id=PMIHES_2000__92__5_0>

© Publications mathématiques de l’I.H.É.S., 2000, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PMIHES_2000__92__5_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


VARIATIONAL PROBLEMS
FOR RIEMANNIAN FUNCTIONALS

AND ARITHMETIC GROUPS
by ALEXANDER NABUTOVSKY and SHMUEL WEINBERGER

In this paper we introduce a new approach to variational problems on the space
RiemfM^ of Riemannian structures (i.e. isometry classes of Riemannan metrics) on
any fixed compact manifold M1 of dimension n ^ 5. This approach often enables
one to replace the considered variational problem on RiemfW) (or on some subset of
Riem^W)} by the same problem but on spaces Riem{W) for every manifold N72 from a
class of compact manifolds of the same dimension and with the same homology as
M72 but with the following two useful properties: (1) If v is any Riemannian structure
on any manifold N" from this class such that Ric^n^^ ^ -(n- 1), then the volume of
(N\ v) is greater than one; and (2) Manifolds from this class do not admit Riemannian
metrics of non-negative scalar curvature. The first property is obviously helpful when
one knows how to prove uniform diameter and curvature bounds for a minimizing
sequence but wants to ensure that this sequence does not collapse to a metric space
of lower dimension. The second property seems likely to be useful when one studies a
variational problem on the space of Riemannian structures of constant scalar curvature
(compare [An I], [An 2], [Sch]).

As a first application we prove a theorem which can be informally explained as
follows: let M be any compact connected smooth manifold of dimension greater than
four, Met(M) be the space of isometry classes of compact metric spaces homeomorphic
to M endowed with the Gromov-Hausdorff topology, Riem^(M) C Met(M) be the space
of Riemannian structures on M such that the absolute values of sectional curvature do
not exceed one, and Ri(M) denote the closure of Riem^(M) in M^(M). Then diameter
regarded as a functional on Ri(M) has infinitely many "very deep55 local minima.
Moreover, the set of its values at these local minima is unbounded. We also give an
exponentially growing lower bound for the distribution function of these deep local
minima.

These results are motivated by the Problem 1 in S.T. Yau's list of problems
in differential geometry ([Y]) which asks for a way to define canonical Riemannian
metrics on all compact manifolds (of a fixed dimension). According to [Be] this problem
was posed by R. Thorn in 1958. A detailed discussion of this problem can be found
in [Br]. A natural approach is to define canonical metrics as solutions of a natural
variational problem on Riem(M). However, if the variational problem has a solution
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for any compact manifold M (of a fixed dimension ^ 5), then a very significant non-
uniqueness for any such M apparently cannot be avoided (see Remark 1 after the text
of Theorem B for more details and Theorem 3 in [Nl] for the precise statement).
What our theorem does is give a natural variational problem where critical points do
exist for arbitrary manifolds. The type of nonuniqueness that arises here seems to be
quite general, as the reader will see.

To prove these results about local minima we first analyse the geometry
of sublevel sets of diameter regarded as a functional on Ri(M). In particular,
we demonstrate that for all sufficiently large x the sublevel sets of the diameter
diam'1^^, x]) C Ri(M) are not connected; these sublevel sets can be represented as a
union of at least exp(^)^) non-empty subsets separated from each other by "gaps55,
where c(n) > 0 depends only on n\ the infimum of the volume on some of these
subsets is positive, and the number of the subsets with this property also grows at
least exponentially with ^; and this "severe55 disconnectedness cannot be avoided by
allowing a "controllable55 increase of diameter along the path in Ri(M) which connects
Riemannian metrics from different connected components of diam~l{(p, x]).

We then try to apply these ideas to the question of existence of Einstein metrics
(or at least almost Einstein metrics) of non-positive scalar curvature on S72. We propose
an approach which eventually might lead to the construction of such metrics. In the
meantime we use our technique to demonstrate that the (contractible; cf. [L]) space
of Riemannian metrics of constant negative scalar curvature on S", n ^ 5, has very
complicated geometry (see Theorem 2 in section 1).

All these results are based on the existence of ^-dimensional smooth homology
spheres, (n ^ 5), not admitting Riemannian metrics of non-negative scalar curvature
and such that the volume of any of these homology spheres with respect to any
Riemannian metric ofRicci curvature ^ —(n—l) is greater than one. The fundamental
groups of these homology spheres in our construction are "made55 of certain arithmetic
groups with appropriate homology properties.

0. Introduction

Let M be a compact manifold. Assume that we are trying to prove the existence
of a solution of some variational problem on the space of Riemannian structures on M
(or on some subset of this space). Choose some minimizing sequence {|l^}^i. According
to the Gromov-Gheeger compactness theorem if we are able to prove the existence of
uniform upper bounds for the absolute values of the sectional curvature and diameters
as well as a uniform positive lower bound for the volumes of (M, j^-), then we will be
guaranteed that a subsequence of the sequence {|l^} converges to a C15 "-smooth limit,
where a is any positive number less than one. Even if we are able to prove only the
existence of a uniform lower bound for the values of the sectional curvature (as well
as the bounds for diameter and volume) instead of the upper bound for the absolute
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values of the sectional curvature, a compactness theorem proven by Burago, Gromov
and Perelman ([BGP]) guarantees that a subsequence of {(M,^)} converges in the
Gromov-Hausdorff topology to an Alexandrov space. Since the interesting variational
problems on the space of Riemannian structures are usually scale invariant, we can
have an upper bound for the diameter for free just by an appropriate rescaling. To find
a uniform two-sided or even lower bound for the sectional curvature is a non-trivial
(and sometimes very difficult) problem which can be compared with deriving a priori
bounds while trying to prove the existence of solutions of a PDE. However, even if
we have this two-sided bound for the sectional curvature, the sequence {(M, |LI,)} can
still collapse to some metric space of a lower dimension. One of the main conclusions
of our paper is that if one is interested in local extrema then in a wide class of such
situations the trouble caused by the absence of a positive uniform lower bound for the
volume can be avoided: we demonstrate how a search for local minima of a functional
on the space of Riemannian structures on an arbitrary Riemannian manifold M^ can
be often replaced by a search for local minima of the same functional but on spaces of
Riemannian structures on every manifold M" such that H*(]VT)=H*(M^) but such that
vol^W) ^ w(n) for any Riemannian metric |l on M^ satisfying Ric^n ^ ^ —(n— 1), where
w{n) is a positive constant depending only on n. (In fact, one can even demand here
that vol^^M.^ ^ G, where G is an arbitrary positive constant, e.g. C= 1.) Our method
enables one to restrict the class of manifolds which one needs to consider in order to
prove the existence of local extrema for M even further. For example, it is sufficient
to consider only manifolds which do not admit Riemannian metrics of non-negative
scalar curvature (this property can be useful when one is looking for Einstein metrics).
Moreover, when our method works, it yields an infinite set of distinct local minima and
a (usually exponential) lower bound for the distribution function of these local minima.
As a concrete application of our technique we prove that for any compact manifold
M of dimension ^ 5 the diameter has infinitely many local minima on the closure
with respect to the Gromov-Hausdorff topology of the set of all smooth Riemannian
structures on M satisfying |K[ ^ 1 in the space Mef(M) of all isometry classes of metric
spaces homeomorphic to M (see Theorem B below). (Met(M) is assumed to be endowed
with the Gromov-Hausdorff topology. It is known that all elements of this closure are
C15 "-smooth Riemannian structures on M for any a € (0, 1); cf. [F].) Note also that
according to Theorem G at the end of section 1 the method developed in the present
paper can be applied in a similar fashion not only to extremal problems but to a very
wide class of (finite) systems of equations and inequalities for functionals on the space
of Riemannian structures on any compact manifold of dimension ^ 5. Because our
method involves results from several branches of mathematics we will be somewhat
lengthy in our introduction.

To state our main theorems let us introduce the following notations: let M
be any compact manifold. Denote by Riem\(M) the space of Riemannian structures on
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M such that the absolute values of sectional curvature do not exceed one. (The basic
properties of the space of Riemannian structures on a compact manifold can be found,
for example, in [Bou] and [Be].) Denote by Met(M) the space of isometry classes of
metric spaces homeomorphic to M endowed by the Gromov-Hausdorff metric, and by
Ri(M) the closure of Riem\(M) in Met(M). Note that for many manifolds M (including
tori of any dimension and spheres of any odd dimension) Ri(M) is not complete
because of the possibility of a collapsing to a lower-dimensional metric space. On
the other hand the Cheeger-Gromov compactness theorem implies that all elements
of Ri(M) are G1 5 "-smooth Riemannian structures on M, for any positive a < 1. We
can consider diameter as a functional on Ri(M) which will be denoted by diam. An
increasing function (() : (0, oo) —> (0, oo) is said to be effectively majori^abk if there
exists a (Turing) computable increasing function a : N —> N such that for any x
^(x) ^ a( [x]). (For example, for any positive real c\^c^ functions c\x62^ exp(^i^2) or
exp(exp(...exp(^1))) ([x^] + 1 exponentiations) are effectively majorizable.

Theorem A (Informal version). — Let M72 be any compact n-dimensional manifold of
dimension n ^ 5. For all sufficiently large x the sublevel set diam~^{(ft, x\) of diameter regarded
as a functional on Ri(M") is not connected. Moreover, it can be represented as a union of disjoint
non-empty subsets ("components") separated by a "gap" (in the Gromov-Hausdorff metric) and such
that any two Riemannian structures from different components cannot be connected by a finite sequence
of sufficiently small "jumps" in Ri(M^) passing through Riemannian structure of diameter ^ x or
even ^ ^(x), where ^ is any increasing effectively majorizable Junction. (But the value of x such
that the last statement becomes true starting from this value depends on the choice (̂  of course.) The
number of these "components" grows at least exponentially with x'1. Finally, (and most important for
applications we have in mind!) for all sufficiently large x for some of these "components" the volume
regarded as a functional on a fixed "component" has a positive lower bound not less than a certain
positive constant depending only on n. The number of "components" with this property also grows at
least exponentially with x^1.

Theorem A (Formal version). — Let Mn be any compact n-dimensional manifold, n ̂  5. Let
^ be any effectively majorizable function such that ^(x) ^ x for any positive x. For any x there exist a
non-negative integer 1, J C {0, ...,1}., and a partition of the sublevel set diam~{{{0, x]) C Ri(M")
into disjoint non-empty subsets R (̂M^ x), i= 1, ...,I with the following properties:

(i) There exists a positive E(n) depending only on n such that the Gromov-Hausdorff
distance between any Riemannian metric from R (̂M^ x) and Ry(M^ x) for i ̂ j is not less than
E(n)exp{—(n — l)x);

(ii) Moreover/or any i , j ^ {1,..., 1}^ i ̂ j and any [i G R ÎVT, x), v € R^M", x) there is
no sequence of "jumps" in Ri(M^) of length not exceeding Ei(n)exp{—{n — 1)(|)(^)) connecting [l and
v and passing only through Riemannian structures on Mn from diam~^[(ft, ^{x)]). (That is, there is
no finite sequence of elements o/^Ri(M^) of diameter not exceeding ^(x) such that the first term of the



VARIATIONAL PROBLEMS FOR RIEMANNIAN FUNCTIONALS AND ARITHMETIC GROUPS 9

sequence coincides with \JL, the last term of the sequence coincides with v and the Gromov-Hausdorff
distance between two consecutive terms of the sequence does not exceed }L(ri)exp(—(n — V)^(x)));

(iii) There exist a positive constant v(n) depending only on n such that for any positive integer
j ^J and for any [i € R (̂M^ x) the volume of ̂ W, |l) is not less than v(n);

(iv) For a strictly increasing unbounded sequence {^}^ of values of x I ^ 2 and] > 1.
(This implies, in particular, that for any i, diam~^{(f^, Xj\) C Ri(M^) is not connected and that

<6Ri(M^ ̂ (M") ^ W.

(v) Furthermore, J > 1 and 1 ^ 2 for all sufficiently large x (and not only for some infinite
unbounded sequence {^}^i of values of x). Moreover, there exists a constant C(n) > 0 depending
only on n such that for all sufficiently large x I >J ^ exp{C(n)xn).

Remark 1. — It is clear that Theorem A without (iv) or (v) is vacuous. Of
course, (v) is stronger than (iv), and the second statement in (v) is stronger than the
first statement. The reason why we decided to state (iv) separately is that its proof
is conceptually and technically simpler, and already has quite interesting applications
(see Remark 3 after the text of Theorem B below). Moreover, combining the proof of
parts (i)-(iv) of Theorem A given below with Lemma 6 in [N3] in a fashion similar to
its application in [N3] one immediately obtains the first statement of (v) (that is, the
statement that 1 ^ 2 and J ^ 1 for all sufficiently large x.) The proof of the exponential
growth of I and J given below uses the notion of time-bounded Kolmogorov complexity
and heavily relies on the constructions and results of [N2]. Also, observe that (i) is a
particular case of (ii), where (^{x) = x. Here the purpose of formulating first a weaker
property (i) was to state a result which a reader not willing to deal with the terminology
from recursion theory can use. (However, we do not know a proof of the existence of
the partition satisfying (i), (iii), (iv) essentially simpler than the proof of the existence of
a partition satisfying (i)-(iv) given below.)

Important remark 2. — Theorem A can be strengthened in the following two ways:

1) In (iii) one can replace the statement that the infimum of volume on R^M", x)
for anyj G {1 , ..., J} is not less than the positive constant v{n) depending only on n
by the statement that the infimum of volume on R^M", x) is not less than exp(q(n)x),
where q(n) is a positive constant depending only on n. As a corollary, we can also
replace v(n) in the text of Theorem A by any positive constant of our choice, e.g. by
1. (As before, part (v) of Theorem A contains the statement that the number ofj with
this property is at least exp(C(7z)x") for all sufficiently large x.)

2) In Theorem A, part (iii) one can replace the condition that for any
|LI C Rj(Mn,x),j C {!, . . . , J}, the volume of (M", n) is not less than v(n) by the
condition that the volume of the subset of (1VT, |l) which consists of all points where
the injectivity radius is greater than some positive constant e{n) depending only on n is
not less than v{n). Furthermore, combining both parts of this remark together we can
replace v(n) here by exp{q(n)x), where q(n) is the same as above.
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This remark will be proven at the end of section 4 after the text of the proof of
Theorem A.

For any continuous functional the local minima of its restriction to its sublevel
sets will automatically be its local minima on the whole space. Therefore local minima
of diameter on its sublevel sets will be automatically its local minima on Ri(M"). The
Gromov-Gheeger compactness theorem implies the existence of the global minimum of
diameter on Ry(M^, x) for any j ̂  J. These global minima are, of course, local minima
of diam on diamT^^^ x]). Moreover, these local minima are G1 5 "-smooth Riemannian
structures on M" for any a C (0, 1). Thus, applying Theorem A we immediately obtain
the following result:

Theorem B. — For any compact manifold M" of dimension n > 5 the set of local minima of
diameter regarded as a functional on Ri(M^) is infinite, and the set of values of diameter at its local
minima is unbounded. Furthermore, let (|) be any effectively majori^abk function such that ^(x) ^ x
(e.g. ^(x)=x). Then for any sufficiently large x there exists at least [exp(C(n)^1)] local minima of
diam on Ri(M") such that the value of diameter at any of these local minima does not exceed x, the
volume is not less than v(n) > 0, and which are "deep" in the following sense: let [l be one of these
local minima. There is no finite sequence of "jumps" of length ^ 'E(n)exp(—(n — l)^(diam(yi))) in
Ri(M") connecting [l with either a Riemannian structure on M" of a smaller diameter or with another
of these local minima and passing only through Riemannian structures of diameter ^ ^(diam(y)) on
M72. (The constants C{n) and JL{n) here are the same as in Theorem A.)

Remark 1. — This theorem can be regarded as a solution in dimension greater
than or equal to five of the following problem which appears as Problem 1 in
the S.T. Yau list of problems in differential geometry [Y]: Find a general way to
construct canonical Riemannian metrics on a given compact manifold. (See also [Br], [Sr].)
The considered variational problem is quite natural (see Remark 4 below) and has
"not very large35 set of solutions for every compact yz-dimensional manifold {n ^ 5).
Of course, it would be desirable to obtain a better smoothness of the canonical
Riemannian metrics than just G1'01 for any a < 1. On the other hand, the non-
uniqueness apparently cannot be completely avoided: according to Theorem 3 of [Nl]
if one insists that a canonical Riemannian metric must exist on any smooth compact
manifold of the considered dimension n ^ 5, and if there is an algorithm recognizing
a Riemannian metric sufficiently close to a canonical as having this property, then the
set of canonical Riemannian structures of volume one on any compact manifold of
the considered dimension is infinite. (The condition of the existence of the algorithm
recognizing Riemannian metrics sufficiently close to canonical is quite natural here:
without this condition one can just choose one Riemannian metric on any compact
manifold using the axiom of choice.) To explain the non-uniqueness of canonical
Riemannian structures recall first the classical Markov theorem asserting the non-
existence of an algorithm deciding whether or not two compact differentiable manifolds
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are diffeomorphic. Were a canonical Riemannian structure on any compact manifold
unique there would have existed an algorithm solving the difFeomorphism problem.
Indeed, one would seek a sufficiently close approximation to canonical metrics on given
manifolds and apply the easily seen fact that suitably interpreted isometry between
compact Riemannian manifold is a decidable problem. A slightly more complicated
argument based on the same idea can be used to prove that the set of canonical
Riemannian structures of volume one must be infinite.

Remark 2. — Note that for many manifolds the global minimum of diameter on
Ri(M) does not exist. For example, the infimum of diameter on Ri(T") is equal to
zero. (Here T" denotes the ^-dimensional torus.)

Remark 3. — The proof of the exponential lower bound for I, J in part (v) of
Theorem A heavily relies on the material of sections 2, 3 of [N2]. For the reader not
interested in these exponential lower bounds note that parts (i)-(iv) of Theorem A imply
the following weaker version of Theorem B: Let Mn be as before a compact connected manifold
of dimension n ^ 5. Let ^ be an effectively majori^able function such that ^(x) ^ x. There exists an
infinite sequence {p^}^ of local minima of diam on Ri(M^) such that the corresponding sequence
of values of diameter {diam{[ii) }<^=^ is unbounded; and for any i there is no sequence of "jumps5) of
length ^ E{n)exp{—{n— l)(j)(<fezm(|l,))) in diam~~\{0, ^{diam^i)) ]) C Ri(M") connecting |̂  with
a Riemannian metric on M^ of diameter strictly less than diam{[ii). Indeed, for an unbounded
sequence {^}^ i of values of x J ^ 1 and 1 ^ 2 . We can proceed as follows. Start
from Xi=A:i . Define |Lli as the global minimum of diam on Ri^^Xi). For any
i ^ 2 choose X, € {^}^i to be sufficiently large to ensure that diam~\(0, X;_i + 1])
belongs to R^(M^, X^) for some k(i). (The existence of such X; follows from the
precompactness of diam~\(0^ X^_i + 1]).) If M" admits Riemannian metrics such that
sup [K| ^ 1 and vol < v{n), then we can choose X^ to be sufficiently large to ensure that
inf ^ ^n ^vol^fM'1) < v(n). (Here v{n) is the same as in Theorem A, (iii).) Let /== 1 in
this case. If inf ^ ̂  zW^(M72) ^ v(n), thenj=l > 2. Choose (any) / € { 1 , 2 } such that
l-^-k^i). In both cases there exists the global minimum u,^ of diam on R/^^X^), and
the value of the diameter at this global minimum is greater than X^_ i + 1. It is easy
to see that the sequence {|lJ has the required properties.

Remark 4. — If M" does not admit a flat metric then the local minima of diam on
Ri(M'2) are the same as local minima of sup |K| on the space of Riemannian structures
of diameter one on M71, where sup |K| is understood in the sense ofAlexandrov spaces
with curvature bounded from both sides (cf. [BN]). In this setting the variational
problem considered in Theorem B looks very natural.

Remark 5. — The supplements to Theorem A stated as Remark 2 after its
statement imply that in the statement of Theorem B we can also demand that for any
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of the local minima |Ll vol^fM71) > exp(q(n)x). Moreover, we can demand that the volume
of the subset of (M", |l) formed by all points where the injectivity radius is greater
than e(n) > 0 is greater than exp(q(n)x). Here q(n) and e{n) are the same as in the text
of Remark 2 after Theorem A.

Here is a brief description of our approach. Its central and the most difficult
part is the construction for any n ^ 5 of a smooth homology sphere not admitting
Riemannian metrics of non-negative scalar curvature and such that the volume of this
homology sphere endowed with any Riemannian metric ofRicci curvature ^ —(n— 1) is
not less than a certain positive constant w(n) depending only on n. (These properties are
typical for manifolds admitting non-flat Riemannian metrics of non-positive sectional
curvature. However, it is not presently known whether or not there exist homology
72-spheres admitting metrics of non-positive sectional curvature or even K(TT, 1) smooth
homology /z-spheres for n > 3.) We build the fundamental groups of these homology
spheres out of certain arithmetic groups by taking the universal central extension of
an appropriate amalgamated free product with several copies of an acyclic group. Our
constructions heavily rely on deep results of several mathematicians on cohomology of
arithmetic groups ([Bor 2], [Bor 3], [BorWal], [G10], [Cl], [KtO], [Ktl]). Other crucial
ingredients are the classification of smooth homology spheres by J.-P. Hausmann and
P. Vogel (cf. [Haus], [V]) based on S. Gappell andj. Shaneson's theory of homology
surgery ([CS]) and M. Gromov's theorems establishing for a class of manifolds that
the volume of any of these manifolds endowed with any Riemannian metric of Ricci
curvature ^ —(n — 1) is not less than a certain positive constant depending only on
the dimension (section 6.6 in [Gr 2] and the Main Inequality on p. 12 of [Gr 1]).
The required homology spheres are constructed in section 2, modulo Proposition 4
establishing the existence of finitely presented groups with certain homology properties.
In section 3 we describe several constructions of such groups.

Then we prove that for any fixed n ^ 5 there is no algorithm which distinguishes
such smooth homology spheres from the standard sphere Sn. This result is stated as
Theorem 1 .A at the beginning of section 1 and proven in section 2 using Proposition 4.
(Very roughly, the idea is that starting from one group which is the fundamental group
of a smooth homology sphere with the required properties one can construct infinitely
many of such groups. In fact, there is enough flexibility in construction of fundamental
groups of such homology spheres to prove that there is no algorithm distinguishing
such groups from the trivial group. The proof of this fact uses ideas of the proof
of the classical Adyan-Rabin theorem establishing the algorithmic unsolvability of the
triviality problem for finitely presented group given in [M]. By the way, observe that
even if there exist hyperbolic smooth homology spheres of dimensions > 5 the problem
of distinguishing between such spheres and the standard sphere is algorithmically
solvable.) Furthermore, Theorem 1 provides also a lower bound for the time-bounded
Kolmogorov complexity of the problem of recognition of S71 among homology spheres
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from an appropriate effectively constructed sequence for any computable time bound.
(Any homology sphere in this sequence is either diffeomorphic to S" or does not admit
Riemannian metrics of non-negative scalar curvature and does not admit Riemannian
metrics such that Ric ^ -(n - 1) and the volume < w{n).) This part of Theorem 1
is used in the proof of part (v) of Theorem A but is not required for the proof of
parts (i)-(iv). The notion of time-bounded Kolmogorov complexity can be informally
explained as follows. Consider a (possibly algorithmically unsolvable) decision problem.
Assume now that the Turing machine is allowed to use oracle information but it must
solve the decision problem for any instance of size ^ N in a time not exceeding a
given computable function f(N). Of course, the amount of oracle information used by
the Turing machine can also depend on N. Here we assume that there is a natural
notion of the size of instances of the decision problem. The oracle information is
represented as a string of zeroes and ones. The amount of the oracle information is
just the length of this sequence. Instead of the Turing machine one can imagine the
computer program, say in FORTRAN or C, but using only the integer type of data.
The program is supposed to work as follows. For every N it receives a string of O's and
1's (the oracle information). After that it must be able to solve the decision problem
for any input of size ^ N in time bounded by ^(N). If t is not too slowly growing, one
can, for example, demand the list of all answers for all inputs of size < N as the oracle
information. (We assume that the number of instances of the problem of size < N is
finite for any N.) Roughly speaking, the time-bounded Kolmogorov complexity of the
decision problem with time resources bounded by t is the minimal amount of oracle
information required to solve the decision problem for all inputs of size ^ N. The
rigorous definition and discussion of the time-bounded Kolmogorov complexity can
be found in [N2], [N4], [LV], [D]. According to [B] there exists a Turing machine
T such that its halting problem has time-bounded Kolmogorov complexity with time
resources bounded by t not less than 2^/const(t) for any computable function t. Here
inputs are finite strings of O's and 1's, and the size of instances of the problem is just
the length of the input strings (see also section 2 of [N2] and Theorem 2.5 in [ZL]).
(In other words, there is no essentially better way to ask for the oracle information than
just to ask for the list of all answers as in the example mentioned above. We cannot
reduce the required amount of oracle information more than by a constant factor.)
This theorem can be regarded as a quantitative version of Turing's classical theorem
on the algorithmic unsolvability of the halting problem for Turing machines. In [N2] it
was shown that the Barzdin theorem implies similar exponential lower bounds for the
time-bounded Kolmogorov complexity of the word problem and the triviality problem
for finitely presented groups as well as for the homeomorphism problem for compact
Tz-dimensional manifolds, n > 5. These results are used in the proof of Theorem 1 and
Theorem A(v) of the present paper.
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The last part of Theorem 1 contains the same results for any fixed compact
manifold of dimension ^ 5 (instead of S"). (This almost immediately follows from the
proof in the S^ case.)

Very informally speaking, Theorem 1 implies that the space of all Riemannian
structures on any compact ^-dimensional manifold, (n ^ 5), and, in particular, on S" has
"many55 "large55 regions where it "looks55 like the space of Riemannian structures on
a manifold admitting a non-negatively curved Riemannian metric, and which can be
reached starting from the standard metric only by a path passing through Riemannian
metrics of extremely high curvature-pinching (sup |K|) diam^. (Most probably, it can
be reached only by a path passing through Riemannian metrics of extremely high
— infK diam2, but at the moment we are not able to prove this.)

In section 1 we apply Theorem 1 to demonstrate that the graph of scalar
curvature on the space of Riemannian metrics on Sn, n ^ 5, of negative constant scalar
curvature has complicated geometry (see Theorem 2). In section 1 we also describe an
approach to the construction of Einstein or almost Einstein metrics of negative scalar
curvature on S" (Proposition 3). This approach can be used to reduce the problem of
construction of Einstein or almost Einstein metrics of negative scalar curvature on S72 to
the problem of construction of such metrics on smooth homology spheres not admitting
Riemannian metrics of non-negative scalar curvature, not representable as a non-trivial
connected sum and such that the volume of these homology spheres endowed with
any Riemannian metric ofRicci curvature ^ —(n— 1) is not less than a certain positive
constant v{n) depending only on n. But for manifolds with these properties one can hope
to prove the existence of at least almost Einstein metrics by minimizing the volume over
the space of Riemannian metrics of constant scalar curvature — 1. (However, note that
one will probably need an irreducibility condition much stronger than just impossibility
to represent the homology sphere as a connected sum in a non-trivial way. Still, it
seems quite possible that such extra conditions can be satisfied in the framework of
our general approach.) Our technique can be similarly applied to an extremely wide
class of systems of "equations55 and "inequalities55 involving Ricci, sectional and scalar
curvature, volume, diameter, algebraic operations and G^- and L^-norms (for any k ^ 0)
(see Theorem C at the end of Section 1).

Theorem A follows from Theorem 1 by contradiction: assuming Theorem A
to be false, we construct (Proposition 0.2) an algorithm of the sort Theorem 1
precludes. This argument is given in section 4. For example, a very particular case of
Proposition 0.2 states that if for all sufficiently large x either diam~^((0, x]) € Ri(S72) is
connected or there are no connected components on which the infimum of volume
is ^ v(n) > 0 (or even if the number of connected components with this property
grows with x slower than exp(o^) for any c > 0), then there is an algorithm which
distinguishes S" from any nonsimply-connected homology sphere with the property that
its volume when endowed with any Riemannian metric ofRicci curvature > —(n—V) is
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not less than v(ri). In order to explain here some ideas of our proof of Proposition 0.2
in section 4 we provide here the following argument illustrating possible connections
between connectedness and algorithmic decidability (as well as between the number of
connected components and the time-bounded Kolmogorov complexity).

Let (X^, dk) be a family of precompact metric spaces, and A^ C X/: be their
subsets such that for any a € A/: and x C X^ \ A^ dk{a, x) > Q(k) > 0, where 9 : N —> Q^
is a computable function. Assume that for any k A^ is connected. Then one can try to
solve the algorithmic problem "For given k and x G X :̂ decide whether or not x is an
element of A^' using the following algorithm: construct a finite 6(A)/5-net N^: in X^;.
(Of course, some extra assumptions about the family {(X^, <4)} must be made in order
to ensure the existence of an algorithm constructing for any k such a net.) Construct
a graph Gr{k) such that the set of its vertices is in a bijective correspondence with the
set of points of N^. Two vertices are connected by an edge iff the distance between
the corresponding points of N^ is at most 26(A;)/3. (Here we assume that the distances
between points of Nys; can be approximately calculated. We perfom the computations
of distances within to accuracy Q(k)/5 and neglect the possible errors of computations.)
Assume that we can find for any given k a,k e A^QN^. Now for any given x C Xy^
we can first find y € N^: 6(A;)/2-close to x and then determine if the vertices of Gr{k)
corresponding to y and a/, are in the same component of Gr(k). The answer will be
positive if and only if x G A^ The connectedness of A^ is, of course, crucial here.

Assume now that A/, is not necessarily connected but we are allowed to use oracle
information (depending on k) to solve the considered algorithmic problem. A reasonable
way to do that is to require a description of a representative from every connected
component of A/, which must be also an element of N^. Indeed, our assumption imply
that for any component of Gr(k) either all its vertices correspond to points in Ak or none
of them correspond to a point of Ak. Using the oracle information we can construct
all components of Gr{k) corresponding to points of Ak. Now for any given x G X^
find, as before, y € N^; 9(A:)/2-close to x and check whether or not the corresponding
vertex of Gr(K) is in one of the constructed components. With some luck this algorithm
will run in a time bounded by a computable function of k. The required amount of
oracle information grows linearly with the number of connected components of A^.
Therefore any upper bound for the number of connected components of Ak implies
also an upper bound for the time-bounded Kolmogorov complexity of the considered
decision problem.

Very roughly speaking, in section 4 we apply similar ideas in the situation when
we have a continuous parameter x instead of the discrete parameter k, X^; (or, more
precisely, X^) is the set of all isometry classes of compact ^-dimensional Riemannian
manifolds such that |K| ^ 1, volume is ^ v(n)/\QO and diameter is ^ x, and Ak is
the subset of X/: formed by all Riemannian structures on a fixed manifold. The most
difficult part of the proof is the construction of the required net on X^. In fact, we
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construct this net in a neighborhood of X^ using the following idea: applying first the
Ricci flow (cf. [Ha], [BMR]), then choosing appropriate harmonic local coordinates
(cf. [JK]) and performing an algebraic approximation we can approximate any
Riemannian manifold from X^ by a Riemannian manifold from a compact finite-
dimensional set. Then we construct a net in this finite-dimensional set.

Note that Theorems A, B are false as stated for n =2 or 3. (This fact
easily follows from the algorithmic recognizability of 2-dimensional manifolds and S3

(cf. e.g. [T]).) However, we do not know whether or not a slightly weakened version
of Theorems A, B where ^(x) = x is true. Moreover, we cannot say anything about the
local minima of diam on Ri(M) in the case when dim(M)=2 or 3 except the trivial
remark that if M is non-collapsible then the global minimum of diam on Ri(M) exists.
On the other hand we believe that Theorems A and B are true for all compact
4-dimensional manifolds. It is not difficult to prove these theorems for manifolds M
such that M=^#'H4'#k(S2 x S2), where N4 is an arbitrary compact four-dimensional
manifold, H4 is an arbitrary compact four-dimensional manifold of non-zero simplicial
volume (see [Gr 1] for the definition and properties of simplicial volume), and k is the
same absolute constant as in the text of Theorem 1.1B in [N2]. Indeed, the proof of
Theorem A, (i)-(iv), and of Theorem B minus the exponential lower bound for the
number of the deep local minima can be essentially found in [N3]. (These proofs can
be obtained by combining the proofs of Theorems 9 and 11 in section 5 of [N3] with
the remark at the beginning of section 5.A of [N3].) To prove Theorem A (v) and the
exponential lower bound for the number of the deep local minima one can follow the
proof of these statements given in the present paper but replacing Theorem 1 by the
smooth version of Lemma 3.1(b) of [N2].

In a sequel of this paper we hope to prove the analogs of Theorem A and B in
the situation when the diameter is regarded as a functional on the closure in MelfW}
of the space of Riemannian metrics on M72 of sectional curvature ^ — 1. (The elements
of this closure are Alexandrov structures of curvature > —1 on ]VT.)

1. Main algorithmic unsolvability result and its implications

Theorem 1. — A. For any fixed n ^ 5 there exists a positive rational w{n) such that there
is no algorithm which distinguishes between the standard n-dimensional sphere and smooth compact
non-simply connected n-dimensional manifolds with the following properties: (1) The manifold does
not admit a Riemannian metric of non-negative scalar curvature; (2) For any Riemannian metric on
this manifold or on any manifold homotopy equivalent to it such that its Ricci curvature is greater
than —(n— \\ the volume of the manifold with respect to this Riemannian metric is not less that
w(ri); (3) The manifold cannot be represented as the connected sum of two smooth manifolds such
that none of them is homeomorphic to the standard sphere.
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B. More precisely, there exists an algorithm which constructs for any given i G N a smooth
n-dimensional homology sphere Si endowed with a Riemannian metric [ii such that S^ is either
drffeomorphic to S" or is a non-simply connected homology sphere satisfying conditions (1)-(3) in the
text of part A, and the following conditions are satisfied: (i) Denote by I C N the set of indices i such
that Si is dzffeomorphic to Sn. Then I is non-recursive, and, moreover, for any Turing computable
increasing junction K the time-bounded Kolmogorov complexity K (̂Î , N) of the decision problem "Is
a given i an element of I?" for all natural numbers i ^ N with the time-bound K satisfies the
following inequality:

K^I, N) ^ N/^, n) - const.

Here c(k, n) is a positive constant depending only on K and n but not on N, and const does not
depend on N; (ii) For any i the absolute values of sectional curvatures of{Si, [ii) do not exceed one,

the convexity radius is not less than one, the diameter does not exceed const\ (n)(ln(i + 1))^ and the
volume is between const^(n)ln(i^~ 1) and const^ (n)ln(i+ \\ where const\(n), consign) and consign) are
some absolute positive constants.

C. Parts A and B of this theorem will be true for any compact manifold M^ instead of S72

providing that the following changes are made: first, one drops property (3). In the case ^M^ is not
spin one drops also property (1). (In this last case only property (2) remains.) In part B S; must be
smooth homology M^ and not homology spheres.

Remarks. — Part A of Theorem 1 is sufficient to prove Theorem A, parts (i)-(iv)
and, as a corollary, a weaker version of Theorem B stated in the Remark after the
text of Theorem B. We refer the reader to [N3], section 2 and [N4] for the definition
and discussion of the time-bounded Kolmogorov complexity and the Barzdin theorem
which is an essential ingredient in the proof of the part B of Theorem 1 (see also
[LV], [D], [ZL]).

Corollary. — For any n ^ 5 there exist n-dimensional smooth homology spheres satisfying
conditions (1)-(3) in the text of the part A of Theorem 1.

Remark. — The proof of the corollary is, in fact, a part of the proof of Theorem 1.
From this point of view it would be more appropriate to state it as a theorem preceding
Theorem 1.

Formally speaking, the term "algorithm" is used in this paper as a synonym of the
term "Turing machine55. Also, to make Theorem 1 rigorous one must postulate how the
(diffeomorphism types of) smooth manifolds and the (isometry classes) of Riemannian
metrics are presented in a finite form (for computational purposes). One possibility to
code manifolds in a finite form is Nash (i.e. smooth semialgebraic) atlases described in
[BHP] (see also [Nl] and the last section of the present paper). We can assume that all
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semialgebraic functions involved are defined over the field of real algebraic numbers.
The Riemannian metrics p,, in Theorem l.B and its generalization in Theorem l.C can
be given by smooth semialgebraic (over the fields of real algebraic numbers) functions
in the Nash local coordinates on the constructed manifolds. Another possibility is to
use the Tognoli theorem stating that any smooth compact manifold is diffeomorphic
to an algebraic subvariety of an Euclidean space. Using the Tarski-Seidenberg theorem
it is not difficult to see that one can choose this algebraic subvariety as a zero set of
a polynomial with algebraic coefficients (cf. [CtSh]; see also [BT]). One can regard
this vector of coefficients as a finite set of data representing (the diffeomorphism type
of) the considered manifold. Now the rigorous statement of Theorem 1 .A is that for
any fixed n ^ 5 there is no integer-valued recursive function defined on the set of
codes of compact smooth 72-dimensional manifolds (e.g. vectors of algebraic coefficients
of m polynomials of n + m real variables such that their set of common zeroes is a
compact 72-dimensional manifold), assuming the value zero if the given manifold is
diffeomorphic to S" and assuming the value one if the given manifold is a homology
sphere which satisfies properties (1)-(3) stated in the text of Theorem l.A. (We do
not postulate what are the values of this function in the other cases.) This approach
to coding manifolds can be similarly used in the situation of Theorem l.B, G. In
this approach we can choose Riemannian metrics induced by the embedding into
the ambient Euclidean space as |̂  (of course, a certain care is necessary when the
embeddings are constructed). In fact, we will prove that S, can be constructed as (non-
singular algebraic) hypersurfaces in R^. So in the situation of Theorems l.A, l.B
(but not Theorem l.C!) we can assume that manifolds S^ are coded by vectors of real
algebraic coefficients of a polynomial on R^1 such that S, is its zero set. (One can also
show that it is possible to construct S^ as non-singular algebraic hypersurfaces in R^
such that one can choose the Riemannian metric on S^ induced by the embedding
into R^ as |Li,, but we do not need this fact here.)

We are going to show how to deduce Theorem 1 from Proposition 4 in Section 2
and to prove Proposition 4, thus completing the proof of Theorem 1 in Section 3.
Proposition 4 is an algebraic reason d'etre of smooth homology spheres satisfying the
conditions (1)-(3) of the part A of Theorem 1. In the rest of this section we are
going to describe some possible applications of Theorem 1 in Riemannian geometry
different from Theorems A and B stated in the introduction. First, observe that a
weaker and much simpler version of Theorem l.A where the property (2) is not
required implies that:

Theorem 2 (Imprecise statement). — A. For any n ^ 5 and k ^ 0 there is no "nice" flow
(e.g. no "nice" modification of the Ricci flow) on the space of Riemannian metrics on S" with the
following property: the trajectory of the flow which starts at a Riemannian metric which is not of
positive scalar curvature always reaches the set of Riemannian metrics of positive scalar curvature in
time bounded by a computable Junction of volume, diameter and Ck-norm of the curvature tensor of
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the initial Riemannian metric. The adjective "nice" means here that the flow satisfies the following
properties: 1) There exists an algorithm allowing one to trace (approximately in the C?'-norm) the
trajectory of the flow starting from a sufficiently close approximation (in C^-norm) to the initial
Riemannian metric and until it reaches a Riemannian metric of positive scalar curvature; 2) The
time of work of this algorithm can be majori^ed by a computable function of accuracy and metric
invariants of the original metric (such as C^-norm of the curvature tensor, injectivity radius, volume,
diameter, etc.); 3) The algorithm can be applied to trace the trajectory of the flow on other compact
n-dimensional manifolds (not necessarily S71} to a given accuracy and during a given time unless by
some reason it cannot continue its work. In this last case the algorithm informs that it cannot continue
and stops. The initial data for this algorithm consist of a Nosh atlas (in the sense of [BHP]̂  see
also [N1]J defined over the field of real algebraic numbers and a Nosh (i.e. smooth semialgebraic for
any local coordinate system) Riemannian metric (also defined over the field of real algebraic numbers).

B. There is no "nice" flow on the space of Riemannian metrics of constant scalar curvature
and volume one on S^ n ^ 5, with the following property: the trajectory of the flow which starts
at a Riemannian metric of negative scalar curvature always reaches the set of Riemannian metrics
of constant positive scalar curvature in a time bounded by a computable function of volume, diameter
and the Ck-norm of the curvature tensor/or some fixed k.

We do not want to obscure this principle by giving a more formal definition of
"nice" flows. It is clear that this can be done.

The proof of A consists in demonstrating that the existence of such "nice55 flow
implies the existence of an algorithm distinguishing between the standard ^-dimensional
sphere and a smooth yz-dimensional homology sphere not admitting a metric of non-
negative scalar curvature. Indeed, consider the unknown manifold with the Riemannian
metric induced by the embedding in the ambient Euclidean space. Compute an upper
bound for the time of work of the algorithm tracing the flow and trace the flow during
the computed time. If the flow will lead to a Riemannian metric of non-negative scalar
curvature, then the manifold is Sn. If either the algorithm will stop prematurely or the
flow will not reach a Riemannian metric of positive scalar curvature in the considered
time, then the manifold is not S".

The proof of part B is obtained by a quite similar argument after one takes
into consideration the fact that there exists exactly one Riemannian metric of constant
negative scalar curvature in the conformal class of any Riemannian metric of (not
necessarily constant) negative scalar curvature (cf. [Sch] and references there), and that
this constant scalar curvature metric is the solution of a semilinear elliptic equation
which can be numerically solved with any prescribed accuracy.

Thus, it is completely wrong to visualise the graph of the scalar curvature on the space of
Riemannian structures on Sn of constant non-positive scalar curvature and volume one as a "mountain
slope" evenly raising (without any "peaks" or "precipices") from the domain of large negative values
of scalar curvature towards the domain on the graph, where the scalar curvature is positive.
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Let us describe now another possible application of Theorem 1. In [Nl] we
observed that the non-existence of an algorithm recognizing S^, (n ^ 5), implies that
if any homology sphere with infinite fundamental group almost admits an Einstein
metric then the standard sphere S" almost admits an Einstein metric of negative scalar
curvature. We say that a compact manifold M almost admits an Einstein metric of negative
scalar curvature if there exists a sequence of Riemannian metrics {gi} on M of constant
negative scalar curvature ^ and of diameter one such that: (0) The sequence ^ is
uniformly bounded from below; (i)

lim \\Ric(gi)-{s,/n)g^=0,
i——>oo

where the norms are taken with respect to g^ (ii) The sequence of volumes of (M,^-)
is bounded from below by a positive constant. As in [Nl], if it is desirable, then
one can modify this definition in many ways. For example, one can replace the
C° norm in (i) by any C^ or I/ norm and/or choose any non-negative integer k
and any computable increasing function of the G^-norm of the curvature tensor R
(say, exp(||R||c2)) and to demand instead of (i) that the product of the value of this
function and ||-R^(gz) — (^/^)&||c° must tend to zero. (All results below will remain
valid, if one changes the definition in such a way. "Computable55 means here that the
restriction of this function on integers is (Turing) computable.) Moreover, it was proven
in [Nl] that if the very plausible conjecture that there exists an algorithm solving a
problem which can be informally stated as the question "Is a given almost Einstein
metric close to an Einstein metric?55, then the existence of Einstein metric on all
smooth homology spheres of a fixed dimension n ^ 5 with infinite fundamental group
implies the existence of infinitely many different Einstein structures of volume one and
negative scalar curvature on the sphere S72. (See [Nl] for the rigorous statement of the
mentioned algorithmic problem. It is extremely plausible that this algorithmic problem
is algorithmically solvable.) Thus, one can try to prove the existence of (almost) Einstein
metrics of negative scalar curvature on S" by proving the existence of (almost) Einstein
metrics on all smooth ^-dimensional homology spheres with infinite fundamental group.
However, there is no known way to do that. One general method which could be used
to show that a homology sphere H admits an Einstein metric is the following: consider
the space of Riemannian structures of volume one and constant scalar curvature on
H. The scalar curvature can be regarded as the functional on this space. One can
try to maximize this functional. It is known the the supremum of this functional does
not exceed the scalar curvature of the standard metric of volume one Sn. Further, if
there exists a Riemannian structure on H at which this maximum is achieved and
the corresponding maximal value is non-positive then this Riemannian structure is
Einstein. (The proofs of these results can be found in [Sch] (see also [An2]).) The
last result indicates that ad hoc it might be simpler to prove that the described
procedure leads to an Einstein (or almost Einstein) metric if the manifold does not
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admit Riemannian metrics of non-negative scalar curvature. (There are some additional
technical reasons why it might be simpler to consider only manifolds not admitting
Riemannian metrics of non-negative scalar curvature. For example, for such manifolds
there exists a unique metric of constant scalar curvature in every conformal class,
and the space of Riemannian metrics of constant scalar curvature and volume one is
known to be a ILH-manifold (see [Be]).) As it is clear from the work of Anderson
([An 2]) about Einstein metrics on compact 3-dimensional manifolds, the impossibility
to represent a manifold as the connected sum of two manifolds none of which is
homeomorphic to the sphere also can help to prove the existence of an (almost)
Einstein metric on this manifold. Theorem 1 allows us to replace the problem of
finding (almost) Einstein metrics on all homology spheres by the problem of finding
such metrics only on homology spheres not admitting metrics of non-negative scalar
curvature and such that they cannot be represented as the connected sum in a non-
trivial way. An equivalent dual version of the just described approach to construction of
Einstein metrics is to minimize volume over the space of metrics of constant negative
scalar curvature —n. This seems to be easier if the volume of the manifold with respect
to any Riemannian metric of Ricci curvature ^ —(n — 1) is greater than v(n) > 0 (as it
happens, for example, for manifolds of non-zero simplicial volume; see [Gr 1]). In this
case the condition (ii) in the definition of almost Einstein metrics of negative scalar
curvature automatically follows from conditions (0) and (i). All these remarks indicate
that the following proposition can be an important step in the proof that S", n ^ 5,
almost admits Einstein metrics of negative scalar curvature.

Proposition 3. — Let n ̂  5 be fixed. Assume that any smooth n-dimensional homology sphere
satisfying properties (1)-(3) from the text of Theorem LA almost admits an Einstein metric. Then
the standard sphere S" almost admits an Einstein metric of negative scalar curvature.

Remark. — As in [Nl] one can also state the version of this proposition for
Einstein metrics instead of almost Einstein metrics providing that either the conjecture
(D) on p. 78 of [Nl] is true, or that one assumes not merely the existence of Einstein
metrics on homology spheres satisfying conditions (1)-(3) from the text of Theorem l.A
but the existence of stable Einstein metrics in the sense of [Be] (Definition 4.63). As
in [Nl] one can prove under this assumption the existence of infinitely many distinct
Einstein structures of scalar curvature —1 on S", {n ^ 5).

Sketch of the proof. — This theorem follows from Theorem 1 exactly as Theorem 1
of [Nl] followed from the S. Novikov theorem stating the algorithmic unrecognizability
of S", n ^ 5. The idea of the proof by contradiction is to assume that any smooth
72-dimensional homology sphere satisfying properties (1)-(3) from the text of Theo-
rem l.A almost admits an Einstein metric and that S" does not almost admit an
Einstein metric of negative scalar curvature and to construct an algorithm which dis-
tinguishes between S" and an irreducible homology sphere. The idea of the algorithm
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is very simple: we look (using a trial and error algorithm) for either a metric of positive
Ricci curvature on a given manifold or an almost Einstein metric. It follows from our
assumptions that we eventually will find either a metric of positive Ricci curvature,
and in this case the manifold is S", or an almost Einstein metric, and we know that
in this last case the manifold cannot be S\ D

Of course, the same idea to combine Theorem 1 with [Nl] can be applied not
only to find (almost) Einstein metrics but when one tries to prove the existence of
an arbitrary finite systems of equations and inequalities on the space of Riemannian
metrics on a fixed compact manifold of dimension ^ 5. Assume that some such
system involving Riemannian metric, curvature tensor and/or its separate components,
sectional curvature, Ricci curvature, scalar curvature, injectivity radius, convexity radius,
volume, diameter, G^, L^ and W^-norms, algebraic operations and, more generally,
elementary functions be given. (Example: Ric — (scal/ri)g = 0 and seal < 0.) Assume that
any equation or inequality is written in the form E?0, where E is a Riemannian
functional and ? is = = , > , < , ^ or <. For any such system S, any fixed k, and any
£ we can replace S by a one-parametric family of systems Sg indexed by positive e
and obtained from S as follows: any equation E=0 is replaced by ||E||^ < e, all strict
inequalities are preserved as they are, any inequality E < 0 (or E ^ 0) is replaced by
E < e (or, correspondingly, E > —e).

Theorem C. — For any n ^ 5 and any compact manifold Mn of dimension n consider the
class <7 of all smooth n-dimensional manifolds with the same homology as M" and such that the
volume of any of these manifolds endowed with any Riemannian metric on this manifold of Ricci
curvature greater than —(n— 1) is not less than the positive constant w(n) depending only on n
defined in the text of Theorem 1.A. IfMn is spin we impose an additional constraint in the definition
of <7 leaving only those manifolds which do not admit a Riemannian metric of non-negative scalar
curvature. If for any e > 0 the system Sg has a solution in the space of Riemannian metrics on any
manifold from the class a then for any £ > 0 Sg has a solution in the space of Riemannian metrics
on M1.

2. Reduction of Theorem 1 to homological group theory

In this section we are going to deduce Theorem 1 from the following proposition
which will be proven in the next section:

Proposition 4. — For any n ̂  5 there exists a group Ao and a homo logy class hn 6 H^(BAo)
such that:

(1) Ao belongs to the class P of finitely presented groups defined as follows: P is the minimal
class which contains all discrete subgroups of connected Lie groups and is closed with respect to
forming amalgamated free products of groups from this class such that the amalgamated subgroup is
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free or abelian and forming HNN-extensions of groups from this class where the associated subgroup
is free or abelian;

(2)Hi(Ao)={0};

(3) Let h^ denote the image of hn in H^(BAo) under the isomorphism of the n-th homology

groups of^Ao and BAg^, where BAg denotes the result of the application of the Quillen -^--cons-

truction to BAo. Then the class h^ is spherical (i.e. it is in the image of the Hurewic^ homomorphism

(̂BAo") —— H^BAo^;

(4) For any non-^ero integer k khn =)= 0 in H (̂BAo);

and either

(5) The simplicial norm of hn regarded as a real homology class is non-^ero;

or

(5'.1) The class hn is not in the image of the homomorphism p^ : H^(Q^Ao//^o) —^ H^(Ao)
defined on the p. 79 of [Or 2J; and

(5'. 2) The group Ao is torsion-free, and there exist elements g\, ...y gi normally generating Ao
and satisfying the following additional condition: none of them is a square of an element of Ao.

The Quillen +-contruction and its properties are explained, for example, in
[Ros 2]. In particular, it assigns to any CW-compex X and a perfect normal subgroup n
of 7Ci(X) a CW-complex X4" and the canonical inclusion X ——> X4" inducing the
epimorphism of fundamental groups 7li(X) —> 7I;l(X+)=7^l(X)/7^ and such that the pair
(X4", X) is homologically acyclic. X4" can be obtained from X by first attaching 2-cells
in order to kill n and then attaching 3-cells to restore the second homology groups of
X. In the present paper we apply the Quillen +-construction only in the case when
[Tli (X), Tli (X)] is perfect and n= [7Ci(X), n\(X)]. Therefore from now on we will be
omitting the mention of n while discussing the +-construction. Moreover, in most cases
we will be applying the +-construction in the situation when 7li(X) is perfect and,
thus, TC= [7Ti(X), 7Ti(X)] =7ti(X). In this case X4" is simply-connected and the canonical
inclusion induces the isomorphism of homology groups of X and X"^. Finally, recall
that the +-construction is functorial. The Quillen +-construction appears in our work
because of the following result ofj. Hausmann and P. Vogel (cf. [Haus]) based on the
theory of homology surgery by S. Gappell and J. Shaneson ([CS]): let n ^ 5 be any
fixed number, A be a finitely presented group and h be an element of H^(A). The
necessary and sufficient conditions of the existence of a smooth Tz-dimensional homology
sphere E" with the fundamental group A such that h is the image of the fundamental
homology class of 2^ under the homomorphism H^(E") —> H^(BA) = H^(A) induced by
the classifying map into BA are the following:
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(1)Hi(A)=H2(A)={0};
(2) The image h+ of h in H^BA"^ under the isomorphism induced by the

canonical embedding BA —> BA+ is in the image of the Hurewicz homomorphism
TI^BA^ —^ H^BA^.

It is a well-known result ofKervaire ([KO]) that (1) is the necessary and sufficient
condition for a finitely-presented group A to be the fundamental group of a smooth
n-dimensional homology sphere (for any fixed n ^ 5). The necessity of (2) is obvious:
if there exists a homology sphere V such that 7li(Z^)==A and h is the image of the
fundamental homology class of 2^ under the homomorphism of homology groups
induced by the classifying mapf: 272 —> BA, then applying the Quillen +-construction
to the map f we obtain a continuous map /+ : (IV^^S^ —> BA"^. The induced
homomorphism of homology groups maps the fundamental homology class of S"
into h^.

Following [Gr 1] one can define for any topological space X the simplicial norm
11^:11 of any real homology class ^ 6 H^(X, R) as the infimum over all singular chains
c = I^oc^, (fti C R, Oi is a singular simplex in X), representing ^ of the I1-norm of c
H ^ l l =£^|a^|. For a compact orientable manifold M the simplicial volume ||M|| of M is
defined as the simplicial norm of the real fundamental homology class of M. If M is a
compact non-orientable manifold, then its simplicial volume ||M|[ is defined as n[|M||,

where M is the orientable double covering of M. The importance of this notion for
our purposes is due to the fact that for any Riemannian manifold (M,^) such that
Ri^M,g) ^ —(n— 1) the volume of (M,^) is not less than <;wzj^z)||M||, where const(n) is
a positive constant which can be explicitly written down ([Gr I], Main inequality on
p. 12). Moreover, the simplicial volume of an orientable manifold M coincides with
the simplicial norm of the image of the real fundamental homology class of M in
H^(K(7li(M), 1),R), (n=dim M), under the homomorphism induced by the classifying
map M —> K(7Ci(M), 1) (Corollary (B) on p. 40 of [Gr 1]). Many other properties of
simplicial volume and a closely related notion of bounded cohomology can be found
in the seminal paper [Gr 1] (see also [T|, [BP]).

Furthermore, Q^AQ denotes the simplicial complex of almost nilpotent groups
of AO. (Its vertices are in a bijective correspondence with all nontrivial elements of
Ao; the simplex formed by several vertices is a simplex of Q^ it and only if the
corresponding elements of Ao generate an almost nilpotent subgroup of Ao.) There is
a natural action of Ao on Q ô induced by the action of Ao on itself by conjugation.
Thus, we can consider the Borel construction p : (Q^AO = Q.AQ//AO —> BAo. (See
either chapter 6.6 of [Gr 2] or the beginning of the proof of Lemma 5.8 below
for a more detailed description of Q^AO//AO and p.) Now we can state another result
of Gromov used in our paper: assume that G is a discrete group such that the
homomorphism p^ : H^(Q^G//G) —> H^(G) induced by p vanishes for some n. Assume
that M is a compact ^-dimensional manifold, and q : M —> BG is a continuous map
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such that the image of the fundamental homology class of M under the homomor-
phism q^ : H^(M) —> H^(BG) induced by q is not equal to zero. Then Theorem 6.6.D
of [Gr 2] implies (as in the proof of Theorem 6.6.D" in [Gr 2]) that there exists a
positive c(n) such that vol(M.,g) ^ c(n) for any Riemannian metric g on M such that
Ric(M,g) ^ —(n— 1). (In fact, it is clear from the proof of Theorem 6.6.D in [Gr 2] that
instead of vanishing of p^ on H^(Q^G//G) one can demand a weaker condition that the
image of the fundamental homology class of M under the homomorphism q^ is not in
the range ofj^.)

Below we give two parallel but different proofs of Theorem 1 (and, thus, of
Theorems A, B, G). One proof is based on [Gr 1] and on constructions in section 3
below of AO satisfying conditions (1)-(5). Another proof uses [Gr 2] and constructions
of groups Ao satysfying (1)-(4), (5/.l),(5/.2) also described in section 3.

Here is the scheme of the proof of Theorem 1 assuming Proposition 4. Start
from a Turing machine T with the unsolvable halting problem. First we are going to
effectively construct a sequence of (finite presentations of) groups Gi and homology
classes \ G H^(G,) such that:

(i) The sequence of indices i for which Gi is non-trivial is recursively enumerable
but non-recursive (that is, there is no algorithm deciding for a given i whether or
not G; is trivial). Moreover, the halting problem for T for inputs of length ^ N is
effectively reducible to the triviality problem for the first 2^ groups G;. The numbers
of generators and relators in constructed finite presentations G; do not depend on i.
The lengths of relators are bounded by a linear function ofln(z+ 1).

(ii) If Gi is non-trivial, then for any integer non-zero k kh^ =|= 0;
(iii) Gi is the universal central extension of a perfect group L^ which belongs to

the class P introduced in the text of Proposition 4. (This implies, in particular, that
Hi(G,)=H2(G,)=0);

(iv) The image ^ of \ in H^(BG^) is spherical;
(v) If Gi is non-trivial, then either (v.i) the simplicial norm of \ is a positive

number r not depending on i or (v.ii) ^ is not in the image of the homomorphism p^ :
H,(Q^//L,) —— H,(L,) defined as on p. 79 of [Gr 2];
and

(vi) Gi is not a free product of non-trivial groups.

Then we effectively construct a sequence of smooth Tz-dimensional homology
spheres S^ such that (a) n\(S^)=Gi and (b) If G; is non-trivial then the image of the
fundamental homology class of S; under the classifying map in H^(BG^) is ~h^ Note that
the mentioned result ofj. Hausmann and P. Vogel ([Haus]) and conditions (iii) and
(iv) immediately imply the existence of smooth /z-dimensional homology spheres with
properties (a), (b).
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Main Inequality on p. 12 of [Gr I], Theorem 6.6.D and the proof of
Theorem 6.6.D" in [Gr 2], and the property (v) of Gi imply that if S^ has non-trivial
fundamental group (that is, S^ is not homeomorphic to S^), then for any Riemannian
metric ofRicci curvature ^ —(n— 1) on S^, the volume of S^ with respect to this metric
is not less than some positive constant depending only on n and r if (v.i) holds and
n if (v.ii) holds. The same will be true for any manifold homotopy equivalent to S;.
(Remark: More precisely, the assumptions of Theorem 6.6.D of [Gr 2] are stronger
than (v.ii). Namely, in our situation the assumption of Theorem 6.6.D is that the
homomorphism p^ is trivial on H^(Qj^//L^). But, as it was already noted, the proof
of Theorem 6.6.D in [Gr 2] is valid under the weaker assumption that the image
of the fundamental homology class of V in H^(K(TI;, 1)) is not in the image of the
homomorphism p^ : H^(Q//7c) —> H^(K(TT, 1)). (Here we are using the notations of
[Gr 2].) Although our proofs of (5.1') for specific groups Ao in section 3 below imply
also the triviality of the homomorphism ?„, we prefer this slightly stronger version of
Theorem 6.6.D.) The impossibility to represent the homology spheres S^ as connected
sum of manifolds none of which is a homotopy sphere immediately follows from
(vi). The condition (i) and classical result of the Gromov-Lawson-Rosenberg ([GL 2],
[Ros 1]) imply that if S^ is non-trivial then it does not admit a Riemannian metric of
non-negative scalar curvature since groups from the class P and their central extensions
are known to satisfy the Baum-Connes conjecture that the Baum-Gonnes assembly map
is a split injection, and, hence, the strong Novikov conjecture (SNG 2) in terminology
of [Ros 1]. (A proof of this fact which is essentially a compilation of results of Baum-
Gonnes ([BC], [BGH]), Pimsner ([Pi I], [Pi 2]) and Kasparov-Skandalis ([KaS]) can be
found in [BW]. A reader interested only in the proof of Theorems A and B and not
willing to study the proof of Baum-Connes conjecture for groups from the class P can
just delete property (1) from the text of Theorem 1 above. The proof of Theorem A
(and therefore of Theorem B) given here uses only this weaker version of Theorem 1.)

Thus, we obtain the algorithmic unsolvability of the problem of recognition
of S72 up to homeomorphism in the class of smooth homology spheres which are
either homeomorphic to S^ or do not admit Riemannian metrics of non-positive
scalar curvature, do not admit Riemannian metrics of arbitrarily small volume and
Ric > —(n— 1), and cannot be represented as the connected sum of two manifolds
none of which is a homotopy sphere. Then we prove that the algorithmic unsolvability
of the just stated homeomorphism problem implies the algorithmic unsolvability of
the corresponding diffeomorphism problem, that is, Theorem l.A. Alternatively, by
a little change in the construction of S^ we can make S, embeddable into R"4'1 for
any i. Since any smooth Tz-dimensional homotopy sphere embeddable into R^1 is
diffeomorphic to S", S, is homeomorphic to S" if and only if S; is diffeomorphic to S72,
and we again obtain Theorem l.A. The next step is to introduce Riemannian metrics
on the constructed homology spheres S^ such that the convexity radius is at least
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one, the absolute values of sectional curvatures are between —1 and 1, the diameter
]_

does not exceed const\ (n)(^n{i + 1))^ and the volume is between const^(n)\n(i + 1) and
cons^(n)ln(i +1). This part of the proof heavily relies on the material of section 2
of [N2]. Observe that in the process of proving of Theorem l.A we not only
prove the algorithmic unsolvability of the considered diffeomorphism problem but
obtain the reduction of the halting problem for an arbitrary fixed Turing machine to
the considered diffeomorphism problem. Therefore we can use the Barzdin theorem
stating the existence of a Turing machine To such that the time-bounded Kolmogorov
complexity of the halting problem for To grows exponentially with the length of the
inputs for any fixed computable bound on time. Starting our construction from the
Turing machine T = To we ensure that for any computable time bound the problem of
recognition of S" in the constructed sequence of smooth Riemannian homology spheres
has the time-bounded Kolmogorov complexity greater than an exponential function of
the volume.

Finally, to generalize this argument for an arbitrary compact manifold M^ (instead
of S") we just take Riemannian connected sums of the constructed smooth Riemannian
homology spheres with a copy of M^ endowed with an arbitrary Riemannian metric.
The only statement which is not immediately obvious is that the connected sum of
M^ and any of the constructed nonsimply-connected homology spheres not admitting a
Riemannian metric of non-negative scalar curvature also does not admit a Riemannian
metric of non-negative scalar curvature. In fact, we need the assumption that M^ is
spin in order to demonstrate this fact.

Step 1. From Ao to G,

To construct Gi first observe that for any Turing machine T and its input CO
one can construct a finite presentation of a torsion-free group G(T) depending only on
T and a word w(T, co) G G(T) such that T halts with co if and only if ^(T, co)=^ in
G(T) (cf. [Rot]). (This fact implies the algorithmic unsolvability of the triviality problem
for finitely presented groups.) The construction in [Rot] yields a group in the class
P defined in the text of Proposition 4. Let T be any Turing machine such that its
halting set is not recursive (equivalently, the halting problem for T is unsolvable. We
can identify the set of all inputs of T with the set of positive integer numbers). At
this stage we do not want to impose any further restrictions on T. But on Step 5 we
will make a particular choice of T in order to prove the statement about the time-
bounded Kolmogorov complexity in the part B of Theorem 1. Applying the "witness"
construction as in [M], p. 13-14 to G(T) and words Wi=w(^T, I) for all i we obtain
a recursive sequence of finite presentations of perfect groups {W^} such that the set
of indices i such that W^ is trivial is a non-recursive recursively enumerable set. W;
has the following finite presentation: the set of generators of W^ includes all generators
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A:i,. . . ,^ of G(T) plus three new generators a, b, c. Its set of relations includes all
relations of G(T) as well as the following new relations:

(1) a-iba=c-{b-lcbc
(2) rt-W=^-W
(3) a-\w,,V\a^c-^
(4) a-^x^ba^^c-^bc^; j = 1 , ..., k.

It is clear from this fmite presentation that Hi(W,)={0}. It is not difficult to see ([M],
p. 13) that if Wi^e in G(T) W, is the amalgamated free product

(G(T)*<^i| >)*<^| >; (*)
Vi=V2, (**)

where Vi is the free groups generated by b\ and the left hand sides of relations (1)-(4),
where b is replaced by 61; ¥3 is the free group generated by b^ and the right hand sides
of the relations (1)-(4), where b is replaced by b^. (We replaced b by two different letters
b\, b^ but added the equation identifying these elements.) It is easy to see that W^ is
the normal closure of the element c. It is clear that c is an element of infinite order.
The construction of groups G(T) in [Rot] implies that the cohomological dimension of
W, is at most two (cf. [M], Theorem 4.12), and that W, belong to the class P defined
in the text of Proposition 4. (G(T) is the result of a sequence of three HNN-extensions
with associated free groups.) Now let g^ ...,gi be a set of normal generators of Ao.
If Ao satisfies conditions (5'.1), (5'.2), then we assume that these generators are the
same as in (5'.2). In particular, all of them are of infinite order. In this case consider /
copies Wf^.^W^ ofW,. Each of these copies W0^ is normally generated by a copy
^ of the element c. Let L,= < Ao * W^ * ... * W^i =^\ ...,gi=^ >. If Ao is
known to satisfy condition (5) but not necessarily (5\2) then it is possible that some of
the normal generators, say &+i, ...,^/ are of finite order. In this case consider for any
j € {/;+ 1,...,/} the following group V^. Take the free product of the cyclic subgroup
Zo^) and G(T). V^7 is the result of the application of the "witness" construction
described above to this group and its element Wi=w{T, i) coming from G(T). Exactly
as before this group will be trivial if and only if T halts with input i The free product
of the finite cyclic group and G(T) embeds in V0^ ifV^ is non-trivial. Denote by ^ the
image of the generator of the cyclic group in V^. The element ^ has the same order as
^.LetL.= <Ao*W^.lL*^*V^l)*...*V^|^=.(l),...,&=^
It is clear that L, will be trivial if and only if w, € G(T) is trivial. Hence the set of
indices i for which L^ is trivial is non-recursive. Using the Mayer-Vietoris sequence one
can easily see that L, is perfect. Denote by q, the image of hn € H^Ao) in H^(L,) under
the inclusion homomorphism. Obviously q, = 0 if and only if wi € G(T) is trivial.

Let Gi be the universal central extension of L^. Many properties of the universal
central extensions can be found in [K], [Ros 2], [Mil 1]. In particular, G, is trivial if
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and only ifl^ is trivial; Hi(G,-)=0, and H2(G^)=0. The universal central extension of a
perfect group L with the generators^, i e {1 , ...,^}, and relations Tj=e,j €{ ! , . . . , q},
can be described by the following finite presentation: the set of generators coincides
with the set of generators of L. The set of relators consists of all commutators [/, rj],
i € { l , . . . , j&} , j C {l , . . . ,^}, and words ^-, i € {1,...,^}, satisfying the following
condition: denote by F the free group generated by all generators of L and by R its
subgroup generated by all relators rj of L. Then ^ G R in F (when regarded as an
element of F) and^'==A^ in F, where c,• G [F, F]. The existence of^, follows from the
perfectness of L. Also, if C is any perfect group and C is its universal central extension
then there is the following exact sequence:

0 —> H2(C) —> C —>C —> 1. (* * *)

We claim that qi € H^(L^) will be the image of some element \ from H^(G,)
under the canonical homomorphism H^(G,) —> H^(L^) and, moreover, this element
can be chosen such that its image \ in H^(BG^) is spherical. Indeed, first note that
for considered values of n H^(BAo) is isomorphic to H^(BL^) if Wi is non-trivial. In
this case H^(BA^) is isomorphic to H^(BL^), and looking at the commutative square
formed by 7^(BA^), H^(BA^), 7^(BL^), H^(BL^) with arrows induced by the inclusion
AQ —> Li and the Hurewicz homomorphisms we see that the property (3) of the group
Ao postulated in Proposition 4 implies that the image ^ of ^ in H^(BL^) is the image

A +of some element qi € 7^(BL^). Now note that for any perfect group G and its universal
central extension G the map BG —> BG+ is a fibration with the fiber BH^C) ([Ros 2,
Remark 5.2.9]). Therefore for the considered values of n the homomorphism G —> C
induces the isomorphism of TC^(BG ) and TI^BC^. Let us apply this fact for G = L^ and
G = Gi. Denote the inverse image of qi in 7l^(BG^) by qi. Now we can define ^ as
the image of qi under the Hurewicz homomorphism 7i^(BG^) —> H^(BG^). Define ^

_4- ,

as the inverse image of ^ under the isomorphism H^(BG;) —> H^(BG^). Thus, we
constructed a sequence of groups Gi and elements ^ G H^(BG^) which has properties
(i)-(iv). It is easy to see that Hg^) ̂  0. Hence Gi has a non-trivial center. Therefore
(vi) holds. In order to see that ifAo has property (5) and G; is non-trivial, then Gi has
property (v.i) we can first invoke Theorem on p. 55 of [Gr 1] which implies that in
this case the class qi regarded as a real class has the same (non-zero) simplicial norm
as hn. Since qi is the image of ^ ^ also has a non-zero simplicial norm. Passing to the
dual real cohomology classes, using the Mapping Theorem on p. 40 of [Gr 1] and
returning to homology classes we can conclude that ^ has the same simplicial norm
as qi and hn.

Remark. — One can reformulate the theorem on p. 55 of [Gr 1] as follows: let H
be an amalgamated free product of finitely presented groups Gi, G2 amalgamated over
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an amenable group Gs, h\ € H^(BGi), h^ G H^(BG2), where n > 2. Assume that there
exist orientable manifolds M^,M^ such that 7ii(M^)=G^, i= 1, 2, and Ai and h^ are
the images of the fundamental homology classes of M^ and M^ under the classifying
maps of M^ into BG^, i= 1, 2. Denote the images of^ in H^(BH) under the inclusion
homomorphisms by h]. Then the simplicial norm of h\ + h^ is equal to the sum of
simplicial norms of h\ and h^. Observe that the assumption that h\^ h^ are the images
of the fundamental homology classes of manifolds under the homomorphisms induced
by the classifying map is extraneous in this theorem. Indeed, the seminorm property
of the simplicial norm immediately implies that the theorem on p. 55 of [Gr 1] is
applicable under the weaker assumption that some non-zero integer multiples of h\ and
/?2 are representable as images of the fundamental homology classes of manifolds under
the homomorphisms induced by their classifying maps. But the last assumption always
holds if n ^ 4. Indeed, assume that G is a finitely presented group and h (E H^(BG). It
is well-known since the classical work of Thom on cobordisms that a non-zero integer
multiple of every homology class is always representable by an orientable manifold.
That is, there exists an orientable manifold V" and a map f: V^ —> BG such that
y*([V"]) is a non-zero integer multiple of h. Of course, this map does not need to
be the isomorphism of the fundamental group of V" and G. On the other hand the
classical Dehn construction of the manifold with prescribed fundamental group (as the
smoothed out boundary of the tubular neighborhood of a 2-complex with fundamental
group G embedded into R^) yields an orientable manifold M" with fundamental
group G such that the image of the fundamental class of M" in H^(BG) under the
classifying map is equal to 0. Consider the connected sum W of all of the connected
components of V" and the manifold M\ We have the natural map W" into BG that
induces the epimorphism of fundamental groups and sends the fundamental homology
class to a non-zero integer multiple of h. Now kill the kernel of the homomorphism of
the fundamental group of W" to G by surgeries on circles in W^ representing generators
of the kernel of this homomorphism. It is an easy (and standard) exercise to check
that 1) the map of Wn to BG can be extended to the map of the surgered manifold;
2) this map induces the isomorphism of the fundamental groups of the surgered
manifold and BG, and therefore is the classifying map; 3) the image of the fundamental
class of the surgered manifold in H^(BG) under the homomorphism induced by this
map coincides with the image of the fundamental homology class of W and, therefore
is a non-zero integer multiple of h. So, \\h\ + h^\\ = ||Ai|| 4- \\h^\\ for all classes h\, h^ for
n > 3. It is this stronger form of the theorem on p. 55 of [Gr 1] that we used above
and will be using below.

Now assume that Ao has properties (5'.1) and (5'.2), and G; is non-trivial. The
postulated property (v.ii) of G^ will be proven using the sequence of lemmae below.
Let A be any torsion-free finitely presented group, and g 6 A be any element such
that for any a C A g^a2. Let B be obtained as the result of the application of the
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"witness55 construction as in [M], p. 13-14 to any finitely presented torsion-free group
X of cohomology dimension ^ 2 and its non-trivial element w. Denote generators of X
^ <?i? " " > g r ' B has the following finite presentation: its set of generators includes all
generators g^ ...,g, ofX plus three new generators a, b, c. Its set of relations includes
all relations of X as well as the following new relations:

(5) a~lba=c~lb~lcbc
(6) ̂ -W=^-W
(7) a-\w,b\a^=c-n^
(8) a-^Qba^=c-^bc^\ j= 1, ..., r.
As before, it is not difficult to see ([M], p. 13) that B is the free product with

amalgamation

(X* <a,b^\ >)* <b^c\ >;

Vl=V2,

where Vi is the free groups generated by &i and the left hand sides of relations (5)-(8),
where b is replaced by b^ ¥3 is the free group generated by b^ and the right hand
sides of the relations (5)-(8), where b is replaced by b^. (We replaced b by two different
symbols b^ b^ but added the equation identifying these symbols.) It is clear from the
Mayer-Vietoris sequence that the cohomological dimension of B is at most two.

Proofs of many lemmae below use the following well-known theorem due to
Schreier (cf. [Baum], Theorem 14 on p. 59): let D, E be two groups and G=D *H E
be their free product with amalgamation. 1) Let x G G be a product g\,...,gk of
elements gi from either D - H or E - H such that for any i g, and ^+1 are not both
in D - H or E - H. Then x 4= e in G; 2) D and E embed into G; 3) D fl E = H.

Lemma 5.1. — Let x e B be any ekment which does not belong to the infinite cyclic subgroup
generated by c. Then x and c are independent generators of a free subgroup ofB.

Proof. — Note that c G< b^,c\ > is not in Vs. The mentioned Schreier theorem
implies this result if x G B - Vp If x G Vi =¥3 C< b^ c\ >C B, then the result follows
from the fact that < b^, c\ > is a free group.

Corollary 5.1.1. — For any non-^ero m (M C B is not the square of any element of^K which
is not a power of c.

Proof. — Obvious.

Let G= <A,B\g=c >. Let H be the infinite cyclic subgroup of G generated by
the image of g (or c).

Corollary 5.1.2. — c € G is not the square of any element ofG.
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Proof. — We know from our assumptions about A and Corollary 5.1.1 that c G G
is not the square of any element of torsion-free subgroups of G A and B. Let c=x2,
where x € G-(A|JB). Then x can be represented as a product of at least two elements
gi from A — H and B — H such that for any i gi and ^+1 do not belong both to either
A — H or B — H. Now the application of the above-mentioned Schreier theorem leads
to a contradiction.

Corollary 5.1.3. — For any integer m (m C G is not the square of any element of G — A
conjugate to an element of A or ofB.

Proof — Corollary 5.1.3 easily follows from the Schreier theorem and
Lemma 5.1.

Lemma 5.2. — Let v € G be any element which does not belong to A. Then for any
non-^ero integer m v and ^ e G generate a free subgroup of G.

Proof — Easily follows from Lemma 5.1 and the mentioned Schreier theorem.

Corollary 5.2.1. —Any non-cyclic virtually nilpotent subgroup ofG is conjugate to a virtually
nilpotent subgroup ofA or a virtually nilpotent subgroup of^K.

Proof. — Let Gi be a virtually nilpotent non-cyclic subgroup of G. Then
Theorems 6, 7 of [KS] imply that Gi is one of the following: (i) a subgroup of a
conjugate of A; (ii) a subgroup of a conjugate of B; (iii) a subgroup conjugate to
a subgroup generated by a power of g and by some element not in A or B; (iv)
< H2 * Hs|H4 >, where H:2 and Hs are subgroups of conjugates of A or B, H4 is a
subgroup of a conjugate of H, and H4 is a subgroup of index two in both H2 and
Hs. However, Lemma 5.2 implies that the case (iii) is impossible, and Corollary 5.1.3
implies that in the case (iv) < H2 * Hs|H4 > is a subgroup of a conjugate of A. D

Remark. — Instead of Theorems 6, 7 of [KS] one can use here also a simpler
and better known classical result by H. Neumann on subgroups of amalgamated free
products (cf. [LS], Theorem 6.6 of Chapter IV). This result immediately implies that
a conjugate of Gi must have a non-trivial intersection with H if Gi is non-cyclic and
virtually nilpotent and (i), (ii) do not hold. Now Lemma 5.2 can be used to demonstrate
that Gi contains a subgroup as in (iii). But then Gi has exponential growth and,
therefore, is not virtually nilpotent. This contradiction proves Corollary 5.2.1.

Lemma 5.3. — The intersection of any two different conjugates of A is the trivial element.

Proof. — It is sufficient to prove this Lemma in the case when one of the
conjugates of A is A itself. Assume that a non-trivial element a G A belongs to the
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intersection of A and its conjugate by an element of G — A. Then a= ]"[?== i&? where
each gi belongs either to A — H or to B — H, at least one ^ G B — H, and for any
i gi and ^+1 are not both in either A — H or B — H. This immediately leads to a
contradiction with the mentioned Schreier theorem. D

Lemma 5.4. — The intersection of any two conjugates ofB is the trivial element.

Proof. — Similar to the proof of Lemma 5.3.

Lemma 5.5. — An intersection of a conjugate of A and a conjugate ofBis conjugate to a
subgroup of¥l.

Proof. — Follows from the Schreier theorem (Theorem 14 on p. 59 of [Baum])
similarly to the proof of Lemma 5.3.

Lemma 5.6. — The normali^er of any subgroup ofi-linG coincides with the normali^er
in A of the same subgroup regarded as a subgroup of A.

Proof. — The proof easily follows from the Schreier theorem and Lemma 5.1.

Lemma 5.7. — (a) The normali^er in G of a subgroup of A not contained in H is a
subgroup of A.

(b) The same is true for B.

Proof. — Follows easily from the Schreier theorem.

Following [Gr 2], Section 6, denote for any group T the complex of virtually
nilpotent subgroups of G, defined as in section 6 of [Gr 2], by Qj- Also, let QJ-//T
and p : Q.T//T —> K(T, 1) be defined as in section 6, p. 79, of [Gr 2].

Lemma 5.8. — Let A and B be as above. Let h e H (̂A), (n > 3), be a non-trivial homology
class, and H G H (̂G) be the image ofh under the homomorphism induced by the canonical inclusion
A —> G. If h is not in the image of the homomorphism p^ : H^(Q^A//A) —> H^(A)^ then H is
not in the image of the homomorphism p^ : H^(QQ//G) —> H (̂G).

Proof. — First, recall the definitions ofQ^o? QG//G andj& from [Gr 2], Section 6.
For any group K the complex QK is defined as follows: its zero dimensional simplices
correspond to non-trivial elements of K. For any finite set of non-trivial elements of
G generating a virtually nilpotent subgroup of K QK contains a simplex with vertices
corresponding to these elements. K acts on QK by conjugations. Consider the product
of Q,K and the universal covering EK of BK. Consider the diagonal action of K on
this product Q^K x EX. The quotient of this product with respect to this diagonal action
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is, by definition, the homotopy quotient QK//K. The map p of Q.K//K is induced
by the projection of QK x EK on the second factor. The definition of K implies that
we can think of Q.K//K as glued from BN,, where N, runs over normalizers of all
virtually nilpotent subgroups of K. (We have one normalizer for any conjugate class of
virtually nilpotent subgroups of K.) The intersection of BN^ and BNy is either empty
or is contained in the classifying space of the normalizer of the intersection of virtually
nilpotent subgroups K, and Kj of K such that N, is the normalizer of K, and Ny is
the normalizer of Ky.

Having this in mind, we can easily see what is the geometry of QG and Q.G//G
in the considered case. Corollary 5.2.1 and Lemmae 5.3, 5.4, 5.5 imply that any
connected component of Q^o is either made of copies of Q,A and QB in such a way
that different copies of QA do not intersect, different copies of QB do not intersect,
and copies of QA and QB can intersect only along a copy of QH (it they intersect
at all) or corresponds to an infinite cyclic subgroup of G. Note that the normalizer
of any subgroup of B which is not a subgroup of H is a subgroup of B. Similarly,
the normalizer of any subgroup of A is a subgroup of A. Therefore, QG//G will
be union of circles, corresponding to the conjugacy classes of cyclic subgroups of G
not conjugate to a subgroup of A or B, and also of Q.A//A and Q.B//B, where the
intersection of Q.A//A and Q.B//B is made of the classifying spaces of normalizers of
subgroups of H in A (we are using Lemma 5.6 here). However, Lemma 5.1 implies
that the intersection of H C B and any virtually nilpotent subgroup of B which is
not a subgroup of H is the trivial element. Thus, the part of Q.B//B corresponding
to subgroups of H is a union of connected components of Q^B//B. Denote the union
of remaining connected components of Q.B//B by (Q^//B)o. Therefore Q.G//G is the
union of QA//A and (Q^//B)o, which are pairwise disjoint, and circles, corresponding
to the conjugacy classes of cyclic subgroups of G not conjugate to a subgroup of A or
B. It remains to notice that p^ for G coincides with p^ for A on H^(Q^A//A) and p^
forBonH,((QB//B)o). D

Now we can finish the proof of (v.ii). Let g\, ..., gi be the system of generators of
Ao such that for any i g, is an element of infinite order and not a square. Forj= 1, ..., /
define recursively Aj= <A^_i ^'WU}\Q=cu} >. IfW, is non-trivial then Corollary 5.1.2
and Lemma 5.8 imply by induction that for anyj the image of hn in H^(A^) under the
homomorphism induced by the canonical inclusion Ao —> Aj is not in the image of
the homomorphism p^ '. H,,(Q^//A^) —> H^(A^). (On the jth step we apply Lemma
5.8 to A=A^_i , B=W^. g is the image of gj in A^_i. Corollary 5.1.2 implies that gj
is not a square in A^_i. The properties (5'.1) and (5'.2) of Ao are used as the base of
induction.) It remains to observe that L,=A/.
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Step 2. Construction qfSi

Now we are going to explain an algorithm which constructs a sequence of
smooth ^-dimensional homology spheres S^ such that 7Ci(S^)=G^, and the image of the
fundamental homology class of S^ under the homomorphism induced by the classifying
map is ^ € H^(BG^). First, observe that if D is any perfect group and G a perfect
subgroup, then the universal central extension C of G can be mapped into the universal
central extension D of D by a homomorphism (|) such that the resulting diagram of
groups G, G, D, D becomes commutative. Indeed, assume that G has generators
fi, i= 1,...,A: and relators ^pj= l,...,w. Without any loss of generality we can assume
that these generators and relators are among generators and relators of D. Now G
has the same generators as C and its set of relators consists of all commutators Doj^]
between relators and commutators of G and relators ^ such that ^ regarded as an
element of the free group F generated by the generators fi is a product of relators
of G and (A^-)"1/' is the product of commutators of elements of F. It is clear that we
can ensure that these relators are among the relators of D. Now we see that the
homomorphism which maps the generators fi of C into the same generators regarded
as generators of D is the required homomorphism (|). It is easy to see looking at
the exact sequences (***) for C and D that if the homomorphism H^G) —> H2(D)
induced by the inclusion is injective, then (|) is an injection. Applying these observations
to G = Ao and D = L^ we obtain an explicit homomorphism f of Ag into Gi which is
injective for any i such that L^ is non-trivial.

Now recall that BA() —> BA^ is a fibration with fiber BH^Ao) (cf. [Ros 2],
Remark 5.2.9). (Here AQ denotes the universal central extension of Ao.) Therefore for

the considered values of n Kn(K\) is isomorphic to T^(BA^). Now it follows from the

commutative square formed by ^(BA^), H^(BAg), TI^(BA^), H^(BA^) that h^ is the image

of some spherical homology class ^ € H^(BAg). (The horizontal arrows in this diagram
are induced by the homomorphism A^ —> Ao, and vertical arrows are induced by
the Hurewicz homomorphisms.) Therefore hn is the image of the homology class
Sn e H^(BAg) under the homomorphism induced by the central extension A^ —> Ao.
(Observe that the Mapping Theorem on p. 40 of [Gr 1] implies that Sn and hn have
the same simplicial norm.)

We start our construction by taking a fixed smooth homology sphere Z" such
that its fundamental group is the universal central extension of Ao and the image
of its fundamental homology class is the just constructed class Sn G H^BA^). (The
existence of some such homology sphere follows from the results of Hausmann and
Vogel ([Haus]) cited above.) Since S" does not depend on i we can regard some finite
description of V as a part of the algorithm. For any i we construct a smooth homology
sphere 2^ with fundamental group G; embedded as a hypersurface in R^ such that
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the image of its fundamental homology class under the homomorphism induced by
the classifying map into BG^ is zero. (The construction of 2^ starts from the Dehn
construction of a smooth hypersurface T, in R^ with the fundamental group Gi
and such that H3(T^)=... =H^_3(T^)=0. Then one realizes all generators of the second
homology group of this manifold by embedded 2-spheres and kills them by the obvious
surgeries. A detailed description of this construction can be found in the Appendix of
[Nl]. The image of the fundamental homology class of Z^ in H^(BG^) is zero because
of the following reason: this manifold can be described as the smoothed out boundary
of a tubular neighborhood of an embedded in R^ acyclic 3-dimensional complex K
with fundamental group Gi. The map which sends any point of the manifold to the
closest point of K induces the isomorphisms of the fundamental groups and sends the
fundamental homology class to zero. Now the composition of this map with the obvious
embedding of K into BG^=K(G{, 1) will be (homotopy equivalent to) the classifying
map for Z^). Construct the connected sum of 2? and 2^. The result will be a smooth
homology sphere D^ with the fundamental group Ag * Gi. Kill by the obvious surgeries
the elements of this group of the form (xj)~^f(xj\ where xj runs over all generators of
AQ and f is the homomorphism ofAo into Gi introduced above. (It sends the generators
AQ to the generators of Gi with the same names. The generators of AQ have the same
names as generators of Ao. Since Ao does not depend on z, we can regard some its
finite presentation as a set of data known to the algorithm. If G, is non-trivial, then
f is an inclusion.) Obviously the fundamental group of the resulting manifold S^* will
be Gi. Now we are going to describe a system of 2-cycles generating H2(S^*). Denote
2-cells used to kill (^)~l/(•^) by dj. Denote 2-cells corresponding to the relators ^ of
AQ and Gi == L^ in 2^ by ^j ^d in S" by c\j. (Recall that ^ is the word which belongs
to the subgroup generated by relations of Ao in the free group F generated by the
generators of Ao and ^•(Ay)~1 € [F, F] C F. The cells cy are constructed during the
construction of Z^. On the other hand the specific choice of c\j is not important. We
can assume that the algorithm "knows" a 2-complex in £", where all 1-cells correspond
to generators of Ag and 2-cells correspond to relators of AQ, and all these cells are
marked by the names of the corresponding generators and relators.) Now it is easy to
see that the chains c\j+dj—c^j are cycles generating H^S^*). Since 7Ci(S^*)=G^ has trivial
second homology group, the Hopf theorem implies that all two-dimensional homology
classes of S^* are spherical. Obviously, they can be realized by embedded 2-dimensional
spheres. Knowing this fact a priori we can find some such system of embedded spheres
corresponding to the generators and kill them by surgeries. As the result we obtain a
smooth homology sphere Si with the desired properties. (In particular, it is not difficult
to see that the surgeries killing the embedded 2-dimensional spheres preserve the image
of the fundamental homology class under the classifying map. This fact can be proven
directly using the definition of a surgery.) (In the case n = 5 we must check that we are
not going to get any new 2-cycles as the result of these surgeries. This would follow
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from the existence for any of the 2-cycles Oy in S^* we are going to kill of a 3-cycle Ty
representing a non-trivial element in H3(S^*) such that the intersection number of aj
and Ty is one. (Or, more formally, the cup product of cohomology classes dual to the
homology classes represented by Oj and T^ is the fundamental cohomology class.) To
construct Xj note that Oj is formed by a 2-chain c^ in D^ filling an embedded circle
Cj representing (^)-l/(^) and a new 2-dimensional chain cs bounded by the same
circle which is the axis of the handle added to kill the element (•^•)-l/(^•). Consider
a small 3-dimensional sphere around Cj in D^. Assume here that the radius of the
tubular neighborhood of Cj deleted during the surgery killing x-^f(xj) is less than the
distance from Cy to the considered 3-sphere. It is easy to see that the 3-dimensional
sphere survives this surgery and it is easy to see that it intersects c^ at one point and
does not intersect cs. Therefore we can define Ty as the 3-dimensional cycle in S^*,
corresponding to this three-dimensional sphere.)

Step 3. From the algorithmic unsolvability of the homeomorphism problem to the algorithmic
unsolvability of the diffeomorphism problem

Note that
1) If Gi is trivial, then S^ is homeomorphic to S^;
2) If Gi is non-trivial, then S^ does not admit a Riemannian metric of non-

negative scalar curvature, and for any Riemannian metric on S^ of Ricci curvature
^ —{n — 1) the volume is not less than a positive constant not depending on i. (Below
we will call this property of S^ "pseudohyperbolicity".)

These properties and the properties of groups G{ described above imply that there
is no algorithm which decides whether or not a given smooth homology sphere which
is a priori known to be either a homotopy sphere or a pseudohyperbolic manifold
is a homotopy sphere. We must now get rid of the word "homotopy" here. Here
are two different ways to do that. One way is to show that the homeomorphism
to S" problem is reducible to the diffeomorphism problem. Indeed, form connected
sums of Si with all distinct smooth ^-dimensional homotopy spheres. (For every fixed
n ^ 5 there are only finitely many distinct smooth homotopy spheres. We can regard
their descriptions as data known to the algorithm.) Now S^ is homeomorphic to S"
if and only if at least one of these connected sums is diffeomorphic to S". If S^
is not homeomorphic to S" then all connected sums of S^ and smooth Tz-dimensional
homotopy spheres will be pseudohyperbolic by the same reason as S^. Now let us apply
in parallel the algorithm solving the diffeomorphism problem to all these connected
sums. If Si is not homeomorphic to S", then the answer in all cases will be negative.
If S^ is homeomorphic to S", then in some cases the data for the algorithm will be
inappropriate (that is, it will get a manifold which is not pseudohyperbolic but is not
diffeomorphic to S") and there is no way to say what will be the outcome of the work
of the algorithm (for example, it might work the infinite time) but for at least one



38 ALEXANDER NABUTOVSKY, SHMUEL WEINBERGER

connected sum the answer will be "yes95, and this answer will be found in a finite time.
Thus, we need just to wait for either the first positive answer or till the algorithm will
produce the negative answers for all connected sums.

Another way to proceed is to introduce a small change in the construction of S{ to
ensure that S^ is homeomorphic to S" if and only if S^ is diffeomorphic to S". It is well-
known (and not difficult to see) that for any smooth ^-dimensional homology sphere
X there exists a smooth Tz-dimensional homotopy sphere Y such that the connected
sum of X and Y is embeddable into R^. Thus, taking if necessary a connected sum
with an appropriate homotopy sphere we can assume that the homology sphere 27
introduced at the beginning of Step 2 and used in the construction of S^ is embeddable
into R"4'1. Since 27 is the same for all S^ we can assume that the algorithm constructing
Si "knows95 some embedding of 27 into R^1. Since all homology spheres 2^ introduced
on Step 2 were constructed as hypersurfaces ofR^, the connected sums of X" and
2^ are hypersurfaces in R^. It remains to check that all surgeries performed at the
end of Step 2 on the connected sums of 27 and 2^ can be made inside R^1. This is
obvious if n 4 5 since we added only 2-handles and 3-handles. If n = 5 then we can still
add 2-handles without any problems, but we need the Whitney trick and some care
to add the 3-handles. (We refer the reader to p. 89 of the Appendix of [Nl] where
it is explained in more details how to perform surgeries on a hypersurface inside R6

in a similar situation.) In the rest of the proof we will denote by S^, z=0 , 1, ... the
elements of the just constructed sequence of connected sums and not of the "original55

sequence of homology spheres constructed at the end of Step 2.

Step 4. Complexity of the constructed homology spheres

Now we would like to choose a Riemannian metric (l^ on the constructed smooth
homology spheres S^ such that the convexity radius is bounded from below by 1, the
absolute values of sectional curvature are bounded by one, the diameter does not

\_
exceed Gi(ln(z+ 1))" and the volume is between C^[n(i+ 1) and €3^1(2'+ 1) for some
positive Gi, G2, €3 not depending on i. The constructed homology spheres S^ were
built on Step 2 by surgeries on the connected sum of homology spheres 27 and 2^. Note
that the complexity of any fixed Riemannian metric on 27 does not depend on i at all.
Also note that an almost obvious smooth version of the construction of PL-analogues
of homology spheres 2^ in the section 2 of [N2] yields Riemannian metrics on 2^ with
the desired properties. Take a Riemannian connected sum of £^ endowed with such
a Riemannian metric and 27 with an arbitrary metric (the same for all i). We will
not have any problems with choosing Riemannian metrics on the added handles and
obtaining after an appropriate rescaling the desired Riemannian metric on S^ if we are
able to prove that the surgeries on 27#2^ during the construction of S^ on Step 2 could
be performed in a fashion independent of i. To achieve this goal note that the same
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construction as in the proof of Theorem 2.1 in [N2] implies that the required surgeries
correspond to any representation of elements ^=f^j{xj)~lf{xj>){f(kj)~l) in the free group
F generated by all generators of7Ci(272) and ^i(S^) as the product of commutators of the
relators of < 7Ci(S") * n^^x^^x^, .... (^m)"1/^) > and some elements of F, where
x\, ..., Xm is a basis ofAo. Note that the set of elements ej does not depend on i. If we
will show that these elements can be represented as the products of commutators of
relators and arbitrary words in a way not depending on i we will be done. Here is a
specific way to represent these elements as the required products: recall that according

K
to the definition of ^ Xj=Cj'kj, where cj= n/== i[<§// i5 gij2]- (Here gijq are arbitrary words

K • K •
in ^i, ...,^ and their inverses.) Thus, ^(n^iL^-i^])"1 Y[i=i[f{gij\),f{gij2)]' Note
that for any generator Xk ^k=(^k)~xf(xk) is a relator in the considered finite presentation,
and f(xk) = x^k- We can use these identities to replace every expresssion f[gijq) in
the last formula for ej by the product of powers of generators Xk and relators ^.
Move all powers of relators ^ to the right side of the formula for ej. A lot of
commutators of relators ^ and words in the generators x\, ...,Xm and their inverses
will be formed in the process. At the left side of the formula we obtain the product

K • K •
(Y[l=^[glj\,glj2])~lY[l=i[gljl,glj2]=^ At the right side of the formula we will get a
product of powers of relators ^. Since every f{gijq) enters the formula for ej the same
amount of times ^ f{gijq)~^ the sum of exponents of ^ will be equal to 0 for any k.
Thus, permuting ^i, ..., we can cancel all of them creating in the process several new
commutators of relators ^i, ... with some words. As the result we obtain the identity
between ej and a product of commutators of the desired structure in the free group
generated by the generators in the considered finite presentation. It is clear that nothing
in this identity depends on i. This completes the Step 4.

Step 5. Proof of the statement about the time-bounded Kolmogorov complexity

According to the Barzdin theorem (cf. [B], [ZL], Theorem 2.5, [LV], [N2])
there exists a Turing machine such that for any recursive time-bound t the time-
bounded Kolmogorov complexity KS^Half^To), N) of the halting problem for To is
bounded from below by ^ / c ( t ) — const., where N is the length of inputs for To, c{{) is
a positive constant depending only on t. Above we described an effective reduction of
the halting problem for an arbitrary Turing machine T and inputs of length < N to
the algorithmic problem which of the homology spheres Si,...,Si is diffeomorphic to
S^ for I ^ Const2^, where Const is equal either to the number of smooth Tz-dimensional
homotopy spheres or to one depending on which of two ways to proceed one chooses
on Step 3. (Recall that the construction of the sequence S^ started in Step 1 from the
choice of an arbitrary Turing machine T with unsolvable word problem.) Now let this
Turing machine be To. Such choice of the Turing machine immediately implies the
statement about the time-bounded Kolmogorov complexity in the text of Theorem 1
for the resulting sequence {Sj.
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Step 6. From S" to arbitrary compact n-dimensional manifolds

In order to prove Theorem l.G we can just replace the constructed sequence
{(So |̂ )} by the sequence of appropriately rescaled Riemannian connected sums of
(S^ [ii) with M^ endowed with an arbitrary Riemannian metric. The only statement
which is not obvious is the statement that in the case when M^ is spin and S^ is
nonsimply-connected the connected sum of M^ and S^ does not admit Riemannian
metrics of non-positive scalar curvature even in the case when the fundamental group
of M^ is not known to satisfy the Strong Novikov Conjecture (SNC 2 in terminology
of [Ros 1]). This statement can be proven by contradiction. Assume that the connected
sum admits a Riemannian metric of non-negative scalar curvature. Kill the fundamental
group of M^ by surgeries (but preserving the fundamental group of S^). The resulting
manifold still admits a Riemannian metric of non-negative scalar curvature ([GL 1]).
But now the same theorem in [Ros 1] which was previously used to prove that S^
does not admit a Riemannian metric of non-negative scalar curvature implies that the
resulting manifold does not admit such a Riemannian metric. This fact provides the
desired contradiction. D

3. Some useful discrete groups

Here we are going to construct the groups Ao with the properties postulated
in the Proposition 4. We are going to present three essentially different constructions.
The quickest way to prove Proposition 4 is to use the second construction below. This
construction has an extra advantage that it yields Ao which satisfies all conditions
of Proposition 4 (that is, (1)-(5), (5'.1), (5'. 2)) and is obtained as the amalgamated
free product of the fundamental group of a compact Kahler manifold of negative
sectional curvature with several copies of an explicit acyclic group. The main idea of
the second construction is to use a certain class of arithmetic groups investigated in
the Glozel paper [Cl]. These groups are fundamental groups of compact manifolds
of negative sectional curvature and, therefore, all their non-trivial homology classes
of infinite order in dimensions > 1 satify (5). On the other hand these arithmetic
groups satisfy particularly strong vanishing theorems. As a corollary, killing their first
homology groups by passing to an amalgamated free product with acyclic groups where
all amalgamated subgroups are cyclic we obtain groups such that for an appropriate
homology class (3) can be proven basically by an application of the Serre generalization
of the Hurewicz theorem. (But we use a "rational + -construction" introduced below
in order to avoid some minor technical difficulties appearing at this stage. Roughly
speaking, "the rational + -construction55 is the composition of the +-construction and
the rational localization but unlike the Quillen +-construction it is always defined for
GW-complexes with a finite first homology group.) The Glozel paper [Gl] is based on
an impressive amount of previous results obtained by different authors and related to
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the Langlands program. Therefore we decided to look also for simpler constructions
using less machinery.

The third construction also uses some number theory and representation theory
but of a less recent vintage. We start from the most well-known fundamental group of
a compact orientable Tz-dimensional manifold of constant negative sectional curvature.
This group is an appropriate torsion-free subgroup of finite index of SOpj), where
J is the ring of integers of Q^^/2\ and F=x2^ + ... + ^ - ̂ /2^p We modify the
construction of this group by replacing J by Z[./2, ̂  -^] (or even by Z[^/2, ^]).
The resulting S-arithmetic group will still be formed by hyperbolic isometries of
the hyperbolic space IP. This fact can be used to prove (5'.1) for an appropriate
72-dimensional homology class dual to a nontrivial cohomology class coming from the
yz-th continuous cohomology group of S0(n, 1) with real coefficients. The main idea of
the construction is in the observation that the results of Chapter XIII of [BorWal]
imply vanishing of cohomology groups with real coefficients of the constructed
S-arithmetic groups in low dimensions which enables us to apply a generalization
of Hurewicz theorem to prove the property (3) in Proposition 4. It remains to get rid
of the possibly nontrivial (finite) first homology group of the constructed S-arithmetic
group. This is done by forming an amalgamated free product of the S-arithmetic
group with several copies of an explicit acyclic group, where all amalgamated groups
are cyclic. Now the (repeated) application of Lemma 5.8 from section 2 implies (5'.1)
for the amalgamated free product.

Our first construction is the most elementary Unfortunately it only works for
even n (although we sketch a modification of this construction which might work for
odd n as well). For even n this construction yields pairs Ao,^ € H^Ao) satisfying
conditions (1)-(5) of the Proposition 4. Here are the main ideas of the first construction
for even n. To prove (5) we use the theorem on p. 23 of [Gr 1] asserting that real
cohomology classes of the classifying space of an algebraic group G C GL^R) defined
over R and endowed with the discrete topology are bounded if they are in the image
ofH*(BG) under the homomorphism induced by the inclusion G^^ —> G. Moreover,
such classes belong to the continuous cohomology with real coefficients and, thus if
they are nontrivial, then they are mapped to nontrivial cohomology classes under
the homomorphism into the cohomology of a discrete cocompact subgroup F of G
([Mil 2], [Bor 2]). In fact, this result holds in an appropriate range of dimensions
even in the case when F is a not necessarily cocompact lattice. Combining the
mentioned result on p. 23 of [Gr 1] with results stated in the Appendix of [Mil
2] and with calculations of real cohomology of specific arithmetic groups in [Bor 2]
we are able to conclude that the groups FN defined as Sp^^(Z) (for n divisible by
four) and Sp^(Z) (for even n not divisible by four) have a non-trivial ^-dimensional
homology class satisfying (5) providing that N is sufficiently large (e.g. N ^ 4(72 + 1)).
In order to kill the first homology group of FN and obtain a finitely presented group
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satisfying (2) we can take an amalgamated free product of FN with certain groups
which are either acyclic or have nontrivial homology only in dimension two, and
where all amalgamated subgroups are cyclic. In order to satisfy (3) we notice that
BSHZ)"^ and the results of the application of the +-construction to classifying spaces
of direct limits llm Tj of many similar sequences of arithmetic groups F; are H-spaces
(cf. [Ros 2], [Bor 2]). As a corollary their cohomology rings (with rational coefficients)
are generated by indecomposable generators dual to rational homology classes in the
image of the Hurewicz homomorphism from tensor products of homotopy groups with
Q (cf. [Bor 2]). Indeed, the cohomology algebra with real coefficients of an H-space
is a tensor product of a polynomial algebra generated by some elements of even
degrees and an exterior algebra generated by some elements of odd degrees. One can
realize any of these indecomposable generators {^} by maps from the H-space into
corresponding Eilenberg-Maclane space K(Q^ deg^). Combine these maps into one
map from the H-space into the product of all these Eilenberg-Maclane spaces. This
map induces the isomorphism of all rational cohomology groups and as a corollary
it is a rational homotopy equivalence. Now it is natural to try to use stabilization
theorems to prove that the indicated above ^-dimensional homology classes of BF^ are
spherical. We simplify our calculations and avoid some minor technical problems by
introducing and using a "rational +-construction55 denoted below by the superscript R.
Since this ^construction is used in all three constructions we are going to describe it
first.

R-construction. We are going to introduce a useful functor from the homotopy
category of CW-complexes with finite (or torsion) first homology group into the
homotopy category of simply connected rational spaces. We will call it "rational
+-construction55 and denote the result of its application by the superscript R. It can
be defined as follows: for a CW-complex X with a finite first homology group we
first kill its fundamental group by adding new 2-dimensional cells (one cell for any
generator). The second homology group with rational coefficients of the resulting space
X is the direct sum of H2(X, Q) and a group freely generated by the following cycles:
assume that a newly added 2-cell C kills the generator g of 7Ci(X) such that k[g] =e
for some k -^ 0, where [^] denotes the image of g under the Hurewicz homomorphism
7Ci(X) —> Hi(X). Let D be a 2-chain in X such that its boundary is k[g\. Then hC—D
is a generator ofH2(X, QJ, and the Hurewicz theorem applied to the simply connected
space X implies that this generator is representable by a map of the two-dimensional
sphere into X.

Let us kill now these new generators of the second homology group by adding
3-cells. As the result we will obtain a simply connected CW-complex X such that
H,x(X, QJ=H^(X, QJ. Define X11 as the rational localization ofX. (The construction
and the properties of rational localization can be found, for example, in [GM],
p. 90, where it is called localization at 0 or in [FHT]). Here note only that for



VARIATIONAL PROBLEMS FOR RIEMANNIAN FUNCTIONALS AND ARITHMETIC GROUPS 43

any i ^(X^ = 7^(X) 0 Q ,̂ and X11 conies with a canonical continuous map X —> X11

inducing the isomorphism of all homotopy groups tensored with Q.) Clearly X embeds
into X. Therefore there is a canonical map ?x •' X —> X11 inducing the isomorphism
of homology groups with rational coefficients. Also, it is clear that if7ii(X) is perfect,
jihen X1^ is simply the rational localization of X^

Proposition 7. — Let X be a CW-complex such that Hi(X) is finite. Then
(1) For any simply connected CW-complex Z such that all homotopy groups of 7. are Qjvector

spaces any continuous map ^ : X —> Z can be passed through X^ that is, there exists a map
\y : X1^ —> Z such that \y o i^ is homotopic to ((). Moreover, \y is unique (up to a homotopy).

(2) For any morphism F : X —> Y there exists a unique morphism ¥^ : X11 —> Y^" such
that iy o F is homotopic to F11 o i^. (Of course, here Hi(Y) is also assumed to be finite.)

Proof. — Part (1) easily follows from the obstruction theory. Indeed, all homotopy
groups of Z are rational, but X and X11 are rationally homology equivalent. Therefore
all homology groups of the pair (X1^, X) with coefficients in homotopy groups of Z
vanish. Part (2) easily follows from part (1). D

We will need the following two obvious lemmae. The first of them immediately
follows from Proposition 7.

Lemma 8. — If 7ii(X) has a perfect commutator subgroup and Hi(X) is finite, then
(X+)R=XR. Moreover, ix is the composition ofi^+ and the canonical inclusion X —> X^ Also,
i^+ '. X^ —> X11 induces the isomorphism of all homology groups with rational coefficients.

Lemma 9. — Assume that I : A —> C is an inclusion of groups such that
Hi (A) and Hi(C) are finite. Assume that this inclusion induces the isomorphism of H^(A^ QJ
and H,(C,QJ. Let for some h G H,(BA, QJ h^=i^(h) € H^BA^ Q) be the image
of some element from JÎ BA^ = JÎ BA^ 0 Q^ under the Hurewics homomorphism. Then
1^^) C H^BC^S C^H^EC^ will be in the image of the Hurewic^ homomorphism. If
G is perfect, then BG1^ is the rational localisation of^C^. In this case, Î )̂ is the image under

the isomorphism induced by rational localisation of the class h+ ̂ Î ^ G H^BG^ QJ such that
its integer multiple is a non-sero spherical integer homology class.

First construction. First construction works only for all even n. However, afterwards
we will outline a modification of this construction. We conjecture that this modification
yields the finitely presented groups and their ^-dimensional homology classes satisfying
(1)-(4), (5'.1), (5'.2) for all odd n.

The case of an even n > 4.

We are going to construct groups Ao satisfying the conditions (1)-(5) of Proposi-
tion 4. Let n be an even number greater than or equal to 4. Define A^ as Sp^(Z) for
some N » n, if n is not divisible by four, and as Sp^^(Z) for some N » n, if n is
divisible by four.
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Lemma. — There exist a bounded (in the sense of [Gr 1 ] ) indecomposable class H1 G
IP(A*.R).

Proof. — In the proof of this lemma we consider only cohomology with rational
coefficients and therefore will be omitting for brevity the coefficients. According to
Milnor ([Mil 2], Appendix) for any real connected semi-simple Lie group G there
exists the following exact sequence of homomorphisms:

H*(BGc) —— H*(BG) —> H*(BG^).

Here Gc denotes a connected complex Lie group whose Lie algebra is the complexifica-
tion of the Lie algebra g of G, G^ denotes G regarded as a discrete group and "exact55

means that the kernel of the second homomorphism is the ideal generated in the ring
H*(BG) by the image of the first homomorphism. Further, the second homomorphism
can be factored through H*(/7zyGA(G/K)), where K denotes the maximal compact sub-
group of G and InvcAiG/K) denotes the De Rham complex of G-invariant smooth dif-
ferential forms on G/K, and H*(/^GA(G/K)) injects into H*(BG^) ([Mil 2], p. 81-82).
Let r be an arithmetic subgroup of an almost simple Lie group G. Then according to
Borel the composition of homomorphisms H*(/WGA(G/K)) —> H*(BG^) —> H*(BF)
is an isomorphism in low dimensions (up to at least (rank^(G)/4) — 1. If r is a discrete
torsion-free cocompact subgroup of G then this composition of homomorphisms is in-
jective in all dimensions and an isomorphism in all dimensions < rank^(G) ([Ser], p. 125,
[Bor 3]).) Further, H*(/yzyGA(G/K)) is isomorphic to the cohomology of the compact
dual of G/K, that is of Kc/K, where Kc is the maximal compact subgroup of Gc
([Mil 2], Appendix). In particular, i{G=Spw(R\ then Gc=Spw(C), Kc=VSp^ (the
notation of [Bor 2] for the compact symplectic group), K=UN. H*(Kc/K) coincides in
lower dimensions with the polynomial algebra with exactly one indecomposable gener-
ator in every even degree not divisible by four. If G=Sp^^y then K=UiSi&N x U^S^,
Kc=U6^2N5 ^d H*(Kc/K) coincides in lower dimensions with the polynomial al-
gebra with exactly one indecomposable generator of any degree divisible by four.
The cokernel of the restriction homomorphism H*(BGc) —> H*(BG) for G=Spw{R)
coincides with the cokernel of H*(BU^N) —y H*(BUN)=P({^-, 2i\i= 1, ...,N}). But
H*(BU^)=P({^-,4z|z=l,...,N}). Therefore the cokernel will be generated by the
indecomposable generators of even degrees not divisible by four. By the virtue of the
discussion above this cokernel in lower dimensions is then mapped isomorphically on
H*(BA^) and this isomorphism factors through H^B^i^R)^'). Now Theorem on
p. 23 of [Gr 1] implies that the image of this cokernel in H*(B,%N(R)^) lies in the
image of bounded cohomology of B Sp^fJ^)^. Therefore the image of this cokernel
in H*(BA^) under the described homomorphism in the lower dimensions is in the
image of bounded cohomology of BA,,. So if n = 2 (mod 4) we can take for H1 the
image of the indecomposable element Xn in H"(BA^). Similarly, the cokernel of the ring
homomorphism H*(B(5^N)c)=H*(BU^2N) —^ H*(B^N)=H*(B(U^ x U^))
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contains the polynomial subalgebra P({^, 4z|z < N}). Proceeding as above one can find
an indecomposable bounded cohomology class H1 € H^A^), if n is divisible by four,
and N » n. D

Denote limB^2N(Z) by B^(Z) and limB^N(Z) by ^Sp (Z). The com-
putations of Borel of H*(B^(Z)) and H*(B6^ (Z)) ([Bor 2]) imply that H1 will
be the image under the inclusion homomorphism of an indecomposable ele-
ment if1 from H*(B^(Z),QJ (or H*(B^ /Z), QJ) to H*(A,) and that this in-
clusion will be an isomorphism. Consider also the dual of if1 in H^(B6^(Z))
(correspondingly, in H^(B6^ (Z))). Denote this dual by gn. Now observe that
the spaces B Sp^Zf^ and B Sp (Z)11 are H-spaces. The proof of this fact al-
most verbatim repeats the proof of a similar statement that spaces BGL^Z^ are
H-spaces in [Ros 2]. The image g^ ofgn in H^B^^Q) (or H,(B Sp ̂ ^R, QJ)
will be dual to the indecomposable cohomology class z/^, and therefore rational ho-
motopy theory implies that g^ will be in the image of the Hurewicz homomorphism.

R .(Alternatively to prove that g^ is in the image of the Hurewicz homomorphism from
7^(B SpfZ^) (correspondingly, TI^(B Sp (Z)^), we could use the known fact that the com-
mutator groups of Sp(Z) and Sp (Z) are perfect, and therefore B Sp^Ef and B Sp (Z)4'
are defined and are H-spaces. (This fact is due to Vasserstein, cf. [Bor 2], sections
11.4, 11.6, 11.7, 12.3 and references there.) The image g^ of gn in H^BiS^Z)^ (corre-
spondingly, in Hn(SSp (Z)^ is known to be a primitive element ([Bor 2]). Therefore
it will be in the image of the Hurewicz homomorphism from the tensor product of

•n

the n-th homotopy group with Q, and Lemma 8 implies the same statement for g^ .)
Observe that the inclusion of BA^ into B 6^(Z) (correspondingly, B Sp (Z)) induces the
isomorphism of homology groups with rational coefficients in dimensions at least up to
n. Therefore the inclusion of BA^ into B ̂ (Z)1^ (correspondingly, B Sp (Z)11) induces
isomorphisms of all homotopy and homology groups in dimensions up to n. Now it
is clear that the image h^ of the dual h^n of V in H^BA^) is in the image of the
Hurewicz homomorphism. Since V is bounded, h^n has non-zero simplicial norm equal
to the inverse of the norm of H1 ([Gr 1]).

To complete the proof it remains to get rid ofHi(A^). Let a\, ..., OM be a system
of elements ofA^ such that their images in A^/[A^, A^] =Hi(A^) generate Hi(A^). Let
for any 7= 1, .... M Zj denotes Z if aj is an element of infinite order in A^, and Z^,,
if Oj is an element of a finite order pj in A^. Denote the result of the application of
the Miller "witness55 construction described above to the group Z/' by Y^. (Yy has the
following finite presentation: it has four generators a, b, c, vj and relations

(9) a-^ba-^c^b-^cbc
(10) a-^-W=^-W
(11) a-\v^b~\a^c-^bc^
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(12) a~^Vjba^=c~^bc\
If aj has a finite order j&p then Yy has the fifth relation:

(13) ^=e.

Now let Ao = < A^ * YI * ... * YM, ( 2 i = y i , ..., OM=VM >- II 1s clear that the inclusion
A^ —> Ao induces the isomorphism of the n-\h homology groups and that Ao is perfect.
Therefore Lemma 9 applied to A=A^, G=Ao implies that a non-zero integer multiple
hji of the image of the generator h^n of H^(A^) under the inclusion homomorphism will
be spherical. Theorem on p. 55 of [Gr2] implies that the simplicial norm of hn is not
less than the simplicial norm of h^n' This completes the construction of Ao for even n.

The case of odd n ^ 5. Let G=SL^(C). Alternatively, we can take G=SL^s(R),
2 2

if n = 1 (mod 4), and SO^+i(C), if n = 3 (mod 4). Let Ai be a discrete cocompact
group ofG constructed as in [Bor I], A^ be some its torsion-free congruence subgroup
and A be the acyclic group with four generators a, b, c, v and four relations obtained
from (9)-(12) by replacing everywhere vj by v. Let Ao be obtained from A,, by taking
the amalgamated free product with several copies of the acyclic group A in order to
kill Hi(A^) as in the case of even n. Let further hn be a homology class obtained as
above from the irreducible generator of the continuous cohomology H^(A^, R). (The
continuous cohomology of A^ is formed by harmonic G-invariant differential forms
on A^ \ G/K, where K denotes the maximal compact subgroup of G. Our choice of
G ensures that there exists exactly one (up to a multiplication by a scalar) irreducible
generator of H^(A^, R) (see [Bor 2]).) We conjecture that the pair Ao, hn will satisfy
the conditions (1)-(4), (5'.1), (5'.2) of the Proposition 4. Indeed, one can prove that h^
is spherical by comparison with Blim. A^fJ)^ where A^(j) are formed by all j exactly
as A^ was formed for n (in particular, A^)=A^). (One can prove that BlimA^')11 is
an H-space by the standard argument used in the algebraic K-theory to prove that
BGL(Z)4" is an H-space, cf. [Ros 2].) Therefore its real cohomology ring is generated
by classes dual to real spherical homology classes. The rank of G is high enough to
prove using the stabilization (see [Bor 2] and [Bor 3]) and rational homotopy theory
that h^ is spherical. The main difficulty is in the proof of (5'.1). Unfortunately, the
dimension n of interest for us is too low to apply Theorem 6.6 D' of [Gr 2]. After
some analysis of QAQ//AO we think that the rank of G is low enough to guarantee
that hn is not in the image of the homomorphism p^ in (5'.1), although presently we
have not succeeded in verifying that.

Second construction. In [Cl] Glozel described a family of torsion-free discrete
cocompact subgroups of U(j&, q) which satisfy particularly strong vanishing theorems.
For example, when p = 2n — 1 and q = 1 the cohomology ring with real coefficients of
any of these groups can be presented as the direct sum of the continuous cohomology
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which is generated by one polynomial generator in dimension 2, and another direct
summand denoted H^ which can have non-trivial elements only starting from the
dimension n. Moreover, according to [Gl] for some groups in this class the direct
summand H^ has non-trivial elements in dimension 72. Denote some such torsion-free
discrete cocompact subgroup of V(2n— 1, 1) by Ao. Since V(2n— 1, \)/V(2n— 1) x U(l)
is the Hermitian hyperbolic space, Ao is the fundamental group of a compact manifold
of negative sectional curvature and, thus, all nontrivial real homology classes of BAo
have non-zero simplicial norms ([Gr I], section 1.2). Now we can get rid of the (finite)
group Hi(Ao) by forming appropriate amalgamated free products with several copies of
the group generated by four elements a, &, c, vj with the set of relations (9)-(12) exactly
as in the first construction (recall that all amalgamated subgroups are cyclic) and then
kill the second homology group by passing to the universal central extension A^ of the
resulting group Ao. Note that by doing that we will kill all continuous cohomology but
the non-trivial real cohomology class of dimension n in the second direct summand
H^ will survive. This class ~h would be the non-trivial real cohomology class of the
lowest dimension if not the two-dimensional classes ^ which appear when we kill
the finite first homology group. Consider a real homology class ^ dual to h and
of the same dimension. Now we would like to apply the Hurewicz theorem modulo
the Serre class of finite groups to conclude that the image ~h^ of ~h^ in H^(BAg) is
spherical. But there is a small difficulty due to the appearance of homology classes
which arise from classes ^ after passing to the universal central extension. In order to
overcome this difficulty let us perform "the rational +-construction95 on BAo (before
forming the amalgamated free products). It is obvious that the image of a dual of any
non-trivial class in IP(BAo, R) which is not a power of the two-dimensional class will
be spherical. (To prove this fact formally we can either invoke the rational homotopy
theory or kill H^BAo) by forming an appropriate circle bundle and invoke the rational
Hurewicz theorem.) Now Lemma 9 immediately implies that ~h^ is also spherical. Note
that the already mentioned Theorems on p. 55 and 40 in [Gr 1] imply that ~h^ will
have a non-zero simplicial norm. It is obvious now that the image hn of ~h^ under the
homomorphism induced by the universal central extension A^ —> Ao has a non-zero
simplicial norm, and its image under the canonical isomorphism H^(BAo) —> H^(BAo)
is spherical. D

Remark 1. — Theorem 6.6.D' in [Gr 2] easily implies that Ao satisfies (57.!). It
is not difficult to deduce (5'.2) from the fact that Ao is torsion-free.

Remark 2. — The groups Ao were defined in [Cl] as follows. (We will describe
the Clozel definition only in the situation p=2n — 1, q=\ which is of interest to us.)
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Let N==j&+ q=2n. Let F be a totally real number field and F^ be its totally imaginary
quadratic extension (e.g. F=Q^(v/2) and F,=F(vc:3)). Let D be a division algebra of
degree N2 over F^. Assume that D satisfies the following condition (R): at any place v
of F^, Dy=D0F F^ y is either isomorphic to M^(F^y) or a division algebra. Assume
further that D is endowed with an involution of the second kind x —> x*, an involutive
antiautomorphism acting on F, C D by conjugation. Consider the unitary group
V(F)={d € D : dd" = IN}. Assume further that (K): at all infinite places of F except
one U(F) is compact and isomorphic to V(n)y and at the remaining infinite place U(F) is
isomorphic to U(N—1,1)= V{2n— 1, 1). By restriction of scalars, the group U/F defines
a Q-group denoted by Go. (Thus, Go(QJ = U(F).) Now Go(R)=K x U(2n- 1, 1), where
K is a compact group. Let F be a cocompact lattice in V(2n — 1 , 1 ) commensurable
with the projection of an arithmetic subgroup of Go(QJ = U(F). Then Glozel proves
that it is always possible to find a torsion-free congruence subgroup Xo of F with the
required cohomology properties.

The existence for any n ^ 2 of a division algebra D satisfying (R) endowed
with an involution of the second kind such that the corresponding unitary group
U(F) satisfies the condition (K) is treated in [Cl] as a known fact but not explicitly
stated. This fact is the immediate corollary of Proposition 2.3 in [G10]. The proof of
Proposition 2.3 in [G10] is based on the results from [KtO] and [Ktl]. (We are grateful
to R. Kottwitz for explaining to one of us this proof in detail.)

Remark 3. — Note that the second construction combined with the construction
of the homology sphere S" at the beginning of Step 2 in section 2 imediately implies
the following theorem:

Theorem 10. — For any n ^ 5 there exists a smooth n-dimensional homology sphere of
non-^ero simplicial volume.

(Of course, for even n Theorem 10 can be proved using the simpler first
construction instead of the second construction.) Moreover, using the group Ao obtained
using the second construction in the proof of Theorem 1 in section 2 we obtain a
(stronger) version of Theorem 1 where the property (2) is replaced by the following
property (2'): "This manifold has simplicial volume not less than I.55 (Of course, one
can replace here 1 by any positive number.)

Third construction. Let K=Q(^2), F^^+.^+^-y^^i and G = SOF(TZ + 1, K)°
be the group of unimodular {n + 1) x [n + 1) matrices with entries in the field K
preserving the form F and mapping the upper half of the hyperboloid defined by the
equation F= — 1 into itself. Let J be the ring of integers of K and L=J[- —]. Let
G(L)=GnGL^+i(L). The group G(L) is S-arithmetic and therefore finitely presentable.
Consider the group Gs defined as a subgroup of the adele group of G consisting of
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adeles whose ^-component is equal to identity for all places v but 5,13 and oo. Thus,
Gs = G(R) x G(K5) x G(Ki3). Here K.5, Kis denote as usual the result of the completion
of K with respect to the j^-adic valuations of K corresponding to p=5 and p= 13,
respectively. It is clear that G(L) is a subgroup of Gs. A theorem of Borel and Harish-
Ghandra (cf. e.g. [Ma], Theorem 1.3.2.7 and IX. 1.4) implies that G(L) is an irreducible
cocompact lattice in Gs. Since 5 and 13 are primes of the form 4A;+ 1 the equation
x2 + 1=0 has solutions in Q^ and Qjs. Therefore the ranks of G(K5) and G(Ki3)
are equal to [{n + 1)/2]. Following [BorWal], XIIL2.1, let r=r^ + ry=2[(^+ 1)/2] + 1
be the rank of Gs. According to [BorWal], Theorem XIII.3.5 and Lemma XIII.3.2
(see also the proof of Proposition XIII.3.6 in [BorWal]) H^(G(L), R) = H^(G(R), R) if
q < r. H^(G(R), R) denotes here the continuous cohomology of G(R) which is known
to be equal in our situation to the cohomology of the compact dual of the symmetric
space SO(TZ, l)°/SO(n), that is of SO(TZ + l)/SO(7z) = S'. (Here S0(/z, 1)° denotes the
connected component of S0(n, 1) containing the identity.) Thus, H^(G(L),R)=0, if
y G {1, .... yz — 1} and H^G^), R)=R. Moreover, these cohomology properties will
hold for congruence subgroups of G(L). According to a theorem of Selberg (cf. e.g.
[Ser]) one can always find a torsion-free congruence subgroup of G(L). Denote some
such subgroup by A+. Thus, H^(A^ , R) == 0, i f ^ G {1 , ..., yz — 1} and R, if q = n. Denote
by ^ 6 H^(BA^) any non-trivial homology class such that its image in H^(BA>,, R) is
a generator. As in the other constructions we can get rid of the first homology group
of A,, by forming an appropriate amalgamated free product with several copies of
the acyclic group < a, b, c, ^[(9)-(12) >, where the amalgamated subgroups are cyclic.
Denote the resulting group by Ao and the image of \ in H^A^) by Tin. The Serre
generalization of the Hurewicz theorem (and the trick based on the ^construction and
Lemma 9) can be used to prove that for some non-zero integer k and hn = ffin the class
h^ G H^(BA^) is spherical similarly to how this was done in the second construction.
Condition (5'. 2) of Proposition 4 is obvious, and it remains to check (5'.1). Lemmae 5.1-
5.8 imply that it is sufficient to check (5'.1) for (A^, h^).

The group G=SOp(^+ 1,K)° C SO^n + 1,R)° is a group of (orientation
preserving) isometries of the hyperbolic space H'2 which can be identified with the
upper half of the hyperboloid {x € R^^;^ — 1}. Observe that since A^ C G is a
cocompact lattice in Gs, all its elements are semisimple (cf. [Ma], p. 63). Therefore
isometries of H" in A^ cannot be parabolic (cf. [AVS] or [BGS]). Since A^ is torsion-
free, any almost nilpotent subgroup of A^ consists of isometries preserving a specific
geodesic Z. Moreover, its normalizer in A^ also consists only of isometries preserving
the same geodesic /. The intersection of normalizers of almost nilpotent subgroups
of A^ preserving different geodesies is trivial. Any geodesic / is determined by two
"infinite" points u and v. Denote by A.[u,v] th^ subgroup of A^ generated by all
isometries preserving [u, v\. Two almost nilpotent subgroups of A(^^] and A(^^]
can be conjugate if and only if there is an isometry in A^ which transforms the
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geodesic [%i, v^] into [2/2, v^\. In this case all almost nilpotent subgroups ofA^^j are
conjugate to the corresponding almost nilpotent subgroups of A^^]. At this stage
we see that QA,//A^ is made of disjoint copies of spaces which we denote X^yi
that are made of classifying spaces of normalizers of almost nilpotent subgroups of
A^ preserving the geodesic [u, v], and X^,] can be regarded as a subset of BA^,].
Here [u, v] runs over a certain set of geodesies of IP. The restriction of the projection
homomorphism H,(QA.//A,) —> H,(A,) to H,(X^,]) factors through H,(A[^]) as the
composition of two inclusion homomorphisms.

Now it is sufficient to show that \ is not a linear combination of classes
coming from H^(A^^j). In order to achieve this goal consider the composition of
the inclusion homomorphism H^A^,]) —> H^(A^) with the inclusion homomorphism
^ : H,(A,) —> H,(G(Q,nR), R), where _QJ1R is the field of real algebraic numbers.
Note that after tensoring with reals ^ becomes dual to a nonzero continuous
cohomology class. Therefore, it remains nonzero under the inclusion homomorphism
i^. Now we see that it is sufficient to prove that for each geodesic [u, v] the restriction
of ^ to H^(A[^y]) is trivial in order to conclude that \ is not a linear combination
of classes coming from subgroups A^,j. The restriction of ^ to H^A^,]) factors as a
composition of the inclusion homomorphisms induced by the inclusion ofAr^yi into the
subgroup G(Q,nR)[.,.] ofG(Qf|R) preserving [u, v] and the inclusion of G(Qr|R)^
into G(Q,nR). We are going to demonstrate that the homomorphism of the n-th
homology groups induced by the second inclusion is trivial. Observe that G(Q^nR)[^,d
is isomorphic to the product of S0(n - 1, Q/IR) (rotations around [u, v]) and QT|R
(parallel displacements along [u, v]). Applying Proposition XIII.3.6 in [BorWal] we see
that H,(SO(yz — 1, Qj^R)? R) is trivial for i > 0. It remains to demonstrate that the
image^of the n-th homology group of the group of displacements along [u, v] into
H^(G(Q^nR), R) is trivial. The shortest way to do this is to observe that the inclusion
of the group of parallel displacements of IP along [u, v] to SC>F(^+ 1, Qj"1R)° factors
through the group S0y{n, Q/1R)0 of isometries of IP-1 C IP. (Indeed, consider the
upper half-space model of the hyperbolic space. Without any loss of generality we can
assume that [u, v] is the line orthogonal to the boundary of the half-space. Now the
group of parallel displacements along [u, v] can be identified with the multiplicative
group of positive real numbers acting by scalar multiplications. This group can be also
regarded as a group of isometries of the (n — l)-dimensional upper half-space formed
by a linear hyperplane in the boundary of the Tz-dimensional upper half-space and the
ray orthogonal to the boundary.) But Theorem 1 of [BY] implies that the cohomology
with real coefficients of S0f(n, Q^FiR) is isomorphic to its continuous cohomology
which is known to be isomorphic to the cohomology of SO(n)/SO(n — 1)==S"-1 and
is trivial in dimension n. (A minor difficulty due to the fact that n\(SO(n— 1, 1))=Z2
is not trivial as it is formally required in order to apply Theorem 1 of [BY] can be
easily resolved by considering its double cover.)
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Remark. — We could define L as J[^] (instead ofj[^, y^]). In this case we will
obtain the vanishing of homology groups of A^ with real coefficients in all positive
dimensions < [(TZ+ 1)/2]. But this is still sufficient in order to prove that h^ € H^(BA^) is
spherical, where hn is a nontrivial multiple of the homology class dual to the generator
ofH^(A^, R). (One can use rational homotopy theory (cf. e.g. [S], [GM] or [FHT]).)

4. Proof of Theorem A from. Theorem 1

As the reader might have guessed from the title of this section we will prove the
following:

Proposition 0.2. — A. If Theorem A, parts (i)-(w), is false for some n ^ 5, then for the
same value of n Theorem 1.A and its generalisation in part C for an arbitrary compact smooth
n-dimensional manifold M^ are false.

B. If Theorem A, parts (i)-(v), is false for some n ^ 5, then for the same value of n
Theorem l.B and its generalisation in part C of Theorem 1 for an arbitrary smooth compact
n-dimensional manifold MQ are false.

To prove Proposition 0.2 we are going first to describe how one can effectively
construct for any fixed n and any given positive rational x and v a finite set J\fet(n, x, v)
of Tz-dimensional Riemannian manifolds with the following properties:

(i) Any compact Riemannian manifold W" such that [K[ ^ 1, its diameter does
not exceed x and its volume is at least v is 8-close (in the Gromov-Hausdorff metric)
to an element E of J\/'et(n, x , v\ where 8 is defined as follows. Let conv(n, x, v) denote
the lower bound for the convexity radius of manifolds with |K| ^ 3, vol ^ v / 3 and
diam ^ x + 2 that follow from Gheeger's bound for the injectivity radius given in [G]
(cf. [Ch], Theorem 7.6 and 7.9). For large x conv(n^ x, v) behaves as const(n)v/exp
{{n— l)x). Let 6=conv(n^ x^ v)/{].000n2). This choice of 8 ensures that any two 108-close
Riemannian manifolds such that |K| ^ 3, vol > v / 3 and diam ^ x+ 2 are homotopy
equivalent (cf. [P]). Also, this element E of Netin., ^, v) must have volume not exceeding
3x the volume of the Riemannian manifold Wn.

(ii) Any element of JVet(n, x, v) is a Riemannian manifold such that the absolute
value of its sectional curvature does not exceed 3, its volume is not less than v / 3 and
its diameter is not greater than x + 2.

Of course, any element of JVet(n, x, v) must be representable in a finite form.
(Otherwise it does not make sense to say that J^et(n, x, v) can be effectively constructed.)
Here is an outline of the construction: first, we are going to show that any Riemannian
metric (M^.^o) on a compact ^-dimensional manifold such that |K^J ^ 1, diam^^W} ^ x
and volg (M.^ ^ v can be approximated in the C^norm by a "nice55 Riemannian metric
gnice on M^ with the following properties:
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(a) M" is endowed with a structure of a C^smooth semialgebraic manifold "made
of55 coordinate charts such that their number does not exceed the value of a certain
computable function of x and v (this function can be written down explicitly), and
all transition functions are G^smooth semialgebraic functions of local coordinates.
(Here and below "a computable function" means a function which either increases
or decreases with any of its arguments and its restriction on the set of rational
values of arguments is Turing computable. The dimension n is always regarded as
a constant.) There exist computable upper bounds (in terms of x and v) for the
minimal complexity of diagrams of the graphs of transition functions, and for the
absolute values of coefficients of polynomials entering some diagrams of the minimal
complexity of graphs of transition functions. (Recall that a semialgebraic function is,
by definition, a function such that its graph is a semialgebraic set. Any semialgebraic
set has a (non-unique) diagram of the form Uz n/Pz/?y0}, where Py are polynomials
and for any ij ?y denotes one of the signs >, < , =. The complexity of the diagram
is, by definition, Z.jdegPy.) Furthermore, any chart BR(O) —> M1 can be extended to
completely cover all overlapping images of local charts; the transition functions defined
on the extended local charts still will be C^smooth semialgebraic functions satisfying
the same computable upper bounds for the minimal complexity of diagrams and the
size of coefficients of the polynomials in a diagram of the minimal complexity;

vol . (M")
(b) |K,J^1.5, -^^^[0.5,2],diam,^

(c) The metric gnice is C^smooth semialgebraic in local coordinates. There exist
computable upper bounds for the minimal complexity of diagrams for graphs of gnice on
local charts as well as computable upper bounds for the absolute values of coefficients
of polynomials entering some diagrams of the minimal complexity.

When we already know that such g^ce exists, the problem reduces to constructing
a required net in the space of such "nice55 metrics on all compact Tz-dimensional
manifolds. The last problem is clearly algorithmically solvable because of the following
reasons: the set of "nice55 metrics can be identified with a subset of a compact
semialgebraic set of an Euclidean space. One is able to evaluate volume, diameter
and sup |K| within to any accuracy, and all these quantities are Lipschitz on this set
with Lipschitz constants which can be effectively majorized. Moreover, we are allowed
to include in the net Riemannian metrics satisfying slightly worse bounds for the
sectional curvature, volume and diameter, which enables us to perform approximate
calculations.

Thus, it is sufficient to describe how to find a "nice55 Riemannian metric gnice
on M" with the properties (a)-(c). As it was already mentioned, the classical Cheeger
inequality implies a computable (in terms of n, x, v) lower bound for the injectivity and,
as a corollary, convexity radius of any compact Riemannian manifold with |K| ^ 3,
vol ^ y/3, diam < x + 2 (cf. [Ch], Theorems 7.6 and 7.9). Denote this bound by
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conv(n, x,v). Rescale the Riemannian metric go to make all distances increase by the
factor l/conv(n, x , v ) . (Without any loss of generality we can assume that this number
is greater than one. This rescaling and the inverse rescaling at the end of construction
below are only the matter of convenience and not really necessary.) The absolute
values of sectional curvatures will be bounded now by conv(n, x, vf, and the convexity
radius will be ^ 1. Let us apply now the Ricci How, (^ = - 2Ric{g)\ to smooth out
the resulting Riemannian metric. The classical result of Bemelmans, Min-Oo and Ruh
([BMR], [Ba], [F]) guarantees the existence of the solution for times not exceeding a
certain positive constant Cn. For all t not exceeding a certain positive constant C ^ Cn
the absolute values of sectional curvature will not exceed 1 and the volume of any
ball will not exceed two times its value for t=0. Now the local injectivity radius
estimate in [GGT] (Theorem 4.7) implies that for all values of t up to a certain
positive constant Cn ^ Cn the injectivity radius of (M",&) will be not less than j.
Choose a system of local harmonic coordinates on (M", ̂ ) constructed as in JK].
(One can define harmonic coordinates on any metric ball of radius < p = const > 0,
where const denotes here and below a (every time different) constant which does not
depend on x, v,go ([JK], Satz 5.1). Below we will be more specific about how exactly
we choose the system of local harmonic coordinates. But at the moment the details
do not matter.) For t not exceeding some To = const > 0 the supremum of the G°-norm
of the curvature tensor during this process will not exceed 100/99 x the supremum of
the G°-norm of the curvature tensor of go. Thus, absolute values of sectional curvature
of metrics g{t) for t ̂  To will be bounded from above by 1.4 conv(n, x, vf. Furthermore,
1̂ ) -<?o|co ^ const t (cf. [BMR]). Therefore choosing t=T = const mm{l, conv^^v)} (for
an appropriate const > 0) ensures that ^((M",^)), (M^T))) ^ l/(4000/z2), and that
volg^W ^ 3/4^ (M72). For t € (0, To] one has upper bounds for |V^Rm(^))| of
the form const/1^2 for k= 1, 2, 3 (as well as for any other fixed k), where Rw(^))
denotes the curvature tensor of g{t) (cf. [Ba]). As a corollary, we get upper bounds
for the C^norm of g{T)y — 6y on any coordinate chart, where gy are regarded as
functions of local harmonic coordinates ([BMR], eq. (7) on p. 72). Proceeding as in
the proof of Lemma 4.3 in [G] we can obtain upper bounds for the G^norms of
the transition functions between the local charts. Note that the inequalities (5.2) and
(5.5) on p. 65 of [JK] imply that for some positive pi = const < p and any point
p € (M\^(T)) the harmonic coordinates H : Bp^(j&) —> R72 chosen in the metric
ball of radius pi around p have the following property: for any r 6 (pi/100, pi)
Bg^(O) C H(B^)) C B^g(O) C R". (The inequality (5.5) in [JK] expresses the fact
that the differential of H is sufficiently close to an isometry.) Now let us be more
specific about the choice of a system of local harmonic coordinates. Choose pi/20-net
in (M",^(T)) such that the balls of radius pi/50 centered at the points of the net are
disjoint. Choose the harmonic coordinates H in the metric ball of radius pi around
every point of the net. Consider the restrictions of these local coordinates on (non-
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metric) balls H'^Bp 79(0)) of radius pi/9 in local coordinates as a system of coordinate
charts. For any two overlapping coordinate charts the local coordinates defined on one
of the coordinate charts extend to the other. Also, the number of coordinate charts can
be easily majorized using the Bishop-Gromov inequality. Let us now approximate in the
G^norm all transition functions by polynomials (or, correspondingly, smooth algebraic
functions inverse to the approximating polynomials) on balls in harmonic coordinates of
radius pi/3 centered at the origins of the harmonic coordinate charts. The availability
of the upper bounds for the G3-norms of the transition functions enables us to obtain
an explicit upper bound for the degrees and the absolute values of coefficients of
approximating polynomials in terms of the accuracy of the approximation, x and v.
(We will explain below how to choose the accuracy of the approximation.) Also, using
any standard constructive proof of the Weierstrass approximation theorem we can get
upper bounds for C3-norms of the approximations of transition functions in terms
of x and v but not the accuracy of the approximation. At this stage our manifold
acquires a structure of a G^smooth semialgebraic manifold. Observe, however, that
the expressions for the Riemannian metric g(T) in the local coordinates on the overlaps
of coordinate charts will not be quite the same when it is recalculated from a different
coordinate chart using new transition functions. Still, the G^norm of the difference
can be majorized in terms of the G^norm of the error of approximation of transition
functions. Now let us approximate the expressions for the Riemannian metric in local
coordinates in the balls of radius pi/3 around the origin by polynomials in the G2-
norm. Since we have the control over C^norms we can effectively majorize the degrees
and the absolute values of the approximating polynomials in terms of the accuracy
of approximation which will be defined below, x and v (recall that n is regarded as a
constant). We approximate gy and gji by the same polynomial. Choose a C2-smooth
semialgebraic partition of unity corresponding to the chosen system of coordinate
charts, such that the G^norms of all partition functions, complexity of diagrams of
the graphs of all partition functions as well as the absolute values of coefficients of
polynomials in a diagram of minimal complexity (for any local system of coordinates)
do not exceed a certain computable bound depending on x and v (cf. [BCR]). We
demand also that these partition functions must vanish outside of balls of radius pi/9
(in harmonic coordinates) around the centers of coordinate charts. (These conditions
clearly can be satisfied since already balls of radius pi /18 around the centers of
coordinate charts cover all manifold. These partition functions can be defined, for
example, using the following explicit formulae. Let Ch\, ..., Ch^ be coordinate charts
and ^), ..., ̂  be local coordinates in Chk. Let V^)=(E?=i(^(^)2 - (^-)2)3. i^^ Ch

and E^=i(^))2 ^ (?-)2, and \|^)=0, otherwise. Define h(x) as the ratio ——^—.
2^=i ̂

The functions ^i,...,^^) constitute the required C^smooth semialgebraic partition
of unity.) Using this partition of unity we can glue the algebraic approximations to the
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Riemannian metric g(^T) into a C^smooth semialgebraic metric on the manifold. That
is, this will be the case if we choose the accuracies of the approximation of transition
functions and of the Riemannian metric (on the previous steps) to ensure the positive
definiteness of the metric. Also, we want to ensure that the Gromov-Hausdorff distances
between the resulting Riemannian manifold and the Riemannian manifold (M^ 3 g(T))
must not exceed 1/(40007Z2), and that the ratio of volumes of two manifold is in the
interval [3/4, 4/3]. Clearly this can be done. Now after the rescaling back by the
factor conv(n, x, v) we will get the desired Riemannian metric gnice'

Now when we have an algorithm constructing nets Net{n^ x, v) we can prove
Proposition 0.2. Suppose that we are given a smooth Tz-dimensional homology sphere
(or, correspondingly, homology M^) which is either diffeomorphic to S" or satisfies
properties (1)-(3) from the text of Theorem 1 (correspondingly (1), (2) if M^ is spin
or just (2) if M^ is not spin). Without any loss of generality we can assume that
the given manifold is endowed with a Riemannian metric. Assume now that S71

(or, more generally, the manifold M^ from the text of Theorem 1, part G) admits
Riemannian metrics of arbitrarily small volume such that |K| ^ 1. (For S71 this condition
is equivalent to the condition that n is odd.) Using the nets JVef(n, x , v) we can design
an algorithm based on the assumption that Theorem A, part (i)-(iv), is false (for
Mn = S^ or correspondingly M" == M^) and bringing to contradiction Theorem 1 .A and
its generalization (in part C) for any such manifold M^. Take v(n)=w(n)/\00, where
w{n) is the constant from the text of Theorem 1, and v(n) is the constant from the
text of Theorem A. Note that the assumption that Theorem A, parts (i)-(iv), is false
implies that for any effectively majorizable function (() and for all sufficiently large x any
Riemannian metric on S72 (correspondingly, M^) such that |K| ^ 1 and diam ^ x can be
connected by a sequence of not very large "jumps95 (that is, "jumps55 less than § defined
in the part (i) of the definition of Mf(n^ x^ v) but for Nel(n, ^{x), v(n))) via Riemannian
metrics satisfying |K| ^ 1 and of diameter ^ ^(x) with a Riemannian metric of volume
^ v(n). We are going to proceed as follows: find an upper bound d for the diameter and
an estimate for the volume of the given Riemannian manifold such that the relative
error does not exceed 0.1. Let v be any fixed positive rational number between w{n)/3
and w(n)/2. If the found estimate for the volume of the manifold is less than v then
the manifold is M^. Compute an upper bound X for (^(d). Construct Mt(n, X, y/100).
We want to check whether or not there exist a finite sequence of "jumps55 of length
^ 35= 3conv{n, X, y/100)/(1000y22) via elements of the net JVet{n, X, y/100) connecting
the considered Riemannian structure on the manifold and a Riemannian structure on
the manifold of volume less than u/9. The manifold is S" (or, correspondingly, M^) if
and only if such a sequence exists. Moreover, this statement will remain true if we
replace 3S by 4S and v / 9 by v / 5 . This gives us some room for an error in approximate
calculations. Also note that we can replace the original Riemannian manifold by (any)
its approximation in J\/'et{n, X, y/100) constructed as above, and all these observations
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still remain true. But now the algorithmic problem becomes trivial: it is sufficient first
to represent J\fei(n, X, y/100) as a graph such that its set of vertices coincides with the
set of elements of Ne^n, X, v/100) and two vertices are connected by an edge if and
only if the Gromov-Hausdorff distance between corresponding metric spaces computed
using any fixed approximated algorithm within to the accuracy 5/3 does not exceed
3.56, and then to check whether or not the approximation to the given Riemannian
manifold is in the same component of this graph as a vertex corresponding to a
Riemannian manifold such that the approximate value of its volume calculated using
some fixed algorithm within to the accuracy v/100 does not exceed v / 7 . Denote this
graph by Gr(n, X, y/100). It will be used also in the proof of part B of Proposition 0.2.

The case, when any Riemannian metric on S^ (or M^) such that [K[ < 1 has a
volume greater than or equal to VQ for some positive VQ is much easier. Assume that
VQ is the infimum of volumes of all such Riemannian metrics. Then this case can be
treated as above if VQ < v/30 or as in [N3] if VQ ^ y/30. Indeed, in the last case assume
first that M^ is simply-connected. The assumption that Theorem A, parts (i)-(iv), is false
is equivalent to the assumption that for all sufficiently large x any two Riemannian
structures on S72 (corresp. on M^) of |K| ^ 1 and of diameter ^ x can be connected
by a sequence of short "jumps" in Ri(S") (or Ri(M^)) with a "controllable95 increase
of diameter. Then we can compute as in [N3] a number F/ such that any loop of
length ^ / can be contracted to a point via loops of length < F/ x /. The knowledge
of such F/ will then enable us to check whether or not the given homology M^ for
which it is known that it is either diffeomorphic to M^ or nonsimply-connected is
simply-connected (see [N3] for the details). To complete the proof of Proposition 0.2.A
we must also consider the case when M^ is nonsimply-connected and |K| ^ 1 implies
volume ^ VQ for some positive VQ ^ y/30. This case can be treated as the case of
a simply-connected M^ such that |K| ^ 1 implies volume ^ VQ ^ v/30 but with the
following modification: we have a sequence of manifolds with fundamental groups
either isomorphic to 7Ci(M^) (in which case the manifold is diffeomorphic to M^) or
is the free product of 7Ci(M^) and a non-trivial group. We leave the proof of this case
following the lines of [N3] as an exercise to the reader, but note that it formally follows
from the proof of the part B of Lemma 0.2 given below.

In order to prove part B of Proposition 0.2 assume that Theorem A, parts
(i)-(v), is false for some manifold M^ of dimension ^ 5. Consider the sequence {M^}^^
of effectively constructed in the proof of Theorem 1 smooth Riemannian manifolds
with the same homology groups as M^. (M^ is diffeomorphic to the connected sum
of M^ and S^ constructed on Steps 2, 3 in Section 2.) Our goal is to exhibit an
algorithm solving the algorithmic problem of recognition of M^ among the manifolds
M^ in a recursively growing with N time and using only a sublinearly growing with
N number of bits of oracle information to solve the recognition problem for the first
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N elements of the sequence of manifolds (N is, of course, variable). First, describe
the oracle information which our algorithm will be using. We request a description

j_
of a representative from every "jump" component of diam~{{(p, 6W^i(7z)(lnN)"]) (where
diam is regarded as a functional on Ri(M^)) such that the volume is bounded from
below by v/30 on this "jump" component, and which contains at least one manifold
of convexity radius ^ 0.5 and volume < consk(n)[nN. This representative must have
convexity radius > 0.5 and volume < const^{n)\nN. Here consign), consign) are the
constants from the text of Theorem 1, part B. By a "jump59 component we mean

]_
the equivalence class of Riemannian structures from diam~l{(p, const^nJd'n.N)'1] with
respect to the equivalence relation obtained as the transitive closure of the relation

"to be E(n)exp{—(n — ^^^^(^(InN^-close in the Gromov-Hausdorff metric", where
E{n) is the positive constant from the text of Theorem A. Denote by j(N) the number
of such "jump" components. Obviousy, j'(N) is a non-negative integer number not

j_
exceeding J (defined in the text of Theorem A) for x = consi(n)(l.n N)". (Here we assume
that the partition R^M^,^), z '= l , ...,!, described in the text of Theorem A is the
finest possible: any two Riemannian structures in R^(M^, x) belong to the same "jump"
component of diam~\{0, (|)(^)]). The finiteness ofj'(N) follows from the precompactness
of the subset of Ri(M^) formed by Riemannian structures having any common upper
bound for diameter.) Since Theorem A, (i)-(v) is false by our assumption, then for
any positive c there exist arbitrarily large x such that J ^ exp(cxn) ^ N^ cons^n\ In
particular, there exists an unbounded increasing sequence of values of x and, thus,
of N such that J ^ ^/N. Let A=conv(n, x, z//100)/(10007z2) ~ consf(n}exp{—(n — l)x) as
x —> oo while v is fixed. We are going to present any chosen representative from
any considered "jump" component by its A/10-approximation by a finite metric space
defined as follows: it is a A/10-net in the Riemannian manifold such that balls of
radius A/40 around points of the net do not intersect. The number L of points of the
net is ^ consi(n)y ~ consf^x^exp^n — l)x), and the number of distances between these
points is ^ const(n)x2nexp{2n(n — l)x). We would like to represent every length with the
accuracy A/(1000L). This will require ~ ln^ ~ consf(n)x binary digits. Summarizing,

i
we need ^ Consf(n)x2n+lexp{2n{n — l)x) < Const^exp^onst^n^nN)^)) bits to present
every representative (for some positive constants Consf(n), Consign), Consign)). Thus,
for any positive constant C for infinitely many values of N the total amount of the
oracle information we are going to use does not exceed N/C. Thus, if we will be
able to exhibit an algorithm using this oracle information and solving the recognition
problem in time bounded by a computable function of N we will obtain the desired
contradiction.

For any of the given by the oracle metric spaces we can find in a recursive time
all elements of the JVef(n., x, v/100) which are conv(n^ ^, y/lOO^lOOO^-close to this
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metric space. Denote these elements by E,. Then the algorithm performs a calculation
of the upper bound x for the diameter d of the given manifold and then of an
upper bound X ^ x for (|)(af). Find J\fef(n, x, v/100) proceeding as described in the
proof of part A of Proposition 0.2 above. Find any elements of JVef(n, x, v/100) which
is conv(n, x, y/lOO^OO^-close to the given Riemannian manifold. Consider it as a
vertex A of the graph Gr(n, X, y/100) (see the proof of part A of the proposition
above for the definition of Gr(n, X, y/100)). The next step of the algorithm is the
determination whether or not this vertex A is in the same component of Or[n, X, v/100)
as one of the vertices corresponding to the elements E, in Mf(n, x, y/100). (Recall that
these elements are close to the finite metric spaces provided by the oracle.) Of course,
if the answer is "yes95 then the manifold is M^. If the manifold M^ is such that any
Riemannian metric on M^ such that Ric ^ -(n - 1) has volume not less than y/30,
then the answer "no55 means that the given Riemannian manifold is not diffeomorphic
to M^. If M^ does not have this property, and the answer is "no55, then the given
Riemannian manifold is diffeomorphic to M^ if and only if the vertex A is in the
same component of Gr{n, X, y/100) as a vertex of Gr{n, X, y/100) corresponding to
a Riemannian manifold of volume ^ v / 9 if and only if the vertex A is in the same
component of Gr{n, X, v/\00) as a vertex corresponding to a Riemannian manifold of
volume ^ v / 5 . Thus, it is sufficient to check whether or not A is in the same component
as a vertex corresponding to a Riemannian manifold such that the calculated value of
its volume is ^ y/7, where the accuracy of the calculations of volume is y/100. Now it
is obvious that there exists an algorithm checking this property (exactly as at the end
of the proof of the part A of the proposition). D

Proof of Remark 2 after the text of Theorem A. — (1) To prove the strengthening
of Theorem A stated as the first part of Remark 2 after the text of Theorem A we
would like to prove a modified version of Theorem l.B, where the condition that
^(S,,H) ^ —{n— 1) implies vol^(Si) ^ v(n) for any Riemannian metric |LI on any of
those homology spheres S^ which are nonsimply-connected is replaced by the stronger
condition that the constraint -R^(S^) ^ —(n— 1) for any Riemannian metric ^ on

j_
nonsimply-connected S, implies vol^(Si) ^ exp(s(n)(\.n(i + 1))"), where s(n) is a positive
constant but the condition (3) from the text of Theorem 1 .A is dropped. (The proof of
the corresponding version of Proposition 0.2 will be absolutely analogous to the proof
of Proposition 0.2 in section 4.) To obtain this strengthened version of Theorem l.B
we can proceed exactly as above providing that we will be able to construct for any
j a smooth homology sphere V(j) such that it admits a Riemannian metric with
sup |K| ~ 1 and of diameter between c\(n)j and c^{n)j, of volume ^ exp^^j) and such
that its simplicial volume is not less than exp(c3(n)j) for some positive constants c\[ri),

\_
c^{n\ c^n) and c^ri). These homology spheres 2^(7) forj= [(ln(z+ 1))"] will then be used
in the construction of S, on Step 2 of the proof of Theorem 1 in Section 2 instead
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of the homology sphere Z" defined there. Observe, that in both the original and the

modified constructions we will obtain (S^ [ii) such that diam^(Si) ~ consi(n)().n{i'+ 1))".

However, in the modified construction the volumes vo^{Si) ~ exp{const(n)().n{i + 1))^),
which is worse than the upper bound for the volume consts(n)ln(i + 1) in the original
construction. Still, the examination of the proof of Theorem A in section 4 shows
that this weaker upper bound for the volumes of (S^, |Ll̂ ) in Theorem l.B is sufficient.
Assume that a group Ao has the properties (1)-(5) stated in the text of Proposition 4
at the beginning of section 2. (In the previous section we proved that for any n such
groups exist.) Consider the homology sphere Z" such that its fundamental group is the
universal central extension ofAo introduced at the beginning of Step 2 in Section 2. If
Ao satisfies (5) then the simplicial norm of E^ is non zero. Fix any Riemannian metric
on r\ Let £"(!)= £72, £"(2) be obtained from I " by taking the Riemannian direct sum
with two copies of S", and more generally for any j ^(J) is obtained by taking a
Riemannian connected sum of 1 + 2 +...-•- 27"1 copies of £72 along the binary tree
of height j. It is clear that the diameter of £"(7) with such Riemannian metrics will
grow linearly withj, and the simplicial volume of £"(;') will be equal to (27 — l)x the
simplicial volume of Z".

(2) The strengthening of Theorem A stated as the second part of Remark 2 after
the text of Theorem A immediately follows from our proof of Theorem A and the
Injectivity Radius Estimate at the bottom of p. 14 of [Gr 1]. (We would like to thank
Misha Gromov who attracted our attention to this injectivity radius estimate and the
possibility of its application in the context of our work.)
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M. Gromov, B. Khesin and R. Kottwitz for helpful discussions. We would like to
thank the referee for his comments which helped to improve the exposition.
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