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1. Introduction

In this paper we give criteria for the modularity of certain two-dimensional
Galois representations. Originally conjectural criteria were formulated for compatible
systems of X-adic representations, but a more suitable formulation for our work was
given by Fontaine and Mazur. Throughout this paper p will denote an odd prime.

Conjecture (Fontaine-Mazur [FM]). — Suppose that p : Gal(Q/Q) —> GL^(E) is a
continuous representation, irreducible and unramiffed outside a finite set of primes, where E is a Suite
extension of Q^p. Suppose also that

(i) p|i ^ ( ^ ^ V where lp is an inertia group at p
(ii) dot p = ii/e^"1 for some k ^ 2 and is odd,

where e is the cyclotomic character and \y is offinite order. Then p comes from a modular form.

To say that p comes from a modular form is to mean that there exists a modular
form /with the property that T(£) f= tracep(Frob^) /for all £ at which p is unramified.
Here T(^) is the ( / t Hecke operator, and an arbitrary embedding of E into C is chosen
so that tracep(Frob^) can be viewed in C.

Fontaine and Mazur actually state a more general conjecture where condition (i)
is replaced by a more general, but more technical, hypothesis. The condition which we
use, which we refer to as the condition that p be ordinary, is essential to the methods
of this paper.

If we pick a stable lattice in E2, and reduce p modulo a uniformizer 'k of ^E)
the ring of integers of E, we get a representation p of Gal(Q/Q) into GL^(^E/^)- If
p is irreducible, then it is uniquely determined by p. In general we write p55 for the
semisimplification of p, and this is uniquely determined by p in all cases. Previous work
on this conjecture has mostly focused on the case where p is irreducible (cf. [Wl],
[Dl]). In that case the main theorems prove weakened versions of the conjecture
under the important additional hypothesis that p has some lifting which is modular.
This hypothesis, which is in fact a conjecture of Serre, is as yet unproved.

In this paper we consider the case where p is reducible, and we prove the
following theorem.

Theorem. — Suppose that p : Gal(Q/Q) —> GL^(E) A a continuous representation,
irreducible and unramified outside a finite set of primes, where E is a finite extension ofQ^p. Suppose
also that p" ̂  1 © % and that

(i) %|D + 1 , where Dp is a decomposition group at p,

(")pii^(^ 0-
(iii) det p = i)/^"1 for some k ^ 2 and is odd,

where e is the cyclotomic character and \y is of finite order. Then p comes from a modular form.
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We also prove similar but weaker statements when Q is replaced by a general
totally real number field: see Theorems A and B of §4.5.

In the irreducible case the proof consists of identifying certain universal deforma-
tion rings associated to p with certain Hecke rings. However in the reducible case even
for a fixed p88 ^ 1 © 5^ we have to consider all the deformation rings corresponding
to the possible extensions of % by 1. These deformation rings are not nearly as well-
behaved as in the irreducible case. They are not in general equidimensional. Indeed
there is a part corresponding to the reducible representations whose dimension grows
with £, the finite set of primes at which we permit ramification in the deformation
problem. Just as in the irreducible case, we do not know whether there is an irreducible
lifting for each extension of ^ by 1, but happily we do not need to assume this.

In a previous paper [SW] we examined some special cases where we could
identify the deformation rings with Hecke rings. These cases roughly corresponded to
the condition that there is a unique extension of 1 by %. In this paper we proceed
quite differently. In particular we do not identify the deformation rings with Hecke
rings. As we mentioned earlier, we consider the problem over a general totally real
number field. This is not just to extend the theorem but is, in fact, an essential part
of the proof. For it allows us by base change to restrict ourselves to situations where
the part of the deformation ring corresponding to reducible representations has large
codimension inside the full deformation ring. It should be noted that the base change
we choose depends on Z.

We now give an outline of the paper. In §2 we introduce and give a detailed
analysis of certain deformation rings R^ . These are associated to an extension c of %
by 1. They are given as the universal deformation ring of the representation

P.:Gal(Q^/Q)^(^ ;)

where the implied extension is given by c. Here Q^ is the maximal extension of Q
unramified outside Z and oo although in the main body of the paper Q is replaced
by a totally real field F. More precise definitions are given in §2.1. In §3 we give a
corresponding detailed analysis of certain nearly ordinary Hecke rings introduced by
Hida. We say that a prime of R^r is pro-modular if the trace of the corresponding
representation occurs in a Hecke ring in a sense that is made precise in §4.1. If all
the primes on an irreducible component of R^ are pro-modular then we say that the
component is pro-modular. If all the irreducible components of R^ are pro-modular
then we say that R^ is pro-modular.

The above theorem is deduced from our main result which establishes the pro-
modularity of R^r for suitable ^. There are three main steps in the proof of this
latter result:
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(I) We show that if p is a "nice55 prime of R^r then every component containing
p is pro-modular. (The definition of a nice prime is given in §4.2; it includes the
requirement that p itself is pro-modular).

(II) We show that R^r has a nice prime p.
(Ill) We show that R^r is pro-modular.

The proof of step (I) is modelled on that for the residually irreducible case and is
given in §5-8. The point is that the representation associated to Rj^ /p is irreducible of
dimension one and pro-modular. However the techniques of the irreducible case have
to be modified as this representation, which we now view as our residual representation,
takes values in an infinite field of characteristic p. We should note also that the analog
of the patching argument of [TW] is here performed on the deformation rings rather
than on the Hecke rings.

The proof of step (III) is given in Proposition 4.1. Steps (I) and (II) show
that some irreducible component at the minimum level is modular. Then we use a
connectivity result of M. Raynaud (see §A) to show that there is a nice prime in
every component at the minimum level. By step (I) again we deduce pro-modularity
at the minimum level. A more straightforward argument then shows that there is a
nice prime in every component of R^, so that we can again apply step (I) to deduce
pro-modularity.

For step (II) we proceed as follows. First we show, using the main result of §3.4
(which in turn uses techniques for proving the existence of congruences between cusp
forms and Eisenstein series), that R^ has a nice prime for some extension CQ of ^ by 1.
Using commutative algebra we show that there are primes in the subring of traces of
R^ which correspond to representations with other reduction types, i.e. corresponding
to a different extension c (the pair 1, % are fixed though). We make a construction to
show that we can achieve all extensions in this way, and hence find nice primes for all
extensions C. These primes are necessarily primes of the ring of traces which do not
extend to R^ itself. The proof of step (II) is given in Proposition 4.2. At the start of
the proof of this proposition is a more detailed outline of how we carry out step (II).

We now briefly indicate the extra restriction in the case of a general totally real
field F. We need to be able to make large solvable extensions of F(%), the splitting
field of 5^, with prescribed local behavior at a finite number of primes and such that
the relative class number is controlled. When F(^) is abelian over Q we can do this
using a theorem of Washington about the behavior of the /»-part of the class number
of Z^-extensions. In the general case such a result is not known.

Finally we note that the ordinary hypothesis which is essential to our method
is frequently satisfied in applications. For example, suppose that p (with p reducible)
arises as the X-adic representation associated to an abelian variety A over Q with
a field of endomorphisms K^ Endg(A) 0 Q such that dim A = [K : QJ. Then the
nearly ordinary hypothesis will hold provided A is semistable at p^ or even if A acquires
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semistability over an extension of Q ,̂ with ramification degree < p — 1. This can be
verified by considering the Zariski closure of ker(X) in the Neron model of A.

2. Deformation data and deformation rings

2.1. Generators and relations

Let F be a totally real number field of degree d. For any finite set of finite
places Z, let F^ be the maximal extension of F unramified outside of 2 and all v\oo.
For each place ^ fix once and for all an embedding of F into Fy. Doing so fixes a
choice of decomposition group Dy and inertia group ly for each finite place v and a
choice of complex conjugation for each infinite place. Let -^i, ...5 ̂  be the d complex
conjugations so chosen, and let v\^ .... ^ be the places dividing p. Write D, and I,
for the decomposition group and inertia group chosen for the place ^. Let di be the
degree of Fy^ over Q^p. Normalize the reciprocity maps of Glass Field Theory so that
uniformizers correspond to arithmetic Frobenii and write Froby for a Frobenius at a
place v. Suppose that ko is a finite field of characteristic p and that ^: Gal(F/F) —> k^
is a character such that

• 5c|̂  ^ 1 for i= 1, . . . ,^
• Xfe) = -1 ^ i= ^ " ^ d -

A deformation datum for F is a 4-tuple ̂  = (^, S, c, ̂ ) consisting of the ring of
integers ^ of a local field with finite residue field k containing Ao, a finite set of finite
places £ containing all those at which % is ramified together with S^ = {v\, ..., yj, a
non-zero cohomology class

(2.1) 0 + .€ker {H^/F, A(x-1))-^^H1^,, A<x-'))},
^=1

and a set of places ^6 C S\^ at each of which either c is ramified or %|i^ is non-
trivial. For future reference write Hs(F, K) for the kernel of the map in (2.1). A cocycle
class c G H^(F, K) is called admissible.

Let F(^) be the splitting field of ^. There is a canonical isomorphism (via the
restriction map)

H^Fz/F, ^"^^H^/FOc), ^x"1))0™^

Using this identification, one sees that for any cocycle c there is a unique representation

p,: Gal(Fs/F) —. GL,(A:), p, = (l *)
\ A< /
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such that

p^)=(1 -i)
P^)=( 1 ^)) for oeGal(F£/FOc)).

If c is admissible, then P( also satisfies

PjD,^( ), i=l,...,t.
\ A; /

A deformation of p, is a local complete Noetherian ring A with residue field k and
maximal ideal THA together with a strict equivalence class of continuous representations
p : Gal(F/F) —> GL^(A) satisfying p, = pmodmA. Such a deformation is of type-Q^ if

• A is an ^-algebra,
• p is unramified outside of Z and the places above oo,

• Pin ,^ ( ¥1 ^) ) with % = vi^modmA for each i, and
\ ^2 /

• p|^ ̂  1 ^ for each ^ G ̂ .

Here % denotes the Teichmuller lift of ^ to A. We usually denote a deformation by a
single member of its equivalence class.

For any deformation datum ̂ , there is a universal deformation of type-^

p^ : Gal(Fs/F) —> GL,(R^).

We omit the precise formulation of the universal property as well as the proof of
existence as these are now standard (see [M], [R], [Wl]).

A totally real finite extension F' of F is permissible/or ^ provided

• P^Gai(F/P) is non-split;
• if v C ̂  and ̂  ^ 1, then ̂  ^ 1 for each place w of F' dividing v\
• if v e ̂  and p,|i^ ^ 1 but 5c|i^ = 1, then p,|i^ ^ 1 for each place w of F'

dividing v,
• if w is a place of F' dividing p, then %|D =1= 1.

Remark 2.1. — If F' is permissible for ^, then ^ determines a deformation
datum ^ ' = (^, 2V, ^ ̂ /) for F' with Z' and ̂ / being the sets of places of F'
dividing those in E and ̂ , respectively Clearly if p : Gal(F/F) —> GL^(A) is a
deformation oftype-^, then p|Gai(F/P) is a deformation oftype-^'.

In this subsection we give a preliminary analysis of the structure of R^ as
an abstract ring. To start, we analyze the versa! deformation rings associated to
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representations p : D, —> GL^(A) satisfying pmodniA = X © 1 and detp = %. Such
a deformation is a local ^-deformation if A is an ^-algebra, and it is nearly ordinary if

in addition p ^ ( ^¥ *i j with 1 = \|/modrriA. Applying the criteria of Schlessinger
as in [M], one sees that there is a versal local ^-deformation and a versal nearly
ordinary deformation

pW : D,-^ GL^) and pi : D,—^ GL^)

respectively The representative p^ can be chosen so that

pw - (TV - \
Pord ~~ I w-1 ) '

The following lemma gives a ring-theoretic description of Rord-

Lemma 2.2. — Let 0) ^ ̂  character giving the action of D; on the pth roots of unity.
There is an isomorphism

^ ^ S ^ D^ ? -5 ̂ +2]]/(/) if Xb, =co or if co = 1,
ord - \ ̂  ^i, ..., xu^ otherwise.

Proof. — Our proof follows along the lines of that of [M, Proposition 2]. Let V
be the representation space of poln where po = pc with c = 0. Clearly, V ^ k(B k(^).
Let adpo = Hom^(V, V) be the adjoint representation, and let ad°po be the submodule
consisting of homomorphisms whose trace is zero. The reduced tangent space of R^
has dimension equal to

r = dim, ker { H^D,, ad°po) -^ H^D,, Hom,^), A:)) }.

A simple calculation using local class field theory and local Galois duality shows that

-{ 2di + 2 if %|n = 0) or if co = 1,
2di + 1 otherwise.

It follows that R .̂d is a quotient of the power series ring P = ̂  [[;q, .... x^ by some
ideal I. Consider the exact sequence

0 -^ I/ml -^ P/ml -^ R^ ̂  0

where m is the maximal ideal of P. The universal deformation ring R" for deformations
of the trivial character satisfies

Rf^^^,...,^/(h)
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where

(2.2) s = dim^ H^D,, k) and if 0) ^ 1 then h = 0.

This follows immediately from local class field theory. There is a natural map
R!' —^ Ro'rd corresponding to the character V. Choose a compatible homomorphism
^ [L^i? -5^1 —^ P/ml. This induces a continuous character 0 : D, —> (P/(ml, h)Y
projecting to V. Choose a (continuous) set-theoretic map 6 : D, —> GL^ (P/(ml, h))
projecting to p^ such that

e - ^ 5 W * ^
^"l o-W-

Define a 2-cocycle y: D, —^ I/(ml, h)(y) by

e^^e^)-^^)-1^^1 ^^2)^

and consider its class [y] in H\D,, (I/(ml, A)) (x)) ̂  H2^,, A()c))(g)I/(mI, A). The map

(2.3) (I/(ml, A))* —. H^D, ̂ )), /^ (1 ®/)([Y])

is injective. Here the superscript (*9 denotes the A-dual. For if / € (I/(mI,A))*
maps to zero, then y mod (ml, h, ker / ) equals d^ for some map P : D, —>
(I/(ml, A, ker/))(x), and 6' = ( L "^O is a representation into GL^P/^I, A, ker/))

that is clearly a nearly ordinary deformation. By the versality of R^ there is then a
homomorphism R^ —> P/(ml, A, ker/) inducing 6', and its composition with the
projection P/(ml, A, ker /) -^ R^ is an isomorphism. Comparing maps on reduced
tangent spaces shows that R^ ^ P/(ml, A, ker/), which is possible only if/= 0.

Let g = dim^ I/ml. This is the minimal number of generators of the ideal I. By
(2.2) and the injectivity of (2.3),

f l if co= 1
> + < r.,.dim.H'(D,,«x))+{^ ^^

^"^"^•^{o L .̂
1 if co = 1 or if ^ = CD-{

This proves the lemma. D

^ ^ 0 otherwise.
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Corollary 2.3. — The ring R^ is a quotient ofR^ by an ideal generated by

f 2 if xk.-co^lD,
^ + ^ 1 if Xln, = co 4= ^ID? Xk + co = X"1!^-. or co = 1

1 0 otherwise

elements.

Proof. — The ring R^ is a quotient of ^[[^i, ...,^]] with

r' =dim^H l(D„adopo)

( 3 if x = c o = % - 1

= 3 ^ + 2 if ( 0 = 1 or ^ = c o ^ 5 c ~ 1 or ^ + co = ^-1

1 otherwise.

Combining this with the previous lemma and the fact that R^ is a quotient of R^
yields the corollary. D

The above lemma and its corollary, together with minor variations of the methods
used to prove them, yield the following ring-theoretic description of R^. Let Sp be the
Z^-rank of the Galois group of the maximal abelian pro-j^-extension of F unramified
away from primes above p.

Proposition 2.4. Suppose that ^ = (^ , Z, c, ̂ ) is a deformation datum. There exist
integers g and r, depending on S\ such that

R^ ^[[^..,^/C/;,..,^)

and

g - r ^ d - ^ - ^ - 2 t - 3 - # ^ .

Recall that t is the number of places of F dividing p.

Proof — First we introduce an auxiliary deformation problem. A deformation
p : Gal(F/F) —> GL^A) of p, is of auxiliary type-Q^ if

• A is an ^-algebra
• det p = %
• p is unramified outside of 2 and the places above oo.

There is a universal deformation of auxiliary type-^

p^Ga^/F^GL^).
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Clearly, there are natural maps (p^ : R^ —> R^ corresponding to P^ID to1' ^ = 1 ? • • • ? ^
Let Ji be the kernel of the projection R^ —^ Rord? anc^ kt J be the ideal generated by
U(p,(J,). It follows from Corollary 2.3 that

t
(2.4) J is generated by ^(4 + 2) = rf+ 2^ elements.

;=i

Now pl^modj is clearly a deformation of type-^', where S ^ ' = (^, Z, c, ())).
Using the versality of the various rings one finds that

(2.5) R^, ^ R^/J (g)^ ^ [[Gal(L(2)/F)]]

where L(£) is the maximal abelian pro-^-extension of F unramified away from £. (One
difference between deformations of type-J^' and auxiliary deformations of type-J^ is
that the former include deformations of the determinant whereas the latter do not.) It
is easy to see that there is an isomorphism

(2.6) ^ [Gal(L(£)/F)]] ^ ̂ i, ..., ̂ ,^, ...^]]/(?i, ...,&).

Let I be the kernel of R^r, -^ R^r. For each v G ^^ let Ty E ly be a generator
of the j&-part of tame inertia. Choose for each v G ^& a basis for p^r/ such that
p^/(Ty)modI = f 1 \\. Write p^/(r,) = (^ ^) with respect to the basis. Clearly,
I is generated by the set { dy — 1, dy — 1, Cy : v € ^^ }. It follows that

(2.7) I is generated by 3 • #^ elements.

Arguing as in [M, Proposition 2] shows that

R^^[[^..,^]]/C/;,...,/,)

where

g ' = dim.H1 (F^/F, ad°p,), r ' ^ dim.H^F^/F, ad°p,).

Combining this with (2.4), (2.5), (2.6), and (2.7) shows that

R^ ^^[[^i,...,^]]/(/i,...,^)

where

^ = g + ^ + SF and r = ^ + s + ^+ 2^+ 3 • #^.

The desired bound for g—r is a consequence of the global Euler characteristic formula
for ad°pc. D
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We conclude this subsection with two simple facts about deformation rings.
Suppose that ^ is a deformation datum. Fix a basis for p^. With respect to the basis
write p^(o) = (^ ^) for each a G Gal(F/I). Let R' C R^ be the ^-subalgebra
generated by { ̂ , ̂ , ̂ , ̂  [ G G Gal(F/F) }. Let m' = m^ H R', where m^ is the
maximal ideal of R^r. Let Ri = R^, and denote by Ri the completion of Ri at its
maximal ideal. The inclusion Ri C R^ induces a map i : Ri —> R^ .

Lemma 2.5. — 77^ map i ' . Ri —> R^ zj surjective.

Proof — Let mi be the maximal ideal of Ri. Let pi : Gal(F/F) —> GL^(Ri)
be defined by pi(o) = (^ ^). Clearly composing pi with the homomorphism

GL^(Ri) —> GL^R^r) induced by i yields p^. It follows from the definitions of
RI and pi that pi mod mi = p,. Let a = miR^. The deformation p^moda is the
same as the deformation obtained by composing pi mod mi with the homomorphism
GL^k) = GL^Ri/mi) —> GL^R^r/a) obtained from i As pimodmi = p,, it follows
from the universality of R^r that there is a unique map R^ —> Ri/mi whose
kernel is necessarily m^r. The composition R^ —> Ri/mi —> R^r /a must be the
same as the canonical map R^r —> R^ /a. Therefore a = m^. This proves that
^"^(^A11!1^) = I? from which it follows that R^ is generated as an Ri-module
by one element (cf. [Mat, Theorem 8.4]). D

For future reference we also record the following fact.

Lemma 2.6. — If p C R^r is not the maximal ideal, and if^ pi = Ri H p, then
dimRi/pi ^ 1.

Proof. — If pi is maximal, then pi, and hence also p, contains a uniformizer
of ^. In the deformation p^rmodpiR^ the matrix entries are in k. Therefore
the deformation p^rmodp is obtained by composing p^modm^ with the natural
inclusion k^ R^r /p. From the universality of R^ it then follows that p = m^ . D

2.2. Reducible deformations

A reducible deformation of p, is a deformation p such that p ^ (xl * ).
In this subsection we analyze the universal reducible deformation of type-^ where
^ =(^,:E,^,^). Write

p^ : Gal(Fz/F) —— GL^R^)

for the universal reducible deformation. A consequence of our analysis of p^ will
be an upper bound for the dimension of R^. This bound will be important in our
subsequent analysis of R^ .
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Choose a basis for p^r such that p^(^i) = i _ i ) . For a C Gal(Fs/F) write

p^r(a) = (^ ^), and let I be the ideal generated by the ^/s. Clearly,

R^r = R^r /I and p^r = p^ mod I.

Unfortunately this description of R^ does not easily yield a non-trivial bound for the
dimension. Therefore we take a more pedestrian approach.

Let L(Z) be the maximal abelian pro-j^-extension of F unramified away from 2.
Write

G=Gal(L(2;)(x)/^^AxrxZ^

where A ^ Gal(F()c)/F), F is a finite j^-group, and L(E)Oc) = L(E) • FQc). Let M be the
maximal abelian pro-j&-extension of L(£)(^) unramified away from £\^° and such that
A acts on Gal (M/L(S)(^)) via the unique representation over Z ,̂ associated to %'~1. Any
reducible deformation of type-^ factors through Gal(M/F).

Put

A = Z^G]] ^ Xp [[A x IT] []Ti, ..., T5j.

The group H = Gal (M/L(Z)(^)) is a finitely generated A-module generated by
m elements where

m = dim^, H/THA

= dim.ke^H^Fz/F, ^-1)) —— CH1^-, ̂ -1))}
z=l

=dim^H£(F,A:).

Note that by our hypothesis that /ID, + 1, H1^,^-1) ^ H^I,, ^(3C-1))D^. Here mA
is the maximal ideal of A corresponding to /-1 and k ' is the residue field of Z^[A]
associated to /-1. Fix a presentation

m

a—>Q)Aei-^H

such that ^ projects to an element hm of H for which pc{hm) = ( \) with M =(= 0 and

such that if i^ m then ^ projects to an element hi of H for which pc(^) = ( \ ) '
Ghoose an element UQ G ̂  reducing to M. Put

Ai=^[pT] pi,...,T5p]], A2=^[[n] [[Si,...,S§p]]

and fix embeddings

(p,:A^A(g)z^[A]^ ^A,
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where for (pi the map Z^,[A] —> (^ is that induced by ^-1 and for (p2 it is that induced
by %. LetJ be the ideal ofAi[[;q, .... x^-\^ generated by

{(pi(^i)^i + <pi(^2 + • • • + (pi(^-i)^n-i + (pi(0^o: s^ e a }.
Fix a homomorphism of A-modules

T : H —>B =Ai[[^i, ...,^_i]]/J; ^i—^-, z'= 1, ...,m- 1
Cm '——^ UQ-

Put R = B^^As. Observe that Gal(M/F) ^ G x H. We may therefore define a
reducible deformation of type-^, 0 ^ ' = (^, £, ^, 0)

p : Gal(M/F) —> GL^R)

by

pfe)^^'8^' ^). ^
P(^(' ?'), *eH.

The deformation p is readily seen to be the universal reducible deformation of type-
Q ^ ' . As easy consequences of this explicit description ofR^r/ we obtain the following
estimates.

Lemma 2.7. — We have dim R^ ^ 1 + 2S^ + dim^ Hz(F, K).

Lemma 2.8. — If q C R^r ^ a prime containing p such that p^r modq is reducible and
its determinant has finite order, then dim R^r /q ^ Sp + dim^Hs(F^ A:).

A diagonal deformation of the representation 1 © % is a representation p :
Gal(F/F) —> GL^(A), A a complete local Noetherian ring with residue field k, such

that P = ( (K^ ) with 1 = (|)imodmA and ^ = (^modrriA. Such a representation
p : Gal(Fs/F) —> GI^(A) is a diagonal deformation of type-^, E) if A is a local ^>-
algebra (^ and S as in the definition of a deformation datum). There is a universal
diagonal deformation of type-(^,Z) : P^S) : Gal(F2:/F) —> GL^(Rd^g^). Later we
shall need to know an upper bound for the dimension of various primes of R^^)-
The proof of the following lemma is similar to, but much simpler than, the proofs of
Lemmas 2.7 and 2.8 and hence is omitted.

Lemma 2.9. — (i) dimR^^ ^ 1 +2§F. (ii) If ̂  Q R^S) u a P™^6 containing p such
that detp^^modq has finite order, then dimR^^/q ^ Sp.
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2.3. Some special deformations

In the course of our analysis of the rings R^r we shall sometimes have to
consider some augmented deformation problems as well as deformations of various
restricted type. Here we introduce these deformations and, when applicable, their
universal deformation rings.

Let S^ = (^, Z, c, ̂ ^) be a deformation datum and Q, a finite set of finite
places, Q,= { w\, ...5 Wr }, disjoint from £. A deformation p of type-(^ 5 £ U Q^ c^ ^M)
is oftype-Q^Q^ if

• detp is unramified at each W{ 6 Q;

There exists a universal deformation of type-^c^:

p^ : Gal (FsuQ/F) -^ GL^(R^).

For a deformation datum ̂  = (^, E, ^, ̂ ^), £<; C Z is the subset of places at
which pc is ramified together with the set S^. Similarly, ^& c = ̂ c\^' Also, we write
So tor the set of finite places at which % is ramified together with S^'. Given S^ we
write Sc for the deformation datum ̂  = (^, Z,, ^, ̂ ^).

A deformation p : Gal(Fs/F) —> GL^(A) of type-^ is nice if

• A is a one-dimensional domain of characteristic p,
• p is a deformation of type-^?

• pL c^ ( ^ ..^ ) with VKi/W having infinite order for i = 1, .... .̂1 \ ^2 7
For a deformation datum ̂  = (^, S, c, ̂ ^) let L^/F be the maximal abelian

pro-/?-extension of F unramified away from E, and let N^ be the torsion subgroup
of Gal(Ls/F). A deformation p : Gal(Fs/F) —> GL^(A) of type-^c^ is ^^-minimal
(^ -minimal if Q= 0) if detp is trivial on Ns. Let

p^ : Gal (FsuQ/F) -^ GH^

be the universal ^^-minimal deformation. If Q, = 0, then we just write p^11 and
R^". There is a simple relation between R^g and R^. We fix for each Z a free
Z^-summand H^ C Gal(Ls/F) such that Gal(Ls/F) c^ Hs © Ns. We choose the H^'s
to be compatible with varying Z. Let ^ : Gal(Ls/F) -^ N^ denote the character
obtained by projecting modulo H^. The representation p^ ® ^Ps : Gal(F^/F) —>
GL^(R^ 0^ ^ [N^]) is easily seen to be a deformation of type-^Q. It follows from

the universal properties of R^r and R^ that

R^ ̂  R^ ®^ ^[Nd and p^ ̂  p^ ® Vz.



RESIDUALLY REDUCIBLE REPRESENTATIONS AND MODULAR FORMS 19

Suppose that 9^ is a field and that p : Gal(F/F) —> GL^^) is a represen-
tation. For each place w \ p at which p is ramified we distinguish for future reference
four possibilities for p|i :

Type A p|i,^(1 ^), * +0.

Type B p|i^(^ i) , (|) a finite character.

Type B p l ^ ^ ^ ^ - i ^ ^ a finite character.

Type C P\D^= Indp^vi/ where F^? is the unique unramified quadratic extension

of F^ and \y is a character of Gal(F^/F^) such that \|/|i^ ^ ̂ H,, v|i^ has j^-power
order, and det p|^ has order prime to p.

Note that Type G can only occur if the characteristic of 3^ is zero.

2.4. Pseudo-deformations

For our purposes, following [W2] a (2-dimensional) pseudo-representation of Gal(F/F)
into_a topological ring A js a set p = {a, d, x} of continuous functions a, d '
Gal(F/F) —— A and x : Gal(F/F)2 -^ A such that

• a(<jr) = fl(a)a(T) + x(a, T),
• <aT)=<(J)^(T)+^(T,G),

• x(a, T)<(X, p) = <G, p)<a, r),
• <OT, a?) = a(a)a(ft)x(^, a) + <P)^(T)<G, a) + a(a)d{a)x(^, p) + d^)d{a)x(a, p),
• <1) = 1 = d(\\
• ^i) = 1 = -rf^i), and
• x(a, g) = 0 = x(g, a) if ^ = 1 or ^.

The trace and determinant of p are

trace p(a) = ^(o) + d{a) and det p(a) = a(a)d(a) - x(a, a).

Suppose that p : Gal(F/F) —> GL^(A) is a continuous representation such that

P(^i) ^C -l)- Write p(o) = (^ ^). The functions <G) = ^, <<?) = ^, and
x(a, T) = ^^ form a pseudo-representation, and the trace and determinant of this
pseudo-representation are merely the trace and determinant of the representation p.

Let po be the pseudo-representation associated to the representation 1 © ̂  (i.e.,
a = l ' > d = X^ ^d x = 0). A pseudo-deformation of po is a pair (A, p) consisting of
a local complete Noetherian ring A with residue field k (which we assumed finite)
and maximal ideal m^ and a pseudo-representation p of Gal(F/F) into A such that
pmodniA = po. We often just write p to mean such a pair (A, p). A pseudo-datum for F
is a pair ^P8 = (^, Z) consisting of the ring of integers ^ of some local field having
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residue field k and a finite set of finite places Z of F containing 8^ and those places
at which % is ramified. A pseudo-deformation p of po is oftype-Q^^ if

• A is an ^-algebra and
• p is unramified outside of £ (i.e., a, d, and x factor through Gal(F2:/F)).

It is relatively straightforward to verify that the functor F^ps from the category
of local complete Noetherian ^-algebras with residue field k to the category of sets
given by

F^ps(A) = {pseudo-deformations into A of type-^P^

satisfies the criteria of Schlessinger [Sch]. The only non-trivial point is the finiteness
of the tangent space, and this is provided by the following lemma.

Lemma 2.10. — Let k[e] be the "dual numbers55. Then #F^ps(A;[e]) = [#K)\ where

r < 4(#Gal(F(x)/F)) + 2(dim,Hl(Fz/FOc), K)f + 4.

Proof. — If p = { a, d, x} € F^ps(A;[e]), then

a = 1 + £ a\, d = % + £6/1, and x = £;q.

If p' = { d , d , y ! } is another such pseudo-deformation, and if a G k, then
{ 1 + £a(^i + a\), x + £0^1 + <), ea(xi + ̂ )} is in F^ps(/;[e]). In particular F^ps(^[e])
is a /-space.

Let G^ = Gal(Fs/F(%)). From the relations defining pseudo-representations
it follows that xi^xG^ determines an element of Hom(G^, Hom(G^, k)) via
^1 '—> {§ '—> ^i (•?<?)}• K P is in the kernel of the A-linear map F^ps (/;[£]) —^
Hom(G^, Hom(G^, k)) given by p i—> ̂ xG^ then fli^, ^IG^ ^ Hom(G^, A). Thus

#F^ps(/;[e]) ^ (^y2^. #{p: ^|G, = rfjG, = ̂ |^ =o} ,
where

^dim.H^Fz/FOc)^).

Now let G = Gal(Fz/F) and suppose that p = { a , d , x } C F^ps(A:[e]) satisfies
^ilo^ = ^IG^ := ^IQS = 0. Then ^ilo^xG determines a 1-cocycle G —^ Hom(Gy, k(y))
via ^ i—> Xi{-,g). Moreover, this cocycle vanishes upon restricting to G^. Thus the
number of possibilities for x^o^xG is at most #Hom(G^, K). A similar argument shows
that the number of possibilities for x^oxG^ is also bounded by the same quantity. Thus

#F^ps(/;[£]) < {#k)s2+4s . #{p : ̂ JG, = rfl|G, = ^l|G,xG = ^l|GxG, =0}

(#^y24-4^4•#Gal(FOc)/F)^<
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Here we have used that for any pseudo-deformation p = {a, d, x} satisfying a\\c =
d\\G^ = X\\G^XG = -^iloxGx = 0 the functions a\^ d\ and x\ are constant on cosets of G^
in G. D

There is therefore a universal pseudo-deformation (R^rps, P^ps) oftype-^^.
Clearly, any deformation p : Gal(Fs/F) —> GL^(A) of some pc with A an

^-algebra gives rise to a pseudo-deformation of type-(^,Z). Choose a basis for p
such that p(^i) = ( _ ^ ) . Write p(<7) = (^ /). As we have previously noted,
{ ^G? ^G? ^CT,T = ^T } ls a pseudo-representation, and its reduction modulo TTIA is po,
so it is a pseudo-deformation. One easily checks that it is also of type-(^, £). The
entries ofp(<7) with respect to any other basis for which p(^i) = [ _i ) are obtained by
conjugating the chosen basis by a diagonal matrix. Such a conjugation does not change
(2<j, dy or baC^. We call {a^, dy^ x^^ = b^c^} the pseudo-deformation associated to p and
sometimes denote it by p as well. There is a unique map R^rps —> A (^ps = (^, S))
inducing the pseudo-deformation associated to p. This argument shows that to any
deformation p of p^, where c is some cocycle in H^F^/F, /^-1)), one can associate a
well-defined pseudo-deformation. In particular, i f ^= (d^, 2, f, ̂ ^) is a deformation
datum, and if ^rps = (^,Z), then we obtain a unique map r^r : R^rps —^ R^
inducing the pseudo-deformation associated to p^r. We write r^ : R^r ps —> R^" for
the composition of r^ with the canonical map R^r —^ R^.

Let ^ps = (^, £) be a pseudo-datum and let Q^ be a finite set of finite places
disjoint from Z. A pseudo-deformation p of type-(d^, £ U Q) is of type-^^ if

• det p is unramified at each w € Q;

There exists a universal pseudo-deformation of type-^^ : (R^rps, p^rps ). If ̂  =

(^,2,^,^^) is a deformation datum, then as in the preceding paragraph there is
a unique map r^ : R^ps —> R^n inducing the pseudo-deformation associated to

p^r Of course, if Q^= 0, then R^ps = R^rps, p^ps = p^ps, and r^r - r^ .
0 , 0 ,

Suppose ^ = (^, Z, <:, ̂ ) is a deformation datum and ^ps = (^,2). The
following proposition reflects the relation of R^ ps to R^r .

Proposition 2.11. — ffp^ ^^n ^ a one-dimensional prime such that p r̂ modp is

irreducible, and if p^ = r̂ r (p) C R^ps, ^^z ^ canonical map R^rps ps —^ R^r^p ^

^77'̂ .̂

Pwo/^ — As p^ modp is not reducible, p^ is not the maximal ideal m^.
Therefore mP'R^^ ^ p. Let A = R^/p and AP8 = R^ps/pP8. Let K?8 be the

field of fractions ofA^. The map r^ : R^ps —> R^o Educes an inclusion A?8^^ A.
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As we have observed, vc^A ̂  0, whence A/mP'A is a zero-dimensional Noetherian
local ring with residue field k. It follows that ^A/mP'A) < oo and hence that A is a
finite AP^module (cf. [Mat, Theorem 8.4]). Thus A is an integral extension ofA?8 and
dimAP5 = d i m A = 1.

Fix a basis of p^ such that p^^i) = (' _ , ) and p^((To) = (^ ;),

u G (^x, for some GO G Gal(F/F). With respect to this basis write p^ (o) = (^ ^°).
It is easily checked that {oa, da, c^, b^ \ a,x (= Gal(F/F)} is contained in im(^).
Let R' C R^r^ be the subring generated by im(r^) and the set { by \ a G Gal(F/F)}.
Let nV = R' n m^, where m^r^ is the maximal ideal of R^ . Put Ro = R^,. Let
p' = R' D p and po == RO I") p. It is a standard fact about localizations that po = p'Ro
Let A' = R'/p' and Ao = Ro/po.

Our first claim is that Ao = A and poR^ ̂  = p. To see this, first note that there
are inclusions A?8 C Ao C A. Since A is a finite AP^module and A?8 is Noetherian, Ao
is also a finite AP'-module as is any ideal ofAo.It follows that Ao is a Noetherian ring
and that it is complete as an AP^module. Since Ao is local and the radical of mP'Ao is
the maximal ideal of Ao, it follows that Ao is a complete local Noetherian domain. It
now follows from Lemma 2.5 that the map from Ao to R^/poR^ is surjective, so
we have Ao -^ R^^/poR^o ->> R^o/pR^^ = A. The claim follows.

We next claim that the canonical map R^ps pp, —> Rp, is surjective. As

p^modp is irreducible there exists some To such that c^ ^ r^ (pP5). It follows easily
that {ba | CT € Gal(F/F)} C R* = im(R^ps ̂  —^ R;,). Therefore the image of the

canonical map R' —> Rp, is contained in R*. The inverse image in R' of the prime
pP'R* is just p', whence localization induces a map Rp, —> R* whose composition with
the inclusion R* ̂  Rp. is the identity map. It follows that R* = R?,. As a consequence
we have pP-Rp =p'Rp,.

Combining the results of the preceding two paragraphs yields

P^R^o.p = P'R^Q,,? = PoR^^,p = pR^o,,p-
We also find that AP^A'.AQ and A all have the same field of fractions, namely
KP5. It follows that dim^R^p/pP^^p) = 1. Therefore the canonical map
R^rps pps —»• R^o,? is surjective (see [Mat, Theorem 8.4]). D

As a corollary of this we have the following important result.

Corollary 2.12. — yQ_C R r̂ is any prime such that p r̂ modQ is irreducible, and if
Qr^^CR^, then

dim R^ps/QP5 > dimR^ /Q

with equality holding if Q^ is a dimension one prime.
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Proof. — Equality of dimR^ps/QP8 and dim R^/Q when Q, is a dimension
one prime was shown in the first paragraph of the proof of Proposition 2.11. We
may therefore assume that Q, is a prime of dimension at least two. Choose a prime
P D Q^ofR^r having dimension one and such that p^modp is also irreducible. Let
^^(P). We then have

dim R^r /Q = 1 + dim R^, p/Q, ^ 1 + dim R^ ps pps/Q"

^dimR^ps/QP8

with the first inequality following from Proposition 2.11. D
We now collect a few results connecting deformations and pseudo-deformations.

Suppose that A is a complete DVR with residue field k. Let K be the field of fractions
of A, and let X be a uniformizer of A. Suppose that p : Gal(Fs/F) —> GL (K)
is a continuous representation. As Gal(Fs/F) is compact, there exists a Gal(Fs/F)-
stable A lattice L in the representation space of p. Such a lattice, being a free
A-module of rank 2, gives rise to a representation PL : Gal(Fz/F) —> GL^A) such
that PL 0A K ^ p. It is well-known that whereas the reduction PL = PL mod X- is not
necessarily independent of L, its semisimplification p^8 is. We call p^8 the reduction of p.

Lemma 2.13. — Suppose that the reduction ofp is 1 © % and that p is irreducible.
(i) There exists a Ga\(F^/F)-stable lattice L in the representation space of p such that

PL(°') = ( ^(S)) f^ a^ ̂  an^ PL ^las ̂ ^ centrali^er.
(ii) For two lattices Li and L? as in (i), the classes in H^F^/F, k(%~1)) of the cocycles

0 '—> K{d)~vbi{^), i = 1,2, are non-^ero scalar multiples of one another.

Proof. — Choose any Gal(Fi:/F)-stable lattice L and pick a basis for PL such that
PL(Zi) = (1 _ i ) . Write pL(a) = (^ ^), and let n = min ord^(^). As p is irreducible,<j
n < oo. Let L' be the lattice obtained by scaling L by ^-" V The representation
PL' is just

/a-" \ (V \
PL-= ( J P L ( , ) .

The representation clearly has the properties desired for part (i). To prove part (ii) it
suffices to show that the representations ̂  and ̂  are equivalent. Choose bases for

the pL/s such that p^(^i) = (! _ i ) . As p^.0 K ̂  p, there exists g G GL^K) such that

g^PL^g = PLg. Since g must commute with ( 1 _^Y one may assume that g = ( r A

( . \ v / \ /
Write pL^(a) = ^ ^J. By hypothesis, there exists some Go such that b^ is a unit.
As abaQ € A, it must be that ord^a) ̂  0. As the reduction of aba is not always zero, it
must be that ord^a) ^ 0. Thus a is a unit and ̂  and PL are equivalent. D
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Corollary 2.14. — If A is a complete DVR with residue field k as above, and if (A, (p) is a
pseudo-deformation ofpo unramified away from ILfor which x(a, r) is not identically ^ero, then there
exists a non-^ero cocycle c e H^FS/F, A^"1)) and a deformation pep : Gal(Fs/F) —> GL^(A)
of pc whose associated pseudo-deformation is (p. Moreover, c is unique up to multiplication by a
non-^ero scalar.

Proof. — We need only observe that there is some irreducible representation
p : Gal(Fs/F) —> GL^(A) whose associated pseudo-representation is (p, for then the
claim follows from the lemma. Fix Go, To € Gal(Fs/F) such that ord^(Go, To) is minimal.
Define p by

^ ^ ( <^) X{(5, To)A(Oo, To) \
pw ^(ao, a) d{a) )

D

Our next result also associates deformations to pseudo-deformations. Suppose
that R is a local complete Noetherian domain with residue field k and maximal ideal
m. Suppose that p = { a , d , x } i s a . pseudo-representation of Gal(Fs/F) into R such
that po = pmodm (i.e., (R, p) is a pseudo-deformation). Let p be a prime of R such
that the dimension of R/p is one. Let A be the integral closure of R/p in its field
of fractions K. This is a complete DVR with residue field a finite extension of k,
say k . Suppose that xmodp is not identically zero. By Corollary 2.14 there exists a
cocycle 0 ^ c in H^F^/F, A<5c~1)) and a deformation pp : Gal(Fs/F) —> GL,(A) of p,
such that the pseudo-deformation associated to pp is pmodp. We will construct a local
complete Noetherian domain R4^ having the same dimension as R, an injective local
homomorphism R^ R^ and a deformation p+ : Gal(Fs/F) —> GL^R"^ of p, whose
associated pseudo-deformation is p. Moreover, R'^ will have a prime ^+ of dimension
one such that p = R H p"^ and pp = p^od?^

Let L be the field of fractions of R. Pick a, P G m, P ^ p, such that a/P is a
uniformizer of A. Put R' = R[a/P] C L. This is a Noetherian domain with maximal
ideal m' = (m, oc/P). To see that m' is in fact a maximal ideal, let (p' : R' -» A be given
^ ^(/(^P)) ^(^/P) for ^y polynomial/with coefficients in R. Here the "bar55

denotes reduction modulo p. This is well-defined, for if/(a/P) = 0, then/(a/p) = 0
as can be seen by first clearing denominators and then reducing. Let p' be the kernel
of (p', and let I be the ideal of R' generated by the set { x(a, r)}. Let {z ' i , ..., i,} be a
set of generators of I taken from among the x{a, r)^. As pp is irreducible, the image of
I under (p' is non-trivial. Pick an i G {z ' i , ..., ir} whose image has minimal valuation
in A. Define R* by

R*=R / [z lA, . . . ,^ ,A]CL.

This is a Noetherian integral domain with maximal ideal m* defined as the inverse
image of the maximal ideal of A under the homomorphism (p* : R* -^ A given by
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f(ii/i, ..., i r / z ) '—^/(h I ^ • • • ? ^ / z ) ^or any polynomial y with coefficients in R'. (Now
the "bar55 denotes reduction modulo p'.) Let p* be the kernel of the map (p*. Let
R'^ = R^*, and let m'^ be its maximal ideal and p+ the kernel of the induced map
R"^ -M. A. The ring R4^ is clearly a local complete Noetherian ring with residue field k.
Moreover, the inclusion R '—> R+ is a local homomorphism. To see that the dimension
of R"^ is the same as that of R, observe that it follows from the construction of R*
that R** = Rp, whence

dim R+ = dim R^. = dim R^ + 1 = dim Rp + 1 = dim R.

Unfortunately, R'^ need not be a domain. However, since the "going-down55 property
holds for the pair R^ and R"^ (see [Mat, Theorem 9.5]), there is a minimal prime
^ of R+ contained in ^ and such that q+ HR^ = (0) and dimR'Vq4' = dimR4'. We
replace R"^ by the quotient R'^/q'^. This ring has all of the desired properties.

In the ring R"^ the ideal IR"^ = { i } is principal. As i = x(ao, To) for some
GO? ^o ^ Gal(Fs/F), one can define a representation ^ : Gal(Fs/F) —> GL^R^") by

—————f < )̂ ^,To)M
P^ ^(OO.G) <G) ) '

The reduction of p'^modm'^ is non-semisimple as p^i) = l _i ) and p'^^o) :=:

(* I ) . Thus p"" is a deformation ofp,/ for some 0 ^ c' € H^F^/F, A7^-1)). Reducing
p"^ modulo p4' gives a deformation of p c ' into GL^(A) whose associated pseudo-
deformation is pmodp. It follows from Corollary 2.14 that c' is a non-zero scalar
multiple of c. Thus, after possibly replacing p+ by a conjugate, we may assume that
c = cf and p+modp+ = pp.

Finally, suppose that A is an ^-algebra with (9s the ring of integers of some
local field having residue field K, and that ^M>, Q C £ are sets of finite places (possibly
empty) such that

(2.8) (i) ^& C Z\^ consists of places w such that pc is ramified at w ;
(ii) Q C Z\^ U ^& consists of places w at which pc ls unramified.

Let J3? be the field of fractions of R^ It is easily checked that if

(2.9) (i) P^^ID^ (X¥15Z * ) , v^-modm^l, z = l , . . . , ^ ,

(ii) p+ 0 ̂  \^ ̂  ( l ^} for all w G ̂  , and

(iii) det p^ = 1 for all w G Q,

then c is admissible and p"^ is of type-J^^ where ^ = (^5 Z, c, ^&\ For ease of
reference we summarize these results in a proposition.
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Proposition 2.15. — Suppose (R, p) is a pseudo-deformation of type-(^, £). &^o^
a&o ̂  p C R is a prime of dimension one such that ^(o,T)modp is not identically ^ero
{p = {a, d, x}). Let hf be the residue field of the integral closure ofR/f in its field of fractions.
There exists a cocycle 0 ^ c C H^F^/F, A^"1)) unique up to multiplication by a scalar, a
local complete Noetherian ^-domain R'^ with residue field k and having the same dimension as
R^ a local homomorphism R^-^ R'^ of ^-algebras, a dimension one prime ^+ C R"^ extending
p, and a deformation p^ : Gal(Fs/F) —> GL^R^ of p, whose associated pseudo-deformation
is that induced from p. Moreover, if Q, ̂  C Z are sets of places satisfying (2.8), and if
p4' 0=Sf, c^ the field of fractions ofR^, satisfies (2.9), ̂  p"^ zj a deformation of type-S^ ̂
with ̂  = (^ , Z\Q, ^ ̂ ), with ^ ' = ̂  (g)w^ W(AQ.

For a finite field F, W(F) denotes the ring of Witt vectors of F.

2.5. The Iwasawa algebra

In this subsection we describe how each of the deformation rings R^ and R^
is an algebra over a certain multivariate "Iwasawa algebra95. Let Lo be the maximal
abelian pro-p-extension of F unramified away from ^°. Let I C Gal(Lo/F) be the
subgroup generated by the images of the inertia groups I,, i = 1, ...,^. We fix once
and for all a maximal free Z^-summand Io of I (necessarily of rank Sp). Fix also a free
Z^-summand Go of Gal(Lo/F) containing Io (this also has rank 5p). Finally, fix elements
Yi? • • • 5 Y5p e Gal(F/F) whose images in Gal(Lo/F) generate Go and for which there exist

r! r^T

integers 7-1, ..., r§p such that yf , ..., Y^ generate Io. For each 0 ^ i ^ t fix once and

for allj^ , ...,̂  C U, (the units of F^) generating a free Z^-summand of rank d,. Put

A^ =^[TTi,...,T^ Y^...,Y^.

The rings R^ (and hence the R^g) are algebras over A^ via
• T, i—> detp^r (Y,) - 1, z = 1, ..., §F;

• Yf —> ̂ (j/f) - 1, where p^ ID. ^ f ̂  x * ^ ) and U, is identified withV vry
the inertia subgroup of D^ via local reciprocity.

Suppose that ^ = (^, Z,c, ̂ ) and ^/ = (<^, Z', ^, .^/) are deformation
data with Z C Z' and ^/ C ̂ . The natural map R^/ ^ R^ is a map of
A^ -algebras.

Each universal pseudo-deformation ring R^ ps and R^ ps is a A^ -algebra in a

manner compatible with the canonical maps R^ps —> R^ and R^ps —> R^
0. ^

To see this, for each i = 1 , . . . ,^ fix g,• e D, such that 5c(&) + 1 and for each
j = 1,...,^ let of G D, be a lift of yf. By the choice of gi the polynomial
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X2 — trace p^ ps (g^X + detp^ps^) has distinct roots in R^ps, say a; and P, with a;
reducing to ^(^-) modulo the maximal ideal of R^ ps. (The images of o^ and P, in R^
are just the eigenvalues of p^r (^-)). We define a map A^ —^ R^ps by

• T,—>detp^ps(Y,)- 1, i= 1,...,5^,
• Yf —— (trace p^ps^) - a, trace P^ps((f))/(?, - a,) - 1.

The compatibility with the A<^ -algebra structure of R^ is clear. Also, if
^ = (^,Ei) and ̂  = (^,2:2) are two pseudo-data with £3 D ^b then the
natural map R^rps —>• R^ps is a map of A^?-algebras.

3. Nearly ordinary Hecke algebras and Galois representations

3.1. Modular forms and Hecke operators

We keep our previous conventions for the field F. We write A and Ay for the
adeles and the finite adeles of F, respectively. If G is any algebraic group over F, then
we identify G(A) with the restricted direct product of the groups G(F^) with respect to
the subgroups G(^F,w) (f011 finite w), writing x^ for the w-component of x € G(A), and
similarly for G(Ay). For a finite place w, we sometimes write x? for x^ with p the prime
ideal of F corresponding to w. Let I be the set of infinite places of F (equivalently, the
set of embeddings T : F^ R). This description of G(A) identifies G(F(g)R) with G(R)1.
We also fix an algebraic closure Q. of Q ,̂ and an embedding of Q= F into Q,.

For an ideal n of ^p we define various standard open compact subgroups of
GL^(Ay) as follows:

U o ( n ) = { ( ^ ^) eGL^F®Z) : r=0 modnL

^W = {C ^) e Uo(n) : a = 1 modnl, and

u^) ={(ac 9 e U i ( n ) : r f = l modnl.

For k = ZA^T G Zp] and x C C1 write ^ for the product Hx^. Let t = ZT. To
each k = 2^T, with each k^ ^ 2 and having the same parity as the others, we associate
quantities m, v G Z[T[ and u, G Z as follows:

m = k- 2t

and

v = Sv-cT, VT; ^ 0, some v^ = 0; m + 2v = p- • t.
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Let H denote the complex upper-half plane. Define j : GLJF (g) R) x H1 —> C1 by

J^oo, ^ = (^T + ^), ^oo = ( ̂  i) € GL^R)1 = GL,(F 0 R).

Define also an action of GL^(F (g) R) = GL^(R)1 on H1 by

\^T +^T\
^00 (̂ ) =

^T + 1̂

Denote by ^ the point (z,..., i) e H1.
We now recall the notion of a (holomorphic) modular form on GLo. First, for any

congruence subgroup F C GL^(F), denote by M^F) and S^(r) the spaces of (classical,
Hilbert) modular forms and cusp forms on H1, respectively, of weight k (cf. [Sh]). For
a function/ : GL,(A) —> C and u = Uf u^ € GL,(A) = GL^Ay) • GL,(F(g)R) we define
fVu by

(/1^)(?) =^oo, ̂  det^F^-y^-1).

Write C^ for the subgroup ̂  •SO^R))1 C GL^(F(g)R). A function/ : GL^A) —> C
satisfying / [^ = / for all u € Goo gives rise to a function / : H1 —> C for each
x e GL,(Ay):

fx^) =^oo, ̂  det^-^f^u^), u^o) = ̂

Let U C GL^(Ay) be an open compact subgroup. A function/: GL^(A) —> C is
a modular form of weight k and level U if

•f{ax)=f{x) VaCGL^I),
•f\ku=f v^eu-c^ ,
• /(^) c M,(r,), r, = GL^F) n xV • GL^(F ® R)^-1, v^ e GL^Ay).
Such a function is a cusp form if /(^) C 8 (̂1 )̂ for all A: C GL^(Ay). Denote

by M^(U) and S/;(U) the spaces of modular forms and cusp forms of weight k and
level U, respectively. For more on such forms see [Sh] and [HI].

If U = Ui(n), then M^(U) and S^(U) are just the spaces M^(n) and S^(n) defined
in [Sh]. For each n choose once and for all representatives t^ G Ax of the ideal classes
of F (i = 1,...,A) such that t^ = 1 for each place w\Nm(np) ' oo. Put x, = ( t w )
and write I"̂  for the subgroup F^ and for each/G M^(n) write/ for/. There are

h h
isomorphisms M^(n) ̂  n M^(r,) and S^(n) ̂  n S^r,) given by/—^ (/). Each/(z) has^UM^)and^(n)^

a Fourier expansion of the form/(^) = a,(0) + S'^^U)^^ • ^) where (^')) is the ideal
H€(^)

of F associated to the idele ^), the sum is over totally positive elements of (^)), and
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[ l ' ^ = ET(|LI)'^. For a ring A C C, let M^(n, A) be the space of modular forms/e M^(n)
such that each^ has Fourier coefficients in A. Define S^(n, A) similarly. Shimura has
shown that M^(n, A) = M^(n, Z) (g) A and S^(n, A) = S^(n, Z) (g) A. For a ring R C Q^
define_M^(n, R) and S^(n, R) by M^(n, R) = M^(n, Z)(g)R and S^(n, R) = S^(n, Z)0R. If
R ^ Q as well, then this agrees with the earlier definitions, as Shimura's result shows.

From now on we require each U to satisfy

U = I^- U.CGL^F,.).
w\oo

We also require that U(n) C U C Uo(n) for some n.
Next we recall the connection between modular forms on GL^ and automorphic

representations of GL^. For details and definitions the reader should consult [De],
[Ge], and [J-L]. Let ^^ be the space of all cusp forms on GL^ (over F, of course)
of weight k. The group GL^(Ay) acts on ^&\ via (y)(^) =/te). Under this action ^k\
is an admissible representation of GL^(Ay). Moreover, ^^ decomposes into a direct
sum ^^ = ©Vjt where, for each TC, Vjc is an irreducible admissible representation

n
of GL^(A^) (which we often denote just by n), and the Vjc are all non-isomorphic. For
an open subgroup U C GL/^F ® Z) let n^(U) = {71 |V^ ^ 0}. Clearly the space

® VTC is just S^(U). We recall that each n € n^(U) can be written as a restricted
7cen^(U)
tensor product TC = 0 Tly where v runs over the finite places of F and each Ky is an

v

irreducible admissible representation of GL^(Fy). Let Vyc = 0V^y be the corresponding

tensor product decomposition ofV^. Clearly V^ = 0V^. It follows from the theory
v

of newforms that dim V y = 1 for each place v for which LL = GLof^p v ) '
71, y 2- '

For each g € GL,(A^) define a Hecke operator [U^U'J : Mk(U) —> M/,(U') by

(3.1) [UgV']f{x) = E/(^'), U^=UU&.
•̂

Of course, [UgU'] maps S^(U) to S^(U'). For each prime ideal i of F choose an
element ^) € ^F (8 Z such that ̂ ) ^ a uniformizer of ^p,^ and ^) = 1 for p =^ ^.
If p\p then we require that Xp^ also be an element of ^p such that %(^) =|= 1 and
that ̂  G ^p?p/ for each p']^ but p7 =|= p. (Forj/ € F^ we define x(J/) to be the value
obtained from composing % with the local reciprocity map F^ —> Gal(F^ /Fp).) Denote

by T{£) and S(£) the operators [Ul ^))u] and [U^^^ ^))u], respectively
These operators commute one with another. Moreover, it is easy to see that T(^) and
S(t) are independent of the choice of ^) if U^ = GL^F,^). Also, if V C U and if
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GL^(^F^) = V^ = U^, then the inclusion M^(U) C M^(V) respects the actions of TO)
and S(£).

If U = Ui(n), then T(^) and S(^) (for ^ \ n) are just the Hecke operators defined
and so denoted in [Sh]. These operators stabilize each M^(n, R) and S^(n, R).

As S^(U) = © V^ we find that the Hecke operator [LMJ] stabilizes each V^
Tien^(U) ' L 6 J 7l?

the action being given by

(3.17) IW^-E71^1)^ ^V^ W=UU^,
&•

For each place v letgy be the y-component ofg. Under the tensor product decomposition
V^ = (g)V^, [U^U] decomposes as [U^U] = 0 [U.&UJ with [U,&UJ e End(V^)

y y '

being given by

[U.&U^ = E7l^"1)^ ^ ^ V^, U^ U, = UUA.

3.2. Nearly ordinary Hecke algebras

Keeping the conventions for U introduced in the preceding subsection, for each
positive integer a define U^, V^ and U^ by

u^ = u n Uo(^), u^ = u n Ui^), and u, = u n u(^),
respectively.

Suppose that U, = GL^p,.) tor each v\p. There is an action of the group
G(U,) = V°, • ^p^/U, • ̂  on M^(U,) with ^ ' y acting via the operator (U^U,) =
(no)(^)-^) [U^UJ where x = (^ ^ C U ^ a n d ^ e ^ p ^ Here co : Ga^/F) —— F"

is the Teichmuller character, and co(^) is defined by composing 0) with the global
reciprocity map taking ^^ ^to the inertia group of y in Ga^/F). Recall that we
have fixed an embedding of F into Q^, so co, which a priori takes values in Q^, can
be considered as taking values in F x.

Let (p) = p/,...,p/ be the prime factorization of (p) in F with p, the prime
corresponding to the place Vi. For each i= 1,...,^ define an operator To(p,) on M^(U^)

by To(p,) = Q^^T^i). Define an operator To(p) simHarly by To(p) ̂ ^[U/ 1 ~)uj

where p, = p if y|̂  and p, = 1 otherwise. Note that To(fi) differs from n To(p^ by
;=i

multiplication by some ?l. [U,( 1 ^UJ where ord^) = 0 and ^ G ^^p^ for each p,.
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As discussed in the previous subsection, these operators act on each Vj/,
n E n^(U^). If V C U and if Vy = GL^^p,,) for each v\p, then the inclusion
M^(Ufl) C M^(V^,) (^ ^ a) is compatible with the natural homomorphism G(V^) —>
G{Va) and with the actions of To(p) and the To(p^s.

Let k = EA^T with each k^ ^ 2. Let 71 G n^(Ua). Suppose that y|j& and that py is
the corresponding prime ideal. It is an easy consequence of the classification of local
automorphic representations that if there exists a line in V^0^ on which To(py) acts via
an element of F that is a unit in the ring of integers of Q. via the fixed embedding
F ^-> Q^, then the line is unique. Call such a line v-good. A y-good line exists if and

_1 _1
only if Ky is either a principal series representation 7l(r|y| • \y 5 ^y| • \y ) or a special

-1 1
representation 7c(^y| • \y 2 , ^y| • |J) such that in either case ^"^(Xy ) is a unit in the ring
of integers of Q- (cf. [H3, Corollary 2.2]). Here X-y is the uniformizer of ^F,y chosen
in the definition of To(py). The representation n is said to be nearly ordinary if a y-good
line exists in Vj^y for each v dividing^. Similarly, a newformyc Sj^a) 1s called nearly
ordinary if the corresponding automorphic representation Kj- is nearly ordinary. Let
II^Ua) C n/:(Ly be the subset of nearly ordinary representations. A representation
n € II^Ua) is said to be ordinary if ^y is unramified at v for each v\p. Similarly, a
newform / € S^(U^) is ordinary if the corresponding automorphic representation is
ordinary.

Fix an identification of C with Q ,̂ extending the fixed embedding of Q into
_ u
Q^. For each n C ̂  (Ua) let w(7c) = (g)w(7t, ^) € 0V^" be a vector such that
^^ v

w(n., v) spans a y-good line for each v\p. Each w{n) is an eigenvector for the Hecke
operators To(pz) for i = 1,.... ^, To(^), T(^) and S(^) for each prime ideal £ \p for which
U^ = GL^^YA and for each element ofG(U^), and the corresponding eigenvalues are
integers in Q.. Let S^(Ua) C S^(U^) be the subspace spanned by the w^'s (recall that

S^(U,) = © V^). Let Tk{Va) C End^(S^U,)) be the subalgebra generated over Zp
^n^(uj

by the aforementioned Hecke operators. The ring T^(U^) is a finite, flat, commutative,
reduced Z^-algebra. In fact, we have an injection

T.(U,)^ n o,.
"en0"1^)

Note that the definition of T^(U(,) is independent of the choice of the w(n)'s. Also, if
V ^ U is another open compact subgroup, then there is a canonical homomorphism
T,(V,) —. T,(U,) (̂  a).
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For ^ the ring of integers of some finite extension K of Q ,̂, put T\(U^ ^)
T^(U,)®z^. Put also

T^(U,^)=limT2(U,,^).

Suppose k is parallel (i.e., v = 0). We now give an alternate (but equivalent)
definition ofT^(U,, ^). As we shall see, both definitions will have their uses. Let T^(U^)
be the subring of Endc(M^(U,)) generated over Z by To(p,) for i = 1,...,^, To(p\ the
action of G(U^), and by the operators T(^) and S{£) for each prime ideal £ \p for which
U^ = GL^^F,^). Let T^(Ua) be the quotient ring obtained by restricting the action
of the Hecke operators to the space S^(U^) of cusp forms. These rings are finite, flat,
commutative Z-algebras. Put T\(U,, ̂ ) = T^(U,) (g) ̂  and T^(U,, ̂ ) = T^(U,) (g) ̂
with ^ as in the preceding paragraph. For all sufficiently divisible integers m, the
operator e = lim To^"^"^ exists in T^(U^, ^) and is independent of m. Moreover,

n—>-oo

e is an idempotent. Put T\(U,, ̂ ) = ^(U,, ̂ ).
That this definition of T\(Ua, ̂ ) yields the same ring as did the previous one

can be seen as follows. The ring T^(U^ ^) is the subring of End^S^)) generated
over ^ by To(p,) for i = 1,...,^, To0&), the action of G(U,), and by T(^) and S{i) for
each (, \p such that U^ = GL^y^). In particular, e is identified with an idempotent
in Endc(S^(U,)) and ^(U,, ̂ ) is just the image ofT\*(U,, ^) in Endc(^S^(U,)). Write

eSk{Va) = © ^fl. From the definition of e we have that eV^ = 0 if n ^ ri^fLD"^n^(u,) )- A: v /

and that i f ^ T G 11̂  (U^) then ^Vji0 = { ^ = (g)^ : Xy spans a y-good line ^/v\p}. It is now
immediate that eT^Va, ̂ ) agrees with the first definition of T^(U^, ^).

Let G(U) = lim G(U^), where the transition maps are the maps induced from the
a

inclusions U^ C U^, a > b. There is a homomorphism ^[[G(U)]] —> Too(U, ^). Put

ly=un(A^) x , u^=u,n(A^) x , Z^^I/.^/^-^F'.
and

Z(U)=limZ(U,).
a

The map ( ^ ^ j i—)- (n^"1^, ^) induces isomorphisms
v / ^P

G(U,) ̂  (^p/^)" x Z(U,) and G(U) ̂  (^p ® Z^)>< x Z(U).
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For ()/, 1) G G(U) we write T ,̂ for the corresponding Hecke operator. Similarly, we write
Sx for the operator corresponding to (1, x) € G(U). Let

^ =^^.^(^F^Zp)x =n^,^ ^

where ̂  ^ C ^p? y is the subgroup of units congruent to one modulo Ui. Let^ € ̂
r! ^F

be as in §2.5. Let ;q,...,^§p € Z(U) be the images of yf ,...,Y<t ? respectively, via the
global reciprocity map (for the definition of y? ^d ^ ^e §2.5). The ^'s generate a
maximal Z^-free direct summand of Z(U). The ring Too(U, ̂ ) is an algebra over the
ringA^ = ̂ P:i, ....Xg,, Y^, ..,Y^ via X,——S^. - 1 and Y ^ — — T , ) - L

-{/"
The principal goal of this subsection is to show that Too(U, ̂ ) is a finite, torsion-

free A^p -module. We only prove this for F having even degree, although the result is
true in general. Our proof involves analyzing modular forms on a twisted-form ofGL^.

Suppose that F has even degree. Let D be the unique quaternion algebra
over F ramified at every infinite place and unramified at all finite places, and let
R be a maximal order of D. Let G0 be the unique algebraic group over F such
that G^F) = D^ Let VD : G13 —> Gm be the reduced norm. For each finite
place v fix an isomorphism R 0 ^ F , y ^ M^^F,^)- This induces an isomorphism
G^Ay) ^ GL^(Ay) which we use to identify these two groups. For each open compact
subgroup U C GL^(Ay) put

J^D(U) = {f : D^G^AyVU —> C }.

(Note that D^G^A^/U is a finite set.) We distinguish a subspace

^(U) ={f e ̂ (U): /factors through G^/U-^A^/VD^}.

For any g € G^Ay) ̂  GL^Ay) there is a Hecke operator [U^U'] : ̂ (U) —> ̂ (UQ
defined as in (3.1). It is easy to see that [U^U'J maps PfU) to I^U'). A theorem
of Jacquet, Langlands, and Shimizu [J-L], [Shi] states that there is a system of
isomorphisms

S^U) = ̂ (U)/!1^ ̂  S2(U)

compatible with the action of the Hecke operators [U^U']. Thus T^(U^) can be
identified with the subring of End^S^Ua)) generated over Z by To(p), To(pi) for
i = 1,..., t, G(U,), and T(^) and S{£) for all prime ideals i for which U^ = GL^p^).

Put X(U) = DX\GD(A^)/U, and define

H°(X(U), Z) = {/ € ^^(U) taking values in Z }.
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This is a free Z-module of rank equal to #X(U). For any Z-module R, put
H°(X(U), R) = H°(X(U), Z) ® R. Note that H°(X(U), G) = J?°(U). The action of
[U^U] on H°(X(U), C) stabilizes H°(X(U), Z) and hence induces an action of [U^U]
on H°(X(U), R) for any Z-module R. If R is an ^-module then the operator

e = lim[UJ .)UJ^^-1) exists in End^(H°(X(U,), R)) for sufficiendy divisible m.
n

Moreover, e annihilates ^(U,, Z) 0 R, where ^(U,, Z) = { / (= I^U,) taking values
in Z}.

Let T(U,, (^>) be the ^-subalgebra of End^ (H°(X(U,), <^)) generated over (^
by ToQ&), To(p,) for ; = \,...,t, G(U,), and T{£) and S(^) for aU prime ideals t \ p
such that Vi = GL^v,e)- It follows that Tg^, C^) can be identified with eT(\Ja, ̂ )
(equivalently, with the image of T(U,, ̂ ) in End^ (^H°(X(U,), ^))). Put

Hoo(U) = lim^H°(X(U,), K/^).
fl

(K is the field of fractions of ^.) This is a Too(U, ^)-module.
For any_open subgroup U put U = U/IW. For each x € G^Aj^) put

^u(^) = #{^ ^ U | xu = ^}.
Let R be any ^-algebra. If each c\j(x) is invertible in R, then define a pairing

( , }u : H°(X(U), R) x H°(X(U), R) —> R

by

(/^)u= E ^F1/^)^).
^eX(U)

This is a non-degenerate pairing, and the map / i—> { /, -)u determines an
isomorphism H°(X(U), R) ̂  HomR(H°(X(U), R), R) that is functorial in R.

The pairing ( , )u is not Hecke-equivariant, but a straight-forward calculation
shows that

{[UgU]f,h^={f^g-{U]h^

for any g C G^Ay). It follows that for each t C T(U^ ^) there exists t G
End^(H°(X(U,), ^)) such that { t ' f , h}^ = (/, f^ . h}^ for aU/, A € H°(X(U^ ^).
Let T^U,,^) C End(H°(X(U,),^)) be the ^-subalgebra generated by {t+ :
t G T(U^,^)}. Clearly the map t i—> t determines an isomorphism of ®-
algebras T(U,, ̂ ) ^ T+(U„ ^). For any ^-module R write H°(X(U,), R)4- for the
T(U^, ^)-module whose underlying ^-module is just H°(X(U^), R) but the action
of t G T(U^, ^) is via ^+. It follows that the pairing ( , }u induces a perfect
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pairing ( . )^: ,H°(X(U,), R) x .H°(X(U,), R)- -̂  R of T,(U^ ^-modules Put
H^(U,) = limcH°(X(U,), K/^7.

a

I f V C U i s any subgroup, then we define a trace map tr(V LD • H°fX(Vt Rl _>.H°(X(U), R) by ^ v , ^ • ^ ;, ^

tr(V, U)f(x) = ̂ /«'), U=UV^,
2

If V = V<, and U = U, {b > a) then it is easy to see that this is independent of the
chosen coset representatives and that it is compatible with the actions of t and t
for t C Ta(V, ̂ ). The pairings ( , )u and ( , )v satisfy the following compatibility
whenever they are both defined: the diagram

( , )u : H°(X(U), R) x H°(X(U), R) -̂  R

1 ] tr(V, U) ||
{ , }v : H°(X(V), R) x H°(X(V), R) ̂  R

commutes. Since c^{x) = 1 for all x if a is sufficiently large, it follows that by putting

M^(U) = lim^H°(X(U,,), ̂
a

where the transition maps are just the trace maps tr(U», U,) {b ^ a), we have an
identification of Too(U, ^-modules

M^(U) ^ limHom^(<?H°(X(U,), ^), ̂ )
a

^ ImiHom^ (^H°(X(U,), K/^), K/^)
a

^ Hom^ (lim<?H°(X(U,), K/^), K/^)

^Hom^(H^(U), K/^),

the Pontryagin dual of Hoo(U). Putting

M^(U)=lim,H°(X(U,),^)
a

we obtain a similar identification of M^,(U) with the Pontryagin dual of H^(U).
The following proposition is due to Hida [H2, Theorem 3.8]. °°

Proposition 3.3. — If the action of every element o/U/Ur^ on D^G^AQ is fixed-point
free, then Moo(U) and M (̂U) are free A'^ -modules of rank equal to

rank,, .H°(X(U?), ̂ ) x ( Tbg f̂̂ 0" ).
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Proof. — We first claim that the Pontryagin dual of ^H°(X(U^), K/^) is
a free ^[[G(U^)]]-module of rank equal to the ^-rank of the Pontryagin dual
of d-[°(X(U^), K/^). Clearly, it suffices to prove the claim without having ap-
plied the operator e, in which case it is a simple consequence of the fact that
H°(X(U^K/^) = H°(X(U,), K/^)0^ and that #X(U,) = #X(U^) x #G(U,), the
latter equality a consequence of the assumption that G(U^) acts freely on X(U^).
The assertion of the proposition for Moo(U) will follow if we can establish that
^H°(X(U^ K/^) = ,H°(X(U?),K/^), for then we will have that the dual of
^H°(X(U,),K/^) is a free ^[[G(U,)]]-module of rank equal to the ^-rank of the
dual of ^H°(X(U?), K/^) which in turn equals rank^H°(X(U?), ^). Now, if a ^ 2,

thenU^1 ^=U^1 ^U^^soTo^.H^^.K/^CH^U^O.K/^),

whence ^H°(X(U^), K/^) = ^H°(X(U?), K/^) as desired. The same argument applies
to the Pontryagin dual of <?H°(X(Ly, K/^))+ yielding the assertion of the proposition
for M^(U). D

Corollary 3.4. — For any U, Too(U, ̂ ) £y a^rn^ torsion-free A^ -module. In particular
Too(U^ ^) is a semilocal ring complete with respect to its radical.

Proof. — Choose a prime t of F for which V = U H U(^) is such that
V/V n F" acts freely on D^G^A^). The existence of such an t is proven in
Lemma 3.5 below. The induced map Moo(U)^ Moo(V) is compatible with the action
of Too(V, ̂ ) and hence is a map of A^-modules. As Moo(V) is a free A^-module
by Proposition 3.3, Moo(U) is a finite, torsion-free A^)-module. As there is an injection
Too(U, ^)-> End^, (M^(U)), the same is therefore true of T^(U, ^). D

Lemma 3.5. — If t \ 6 is an unramified prime ideal off, then U^/U^)?^ acts freely
OTzD^G^Ay).

Proof. — If 6x = xu for some 8 G Dx , x G G^Ay), and M G U(^), then 8 € F,
where F, = D" n^U^)^"1. We claim that F^/r^nF" has finite order. To see this, note
that the canonical injection i: DX/FX ̂  G^A)/^ identifies D^F" with a discrete
subgroup of G^A)^. Now let V = G1^^ (g) F)/(R (g) Fy x (xU(^)^-7U(^) n (Ay)^.
This is a compact open subgroup of G^A^A^ so W = V D im(z) is a finite group,
and it is clear from the definitions that F,/F, n Fx ̂  W. This proves the claim. Thus
some power of 8 lies in Fx, and the same is true of u. By the choice of i, u must
itself be in F". D

Corollary 3.6. — Let M be the exponent of the torsion subgroup ofDX/fx. If{t\, ...,£s}
is a set of unramified primes ofF such that

(i) i, \ 6 and (Nm(^-) - 1, M) = 2'1 for each i,
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{ii)for eachy € ̂  that is totally positive some i, does not split in ̂ (^y),

then Ui(^i ...^)/Ui(^i ...^)HP acts freely on DX\GD(A^

Proof. — If 6x = xu for some 6 G D^ ^ e G^Ay), and u E Ui(^i ...^), then

8^ = ̂  for e = n(Nm(^) - 1). Since u6 C U(^i ...^) it follows from Lemma 3.5 that

V6 C F", and therefore 8' e F". It then follows from our hypotheses on t, that S2' G F"
for some r. If r = 0, then §, ^ e F^ We may therefore suppose that r ^ 1 but that
52-1 ^px put Y = S2"1 and 0) = ^2r-l. Then y, co ^F^ but f, o)2 € F^ Let a and P
be the eigenvalues ofy. As (a/P)2 = 1 it must be that either a = P or a = -P. If a = P
then Y € Fx since 2a = a + P G F. Therefore a = -P. Note that det(y) = a? must be
totally positive. Since a and P are also the eigenvalues of oo and since co G Ui(^i ...£,)
we find that a and P are in F^ for each i and that a? G ̂ . Therefore each i, splits
in F(-/—ap) = F(\/a2), contradicting our hypotheses. D

Suppose \ : Too(U, ^) —^ Q ,̂ is a homomorphism of ^-algebras such that
¥ = ^|z(U) and (p = ?l[(^p0z^,)x are finite characters. (Recall that we have identified
G(U) with Z(U) x (^F (g) Z^^) It is not difficult to deduce from the definition of
Too(U, ^) that ?l factors through some T^a, ̂ ) and hence corresponds to some
n C ^(U,). That is to say, there exists a unique TC € n^^) and an eigenvector
y C V^0 for T^(U, ̂ ) such that the eigenvalue of each t G T^(U, ̂ ) acting on v,
viewed as an element of Q^, is just A^). The existence of such a TC foUows from the
definition of T^(Ua, ®\ It is also easy to see that any n G Tl^fUa) determines such
a homomorphism ?l. Therefore there is a correspondence between homomorphisms
as at the start of this paragraph and nearly ordinary automorphic representations
n C LJn^ (U^). This correspondence generalizes to other weights k as summarized in

a

the following remarkable result of Hida [H2, Corollary 2.5].

Proposition 3.7. — I f K : T^(U, ̂ ) —>Q^ is an ^-algebra homomorphism such that
^|z(U) = V^, U ^ 0, z^A \|/ flTzrf (p = A^p^x '̂̂  characters, then there exists a nearly
ordinary automorphic representation n of weight k = (|LI+ 2) • tfor which ?l(T(^)) and ?l(S(^)) equal,
respectively, the eigenvalues of T{£) and S(£) acting on the newform associated to n for all prime
ideals i \pfor which V^ = GL^p^).

Here, as in the preceding section, e denotes the cyclotomic character giving the
action of Ga^F^/F) on the Z^-module lim^y, /y being the group ofj^th roots of

n

unity. The character e factors through Gal(F^/F) where F^ is the maximal abelian
extension of F unramified outside of those places dividing p and oo. Global reciprocity
determines a homomorphism Z(U) —> Ga^F^/F) via which we view e as a character
on Z(U).
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We continue to assume that the degree of F is even. A prime P of Too(U, ^)
that is the kernel of a homomorphism as in Proposition 3.7 is called an algebraic prime.
The associated element A : = m + 2 ^ € Z [ T | is called the weight of P. For an algebraic
prime P of Too(U, ^) there are finitely many homomorphisms ^ : Too(U? ^) —> Q.
whose kernel is P since Too(U, ^)/P is a finite extension of (9. Let <^(P) denote
the set of such homomorphisms. The set of algebraic primes of Too(U, d^) is Zariski
dense, as the following lemma shows.

Lemma 3.8. — Let Q^ be a minimal prime of ToofV, ̂ ) and let «-^T(Q) be
the set of algebraic primes of weight 2 containing Q^ The set J^T(Q) is parish dense in
spec(T^(U, ^)/Q).

Proof. — By Corollary 3.4, Too(U, ^)/Q, is an integral extension of A^ . Call
a prime p C A^? algebraic (of weight 2) if it is of the form p = A^) D P for some
algebraic prime P of Too(U, ^)/Q, of weight 2. The algebraic primes of A^) are just
those corresponding to kernels of homomorphisms A^ —> Q, sending 1 +Y' '—^ (p(^-)
and 1 +X^ i—> \y(xi) for finite characters (p and V|/ of (^)y<SZp)x and Z(U), respectively.
That such primes are Zariski-dense in spec(A^) is immediate. D

Corollary 3.9. — Let Q^ be a minimal prime ofT^^U, ̂ ). If\ 3 U is such that some
K C J^ {^factors through the map T^(U, ̂ ) —> Too(V, ̂ )/or all P m ^ j^j^ ofJ^{Q)
that is ^ariski-dense in spec(Too(U^, ^)/Q)^ then Q^ zj the inverse image of a minimal prime of
Too(V, ̂ ).

3.3. Hecke algebras, representations, and pseudo-representations

In this subsection we assume that F has even degree. Let U C GL^(^F 0 Z)
be as in the preceding subsection. Write n for the product of those prime ideals t
for which U^ ^ GL^^p,^). Suppose that k == K • t with K ^ 2. Let n € n^^)
and let ^ : T\(Ua, ̂ ) —^ Q. be the corresponding homomorphism. Suppose that n is
ordinary. In [W2] it was shown that there exists a continuous, irreducible representation
p^ : Gal(F/F) —> GL/Q^) such that

(3.2) • p^i)=(1 _i)
• pn is unrarnified at all primes (. \ np
• trace p^Frob^,) = ?l(T(^)) for all t \np
• detp^(Frob^) = ^(S(^))Nm(^) for aU ^ f n^
• det pa(x) = ?l(S^)e(^) for all x e Z(U)

. pjo, ̂  (vw „) ) with v^) = XCT,) for all̂  6 ^p ,̂

and v^^) = ̂ (To(p,)) for aU ; = 1,..., (.
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Now suppose that n is any element of ^"'(U,). Given any finite set S of finite places
of F distinct from those dividing p, there exists a finite character \y unramified at S
and such that n ® \y is ordinary The representation p^ = (p^y) 0 y is independent
of \y, and by varying S one finds that (3.2) also holds for this pn.

Now, for any representation p : Gal(F/F) —> GL^) and for any finite place
v \ p let 7l;,(p) be the automorphic representation of GL,(F;,) corresponding to p|o via
the local Langlands' correspondence (see [Ga] and [Ku]) normalized as in [C].' So,

in particular, if p^ ^ (^ ;J then ^(p) = ̂ \. ̂ ,^\. |;5). For any ordinary

representadon n € n^U) it was shown in [W2, Theorem 2.1.3] that ?!„(?„) ^ n,. Now
suppose that n is any element in ^"'(U) and that \y is a finite character unramified
at v such that n 0 \y is ordinary. It follows from the preceding observations that
"„ ® ̂  = (n ® v)^ s± K,(pn^) = Tî pn ® v-1) = 7t,(pa) (g) ̂ . We therefore have that

(3.3) n^n.,(pn), K e n̂ U), yf^oo.

The representadon p^ can be generalized as follows. Suppose that Q is a prime
ofT^(U, ̂ ). Let R = Too(U, ^)/Qand let L be the field of fractions ofR. Note that
R is a complete local domain. Hida has shown that there is a continuous, semi-simple
representation p^: Gal(F/F) —> GLg(L) such that

(3.4) (i) p^i)=(1 _i)
(ii) PQ is unramified at all primes £ \ np

(iii) trace p^Frob^) = T(^)modQ,for aU i \ np
(iv) detpQ(Frob^) = S(^Nm(^)modQ,for aU i \ np
(v) detpQ^) = S, e(^)modQfor all x € Z(U)

PQlo, ̂  ( vl (.) ) with i)/̂ ) = T^ mod Q, for aUj^ G ̂ ^,.vij PQ|D; ̂  ( vl (.) with i)/̂ ) = T^modO for aU v F ̂
V2 7

and V^^) = To(p,)modQ,for aU ; = 1,..., f.

By pQ being continuous we mean that there is a finitely generated Gal(F/F)-stable
R-module ^& in the underlying representation space of p^ such that Gal(F/F) acts
continuously on ^%. We give a proof of the existence ofp^ in the next few paragraphs.

If Q, is an algebraic prime of weight 2, then die desired representation follows
immediately from die existence and properties of the representations pn. For let
\ € ^^(Q) and let n be die automorphic representation corresponding to ?L The
homomorphism X : T^(U, <^) —^ Q^determines an embedding R-^Q which
extends to an identification of L with Q^. Under this identification we may take
PQ = pip Properties (3.4i-vi) follow from (3.2).

Suppose now that Q, is a minimal prime. Using Lemma 3.8 one men deduces
the existence of p^ as in the proof of [W2, Theorem 2.2.1]. Of the properties of p^
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listed in (3.4) the only one that is not immediate from the construction is the final
one concerning the restrictions PQJD,. This can be deduced from the corresponding
properties of the pp's, P an algebraic prime of weight 2, as follows. First, arguing as
in the proof of [W2, Lemma 2.2.4] shows that the semisimplification of PQJD, is the
sum of two characters \y\ and \|4 with \|/S|'{y) = Ty for each y e ^p? y . Moreover,

we may assume that \y\|i ^ \|/2 |i for otherwise there would be nothing to prove.

Choose To G 1̂  such that v|̂ (To) ^ V^o). Let ^ C ^(Q) be the Zariski-dense
subset of primes P for which \y\(To) =(= ̂  (To) mod P. Choose a basis of p^ such that

PQ^o) = (a p) and P^k = (xl ^) with either ^ = ̂  or ^i = ¥^ If Pak is
split, then property (vi) is immediate, so assume otherwise. Let (To € D^ be such that
P^o) = ( * ^° ) with &o f 0, and let go G Gal(F/F) be such that p^o) = ( ̂  ^ ) with
CQ =|= 0. Let R C L be a finite integral extension of R containing a and P. Let ^
be the set of primes in R consisting of those primes P such that P Ft R is in ̂  . Let
^ ^ ̂  be the subset consisting of primes P such that boCo E R^. The set S& is

non-empty. For each P € S& it is not difficult to see that Po = ( bo} PQ.( b~1 )

takes values in GL^(Rp). As poJnmodP is nonsplit for each prime P G S& it follows

that for P € ^ , Xi^dP = ^modP. Since ^) =t= V?modP and either ^i = \|/̂  or
V)/^ we conclude that %i = \(/^. Note that arguing again as in [W2, Lemma 2.2.4]

shows that either V|̂ ?(A^ ) = To(pi) mod Q^ or ^(^p^) = To(p{) mod Q; Arguing as before
shows that the former must hold. This proves property (vi).

Note that the representation p^ gives rise to a pseudo-representation into
R = Too(U, ^)/Q; This is just the pseudo-representation associated to p^ (cf. §2).
For a non-minimal Q^ C Q^ the representation pq/ can be constructed in the usual
way (cf. end of the proof of [W2, Lemma 2.2.3]) from the pseudo-representation into
Too(U, ^)/Cy obtained by reducing modulo Q' the pseudo-representation associated
to PQ. The only property that is not immediate is (3.4vi). For this we note that if PQ/ is
reducible then there is nothing more to prove (as one of the characters has the desired
property), so assume that po is irreducible. Let R be a finite integral extension of R
containing the values of\y^ and \|/S?, and let Q' be an extension ofQ' to R. It is easy to
see that the semisimplication ofpo/ln, is the sum of the characters \y\ and \|4 modulo
CY. If \|/̂  ^ \|/^modCy, then there is nothing more to prove. If l^ ^ y^modQ^, then

iV^ * ^for a suitable choice of basis p^ takes values in R^, and satisfies PQJD, = ( 1 (^ ) •

Reducing modulo Q' yields the representation PQ/. Property (3.4vi) is now immediate.
Suppose now that m is a maximal ideal of Too(U, ^). Patching together the

pseudo-representations for the various minimal primes Q contained in m yields a
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pseudo-representation p^ into Too(U, ^)^ (here we have used the fact that T^(U, ̂ )
is reduced) satisfying

(3.5) (i) p^ is unramified at primes £ \ np,
(ii) trace p^Frob^) = T(^) for all t \ np,

(iii) detp^Frob^) = S(^)Nm(^) for all i \ np.

Let % and A: be as in §2. Henceforth ̂  is the ring of integers of a finite extension
of Q ,̂ having residue field k.

A maximal ideal of Too(U, ^) is permissible if m H ^[[G(U)]] is the maximal
ycoideal corresponding to the character G(U) —> Z(U) —> k, if m contains To(py.) — 1 for

each i = 1,.... t, and if p^ ^ 5^ © 1. Such a maximal ideal, if it exists, is unique. For
this reason we will drop the subscript m from the notation for p^ whenever m is
permissible.

Suppose that m is a permissible maximal ideal of Too(U, ^). The ring
T^(U, ^% is an algebra over A^ via 1 +Y}) i—^ T^ and 1 +T)• i—> detp"10^^). The

homomorphism A^? —> A(^ determined by 1 + X^ i—> (1 + T^y^Y ^ ) is compatible
with the A^)-algebra structure of Too(U, ^)m ^d makes A^ a free A^ -module of
rank r = Eyy. Consequently, we obtain the following lemma.

Lemma 3.10. — If m is a permissible maximal ideal ofToo(U, f^\ then

(i) Too(U, ^)^ is a torsion-free, finite A^ -algebra,
(ii) ^r U satisfying the hypotheses of Proposition 3.3^ Moo(U)^ and M^(U)nz ^r^ free

A^ -modules of equal rank.
Let Z be the places of F for which Uy ~\- GL^(^F,&) together with ^i,...,^. If

m is a permissible maximal ideal of Too(U, ^), then it is easy to see that p^ is a
pseudo-deformation of type-^^ = (^, £). Consequently, there is a map

(3.6) R^ps ——T^(U,^

inducing p"10^

Lemma 3.11. — Suppose that m is a permissible maximal ideal of Too(U^, ̂ ). 7^ S
zj any finite set of primes off containing all those for which U^ =(= GLn(^F^)^ ^72 ̂  n'/zg
Too(U, ^)m zj generated over A^ by the operators {T(^), S(^) : ̂  ^ S }.

Proo/^ — Let T8 C Too(U, ^))^, be the subring generated over A^? by
{T(^), S(^):^^S}. Note that T8 is a local, complete A^-algebra. Let p"^ =
{ a{a), d(a), x{a, T) } and let Z = S U { v\,..., Vi}. The pseudo-representation p"1^ factors
through Gal(F^/F). Since Gal(F^/F) is topologically generated by
{Frob^ : £ f. 2} and since trace p"1^ and det p"^ are continuous maps, it follows



42 G.M. SKINNER, AJ. WILES

that Ts contains trace p^a) and detp^^a) for every a € Gal(F/F). It remains to
show that T8 contains T^ for eachj/ G ((^p^Z^ as weU as To(pz) for each z = 1,..., .̂

Let gi G D, be such that ̂  ^ 1. Let a, and P, C T8 be the roots of the
polynomial X2 - trace p^^X + det p"10 -̂) with a, reducing to 1 modulo m. One
then has

T, = (P, - a,) (P, trace p"10^) - trace p"10^)) 0 T8

for^ G ^^^ where (̂  G D, is any lift of the element of Gal(F^/F^) corresponding to
y via local reciprocity. Similarly, one also has

To(p.) = (P. - a,) (P, trace p"10^-) - trace p^fc-T,)) 6 T^-

where T, C D, is any lift of an element of Gal(F^/F^) corresponding to {^\ These
expressions for T^ and To(p,) can be checked for each p^, Q a minimal prime of
T^(U, ̂ ),, using (3.4). D

Corollary 3.12. — IfV C U, ^^ ^ natural map T^(V, ^)n, —> T^(U, ^)n, ^
j^r/'^^y^.

Corollary 3.13. — 77^ w^ (3.6) is surjective.

We conclude this subsection with a few results about the "level55 of a prime of
Too(U, ^). The first of these is a generalization of CarayoFs n, ̂  n(0v) result (see [C]).
Indeed, its proof boils down to GarayoPs result as generalized in [W2]. For w a finite
place of F write ^ for the prime ideal of ^p associated to w and write A^ for the
Sylow ^-subgroup of (^F/-^)^

Proposition 3.14. — Let w \ p be a finite place off. Suppose that U C GL^^p (8 Z) z'j

such that U^3{^ ^ J G GL^^p,^) ; c, a — 1 G £^} for some s. Given a minimal prime
Q,^ Too(U^ ̂ ) there exists a subgroup V ^ U such that Q^ is the inverse image of a prime of
T^(V, ̂ ) and V satisfies

(i) tfp^is unramified at w, then V 3 GL^^p, '̂

(ii) ^p^ z. ̂  A at w, then V D {(; ^) C GL̂ ,,) : ' c/- I;
^ v / amodt^ C A^J

(iii) z^p^ is type B ̂  ̂  then V D ^ (^ ^) € GL ,̂) : a - \,c C ̂ ^ ̂ ^ ̂

is the conductor of fy = detpo|i j,'

(iv) ^pQ ^ type C at w, then V D ^ (^ ^) C GL,(̂ ,) : ̂  - 1,, C ̂ ^.
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Proof. — Recall that types A, B, and C were defined in §2.3. We first claim
that for P € -^(Q) the representation pp is of the same type at w as p^ and that if

Pok = C (Q with ^^W = C then ppL ^ (1 (i)') with con(U<l)/) = C as welL

In light of Corollary 3.9 it then suffices to show that some ^ G J^(P) factors through
Too(V5 ^) fo1* some V as in the statement of the proposition.

To prove the claim, first assume that p^ is unramified at w. In this case it is
obvious that each pp, P (E J^T(Q), is also unramified at w. This can be seen, for
instance, by observing that the pseudo-representation associated to p^ is trivial on 1̂
and hence the same is true of the pseudo-representation associated to pp. As pp is
irreducible, this forces pp to be trivial on 1 .̂ Next assume that pc^ is type A at w.
If P G ^(Q), then it is easily deduced that the semisimplification of ppjo is just
\y © e\|/ for some character \y unramified at w. If pp|n were unramified then this
would contradict (3.3). Therefore, it must be that pp|o is ramified, and it follows from
the description of its semisimplification that it must be of type A. Now suppose that
PQ^ is type B at w. Write PQJI^ = ViV2 © 1 with l|/i of order prime to p and \|/2 of
p-power order. Note that cond^{\y\\y^) = max(cond^(\|/i), cond^(\)/2)) and that both \|/i
and \|/2 take values in Too(U, ^)/Q; It follows that pp|i^ ^ (^1^2 modP) © 1. As p ^ P
one sees that condy;(\|/i\|/2modP) = max(cond^(\|/i), cond^(\|/2)), proving the claim in
this case. The remaining case (i.e., p<^ being of type C at w) is proved similarly.

Now let P € ^(Q) and choose K e 3^ (P). Let n be the automorphic
representation corresponding to ^. To prove that ^ factors through Too(V, ^) for
some V as in the statement of the proposition we need only show that n € 11̂  (V).
In other words, we need to show that if W^ is the underlying representation space
for 71, then W^ =(= 0. Let x = ®Xy 6 W^ and let ^ G W^ ^ be the new vector at w. It
follows from our hypotheses on U^ and the theory of newforms that ^ G W^. Put
y = 0 ^y ® y!^ We claim thatj^ is fixed by a subgroup of the desired type. For this we

v\- w

note that it follows easily from (3.3) that ^ ls fo^d by a subgroup of GL^(^F,w) °f
the desired type necessarily containing U^. D

As a variant of the above we have the following result. For a place w of F, let
^vl^wT = A^ x A^. (Recall that A^ is the ^-Sylow subgroup of (^F/^.)

Proposition 3.15. — Letw\p be a finite place ofF and let U^ = { f ^ ^) € GL^p, ̂ ) :
c ^ £^y arf^mod^ G A^}. Suppose that Q^ C Too(U.? ̂ ) is a minimal prime such that

PQJI ^ ( i ) ^A (() of p-power order. Put U' = II Uy x U .̂ 7%^^ ^zj^ <2 minimal
w v v / y=(= w

ĵ n'Tn^ Q^ C Too(U'^ ^)) J^A ^^ PQ c^ pq/ ^TZ^ j^ ^fl^ Q^ and Q' A<2^ ̂  ^aw^ inverse
image in ̂ (UnU7^).

Proo/^ — We prove the existence of a minimal prime Q^ C TooCU', ̂ ) such that
Q' and Qhave the same inverse image in Too(UnU7, ^). Clearly the assertion that
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PQ. ̂  PQ" w1^ follow from this. Upon replacing U by UDU' and Q,by its inverse image
in Too(U D U', ̂ ) we need only show that Q is the inverse image of some minimal
prime in Too(U', ^). By Corollary 3.9 it then suffices to show for each P e ̂ (Q) and
^ G J^(P) that ^ factors through T^(U', ^). Fix such a P and ?i. Let 71 € ^(U,)
be the automorphic representation associated to A.. To know that ?l factors through
T^(U\ ^) it suffices to know that n € n^U^). Now suppose that x = ^x, G V^.

u'
We will establish the existence of a non-zero vector ^ C V^. The non-zero vector

J = 0 ^ ® ̂  will then lie in V^ showing that V^ ^ 0, from which it follows that
v =|= w

n € n^).

We now establish the existence of^. First we note that pp|i^ ^ ( ^ ,_ i ] with

(I)' a character of^-power order. To see this observe that by hypothesis pcji^ factors
through a quotient of 1̂  of^-power order and detpoji^ = 1. Hence the same is true
of the pseudo-representation associated to pc^. As the pseudo-representation associated
to pp is obtained by reducing modulo P the one associated to p(^, it follows easily
that pp|i^ factors through a finite quotient of j&-power order and that detpp|i = 1 .
That pp|i^ has the form asserted is now immediate. It follows from (3.3) that 71̂  is a
principal series representation 7c(p,i, 1113) with |Lli|Ll2 trivial on ̂ ^ and each |LI, trivial on
a subgroup of ^^w °^ "^d^ a power of p. Let VQ C Vj^ be the vector corresponding
to a new vector of n^ (g) (|) where (|) is a finite character such that (|)|̂  x ^ JLI^I^ x .

F, w V, w

It follows that (^ ^)^ = Hi(^)|Li2(^ for all (^ ^) C U^. Thus < = yo is the desired
u'

vector in V^^. D
Next we record for later reference the following relations between pcji and the

subgroups Uy;.

Lemma 3.16. — Suppose that w \ p is a finite place of F. Suppose also that
Q.^ T^(U, ̂ ) zj ^ minimal prime and that U^ D { ( f l ^) : ^ G ^^ ^mod^^ C Aj /or
jom^ r ^ 1.

(i) ^PoJi^ ^ [(1)1 ^^ J with (|)i a^ (|)2 ofp-power order and ^ non-trivial of order prime
to p, and if cond^((|)) = £^ then ^\ and ̂  are trivial.

(u) yPQ\^ ̂  (e(l) ^ and if(^m(w) -l,p)= 1, then ̂  is a finite character of order
prime to p, and if r = \, then (|)|i = 1 .

Proof. — Let R = T^(U, ^)/Q, We first prove (i). The characters ^1,^2 and
(() take values in R, so they may be reduced modulo P for any P G ^(Q). We
denote these reductions by (|>i,p, (^p, and (j)p, respectively The reduced characters
have the same orders as the corresponding non-reduced characters. Now fix a choice
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o f P C -%"(Q) and ?l G J^ (P). Let n be the nearly ordinary automorphic representation

corresponding to 'k. It is easy to see that pp|i^ ^ ( 15P (K (K ) . It follows from

this description of pp[i^ and from (3.3) that cond(7Cy;) = cond^((|)p(|)2,p)cond^((|>i^p) =
C^ ' cond((|)^p). However, since by hypothesis n^ has a vector fixed by { ( ^ ^ ) :
c e -^5 amod^ G A^} it follows that cond(7ly;) | (r^ and that the restriction to ly;
of the central character of n^ has order prime to p. From this we deduce that ( |>i^p and
(|)^p are both trivial. As (|)^p and (^p have the same order as ((>i and (|)2, respectively,
the latter are trivial as well.

We now prove (ii). Our hypothesis on Nm(w) ensures that (|) takes values in R.
As in the proof of (i) we write (|)p for the reduction of (|) modulo P. The character
(|)p|i has the same order as does (|)[i . Again, fix a P G J^T(Q) and a ^ G J%?(P). Let n
be the automorphic representation corresponding to ^. From the hypotheses on U we
find that cond(7C^) [ ̂  and that the restriction to 1̂  of the central character of n^ has
order prime to p. It is easy to see that pp|n^ ^ (^p ^ )• It follows from (3.3) that
cond(7C^) = max(^, cond((|)p)2) and that the restriction to 1̂  of the central character
of TC^ is just (|)p|i . From this, one deduces that (|)p|i , and hence (|)[i , has order prime
to p. And moreover, if r = 1, then cond((|)p)2 | ̂ , hence (|)p|i (and so (|)|i ) is trivial. D

We conclude this subsection with a simple observation about twists of the
representations pc^.

Lemma 3.17. — Suppose that Q^C p C Too(U^ ^) are primes with Q^ minimal. Let L
be the field of fractions ofToo(U, ^)/Q^ and suppose that R C L is a finite integral extension of
Too(U, ̂ )/d. If y : Gal(F/F) —> R" ^ a character of finite order, then there exists primes
Q' C p' C Too(U n U^cond^CF)2), ̂ ) ̂  Q mzmm^ ^</ such that PQ/ ^ p^(g) ̂  ^W
pp, ^ pp 0 y.

Here cond^(V) denotes the prime-to-j& part of the conductor of ^.
Proof — Let V = U n Ui(condOF)2) and let Ro = T^(U, ^)/Q, Let jr'(Q) be

the set of primes ofR extending those in ^(Q). For each P G ^'(Q) we write <^(P)
for ^^(PnRo). Now, for each P C ^'(Q), let ^p = VmodP. Let n be the product
of those primes £ such that either ^[cond^(V) or U^ =)= GL^(^F^). We claim that for
each P C ̂ '(Q) there exists a homomorphism Tp : Too(V, ̂ ) —^ R/P such that

(3.7) • Tp(T(^)) = (T(^) mod P) • ^(Frob^) for all ^ { n p ;
• Tp(S(^)) = (S(^)modP) • ^(Frob^) for all t \ np;
• Tp(S,) = (S.modP) • ̂ (^ for all ^ e Z(U);

• Tp(To(p,)) = (To(p,)modP). ̂ p^)-1 for z = 1,.... t;
• ^p(T^) = (T^modP) • Vp^) for allj/ € ̂ ^ and each z = 1? •• •? ^
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We construct Tp as follows. Let ^ e 3^ (P) and let n € 11̂ (1̂ ) be the corresponding
automorphic representation. We fix an embedding R/P ^—> (V extending the embedding
Ro/ker(^)^ Q^ coming from ^. We thus view ^Fp as taking values in Q, and hence
in F" (via the fixed embedding F—^ Q^). Clearly n (g) ^p C ^(V^) for some b ̂  a.
Therefore there exists an algebraic prime Py of Too(V, ^) whose corresponding
representation is just pp^ ^ pp (g) ^Fp. Let Tp C S^ (Pxp) be the homomorphism
corresponding to n ® Vp. Viewing R/P as an ^-sub algebra of Q. as above, we
see from the fact that pp^ ^ pp ® Tp that Tp takes values in R/P and satisfies (3.7).

Now consider the map T : Too(V, ^) —> n R/P given by T(^) = nTp(^).
PG<-^ ((̂ }

It is easily deduced from (3.7) that the image of T is contained in the image of the
diagonal embedding R"-^ n R/P. In particular, T determines a homomorphism

T : T^(V, ̂ ) —> R such that

T(T(^) ) = (T(^) mod Q) • V(Frob^)
(3.8) for all £ \ np

T(S(^) ) = (S(^) mod Q). ^(Frob^).

Let ^ = ker(r). By (3.8) we have PQ/ ^ pc^0 y. Moreover, by comparing dimensions
one sees that Q^ is minimal. Let pi be any prime of R extending p. Let p' be the
kernel of the composition Too^^—^R —> R/Pi. Obviously p' 3 Q^. Also, it
follows from (3.8) that pp/ ^ pp ® ^V as well. D

3.4. Eisenstein maximal ideals (existence)

In this subsection we establish sufficient conditions for the existence of a
permissible ideal ofToo(U, ^). We continue to assume that the degree ofF is even. An
equivalent definition of permissible maximal ideal is a maximal ideal m of Too (U, ^)
such that

(3.9) • m n (^ [[G(U)]] is the maximal ideal corresponding to the character

G(U)—>Z{V)^k,
• m contains To(p^) — 1 for i = 1,..., ^, and
• m contains T(£) - 1 - %(Frob^) for each £ \p for which U^ = GL^y^)'

We will also call a maximal ideal m of any 'T^(Ua? ^) satisfying (3.9) a permissible
maximal ideal since any such ideal determines a permissible maximal ideal of
Too(U, ^). Clearly, to conclude that Too(U, ̂ ) has a permissible maximal ideal it
suffices to show that T2(U^, ̂ ) does for some a (and hence for all sufficiently large d).
This we do, provided a certain j&-adic L-function is not a unit.

Let n be the prime-to-/? part of the conductor of ^co"1. For each prime £\n
|[n and write A^ for the Sylow ^-subgroup of (^p/^)^ which we think of as a
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subgroup of^F/^^. Define an open compact subgroup U^ = ]~[U^ C GL^p^Z)
as follows: ^

UX = J {0 9 e ̂ (^F,,) : . G ̂ \ amod^ e A<1 if^|n,

[GL^F,^ otherwise.

Let Lp{F, s, x<o) be the p-adic L-function associated to /(B (cf. [Co], [D-R]). Let K
denote a uniformizer of <^.

Proposition 3.18. — ^ord^4(F, - l,^<o)) > 0, then some T^, ̂ ) (and hence
TooCU^ ^')} has a permissible maximal ideal.

Proof. — Let \y = ^(0-1. For each integer n ^ 2 let M^n, y) C M^) be the
subspace of modular forms having nebentypus character \)/. Define Sn(pn, \|/) similarly
For a pair of characters 4»i and (^ for which <)>i(|)2 = \y and cond(())i)cond(<l>2)|nj& let
fia^i, <t>2) € M»(^n, \)/) be the Eisenstein series whose associated Dirichlet series is
L(F, s, <()i)L(F, s-n+ 1, ̂  (cf. [Sh]). A complement for the space S,(n, \y) in M,(n, \|/)
is spanned by the set { E^i, (^ }. It is well-known that

(3.10) a,(E»(l, y), 0) = 2-^, 1 - n, ̂ y) Nm(t^

where the fl,(E,(l, \y), 0) are the constant terms of the Fourier expansions of E^l, \y)
described in §3.1.

Let y be a generator of the Galois group of the cyclotomic Z^-extension of F,
and let/= ord/e(Y) - 1). Now let n = 2 + pf (p - \)m G Z be so big that there exists a
modular form g e M,{np, y) n M^np, <^) such that

(3.11) a,(g, 0) = 2-(/Nm(^, i = 1,..., h.

The existence of such a g for large n is proven in [Ch, §4.5]. Let Eo = E^(l,i)/).
It follows from our choice of n and standard facts about j&-adic L-functions that
^tW^ 1 - », V)) > 0 as well. Thus Eo € M,(np, ^').

Consider the form/= L(F, 1 -n, V|^-EO. By (3.10) and (3.11) this form satisfies

</,0)=0, i=\,...,h.

We also have /€ M^np, ̂ ). Let , € T»(U, (n) n V(p), ̂ ) be the operator defined
m §3.2. It is easily checked that Ei = eEo is the modular form whose associated
Dirichlet series is just ^L^s - n + 1, y), where for an ideal a we write L°( • ) to
mean that the Euler factors at places dividing a have been removed. In particular, Ei
is an eigenform for the ring T,(U,(n) n V(p), <9}. Let £o G T»(Ui(n) n V(p}, ̂ } be'the
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idempotent associated to the corresponding maximal ideal. The form/can be expressed
as/= F + G with F € Sn(np, (9} and G a linear combination of Eisenstein series, say
G = Ec((|))E^((|), (l)"^), where the sum is over those (|) such that cond((|)) • cond^^^np.
It follows that £oG = Xrf(X)E^, AT^) where the sum is now over the unramified
characters of^-power order. Since the constant terms of/are zero, the same is true
of those of £(/ Thus £()G must have all constant terms zero (i.e. ^-(eoG, 0) = 0 for
i = 1,...,^). Arguing as in the proof of [W3, Proposition 1.6] shows that £()G = 0. It
follows that FI = eo^/is a cusp form. Moreover, since 7t|L(F, 1 — n, \|/) by hypothesis,
we have

FI = Ei modTC.

As Ei ^OmodTC, FI ^ 0.
As Ei is an ordinary eigenform (in the sense of [W2]) and Fi = Ei ^ 0, it

is easily seen that there must be an ordinary newform / such that £o / =(= 0. The
form ef\ is a ^-stabilized newform in the sense of [W2]. Let 371 be the maximal ideal
of the ring of integers of Q ,̂. The non-vanishing of £o/ means that the coefficients
of the Dirichlet series V(ef\, s) associated to ef\ are congruent modulo 97t to those
of ^)L^(F, s - n + 1, \|/). By the theory of "A-adic forms55 developed in [W2] (see
especially [W2, Theorem 1.4.1]) there is some ^-stabilized newform/ € S2(n^, \|/), for
some large a, such that the coefficients ofL^/, s) are congruent to those ofL^/, s)
modulo 971, and hence are congruent to the coefficients of ^(^L^F, s — n + 1, \y).
Being a ̂ -stabilized newform,/ spans a y-good line in the associated local automorphic
representation for each place v\p. Thus / is an eigenform for the ring of operators
T2(Ufl, ^) (U = Ui(n)). Let m be the corresponding maximal ideal. We claim that m
satisfies (3.9). The second and third properties listed in (3.9) are consequences of the
connection between the eigenvalues of the Hecke operators and the coefficients of the
Dirichlet series L^/, s). The first property listed in (3.9) follows from the fact that/
is ordinary (so the operators T^,, y G (^F ® Z^, act trivially) and that/ C 83^, \|/)
(so S^, x C Z(U), acts via ^co"1^)).

It remains to show that this maximal ideal occurs in T2(UX, ^). This follows
from the fact that TC^, the automorphic representation associated to the ^-stabilized
newform/, is in 11̂  (U^). This last fact can be seen by considering the possibilities for
PPJD^ at primes £ \ n (PS being the algebraic prime of Too(Ui(n), (9s} corresponding
to/) and invoking [W2, Theorem 2.1.3] or (3.3). D

3.5. Some miscellaneous results

We keep the conventions of the previous sections. Suppose that U = IIUy C
GL^(^F®Z) is a compact open subgroup as usual. In this subsection we consider the
effect of altering U at one selected place w.
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Let w \ p be a place of F such that U, = GL^F,.). Let A, be the Sylow
^subgroup of (^F/^ and let A, be a complementary subgroup (so (^p/^ ^
ZX»> X Z\ 1. r i l l 'A^ x A^). Put

U,=<[(: ^)(EGL^F,»):^J

and

u ^ = { ( : 9 e u,: o<r'mod^ e A,}.
Put also

U^U^-nU, and U"=U^nU,
^^ y f w

There is a natural isomorphism

(3.12) U;/U;-.A,

g1 "̂ ^ 0 2) ^ (image of (aa?-1), in A,). RecaU that V, = V n U(^) and
similarly for U" The group U; acts on S,(U;) with g e U; acting via the Hecke
operator [U;̂  U^. This action clearly factors through the quotient V'JV" and hence
determines via the isomorphism (3.12) an action of A, on S,(U^). Under me Jacquet-
Langlands correspondence (see §3.2) this action is compatible with usual action of
U;/U; on {/: DX^A^/U; -. C} = H°(X(U;), C) given by (,/)(.) =f(^ for
g € U,. This action clearly stabilizes H°(X(U;), Z) and hence we obtain an action of
Aw on H ^TO' R) fo1" any Z-module R. It is straight-forward to check that the action
ofA^ commutes with that of G(U^) and the Hecke operators To(p.), ; = l,...,f, and
T(£) and S(^) for primes £ \ pw for which U< = GL^p^). Moreover, the action of A,
is compatible with varying a. We also have that

(3.13) H°(X(U:), R)^ = H°(X(U:), R).

If every element of U'/P n U' acts without fixed points on D^G^Ay) then much
more is true, as the following lemma shows.

Lemma 3.19. — If each element ofU'/^UV acts without fixed points on D^G0 (A.)
then

(i) M^(U") and M^(U") are free A^ ̂ ^-moduUs,
(ii) M^(U")^ = M^(UO and M^")^ = M^U').

Proof. —By (3.13) we have

#H°(X(U;), ̂ /^ = #H°(X(U;), ̂ /^ = #H°(X(U;), ^/7t»).
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On the other hand, it follows from the hypothesis on U7F>< H U' that #X(U^) =
#A^ #X(U^). Combining these observations we find that H°(X(U^ ̂  /n^ is a free
^/^[[A^]] -module. The lemma follows from this, the definitions of Moo(U") and
M^U"), and Proposition 3.3. D

It is a consequence of the lemma that many characteristic^ primes of Too (U", ̂ )
(i.e., primes containing^) come from primes of Too (U', ^). We state this more precisely
in the next proposition. Note in particular that we are not assuming anything about
uyu'nF^

Suppose that p C Too(U", ̂ ) is a prime such that

• j & e p ,
• detpp =^
• pp|Dy ^ (xl/ l „; ) with (Yi/y2)|iy having infinite order for some v\p,
• pp is irreducible but not dihedral (i.e., not induced from a one-dimensional

representation over a quadratic extension).

Proposition 3.20. — The prime p is the inverse image of a prime o/'Too(U'^ ̂ ).

Proof. — Choose a € 1̂  such that oo(<J) = 1, detpp (o) = 1, and pp(a) has
infinite order. Such a 0 exists by the hypothesis on ppin • We claim that there exists
T G Gal(F/F) for which O)(T) =|= 1 and an n such that pp^r) has infinite order. To see

this, choose a basis of pp for which pp(a) = ( a ^-i ). If pp(r) 6 \ ( * ) \ for each T

such that co(T) =(= I? then it would follow that pp is dihedral. Therefore there exists some
To, co(To) ^ 1, for which pp(To) = ( ^ ^) with either a ̂  0 or d ^ 0. Suppose now that
Pp(<^o) always has finite order. In this case, the roots of X2 — {o^a + a'^X + ^(To)
are roots of unity lying in some quadratic extension of the field of fractions of
TooCU", ^)/p. As there are only finitely many such roots of unity, there are only
finitely many possible values for o^a + a~nd, which is easily seen to be absurd.

Let E be the set of finite places v such that U^ =(= GLg(^F,»)- Fix now an HQ for
which pp(a"°To) has infinite order. Let Frob^ € Gal(F^/F) be a Frobenius element such
that t \ 6 is unramified in F, detpp (Frob^) = 5c(To), (o(Frob^) = 0)(To) \ 1, and pp(Frob^)
has infinite order. Such a prime t can be found by choosing a Frob^ sufficiently close
to (f°To in Gal(Fi/F). Put

V' = U' n V(£) and V" = U" H U(^).

The prime p of Too (U", ̂ ) determines a prime of Too (V", ̂ ) (the inverse image
ofp) which we also denote by p. We now claim that p comes from Too(V', ^). To see
this, note that by Lemma 3.5 and Lemma 3.19, Moof^") is a free A^) [A^]]-module.
Let T C End^, (Moo(V")) be the ring generated by A, and TooCV", ^). This is a finite
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integral extension of TooCV", ^). Let pi be an extension of p to T. As p 3 p, it is
clear that { 8 - l : 5 G A ^ } C p i . A s MoofV7', ^) is a faithful T-module, we have that

Fitt^(M^(V^)/pO=0.

Since T/pi is a domain, it follows that it acts faithfully on Moo^", ^)/pi. Put
B = T^(V", ^)/p C T/pi. It follows that B acts faithfully on M^', ^)/pi. On
the other hand, M^", ^)/pi is a quotient of M^", ̂ )^ = M^, ̂ ) by
Lemma 3.19(ii). As the action of ToofV", ^) on Moo(V', ^)) is via the natural map
Too(V", ^) ̂  T^(V', ^) we have T^(V", ^)/p = T^(V', ^)/im(p) which proves the
claim. Write p2 for the corresponding prime of Too(V7, ̂ ) (so ?2 = im(p)).

Our final claim, which proves the proposition, is that p2 is the inverse image
of a prime of T^QJ', ^). Let QC ?2 be a minimal prime of ^(V', ̂ ). It suffices
to prove that Q^ comes from a prime of Too(U7, ^). Consider PQJD^- As i does not
divide p, p \ (Nm(^) — 1), and pp^ ^ pp is unramified at ^, there are three possibilities
for PQJD^ ''

(i) PQ^ID/, is unramified at ^,
(ii) PQ^ID^ is of type A,

(iii) PQJD^ is of type G.
If the first possibility holds, then the desired claim is a consequence of Proposition
3.14. We will now show that the second and third possibilities cannot occur. If PQJD^
were of type A, then the eigenvalues of PQ^) ((7^ a lift of Frob^), say a and (3, would

satisfy — = e(^) or — = e(^)~1. The same would then be true ofpp^(c^). However, since
P. P .?2 contains p and detpp^ = ^ it would follow that the eigenvalues of pp^(<7^) would have

finite order, contradicting our choice of £. Similarly, if p<^ were of type G at £ then
trace PQ^) = 0, but we have chosen i so that trace pp(<7^) =|= 0. This final contradiction
completes the proof of the proposition. D

We now assume that Too(U, ^) has a permissible maximal ideal. The same is
then true of Too(U7, ^) and To^U", ^). We also assume that the place w satisfies
^(FrobJ = 1 as well as co(FrobJ = 1.

Let c^ € 1̂  be a generator of the j&-part of tame inertia. We identify a^ with
an element of (9^ ^ via local reciprocity. The element 6w = [aw i ) generates Ay; via
(3.12). Recall that both A^ and Too(U", ^% act on the module M^(U'%.

Lemma 3.21. — The element trace p"10 )̂ 6 Too(U", ̂ \ acts on M^U")^ via
. — i8.+S;1

Remark 3.22. — Since both T^U", ^)n, and A^ are contained in End^ (M^(U")J,
the lemma identifies §y; + §^ with an element of T^U7', ^m. Moreover, this identi-
fication behaves well with respect to varying U.
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Proof — Let V C ^H°(X(U^), ^)^ ®^ Q^ be an eigenspace for the action
of ^(U77, ̂ ). The space V is stable under A^. Under the Jacquet-Langlands
correspondence V is identified with a subspace of S^(U^). Let ?l : T^U", ̂ ) —> Q^
be the homomorphism giving the action of Too (U", ̂ ) on V. Clearly ?l factors through
T2(U^, ̂ ) and hence is an algebraic homomorphism of weight 2. Let n € 11̂ (1̂ )
be the corresponding automorphic representation. The space V is identified with a
subspace of V^. We now determine the action of 8^ on V, which is via T C I " " ^ ) .
First we note that n^ cannot be supercuspidal. To see this, let P = ker(^w). The prime
P is clearly contained in m. It then follows from (3.3) that if n^ is supercuspidal then
PPJD^ is type G, but clearly this can only occur if ^(FrobJ = —1 contradicting our
assumptions on w. Now suppose that K^ = p(Hi,|li| |^ ) is a special representation.
It follows from the definition of U^ that \JL\ is unramified. From this we find that
Kw{aw i ) = 1- If ^w ^ ^(Hi? 1^2) ls a principal series representation then it must be
that (AI and VL^ are tamely ramified and Hip^ is unramified. Moreover, the action of

(aw ^ on V^ is by either [i^) or 112(0 )̂ = ̂ \a^
Now it follows from (3.3) that if n is either a principle series representation

or a special representation then pp(0y,) = ( w u 1 ^ } ) ' Thus we find that

trace pp(c^) = Hi (c^) + |l^1 (G^) = 8^ + 8^;1. D

3.6. The rings T r̂ and T^

In this subsection we associate Hecke rings to various deformation data.
Essentially this is done by first defining a suitable open compact subgroup of
GL^(^F ® Z) and then localizing the corresponding Hecke ring at a permissible
maximal ideal. To ensure the existence of such a maximal ideal we henceforth assume
that L^,(F, ~ 1, (̂o) is integral but not a unit (see Proposition 3.18). We are, of course,
also assuming that the degree of F is even.

Suppose that ^^ = (^, Z, c^ ^&^ is an (augmented) deformation datum. As
in the previous subsections, for each finite place w we write t^ iiQV A^ prime ideal
of F corresponding to w and we write A^ for the Sylow j^-subgroup of (^)f/(w)x

which we identify with a subgroup of (^p/^^ fo1' any r ^ 1. We also write A^ for
a complementary subgroup of (^F/^^ (so (^F/^^ ^ ^w x A^). We define r{w) by
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IcondOc;'). We define a subgroup LL^ = JT^^ C GL,(^ ®Z) by putting

GL^F,̂  if ^(Z^UQ

{(; ;) e GL^p,,):.,. - i e ̂ -wi)^ if^esv^u^)

u^,»=. {(: ^eGL^^eC^'^,
.modC^-^eA,} if^e^.

{0 9 € GL,̂ )̂ : c € 4,, a^mod^eA^l i fw€Q.

Let m be a permissible maximal ideal of Too(U^ , <^\ Put

T^ = T^(U^, ̂ ),,.

We define T^ to be T^. We write p^ for the pseudo-representation into T^
described in (3.5). This is in fact a pseudo-deformation of type-^ Qi^ = (^ 2)^
and we write ̂  : R^p,^ T^ and 11̂ ^ : R^ps ^ T^^ for the corresponding maps
(^rps = ^rgs^ cl

Suppose now that ̂  = (^, £, c, .^)^ is an augmented deformation datum.
At times it will be necessary to work with a quotient T^" of T^ This quotient
is defined as follows. As in §2.3 let L^/F be the maximal abelian ^-extension of
F unramified away from the places in £\M. Let Gal(L^ /F) ^ H^ © N^ be the
decomposition fixed in §2.3 (N^r is the torsion subgroup). It is a consequence of our
definition of U^ that if q C T^ is a minimal prime, then ^-1 detp, factors through
Gal(L^ /F). Let ^6{Qi^ be the set of minimal primes q of T^r and let .̂ """(̂ o)
be the subset of those q for which (x-' detp,)|^ is trivial. Define T^" by

T^^T^^/ Q q.
q£t^ """(^o)

For this definition to make sense we must show that ^"""(̂ o) ^ 0. To this end
fix another decomposition Gal(L^/F) ̂  M^ x N^ with M^ the free Z^-summand
generated by YI, ...,YSF. (For the definition of the y,'s see §2.5.) Write detp^ = O-y-x
w^th^y trivial on N^r and 0 trivial on M^. Let 0 be a square root%f 0 (i.e
0 - 0). It follows from Lemma 3.17 and from the definition of U^ that given
any q € ̂ (^o) there exists some qo e ̂ ^(^o) such that p^ ^ p, ®0-i. Clearly
X • detp,,, is trivial on N^;, and so qo € ^"""(̂ Q). This proves that ^^"""(^o) is
non-empty.
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We now relate T^ to T^ more directly. Let LQ/F be the splitting field of0.
A priori, Gal(Le/F^is a quotient of N^r. We claim that Gal(Le/F) ^ N^. To see
this, let ^ : Ns —>• Q ,̂ be any character. Extend ^ to a character of Gal(F/F) by first
setting it to be trivial on M^r and then composing with the projection of Gal(F/F)
onto Gal(L^ /F). Choose q e ̂ mm^^ and P e ̂ (q). By Lemma 3.17 there is an
algebraic prime P^ of T^ such that pp^ ^ pp ® f By the choice of q, x~1 detpp is
trivial on N^y whence x-' • detpp^ ^ ^2. It follows that ̂  = OmodP^. As ̂  can be
any character of N^r , ©|i^ has trivial kernel. This proves the claim.

Now let X(^)J)e the group of ^-valued characters of N^, which we view
as characters of Gal(F/F) that factor through Gal(Lo/F). For each q e ^6{Q>} let
R(q) = T^/q and let L(q) be the field of fractions of R(q). We identify Q. with an
^subalgebra of L(q). In this way we may view each ^ G X^o) as taking values in
L(q). For each q e ̂ >{^ and ^ € X(^) let R(q, ^) be the subring ofL(q) generated
by R(q) and the values of ^. This is again a complete local Noetherian domain. By
Lemma 3.17 there is a prime q^ G ̂ (J^o) such that pq^ ^ p,®^. We next claim that
the set ̂ / = { q ^ : q e ̂ """(J^), ^ e X(^)} is just ̂ (^o). For let q 6 ̂ (^o),
and let ^ € X(^) be the unique character such that 0 = ^modq. Let q' = qp-i . Clearly
q' £ ^"""(DQ). Also, q^ = q since p,^ ^ p,, <g) ̂  p, ® ̂ -' ® ^ = ^. This proves the
claim.

Given a prime q € ^"""(^Q) and a character ^ G X(^r) we have used that
Lemma 3.17 ensures that there is a prime q^ € ^(^q) such that pq ^ p, (g> ^.
However, more is true. It was shown in the proof of Lemma 3.17 thaS there is a
homomorphism T(q, ^) : T^ —. R(q, ^) whose kernel is q^ and such that

(3 14) T(q' ̂  (T^)) = (T^)mod 1) • ̂ (^^)v • / T(q, ^) (S(^)) = (S(^) mod q) • ^(Frob^)

for all primes i ^ S U Q; There is also a homomorphism (|)(q, ^) : T^" ®^ ^[N^]
—> R(q, ^) such that %

(3 15) (t)(q' s>} {T{£) 0 Frob^ = (T^ mod 1) • ̂ Frob.)
^(q, ^) (S(^) 0 Frob,) = (S(^) mod q) • ^(Frob,).

Now define

T : T ^^— •n ^q^)
qG^^ ^"(^ Q)

^EX(^)
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and

4 ) : T^ 0^ ^[N^] —^ JJ R(q, )̂
qe.̂  mm(^^ Q)

^€X(^)

by

^n^) ^d ^n^a
t^ q,S

respectively. It follows from (3.14) and (3.15) that im(r) = im^), from which one deduces
the following proposition. (Note that 0(Frob,) and <D(Frob,) are mapped by each r(q, ^)
to ^(Frob,) and ^(Frob,), respectively)

Proposition 3.23. — There is an isomorphism ofA^ -algebras T^" 0^ (9 [N^ ] —> T^
such that T(^) ®n —. T(^) • ^(Frob^1 . ri) and S(^) ®n —^ S(^) • 0(Frob71 • 72).

Corollary 3.24. — T^" zj fl^m^, torsion-free K^-algebra.

Lemma 3.25. — Under the isomorphism in Proposition 3.23 the element 5^ + §^1 C T|"imm
Q.

maps to §^ + S^1 e T^r

We now define a T^r ^-module M^r^ for each deformation datum ^r^. The
obvious choice for M^ is M^(U^r^, where m is the permissible maximal ideal of
Too(U^r^). However, for technical reasons we find it better to define M^ to be

Q

M^=M^(Ul^

where U^" = Q U^" C GL^^p ® Z) is such that
70 \ rx-) ^w\oo

f u^ Q, ̂  if ^ € S^ U ̂ ^ U Q or if w ^ £

U^ ^ .U^^ , . ^ - ^r^modC^'^eAj if ^ G ̂ ,\^
-"0,^ , ^ J

^ (^ ^) G GL^,) : ^ = Omod^^ otherwise.

The module M^ is a T^r ^-module (and hence a T^-module by Proposition 3.23)
via the natural map T^ -. T^(U^)^.

We write TC^" : R^rps —> T^" for the composition of n^ with the canonical
surjection T^ ^ T^".
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3.7. Duality again

We now make some important observations concerning the modules introduced
in §3.2. Fix an open subgroup U C GL^^p ̂  Z) as in the preceding subsections. We
assume that V/VHV acts freely on D^G^Ay). Thus by Proposition 3.3 Moo(U) and
M^(U) are free ^[[G(U)]]-modules of (the same) finite rank.

Let tr(d) : ^[[G(U,)]] —> (9 be the "trace map55 given by I^Xgg i—> x^ (where
"id95 is the identity element in G(U^). We have an identification ofToo(U, ^-modules

Hom^^)i(M:o(U), ^|[G(U,)]]) = Hom^^^eH°(X{V^ ^), ^[[G(U,)]])

tr(fl)o(.)

= Hom^H°(X(U,), ^)),^)

( , ) u ,= ^H°(X(U,), ^r.
Denote by ?l, this identification of Hom^ ̂ ^^(M^(U), ^[[G(U,)]]) with
^H°(X(Ly, ^))+. For & ^ a we have a commutative diagram of Too(U, ^-modules

Hom^^^^(M^(U), ^[G(U,)]])^H°(X(U^ ^)+

^ ^tr(U,,U,)

Hom^ ̂ (^(U). ̂  IG(U,)]]) -^ .H°(X(U,), ̂

where the left vertical arrow is induced from the natural projection ^[[G(U^)]] —>
^[[G(Ua)]]. We obtain therefore an identification

^ : Hom^ ^(U)I(M^(U), ^ [[G(U)]]) ̂  M^(U)

satisfying K^(trn) = ^loo(^) for all t G Too(U, ^).
Recall that there is an isomorphism G(U) c^ (^p (g) Z/^ x Z(U) inducing an

identification ^[[G(U)]] = A^ [[Zo]] with Zo a finite group. Composing Xoo with the
isomorphism

Ho"^«.(U), A^)^Hom^^^^(M^(U), ^[[G(U)]])

coming from the trace from ^[[G(U)]] to A^ induces an isomorphism

P^(U) : Hom^ (M^(U), A^) ̂  M^(U).

Moreover, if (p : M^(U) —> M^(V) is any map compatible with the canonical map
G(U) —> G(V) then (p can be written as (p = limq^ with (p^ : ^H°(X(U^), ^) —^
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d-[°(X(Va), ^), and there is a commutative diagram

Poo(U)

Horn. (M^(U), A^) —^ M^(U)
T T| ° <P ( < P = lim (J^

Poo(V)

H011^ (M^(V), A^) —^ M^(V)^

where (^ is the adjoint of (^ with respect to the pairings ( , )u, and ( , )v .
Now suppose that p C T^(U, ̂ ) is a prime. Let P =\^ H p. It0 is easily

deduced from the above that P^(U) induces an identification

(3.16) M^(U)^Hom^, (M^(U)p, A^p)
C?',P

of Too(U, <^')p-modules.
RecaU that we defined in §3.3 an injection A'^ ̂  A^ which identifies A^ with

A^[Zi] for some finite group Z,. Suppose that m is a permissible maximal ideal
of T^,(U, ^). By Lemma 3.10 both M^(U)^ and M^(U)», are free A^-modules, so
composing with the trace map from A^ to A^ induces an isomorphism

K^A^^^n,, A^) ̂  Hom^(M^(U),, A^)

ofToo(U, ^')n,-modules. Combining this with (3.16) yields an isomorphism

(3.17) M^(U), ̂  Hom^(M^(U),, A^)

of Too(U, ^)m-modules. This will be important in our later computation of various
congruences.

3.8. Congruence maps

In this subsection we prove a number of results that will be helpful in our
analysis of "congruences" between Hecke rings in §8. As always, U C GL^p ® Z) is
a compact open subgroup such that U = FlU^ and Uo(n) D U D U(n) for some n. Let
w\p be such that U» = GL^^), let t = ̂ , and let X = ̂  be as in the definition
ofT(^). For any/ : G°(Ay) —^ R (R an ^-module) put {af){g) = f ( g ( 1 ^)). Let

Consider the map ^ : H°(X(U), R)2 —. H°(X(V), R) given by W,g) =f+ ag.
The following is the analog of lhara's Lemma (cf. [Ri]) in our setting.

Lemma 3.26. — The kernel of^ is annihilated by lu( ' ^) ) U\ - 1 - Nm{q)for any
prime ideal q ofT that splits completely in the ray class field of conductor n • oo.
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Proof. — Our proof of this lemma is a straight-forward generalization of [DT,
Lemma 2, p. 445]. Put 8 = (* ^-i). Suppose that C/i,/) <E ker(^i). We first
claim that fi(gu) = f\(g) for all u € §~1 GL^'?,„,)§. This is an easy calculation: if
M = §-';/ • S € S-'GL^r,^, then

yiW = -/2(^8-1)

= -W^)
=-/2(^-')

=/i(.?).
As SI^F J and o-'SI^p J§ generate SL^) it foUows that

(3.18) Mffl)=Mg) foraU M € U • SÎ F,).

Now let q be a prime that splits in the ray class field of conductor n • oo. It
follows from class field theory that such a prime has a uniformizer it G F that is totally
positive and satisfies n = 1 mod n. Suppose now that y € GD(Aj) is any element such
that VD(Y) = 7t-1. For any g C G°(Ay), So^g"' <E G°(Ay), where G° C G° is the kernel
of the reduced norm Vp and §o € D>< is such that VD(§()) = it. Such a §o exists as 7t
is totally positive (cf. [We, XI, §3, Proposition 3]). As G[ is a twisted form of SLg for
which GI (Fy,) = SL2(Fa,), it follows from strong approximation that 6og^g~1 = S'gug~1

for some 6' € D" and M € U • SL2(F»). We have then by (3.18) that

is',(3.19) f,{gy) =M^l6>gu) =f,(gu) =f,(g).

/ 1 \ Nm(y)+l
As U( ,(g) JU = U n?t w^th Vn(&) = K, it follows from (3.19) and the definition

of [u(1 ^(g))u1 that [u(1 ^(g))u1y; = (1 +Nm(^))yi. The lemma follows. D

Now put U^ = U n Ui(^, r > 0.

Lemma 3.27. — ./w r ^ 1 ̂  sequence

H0^^'-1'), R) -8^ H0^^), R)2 -L^ H0^^1'), R),

w^ §(/) = (f, - af) and y{fi,ft) = q/i +/2, " exact.

Proof. — To establish exactness, it suffices to prove that if (/i ,^) is in the kernel
of Y then/i € H0^^-1)), R).

For any function/ : G^Ay) —> R put a"1/^) =/ (^[ '»- 1 ) ) - Suppose that
(/, /) is in the kernel of y. As afi = —/ we also have f\ = —a~1/. Now observe
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that a-^(gu) = a-^G?) for all u G U' = ̂  ^) € U : a - 1 G r, ^ € r-1,^ G A

It follows that./; G H°(X(W), R) where W is the subgroup of U generated by U^ and
U'. This subgroup is just U^"^. D

Now consider the map ^ : H°(X(U), R)3 —> H°(X(U^), R) given by ^(/i, f^ /s)
=^ +ocy2+a2/3• As a consequence of Lemmas 3.26 and 3.27 we obtain the following.

Lemma 3.28. — The kernel oft, is annihilated by U( .(r) )U — 1 — Nm(r)for any
prime ideal r off that splits completely in the ray class field of conductor n • oo.

Proof. — We can write ^ as the composite

H°(X(U), R)3 -^ H°(X(U), R)4 M ̂ (XOJ^), R)2 -^ H0^^), R)

where P(yi, /2, /s) = (0, /s, Yi, /2). It follows from Lemma 3.27 that {/, 0, 0, -/}
C H°(X(U), R)4 surjects onto the kernel of y. It P(VI, /2, /s) ^ ker(vo (^ © ^i), then
there exists some/ G H°(X(U), R) such that (-/, /3, /, /2+/) C ker(^©^i). Therefore
by Lemma 3.26, / f^-> f\-> f^ +/are annihilated by the operators in question. This
proves the lemma. D

We conclude our discussion of congruence maps with an important application
of Lemma 3.26. Let U C GL^(^^®Z) be as at the start of this subsection, only now
we assume that (n,^) = 1. Suppose that p C Too^U, ̂ ) is a prime such that

• p e p
• pp is irreducible and not dihedral.

For simplicity we shall also assume that
• p is contained in a permissible maximal ideal.

Suppose that £ is a prime ideal of F such that

• t inp
^t(Nm(^)-l)
• the ratio of the eigenvalues of pp(Frob^) does not equal Nm(^) or Nm(^)~1.

Put U^ = U n Uo(^) and U^ = U n Ui(^).

Lemma 3.29.

(i) T^(U(1), ^)p ^ T^(U<0), ̂ \ ̂  To,(U, ^)p. _ _
(ii) M^(U^)p ^ M^°\ ̂  M^(U)p2 and M^\ ̂  M^\ ̂  I<(U)p as

T^^, ̂ -modules.
Proof. — Let m be the permissible maximal ideal of Too(U, <^) containing p.

Write m for the inverse image of this maximal ideal in Too^, ̂ ) and '^(U^, ̂ ).
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By Corollary 3.12 we have surjections ^(U^, ̂  -^ T^(U^, ̂  -. T^(U, ̂ .
To prove part (i) it suffices to show that every minimal prime ofT^U^, ^)^ contained
in p is the inverse image of a prime of T^o(U, ^%. Let QC ^(U^, ̂  be such
a prime. An analysis of the possibilities for PQJD^ shows that p^ must be unramified
at £. It then follows from Proposition 3.14 that Q, is the inverse image of a prime of
Too(U, ̂ .

We now prove part (ii). For each a > 0, let ^ : ^H°(X(U,), ^)2 —> ^H°(X(U^),
^) be given by ^a{f,g) = /+ og where a is as in Lemma 3.26. Let ^ = lim^ :

a

^(U)2 —^ M^(U^). Also for each a > 0, let I, = ke^Tg^, ̂ ) —> TzQJ,, ^)}.
Then I = Urn I, C Too(U^, ^') is just ker{ T^(Ut0), ̂ ) —> Too(U, ^')}.

a

We claim that

(3.20) M (̂U),2 ^ M^(U(°))[I]p.

For this we note that M^(U(°))[T| = lim ̂ (X^), ̂ ) PJ. Recall that we have
a

fixed an identification of Q^ with C (see §3.2). The map ^ extends to a map
^(g)^ C : ̂ H°(X(U,), C)2 —— ̂ (X^), C). By the Jacquet-Langlands correspondence
(see §3.2) we have T^a, ̂ )-equivariant isomorphisms

Tj(0)

^(X^), C) ̂  ([) V/ and.H°(X(U,),C)^ ^ V^.
tien^^u )̂ len t̂uj

u(0'
It is easy to see that V^ [L] f 0 if and only if n € T^ (Ua)- On the other hand, if

7t € n̂ CU,), then V^ = V^" + a(V^), whence

^H°(X(U<,),C)[IJ=im(^(8)C).

Let K be the field of fractions of ^. It follows that

(3.21) ^H°(X(U,), K) [I,] = im(^ ® K).

Now consider the commutative diagram
Imî

lim^H°(X(U,), ^)2 —^ limgH^OJ^),^)!!,] —^ C —^ 0

0 — — l i m i m ( ^ ® K ) —^ lim ̂ (X^), K) [I,] ^ 0 — ^ 0
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where the vertical arrows are the natural ones. Applying the snake lemma we find that
G embeds into a quotient of limker(^ (g) K/^).

a

Now, for each a > 0 let F^ be the ray class field of conductor t^ ' oo. Let
Foe = UF^. Let F' be the maximal extension of F unramified away from places dividing
tnp - oo. Any element a C Gal(F7Foo) is the limit of a sequence of Frobenii { Frob }
with ra splitting completely in F^. It follows that trace p^(o) is the limit of the sequence
{T(r,)} and £(o) is the limit of {Nm(^)}. It then follows from Lemma 3.26 that
trace pnz(^)- 1 -£((?) annihilates G^ for all a € Gal(FVF^). Thus if Cp ^ 0, then it must
be that trace p^(o) - 1 -£(o) is in p for all a € Gal(F/F^). It is easily deduced from this
that Pl^F/p^ is reducible, and hence pp is either reducible or dihedral, contradicting
our assumptions on pp. Therefore Cp = 0. The same argument shows that ker(^)p = 0.
This proves (3.20). It follows from part (i) that M^(U°)p = M^(U°)p[r| = M^(U°)[r]p,
whence

(3.22) M^(U^^M^(U)^

We next prove that

(3.23) M^^M^)?.

For this we note that M^U^) = M^{V^)[S{£) - 1]. By part (i),

M^U^p = M^U^pTO - 1] = M:,(U^)[S^ - l]p,

from which (3.23) follows. A similar argument shows that M^U^)? ^ Moo(U)p. D

4, The Theorems

4.1. Pro-modularity and primes of R^r

We assume throughout §4 that F, %, and k are as in §2 and that the degree of F
is even unless indicated otherwise. In this subsection we also assume that ZJF, — 1, ^co)
is not a unit (so T^ exists for any ^).

Suppose that ^ = (^,Z,<;,^) is a deformation datum for F. Let ^ps =
(^ , £). Let q be a prime of R^r. There is a map (pq : R^ps —> R^ /q corresponding
to the pseudo-deformation associated to p^rmodq. The prime q is pro-modular if
(pq factors through n^ : R^ps ^ T^. That is, q is pro-modular if there is a
homomorphism 6q : T^ —> R^ /q such that

(4.1) < P q = 6 q O ^ .
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(Throughout this section, if a deformation datum S^ = (^,Z, c, ̂ %) is given, then
^ps will denote the pseudo-datum ^P8 = (^,S).) Note that in (4.1) 6q(T(^)) =
trace p^r (Frob^)modq for all ̂ Z. Similarly, a deformation p : Gal(Fs/F) —> GL,(A)
of type-^ is a pro-modular deformation if the kernel of the corresponding map R^ —^ A
is a pro-modular prime.

It is immediate from the above definition that if q is a pro-modular prime of
R^r and if p D q is another prime ideal, then p is also pro-modular. In particular,
if a minimal prime of R^r is pro-modular, then so is every prime ideal on the
corresponding irreducible component of spec(R^). In this case we say that the
component is pro-modular.

4.2. Good data and properties (PI) and (P2)

Our primary goal is to show that for certain "good55 deformation data Q) the
components of spec(R^r) are all pro-modular provided the data have certain properties
(labeled (PI) and (P2) below). In this subsection we describe these "good55 data and the
relevant properties.

Let ̂  = (^, Z, c, ̂ ) be a deformation datum for F. The pair (F, ̂ ) is good if
• the degree d of F is even
• L^(F, - 1,5cco) e ̂  but L^(F, - 1, ^co) ̂ x

• d > 2 + BF + 8 • (#Z + dim^H^(F, k))
• for each Vi\p the degree d^ of F^ over Q ,̂ satisfies

.̂ > 2 + 2^+ 7 • (#Z + dim^H^(F, k))

• if Pc|i, + 1 and W\P. then either XL + 1 or Xlo, = 1.

As before, t = #^, where S^ = {vi} is the set of places of F over p, Zo is the set of
finite places at which % is ramified together with ^, and

H^F.^ker^F^/F, k^-1)) ̂ .(^(D,, y^X-1))}.

Note that if ^ is good and if ^ ' = (^, £', c, ̂ /) is another datum with 2V C Z,
then (F, ̂ /) is also good. However, being good does not behave well with respect to
change of fields, meaning that if (F, ̂ ) is good and if L/F is permissible for ^ (as
defined before Remark 2.1), then it can happen that (L, ̂ ij is not good. On the
other hand, it can also happen that (F, ̂ ) is not good but (L, S^ ̂  is. This will be a
key ingredient in our reduction in §4.6 of Theorems A and B to the Main Theorem.

Let ̂  = (^ , S, c, ̂ %) be a deformation datum for F. Let p be a dimension one
prime of T^r. Let pp be the representation described in §3.3. Let A be the integral
closure of T^r/p in its field of fractions K. If pp is irreducible, then Lemma 2.13
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associates to pp a representation p : Gal(Fs/F) —> GL^A) such that p0K ^ pp and p
is a deformation of some p,/ for some cocycle 0 ^ c' C H^F^/F, A^-1)), A7 some finite
extension of /;. We claim that ^ is admissible and that p is a deformation of type-
(^/, Z, ^/, 0), where ^ ' has residue field kf. To see this, let v, be one of the places over
p. Choose Oi C D, such that 5c(a,) =j= 1 and choose a basis for p such that p(a,) = ( a o )
with pmodmA = x(o,). As p (g) K ^ pp it follows from (3.4) that with respect to this
basis either p|^ is split, p|^ is non-split and p|^ = (^ ^), or p|^ is non-split and

Pk = (t1 fc) ' If Pk is split then clearly 0 = res^(^) G H^D,, ^(x-1)) and p[^

satisfies the desired criteria. If p[^ = ((h ^), then ^(^)modmA = x(^) + 1. (Here
\ is the uniformizer of ̂  ^ chosen for the definition of To(p,) - see §3.2). However,
as p 0 K ̂  pp, it follows from (3.4) that To(p,)modp = ̂ {\) and by the permissibHity
of the maximal ideal of T^r , To(p,)modniA = 1. This contradiction shows that if
pin, is non-split, then p|^ = ((h ^) with ^modmA = X. One sees immediately that
^M = ° and that Pin satisfies the desired hypotheses. Therefore c' is admissible and
p is a deformation of type-^7, E, c ' , 0). We say that the prime p is m'^^r ^ if

• p is a dimension one prime of T^,
• pp is irreducible,
• p is the inverse image of a prime of T^ (where ̂  is the deformation datum

defined in §2.3),
• c' is a scalar multiple of c,
• some conjugate of p is a nice deformation of type-^7, Z, c, ̂ ) in the sense

of §2.3.

A prime p of R^r is good if p^ mod? is nice in the sense of §2.3. Such a prime
is nice if it is also the inverse image of a pro-modular prime of R^.

Ifp is nice for ̂ , then the universality ofR^ yields a unique map R^ —> A
inducing a conjugate of p. We denote by p^ the kernel of this map. This is a nice
prime. The first of the aforementioned properties of S^ is that

/p,x i f p ^ T^r is any prime that is nice for ̂ ,
then any prime Q, C p^r C R^ is pro-modular.

The second important property of Q^ is that

,po^ there exists a pro-modular prime of R^r whose
corresponding deformation is nice in the sense of §2.3.

4.3. The key proposition

The following proposition is the key ingredient in our proof of the Main
Theorem.
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Proposition 4.1. — Let Q^ be a deformation datum for F. I f ( F , ^ ) is good, and ^(Pl)
and (P2) hold for ^ and ̂  then every prime ofR^ is pro-modular.

Proof. — Let W ̂  be the set of irreducible components of spec(R^) and let
^ Q) ^= ^^ be the subset consisting of pro-modular components. The assertion of
the proposition is equivalent to ^ ̂  = ̂ ^d.

We begin by proving the proposition for the case ^ = ̂ . (Note that since
(F, ̂ ) is good, so is (F, ̂ ).) The proof consists of two steps. In the first, we show
that any component of spec(R^) containing a nice prime is itself pro-modular. As
a consequence of this and of (P2) we have that W^ =(= 0. In the second step we
combine step one with our analysis of the structure of the ring R^ to conclude that
(ymod _ cy
v ^ ~ v ^ '

Suppose that p is a nice prime ofR^. By the definition of pro-modularity of p
there is a unique map 6p : T^ —> R^,/P inducing the pseudo-deformation associated
to p^modp. Gall the kernel of this map pi. Clearly, pi is nice for ^. It follows
from (PI) that if Q^ C p is any prime of R^ then Q, is pro-modular. In particular,
any minimal prime of R^ contained in p is pro-modular. This completes step one.
Combining this with (P2), which asserts the existence of a nice prime of R^r, yields

^d ^ 0.
The next step is to prove that ̂  = W^\ Put W^ = (^^\(^^. If ̂  = 0,

then there is nothing to prove, so assume otherwise. It follows from Proposition 2.4 and
Corollary A. 2 that there are components Ci <E W^ and €3 G ̂  such that Gi HG2
contains a prime Q of dimension d— 2^+ §F — 3 • #^6 c- Let Ii be the ideal generated
by the set {j&;det p^(Yz)- 1 | i = 1, ...,8?}. Let Qi be a minimal prime ofR^/(Q, Ii).
The dimension of Qi is at least d - 2t - 3 • #^, - 1 > 1 + 5p + (#S + dim^ HsJF, k)),
the inequality by (G). It follows from Lemma 2.6 that p^modQ^i is irreducible.

Since Q,i € Ci , Qj is pro-modular. The prime Q,i determines a prime Q^^
of T^. The prime Q^06 is the kernel of OQ^ : T^ —> R^/Q,i. Moreover, since
p^rmodQ,i is irreducible as remarked in the preceding paragraph, it follows from
Proposition 2.12 that dim T^/Q^ ^ dimR^r/Qi. Recall that T^ is an integral
extension of A^ = ^[[Y^, ...,Y^, Ti,...,T§J (cf. Corollary 3.4). By construction

C^HA^ contains Ti,..,T5p. IfQ^HA^ also contained Y?,..,Y^ it would follow
that the dimension of Q^0 would be at most d — di. Comparing this with the lower
bound for the dimension of Q î obtained earlier and recalling that the dimension of
Qi is at most that of Q^ one finds that d,• ^ 2^+ 3 - #^&, + 1 which contradicts
(G). Thus, after possibly reordering the Y^'s we may assume that Y^ ^ Qj for each
i= 1,..,^.
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Fix now a basis for p^r for which p^(^i) = ( -i )• Write p^((?) = ( ^? ^ ).
As p^r mod Qi is irreducible, there is some <JQ for which c^ ^ Q,i. Let p 3 Qi be
a prime of dimension one not containing ^,Yi ,...,Yf. Such a p always exists. As
p G Ci it is pro-modular. We claim that it is also good. By construction p contains
p, and it is, of course, a prime of R^r, so it remains to check the conditions at each
D,. Let A = R^/p and let p : Gal(F/F) —> GL^(A) be the deformation p^modp.

Consider pL ^ ( ¥1 * ]. By definition y?^?) equals 1 + Y^, which has infinite
1 \ ^2 )

order in A. Thus \|/<f is a character of infinite order. On the other hand, det p(^) = 1
forj = 1, ...,577, so, as char A = p , det p = %. It follows that \y^ == % • ̂ ~\ whence
Y I / W has i11^111!̂  order. Therefore p is a nice prime of R^. As p G C^ it follows
from step one that C^ C ^^? contradicting the assumption that C^ € ^^r. This

proves that ^^ = ^^ .
We now prove the proposition in its full generality. We first show that any

component of spec (R^r) containing a good prime is pro-modular. For this we use the
proposition in the case S^ = S^c' We then combine this with our previous analysis of
R^r to conclude that ^ ̂  = 1̂? •

Suppose that p is a good prime of R^r. It follows that p is the inverse
image of a prime pi of R^r under the canonical map R^r -^ R^r. By the
proposition in the case Q) = Q)^ pi is a pro-modular prime. Thus there is a
map 6p^ : T^ —> R^/pi = R^r/p inducing the pseudo-deformation associated
t° P .̂ mod pi = p^modp. Composing 9p^ with the canonical map T^r -^ T^ yields
a map 6p : T^ —> R^/p inducing the pseudo-deformation associated to p^rmodp.
Let ?2 be the kernel of 9p. It follows from the definition of p2 that it is nice for S^,
whence by (PI) any prime Q^C p ^ C R^r is pro-modular. As p = p^ ^, it follows
that any component of spec (R^r) containing p is also pro-modular.

In our final step we complete the proof of the proposition in its full generality.
Let Q be a minimal prime of R^r. Let Is C R^r be the ideal defined as follows.
Choose a basis for p^ such that p^(^i) = i _ i ) . Write p^(o) = (^ ^ ) and

PX0) = ( } yS)) • For each place y e £\^ fix a generator Ty G ly of the pro-j^-part of
tame inertia at v. Let Is be the ideal generated by the set

{p;^- 1, ^-^, ^, <;detp^r(^)- 1 | ̂ GE\^ , j= 1,. ..,§?}.

Let Q 2̂ be a minimal prime of R^r /(Q^, 12). By Proposition 2.4 the dimension of Q^
is at least d— 7 • #Z— 1. It follows from this and from (G) that the dimension of Q^ is
at least §F+#£+dim^Hso(F)+ 1 from which it follows by Lemma 2.6 that p^rmodQ^
is not reducible. Moreover, it is clear from the fact that Q^ D l2 that p^r mod Q^ is a
deformation of type-J^. It follows from the proposition in the case Q^ = ̂  that Q^ is
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pro-modular. Arguing as in step two of the proof in the case S^ = ̂  shows that Q^
is contained in a good prime. As Q^C Q^, the same is true of Q. The conclusion of
the preceding paragraph now implies that Q^ is pro-modular. Therefore, every minimal
prime of R^r is pro-modular. This completes the proof of the proposition. D

4.4. Conditions under which (P2) holds

In this subsection we establish the following criteria for (P2) to hold for a given
deformation datum ̂ .

Proposition 4.2. — Let ^ = (^, £, c, ̂ ) be a deformation datum. If (F, ̂ ) is a
good pair, and ^(Pl) holds for each datum ( ^ ' , S', c ' , ̂ /) with U C Z and ( ^ ' 3 ̂  ^2
(P2) holds for ^.

Proof. — The proof of this proposition consists roughly of three steps. In the first
we prove that (P2) holds for some deformation datum ^o = (^/, So? ^o? ^^o) with
^/ D ̂ . From this, together with the hypotheses of the proposition and Proposition
4.1, we obtain that if Q ^ ' = (^/, Z', ^o,-^/) with 2' C Z then every prime of
R^r/ is pro-modular. In the second step we combine step one with the existence of
suitable reducible deformations to show that there exists a prime pi of T^ (where
Sy\ = ( ^ ' , "Lc-> CQ, ^6\) for a suitable ^&\) such that the pseudo-deformation associated
to pi comes from the pseudo-deformation associated to a deformation pi of type-
(^, Z,, c, 0). In the third step we prove that pi is actually of type-^, and that pi is
essentially the inverse image of a prime ofT^, thereby proving that (P2) holds for ̂ .

We now prove that (P2) holds for some deformation datum ^o =(^)/, ^o? ^o? -^o).
(Recall that Zo is the set of finite places at which ^ is ramified together with
the places ^i,...,^ over p and that ^o = So\{^i?..., ^}.) Let L^ C GL^^p ® Z)
be as in §3.4. Since the pair (F, ̂ ) is good, L^(F, — 1, ^co) is not a unit in
^, so it follows from Proposition 3.14 that ToofU^, ^) has a permissible maximal
ideal m. Recall that by Corollary 3.4, T^ = Too^, ^)n, is an integral extension of
A^ = ̂ ^.....Y^, Ti,..,T5j. Let QC T^, Ti,..,T§p) be a minimal prime. By
its choice, the dimension of Q, is at least d. Let R = T^/Q. The pseudo-representation
associated to p^ determines a pseudo-deformation into R of type-(^, Zo). We denote
this pseudo-deformation by p^ = {^(a), rf(a), A;(<J, r)}. We claim that x{a, r) is not iden-
tically zero. If it were then p : Gal(F^/F) —> GL^(R) defined by p(c) = (fl(G) ^)
would be a diagonal deformation of type-(^, Eo) (see §2.3). Therefore, there would
be a map y '' R^Z) —^ R inducing p. Since it follows from Lemma 3.11 that R is
generated (pro-finitely) by the set {trace p(o)} = {trace PQ(o)}, y must be surjecdve.
Thus the kernel of y would be a prime q of R^Z) of dimension at least d. However
by the choice of Q^ detp (and hence det p^^mod q) has finite order. Lemma 2.9
would now imply that d ^ 1 + Sp, but this contradicts (G). This contradiction implies
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that there exists some <JQ anc! To such that x{(5o 5 To) ^ 0. Now let p 3 Q, be a dimen-
sion one prime ofT^ not containing X(OQ, To), Y^ ,...,Y^. Let A be the normalization
of T^/p (this is a complete DVR with residue field k a finite extension of K). Let
^/ = ^ 0w(A:) W(^). Let (p = pQmodp be the induced pseudo-deformation into A of
type-^', Zo)- This is nothing more than the pseudo-representation associated to pp.
By Corollary 2.14 there exists a cocycle 0 ^ CQ € H^F^/F, A7^"1)) and a deformation
pep : Gal(F^/F) —>• GL^(A) of p^ whose associated pseudo-deformation is (p. Let K
be the field of fractions of A (equivalently, the field of fractions of T\/p).

Comparing traces we find that p(p 0 K ^ pp. Arguing as in the second full
paragraph of §4.2 (the paragraph describing primes of T^r that are nice for ^r)
shows that CQ is admissible and that pep is a deformation of type-(^', £o? ^o? 0)- W^
claim that it is in fact a nice deformation of type-^o? where ^o = (^/? So, <o? «^co).
Recall that ^^o ls nothing more than the set of finite places other than v\,...,Vf at
which % is ramified. Therefore if w G ^^o? then one sees easily that p(p|i^ ^ ( y^ )
with (j)i and (|>2 finite characters ofj^-power order. However, since the characteristic of
A is p it must be that (|)i = 1 = ̂ . This shows that p<p is of type-^o- Moreover, since

pep (g) K ^ pp it follows from (3.4) that pcpin, ^ ( (1)1 ^ } with ^ • (j^ a character
\ ^ /

of finite order and ((^(/i^) = 1 + if, which is an element of infinite order in A^ To
conclude that p^p is a nice deformation it remains to check that the corresponding
prime of R^ is of dimension one. This follows from Lemma 2.12. By construction
p(p is a pro-modular deformation of type-^o (since T^ = T^ 0^ ^/). It follows that
the prime of R^ corresponding to p<p is a nice prime. This completes step one.

If the cocycle c is a scalar multiple of CQ, then (P2) holding for ^o easily implies
that (P2) holds for ̂  and hence also for ̂ , as was to be proved. For let p(p be the
deformation of type-^o described in the preceding paragraph. There exists a conjugate
PH) of p(p that takes values in GL2(B) with B C A an ^-subalgebra with residue field
k and that is a deformation of type-(^, ZQ, c, ̂ co)' Since (^, So? c, ^&co) = ̂ o this
shows that p^p is a nice, pro-modular deformation oftype-^c (since T^0^ ̂ / = T^).

Suppose from now on that c is not a scalar multiple of fo- Let Q^\ = (^>/, So CQ,
^&\) with ^y^i the set of finite places w G £c other than ^i,...,^ such that %[i =|= 1.
Since (F, ̂ r) is good so is (F, ̂ i). Having shown that (P2) holds for ^o we see that
(P2) also holds for Q^\. Combining this with the hypothesis that (PI) holds for ^o and
(^\, and with Proposition 4.1, yields that every prime of R^ is pro-modular.

As both c and CQ are classes in H^ (F, k} they can both be viewed as Gal(F(^)/F)-
equivariant homomorphisms Gal(Fo(x)/F(^)) —> ^Oc"1)? where Fo(%) is the minimal
field over which every cocycle d € H^ (F) becomes trivial. Fix Gal(F(%)/F)-generators
Oi,...,^ of Gal(Fo(%)/F(%)). Then any cocycle in H^F, k) is determined completely
by its values on the (J/s. Let {(aij, ...,0yj) G ^ % 1 < j ^ ^ — 2 } be s — 2 linearly
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s s

independent vectors such that ^ cx^o(<^) = 0 and ^ cx^(c^) = 0. Note that

(4.2) s - 2 = dim^, Hs/F, A') - 2 ^ #Z, + dim^ H^(F, A).

Fix a lift a^j of each a;j to ^/.

Fix now a basis of p^ such that p^(^i) = ( 1 _ i ) . Write p^,(<7) = (^ ^) .
j

Let I C R^ be the ideal generated by {p\ Sa,j^; detp^(y^) | j = l , . . . , j— 2;
2=1

^ = 1,...,8F}. It follows from (G), (4.2), and Proposition 2.4 that any minimal prime
of R^r /I has dimension at least

dim R^, -(dim^H^(F, k) - 2) - Sp - 1
^ </+ 7 - 3 • #^^i - 4 • dim^H^(F, A:) - 2t

(4.3) > </+ 7 - 7 • (#£, + dim^H^F, k))
>§F+dim^Hs/F,A:).

Comparmg this estimate with that in Lemma 2.6 shows that any minimal prime of
R^/I corresponds to an irreducible (pro-modular) deformation.

Now, there exists a reducible deformation p : Gal(Fy/F) —^ GL^I^]]) of

fey given as follows. Let c and CQ be cocycle representatives of c and CQ such that

c^i) = 0 = (•0(^:1). Define p by

o ( n } = ( 1 x(oH^)+^)xA
" ' \ XW ) '

Clearly, p is a deformation of type-^i, so p corresponds to a dimension one prime
p of R^/I. Let Q^ be a minimal prime of R^/I contained in p. As we observed in
the preceding paragraph, p^ mod Q^ is irreducible. Let Q^ be the inverse image of Q^
under r^ : R^ps —> R^p Let A^ = R^ps/Q^ and let A be the integral closure of

A" in its field of fractions L. The ring A is a Krull domain [N, (33.10)]. Let K be the
field of fractions of R^ /Q^.

Choose Pi,...,(3, G k such that EPz<^) = 0 but EP^o(^)+0. Fix a lift
i=\ i=\

P, of each P^ to ^/. Choose a basis for p^ such that p^(^i) = ( 1 _ i ) and

EPz^ = ^o ^ ^ / x? where p^(a) = (^ b^\. Put A;(<J, r) = VT- Suppose that P is a
height one prime of A for which SP^((^, Op) ^ P for some Gp € Gal(F^ /F). Then,
since SP^(o,,Gp) = Mo^jp, ^op ^ P- It follows that by G Ap for all a G Gal(F^/F).
In particular, the matrix entries of each p^(o) modQ are in Ap. Thus, if such a (Jp
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existed for each height one prime P of A, then p^ mod Q would have matrix entries
in nAp = A. It would then follow from Lemma 2.6 that any dimension one prime of

R^i /Q. P^8 back to a prime of A, and hence to one of A^, of dimension at least
one. However, this is impossible as the non-maximal prime p of R^ /Q^ pulls back to
the maximal ideal of A1'. Therefore, there must exist a height one prime Po of A1' for

which { E (3 ,̂ T) : T C Gal(F^/F) } C Po.
i=\

Suppose that x(a, r) G Po for all a and T. It would follow that the representation
pp^ defined by

^}=(aa . ̂ eGL^/Popo(o) = ° , e GL^/Po)
\ ^0 /

would be a diagonal deformation of po = (1 ^) of type-^', Z,) having determinant
equal to %. As A^/PO is (pro-finitely) generated by the traces of pp^ it follows that the
natural map R^ ̂  —^ A^/PO would be a surjection, whence by Lemma 2.9 (ii) the
dimension of A^/Po would be at most 1 + 5p. However

dim A^/Po = dim A1' - 1 > dim R^ ̂ /Q,- 1
^ §F + dim^, H^(F, ^)
> § F + I ,

the first inequality coming from Proposition 2.12, the second from (4.3), and the
last from the fact that c and CQ span a two-dimensional //-subspace of Hz (F, k)
by hypothesis. This contradiction implies that there is some <5' and T' for which
^(G'.T^Po.

We next claim that after possibly renumbering Y^...,Y^ we can assume that

YI' ^ Po. For this we recall that since Q, is a prime of R^ it is pro-modular, so
^r = T^/Q"^ for some prime ̂  C T^ such that p^modQ^ is the pseudo-
representation associated to p^modQ; Recall also that T^ is an integral extension
of A^. By the choice of Q, Q"̂  contains (Ti, ...,T§p,j&). Hence so does Po. If Po
also contained (Y^, ...,Y^) then the dimension ofPo would be at most d-d,- 1. Hence
the dimension of Q"̂  (and hence of A1') would be at most d - 4 However, as the
dimension of Q is at least rf+ 7 - 3 • #^M i - 4 • dim^Hs/F) - 2t, it would then follow
from Proposition 2.12 that d,• < 7 • (#Z, + dim^H^(F))+ 2^, contradicting (G). This
proves the claim.

Now let pi be a dimension one prime of A^ containing Po but not containing
Y^,...^, or ^(G'.T'). Let B be the integral closure ofA^/pi in its field of fractions
L. Let k ' be the residue field of B. By Corollary 2.14 there is a representation pi :
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Gal(F^/F) —> GL^(B) whose associated pseudo-deformation conies from p^psmodpi

and for which pimodrriB = pq for some cocycle 0 =|= c\ € H^F^/F, A/'^"1)). Recall
that since Q^ is a pro-modular prime of R^ ^ there is a map T^ -»• A^ inducing
the pseudo-deformation p^psmodC^. Thus pi corresponds to a prime ofT^, which

we also denote by pi. It is clear that pi ® L ^ p p ^ . Arguing as in the paragraph
describing primes of T^r that are nice for S^ shows that c\ is admissible and that pi
is a deformation of type-^", £„ c^, 0), where ^ " = ̂  ®^ W(^).

We next claim that c\ and c differ by a scalar, or, in other words, pc ̂  pq. Recall
that {EPz^o^ E^zj^o^) I ^ € Gal(F/F); j = 1,...,^-2} is contained in pi .
Suppose that ^oc^i(c^) =|= 0 for somej. Fix a basis for pi for which pi(^i) = ( -i )•

Write pi(c?) = ( aa f ) . From our supposition it follows that bj = EO^J^ 1s a umt m

B. But we also have {Y,o^ijb^)co = Sa^^(<7^ o) = 0 in B. It follows that Ca = 0 for all
a and hence that x(o, r) = 0 in A for all a and T, contradicting the assumption that
x(<51\ T') ^pi . A similar argument shows that SP^i(<7z) = 0. It follows that c\ restricted
to Gal (FS /F(%)) is a scalar multiple of c. This proves the claim since restriction

determines an isomorphism H^F^/F, ̂ -1)) ̂  Horn (Gal (F^/F(x)), ^X-1))0'1^^.
Therefore, after possibly replacing pi by a conjugate, we may assume that c\ = c

and that pi takes values in GL^B') with B' a ^-subalgebra with residue field k and
hence that pi is a deformation oftype-(^, Z^, c^ 0). This completes step two.

We now prove that pi is a nice deformation oftype-^- The only thing needing
proof is that pi is actually of type-^, for the desired properties of pi|n follow from
the isomorphism pi 0 L ^ ppp and that the corresponding prime of R^ will have
dimension one will follow from Lemma 2.12. As ^/&c consists only of those finite
places other than v\,..., ̂  at which p^ is ramified one finds that each w C ^& c satisfies
exactly one of the following possibilities:

(4.4) (i) "I-" + '
(B) Xh.=l, Xk =»>-•=!.

If w C ^& c satisfies (i) then it is easily seen that pi|i^ ^ ( y ) (here we have
used that char (B') = p). If w € ^& c satisfies (ii) then pjo is type A. We want to show
that the same is true for pi. Since det pi = % there are two possibilities for pi (X) L|o '-

it is either type A or type B'. If it were type B' then pi 0 L|i^ ^ ( ,-i ) with (|)
a finite character of j&-power order. However, since char (L) = p any such (|) must in
fact be trivial, from which it would follow that pi is unramified at w, contradicting the
assumption that pc (and hence pi) is ramified at w. Thus it must be that pi 0 L]^
is type A. It is now straightforward to show that since Pc\D^ = ( t) is non-split,
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Pi|^ ^ [ ^) as wen- For let ^ ^ L be a generator of the pro-^-part of tame
inertia. It follows that p,(u) = (1 ^°) for some 0 ^ bo ^ k. Let V be the underlying
representation space for pi (so V is a free B'-module of rank 2). Let U C V be the
B'-submodule annihilated by u - 1. That U ^ 0 follows easily from pi (g)L being type
A at w. That U ^ V follows from the fact that p,(u) ^ 1. It follows that U ^ B' and
V/U ̂  B7. Let <?i , ^2 e V be such that ^i generates U as a B-module and ^ generates
V/U as a B'-module. Thus e^ and ^ form a basis of V as a B'-module. With respect
to this basis u acts via a matrix of the form f 1 f V Since the reduction e^ and ^
of e\ and ^2 modrriB form a basis for V = VmodniB/, the A-space underlying p,, and
since u does not act trivially on V, b is a unit in B'. After possibily scaling e^ and e^ by
units in B' we may assume that b reduces to bo. In this case e\ and e^ form a basis for
the deformation pi with respect to which pi(z/) = ( l f ) {b ^ 0). It now follows from

the well-known action ofD^ on tame inertia that pi|n^ = ( ! ^). (Here we have used
that char(B7) =p and that detpi = %). This completes the proof that pi is of type-^,.

Let p2 c R^, be the prime corresponding to pi. We have shown that p^modp2
is nice. We now show that p2 is pro-modular. Put ^2 = ( ^ , S,, c, ̂ ^i). 'Clearly
^3 ®^ ^ ' = T^r^. From the choice of pi and the definitions of p2 and pi we have
a commutative diagram

R^ ps -^ T^r ^ —)- T^r ^ -^ A11' ̂  A^/pi

(4-5) 1^2 ^

R^ 2 ^ R^ —> B' ^ B

where the map T^r ^ -^ A^ induces the pseudo-deformation associated to p^ mod Q^
and R^ —> B' corresponds to pi. Denote by ps the kernel of the map T^^ -^ A^/pi
in (4.5). We need to show that ps is the inverse image of a prime of T^ under the
canonical surjection T^ -^ T^ .

Let Q,i C ?3 be a minimal prime ofT^. We describe the possibilities for po ID
when w € ^& c ' First, note that p^ is ramified at every place in ̂ , since ppg ^ pp^
is. Second, recall that by (G) every place w G ^6 c satisfies one of the two possibilities
listed in (4.4). If w satisfies (4.4i) then w € ̂ i (by the definition of ^i), and it is
easy to see that p^Ji^ ^ (^1 ^J with (|>i and ^ finite characters ofj^-power order.

As . G ̂ i, U ,̂ = { (: b,) c C C^15"'^ .modC"'"^ C A,,}. (See §3.5,

especially for notation.) It follows from Lemma 3.16 that ^ and ^ are in fact trivial.
This shows that

(4.6a) if ̂  1, then p^|^ (l Y
\ A< /



^ G.M. SKINNER, AJ. WILES

Finally, suppose that w G ^M c satisfies (4.4ii). In particular co(Frob ) = 1. A
straightforward analysis of the possibilities for p^ \^ using that p^ |i^ factors through
the pro-p-part of tame inertia at w shows that there exists a finite character (|) of D^ of
j&-power order such that p^ ID, ®(|> is either type A, type B, or type C. As type C can
only occur if co(FrobJ = -1, this case is impossible. It follows that if ^ID , = CO"1 = 1,
then either

W P^iL ^ ( ^ J ? <h and ^ finite characters of^-power order, or

(2) PQjL ^ ( ^ ) ? ^ a fi^^ character of^-power order.

Now write det p^ = X • ^ • V where (|) is finite of j^-power order and \y has infinite
order and factors through a free Z^-extension of F (hence \y is ramified only at places
in S^\ It follows from (4.6 a, U) that (|) is ramified only at places in ^%,\^i and in
S^. Fix a character ^ : Gal(F^/F) —> (T^^/Qi)" ramified only at places in Z,\^i
and such that (|)i == (|)~1. By Lemma 3.17 there are primes Q^ c ?4 c T^ with Q2
minimal such that p^ ^ p^ (g)(|)i and pp^ ^ ppg ®(|)i. As ppg (g)(|)i = pp^, it follows that
P4 = Ps. Thus Q2 is contained in ps. It follows from (4.6 a, b) and the definition of ̂
that

(4.7) (i)if X L + 1 , then pc^li^1 ) ,
\ ^ /

(ii) if ^ID^ = 0)~1 = 1, then either

^ i f1 ^^) P^ID.^ ^ i j , or

^) PQ^JD^ ^ ( ,-i ) with (|) a finite character ofj^-power order.

Next we introduce some new subgroups ofGL^^p^Z). Write U^ = ]~[U^^.
w

Let %^be the set of places w € ̂ ,\^i for which (4.7iiA) holds. For ^ € ^define

vw={(ac ^)eGL2(^)F^) ^ C ^ , ^-^od^eA^l

(see §3.2 for the definition of A^). Put

(4.8) U'= n U^,x n U, and U" = U^ n.U'.
wi^ w^^

Let m' and m" be the permissible maximal ideals of T^U', ̂ ) and T^U", ^),
respectively, obtained by pulling back the permissible maximal ideal of Too(U^ , ̂ )
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via the canonical projections. There is a commutative diagram

(4.9) T'
\\

T^OJ',^),,

T'^T^OJ",^)^ ^^T^

^^^ T^ ^^

where all the maps are the canonical ones and are surjective. Let Q^ C p^ C T77

be the inverse images of Q^ and ps. It follows from (4.7), (4.8), and Lemma 3.15
that there are primes Q^ C p^ C T' whose inverse images in T" are just Q^ and
p^, respectively. It now follows from Proposition 3.20 that p3 is the inverse image of
a prime pc of T^. By the commutativity of (4.9) and the fact that p^ is the inverse
image of both ps and p^ it follows that ps is the inverse image of pc. This proves that
the map T^ —> A^/pi in (4.5) factors through the canonical surjection T^ -» T^,
completing the proof that the deformation pi is nice and pro-modular oftype-^. This
completes the third and final step in the proof of the proposition. D

4.5. The Main Theorem

We now state and prove our Main Theorem. In this subsection and the next, we
forego the convention that F has even degree. We will, however, assume property (PI)
for certain fields. That this property holds is proven in §5-8 (see Proposition 8.4) which
are independent of §4.

Main Theorem. — Suppose that F is a totally real field and that Q^ = ( ^ , Z^, c, ̂ 6) is
a deformation datum for F. Suppose also that p : Gal(Fs/F) —> GL^(^) is a deformation of
type-S^ such that

• p is irreducible
• det p = \|/e4 with \l > 1 an integer and \y a finite character

• p[n. ̂  ( x¥l * j with l^li^. of finite order for each i= \,...,t.
\ ¥2 /

If there exists an extension L / F of totally real fields such that

(i) the Galois closure ofi. over F is solvable
(ii) L has even degree over Q

(iii) L is permissibk for Q^
(iv) (L^, ^L) ^ ^ good pair in the sense of^§4.2^,

then p ® Q, is a representation associated to a Hilbert modular newform.
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Proof. — Let pi = ploaKL/L)' As L is permissible for ^5 pi is a deformation of
type-^L- Since L has even degree over Q, it follows from Proposition 8.4 that (PI)
holds for any deformation datum for L. As the pair (L, J^L) is good it then follows
from Propositions 4.1 and 4.2 that pi is a pro-modular deformation. In particular,
there is a map \: T^r^ —> ^ inducing the pseudo-representation associated to pi.
By the conditions imposed on p in the statement of the theorem, the map ?l satisfies
the hypotheses of Proposition 3.7. Thus there is a Hilbert modular newform / (over L)
such that

(4.10) trace pi(Frob^) = (eigenvalue ofT(^) acting on/)

for i ̂ ZL- Let py^ : Gal(L/L) —> GL^(Q ) be the representation associated to/. (If n
is the automorphic representation associated to/, then py^ is just pyc, the latter being
the representation described in (3.2)). This representation satisfies

(4.11) trace py^(Frob^) = (eigenvalue ofT(^) acting on/)

for £ ^£ZL- As p is irreducible by assumption and odd, pi (and hence pi (8) Q,) is also
irreducible. It therefore follows from (4.10) and (4.11) that pi 0 Q, c^ p^. Now, as the
Galois closure of L/F is solvable, it follows from the known cases of base change for
(holomorphic) Hilbert modular forms (cf. [GL]) that there is a newform/over F such
that P/|Gai(L/L) ^ P/i ^lere Pf'' Gal(F/F) —> GL^Q^) is the representation associated to
/). Since P/|Gai(L/L) ^ P ® Q^ I Gai(L/L) ^d Aese are irreducible, it is easy to see that
there is some finite character (|) : Gal(F/F) —> Q such that p^0(|) ^ P®Q,y,. As py0(|)
is the representation associated to the newform corresponding to the twist of/by (|),
this proves the theorem. D

In the next subsection we will deduce the following theorems from this one.

Theorem A. — Let F be a totally real abelian extension of Q. Suppose that p is an odd
prime and that p : Gal(F/F) —> GL^(Q ) is a continuous, irreducible representation unramified

away from a finite number of places ofT. Suppose also that the reduction ofp satisfies p88 ̂  Xi ©X2-
If

• the splitting field F(%i/^) of^/^ is abelian over Q^
• OCi/^K^) = ~1 f^ ^h complex conjugation ^
• (Xi/X2)k + ^ for each v\p,

• p|^ c± ( ¥1 xl ^_ j with ^factoring through a pro-p-group offy and ̂ \i, of
\ ¥2 5C2/

finite order for each v\p,
• detp = vi/e^"1 with k ^ 2 an integer and \y a character of finite order,

then p is a representation associated to a Hilbert modular newform.
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A critical ingredient in the proof of Theorem A is a result of Washington on
the boundedness of the j^-part of the class group of a cyclotomic Z^ -extension of an
abelian number field (cf. [Wa]). A similar result for any totally real field would yield
the same theorem but with the omission of the hypotheses that F and F(^/5^) be
abelian.

For our next theorem, we make the following hypothesis, which plays a role
similar to that of Washington's theorem in the proof of Theorem A. We believe that
this hypothesis will be easier to establish than the analog of Washington's theorem,
though the latter would yield a stronger result.

Hypothesis H. — There exists 0 < £ < ^ and a constant c(€) > 0 such that given a totally
real field K and a finite set S of finite places ofK. there is an imaginary quadratic extension L of
K having prescribed behavior at each place in S and such that the relative class group of L/K has
p-rank at most ^deg^/Q)1"8.

Theorem B. — Let F be a totally real extension ofQ^. Assume Hypothesis Hfor all solvable,
totally real extensions ofF. Suppose that p is an odd prime and that p : Gal(F/F) —> GL^(Q,) is
a continuous, irreducible representation unramified away from a finite number of places ofF. Suppose
also that the reduction ofp satisfies p88 ̂  %i © ̂ . If

• (%i/X2)(^) = —! f071 eac^ complex conjugation ^,
• OCi/X^lDy has even order for each v\p,

• p|j) ^ ( ¥1 xl .* j with ^factoring through a pro-p-extension ofFy and Y(4 |iy
y \ ¥2 X2/

of finite order for each v\p,
• detp = vi/e^"1 with k ̂  2 an integer and \y a character of finite order,

then p is a representation associated to a Hilbert modular newform.

4.6. Proofs of Theorems A and B

We now prove Theorems A and B. In both cases this is done by reducing to a
situation to which the Main Theorem applies.

Proof of Theorem A. — Put pi = p 0 %2"1 and % = Xi /X2- Let £ be the set of
finite places at which pi is ramified together with the places over p. There exists a
finite extension K of Q ,̂ such that for some choice of basis pi takes values in GL^(^)
with ^ the ring of integers of K. Such a basis can be chosen so that the reduction

of pi modulo the maximal ideal (K) of ^, pi = pimod^ satisfies pi = ( )
\ A* /

and is non-split. Let k be the residue field of ^. It follows that pi ^ pc for some
cocycle 0 =(= c C H^F^/F, ^(5C~1))- The hypotheses on p|^ ensure that c is an admissible
cocycle. Thus after possibly replacing pi by a conjugate we may assume that pi is a
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deformation oftype-^, where ̂  = (^, Z, c, 0). Clearly pi satisfies the hypotheses of
the Main Theorem. The conclusion of Theorem A will thus follow from that of the
Main Theorem if we exhibit an extension L/F of totally real fields that (i) has solvable
Galois closure over F, (ii) has even degree over Q, (iii) is permissible for ^", and (iv)
is such that (L, S^ ̂  is a good pair. We will construct such an L.

Let E/F be any even extension that is permissible for S^ and is such that E/Q
is abelian, each place v\p of F splits in E, and if w is a place of F at which p, is
ramified and %|^ is unramified then %|D^, = 1 for each place w'\w of E. It is easy to
find such fields: take for example, E = F • E' where E' is a real cyclic extension of Q of
sufficiently divisible degree in which p splits completely and all primes q =(= p divisible
by a place in Z are inert. Choose an odd rational prime i such that £ \ #kx and t
is not divisible by any of the places in Z. For each positive integer n let E^ be the
cyclotomic Z/^-extension of E. It is easily checked that E^ is permissible for ^r. Let
£„ be the set of places of E^ dividing those in Z, and let S^n be the set of places of
E^ dividing p. Let ^ denote the j&-rank of the x^-isotypical piece of the j&-part of the
class group of E^(%) and let p^ denote the order of the j&-part of the class group of
E^. From the theory of cyclotomic extensions we know that there exist integers s and
t such that

(4.12) #Z, = s and #S^n = t for n» 0.

Similarly, it follows from [Wa] that there exist r and c such that

(4.13) Cn = c and ^ = r for n S> 0.

As E^/F is a Galois extension, we also have that

(4.14) degE^/Q^r^ V 'v\p.

Let p^ be the number of p-th power roots of unity in E^(^), L a primitive p-th root
of unity As the degree of E^/E is a power of i, there is an integer e such that

(4.15) en=e \/n.

For each n ^ 1 choose a set Sn of On + c^ + 1 finite places of E^ disjoint from Z^
and such that

(4.16) • ^+cra+l | (Nm(^) - 1) V w C S,
• X(FrobJ = 1 V w C Sn
• there exists an abelian ^-extension L^/E^ of degree at most j^2^^

unramified away from S^ and such that the subgroup of Gal(L^/E^)
generated by {1^ : w G Sn} is isomorphic to {Z/p)6^6^.

Note that L^ is necessarily ramified at each place in S^. The existence of such a set
S^ follows easily from Glass Field Theory.
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Let E^ C H^ C L^ be the maximal unramified subextension of L^. It follows that

L(L,, -l.xo)-1)-]!1^ -l^o)"^)

where (|) runs over the characters of Gal(L^/H^ ^ {Z/p)^^1. Let j^" be the number
of j&-th power roots of unity in H^(^). Note that £n ^ ^ + ^- It follows from well-
known congruences for j^-adic L-functions that if^co"1 =|= 1 then L(H^, — l.^co"1^) G
Z^co"1^] for all (|) and ifxco"1 = 1 then L(H^, — 1, ^oo"1^) € Z^[(|)] for (|) non-trivial
and /"Z(H,, - l.XO)-1) € Z ,̂ (cf. [Go], [D-R], or [Se]). Here, for any character
6, Z^,[6] denotes the ring obtained by adjoining the values of 6 to Z^,. We also have by
our choice of S^ that if (|) is non-trivial and if n^ is a uniformizer of Z^^co"1^] then

L(H,, - 1, xco-^) = L(H,, - 1, xco-1) Y[ (1 - xco-^(FrobJNm(^))
wes^}

=. 0 mod TC()) ,

where S^((|)) is the set of places of H^ at which (|) is ramified. Combining this with the
earlier expression for L(L^, — l,%co~1) we obtain that L(L^, — l^co"1) G Z^^co"1]
and L(L^, — 1, XO)"1) ^ Omod^, ^ a uniformizer of Z^^O)"1]. We have thus shown
that

(4.17) L^L,, -l^e^V^.

Since E^ is permissible for ^, the field L^ is as well. Moreover, it is a simple
exercise in ^-groups to show that

dim,H^(L,, k) ^ #Gal(L,/E,) • dim,H^(L,, kf^l^
(4.18) ^ #Gal (L,/E,). dim, Hz,us.(E., K)

^ p^2^ (rn +,,+,,+ 1).

Now choose no so large that

(4.19)
1^/2 > 2 + 8 ( ^ + 2 c + l ( J + r + ^ + ^ + 1))

r0 > ^ ( 2 + ^ + 2 c + l ( ^ + 7 ( J + r + ^ + ^ + 1)))

and such that the equalities in (4.12) and (4.13) hold.
Let L = L^ . By construction the Galois closure ofL/F is solvable and the degree

ofL is even. As noted above, L is permissible for ̂ . It remains to verify that (L, Q^^)
is a good pair. For this let d^ be the degree of L. By construction d^ ^ ^°. Also, by
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[Wal], §L ^ 4. It follows that

(4.20)
4^SL+^°/2 >2+8(^ + 2 c + l ( J+^+k+ l + r ) ) + 5 ^

> 2 + 61. + S(#ZL + dim^H^(L, A:)),

the last inequality following from (4.12), (4.13), (4.15), and (4.18). Suppose that v is a
place of L dividing p. Let dy be the degree of Ly. The number of such places v is at
most p^2^ t, so it follows from (4.14) and (4.19) that

4 ^ ^°A > 2 ̂ j^2^^ 7 • (^+2'+1(J+ r+ ^+ k+ 1))
> 2 +^+2^+ 7(#EL + dim^H^(L, A;)).

That (L, ̂ L) is good now follows from this, from (4.17) and (4.20), and from the
choice of E. D

Proof of Theorem B. — Let % = Xi/Xz- ^ follows from base change that it suffices
to prove the theorem with F replaced by the maximal totally real subfield F'̂  of F(%).
By the hypotheses in the theorem %|D ^ 1 for each place v\p of F4', and therefore we
may assume that % is quadratic.

Put pi = p ® 5C2" . Let S be the set of finite places of F at which pi is ramified
together with those dividing p. As in the proof of Theorem A, there exists a finite
extension K of Q ,̂ with integer ring ^ such that, for a suitable choice of basis, pi
takes values in GL^(^) and is a deformation of type-J^ for some S^ = (^, Z, c, 0).
The conclusion of the theorem will follow from the Main Theorem if we can find an
extension L/F that (i) has solvable Galois closure over F, (ii) has even degree over Q,
(iii) is permissible for ̂ , and (vi) is such that (L, S^ \^) is a good pair.

Arguing as in the proof of Theorem A shows that we can find a solvable
permissible extension E/F that has even degree over Q and is such that

(4.21) • L^,(E, - 1, %co) G ^ and is not a unit,
• if pc|i^ =|= 1 and w\p, then either %|i^ =|= 1 or %|^ = 1, for w a place of E.

Let 2V be the primes of E above those in S.
We now construct a solvable permissible extension L of E such that (L, ̂ L) is

good. By Hypothesis H there is a totally imaginary quadratic character \y over E such
that

• if w G S' and w\p then \y is unramified at w and %v|D ^ I?
• if v\p and %|i^ ^ 1 then \|/ is unramified at v and \|/(Froby) =|= 1,
• if v\p and %|i = 1 then V)/ is ramified at y, and
• the j^-rank of the relative class group of E(\(/)/E is at most (;(£)21-8deg(E/QJ.

Let Li be the splitting field of the character ̂  over E. This is a totally real
quadratic extension of E and clearly permissible for ^. Let Zi be the set of places
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of Li above those in 2/. It follows from the choice of \|/ that #Ei = #£'. It is also
relatively easy to see that

dim, H^ (Li, K) ^ dim,H^(E, k) + ̂ -^(E/QJ + #Z'.

Proceeding inductively, one constructs in the same manner for each n > 1 a totally
real quadratic extension L^ ofL^_i such that

(4.22) • Ln is permissible,
• #Ln = #S', where Z^ is the set of places of Ln over those in 2V,
• dim,H^(L,) < dim,Hp(E, k) + ,(e) E?=i 2^(l-£) deg(E/QJ + #S.

Now choose no so large that

(4.23) 2"°-1 > 2 + 17 • #Z' + 8 • dim, H^(E, k) + ̂ ^Xi-^ ̂ g (E/Q^

Put L = L^ and EL = E^. Let 4 be the degree of L over Q. By [Wal] SL ^ d-, so by
(4.22) and (4.23) we have that

^S^-o-^E/Q)
> SL + 2 + 9 • #ZL + 8 • dim^HsJL, A;).

If v is any place of L dividing p, then ^ = deg(L,/Q^,) is at least 2'20. It follows from
(4.22) and (4.23) that

(4.25) d, > 2 + 9 • #SL + 8 • dim, HzJL, K).

Since L has even degree by construction, combining (4.25) with (4.24) and (4.21) shows
that (L, ̂ L) is good. D

5. A formal patching argument

In the next four sections we give the proof of property (PI) (see Proposition 8.4).
These sections do not make use of any results from §4.

In this section we will describe a formal patching argument which is a variant on
the patching argument in [TW] and its refinement in [D2]. The extra complexity in
our case is caused by the fact that we are considering the localizations of deformation
rings and Hecke rings and not the original rings themselves. In particular the residue
fields are not finite. We will, in section §7, apply our patching argument to localizations
of deformation rings (in contrast to [TW] where it is applied to Hecke rings), but in
this section we will just axiomatize what is assumed (and later proved) about these
rings and consider only the formal aspects of the argument.

Let A: be a finite field of characteristic p and let A = k^T^. Let K be the field of
fractions of A. Let 3S = {N} be a sequence of strictly increasing odd integers together
with zero. Let n be a fixed positive integer.
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We introduce rings AN, BN (for each N € 3§} given by

AN = A^,...,s^ /(.N+1,..,^+1), Ao = A

BN^Ap,,..,^/^^...,^2), Bo=A.

There is a homomorphism BN —> AN given by 4 i—> (1 + s,) + (1 + ^•)~1 — 2 which we
use to identify BN as a subring of AN. We assume that we are given a ring R^ for
each N € ̂  of the form

(5.1) R^=A^,..,^]]/a^

with m independent of N. Furthermore we assume that R^ has the following
properties:

(5.2) (i) R^ is finite and free as an A-module,
(ii) a^C^,..,^),

(iii) 3 a surjective map R^ -^ R^ of A-algebras,
(iv) R^ is a BN-algebra for N > 0.

Now letting p^ be the prime of R^ corresponding to (^i,...,^) (which we
usually abbreviate to p if the N is clear from the context) we assume two further (and
less formal) properties of R^:

(5.3) (i) 3 d{0) > 0 such that p^ = 0 in R^,
(ii)p(N)/(p(N))2^^©Tor^,

where the free summand A" is spanned by x^...,Xn and Tor.̂  is a finite group whose
order is bounded independent of N.

For each odd 0 ^ a ^ N together with zero we assume given a ring R^ which
has the following properties:

(5.4) (i) R^- is finite and free as an A-module,
(ii) R^R^Ro^R^,

(iii) there are surjective maps of BN-algebras

p(N) -n(N) p(N) p(N)
-KO «- -KI «- -Kg «- i<^ ...,

(iv) R^ is a B^-algebra (compatible with BN -^ B^) such that if a > 1, then

(R^ 0A K)/(^,..., ̂ ) c. R^ ̂  K,

(v) R^ ®A K is an A^ ®A K-algebra satisfying (via the map in (iii))

Rr®AK/(^..,^RoN)®AK.
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Letting p^ denote the prime corresponding to (^i,...,^) (which we again write
as p if a and N are clear from the context) we assume two further properties:

(5.5) (i) 3 d{a) > 0 independent ofN such that p^ = 0 in R^,

(i^rAP^^A-eTor^^

where the free summand A71 is spanned by x\y ...,Xn and Tor/^ . is a finite group whose
order is bounded independent of N and a.

Associated to the rings R^ are certain subrings R^ (of "traces55 in the
application) which are assumed to satisfy the following conditions. First we assume
given an A-subalgebra R^ C R^ satisfying

(5.6) (i) R^ = A [^i, ...,^]]/b^ (same m as in (5.1)) where b^ C (^ ..,̂ ),
(ii) R11^ is a BN-algebra for N > 0 compatible with the algebra structure on R^.

Setting q^ = p^ HR^ (thus the prime corresponding to (y\, ...,J^)) we assume
in addition the property

(5.7) coker : q^Aq^)2 —> p^AP^)2 has order bounded independent ofN.

For 0 ^ a ^ N, a odd or zero, we set

R:̂  = im {R"^ -^ R^}.

Observe that R^ inherits a B^-algebra structure from R^. Then we deduce from
(5.7) that

coke^qrAq^)2 -^ ̂ /^f} has order bounded

independent ofN and a, where q^ = p^ H R^.

Associated to the rings we have described we will assume given a set of modules
as follows. First we assume given an integer r, independent of N. Then we assume we
are given M^, a finite R^ -module, satisfying the hypotheses that

(5.9) (i) M^ is a free A-module of rank equal to the rank of A^,
(ii) M^ is an AN-module compatible with the BN-structure via R^,

(iii) there is a map M^ —> M^ of R^-modules.
For 0 ^ a ^ N (a odd or a = 0) we assume that we are given a R^ -module quotient
of M^ denoted M^ satisfying

(5.10) (i) M^° is a free A-module of rank equal to the rank of A[,
(ii) M^ = M^\ M^ C M^ and there exists some ^ G R^ independent of N,

ord^modq^) 7^ 0, such that ^ • M^ C M^,

(iii) there are surjective maps of R^ -modules M^ <^ M^ <^ M^...,
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(iv) M^ is an R^-module (compatible with the R^-structure),

(v) M^ is an A^-module (compatible with the B^-structure induced in (iv)) in
such a way that the maps in (iii) are compatible with Ao «- Ai ^- Ag...,
and the actions of R^ and A^ commute on M^,

(vi) M^ 0A K is a free A, ®A K-module and M^ 0A K/(JI, .... Sn) ̂  M^ ®A K.

Furthermore, we assume there exists ^(N) e R1^ such that

(5.11) (i) ̂  annihilates ker{M^/(Ji,.., Sn) - M^},
(ii) ord^^mod q^) = t < oo with t independent ofN.

We now derive some simple properties of the above rings and modules.

Lemma 5.1. — rank^Rf^ ^ (,(0) where £{d) depends only on a.

Proof. — This follows immediately from (5.5i). D

Lemma 5.2. — There exists an E(a) independent ofN such that

rpE(fl)T^(N) ^ ^tr(N)
—a -= ~^a

In particular R^ 0A K = R^ 0A K.

Proof. — Since p^ = 0 in R^ by (5.5) it follows that it is enough to check that
cokerO^, where 0^ is the natural map

^=(qr)7(^2rl—(pCT)7(prrl,
is finite and bounded independent of N for r < d(a). For r = 1 this is given by (5.8).
A similar bound follows for r = 2 by picking generators for im(Oi), lifting them to
elements, say ^i,...,^, in (q^Aq^)2 and considering the map

{€/{Wr — (W^)2 n(pH3), (.i,...,̂ ) ̂  ̂ -
which is surjective. The property for r = 2 can now be deduced from the property for
r = 1, and we proceed by induction up to r = d(a) — 1. D

From this lemma we deduce immediately that for any c the kernel and cokernel of

(5.12) R^/T — R^/T

is annihilated by T^.
Now let t, ̂ N) be as in (5.11) and let ^ be as in (5.10ii). Let d^ = ord^modq^).
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Lemma 5.3. — -pW+ î) annihilates both the kernel and the cokernel of the map
M^/ fP, s,, ...̂ ) -^ M^/^for any c.

Proof — Let ? be a lift of ^ to R^. By (5.11) and the definition of d^
^(N) • ̂  - uT^ G q^ for some unit u G A><. So

T î =^-W+., .eq^.

Hence T^^ = ^ • ̂  + ̂  for some ^ € R^. By (5.5) ^fl) = 0, so the result
follows from the defining properties of ^N) and ^. D

Next we introduce level structures which we will use to make a patching
argument similar to the one in [TW]. A level-(^, c) structure J(N, a, c) is a collection
of data comprising

(i) B.-algebras, R^ = R^/T-, R^ = R^/TS

(ii) an A,-module M^ = M^/T that is also an R^-module,
(iii) a map of B^-algebras

-n tr(N) __^ -p (N)
Kfl,, ——^^S,^

(iv) a map of R^\ -modules

M^,...,^—.M(°)/T

compatible with the actions of Aa and A via A^ -^ A,
(v) elements {^i,...,^} of R^ such that R^/(^i, ...,^) ̂  A,

(vi) elements {^..,j^} of R^ such that R^/^i, ..,̂ ) ̂  A.

Let cSfo = ̂  = {N} as at the beginning of the section. Let ^i(O) = c^o and
define S^\(c) C ^i(c— 1) inductively as follows. We require that S^\[c) should be an
infinite strictly increasing subsequence of integers from SS\(c — 1) with the property
thatJ(N', \,c) ^(N", 1,6:) for N', N" € S\(c). The equality here signifies that the
J(N, a, ^-structures for N = N', N" can be identified (non-canonically). Since the total
number of such non identifiable structures for fixed a and c is finite a choice of 3S\ {c)
can be made. Then define

^?i = {N, : N, G ^i(z)}

again with the N^ strictly increasing. Finally we can define S^a for an odd a > 13
inductively by =S?a(0) = -S^a-2 ^d defining S^a(f) inductively in the same manner as
S,(c\ We set

r>tr ,. -D^W t> T -D^ A T T A/T^R, = lim R,;/, R,= lun R,, , M, = lun M,,.
N^. N.^ N,^



84 C.M. SKINNER, AJ. WILES

Lemma 5.4.
a) R1; ®A K = R, ®A K, Ro ®A K = RW ®A K.
^ Ra 0A K ^ <^ quotient ofV^x\, ...̂ ]].
^ M^ (g)A K zj aj9^ A^ 0A K-module of rank r and (M^ ®A K) / (Ji,.... Sn) = M^ 0A K.

Pwo/
a) By Lemma 5.2 for any <: we have natural maps of A-modules

^tr(N,) (N,) tr(N,)
K^ c ——> K^, . ——^ ^a, .

whose composite is multiplication by T^ with E(a) independent of c. Taking projective
limits and tensoring with K gives the isomorphism.

b) By construction there are elements {^i,...,^} ofR^ such that Ra/(^i, ...,^m) ^
(N)

A. Let pa = (^i?...5^m) c Rfl. Letting p^ ^ denote the ideal generated by {^i,...,^} in
(N )

R^ J we see easily that

lin,̂ ;'̂ ., lim,̂ /̂ ;')^ .̂

Then by (5.5) we deduce that pa/pl ^ A" © T, where T is a finite group and
x\^...^Xn span the free summand. Hence

(p^A^Ap^AK)2^^

by (5.5) which ensures that R a , p a , p ^ are all finite A-modules. Part b) follows by
Nakayama's lemma.

c) By Lemma 5.3,

(5.13) (M, 0A K)/(,i,.., .,) ̂  M^ (g)A K.

By construction,

CN ^
dim^(M, 0A K) ^ rank^(M^ c))

for large enough <; and N, € J^. By (5.10i) the right-hand side has rank equal to
rankA(A^). But r is the K-rank of the right-hand side of (5.13). The result follows. D

Lemma 5.5. — For odd a > \, there are surjections
a) Ra -̂  Pa-2 of ̂ ^\y ...yX^-algebras and ^a-^lg^ras.
b) R'J ^ R^_2 ofA^, ...^^-algebras and ^-algebras.
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c) Ma -^ M^_2 of ̂ -algebras compatible with b) and of Aa-algebras. Here the B^ action
via Rj and Aa are the same, and the R^ action commutes with the Aa action.

The same holds for a = 1 with a— 2 replaced by 0.

Proof. — We have that ^?,_2 = {N,} and ̂  = {NyJ C S,_^ Note that^ ^ i.
By our choice of S^a ^d ^a-^-,

(N;.) (N ) /N,
R ^ p 7? — -n^ ^

<z, z ^ ̂ -2, z - -Ka-2, z

whence taking limits yields R^ -^ Ra-2. The same works also for R^ and M^. D

Now we set, taking limits over odd integers a,

R^ = R, (g)A K = R^ 0A K, M; = M, ®A K,

R^=limR^ M^=limM^.
a a

Thus M^ is an R^-module and M^ is an Roo-module.

Lemma 5.6.
(i)R^=K[[^,..,^]].

(ii) Moo is a free R^-module.

Proof. — By Lemma 5.4 ^ there is a map Kpi,...,^]]' ^ M^ which is seen
to be an isomorphism. Consequently Moo is also a free K pi,..., ̂ -module. Thus
Kpi,..., t^ ̂  Roe/Ann?^ (Moo). On the other hand there is a surjection K[[^i, ...,^]] -^
Roo. By Krull's dimension theorem we deduce part (i). (Note that Roe/Ann^ (Moo) is
a finite K pi,..., ̂ -module.) Then part (ii) follows from the Auslander-Buchsbaum
Theorem ([Mat, Theorem 19.1]) since depthi^(Moo) ^ n ({^i,...,^} is a regular Roe-
sequence for Moo). D

Proposition 5.7. — T^N » 1 ̂

dim^R^ 0A K) ^ 2" dim^R^ 0A K).

Proof. — Fix a projection K[[^i, ...,^]] -^ R^° 0A K. Choose maps

K[^...,0 -^K[[4 ...,<]] —.K[[^i,...,^]]

such that ^ i—> (1 + ^) + (1 + j^)-1 - 2 and such that the images of K[[^, ....YJ and
Kpi, ...5 Q in R^ ®A K are just those of AN ®A K. and BN ®A K respectively in the
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sense that the images of ^ and ^ are the same, and so are the images of ^ and s,. It
follows from (5.10 vi) that BN ®A K —> R^ ®A K is injective, for by (5.10) the action
of BN ®A K on M^ ®A K factors through its image in R^ 0A K. So if

-+- ^ ̂ (dim^ 0A K/(^.., 0)- = ^-1 dim^ 0A K)-
2

then the hypotheses of Lemma 4.1 of [DRS] hold and using (5.4iv) we get that

(5.14) K[[^,..,^]]/(^,...,^)^R(N)(g)AK.

Applying the Auslander-Buchsbaum Theorem again we find that K[[^i, ...,^]] is a free
KH/I? • • • 5 0-module of some rank d. Applying the same theorem yet again we find that
K[[^i,...,^]] is a free K[/p ...,4]] -module of rank d/2\ It follows that

rf=2?^dim^K[[^,..,^]]/(^,..,^))

^^dim^R^^K/^,..,^))

^ydim^R^^K),

the last inequality by (5.4v). Combined with (5.14) this proves the proposition. D

Proposition 5.8. — M^ ®A K ̂  (R(0) 0A K)^ ^A^ ^ = rk^(M^).

Proof. — We set R := Ro,/(^i,..., 4) and

M := M^/(^,..,^) = M^/(^,..,^).

Thus M is a free R-module of rank e. Now R ^> R^ since the 4's are zero in R'̂  so

(5.15) dim^ R ^ dim^ R\ ̂  dim^(R(lN) 0A K),

for any sufficiently large N G ^i. (More precisely if T annihHates the A-torsion
submodule of R[ we can take N ^ N,+i G c5f(z+ 1).)

Now let |iis(X) for any ring S and S-module X denote the minimum number of
generators of X as an S-module. Let

^^^(M^AK).

Then we have the inequality

€ '= ̂ R^oc) = Hp(M) ^ ^(M/^i, ...,j,)) ^ ,1.

Also we have the inequality

(5.16) 2^i dim^(R^ 0A K) ^ 2' dim^^ ®A K).
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Now as remarked at the beginning of the proof of Lemma 5.6, Moo is a free
Kpi,..., ̂ -module of rank r, where r = dinijJM^ ®A K), whence

(5.17) T dim^^ 0A K) = dim^(M) = ^ dim^(R).

Combining the inequalities (5.15), (5.16), (5.17) with Proposition 5.7 gives e\ ^ e. Since
also e^ e\ we have equality and all the inequalities just cited are equalities. In particular

e, = e, edim^R^ ̂  K) = dim^M^ 0A K).

It follows that M^ ®A K ̂  (R^ ®A K)' as claimed. D

Proposition 5.9. — R^ 0A K ^ a complete intersection as a K-algebra.

Proof — We recall what we have proved so far. By Lemma 5.6,

(5.18) Moo ^ R^ and Roo is a power series ring over K of dimension n.

By construction we have elements {ji,...,^} acting on Moo, and

(5.19) ^i,..,^CEnd^(Moo).

By Lemma 5.4 c), we have

(5.20) Moo /(s,,..., ̂ )Moo ^ M^ 0A K.

The action of Roo on M^ ®A K is via R^ 0A K and

(5.21) M^AKc^R^AKy

by Proposition 5.8.
Now let a = ker : Roo —> R^ 0A K. Let

N=S^-Moo CMoo.

Then

Moo/N^M^^AK^R^/a^

by (5.20) and (5.21). Since Moo ^ Roo it follows that N c± a6 as Roe-modules. (Consider
the map (poo ^ Moo ^ Roo °f (5.18). Then the above isomorphism easily implies that
a6 ^ (poo(N).)

Let w\^,^We be an Roo-basis of Moo. Then N is generated as an Roe-module
by the set {siWj : 1 ^ i ^ n, 1 ^ j ^ e}. In particular a set of minimal generators
has cardinality ^ en. Let {^i,...,^} be a minimal set of generators of a. Then
{xiWj : 1 ^ i < ^, 1 ^ '̂ ^ ^} is a minimal set of generators of aMoo ^ a^ c^ N. It
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follows that et ^ en, whence t < n. However as R^ ®A K has dimension zero it follows
that t = n and that R^ ®A K is a complete intersection. D

Remark 5.10. — The circuitous route to this proposition via a counting argument
is forced on us by the lack of a natural K pi, ...,^]]-algebra structure on R^o. Only
the elements {^i,...,^} are naturally defined in Roo. The structure assumed in (5.4v) is
an artifice which is not assumed to be related to the action of Aa 0A K on M^ 0A K,
except for the compatibility with the subring B^ 0A K.

6. Estimates of cohomology groups

In this section we consider a representation

(6.1) p : Gx = Gal(Fz/F) —^ GL^A)

where A c^ A:pJ]. Here we are using the notation and assumptions of §2.1 so that, in
particular, F is a totally real field. We let K be the field of fractions of A, and we
recall that if p is ramified at w \ p then we distinguish the following possibilities for
Piv

type A p(8)K|i^ ^ ( 1 ^), * ^ 0

type B p (g) K|i^ ^ ( 1 ^ \ \y^ non-trivial of finite order.

Throughout this section we make the following assumptions on p:

(6.2) (i) p®K is irreducible and of type A, type B or unramified at each prime w\p,
(ii) p := pmodX = pc tor some c as in (2.1),

(iii) Z contains the primes dividing p and all primes at which p is ramified,
(iv) p is of type A or type B precisely where p is,
(v) detp = ̂ , with % as in §2.1,

(vi) p|D, ^ (/1 5^) with %i/^ of infinite order for each v\p.

Lemma 6.1. — The G^\^/Y}-module W = 3id°p(g)^K is irreducible. In particular
p 0 K is not "dihedral" (i.e., is not induced from a character over a quadratic extension).

Proof. — By condition (vi) we see that there is an element <J G Dy C G^ such
that (Xi/^X0) has infinite order. Here we may choose v dividing p such that %|D
is non-trivial by condition (ii). It follows from the existence of G and the self-duality
W ^ Hom^(W, K) that any invariant subspace of W has a complement. So if W
is reducible then either W c± Yi © ¥3 with ¥3 of dimension 2 and irreducible, or
W ̂  YI ©Yg ©Ys. The self-duality also shows that in the former case Yi is acted on
by Gs via a quadratic character, possibly trivial, and in the second case that there is
also a unique subspace, Yi say, on which GE acts via a quadratic character.
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Now let ^ be a complex conjugation and pick a basis for p such that
p(^) = ( -i )• Suppose first that ^ acts trivially on Yi. Then we may identify

Yi with ( ( - a }\ C M2(K) and we see that imp C {(* J, ( *)) C GL^K).

In particular, either imp is abelian, which contradicts assumption (i), or imp has a
subgroup H of index 2 for which the action is abelian. In the latter case, H acts via
two characters \y and \y^ (\y^(a) = ̂ (T^cn;)) for any T^EH. Thus p = Ind^\|/.

Now suppose that ^ acts non-trivially on Yi. This time Yi C { ( ^ j}^ M^K).

An easy calculation shows that if a = 1 on Yi then p(<7) = ( ̂  ^ ) with a^ = d^.
Using that Hi = { < 7 : G = 1 on Yi } is a group we check that p(Hi) is abelian. Thus
just as above, p = Ind^y for some character \|/.

Now consider p restricted to Dy. Then the quadratic field associated to p (i.e. the
fixed field of H or Hi in the two cases) is not split at v as otherwise p)^ = VO^Dy
and this contradicts assumption (vi). So letting Hy be H D Dy or Hi D Dy in the two
cases, we see that PJD = Ind^^y where \|/y = \|/[D,. Again this contradicts assumption
(vi) since if the ratio of the two characters on Hy had infinite order then p|^ would
be irreducible. D

Now let F' be the splitting field of det p adjoin all p-power roots of unity, and
let F'̂  be the subfield of F' fixed by the complex conjugation ^.

Lemma 6.2. — The restriction of p ® K to Ga^Fs/F"^) is neither reducible nor dihedral.

Proof. — Let V be the representation space for p (g) K. Suppose first that p ® K
restricted to Ga^F^/F^ has an invariant subspace Vo. Then since Ga^F^/F^ is normal
in GS we see that for any a € G^, aVo is also invariant. As ^\ acts by =bl on Vo and
by the opposite sign on V/Vo there are at most two invariant subspaces. So either Vo
is invariant by Gs or p ® K is dihedral, but in each case this contradicts Lemma 6.1.

Suppose next that p (g) K restricted to Ga^Fs/F"^ is dihedral. Then there is a
subgroup H C Ga^F^/F^ of index 2 which has two fixed spaces. From the form of pc
and the definition of F' we see that the splitting field of p 0 K generates an extension
of F7 which is pro-/?, whence H = Ga^F^/F'). So H acts on the two fixed spaces via a
character \y and its inverse V)/"1 (and the two spaces are unique if \|/ =)= 1 as \|/ cannot
be of order 2). So H acts on W via the characters { 1, \|/2, V|/~2 }. Either V|/ is trivial,
in which case G^ acts on W via the abelian group Gal(F'/F), or the subspace of W
corresponding to the character 1 is invariant under Gs as Gal(Fs/F') < Gi:. In either
case we get a contradiction to Lemma 6.1. D



90 C.M. SKINNER, AJ. WILES

Lemma 6.3.
(i) There exists a € Gal(Fi:/F') such that the eigenvalues of p(a) have infinite order and are

in A.

(ii) There exists a e Ga /̂F^Ga^Fs/F') such that the eigenvalues ofp(a) have infinite
order and are in A.

Proof. — First we prove parts (i) and (ii) without requiring that the eigenvalues
are in A.

(i) If <J € Ga^F^/F') has eigenvalues of finite order then the eigenvalues must
be 1 as the image of Ga^F^/F') is a pro-j& group and K has characteristic p. Assume
no a as in the Lemma exists. Pick a r e Ga^F^/F') such that p(r) =)= 1, which can be
done as p is not abelian. Pick a basis for p (g) K such that p(r) == ( ^ \ \ with a =(= 0.

Then for any a G Ga^Fz/FQ we have trace p(GT) = 2, so if p((?) = (^ ^), then

OQ + acy + da = 2 = aa + dy.

It follows that Ca = 0 for all a C Gal^/F'), contradicting Lemma 6.2. Thus there
exists a a C Ga^F^/F') such that p(o) has eigenvalues of infinite order.

(ii) Assume otherwise. Then as in part (i), we see that there are only finitely
many possibilities for the trace of p(a) with a G S = Ga^Fs/F^Ga^F^/F'). Fix a
T G Ga^F^/F') such that p(r) has eigenvalues of infinite order. Choose a basis for p(g)K
such that (p(g)K)(r)= (p p-i). For any a G S, if p(a) = (^ ^), then we have

trace p(T'a) = ̂ a^ + P-X.

Since there are supposed to be only finitely many choices for the trace, a^ = dy = 0 for
all o C S. It follows easily that p (g) K|Q^/F+) is dihedral, contradicting Lemma 6.2.

To complete the proof of the lemma, note that in (ii) the eigenvalues will
necessarily be in A. This follows from HensePs lemma using that the two eigenvalues
are distinct modulo ^. Then part (i) follows also by taking the square of any a obtained
in part (ii). D

Lemma 6.4. — IfG is a normal subgroup of Ga^F /̂F^ of finite index then p 0KJG is
irreducible.

Proof. — Suppose that V is the representation space for p (g) K| / + and
Vo is a subspace invariant by G. By Lemma 6.3(ii) there exists an element of G
whose eigenvalues are P, P~1 with P of infinite order. Arguing as in Lemma 6.2, we
deduce that either Vo is invariant under Ga^F^/F^ or the representation is dihedral,
contradicting Lemma 6.2. D
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Let J^= ad°p = {/ G adp : trace / = 0 } where as usual we identify adp with
Hom^(^ , ̂ ), ̂  being the representation space for p (more precisely ̂  is a free
A-module of rank 2). Let J^ = J^/^.

Lemma 6.5. — There exists an integer N3 with the following property. If M C ̂  is a
submodulefor some n and ^m =f= 0 for some a > N3 and m ̂  M, then X^"^^ c M. The
same holds if M is a G-submodule of ̂  for G a normal subgroup (/Ga^F^/F^ of finite index,
N3 depending only on G.

Proof. — Suppose x G ad°p - ?lad°p. Then by Lemma 6.4, A[G]x D ;Vad°p for
some minimal r = r{x). Define a function/: ad°p - ?lad°p —> Z byf{x) = r{x). Then/
is continuous and hence im/is finite. Let N3 be the greatest value of im/

Now J^ = ad°p/^ and we pick s maximal such that K'y = m for somej/ € ̂ .
So a + s < n. By the definition of N3 we see that ^N2^ C p(G]y, whence

r-^2^ C ̂ +N2^ C p(G)^ C M

which completes the proof. D

Remark 6.6. — When combined with Lemma 6.3 this shows in particular that
#(^)° is bounded independent of n.

As above, let ^ be the representation space for p. This is a free A-module
of rank 2 having for each v\p a filtration 0 C ^i^ C ̂  such that %^, is a free
A-module on which Dy acts via a character reducing to % modulo ^. The quotient
^2,» = ^/^i,y is a free A-module on which Dy acts via a character reducing to
1 modulo K. If p (g) K is type A at w, then there is a filtration 0 C %^ C %^ such
that both ̂  ^ and the quotient %^ = ̂  /^w are free A-modules on which L acts
trivially If p (g) K is type B at w, then ^ decomposes as ̂  = %^ © ̂  ̂  with 1̂
acting on the first factor via % and acting trivially on the second factor. Also as above,
let ̂  {/ G ad p : trace (/) = 0 }. Let ^ord = {/ e ̂ : f(W ) C ̂  }. Similarly,
if p (g) K is type A or type B at w, then let ̂  = {/ C ̂ : /(%^) C ̂  ^ }. We write
J^, ̂ ord, and ̂  for ^/^, ̂ ord/^, and ^&;/^, respectively Let

H^^^H1^,^/^0^)

and let

^ l y x ^ ^ H1^, J^/J^) if p (g) K is type A or type B at w,
[0 otherwise.
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For each w e Z, put

L,(J^) = ker{ H^D,, j^) —— H,(J^) }.

We define a Selmer group for y^i by

Hz(^) = { a G H^Fz/F, j^) : res^a C L,(^) for each w € 2;}.

For each place ^ e Z, denote by L^,(J^) the orthogonal complement of L^(J^) under
local duality (so L^(^) C H^D,, ̂ (1))), and put

Hz(^) = { a C H^Fs/F, ̂ (1)) : res^x C L;(^) for each w C S}.

By the argument for [Wl, Proposition 1.6], which generalizes easily to the case of an
arbitrary totally real field F,

(6.3) #H£w=u^)^^w-
#H^(^,) »6Z

where

. .^^ = #H°(Fx/F, J^). (#H°(R, ̂ (1)))^
00( ' ~ # H ° ( F , / F , ^ ( 1 ) )

^^^ _#H°(D^^(1)).#L^)
'v "7 ftH1^,^)

We now estimate these factors. For two positive quantities B and C (possibly depending
on n and Z), we write B < G to mean that the ratio B/G is bounded independently
of n and the places in Z (it may however, depend on p and #E). Similarly, we write
B >: C to mean that max(B/C, C/B) < 1. A simple computation using our hypotheses
on p shows that

(6.4) U^^AAf^.

Almost by definition,

(6.5) h^n) = #H°(D,, J^(l)) if p 0 K is unramified at w.

Suppose that p (g) K is type A or type B at w. From the definition of L^(J^), it is
clear that H^, ̂ w)^ L^(J^). The order of the quotient L^^/H1^, J^') is
bounded by the order of K^, where^n •>

rlK, = ker{ H^L, j^) —— H^L, ^nl^n) }•
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The exact sequence

0 -^ JC ——— ^n ——> ̂  /̂ : ——^ 0

gives rise to an exact sequence

0 -^ ̂ 7 :̂ —^ W^T)1- ^ AA- —> H^L, ̂ ;) ̂  ̂ ;
^ A/^ —> K, —^ 0

if p ® K is type A at w, and

0 —. ̂ Iw ^ ( .̂/^T —— H^L, ̂ w) —. K. -^ 0

if p (g) K is type B at w. In the former case it follows that #K^ = #(^ /^^ ^ l^

and in the latter case it follows that ̂ ^ = ̂ (L, J^T" = #H°(D^, ̂ (1)) x 1.
It now follows from local duality that

(6.6) hj^n) x 1 if p 0 K is type A or type B at w.

It remains to estimate h^n) for v\p. To do so, consider the diagram

H^D,,^)
(p! ^¥

0 —. H^F, (^/^°;y) —. H^D, ̂ /^rd) —. H1^, ̂ /^ord).

Our hypothesis (vi) of (6.2) implies that #cok((p) x 1. It follows that

(6.7) #L,(J^) = #ker(\|/) = #H1(D^J^)
#im(\|/)

^ #H\D^ ̂  . ̂ ^^ (^/^ord)1-)
#im((p)

From the long exact cohomology sequence for 0 —> ̂ ord —^ ̂  —> J^/J^0^ —^ 0
and the fact that Dy has cohomological dimension two, one finds

#im(<p) = ^•(D.,̂ ,/̂ ).̂ ,̂̂ )
^(D,, ̂ OTd) • ftH^D,, ̂ /^ord)'

Substituting this into (6.7) yields

^H^D y0^}
(6.8) ^OT ̂  [ " ^J ̂  ̂ (A/^)-2^-^.

#(A/r)2[F-:^

Here, we have again used hypothesis (vi) of (6.2) (really its implication that x^1 ^ e).
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Now writing E = Zo U2V with { v\p} C £o, P ramified at each prime in £o\{ v\p },
and unramified at each prime in 2V and combining (6.3)-(6.6) and (6.8) yields

(6.9) #H^) x #H^). IJ #H°(D,, ̂ (1)).
weP

The exact sequence

0——^——j^-^ j ^——o

gives rise to the commutative diagram

0 0 0^ ^ . 1
HzG^n) ——— H^G^n) ——^ H£(^^_»)

1 1 . 1
0 ——> H^F^/F.^n) ——— H^/F,^) -^ H^Fs/F,^^-^)

^ ^ . 1eweso^n -^ C^eso11^^^) ——> CweZoHw^m) -—^ Owezo11^^^-^

whose last two rows are exact. Each M^ is a finite group such that #M^ >: 1. It is
apparent from the diagram that

(6.10) Hs(^)^ H^(^) and #Hz(J^) >, #H^)[r].

Similar considerations show that

(6.11) #H^) x #H^(^)[^].

We will combine the above computations with the following lemma to deduce
some results about "divisible ranks55 of various Selmer groups.

Lemma 6.7. — The groups Hs(J^) and H^(J^) are finite A-modules whose minimal
number of generators is bounded in terms of #E but independently of n.

Proof — This follows from (6.10) and (6.11). Note that as H^(^) is a submodule
of H^(^) it suffices to prove that the number of generators of H^ (J^) is bounded
independently of n. D

A refinement of this lemma using also (6.9) is the following result.

Lemma 6.8. — Forming limits with respect to the obvious maps

limH^(^) ^ (K/Ay © X and limH^(^) ^ (K/A)^ © X*,
" ~n

with r < oo and X and X* finite groups.
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The following lemma is an analogue of [Wl, Proposition 1.11] and it occupies
a similar place in the proof of the main result of this section.

Lemma 6.9. — Let E be the splitting field off), and let Eoo be the extension ofE obtained
by adjoining all p-th power roots of unity. There exists an integer N1 > 0 such that for each
n, H^/F, ̂ (1)) is annihilated by ^Nl.

Proof. — Let F+ and F' be as defined prior to Lemma 6.2. There is an exact
sequence

0 —^ H^/F, ̂ (l)0^-/^)) -^ H^/F, ̂ (1))(6.12)
-^H^/F^^l)).

The first term in this exact sequence is bounded independent of n by Remark 6.6.
Now consider the last term of the sequence (6.12). Let A = Ga^F'/F"^ ^ Z/2.

There are isomorphisms

(6.13) H^/F", ̂ (1)) ^ H^/F', ̂ (l))^1 ^ H^/F', ̂ A=-1,

the first by restriction and the second by the fact that ^(1) and J^ are iso-
morphic as Gal(E^/F')-modules. Note that Ga^Eoo/F^ and Gal(E^/F') project iso-
morphically onto subgroups ^ and H' of Gal(E/F), respectively In particular,
H^E^/F',^)^-1 = H^H',^)^-1, and an element of the latter corresponds to
an equivalence class of representations into GL^(A © eA/^) having trivial determinant
and reducing to p modulo £. Here A©eA/^ is given a ring structure by setting £2 = 0.
This correspondence is given by

a G H^H', ̂ ) <—> pa : H' —. GL^(A © eA/^), pa(a) = p(a)(l + ea(G)).

Put H = H^H', and define a map

( p : H — > H \ (p(o)= lim(G1^).
w—»-oo

Consider the open set HM = { a € H : trace (p(a)) ^ Omod^}. By Lemma 6.3(ii),
HM is non-empty if M is large. Fix such an M. We will show that the closure of <P(HM)
has positive measure (with respect to the Haar measure of H'). For each 72, write pn for
pmod^, and write H^, H^, and HM,^ for the respective images of H^, H', and HM
under p^. Being open, HM contains a translate of an open subgroup of H', so there
exists a constant C > 0 such that

4+~U

(6.14) —M^ ^ C for all n.
#H;
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Suppose h,H G HM are such that p,(A) ^ p,(AQ but (p(A) = (p^rnod^. It is not
hard to deduce that trace p^A) = trace p^'). With respect to a basis for pn such
that pn{h) = (p _p-i) , P.W = ^- l( f3 _p-i)^ for some g e GL^A/^) commuting

with p,((p(A)) = ( p-i) but not with ( 1 _A Therefore, given x C H^, we find that

(6.15) #{ h C HM, . : (p(A) = x} < ^AA™).

Let SM = <P(HM), and let SM,^ be the image of SM under p^. Combining (6.14) and
(6.15) shows that

#SM^^C^#{A/^Mrl>0,
#^'n

from which it follows that

SM = I^SM,^
?!

the closure of (P(HM), has positive measure.
Fix a G H^H', ̂ A=-1. For a € HM, trace pa((p(o)) = trace p((p(o)). As trace (•) iis

continuous, this equality holds for all s 6 S^. Fix a Go € SM having infinite order (this is

possible provided M is large enough). Choose a basis for p such that p((?o) = ( ^ n-i) .

Then pa(Go) = (p p-i) (1^ i £^) with ̂  = 0. Put (Xi = ^a. It follows that
Pai(^o) is diagonalizable with eigenvalues ? and P"1. Pick a basis for po^ such that

Pai(^o) = [ o-ij . As SM has positive measure, there must be some r > 0 such that
X^ = S^ H GQ "S^ also has positive measure. For any a C X,,

trace po^ (a) = trace p((J) and trace pai ((JQG) = trace p(GoG).

Write p(o) = (^ ^) and pa, (a) = (%^ %^). It follows that both (R2- - l)a(a^
and (P2' - l)<ai)(, are in A. Thus if 002 = A^ai, then ^ = ^2)0 and ^ = ^2)0 for
all a C X,.

There exists T C X, such that b^ ^ 0. If this were not so, then the image
of p|^+ would be triangular on a set of positive measure and also on the group
generated by the set. This is ruled out by Lemma 6.4. Let n^ = ord^(^). If 03 = r^,
then b{a^\ = b^(\ + e^) for some t. Rescaling the basis for po^, we can assume that
^3)r = ^T. Now put oc4 = r^g. As b^c{a^ = 1 - a(a^d(a^ = 1 - ̂  6 A, it follows
that ^(04)^ = 6-T. In particular, p(r) = Pa^)-

Now pick an integer s such that Y, = X, n T^X, has positive measure. As the
eigenvalues of p(r) have infinite order and p(r) is not triangular, p(r') is not triangular.
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In particular, b^s, c^s ^ 0. Moreover, i f a C Y,, then by considering pa^o) we see that

(6.16) a^ + b^sc(a^ = a^ G A and ^(04)0 + d^ = TO' G A.

Let y?2 = max(ord^),ord^)). Put 05 = ^a^ It foUows from (6.16) that for
o C Y,, 6(05)0 = ba and <<(X5)o = ^. In other words, p(o) = po^(o) for all o e Y,.
The same holds for all elements a in the subgroup G generated by Y,. This subgroup
has positive measure and hence has finite index. Choose a subgroup G' C G of finite
index that is normal in 1-T. Consider the exact sequence

0 —> H^H'/G', (^G/) -^ H^H', ̂ ) ̂ H^G', ̂ ).

We have shown that if a C H^H', J^—1, then res(a) e H^G',^) is annihilated
by ^^"i-^ By Remark 6.6 there is an integer N3 (depending on G') such that ^2
annihilates (^n)0''. Therefore,

^^^I^H^H', ̂ )A=-1 = 0.

Combining this with (6.12) and (6.13) yields the lemma. D
The next result, the principal result of this section, will enable us to control the

ranks of various "tangent spaces59 in the auxiliary deformation rings and Hecke rings
that appear in the proof of the fundamental isomorphism (see section §7).

Proposition 6.10. — Let a G Gal(Fs/F') be an element such that the eigenvalues of p(o)
are in A and have infinite order, as in Lemma 6.3(i). Then there exists an integer r = r(p) such that
for each m > 0 there are infinitely many sets Q^= {w\,.... Wr} such that

(i) Nm(^) = 1 mod^ for each i.
(ii) pp(Frob^) = pp(a)mod^w^or each i.

(iii) lim H^n) ̂  (K/A)- © X^
w

with ZQ == Zo U Q, #Xs^ < C(<j, r) < oo for some constant C(<7, r) depending only on a and r.
Moreover r is given by Lemma 6.8.

Proof. — If the eigenvalues of a are a and P then let V be the highest power of
X, dividing (a/P - 1). We fix a free, rank one quotient ̂  of ^(1) on which G acts
trivially We denote by ^ the projection ofj^(l) onto ̂ ^ = ̂  /V1.

Write

limH^OT^K/AyeX^
n

as in Lemma 6.8. Let / be the smallest integer such that V annihilates X^ . Let N1
be as in Lemma 6.9 and let N3 be as in Lemma 6.5 (for the group Ga^Fs/F"^)).
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As the natural map H^(J^) —> H^(^) for n' > n has kernel of order bounded
independent of n we can choose n ̂  m sufficiently large that

r

H^W^^A/^ex^

with ri > Ni + N3 + e +/ Let |>i] G H^(J^) be a cohomology class of exact order ̂
(where the r, are indexed arbitrarily) where c\ is a cocycle representing [^i]. Let E^
denote the field generated by the splitting field of p mod X/2 together with a primitive
j^-th root of unity Suppose the annihilator ofres([^i]) G H^F^/E^ J^(l)) is ;V1. Then
by Lemma 6.9 s\ ^ r\ — Ni.

The restriction res( [^i]) determines a homomorphism

y; e Hom(Gal(Fz/E,), ̂ (l))^/^.

Since ̂ i has order X,'1, im/i D ̂ ^(l) with 72 - a^ = s^ - N3 by Lemma 6.5. Let Mi
be the fixed field ofkery; and pick TI € Gal(Mi/E^) such that 7^(/i (Ti)) has order at
least ^1-N2. Let t^ = ji - N3. Put

^ fa [M, if ^ l~ l^l(G))+0
\ <^|Mi • ^i otherwise.

Then Kn{c\(g\)) has order > ^<1. We choose a prime w\ of F such that p is unramified
at w\ and Frob^ = ^i in Gal(Mi/F). By the choice of g^ Nm(^i) = Imod^. Moreover
the image of [^i] in H^F^, ̂ ,(1)) has order ^ ̂ .

Now suppose n' > n. Write H^(J^/) ^ ©(A/^) C X^. We may assume that

there is a cohomology class [c\] G H^(J^/) of exact order A/1 such that ^ml [c[] is
the image of [ci] in H^(J^/) for some m\ ^ ^ - r^. It follows that the order of
res^^GH^D^^l)) is at least ^-'. As ^ -e = n -Ni -N3 -e > 0 the order
of res( [^]) is at least ^i-^-^-^ ̂  Ei = £o U { ^i }. It then follows that

limH^^^K/Ar^X^
n7

with #Xs, ^ #X^ • #(AAN•+N2+<+-/).
Suppose that inductively we have picked primes Wi,...,Wj such that for E, =

£oU{wi , . . . ,w,}

Inn H^) ̂  (K/A)^' © X^.
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with

#x^. ^ #x^. ^ . ̂ AA^^^y.

We repeat the construction given for w^ and obtain a new prime i^+i. When we reach
j' = r we have

limH^(^) ̂  X^, #X^ ^ #X^ • ̂ A/^^^.
n

From this it follows that #H^(J^) ^ #X^, and by (6.9) #HS/J^) ^ #(AA7 • #X^.
The proposition now follows from this together with (6.10). D

7. Nice prunes at minimum level

In this section we assume that F is a totally real field of even degree. Associated
to a cohomology class c as in (2.1) is a deformation datum ̂  = (^, E, c, ̂ ). We
suppose that we are given a prime p C T^r which is nice for S^ in the sense of §4.2.
Note that since p G p, p must come from a prime of T^", and we also use p to denote
this prime.

Now Tf acts on the module M^ = M^(U^\ defined at the end of §3.5.
Furthermore, T^" is a finite, torsion-free A^? -algebra. On the other hand, associated
to ^ we have a deformation ring R^ defined in §2.3 which is also a A^ -algebra.
There is no natural map R^" —> T^" since we have no natural representation with
coefficients in T^11. However there is a pseudo-representation with coefficients in T^
inducing the horizontal map in

(7.1)

_min
n^

R -^ mmm
• -^ P^* — — i Qi

min \.^ ^
Rrnin
^

(cf. (3.4)). The map r^ is the one which induces the pseudo-representation associated
, rnin / p r\ A \to p^ (see §2.4).

Since p is nice, T^/p is of dimension one and p G p. So the integral closure
A of T^/p is isomorphic to ^pl]] for some finite extension k of k and some X.
Furthermore the assumption that p is nice ensures that under the composite map

A^ ——TT/P-.A

the ring A is finite over A^. (This is because the associated representation ppjo has
at least one character of infinite order on the diagonal.) Writing A^ = ^[^i, ...,^]]
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let us suppose that ^ i—> ^ui G A with ^ a unit or zero for each i. Then we may
take ri > 0 for each i (as follows from the definition of the A^?-action on T^r in §3.3)
and we may assume, after possibly renumbering, that u\ is a unit. Set

(7.2) A^ =^/[[Wl,..,W,]],

where ^ ' = ^ (g)w(^) W(^). There is a map A^ -^ A defined by Wi
W^ i—> 0 for 2 ^ i ̂  m. Define a homomorphism A^ —> A^' by

^i • W^i, ^ —^ -W, + W%- for 2 ^ z ^ m.

X and

Here ^ denotes any fixed choice of lift of u,i to A^. Then A^? is finite and free over
A and we have a commutative diagram of rings

mWWi
L^

From this diagram we deduce the existence of a prime p of T^" ®A^? A^?
extending p. Similarly we deduce the existence of a prime p^r of R^" ®A^ A^
extending p^r, where p^r is the prime of R^" associated to p as defined at the
end of §4.2. For simplicity of notation, we may write p to denote p^r if the context
makes this usage clear. It will also be convenient to write T^0 for T^" 0A^ A^ and
R^" for R^0 ®A^? A^? from now on. Let (R^")? and (T^V denote the localization
^TZ</ completions of R^11 and T^, respectively at p^r and p. Define R^ps, ^ps, and
(R^ps)pps similarly, where p^ is the inverse image of p under ^n : R^ps Rmin

^ •

Lemma 7.1. — 7"%^ zj a natural local surjective map

(7.3) V(^ P) : (R^)y - (T^)y

M^CT- wAtcA trace p^^rob^) 0 1 i-» T(^) ® 1 aW detp^"(Frob^) i8> 1 ̂  S(^)Nm(^) ® 1 for
all i p..
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Proof. — Let 71 be a uniformizer of ^, and let P = (7l, W2, ...,W^) C A^. Write
A(^ p for the localization ^/zrf completion of A^? at P. Note that P = p D A^. Let ^o
be the set of primes q of A^ of dimension two contained in P and such that each
quotient A^/q is again a regular ring. It is easy to see that if q C ^o? then qA^p is
also a prime ideal and that the set ^o is Zariski-dense in spec (A^p).

Let Q^ be a minimal prime of T^ contained in p. Let B be the integral closure
of T^/Q, in its field of fractions. Observe that B is a finite, torsion-free A^ -algebra
(cf. [G, 7.8.3]). Let pi, . . . ,p^ be the (finitely many) primes of B extending p. For each
i = l,...,.y let Q\ be the set of primes of B of dimension two contained in p^ and
extending some prime in ^o- Note that given any q C (^Q there exists a prime
0 € Q\- extending q (cf. [Mat, Theorem 9.4(ii)]). For each i = l,...,j we have a
commutative diagram

^P "̂  riqe^o^1'/11

(7-4) 1 1
Bp, ^ rwA-/°-

The arrows are the obvious maps. That the top arrow is an injection follows from the
observation in the preceding paragraph. That the rightmost vertical arrow is also an
injection follows from the fact that Bp is a finite A^p-algebra and that each A^ p/q
is a one-dimensional domain. If the bottom arrow were not an injection, then neither
would be its composition with the leftmost vertical arrow, since Bp is a domain and
an integral extension ofA^p (cf. [G, 7.8.3]).

Choose 0 € G i. Let T = B/Q and let R be the integral closure of T in its
field of fractions. Let q = 0 Fl A^? and let A = A^? /q. Note that A is regular. Since T
is a finite, torsion-free A-algebra so is R. Let ^Pi,...,^ be the (finitely many) primes
of R extending p^. By Proposition 2.15, for each 7 = 1,...,4 there exists an extension
R of R, R a domain, an extension ̂  of ^, and a prime ^ of R extending ̂
such that there exists a deformation pj into GL^(R ) that is (^, Z, c, ^^)-minimal
and whose associated pseudo-deformation is just that obtained from the one into T^
described in §3.3 via the obvious map T^" —^ T. We have natural injections

Tp^n^j=i
and

IlR^- n^
7=1 J=l ' J
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We claim that both maps remain injective upon passing to completions of the rings in
question. For the first map this is an easy consequence of the fact that both T and
R are finite A-algebras. For the second map we note that each R<p is an integrally
closed one-dimensional domain and hence so is each R<p. On the other hand, each
R + is reduced, so the kernel of the induced map Rm —^ R + must be either (0) or
j,< ' ^ j,^ v /

.̂ It cannot be the latter, as we have R<p.^-> R. + ^-> R +. This proves the desired
^^j z'^

injectivity. We have an induced injection

(7.5a) t^n^
j=i J

We also have a map R^ ®^ ^j —> R. inducing p . It is easy to see that the
inverse image of ^+ in R^11 is just p^r. We thus have a map

(7.5^) (Ri^-n^-
J=l J

Composing (7.5a) with the map (R^rps)gps -^ Tp^ coming from n^ and composing
(7.5b) with the map (R^ps)gps -^ (R^)^ (see Proposition 2.11 for surjectivity) yields
the same map. Therefore we have a map

(R^W -^ tp.
through which (R^ps)pps —^ T^ factors. Combining this with the injectivity of the
bottom row of (7.4) yields a map

W^^fl\

through which the map (R^ps)pps —> n^=i Bp^ coming from n^ factors. The image of
this last map is just that of the natural map from (T^^/Q. As the latter map is
injective, we obtain a surjection

,pmirK /rr,mim /^(R^ )p^ ^ (T^ )p/y.
through which the map (R^ps)pps -^ (T^p/Q, coming from K^ factors. From this we
obtain a map

(7.6) (R^ - II^VQ
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where the product is over the minimal primes of T^ contained in .̂ Since the maps
(R^rps)^s -^ (T^^/Q factor through the surjection (R^ps)pps -^ (T^11)^ coming from
n^, the image in (7.6) is the same as that of the natural map from (T^)^. This latter
map is injective, and we therefore have a surjection

/-p mim /rrimim
(K^^}^ -^ i1^)?

through which the map (R^ps)^ps -^ (T^)^ factors. D

Remark 7.2. — The same result holds for ^ replaced by any of the auxiliary
deformation data ̂ ^ with the same proof.

Since p is nice for S, there is some choice of basis for pp such that pp has
image in GL^(A) and the corresponding representation into GL^(A) is a deformation
of type-^', S, c, ̂ €\ From here on we write pp for this deformation.

We will assume for the rest of this section that ^ = ̂  (i.e., that S = Z,
is the set of primes at which p, ramifies together with S^ = {v,• : Vi\p}, and that
^ =^,=Z,\^).

Next we define the rings and modules which will be used for patching. Let R^ ps
denote the ring R^ ps (g) A^ and let M^r = M^ 0 A^ . Then we define

A^/ A^

(7.7) N^ = im{M^ —. (M^ )^/P}

where (M^r)y, is the localization and completion of M^ with respect to p C T^" and
P C A^ is the prime defined in the proof of Lemma 7.1. There is a commutative
triangle

(7.8)
R.^•ps

(pi

R^" ———^—— (R^")p/(?.Fo,P)

where Fo = Fitt((M^)p) C (R^")p is the Fitting ideal of(M^)p as an (R^")p-module.
The maps (pi and (pg are the obvious ones. We define rings

(7.9) R(°) = im((p2), R^ = im((p,).

Now we introduce auxiliary levels. First we fix a o € Ga^Fs/P7) as in Lemma
6.3(i). Then there exists an integer r= ?{pp) as in Proposition 6.10 with the following
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property. For each odd integer N there is a set of primes QN = {^(N), ....w^} of F
satisfying Nm^') = ^modj^) as well as property (ii) and (iii) of Proposition 6.10.
We can and do choose the sets QN to be disjoint from each other as well as from E.
For such a set Q= QN, we earlier introduced a deformation problem ^^ as well as
associated Hecke and deformation rings T^r and R^o- ^n partK^la1' at the end of
§3.5 we associated a T^-module M^r to S^Q^ We now set

M^r == M^r ® A(^
^ A^

as before and note that this is a T^-module.

For each w^ = w\: € Q == QN there is an associated element 5^ G End^min
^ ' ^^
(M^r) as in Lemma 3.21. We let ^ = 5^ — 1. We can then define, for each odd
integer 1 < a < N,

(7.10) M^ = im{M^ —^ (M^/(P, .f',.., ̂ +1)}

where the completion is as a T^".-module (with respect to p) and Q = Qj\r Then

M^ is a module over the ring Aa = Api, ...,^]]/(^ ,...5^ ) by construction.
Let p^ps denote the universal pseudo-deformation associated to Q^Q^ Let

<7^ G Gal (F/F) be such that o^ C 1 ,̂ the inertia group of w^ and a^ is a generator
of the j&-part of tame inertia as in Lemma 3.21. Then there is a map of rings

(7.11) A^ pi,..., ̂  —> R^ps = R^ps 0 A^
a a A^

given by 4 i—> trace (p^ps(<7^) — 2) ® 1, where here Q^= QN = { ^b • • • 5 ^r }• We have
a commutative diagram

(7.12)
R^ps

_ a+1 a+1

R^min ————W——— (R^)p/(p' ^2 ' • • • ' ̂  ' ̂ N)
^2, a
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where Q= QN and FN = Fitt((M^)p) is the Fitting ideal of (M^)p with respect to
the ring (R^)p. The maps are the obvious ones. We define rings R^ and R^ by

(7.13) R îm )̂, R^ = im((pK).

a+1 a+1

These rings are both algebras over B, = Ap,,..., f,]]/^,2 ,...,̂ ) by construction.

Let P^ : Gal(F/F) —>• GL^R^y) be the representation obtained from p^

It is easy to see that for each w, G Q, p^Ji^ ^ (vi y-i) for some character \)/;.

Define a map A^i,...,^]] -^ R^ ®^ K by j, ̂  v^,) - 1. This makes R^ ®A K
into an Aa ®A K-algebra compatibly with its structure as a Ba-algebra. Moreover, it is
obvious that each S{ maps to 0 under the canonical map R^ 0A K —r R^ ®A K.

The action of R^ on M^ is obtained as follows. First T^" acts on M^
whence it acts on M^ through the image of T^ in (T^"1)^. Now we have
homomorphisms

(7.14) „ . «+1 a+l' ' op —————»- rj,mm _____../"•T'min\ //T> r^~ ~r ~T. \K^ T^ ^(T^)p/(P,<i ....,^- ,pFN)

V(̂ b P)

^ a+1 aj-1
T^tr(N) ,- /pmin^ //p 2 -2- ^^ ^^ ^ (^oV^ ^i ,..., ^ , P FN)

and the diagram commutes by Lemma 7.1 and the remark following it. So by Lemma
3.21 we get an induced action ofR^ on M^ which is compatible with the Abaction
of the subring B^. Now put

M^ = © N^
z'==l

where N^ is as in (7.7). The same reasoning shows that R^ acts on M^, and a
diagram as in (7.14) holds for N = 0. We define R^ and R^ by

RO^R^ and R^ = R^0).

To define M^ we first define a natural map M^ —> M^(Q = QN). Let

^o = ^,^ = ̂  where TC, = {^(N), ...,^N)}. For each 0 ^ z < r defineT^-

TT+ /T T"1111

^oo\^^ ;7 ' -"-ex)map H^re")2 ̂  ^(U^,,) by (yi(^),/2^)) ^f,(g)+f,(^ ^J) ^here
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^+1 G ^F ̂  Z is the element chosen in the definition of the Hecke operator T(^_^ ).
Repeated composition of these maps gives a map H^(U^)2' —^ H^(U^ ) and taking

Pontryagin duals and tensoring with A^ gives the desired map M^ —> M^ . We

define M^ to be the image of M^ —> (M^/P. Clearly M^ C M^.
We now verify that these constructions satisfy the properties in §5 needed for

formal patching. A bound for the number of generators of R^ = R^ is given by
dim^H^F^uQ/F, ad p^)), which is easily bounded independent of N. A bound for the
number of generators of R11^ = R^1 is more subtle. When N = 0 this follows from
Lemma 2.10, which bounds the number of generators ofR^ps. In general a similar
argument applies using R^ps, and a uniform bound independent of N can be given

for example by applying Lemma 2.10 with E replaced by Z U Q .̂ We can choose the
generators in each case so that (5.2ii) and (5.6ii) hold by subtracting suitable elements
of^[[Wi]]. The other properties in (5.2) and (5.4) follow from the definitions.

Next we consider the properties (5.10) of M^ . Properties (iii)-(v) are straightfor-
ward, as are the first two assertions of (ii), but we need to check (i), (vi), and the last
assertion of (ii). Property (vi) follows immediately from Lemma 3.19 provided the hy-
pothesis that U7FX HU' acts without fixed points on DX\GD(A^ holds. Here we need
to take U successively as U^, U^rp...,U^. = U^r where U^ = U^r , ̂  = J^p
and Hi = {w\ ,...,^ } and check the conditions of Lemma 3.19 with v = w}+\ for
U = U^r . However these conditions need not hold, and instead we consider modules
with an auxiliary level structure at primes i\^ ...,^^Z U Q, chosen so that Moo(U^),
with U" = U^ D U\(£\ ' ' ' ts)-> is related to Moo(U^) in a simple way.

To achieve this, pick primes ^i,...,^ satisfying the hypotheses of Corollary 3.6
as well as satisfying the conditions

(7.15) (i) Nm(^) ^ l(mod^)
(ii) pp(Frob^) = pp(<Jo)mod^ for e sufficiently large, where Go is chosen as in

Lemma 6.3(ii).

(In order that condition (ii) make sense, we identify pp with p^ mod p^r, which in
turn we view as taking values in GL^(A).) Condition (ii), for a sufficiently large, ensures
that

(7.16) trace pp(Frob^.)2 + detpp(Frob^.)(l + Nm^^Nm^r1.

This, together with (i), ensures that

M^(U^)p^M^(U^)f

by Lemma 3.29, where the isomorphism is of A^p^A^J -modules. Now Lemma 3.19
and Corollary 3.6 can be used to check that Moo(U^)p is free over A^pQ[A^J for
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each Wi = w \ G Q^N- ^s then deduce the same result for Moo(U^r.)p and so also for
(M^r). and M^ ®K over A^ ,p[Ay;] and A^ ®A K respectively. The second property

(9 ' i

of(5.10vi) follows similarly from Lemma 3.19(ii).
Property (5.10i) follows from property (5.10vi) which was just established. It

remains to show that the last assumption of (5.10ii) holds. For this we pick some
(TI € Ga^F/F^) such that pp(<7i) has infinite order. That such a (5\ exists is an easy
consequence of Lemma 6.3. Let p^" be the pseudo-deformation associated to T^". It
follows from Lemma 3.26 that ^ = trace p^^) — 2 annihilates the cokernel of the map
'—' ^~~—"9^ /'1\HM^ —> M^- in the definition of Mo . Therefore ^ also annihilates the cokernel of
M^ —> M^ and hence also that of M^ —> M^. By our choice of Gi , ^p. Note
that ^ is independent of N.

The properties in (5.9) are consequences of those in (5.10) as well as of the
definitions of the M^'s.

Next we verify properties (5.5i) and (5.3i). Let d\(a) = dim^(M^ 0A K)- This is
independent of N by (5.10vi). Again using (5.10vi)

^(^^^(M^AK)

where as before |Lis(X) denotes the minimal number of generators of the S-module X.
Now ^l(a) annihilates M^ ®A K and hence

pWi(i)CFitt^ (M^^K).
a —

From the definition of R^ (g>A K it foUows that p^W^ = 0 in this ring so we may
take d(d) = di(d)di{\) + 1.

Now we check (5.5ii) and (5.3ii). Recall that we are given a set QN =

{w\ ,..., w[ } of primes satisfying the hypotheses of Proposition 6.10, and that by
the same proposition

(7.17) lim H£^) ̂  {K/Ay © X^
n

with ZQ = Z U Q^N and #Xs bounded independent of N. Now let Q, = Q,N and
suppose that p^ , p^" are the primes corresponding to p in Rj^o and R^" . Then
we also have the usual isomorphism in the style of [Wl, Proposition 1.2]

(7.18) XQ = Hom^ ((^/(^)2, P), ^-A/A) -^ H^(^).

The isomorphism is obtained as follows. To an element (p € XQ we associate the
representation

(7.19) p<p : Gal(F/^ -^ GL2(R^/((p^)2, P, ker (p).
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This is a deformation of pp with values in A[e]/(^£, e2) and its associated coho-
mology class lies in H^ o^n)' Conversely to such a cohomology class, we obtain a
deformation with values in A^j/^e, £2), and hence by universality a homomorphism
R^r 0^ f^' —^ A[£]/(^£, £2). Extending scalars we get an A-algebra homomorphism
R^/P —> A[£]/(^£, £2) which factors through R^/P. Restricting to p^ we recover
an element ofX(^. The restrictions on classes in H^r^^n) correspond to the restrictions
required for p to be of type ^^^m. In particular, the "min55 condition, together with
reduction modP, ensure that p(p does not deform the determinant. This is why the
cohomology class we obtain is associated to J^ = ad°p/A/2 rather than adp/X^. We
omit the details and refer to [Wl] for a more detailed argument in a similar situation.
Of course (7.18) also holds with J^Q replaced by S^ and £^ by S.

To apply this we use the sequence of homomorphisms

^/((p^)2^)——-p^Ap^)2 ——- p^W)2 ——- p^Ap^)2

PQ
Po

~min // <-^mirix2 r^
PJ^ /((P^ ) . p)

Here Q^ = QN. The horizontal maps are surjections arising from the definitions in
(7.9) and (7.13). The maps P(^ and Po are surjective and Po is an isomorphism after
tensoring with K. That P(^ is also an isomorphism upon tensoring with K follows from
Proposition 6.10 and (7.18). Properties (5.5ii) and (5.3ii) then follow from (7.17) and
(7.18).

Next we verify property (5.7). Using (7.18) the condition in (5.7) translates into
the requirement that #GN, where

GN = {[P(p] '' trace p(p = trace pp, (p € Xg},

is bounded independent of N and n. (Here as before Q^ = Q^si)- F^ a basis for pp
such that pp(^i) = ( 1 _i ) and pp(<?') = ( ^ ^ ) for some unit u € A^ where Zi is a
complex conjugation and G' is some element of Gal (F/F). With respect to this basis
write pp(o) = (^ b / ) . Fix a T such that ^ ^ 0. Now suppose that [p(p] is a class in
GN. The class [p<p] has a representative p<p such that

P(p(̂ ) = (
a<5 by
Co da

and b^c^ € A for all G C Gal (F/F). Hence ^ annihilates [p(p]. Since the number of
generators of GN over A is bounded independent of N and n (as follows, for example,
from (7.17) and (7.18)) we obtain the desired bound on #GN.
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It remains to prove the existence of an element x^ as in (5.11). Let us write M
for M^r, which is a T^ -module.

Let J = ker{(^A/Pf - M(0)}. Since M^^ (M^/P by definition, J is just

the kernel of M^/P —> (M/P)2.. Let m^..^ms be generators of J as a T^-module.
For each i, choose x, G T^", ^^Ep, such that Xi • m^ = 0. Put ^ = ^i • • -^. Clearly,
^ annihilates J. Also, x f^p since each Xi ftzp.

Now set MN = M^r where Q^ = Q,N. Then suppose that we have an element
yN) ^ T^ with the property that

(7.20) V^ • ker{MN/(^.., ̂ ) —— (M/P)^} = 0.

It would follow that ^(N) would annihilate ker{MN/(^h ...5^) —^ M^} where ^ is a lift
of x to T^11 , and so xy^ would also annihilate ker{M^ /(^i,...,^) —> M^}. Thus it
would satisfy condition (i) of (5.11) except of course that it is not in the desired ring.

Our construction of such aj^ is an involved procedure. We begin by introducing
auxiliary level structures much as we did in the proof of property (5.10vi). Let
^i , ...,^^Z U Q, where Q^ = Q^N) be primes satisfying the hypotheses of Corollary
3.6. as well as (7.15) and (7.16). We can and do choose the ^ to be independent
of N. Now let U^ = U^ H U^i • • • ̂ ) and put M^ = M^(U^ ̂  A^. Let

also ^ ' = (^.r,^,^^) with r = £U{^i, . . . ,^}. Let T^ denote t^,. It is clear
that M^ is a T^-module.

There is a natural map M^ —^ M^ defined analogously to the map MN —^ M2'
used in the definition of MQ . Composing these maps we obtain a similar map
M^ —> M2 . Arguing just as in the verification of (5.10ii) (see the first full paragraph
following (7.16)) we find that there is some^ G T^0 such that

(7.21a) V^ • coker{MN —— M^} = 0.

and

(7.21A) 0 =(= ord^(yN)modp) is independent of N.

We next construct j4 ^ T^ such that

(7.22) V^ • ker{MN/(^,..,^) —. (M/P)2"} = 0

for thenY^ =^ '^ will satisfy (7.20). (We view ^ as an element of End(M^) just as
c\r

we did for MN. These actions are compatible under the map M^ —> MN.)
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Let U^ = UlmnUo(^l,..,^)nUl(^,..,^) and write M^ for the module
MooCU^r)m ®A^) A^. By our choice of ^i,...,-^, U^ satisfies the hypotheses of
Lemma 3.19, from which we deduce that

M^i,..,^)=M^.

Let IN be the set of minimal primes q of T^ such that M^ q ^ 0. Let I C 1̂  be the
subset consisting of the inverse images of the minimal primes of T^. It is relatively
straightforward to see that for q e IN\I the representation pq is type A at each of the
primes ^ and w?. If S is the field of fractions of A^ then we have

M^M^^=nM^
qCiN

M^M^j^n^-
qei

The kernel of the map M^ (g)^ ^? —> (M (g)^ ^)2?" is just Ft M^.
^ ^ ^IN\I

Therefore, if^ G H q, then
<?€IN\I

(7.23) V^ . ker(M^ —— M2^) = 0.

We chooser as follows. Let p^ be the pseudo representation associated to T^. Let
T, € Gal(F/F) be a lift of Frob^ and let S, be a lift of Frob^, Put

JN) - n ( .̂ - d^ +1) 2 ) . n ( r r2 " ̂ " ̂  "2'^ = n (T:. - d^ + I)2) . n (T .̂ - ̂ .(Nm(^.) + I)2)
i=i l i=i

where T^ = trace p^T,), ^(N) = Nm^), d^ = detp^T,) • ^(N)-1 and simHarly for T^
and d^. Then ^3 ) C q for every q G IN\I as can be seen by examining the actions
of D^ and D^ (decomposition groups at w, = wf^ and Hi, respectively) on the Galois
representations associated to such primes q. From our choice of Wi (and our choice
of G as in Proposition 6.10)

T .̂ - d^ + I)2 = trace pp(a)2 - 4 ̂  Omod(p, ^)

for some sufficiently large e independent of N. This, together with (7.16) shows that

(7.24) 0 4= ord^^modp) is independent of N.
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Finally arguing as we did to establish (5.10ii) as well as (7.21a, b) shows that
there is somej^ C T^" such that

(7.25a) ^ . coker{M^ —— M2^} = 0

and

(7.25A) 0 ^ ord^j^modp) is independent of N.

Letj^ andj^ be lifts of ̂  and j^ to T^. Combining (7.23) and (7.25d) shows
thatY^ =^3^ .^N) satisfies (7.22). Moreover by (7.24) and (7.25&)

0 ^ ord^j^modp) is independent of N.

We may then take x^ to be any lift of ^ .j^ to R^ps. Its image in R1^ satisfies
(5.11i,ii). a

We have now verified all the hypotheses in §5 and are thus in a position to
prove the main result of this section.

Proposition 7.3. — Suppose that ¥ is a totally real field of even degree. Suppose that S^ is
a deformation datum and that ^ = ̂ . Suppose finally that p C T^ is a prime which is nice
for ^ in the sense ^§4.2. Then

_ (1) ¥(^ P) '' (R^T)? —^ (T^"1)? is an isomorphism and (R^p is a complete intersection
over A^ p and reduced;

(ii) M^ is a free (V^^-module.

Proof. — Our constructions give the following identifications:

R(o)0K=(R^),/(pFo,P)
A

R^^K^^yp

N^ 0 K = (M^ )./P, M^ ® K = ©(N^ ® K).
A r A ;=1 A

2'
- - / .—— - ©I -A v A ?=1 A

By Lemma 5.2 the natural map

(7.26) R^^K—^R^K

is an isomorphism. By Proposition 5.8, M^ ̂ K is free over R^ ̂ K. As the action
ofR^^K on M^^K factors through the composite map R^^K ^ R^^K -^
(T^)p/P we conclude that M^ ®A K is a free (T^^p/P-module and that \|/(^,p)
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induces an isomorphism (R^")p/(pFo, P) 2± (T^")p/P. Picking generators oiM^K
A

as an R^ 0 K-module and lifting them to (M^). we get a map (for some minimal s)
A

(7.27) (T^-(M^),

which is an isomorphism modulo P. Since (M^)^ is free over A^p it follows that
(7.27) is an isomorphism. In particular (T^p is free over A^p.

As observed, the reduction mod P of the map

(7.28) (RlhpApFo) -^ (T^p

induced by \|/(̂ , p) is an isomorphism. Using that (T^11)̂  is free over A^ we now
deduce that (7.28) is an isomorphism. Under (7.28) Fo maps to zero as M^r p is a free
(T^) ̂ -module. So Fo/pFo = 0 whence Fo = 0. Finally (R^p is a complete intersection
since (R^^p/P is by Proposition 5.9. (Note that (T^p is reduced as T^ is reduced.)
This completes the proof of the proposition. D

8. Raising the level for nice primes

8.1. Preliminaries

In this section we complete the proof that property (PI) holds for a deformation
datum ^r. However, before doing so we need some auxiliary results. We begin by
imposing a partial ordering on the deformation data. If ̂  = (^i ,Zi, c\,^&\) and
^2 = (^2 ? ^2^2 5 -^2) are data, then we write ^\ ^ ̂  to mean ^i = ^2^1 = ^,
Zi 3 2:2, and ^i C ^^2. If #(£1^2) + #(^2\^i) = 1, then we say that the
inequality ̂ i ^ ̂ 2 is .y^ .̂

Let ̂  = (^, E, <;, ̂ ^) be a deformation datum and suppose that p C T^ is
nice for ̂ . As p G p, p is the inverse image of a prime of T^ which we also denote
by p. We adopt the notation and conventions from the beginning of §7. The primary
goal of this section is to prove the following proposition.

Proposition 8.1. — If p C T^ is nice/or S, then the map \|/(̂  p) : (R^)? —>
(T^)? in Proposition 7.1 is an isomorphism.

For Sy = ̂  this was proven in §5 - §7 (see Proposition 7.3). We will deduce the
general result from this case by a generalization of the arguments in [Wl, Chapter 2].
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8.2. Congruence maps

A key ingredient in our proof that V|/(̂ , p) is an isomorphism will be a lower
bound for the length of a certain "congruence module55. In this subsection we construct
maps between various T^" -modules that will be instrumental in obtaining this lower
bound.

We first fix a sequence of deformation data ̂  = ^o ^ ^i ^ • • • < ^n = ^
such that ̂  ^ ̂ -i is a strict inequality for 1 ^ i ̂  n. Put

_ /-D"1"'^ TI _ /rpmm\
i ~~ l^^Jp? ^i - (^Jp

M, = (M^.)p and M^ = (M^.)p

where M^ is defined as is M^r but using M^ instead. Let P = p H A^?.

Lemma 8.2. — £<2^ M^ and M^ zj (2^'^ A^^p-module. Also, there exists an integer s

such that M2 ^ Homr (M^ A^? p)2' ^W M^52 c^ Hom-r (M^ A^? p)2' as Ti-modules.
A^,^ p ' A^-,^ p '

Proo/^ — Choose a set of places {r\, ...,^}, distinct from those in Z, satisfying the
hypotheses of Corollary 3.6 and such that co(Frob^) ^ 1 and pp(Frob^.) has eigenvalues

of infinite order for each z. Put U^ = U^r H Ui(ri,..., ^) and U"11" = U^" H Ui(ri,..., r^).
By Lemma 3.29, Too(U,, ^)p ^ T^p and

M /T TminN -it ir^ i TV /r /T Tmm\+ -\ /r4'? 2^^(U, )p ^ M .̂ and Moo(U, )p ^ M .̂ .

The lemma now follows from Proposition 3.3 and (3.17). D
Fix an s as in Lemma 8.2. Now let

W=i,\z,_,u^,_,w<., '.'{^ '1 ̂ ,1^,

and

r (q, - 1) (T(^-)2 - S{£i) ((}, + I)2) if w. G Z,\^-i
^; = J (^ - 1) (q, + 1) if w, € .̂ ,-1 and x|i^. = 1

[ (^ - 1) if Wi € ̂ ,_i and x|^, + 1.

Here i, = ^»; and q, = Nm(^,).
Next we define maps of Trmodules

2^r- o-^ ^^ o^ 2^r
$,: M,_'i -^ M2 , 0,: M2 —— M,_i

y,, e,: M2^ ^ M2^
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such that
(8.1) a) 0, is injective with A^p-free cokernel and 0, is surjective.

I (unit)xr|, * |
b) Qi o 0, o 0, o y, = ________ 6 My,.(T,_i) with the image of det(A,)

V I A,/
not a zero-divisor in To.

c) im(^ o (0,_i, ..,$,_i)) = im(€>,_i, ..,0,_i).

Let ̂  = ̂ el} be as in the definition of T(^). For any/: GD(A-f) —^ R (R an ^-
module) let a,/: G^A^) —> R be given by (a,f){x) =f(x(1 ^ )). We define 0, to be

the direct sum of 2s copies of the localization of the map (lim O?) (g) 1 : M^ ®A^ A(^

—> M^ 0A^ A^ = M^, where O? : ̂ H°(X(U,_i^), ̂  —^ ^H°(X(U,,), ̂ ) is given

by C/i ./2) ̂ /i + aj2 it r, = 2 and (/; ,/2,/3) ̂ >/ + a,/ + a?/3 if ^ = 3. We define
0^ : M^i' ——)- M^ similarly and take for 0, the dual map obtained from 0^ by
applying Hom^ (•, A^p). Similarly, let 0^ be the dual of 0,.

We now verify (8.1^). Choose n to be an ideal such that Uo(n) 3 U^ 3 U(n). If
Wi e Sz\£z-i (so r, = 3) then by Lemma 3.28 for a sufficiently large both the kernel of
<t>^ and the cokernel of 0^ are annihilated by 7{£) — 1 — Nm(^) for any prime t that
splits completely in the ray class field of conductor p a ' n ' QQ. Here 0^ is the adjoint
of 0^ with respect to the pairings defined in §3.2. Let F^ be the ray class field of
conductor p" - n • oo and let Foo = Ufa- Choose a C Gal(Fs/Foo). Such a a is the limit
of a sequence ofFrobenii {Frob^ } of primes ia splitting in Fa. In fact such a sequence

mod/can be chosen so that Frob^ = Frob^ (b ^ a) in Gal (F^/F). As trace p^ (a) is the limit

of {T(^)}, it follows that trace pl^c) — 1 — e(a) annihilates ker(O^) and coker(O^).
As pp is neither reducible nor dihedral it must be that trace p^-^cr) — 1 — £(o) (£p for
some <7 G Gal(F/Foo). It follows that both ker(limO^) and coker (limO^) vanish when

localized at p. Thus 0^ is injective and <t^ is surjective. A similar argument shows that
~h • • • "̂̂  +0^ is injective and O^ is surjective. This proves (8. la).

Now if Wi € ^^-i, then it follows from Lemma 3.27 that ker (0,) and coker(O^)
^—' oS

are isomorphic to submodules of (Moo (U'))^ where

TT ' -TT 1 1 1 " 1 ffa &^ ^ r^T (/^ \ 1 r- ^^(l̂ ^-))-! 1u -v^,-^[[c d ) eGL2(^F,^):^- l ^e^ ^

with r(^^) as in the definition of U^r. By considering pp|/ one sees that p is not

a prime in T^(U', ̂ ) (so Too(U', ^)p = 0) whence M^(U')p = 0. This proves that
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0; and 0; are, respectively, injective and surjective in this case. The same argument
applies to 0^ and $^, thereby establishing (8.1 a) in this case as well.

Next we define y, and 0,. If w, G £z\Z,-i, then we put Y, = ©^i^' and

©i = ^=\@'i where

/-S(^) 0 0 \ /O 0 S(̂
^ = T(̂ .) -s^.)-1 o , e^ o s(^.)-1 o

\ -qz 0 -I/ M 0 0

If Wi € ^^_i, then we take

u^T^.) 0 \ /O 1-
11 \-q, T(^)-1;5 u- ^1 0 ^

0 ^
T^)-^5

We note that while T(^) is not included in the definition ofT,_i if w^ G ̂ ,-1, it
is in fact in T,_i and is a unit, so the definition ofy, makes sense in this case. To see
this, let Qbe any minimal prime ofT^^. Then T(^) is the eigenvalue of the action
of Frob^ on the maximal unramified quotient of PQJD. • (This can be checked on
the representations associated to algebraic primes containing Q.) As w^ G ^&i-\, the
representation p^" JD^ has a non-trivial maximal unramified quotient, and it follows
that the image in T,_i under \|/( ,̂ p) of the eigenvalue ofFrob^ on this quotient must
be T(^).

As (8.16-) is obvious from the definition ofy,, it remains to verify (8.16). Suppose
first that w, G Sz\^-i. A straightforward calculation shows that 0, o 0, is a direct sum
of 2s copies of

' ^ + 1) T( .̂ T( .̂)2 - S(̂ - + 1) -

S^-)-1^^- ^-+1) T( .̂

^T^^s^r2 - s^r^i + ̂ ) T(^-)s(^-)-1^ ^ + 1 )
Thus

11.
0,0 0,o 0,o^= det(A,)=(y,S(^-)-ynf~1.

A;

That the determinant of A, is not a zero-divisor in To is easily checked. As To
is reduced, we need only verify that det(A,)^Q for all minimal primes Q of T^.
Suppose that det(A,) is contained in such a Q. Let P C T^ be an algebraic prime
containing Q^ (and hence det(A,)). Let t = T(^)modP and s = S(^)modP. We will
show that ^ - s{l + qf =(= 0. Let a and P be the eigenvalues of pp(Frob^ ). Recall that
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t = a + p and sq, = ap. If P- — s(\ + q,)2 = 0, then either a = q,or "- = q,. But both
P a

possibilities violate (3.3). It follows that det(A,)^P and hence det(A,)^Q^.
The verification of (8.16) in the case where wi € ^& i-\ is done similarly.
We are now in a position to define our "congruence maps55. Put

P^ = ker{T, —— To} and P6" = Ann^ I01^

Put also

r{i) = n r,
1̂ '

Define 0^ : M^^ —— Mf and 0^ : M^^ —— Mf recursively byo

1 , ^ - ̂  u î ,Q(1) == $, , Q(1) == 0 o Y

and

0^ =€),•o(0(^-l) x • • • xO^)
0^) = (o .̂ o ̂ •) o (O^-1) x • • • x O^).

Define 0^ : Mf —> M2^ and 0^ : Mf —> M2^ in the same way but using 0, and
©i and reversing the order of composition as appropriate. Put

0=0^, 0^ ̂ ^ 0=0^, andO^ =0^.

Put also

r = r ( n ) and T| = JJ r!̂
l^z'^n

Lemma 8.3. —
(i) im(O^) = M^P01^2' and coker(<&^) is a free A^^-module.

(ii) <&^ ^ surjective.

(in) 0^ o 0^ = v / ' G M ,̂ (To) ^^A det(A) not a ^ero-divisor.

\ ^
(iv) ker(0^)=M,[Inew]2\

JVoo/^ — Part (ii) follows from (8.1fl). Part (iii) follows from (8.16). We leave the
details to the reader noting only that det(A) is a product of powers of the de^A,)^
and the r|/s. The freeness over A^p of the cokernel ofO^r also follows from (8.1). It
remains to prove the first assertion of part (i) and part (iv).
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Note that by (8.1 c\ im(O^r) = im(0), so it suffices to prove that im($) = M^01^.
Next note that 0 is the localization of (limO0) (g) 1 where ^a is defined as is 0 but

with O^ replacing 0,. Now let

if = ker{T2(U^, ̂ ) —— T^,,, ̂ )}.

It follows from the theory of "new vectors55 that

im^) (g) K == ,H°(X(U^), K) [I^].

(For a more detailed proof in a similar situation see the proof of Lemma 3.29). Now
consider the commutative diagram

limO^
lim .H°(X(U^,), ̂ y —^ lim .H°(X(U^,), ̂ ) [1̂ ] -. C

a ^a

1 1
0 —— lim in^O") ® K ——^ lim cH°(X(U^,,), K) [1̂ ] —. 0

a a

having exact rows and with the vertical arrows being the natural maps. Applying the
snake lemma we find that C embeds into a quotient o f N = limker^^K/^). Arguing

as in the proof of Lemma 3.29 shows that Np = 0 and hence Gp = 0. Now let

P^ = ker{T^(U^ , ̂ ) —— T^(U^, ^)}.

It follows from the preceding remarks that the quotient M^ [I^j/im^imO0) vanishes

upon localizing at p. As I0^ = I^T,, part (i) foUows.
To prove (iv) we first note that Mot?^] = 0 by Lemma 8.2, for Mol;?^] is a

To/P^To-module and hence a torsion A^p-module. Therefore MJP^] C ker(O^).
On the other hand, it follows from (i) and (iii) that O^r maps M^P^] (g) ̂
isomorphicaUy onto M^SS , where ^ is the field of fractions ofA^p. As M^(g)^ =
(MJI01^ (g)^)®^?6-] 0^) it follows that the quotient ker^)/]^^?6-] is a
A^p-torsion module, from which we easily conclude that ker(O^) = M^p"^]. (The
tensor products are as A^ -modules.) D

8.3. An auxiliary result

We now state (and prove) a simple result in commutative algebra. This result
will be important in the proof of the main result of this section (the proof of
Proposition 8.1).

Let A = B[[xi,...,^]j be a power series ring over a complete DVR B of
characteristic 0. Suppose that (Ai, As, P, N1, N3, r, (p, $) is an 8-tuple consisting of
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• complete local finite A-algebras Ai and A2 with Ai reduced,
• a surjection P : Ag -»> Ai of A-algebras,
• for each i = 1 ,2 an A.-module N, with each N, finite and free over A and

with NI free over Ai,
• an integer r ^ 1 and maps of As-modules (p : N^ ̂  N3 and (p : N3 -^ N\ such

that (p o (p e M,(Ai) C End^(N'i) and det((p o (p) is not a zero-divisor in Ap
We further require that
• im((p) = N3 [I] and ker((p) = N2[J] where I = ker(P) andj= Ann^ (I),
• coker((p) is A-free.

Lemma 8.4. — For each 0 ̂  t^ s there exist y\, ...̂  G A J^A that
(i) (^ ...̂ ) ^ a prime ideal of A,
(ii)j^ ...yjt generate a t-dimensional subspace ofm\/(m^, m^)

(iii) Ai/^i,...,^) ^ reduced,
(iv)An(l+j^i,..,^)+^..,^
(v) det((po (p)mod(j^...^) is not a ^ero-divisor in Ai/(j^...^j^

(vi) ker((pmod(j^...^)) = N2[J]/(^i, ...̂
(vii) im((pmod(j/i,...^)) = (Ns/^i, ...^))[I].

Proof. — Our proof will be by induction on t. Note that if t = 0 then all
the conclusions are satisfied by the hypotheses on A, and N^. Suppose then that we
have found j/i,...,^, t < s, satisfying the lemma. We will show how to findj^+i. Let
(y) C A' = A/(}/i, ...,j^) be a prime ideal such that

a) (^h-^j) satisfies (i) and (ii),
b) {y) does not contain Ann^^/^ ...,^)/A^
c) (! +J^i. •••^.J;) n A + (^i. -^,A
d) (det((po(p),^,...^,j/) ^ (^i,...,^,^).

Clearly all but finitely many { y ) satisfy a) - d), and since there are infinitely
many possibilities for (j/) some {y) has the desired properties. Note that Ai/(j^i, ...,j^)
is a finite and free A'-module because N1 is finite and free over A and also free over
Ai. Hence the hypothesis that \\/{y\, ...,^) is reduced is equivalent to Q. /, . / . ,A!/ \y\^ •••5J'<)/A

being a torsion A'-module (here we use the fact that char(B) = 0).
We now show that one may take forj^+i anyj/ such that { y ) satisfies a) - d).

Properties (i) and (ii) follow trivially. Property (iii) is a simple consequence of V). Property
(iv) follows from c) and property (v) from d) once we know that Ai/(^i,...,j^j/) is
reduced. Property (vi) is immediate. It remains to prove property (vii).

It follows from (v) that (p maps im((pmod(j/i,...,j^))(g)A//FA^ isomorphically
onto N^/(^i, ...^t^y)®^' FA"? where A" = A / / { y ) and FA// is its field of fractions. If we
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can show that

(8.2) (N2/0^...^^))[I] nker((pmod0/i,..,^j/)) = 0

then it will also follow that (p maps (N2/^1, ...^,jQ)[I] 0A- FA// isomorphicaUy onto
N'l/^b ...^J^) 0A^ FA" whence

im((pmod(ji, ..,j^)) 0A- FA- = (N2/^1, ..,̂ , ..,J/))[I] 0A- FA..

The desired equality will follow from this one since im((pmod(^i, ...,J^)) is contained
in (N2/(^i,...^,j/)[I] with A^-torsion-free cokernel. (Here we are using that coker
((p) is A-free.) To prove (8.2) we need merely note that the intersection in question is
contained in (N2/(^i, ...,J^)) [I+J] which must be zero as it would be simultaneously
a torsion-free A^-module if non-zero and annihilated by 0 ^ (I+J) HA". (The latter is
non-zero by ^)). D

8.4. \|/(^, p) is an isomorphism

We now complete the proof that \|/( ,̂ p) is an isomorphism. To do so we
return to the notation of §8.2. By Proposition 7.2 Mo is a free To-module and
¥(^0 P) '' RO ^ To. Moreover, To is a reduced complete intersection over A^ p.

Let A = A^p. Note that A = B[[W2, ...,W^]] where B is the localization and com-
pletion of ^'[[Wi]] at the prime ideal (7c). Let P : T, ̂  To be the natural surjection. It
follows from the results of §8.2 that the 8-tuple (T,, To, P, M;f, M^\ r, 0^ , 0^) satis-
fies the hypotheses of §8.3. Therefore by Lemma 8.4 there are elements y\, ...,j^-i ^ A
such that

(8.3) (i)A/(^i,...,^_i)^B
(ii) To/(;h,-^m-i) is reduced.

(iii) im(<&^ mod(j>i, ...,^_i)) = (M,/(^i, ...,^_i)) [I0"].

(iv)$^o^=f(umt)x1^ *LM,(TO).

, A /
(v) det(<E>^- oO^r) is not a zero-divisor in To/(j»'i, ...,ym-\).

Put R, = R,/(^i,..,^_,), T, = T,/(^,..,^_^), andM, = M,/(^i,.., ^_i)
for each 0 ^ ; < n. Let Q, be a minimal prime of Tg. As Tg is reduced and f} is
not a zero-divisor in Tg (r) being a divisor of det(0^ o0^)) r| ̂ Q_. Let C be the
integral closure of Tg/Q in its field of fractions. As To is a free A-module, Tg is a free
B-module. Thus C is a complete DVR and a finite flat extension of B. Put

R ^ = R , ( g ) B G , T^=T,0BC, and M^ = M, <g>B C.
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Let 0' = (Mo)2^ —> W and 0' : (M^ —. (M^ be the maps induced from
O r̂ and O^r, respectively.

We have maps

R;^ T^ T^/Ann^, (M^) ̂  TQ ^ R^
7?

and 8 : To -^ C. Put P' = a o y. Here \)/ is the map induced by \y{^, p), p' is the
map induced from P : T\ -^ To, and 5 is induced from the reduction of To modulo
Q. That P' factors through T^/Ajm?, (M^) is a consequence of the surjectivity of 0'

n

and ofMo being a free To-module. Put T^ = T^/Ann^(M^). This is a free G-module.n
Now put

Ho = ker(8), Go = Ann^, ker(8),
H, = ker(§ o ?' o vi/'), G, = Ann^ ker(5 o a).

n

As To is a reduced complete intersection over C, it follows from [DRS, Criterion I]
that

(8.4) ^c(Ho/H^c(C/8(Go)),

where for any G-module X, ^c(X) denotes the length of X as C-module. Our goal is
to prove a similar equality for ^(H^/H^) and ^c(G/(§ o a)(G^)). First we prove that

(8.5) ^c(C/(6 o a)(G,)) ^ ^c(C/8(Go)) + ̂ c(C/8(il)).

We prove this as follows. Let I = ker(a) andj = Ann^,,(I). It follows from the definition
n

of T^ that M^I01^ = M^[I]. Therefore, by Lemma 8.3(i), ( JM'f C im^). In
particular, ifj'Gj and m C M.Q, then there exist mi,...,my, C Mp such that

TI

/ OTI \

\myJ

=

(Jm\
0

V o /
As det(A)m, = 0 for i = 2,..., 2'r we have that m, = 0 for i = 2, . . . , 2'r since det(A)

is not a zero-divisor in TQ and MQ is a free To-module. We conclude that JMg C r|Mo
and hence

(8.6) JTo C (11).

Now suppose that g € Gn' Then a(^) G (r|) by (8.6) since g annihilates I C ker(8 o a).
Write a(g) = r\x. Since T|x annihilates a(ker(8 o a)) = ker(8) = Ho and since r| is a



RESIDUALLY REDUCIBLE REPRESENTATIONS AND MODULAR FORMS 121

non-zero divisor in Ty it must be that x C Go. We have thus shown that a(G^) C; r|Go.
It follows that (§ o a)(G,) C §(nGo). The inequality (8.5) is an immediate consequence
of this.

Next we show that

(8.7) ^c(H»/H,2) < ^c(Ho/H2) + ^c(C/8(ii)).

We will prove this by comparing the lengths in question to those of various cohomo-
logy groups. First we note that p^r : Gal(Fs/F) —> GL,(R^) determines a represen-
tation p : Gal (F£/F) —> GLg(G) obtained from the composition map

R^ -^ (R^")p = R« - R^ -^ R^ ®B C = R^ 80PW C.

Fix a basis for p^r such that p^r(^) = (' _^ and p^o) = (^ "°), UQ C
^ x , for some go C Gal(Fz/F) fixed. Let ^ be a uniformizer of C. A C-
algebra homomorphism f : R', —> C C eC/V" (e2 = 0) determines a represen-
tation py:Gal(Fs/F)—^ GLg(G ® eC/^'") such that p = pymode. Write py(<7) =
p((T)(l +£y/(o)), Y/(CT) € M2(C/^). It is readily checked that a i—. Y/(o) is a 1-cocycle
ofGal(Fs/F) with coefficients in M^C/^") ̂  adp/^". We first claim that/i—^(cocycle
class of 7/-) determines an embedding

(8.8) Hom^.^(R^, C © eC/^) ̂  H1 (F£/F, ad p/^).

Here, and in what follows, all cohomology groups are the usual group cohomology;
we do not require the cocycles to be continuous.

To see that (8.8) is an embedding first note that if ̂  and ̂  are cohomologous,

then py, and py^ are equivalent. Thus there must be some A = [^ ^) e GL,(G © e.C/^"1)

such that Apy,A-1 = p^. Since py,(^i) = (* _^, it follows that A = ( a ^. We

also have that (: ^"") - Ap^,^)A-' = p^o) = [;/' "^. Thus a = d and

A is a scalar, whence py, = p^,. This implies that y; =/g since any map R^" —>
C © eC/X" is completely determined by the images of the elements in the set
{a^,ba,ca,dy : a € Gal(Fs/F)} (p^(o) = (^ ^)) by Lemma 2.5. This proves
injectivity of (8.8).

Recall that there is a decomposition ad p = ad°p © C where ad°p are those
elements in Ma(C) with trace zero. It follows from the definition of R^" that if
w e S\^5 then ^"'detp^" is unramified at w. The same is then true of^"' -detpyfor
every/€ Hom^(R;,, C © C/^e). Therefore

(8.9) resjyy) e H^D,, ad°pA'") \/w e £\^.
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Let V be the representation space for p. This is a free G-module of rank
2. For each w € ^&\^& there is a filtration 0 $ V^ $ V such that V^, and
V^ = V/Vy; are free C-modules of rank 1 such that 1̂  acts via %|i^ on V^. For
each w G 2\£, U ^\^& define U^ C ad°p by

T T - f Homc(V^ V^) if w € ^&\^& and %|i = 1w — \ r\ i • w
^ U otherwise.

Using the definition of R^11 and R^" one easily checks that if resj^) = 0 in
H^, ad^/LL,)^ for all ^ G 2\E,U^,\^, then/factors through RQ. It follows
that

^c(Hom^(R^ C © eC/r)) - ̂ c(Hom^^(Ro, C © eC/^))

(8.10) ^ E ^(H^L, (ad^/U,)/^)
;»eZ\E(U^^^\^^

< ^c(c/§(ii), r).
The last inequality follows from an explicit calculation of ^(H^Ia,, (ac^p/Ua,)/^'')13"')
for each w. As 6(11) ^ 0 we see that ^c(C/8(r|), 7") = ^c(C/5(T|)) for large m. Next we
note that there are canonical isomorphisms

Homc(Ho/(H^ ^), C/r) ̂  Hom^.^(Ro, C © eC/^)

and

Homc(H«/(H»2, r), CA") ̂  Hom^fR;, C © eC/r).^5 Jv ;? ^•/ /v ) — -'--'-^"C-alg

It follows from this and from (8.10) that

(8.11) ^c(H,/(H,2)) - MHo/H^) ^ ^c(C/8(Ti)).

Combining (8.11) with (8.4) and (8.5) shows that

^c(H,/H^^c(C/(8oa)(G,)).

It now follows from [DRS, Criterion I] that y o \y' : R^ -^ T^ is an isomorphism of
complete intersections of C-algebras. Therefore \|/ must also be an isomorphism of
complete intersections. Since C is faithfully flat over B we conclude that the map
R^ -» T\ induced from \y(^ , p) is also an isomorphism of complete intersections, and
hence jyi,...,^_i is a regular sequence in T\. It then follows easily that \y(^^f) is
itself an isomorphism.

This completes the proof of Proposition 8.1. The following proposition is a simple
consequence of that one.
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Proposition 8.4. — If ̂  is a deformation datum for F then property (PI) holds for ̂ .

Proof. — Suppose that p C T^ is a prime that is nice for ^. Let p^r C R^r
be the prime associated to p as in §4.2. Let Q, C p^ be any minimal prime and
let p = p^r modQ. Put R = R^r /Q. As in §2.3 let L^/F be the maximal abelian
^-extension of F unramified away from Z and let N5: be the torsion subgroup of
Gal (Ls/F). Fix a finite character \y : Gal (F^/F) —> R>< of j^-power order such
that %~1 • det(p (g) \|/) is trivial on N^. Corresponding to the deformation p 0 \|/
is a homomorphism R^ —> R that factors through R^". The kernel of this
homomorphism, say Qi, is contained in p^r. It then follows easily from Proposition
8.1 that Q,i is pro-modular.

By Lemma 3.17 there is some map T^o(U^ HU^cond^)2),^) —> R inducing
the pseudo-deformation associated to p. To show that pi and hence Q^ is pro-
modular it is enough to show that U^ C Ui(cond^(v|/)2). To establish this inclusion
we first note that since \|/ has p-power order cond^(\|/) is square-free. Moreover, if
^ = (^\Z,^^) and if ^|cond^(\|/), then t G E\^. It then follows from the
definition of U^ (see §3.6) that U^ C Ui(^2). Thus U^ C Ui(cond^(\|/)2).

We have thus shown that any minimal prime of R^ contained in p^ is pro-
modular. The same is then true of any prime of R^ contained in p^ . D

A. A useful fact from commutative algebra

The following result, in the guise of its corollary stated below, is the linchpin in
our proof of the Main Theorem.

Proposition A.I. [Ray, Gorollaire 4.2] — If A. is a local Cohen-Macaulay ring of
dimension d, and ifl = (/;, ...J,} is an ideal of A with r ^ d - 2 , then

spec(A/I) \ {mA} is connected.

We are indebted to M. Raynaud for providing us with the reference to a proof
of this proposition.

Suppose now that A and I are as in the proposition. Let W be the set of
irreducible components of spec (A/I).

Corollary A.2. — IfW=^[A^isa partition of W with ̂  and ̂  non-empty, then
there exist irreducible components Ci G ^i and C-^ G ^2 such that Cq D C^ contains a prime of
dimension d— r— 1.

Proof of Corollary. — Our proof is by induction on d - r. If d - r = 2, then
the assertion of the corollary is an immediate consequence of the proposition. Now
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suppose d— r > 2. The conclusion of the proposition implies that there exist C[ C W\
and G^ G ^2 such that G'l n C^ contains a prime p of dimension 1, which we may
view as a prime of A. Now consider spec(Ap/I). Let W be the irreducible components
of spec(Ap/I). The embedding spec(Ap/I)-^ spec(A/I) of topological spaces induces a
decomposition of W\

W = ̂  U W'^ W\ = {CV = C n spec(Ap/I) : G € ^}.

By the choice of p, G^ € ^5 so this is a non-trivial decomposition. As dim Ap =
dim A — 1, the conclusion of the corollary now follows from the induction hypothesis
together with the fact that Ap is also Cohen-Macaulay and that the dimension of a
prime of Ap/I is one less than the dimension of the corresponding prime of A/I. D
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