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VARIATION OF GEOMETRIC INVARIANT THEORY QUOTIENTS
Igor V. DOLGACHEV (1) and Yi HU (2)

ABSTRACT

Geometric Invariant Theory gives a method for constructing quotients for group actions on algebraic varieties
which in many cases appear as moduli spaces parameterizing isomorphism classes of geometric objects (vector
bundles, polarized varieties, etc.). The quotient depends on a choice of an ample linearized line bundle. Two choices
are equivalent if they give rise to identical quotients. A priori, there are infinitely many choices since there are
infinitely many isomorphism classes of linearized ample line bundles. Hence several natural questions arise. Is the
set of equivalence classes, and hence the set of non-isomorphic quotients, finite? How does the quotient vary under
change of the equivalence class? In this paper we give partial answers to these questions in the case of actions of
reductive algebraic groups on nonsingular projective algebraic varieties. We shall show that among ample line
bundles which give projective geometric quotients there are only finitely many equivalence classes. These classes
span certain convex subsets (chambers) in a certain convex cone in Euclidean space, and when we cross a wall
separating one chamber from another, the corresponding quotient undergoes a birational transformation which
is similar to a Mori flip.
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0. INTRODUCTION
0.1. Motivation

Consider a projective algebraic variety X acted on by a reductive algebraic
group G, both defined over the field of complex numbers. In general the orbit space X/G
does not exist in the category of separated algebraic varieties. One of the reasons for
this is the presence of non-closed orbits. A solution is suggested by Geometric Invariant
Theory ([MFK]). It begins with a choice of a G-equivariant embedding of X in a
projective space and then introduces the algebraic quotient X//G as the projective
spectrum of the subring of G-invariant elements in the projective coordinate ring of X.
This quotient comes with a canonical rational map X ->X//G whose domain of defi-
nition X88 is the set of semistable points. The regular map /: Xs8 ->X//G is a good
categorical quotient X^-^X^y/G. It defines a bijective correspondence between
closed orbits in X88 and points of Xs8//G. Also there exists a maximal G-invariant
Zariski open subset Xs of stable points such that the restriction of/ to Xs is the quotient
map X8^XS /GCXS S / /G for the orbit space X^G. An implicit ingredient of this
construction is the G-equivariant projective embedding which allows one to linearize
the action. It is defined by a choice of a very ample G-linearized line bundle L. Actually,
it is enough to take any ample G-linearized bundle L and define the embedding by
taking sufficiently large tensor power of L. The previous construction will depend only
on L but not on the choice of a tensor power. The subsets of semistable and stable points
can be described as follows:

X^L) == { x e X : 3 a e F(X, L0^ such that a{x) + 0 },

X^L) = { x e X^L) : G ' x is closed in X^L) and the stabilizer G^ is finite }.

There are infinitely many isomorphism classes of ample G-linearized line bundles L.
So it is natural to ask the following questions:

(i) Is the set of non-isomorphic quotients XSS(L)//G finite? Describe this set.
(ii) How does the quotient X^I^G change if we vary L in the group Pic°(X) of

isomorphism classes of G-linearized line bundles?

The fundamental comparison problem of different GIT quotients was apparently
first addressed by M. Goresky and R. MacPherson in the paper [GM], where they
pioneered the use of natural morphisms among quotients.

This problem is analogous to the problem of the variation of symplectic reductions
of a symplectic manifold M with respect to an action of a compact Lie group K. Recall
that if K x M -> M is a Hamiltonian action with a moment map 0 : M -^Lie(K)*,
then for any point p e$(M), the orbit space O-^K-^/K is the symplectic reduction
of M by K with respect to the point p. If K is a torus, M == X with the symplectic form
defined by the Ghern form of L, and K acts on X via the restriction of an algebraic
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action of its complexification T, then the choice of a rational point p e<D(X) corresponds
to the choice of a T-linearization on L, and the symplectic reduction Yp = O^Q&VK
is isomorphic to the GIT quotient X^L) //T. It turns out that in this case, if we let p
vary in a connected component G (chamber) of the set of regular values of the moment
map, the symplectic reductions Y^, are all homeomorphic (in fact, diffeomorphic away
from singularities) to the same orbifold Y^. However if we let p cross a wall separating
one connected component from another, the reduction Yy undergoes a very special
surgery which is similar to a birational transformation known as a flip. This was shown
in a work ofV. Guillemin and S. Sternberg [GS] (under the assumption that the action
is quasi-free). In a purely algebraic setting an analogous result was proved independently
by M. Brion and G. Procesi [BP] and the second author [Hul].

Our results extend the previous facts to the situation when T is replaced by any
reductive group and we allow L itself as well as its linearization to vary. We would
like to point out that our results are new even for torus actions, considering that we
vary linearizations as well as their underlying ample line bundles in a single setting
(the G-ample cone).

0.2. Main results

To state our partial answers to the questions raised earlier, we give the following
main definition:

0.2.1. Definition. — The G-ample cone G^X) {for the action of G on X) is the convex
cone in NS°(X) ® R spanned by ample G-linearized line bundles L with X^L) =t= 0, where
NS^X) is the (Neron-Severi) group of G-linearized line bundles modulo homological equivalence.

0.2.2. One of the key ideas in our project is to introduce certain walls in C^X).
The philosophy is that a polarization (induced by a G-linearized ample line bundle)
lies on a wall if and only if it possesses a point that is semistable but not stable. To this
end, the Hilbert-Mumford numerical criterion for stability is the key clue. For any
point x e X, the Hilbert-Mumford numerical criterion for stability allows one to
introduce a function

Pic^X) ->Z, L^M^),

such that x e X^L) if and only if M^) ^ 0, with strict inequality for stable points.
We show that this function can be extended to a lower convex function M'(^) on G°(X).

Using the notion of Kahler quotients one can give meaning to the sets Xs (I),
X^/) for points I e GG(X) not necessarily coming from the classes of G-linearized
ample line bundles. The function M'(^) can be used to give a criterion for a point x
to belong to the sets Xs {I), X^).

Next we define a wall in GQ{X) as the set H(^) of zeroes of the function M\x),
where the stabilizer of the point x is of positive dimension. The class / e CG(X) belongs
to the union of walls if and only if X^/) + X8^). A non-empty connected component
of the complement of the union of walls is called a chamber. Any chamber is an equi-
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valence class with respect to the equivalence relation l ^ l ' oX®^/) = X^/'). Other
equivalence classes are contained in walls and each one is a finite disjoint union of
connected subsets called cells.

0.2.3. Theorem. — (i) There are only finitely many chambers, walls and cells.
(ii) Each wall is a closed convex cone.
(iii) The closure of a chamber is a rational polyhedral cone inside of CP(K).

0.2.4. To answer the second main question, we describe how the quotient changes
when the G-linearized ample line bundle moves from one chamber to another by crossing
a wall. Assuming some conditions on the wall we prove that under this change the GIT
quotient undergoes a very special birational transformation which is similar to a Mori
flip. To state the main result in this direction we need a few definitions. For any chamber C
we denote by X^G) the set X8^), where / e G. Likewise, for any cell F we denote by
X^F) (resp. X^F)) the set X88^) (resp. X8^)), where / e F. Any point x e X^F^X^F)
whose orbit is closed in Xs8 (F) is called a pivotal point of F. Its stabilizer is a reductive
subgroup of G. A cell F is said to be truly faithful if it lies in the closure of a chamber
and the stabilizer subgroup G^ of any pivotal point A: of F is a one-dimensional diago-
nalizable group. For example, any cell which is not contained in another cell is always
truly faithful when G = T or when we replace X by X X G/B (G/B is the flag variety
of G) and consider the natural diagonal action of G on the product. The latter will
assure that our theory applies to symplectic reductions at general coadjoint orbits. We
say that two chambers Gi and G^ are relevant with respect to a cell F if both of them
contain a point x e F in their closures and there exists a straight segment through x
with points in Gi, C^. We say that a cell is rational if it contains a point from NS^X) ® 0.
Let F be a truly faithful rational cell F. Then X^F^X^F) has a canonical stratification
by the so-called orbital type: two points x and y of X^F^X^F) are said to have the
same orbital type if G^ and Gy are conjugate to each other. This stratification induces
a stratification of (X^F) //G^X^F) //G).

0.2.5. Variation Theorem. — Assume X is nonsingular. Let C+ and G~ be a pair of
chambers relevant to a truly faithful rational cell F. Then there are two natural birational morphisms

^:X8(G+)/ /G->X8 8(F)//G

and f_ : X^C-) //G -> X^F) //G

such that, setting So to be (X^F) //G^X^F) //G), we have

(i) f^. and f_ are isomorphisms over the complement of^Q;
(ii) the fibers of the mapsf^ over each connected component S^ of a stratum of SQ are the quotients

of weighted projective spaces of some dimension d^ by the finite group 7T:o(GJ where x is some
pivotal point of F;

(iii) d^ + flL + 1 = codim S^.
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Note that for any two cells F and F' such that F n F' + 0 there is a natural map
fy, p:XSS(F')//G -^X^F^/G. Our result covers only a very special case of possible
variation theorems which should describe the fibers of the maps /p^p- ^or example,
we have no results in the case when there are no non-empty chambers although one
may still pose the question of variations of quotients in this case. Neither do we have
results describing the variation of quotients when one moves from one chamber to another
by crossing an arbitrary cell.

0.3. Symplectic reductions
The theory of moment maps sets up a remarkable link between quotients in

Algebraic Geometry and quotients in Symplectic Geometry. Let (X, <*)) be a compact
symplectic manifold with a compact Lie group K acting by symplectomorphisms. Let
0 : X -> Lie(K)* be a moment map. Choose a point p e 0(X), the orbit space ̂ ~l{K'p)|K
is, by definition, the Marsden-Weinstein symplectic reduction at p. When p is a regular
value ofO and the action ofK on O-^K^) is free, O-^K-^/K inherits the structure
of a symplectic manifold from (X, <o). It is known that for a fixed Weyl chamber l)^,
the intersection 0(X) n 1)̂  is a convex polytope. The connected components of the
regular values ofO in 1)̂  form top chambers in 0(X) n ̂ . The set of critical values
ofO in 1)̂  forms walls. Vp stays in a chamber, the differential structure ofO'^K^/K
remains the same (the symplectic form, however, has to change). But when we cross
a wall, the diffeomorphism type ofO'^K.^/K undergoes a "flip" (see [GS]). In the
situation when X is an embedded projective variety and the symplectic form is the
Fubini-Study symplectic form, the variation of the symplectic reductions can be seen
as the variation of GIT-quotients. This can be achieved by using the so-called shifting
trick; one can identify, for generic rational point p, O'^K-^/K with a GIT-quotient
of X X G/B by the diagonal action of the group G (when p is on the boundary of \)\,
one should consider G/P instead of G/B). Here K is a maximal compact subgroup of G
and the linearization of the action is obtained by the Segre embedding of X X G/B by
using the ample bundle on G/B corresponding to the character of B defined by the point p.

0.4. Hilbert, limit quotients, and moduli problems

The quotients X^F^/G and the morphisms fy^ form a projective system.
So by taking the projective limit of this system we obtain a variety which dominates
all GIT quotients of X. We call this variety the limit quotient of X by G. The notion of
the limit quotient is closely related to some earlier constructions using the Chow or
Hilbert scheme parameterizing the generic orbit closures and their limits (see [BBS],
[Li], [Ka], [KSZ], and [Hul]).

There are numerous examples of birational variations of moduli spaces in the
case when the notion of stability of geometric objects depends on a parameter. In many
of these cases the variation can be explained as a variation of a geometric invariant
quotient. This basic observation was probably made first by M. Thaddeus (cf. [Re],
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[Thi]). In this paper we are not discussing the applications of our theory to the moduli
problems and the limit quotients; we plan to return to this and produce more examples
in subsequent publications.

After the first preprint version of our paper had appeared, we saw a preprint of
Thaddeus (now the paper [Th2]) where our finiteness theorem and some results in
section 4 were reproved by different methods. For example, by using Luna's slice theorem,
he obtains some further information about the algebraic structure of the flip maps in
Theorem 0.2.5. A similar approach to the proof of Theorem 0.2.5 was independently
proposed by Charles Walter.

Acknowledgments. — We would like to thank the following people who helped us
in various ways during the preparation of this work: Steve Bradlow, Michel Brion,
Janos Kollar, Amnon Neeman, Miles Reid, Michael Thaddeus, among others. We are
especially grateful to Charles Walter and Nicolas Ressayre who suggested counter
examples to some of the assertions from the earlier versions of our paper. The second
author would like to thank Robert MacPherson for introducing him to the comparison
problem of different quotients. Thanks are also due to the referee for his patience and
many useful critical comments. Finally we happily acknowledge the hospitality of the
Max-Planck-Institut where part of this work was written up.

1. THE NUMERICAL FUNCTION M-M
AND SOME FINITENESS THEOREMS

Throughout the paper we freely use the terminology and the basic facts from
Geometric Invariant Theory ([MFK]). We shall be working over the field C of complex
numbers, although most of what follows is valid over an arbitrary algebraically closed field.

1 . 1 . The function M^x)

I.I.I. Let (T : G x X -> X be an algebraic action of a connected reductive linear
algebraic group G on an irreducible projective algebraic variety X. Let L e Pic^X)
be a G-linearized line bundle over X. For every x e X and any 1-parameter subgroup
X : C* -> G, the subgroup X(C*) acts on the fiber L^ over the point XQ == lim^o \{t) .x
via a character t — ^L(a^. The number ^{x, X) satisfies the following properties:
(i) ^{g'^g'^'g-1) == ^(A-.X) for any g eG;

(ii) for fixed x and X, the map L }-> ̂ {x, X) is a homomorphism Pic°(X) ->Z;
(iii) ^(^•X.^-1) =^,X) for any ^eP(X) , where P(X) is a certain parabolic

subgroup of G associated with X (see 1.2.1 below);
(iv) ^(lim^^)-^) == ^X).

The numbers ^{x, X) are used to give a numerical criterion for stability of points
in X with respect to an ample G-linearized line bundle L:

x e X^L) o [^{x, X) ^ 0 for all one-parameter subgroups X,
x e Xs (L) o [^(x, X) < 0 for all one-parameter subgroups X.
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Here we use the definitions of the sets Xs8 (L) and Xs (L) given in 0.1. As usual,
X^L) :== X^^L) denotes the set of unstable points. For future use we let X^L)
denote the complement X^L^X^L). Its points are called strictly semistable.

1.1.2. It follows from the numerical criterion of stability that

X^L)^ n x^), X^L)^ n x8^),
T maximal torus T maximal torus

where Lp denotes the image of L under the restriction map Pic°(X) -^Pic^X).

1.1.3. Let T be a maximal torus of G and W = N^(T)/T be its Weyl
group. We denote by ^(G) the set of one-parameter subgroups of G. We have
^(G) == U^eo^^T^"1). Let us identify ^(T)®R with R^ where w==dimT,
and consider a W-invariant Euclidean norm || || in R". Then we can define for any
X e^(G), |] X || :== || IntQ^) o X || where IntQ?) is an inner automorphism of G such
that Int(^)oXe^(T).

Now let

^^X):^^^^, M\x):= sup ^X).
|| X |[ xear«(G)

The function M\x) : Pic°(X) ->R will play a key role in the rest of the paper. We
shall show in Proposition 1.1.6 that M^A:) is always finite. To this end, we first have

1.1 .4 . Lemma. — Assume L is ample. Let T be a maximal torus of G and
T-T : Pic°(X) -> Pic^X) be the restriction map. Then for any x e X, the set{ M^\g'x}, g e G }
is finite and M )̂ == max^^ M^^g-x).

Proof. — See [Net], Lemma 3.4. D

1.1.5. Assume L is ample. Then we can give the following interpretation of the
number M^A;). Replacing L with some positive power L0'1, we may assume that L is
very ample. Choose a G-equivariant embedding of X in a projective space P(V) such
that G acts on X via its linear representation in V. Let us assume that G is the ^-dimen-
sional torus (C*)". Then its group of characters ^*(G) is isomorphic to Z^ The isomorphism
is defined by assigning to any (m^, ..., mj e Z" the homomorphism / : G -> C" defined
by the formula

x^i, •••^J = ^ 1 - - - €"•
Any one-parameter subgroup X : C* -> G is given by the formula

^)=(fs...,r")
for some (r^ ..., rj 6 Z". In this way we can identify the set ^(G) with the group Z\
Let X e ̂ (G) and % e ^*(G); the composition / o X is a homomorphism C* ~> C*, hence
is defined by an integer m. We denote this integer by < X, ^ >• It is clear that the pairing

^(G) x ar(G) -> z, (x, x) ̂  < \ x >.
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is isomorphic to the natural dot-product pairing Z" X Z" -> Z. Now let

V= © V,,
x e ̂ "(G) "

where V ^ = = { y e V : ^ - y = = ̂ ) • y}. For any v e V we can write v == S^ z^, where
^ e V^. The group G acts on the vector v by the formula g ' v = S^ ̂ ) • ̂ . Let A? e P(V)
be represented by a vector v in V. We set

st(^) = { ^ : ̂  + 0 } (the state set of x),

Gonv(st(;c)) == convex hull of st(x) in ^*(G) ®R.

Then ^{x, X) == min^^ao < x? X )• I31 particular,

^eX^L) oOeGonv(st(^))

^ e X^L) o 0 6 Gonv(st(^))0,

where the upper < < 0 5 9 means taking the interior.

In fact, ? is equal to the signed distance from the origin to the boundary
I I A I I

of the projection of Conv(st(;v)) to the positive ray spanned by the vector X. Then
[ ML{x) | is equal to the distance from the origin to the boundary of Conv(st(A;)). Now
if G is any reductive group we can fix a maximal torus T in G and apply Lemma 1.1.4.
This will give us the interpretation of the function M^A:) in the general case.

Now we are ready to show

1.1.6. Proposition. — For any L e Pic^X) and x e X, M^) is finite.

Proof. — It follows from the previous discussion that M^) Is finite if L i§ ample.
It is known that for any L ePic(X) and an ample Li £Pic(X) the bundle L^L®^
is ample for sufficiently large N. This shows that any L G Pic°(X) can be written as
a difference Li®!^"1 for ample Li, Lg ePic^X). Replacing L with sufficiently high
power L®71 we may assume that Li and 1L^ are very ample. We have

^'-^-p^--^-
If G is a torus, then it follows from 1.1.5 that the function X -> ^{x^ X) is piecewise

linear, hence continuous. This implies that the function -,—— -> is continuous,
I I x I I 11 x I I

and hence bounded on the sphere of radius 1. Hence it is bounded from below and
from above. If G is any reductive group, and T is a maximal torus of G, we use that
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p^X) ^ ^^(g-^Xi)^ ^^ ^^ ̂  ^^ Xie^(T). Since the set of all
11 x I I I I \ I I

possible state sets st^g-A:) is finite, we obtain that

infi^^^infinf^1^-^
x | |X| | o ^ pi||

is finite. We now have
/W^X) !^'(;c,X)\ ^(^X) (A1'21^)

M w -8UP (TiT + -M-)< Mp W + wp ̂ ^-
This implies that M^A:) is finite because M^A:) is obviously bounded from below. D

1.1.7. One can restate the numerical criterion using the function M^^x): For
any ample L e PicG(X) on a complete algebraic variety X

X^L) ^{^eX:]^)^}, X^L) = = { ^ 6 X : M L ( ^ < 0 } .

1.2. Adapted one-parameter subgroups

The main references here are [Ne2], [Ke], [Kil],

1.2.1. For every one-parameter subgroup X one defines a subgroup P(X) c G by

P(>,) :== { g e G : lim \(t) ' g ' U t ) ' 1 exists in G }.
( ->0

This is a parabolic subgroup of G; X is contained in its radical. The set

W:={g=^W'g^W~19'g^fW}

is the subgroup of P(X) which centralizes X. The set of g^s such that the limit equals 1
forms the unipotent radical U(X) of P(X) (see [MFK], Prop. 2.6). We have

P(X) =U(X)xL(X).

Fix a maximal torus T containing X. Let g = t® ©aeo 9a be the root decomposition
for the Lie algebra g of G, where t is the Lie algebra of T. Then

Lie(L(X)) = t® ©^ 9a, Lie(U(X)) = ̂ 9a.

1.2.2. Definition. — Let LePic°(X), ;ceX. A one-parameter subgroup X is called
adapted to x with respect to L if

^{x, X)w = "imp
The set of primitive (i.e. not divisible by any positive integer) adapted one-parameter subgroups
will be denoted by A^).
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The following three statements are important for the later use.

1.2.3. Theorem. — Assume L is ample and x eX^L). Then
(i) there exists a parabolic subgroup P(L)^ c G such that P(L)^ == P(X) for all \ e A^);

(ii) ^/ elements of A^{x) are conjugate to each other by elements from P(X);
(iii) if T is a maximal torus contained in P(L)^ then A^) n ^(T) /orn^ o^ orbit with

respect to the action of the Weyl group.

Proof. — This is a theorem of G. Kempf [Ke]. D

1.2.4. Corollary. — Assume x eX^L). Then for all g eG
(i) A^g.x)=Int{g)AJJ{x);

(ii) P(L),., = Int(^) P(L),;
(iii) G,CP(L),.

1.2.5. Theorem. — Assume that L e PicG(X) is ample and x e X^L). Let \ e A^)
and y = lim^ _^o X(^) • ̂ . Then
(i) XeA^);

(ii) M^) == ML(^).

Proo/: — This is Theorem 9.3 from [Ne2]. D

1.3. Stratification of the set of unstable points

Following Kempf [Ke] and Hesselink [He], we introduce the following algebraic
stratification of the set X^L), which will serve as a basic tool in § 3 and § 4.

1.3.1. For each d> 0 and conjugacy class < T > of a one-parameter subgroup T
of G, we set

%<T> = { x e X : JVF^) === d, 3 g e G such that Int(^) o r e A^) }.

Let r be the set of conjugacy classes of one-parameter subgroups. For any ample L

X=X8s(L)u U S^
d>o,<T>er "''^

is a finite stratification of X into Zariski locally closed G-invariant subvarieties of X.
Observe that property (ii) of Theorem 1.2.3 ensures that the subsets S^ ̂ , d> 0,
are disjoint.

1.3.2. Let x G S^ <^. For each \ e A(x) we can define the point y = lim<_o X(^). x.
Clearly X fixes y. By Theorem 1.2.5,j/eS^. Set

Z ,̂ :== { ^ e S^^ : X(C) C G^ for some X e < T > }.
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Let us further subdivide each stratum S^ ̂  by putting for each X e < T >

S^^^eS^XeA1^)}.

Hesselink calls these subsets blades. If

Z^:={^eS^:X(C*)CG,},

then we have the map

A,x : S^, -> Z^,, x^y= Jnn \{t)'x.

The following result will be frequently used later. Its proof can be found
in [Kil], § 13.

1.3.3. Proposition. - (i) S^ = { x e X : lim ,̂ X(^ e Z^, } =^(Z^);
(ii) ybr ^acA connected component Z^^ of 7^-^ the restriction of the map p^: S^ ->• Z^

ozw Z^" ^ ^ is a vector bundle with the zero section equal to Z^ ̂ , assuming in addition
that X i.y smooth;

(lii) S^ ^ ^ 'P(\)-invarianf, Z^ ^ ^ ^ L(X) -invariant; if g denotes the projection of g e P(X)
^ L(X), ^yz/or ^A x e S^, Pa^g'^ = <?-A?,x(^

(iv) ^r^ ^ a surjective finite morphism G Xp^S^ ->S^\^. /^ ^ bijective if d'> 0 and
is an isomorphism if S^ ̂  ^ normal.

1.3.4. Let X51 = { x e X : X(C*) C G^ }. By definition, Z^ C X\ As usual we may
assume that G acts on X via its linear representation in the space V = F(X, L)*.
Let V=®,V, , where V, = { v e V : \{t)'v == f v}. Then X X =U,X, X , where
X^==P(V, )nX. For any A:eZ^^, rf = M^) == ^(^ X)/| | X ||. If z/ represents x
in V, then, by definition of [^{x, X), we have y e V ^ j ^ j . Therefore, Z^CX^pjj .
Since L(X) centralizes X, each X-eigensubspace V, is stable with respect to L(X). By
Proposition 1.3.3 (iii), the group L(X) leaves Z^ invariant. The subgroup ^(C*) of L(X)
acts trivially on P(V^^)|), hence we get the action of L(X)' = L(X)/X(Cilt) on P(V^|^|)
leaving Z1'^ invariant. Let 0^\ (1) be the very ample L(X)-linearized line bundle

' d 1 1 X ||

obtained from the embedding of X^^n into P(V^^i). (Note that L(X)' === L(X)/X(Cil()
may not admit any induced linearization.) Then:

1.3.5. Proposition. — We have Z^ = (X^.ii)88^^^!)).

Proo/. — It follows from [Ne2], Theorem 9.4. D
The lemma below paves a way to our main finiteness results in the sequel.

1.3.6. Lemma. — Let IT^X^) be the (finite) set of connected components ofX^ for a fixed
\ e ̂ (G). Then G acts naturally on the set U^e^»(G) lU )̂ and has finitely many orbits in it.
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Proof. — For any g e G, we have g{Il(X^) == II (X^-^1). Since any X is conjugate
to some one-parameter subgroup of a maximal torus T, it is enough to show that the
set U^(=^(T) n(X71) is finite. Choose a G-equivariant projective embedding X<-^P(V).
Let V == ©^ V^ be the decomposition into the direct sum of eigenspaces with
respect to the action of T. For each integer i and X, let V^ == (D^^V^. Then
X71 == U,P(V^) n X. Since the number of non-trivial direct summands V^ of V is
finite, there are only finitely many different subvarieties of the form X\ Each of them
consists of finitely many connected components. D

1.3.7. For each connected component X^ of X\ one can define its contracting
set X,4' = = { A : e X : ]im^Q\{t)'x eX^}. When X is nonsingular, by a theorem of
Bialynicki-Birula [B-B], this set has the structure of a vector bundle with respect to the
natural map x ̂  lim^X(^-A:. The decomposition X = U, X^ is the so-called Bia-
lynicki-Birula decomposition induced by X. Although there are infinitely many one-
parameter subgroups of G, the number of their corresponding Bialynicki-Birula decom-
positions is finite up to the action of the group G. This follows from the next proposition
which is proven in [Hu2].

1.3.8. Proposition. — Let T be a fixed maximal torus of G. Then there are only finitely
many Bialynicki'Birula decompositions induced by all Xe^(T).

In fact, there is a decomposition of ^(T) into a finite union of rational cones
such that two one-parameter subgroups give rise to the same Bialynicki-Birula decom-
position if and only if they lie in the same cone. This is Theorem 3.5 of [Hu2]. A simple
example of this theorem is the case of the flag variety G/B acted on by a maximal torus T.
In this case, the cone decomposition of^(T) is just the fan formed by the Weyl chambers.
Each Weyl chamber gives a Bialynicki-Birula decomposition (there are [ W [ of them,
where W is the Weyl group). Other Bialynicki-Birula decompositions correspond to
the faces of the Weyl chambers.

One can also prove this proposition without appealing to the cone decomposition
of^(T). Let W == U, W^ be the union of the connected components of the fixed point
set of T. Two points x and y of X are called equivalent if whenever T~x n W, + 0,
then T.jy n W, + 0, and vice versa. This gives a decomposition of X into a finite union
of equivalence classes X = UE X®, where E ranges over all equivalence classes (X® are
called torus strata in [Hu2]). It is proved in Lemma 6.1 of [Hu2] that every Bialynicki-
Birula stratum X,4' is a (finite) union of X33. This implies that there are only finitely
many Bialynicki-Birula decompositions.

Now we can state and prove our main finiteness theorem.

1.3.9. Theorem. — (i) The set of locally closed subvarieties Sof X which can be realized
as the stratum S^^for some ample L e Pic^X), d> 0 and T e ̂ (G) is finite.

(ii) The set of possible open subsets ofX which can be realized as the set of semistable points
with respect to some ample G-linearized line bundle is finite.
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Proof. — The second assertion obviously follows from the first one. We prove
both by using induction on the dimension of X. The assertion is obvious if dim X == 0.
Assume that the statement is true for varieties of dimensions less than dim X. Con-
sider an arbitrary one-parameter subgroup X such that S^ X^ =t= X. In particular,
for such a one-parameter subgroup, the dimension of each connected component X^
of X^ is less than X. We now apply induction to each X^ acted upon by the group
G' = L(X) and obtain the statements (i) and (ii) for this action. (Here, we remark that
we do not need to require that G'-linearized line bundles are induced from the restrictions
of some G-line bundles; we just apply induction to the space X^ which is acted upon
by the group G'). By Proposition 1.3.5 and Lemma 1.3.6, this implies that the set
of locally closed subsets of X which can be realized as the subsets Z^ ̂  is finite. Now,
by Proposition 1.3.3 (i) and Proposition 1.3.8, out of the finitely many Z^^, one
can only construct finitely many S^^p and we are done. D

1.3.10. Remark. — As was pointed out by A. Bialynicki-Birula, it is enough to prove
assertion (ii) of Theorem 1.3.9 in the case when G is a torus. This immediately follows from
1.1.2. Then one uses the fact that the set of semi-stable points is a union of torus strata.

2. MOMENT MAP AND SYMPLECTIC REDUCTIONS

Here we explain the relationship between the geometric invariant theory quotients
(briefly GIT quotients) and the symplectic reductions. The main references are [Kil],
[Ne2]. The discussion is necessary for extending geometric invariant theory to the Kahler
case, throughout § 3, although it is not absolutely necessary for our approaches.

2.1. Moment map
2.1.1. Let M be a compact symplectic manifold, i.e. a compact smooth manifold

equipped with a non-degenerate smooth closed 2-form co on M (a symplectic form).
Let K be a compact Lie group which acts symplectically on M. This means that K
acts smoothly on M and for any g e K, 5*(co) == c^. We denote by { the Lie algebra
of K. We shall consider any ^ e t as a linear function on the dual space f. Each point
x e M defines a map K ->- M, g ^ g ' x . For any ^ e I, the differential of this map at
the identity element of K sends ^ to a tangent vector ^j eT{'K.'x)^C T(M),,. Thus
each ^ in t defines a vector field ^ eT(M), x\-^^. The non-degeneracy condition
on co allows one to define an isomorphism ^ from the space T(M) of smooth vector
fields on M to the space T^M) of smooth 1-forms on M.

2.1.2. Definition. — A moment map for the action ofK on M is a smooth map $ : M -> ¥
satisfying the following two properties:
(i) O is equivariant with respect to the action of K on M and the co-adjoint action of K on V;
(u)^r^Sef,^)===^oO).

If a moment map exists then it is defined uniquely up to the addition of a constant
from I* fixed by the coadjoint action. In particular, it is unique if K is semi-simple.
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2.1.3. We will be using the moment maps in the following situation. Let G be
a reductive algebraic group over the field of complex numbers C acting on a projective
nonsingular algebraic variety X C P(V) via a linear representation on V. We consider G
as a complex Lie group which is the complexification of a maximal compact subgroup K
of G. One can choose a positive definite Hermitian inner product < , > on V such that
K acts on V by means of a homomorphism p : K -> U(V), where U(V) is the unitary
group of V. Let o) be the real 2-form corresponding to a Fubini-Study metric on P(V)
determined by the inner product on V. We normalize it by requiring that, for any local
holomorphic lifting z : U -> V\{ 0 },

(o =2iaaiog| | ^||2.
The form o is a symplectic form and K acts on (P(V), o>) symplectically.

There is a moment map P(V) -^Lie(U(V))* defined by
/ y* ^ Y* \

^-^W
for all ^ e f, where x* is the vector of projective coordinates of x and we identify the
vector field ^ with an element of the Lie algebra of U(V) represented by a skew-
Hermitian operator. It induces a canonical moment map 0 : X —^ I*. Note that this
map depends on the choice of the representation K -^U(V) which is the choice of a
linearization on the line bundle ^x(^)-

This construction allows one to associate to any very ample G-linearized line
bundle L on X a unique moment map ^L : X -> Lie(U(V)). If L is not necessarily

very ample but ample, we can define O3' by - O1'®", where L®'1 is very ample. We shall
n

call this moment map the Fubini-Study moment map associated to L. If no confusion arises
we shall drop the superscript L from its notation.

2.1.4. We want to describe the image 0(X) C f. Since 0 is K-equivariant,
<t>(X) consists of the union of co-adjoint orbits. We use some non-degenerate K-invariant
quadratic form on f to identify I* with f (in the case that K is semisimple, one simply
uses the Killing form). This changes the moment map to a map O* : X -> t. Let I) be
a Cartan algebra oft and let H be the maximal torus in K whose Lie algebra is Lie(H) == I).
Via derivations any character ^ : H ->U(1) of H is identified with a linear function
on I). The set of such functions is a lattice 1)̂  ln V' Under the isomorphism I) -> I)*
defined by the non-degenerate quadratic form, we obtain a Q^-vector subspace I)Q of I)
which defines a rational structure on I). It is known that each adjoint orbit intersects I)
at a unique orbit of the Weyl group acting on I). If we fix a positive Weyl chamber 14,
then we obtain a bijective correspondence between adjoint orbits and points of 1)^..
This defines the reduced moment map:

<D^:X->l4, x^^^x} nt4.



VARIATION OF GEOMETRIC INVARIANT THEORY QUOTIENTS 19

2.1.5. A co-adjoint orbit 0 is called rational if under the correspondence

co-adjoint orbits <-> 1)̂ .
Yit is defined by an element a in I)Q. We can write a in the form - for some integer n and

y
/ e ̂ (T), where T is a fixed maximal torus of G. Elements of 1)̂  of the form - will be

called rational. We denote the set of such elements by (^+)q. By the Borel-Weil theorem,
^ determines an irreducible representation V(^) which can be realized in the space of
sections of an ample line bundle L^ on the homogeneous space G/B, where B is a Borel
subgroup containing T. Its highest weight is equal to %.

2.1.6. Theorem. — Let 0^ : P(V) -^ I)+ be the reduced moment map for the action
of K on P(V). Then Oy^(X) is a compact convex subpolyhedron of ^redO^C^)) with vertices
at rational points. Moreover

0^(X) n (14)^ = ( % : V(x)' is a direct summand of F(X, L^) as a G-module \.

This result is due to D. Mumford (see the proof in [Ne2], Appendix, or in [Br]).
Note that the assertion is clear in the situation of 1.1.5. In that case (he image of the
moment map is equal to the convex hull Gonv(St(V)) of the set St(V) = = { ^ : V ^ 4 = { 0 } } .
This convexity result was first observed by M, Atiyah [At] in the setting of symplectic
and Kahler geometry.

The following result from [Ne2] relates the moment map to the function M"(A:).

2.1.7. Theorem. — For any x e X, M^^x) is equal to the signed distance from the origin
to the boundary of^>(G.x). Ifx eX^L), then the following three properties are equivalent'.
(i) M^̂  || <DW 1 1 ;
(ii) x is a critical point for \\ 0 ||2 with nonzero critical valuer
(iii) for all t eR, exp{t^{x)) e G^, and the complexification of exp(R$*(A:)) is adapted for x

with respect to L.

2.2. Relationship with geometric invariant theory

We shall consider the situation of 2.1.3. Let L be the restriction of ^P(V)(I) to X
and 0 : X -> ¥ be the moment map as defined there. Recall that the stability of a point
A: e X with respect to L is determined by the function M^) (see 1.1.7). The following
result follows from [KN] and is explicitly stated in Theorem 2.2 of [Ne2] and § 7 of [Kit]
(in the general Kahler setting).

2.2.1. Theorem. — (i) X^L) = { x e X : G'x n (D-^O) + 0};
(ii) the inclusion q/^O'^O) into X^L) induces a homeomorphism

0-1(0)/K->X88(L)//G;

(iii) Xs (L) = Xs8 (L) if and only if 0 is not a critical value of <S>.
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2.2.2. The orbit space ^-^/K is called the symplectic reduction or Marsden-
Weinstem reduction ofX by K. It has a natural structure of a symplectic manifold provided
that 0 is not a critical value of0 and K acts freely on O'^O).

2.2.3. Let p e 6 .̂ be a point in the image of the moment map 0 ,̂ and O" C (*
be the corresponding co-adjoint orbit. It comes equipped with a canonical symplectic
structure defined as follows. Given a co-adjoint orbit 0 C ¥ and a point q e 0 we
identify the tangent space T(0), ofOat^ with a subspace off. Now the skew-symmetric
bilinear map (a, b) i-». q([a, b]) is an element to. of A^T^O)?.

Let 0" denote the symplectic manifold obtained from die symplectic manifold 0"
by replacing its symplectic form a with - (o. Then the product symplectic manifold
X X O" admits a moment map <&„ defined by the formula 0,(̂ , q) = 0^) - q. Now
the set €*„ 1{0) becomes identified with the set O-^O") and

<I>^(0)/K g ̂ -^/K,, s O-^O^/K,

where K^ is the isotropy subgroup of K at p. This quotient space is called the Marsden-
Weznstein reduction or symplectic reduction of X with respect to p. Evidently it depends only
on the orbit of p. r j

The following theorem more or less follows from the arguments given in [Ne2],
Appendix by D. Mumford. We state it without proof.

2.2.4. Theorem. — Let a = j]n be a rational element o/ b+ and L be an ample G-linearized
line bundle on X. Denote by L(%, n) the line bundle on X x G/B equal to the tensor product of
the pull-backs of the bundles L®» and 1^ under the projection maps. Let O1-®" and O^ be the
moment map associated to L®» and L^, respectively. Then for n sufficiently large, the moment
map 0, defined by L(x, n) is given by ^{x, gK) = O1-®"^) + O^B). Consequently,

(X x G/B)88^ ,̂ n))//G s ̂ (OVK = (O^^-^O-^/K.

2.3. Homological equivalence for G-linearized line bundles

We assume X to be a projective variety. This section bears no relation with
moment maps except for Theorem 2.3.8.

2.3.1. Recall the definition of the Picard variety Pic(X)o and the Neron-Severi
group NS(X). We consider the Ghern class map ^ : Pic(X) -^H^X, Z) and put

Pic(X)o = Ker(ci), NS(X) = Im(^).

One way to define c^ is to choose a Hermitian metric on L ePic(X), and set ^(L) to
be equal to the cohomology class of the curvature form of this metric. Thus elements
of Pic(X)o are isomorphism classes of line bundles which admit a Hermitian metric
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with exact curvature form ©. If @ is given locally as — d ' d" log(pj, then 0 is exact
47T

if and only if there exists a global function ^ ( x ) such that d ' d" log(p^/p) == 0 for each U.
This implies that p^/p = | <p^ | for some holomorphic function <p^ on U. Replacing the
transition functions a^y ofL with 9^ a^ <pv1 we find an isomorphic bundle L' whose
transition functions <^v satisfy | a^y | = 1. Since cr^y are holomorphic, we obtain that
the transition functions of L' are constants of modulus 1.

2.3.2. Now assume L is a G-linearized line bundle, where G is a complex Lie
group acting holomorphically on X. Let K be a maximal compact subgroup of G. By
averaging over X (here we use that K and X are compact) we can find a Hermitian
structure on L such that K acts on L preserving this structure (i.e. the maps L -^ L
are unitary maps). There is a unique unitary connection on L compatible with its
holomorphic structure. Its curvature form is a K-invariant 2-form © of type (1, 1). If

L is ample, co == , © is a symplectic form equal to the imaginary part of a Kahler

metric on X compatible with the holomorphic structure on X. A different choice of

a K-invariant Hermitian structure on L replaces co with co' == co + -z- d1 d" logfp) where
2TC

p is a K-invariant positive-valued smooth real function on X. This can be seen as follows.
Obviously © - ©' is a K-invariant 2-form d1 d" log p for some global function p. By
the invariance, we get for any g e K , d1 d" log(p(^)/p(^)) =0. This implies that
PC?*^)/?^) = I ^{x) | for some holomorphic function Cy(x) on X. Since X is compact,
this function must be constant, and the map g i~> | Cy \ is a continuous homomorphism
from K to R*. Since K is compact and connected, it must be trivial. This gives
I ^ I == P^'^/pW == 1) hence p(A:) is K-invariant.

Taking the cohomology class of © we get a homomorphism:

^:Pic°(X)-^H^Z).

2.3.3. Proposition. — The restriction to Ker(c) of the canonical forgetful homomorphism

Pic^X) -> Pic(X)

has an image equal to Pico(X) and a kernel isomorphic to ^*(G). Moreover there is a natural
section s : Pico(X) -^ Pic°(X) defining an isomorphism

Ker(^) ^ aT(G) x Pic(X)o.

Proof. — It is known (see [KKV]) that the cokernel of the canonical forgetful
homomorphism Pic^X) ->Pic(X) is isomorphic to Pic(G). Since the latter group is
finite and Pic(X)o is divisible, it is easy to see that Ker(^) is mapped surjecdvely to Pic(X)o
with a kernel isomorphic to the group ^(G). To prove the assertion it suffices to construct
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a section s : Pic(X)o -> Pic^X). Now let L e Pic(X)o. We can find an open trivializing
cover { U,}^i of L such that L is defined by constant transition functions a^y. For
each g e G the cover {g(V,) }^i has the same property. Moreover,

°'(7(U)(7(V) == (^"y^uv) = ^uv

This shows that we can define the (trivial) action of G on the total space L of L by the
formula g . { x , t ) = {g.x, t) which is well-defined and is a G-linearization on L. This
allows one to define the section s and check that ^(Pic(X)o) n ^(G) == { 1 }. n

2.3.4. Definition. — A G-linearizedline bundle L is ̂ Whomologically trivial ifL e Ker(^)
and the image ofL in ^(G) is the identity. In other words, L is homologically trivial if it belongs
to Pic(X)o as a line bundle, and the G-linearization on L is trivial (in the sense of the previous
proof). The subgroup of Pic^X) formed by homologically trivial G-linearized line bundles is
denoted by Pic^X)^. Two elements of Pic^X) defining the same element of the factor group
Pic^X^Pic^X^ are called homologically equivalent.

2.3.5. Lemma. — Let L and L' be two homologically equivalent G-linearized line bundles.
Then for any x e X and any one-parameter subgroup X, [^{x, X) = [ ^ ' { x , X).

Proof. — It is enough to verify that for any homologically trivial G-linearized
line bundle L and any one-parameter subgroup X we have ^{x, X) == 0. But this follows
immediately from the definition of the trivial G-linearization on L. D

2.3.6. Proposition. — Let L, L' be two ample G-linearized line bundles. Suppose they
are homologically equivalent. Then Xs8 (L) == Xs8 (L').

Proof. — This follows from the numerical criterion of stability and Lemma 2.3.5. D

2.3.7. Remark. — One should compare this result with Corollary 1.20 from [MFK],
Under the assumption that Hom(G, C*) == { 1 } it asserts that X^L) == X^L') for any
G-linearized line bundles defining the same element in NS(X) = Pic(X)/Pic(X)o.

2.3.8. Theorem. — Let L and L' be two ample G-linearized bundles. Suppose that L is
homologically equivalent to L'. Then the moment maps ̂  and ^Lf are equal.

Proof. — There is nothing to prove if G is trivial. So, assume that G 4= { id }.
Without loss of generality we may assume that L and L' are very ample. Choose the
Fubini-Study symplectic forms co and o/ of L and L', respectively. By assumption,

co' === <o + — d ' d" log(p) for some positive-valued K-invariant function p (see 2.3.2).

Thus we can write G/ == <o + dQ, where 6 is a K-invariant 1-form of type (0, 1). By
definition of the moment map, we have for each ^ e t

^ o 0') = t^) == ̂ (^) == ̂  o O) + L(^) 6 - rf<^, 6>,
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where L(i^) denotes the Lie derivative along the vector field ^. Here 0 = ̂ L and
0' = O^. Since 6 is K-invariant, we get L(^) 9 == 0. Because G (hence also K) acts
on X holomorphically the vector field ^ is holomorphic. But 6 is of type (0, 1), so
< ̂  6 > = 0. This shows that d(^ o 0') == d(^ o <D) and hence 0-0' is an ad(K)-
invariant constant c in t*.

We need to show that this constant c is zero. Pick a maximal torus H in K such
that c e Lie(H)*. Let T be the complexification of H and Orp be the moment map for
the action of T. Since the moment map for the action of T is the moment map for the
action of G followed by the projection V ^Lie(H)*, by the choice of H, we have
0^ === (S>y — c. Since both OrW an^ ^rW are rational polytopes (Theorem 2.1.6),
we see that c must be rational.

Assume c =)= 0. Consider the one-parameter (algebraic) subgroup X generated by
the vector c and let 0^ and O^ be the moment maps for the action of X (with respect
to the obvious linearizations induced from L and L', respectively). Clearly, 0^ == O^ — c.
Recall here that ^{x, X) is the (signed) distance from 0 to the moment map image of
\-x. If X acts trivially on X, the moment map must be constant. From 1.1.5 and
Lemma 2.3.5, we see that 0^ = 0^. Thus c = 0, a contradiction. If X does not act
trivially on X, then the moment map image 0^(X) must be a one-dimensional closed
interval. Obviously we can find a vertex F such that dist(0, F) 4= dist(c, F) == dist(0, F — c).
Note that the vertex F must be equal to O^(^) for some X-fixed point x = X.A:.
Using that 0^ == 0^ — c, we conclude rf(0, O^(X^)) + ^(0, $^(X.A:)). That is,
^^(x, X) + ̂ ^{x, X), where r^ : Pic°(X) -^Pic^X) is the restriction map, thus a
contradiction to Lemma 2.3.5. D

2.3.9. Let NS°(X) = Pic^/Pic^X^. By Proposition 2.3.3, we have an
exact sequence

0 -^a-(G) -^NS^X) ->NS(X) ->A ->0,

where A is a finite group. It is known that the N^ron-Severi group NS(X) is a finitely
generated abelian group. Its rank is called the Picard number ofX and is denoted by p(X).
From this we infer that NS°(X) is a finitely generated abelian group of rank p°(X)
equal to p(X) + t{G), where t{G) is the dimension of the radical R(G) of G. Let

NS^X^ =NSG(X)®R

be the finite-dimensional real vector space generated by NS^X).

2.4. Stratification of the set of unstable points via moment map

Here we need to compare the Hesselink stratification of the set X\XSS(L) with
the Ness-Kirwan stratification of the same set using the Morse theory for the moment map.

2.4.1. Let X be a compact symplectic manifold and K be a compact Lie group
acting symplectically on it with a moment map 0 : X -> i*. We choose a K-invariant
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inner product on I and identify t with f. Let/(^) == [| O(A:) ||2. It is obvious that the
critical points of 0 are critical points of/: X ->R. But some minimal critical points
of/need not be critical for 0 (consider the case when 0 is a regular point ofO). For
any (B e 1 we denote by Op the composition of 0 and (B : f -> R. Let Zp be the set of
critical points of Op with critical value equal to |[ (3 ||2. This is a symplectic submanifold
of X (possibly disconnected) fixed by the subtorus Tp which is equal to the closure in H
of the real one-parameter subgroup exp R(B, where H is a suitable maximal torus of K.

2.4.2. Now assume that the symplectic structure on X is defined by the imaginary
part of a Kahler metric on X. Let G be the complexification of K. This is a reductive
complex algebraic group. We assume that the action of K on X is the restriction of an
action of G on X which preserves the Kahler structure of X. Then we have a stratifi-
cation { Sp } chosen with respect to the Kahler metric on X. In this case we can describe
the stratum Sp as follows:

Sp = { x e X : (B is the unique closest point to 0 of 0^(G.;v) }•

Let Z^" denote the minimal Morse stratum of Zp associated to the function || 0 — (B ||2

restricted to Zp. Note that Op is the moment map for the symplectic manifold Zo with
respect to the stabilizer group Stab? of (B under the adjoint action of K. Let Y^ be
the pre-image of Z^ under the natural map Yp -> Zp.

For any (B e B let

^P) =={<?eG:exp(^(B).5.exp(—^(B) has a limit in G}.

It is a parabolic subgroup of G, and is the product B.Stabp where B is a suitable Borel
subgroup of G.

2.4.3. Theorem. — (i) If x e Y^10 then { g e G \ g ' x e Y^} = P(|B).
(ii) There is an isomorphism Sp ^ G X p^ Y^.

Proof. — This is Theorem 6.18 and Lemma 6.15 from [Kil]. D
The relationship between the stratification { Sp } and the stratification described

m section 1.3 is as follows. First of all we need to assume that X is a nonsingular projecdve
algebraic variety and the Kahler structure on X is given by the curvature form of an
ample L on X. In this case each (3 is a rational vector in (4 == Lie(H)+. For any such p
we can find a positive integer n such that w(B is a primitive integral vector of I)+ and
hence defines a primitive one-parameter subgroup Xp of G.

2.4.4. Theorem. — There is a bijective correspondence between the moment map strata
{ Sp }p+o an^ ̂  stra^ { S^>} given by Sp -> Sf|pji^ ^. Under this correspondence:

(i) P((B) === P(Xp), Stabp == L(Xp) (R);
(11) Zp == X^ippjj, Zg^^Zfipn^p;
(iu) ̂  = Sf;3H.X3.

Proof. — See [Kil], § 12, or [Ne2]. D
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There is the following analog of Theorem 1.3.9:

2.4.5. Theorem. — (i) The set of locally closed subvarieties S ofX which can be realized
as the stratum Sp for some K-equivariant Kdhler symplectic structure and (B eLie(H)* is finite.

(ii) The set of possible open subsets ofX which can be realized as the stratum So for some
Kahler symplectic structure on X is finite.

Proof. — The second assertion obviously follows from the first one. We prove
the first assertion by using induction on the rank ofK. The assertion is obvious i f K = = { l } .
Applying induction to the case when X is equal to a connected component of Zp and
K == Stab^/T^, we obtain that the set of open subsets of some connected component
of Zp which can be realized as the connected component of the set Z^ is finite. The
finiteness of the set of subsets that can be realized as Z^ follows from Lemma 1.3.6.
This implies that the set of locally closed subsets of X which can be realized as the
subsets Z^ is finite. Now each Z^ determines Y^, and by Theorem 2.4.3, the
stratum Sp. D

2.5. Kahler quotients

We can extend many notions of GIT to the Kahler category using a moment
map 0 : X -> f with respect to a Kahler symplectic form co on X, i.e. the imaginary
part of a Kahler Hermitian metric on X (see [Kil], § 7).

2.5.1. As in Definition 2.2 of [Sj], one possible way to go for a Kahler quotient
is to set

X^O) == { x e X : G.x n O-^O) + 0 }.

If K acts quasi-freely on O'^O), Kirwan ([Kil]) proved that O-^/K is naturally
homeomorphic to the orbit space X^d^/G which is HausdorfF and has an induced
complex analytic structure. This correspondence was extended to the case when 0 is
a singular value ofO (Theorem 2.5, [Sj]).

2.5.2. To relate to the numerical function M"(^), we can give an equivalent
way to define notions of Kahler stability and quotient as follows. (The equivalence
follows from Proposition 2.4 of [Sj].) For any x eX and X e^(G) we define

^(^X)== | |X | [^ (0 , (D(G.^) ) ,

where d^{0. A) denotes the signed distance from the origin to the boundary of the
projection of the set A to the positive ray spanned by X. Thus we can define

M°(^) =sup^(0,(D(G.^))
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so that M^{x) is equal to the signed distance from the origin to the boundary of $(G.A?).
Then we define

X^O) = { x e X : M^) ^ 0 }, X8^) :={xeX: M^) < 0 },

and X888^ =X8S($)\XS((D). The quotient X^O)/^ (i.e. modulo the relation
x ̂ y o G.x n G.jy n X^O) + 0) exists as a HausdorfT complex analytic space and
is homeomorphic to the symplectic reduction 0-1(0)/K3 as proved by Kirwan [Kil]
and Sjamaar [Sj]. These agree with the previous notions when <o is induced from a
G-linearized line bundle L and 0 is the Fubini-Study moment map.

As in the case of Hodge Kahler structures we can define the set of primitive adapted
one-parameter subgroups A°(^). There are analogs of Theorems 1.2.3 and 1.2.5 in
our situation.

3. THE G-AMPLE CONE

3.1. G-effective line bundles

We will assume that X is projective and normal, possibly singular; X will be
assumed to be smooth whenever moment maps are used, explicitly or implicitly. We
want to point out that even in such cases, smoothness assumption may not be essential
and may be removed by some rationality results about chambers or walls.

We first recall some standard definitions from the geometric invariant theory. For
any G-linearized line bundle L (not necessarily ample) and a section a e r(X, L®^
for some positive integer n, set

X, = { ;, e X | a{x) + 0 },

X^L) = = { A : e X | 3 7 z > O a n d ( 7 G F(X, L0")0 such that x e X,, and X,, is affine },

and
X^L) = { x e X^L) | G^ is finite and G ' x is closed in X^L) }.

When L is ample, the above definitions are the same as described in 0.1.

3 .1 .1 . Definition. — A G-linearized line bundle L on X is called G-effective if Xs8 (L) =+= 0.
A G-effective ample G-linearized line bundle is called G-ample.

3.1.2. Proposition. — Let L be an ample G-linearized line bundle. The following assertions
are equivalent:

(i) L is G-effective;
(ii) F(X, L®")0 4= { 0 }for some n > 0;
(iii) if 0 : X -> V is the moment map associated to a G-equivariant embedding of X into a pro-

jective space given by some positive tensor power ofL, then O^O) + 0.

Proof. — (i) o (ii). Follows from the definition of semistable points.
(ii) o (iii). Follows from Theorem 2.2.1. D
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3.1.3. Proposition. — IfT^ and M are two G'ejfective G-linearized bundles then L®M
is G-effective.

proof. — Let x e X^L) n X8S(M). Then there exists oeI^X.L®^ and
a e F(X, M0111)0, for some n, m > 0 such that CT(A:) + 0, a^x) + 0. Moreover X^ and X^
are both affine. By taking suitable tensor powers if necessary, we may assume that
m = n. Hence Xg^g. == Xg n Xg. is also affine and the G-invariant section a® a'
ofL^^M071 does not vanish at x. This shows that A: e X^L® M), hence L ® M
is G-effective. D

3.1.4. An element of NS^X) will be called G-ample if it can be represented by
a G-effective ample line bundle. By Proposition 2.3.6, all ample G-linearized line
bundles in the same G-ample homological equivalence class are G-effective.

Let NS^X)"^ denote the subset of G-ample homological equivalence classes.
Using Proposition 3.1.3, one checks that it is a semigroup in NS°(X).

Here comes our main definition:

3.2. The G-ample cone

Here comes our main definition :

3.2.1. Definition. — The G-ample cone (for the action of G on XJ is the convex cone
in NS°(X)n spanned by the subset NS°(X)+. It is denoted by C°(X).

3.2.2. Let X be a compact Kahler manifold. The subset of the space H^X, R)
formed by the classes of Kahler forms is an open convex cone. It is called the Kahler
cone. Its integral points are the classes of Hodge Kahler forms. By a theorem of Kodaira,
each such class is the first Chern class of an ample line bundle L. The subcone of the
Kahler cone spanned by its integral points is called the ample cone and is denoted by
A^X)"^ It is not empty if and only if X is a projective algebraic variety. It spans the
subspace A^X)^ of H^X.R) formed by the cohomology classes of algebraic cycles
of codimension 1. The dimension of this subspace is equal to the Picard number of X.
The closure of the ample cone consists of the classes of numerically effective (nef) line
bundles [Kl]. Recall that a line bundle is called nef if its restriction to any curve is an
effective line bundle. Under the forgetful map NS°(X)R ->NS(X)a, the G-ample cone
is mapped to the ample cone. Summing up we conclude that

G^X) = EF^X) n a-WX^),

where a : NS^X)^ ~> NS(X)R -^H^X, R) is the composition map, and EF°(X) is
the convex cone in NS^X)^ spanned by G-effective G-linearized line bundles.

3.2.3. Remark. — There could be no G-effective G-linearized line bundles, so
C^X) could be empty. The simplest example is any homogeneous space X = G/P,
where P is a parabolic subgroup of a reductive group G.
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3.2.4. Let us recall some standard terminology and elementary facts about convex
cones. The minimal dimension of a linear subspace containing a convex cone S is called
the dimension of S and is denoted by dim(S). The relative interior ri(S) of S is the interior
of S in the sense of the topology of the minimal linear subspace containing S. It is not-
empty if S is of positive dimension. A closed convex cone is called polyhedral if it is equal
to the intersection of a finite number of closed half-spaces. A linear hyperplane L is
called a supporting hyperplane at a point x e B(S) if x e L and S lies in one of the two half-
spaces defined by this hyperplane. This half-space is called the supporting half-space at x.
Each point in the boundary of a convex cone belongs to a supporting hyperplane at
this point. A face of a convex cone S is a subset of S equal to the intersection of S with
a supporting hyperplane. Each face is a closed convex cone. The closure of a convex
cone is a convex cone. The boundary of a closed convex cone is equal to the union of
its faces. A function / : V - ^ R u { o o } i s called lower convex if

/(^+jO^/W+/(^)
for any x,y e V. It is called positively homogeneous iffC^c) == '>f(x) for any nonnegative X.
If/is a lower convex positively homogeneous function, then the set { x e V :f(x) < 0 }
is a closed convex cone.

Now we can go back to our convex cone G^X).

3.2.5. Lemma. — For each x e X the function Pic^X) ->R, L ̂  M^^x) factors
through NS°(X) and can be uniquely extended to a positively homogeneous lower convex function
M^-.NS^X^-^R.

Proof. — By Lemma 2.3.5, M^x) = M^) if L is homologically equivalent
to L'. This shows that we can descend the function L ~> M^A;) to the factor group NS°(X).
By using I . I . I (ii), we find M^^) = n'ML(x) for any nonnegative integer n, and

M-'(,) » »p -^ » ,up (^ îf'̂ ')

<?p^+T>^f=MlW+Ml•W.

Let us denote by [L] the class ofL ePic^X) in NS°(X). For any positive integer n, set

M^\x) = 1 M )̂.
n

This enables us to extend the function L -> M^) to a unique function on

NS^X^^NS^X)®^
satisfying

M^^x) ̂  M\x) + M )̂, M^x) = ocM^)
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for any /, V eNS^X)^ and any non-negative rational number a. Now set

S = { (/, r) e NS°(X)Q x R : M\x) ̂  r }.

The closure of S in NS^X)^ x R is a convex cone. It is easy to see that the boundary
of this cone is equal to the graph of a positively homogeneous lower convex function.
This function is the needed extension of M^) to NS^X)^. D

3.2.6. Let p == dim G^X). Fix p linearized very ample line bundles Li, ..., L
whose images (still denoted by L,, i == 1, ..., p) in CG(X) form a basis over R. Let
<o, (?'=== 1, ..., p) be the Fubini-Study Kahler form defined by L,. By Theorem 2.3.8,
there is a unique moment map O^ for each 1 ̂  i ̂  p. Now for any

l==a,L,+ ... +^Lp6GG(X),

one verifies directly that <S>1 == a^ O^ + ... + a? 0^ is a moment map with respect
to the Kahler form <o = a^ ̂  + ... + a^ (x>p. By 2.5, this moment map defines a
Kahler quotient X^y/O. The following proposition will imply that X^y/O does
not depend on the choice of the R-basis Li, .. .3 Lp.

3.2.7. Proposition. — For each x e X the restriction of the function M\x) to C^X)
coincides with the function [co] -> M^(x), where &> is the representative of [co] as in 3.2.6 and
M"̂ ) is M^(x) as defined in 2.5.2 using the moment map described above.

Proof. — The two functions coincide on the dense set of rational points in C^X). D

For convenience, we fix an R-basis Li, .. .,Lp of C°(X) once and for all. In
what follows, we shall always use the moment maps as described in 3.2.6. The so-defined
Kahler quotients X^/^/O, however, do not depend on these choices by Proposition 3.2.7.

Next, what can we say about the boundary ofG^X)? It is clear that any integral
point in it is represented either by an ample line G-bundle or by a nef but non-ample
G-bundle L.

3.2.8. Proposition. — Let L be an ample G-linearized line bundle which belongs to the
boundary of C^X). Then L e C°(X) and X^L) == 0.

Proof. — First let us show that X^L) = 0. Suppose x eX^L), then M^A:) < 0
and hence the intersection of the open set{ / : M\x) < 0 }with the open cone a'^A^X)^)
is an open neighborhood of [L] contained in G^X). This contradicts the assumption
that [L] is on the boundary.

Now let us show that LeG°(X), i.e. X^L) =)= 0. Suppose X^L) =0. This
means that ML(x) > 0 for all A? e X. By Theorem 1.3.9 the set y of open subsets U
ofX which can be realized as the set Xs8 (M) for some ample G-linearized line bundle M
is finite. Choose a point x^ from each such U. Then X^L) = 0 if and only if M^^) > 0
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for each U. This shows that [L] is contained in the intersection of the open set
{l:M\x^>0,U e ^ } with the open cone a-^A^X)^). Thus [L] belongs to the
complement of the closure of C^X), contradicting the assumption on L. D

3.2.9. Corollary. — Assume that there exists an ample G-linearized line bundle L with
X^L) + 0. Then the interior of C^X) in NS^X)^ is not empty.

3.3. Walls and chambers

3.3.1. Definition. — A subset H of CP^X) is called a wall if there exists a point
x e XOQ) :== { x : dim &, > 0 } such that H = H(x) : = { l e G^X) : M\x) == 0 }. A
connected component of the complement of the union of walls in CG(X), if non-empty, is called a
chamber.

3.3.2. Theorem. — Let I, V be two points from C^X).
(i) / belongs to some wall if and only ifX^^l) 4= 0;

(ii) I and V belong to the same chamber if and only if X8^) = X88^) == X88^') = X8^');
(iii) each chamber C is a convex cone, and is of the form

C==^^{l:M\x)<0}

where X^C) :== X\V) for any I e C.

Proof. — (i) If / belongs to some wall then there exists a point x e X^ such that
M\x) ==0. By 2.5.2, x eX^t^l). Conversely, if x eX^^l) then the closure of G ' x
contains a closed orbit G'jy in X^^l) with stabilizer Gy of positive dimension. Thus
/ lies on the wall H(j^).

(ii) First assume that I and I ' belong to the same chamber C. By (i) we have
X8^) = X^) and X88^') == X8^). Note that by definition X8^) = {x e X : M\x) < 0 }.
The function M\x) does not change sign in the interior ofG. Because if it did, we would
find a point ^ in C such that M10^) == 0. This would mean, by (i), that IQ belongs to
a wall, a contradiction. This shows that the set X8^) does not depend on / e C, in
particular, X8^) = X8^'). We shall denote X8^) by X^C).

Let us prove the converse. Assume that / e G and Z' e G' where C and G' are two
chambers. By assumption, X^G) == X^C'). We obviously have

C ,G ' cn , exs (C){M-W<0} .

Pick any F in n^xs(o{ M-(^) < 0 }. Then X^C) C X8^"), hence we get

X^/GCX^/G.

By (i), the first quotient is compact. Therefore the second quotient is compact and
X8^") == X^F). This shows that F does not belong to the union of walls. That is,
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ria;gxs(c){ M'(^) < 0 } consists of points from chambers. However, it is easy to see that
ria;^xs(c){ I : M^A?) < 0 } is convex, and hence connected. Therefore it must coincide
with G by the definition of a chamber and the inclusion displayed above. This shows
that C === G' (that is, the set X^C) determines the chamber C uniquely).

(iii) By the proof of the property (ii), any chamber C is of the form

C=n,exs(c){^M^)<0}.

Now the convexity follows from the fact that the function M.\x) is positively homogeneous
lower convex. D

3.3.3. Theorem. — There are only finitely many walls.

Proof. — For any wall H let X(H) = { x e X^ : H C Ii{x) } where X(>^ is the
set of points in X with positive-dimensional stabilizer. We first check that

XCE^n^X^nX^).

For any point x eX(H), we have HC H(^). Thus M'(^) is identically zero on H. This
implies that x e n^i^88^) n Xloo))- on the other hand? if x e ̂ len^88^) n ^x))^
then M\x) = 0 for all I e H. This implies that HC H{x). Hence x eX(H).

Now by Theorem 2.4.5, we can find a finite set of points /i, ..., l^ in C^X)
such that for any / e C^X), the set X88^) equals one of the sets X^,). Using the
above description of X(H) we obtain that there are only finitely many subsets of X
which are of the form X(H) for some wall H. However, it is straightforward to check
that two walls H, H' are equal if and only ifX(H) = X(H'). This proves the assertion. D

3.3.4. Proposition. — Each wall is a convex cone which is closed in G^X).

proof. — Every wall is of the form H = { I e (^(X) : M\x) =0} for some
x e X^o). Since for any such x the conditions M.\x) == 0 and M.\x) ^ 0 are equivalent,
we obtain that H = { I e C^X) : M.\x) ^ 0 }. The latter set is obviously a convex cone
which is closed in G^X). D

Since a wall is a convex cone we can speak about its dimension and codimension.

3.3.5. Proposition. — Assume all walls are of positive codimension. Then X^/) =)= 0
for any I in the interior o^C^X).

Proof. — Assume / is contained in an open subset U of G^X). In particular, we
assume that the interior of C^(X) is not empty. By Theorem 3.3.3, the union of walls
is a proper closed subset of G^(X) contained in a finite union of hyperplanes. If I does
not belong to any wall, the assertion is obvious. If it does, we choose a line segment
through I with two end-points /i, l^ e U which do not lie in the union of walls. Then
X^/i) n X^/a) =t= 0 so that M\x) < 0 and M12^) < 0 for some x e X. By convexity,
M\x)< 0, hence x eX8^). D
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Together with Proposition 3.2.8 this gives the following: Assume all walls are of
positive codimension. Then the subset of the boundary of C^X) consisting of classes of G-linearized
ample line bundles equals the set { I e GG{X) : X8^) = 0 }.

3.3.6. Remark. — Walls ofcodimension 0 could exist. For example, the whole G°(X)
could be a wall. In this case X^L) 4= 0 for any G-linearized ample line bundle L
with Xs8 (L) =t= 0. This happens for actions of semi-simple groups G on X = P71. Less
trivial are examples of proper walls of codimension 0. A first example of this sort was
communicated to us by N. Ressayre (see [Res] and the appendix to the present paper).
Note, however, that in some important applications such as the moduli spaces of parabolic
vector bundles over curves and the moduli spaces of vector bundles over surfaces, walls
are all linear and of positive codimensions.

3.3.7. Lemma. — (i) Ify e G^x n X888^), then x e X888^).
(ii) Ify e G~^x n X88^), then x e X^).

Proof. — (i) Since j/ e X^), 0 lies on the boundary of O^G^). This implies
that 0 lies on the boundary of<S>\G'x) because G'jyC G-x. That is, x eX888^).

(ii) Ifjy e G ' x n X88^), then either y e G ' x or y e G'x\G'x. The former implies
trivially that x e X^Z), while the latter, by (i), implies that x e X888^).

3.3.8. Lemma. — Let I, V e G^X). The following properties are equivalent:

(i) X-^X888^);
(ii) X^nX^^X^nnX^;
(iii) { x e X^ : / e H{x) } = { x e X^ : /' e H{x) }.

Proof. — (i) => (ii) is trivial.
(ii) => (i) Note that X888^) n X^ = 0 if and only if X^/) = 0. In fact, the

stabilizer of any point x e X888^) with closed orbit in X^/) is of positive dimension.
So we may assume that X^/) n X(>Q) =)= 0. Let x eX888^), then we can always find
jyeG~x nX^ n X88^). By assumption, y e X^/'). By Lemma 3.3.7, x eX^').
This shows that X888^) C X^/'). The opposite inclusion follows in the same way.

(ii) o (iii) Follows immediately from the definition of H(;c). D

3.3.9. Definition. — We say that /, /' e G^X) are vail equivalent if one of the equivalent
properties from the previous lemma holds. A connected component of a wall equivalence class, if not
a chamber, is called a cell.

We point out that any two points /, /' e G^X) away from walls (i.e. in chambers)
are always equivalent with respect to the wall equivalence relation. It corresponds to
the case when all the subsets in Lemma 3.3.8 are empty.
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For a point / e G^X) that lies on some walls, it is clear, by Lemma 3.3.8 (iii),
that the equivalence class of / with respect to the wall equivalence is of the form

n,eiH,\U,e.H,

where {HJ,gi are the walls that contain / and {H,} ,g j are the walls that do not
contain /. (When 1=0, n,giH,\U^jH, is the union of all the chambers if we
agree that fie H, = C°(X).) Since the set of walls is finite, we see that the set of cells
is finite. Also it is obvious that any wall is a union of cells.

3.3.10. Lemma. — Let F be a cell. For any /, /' e F one has X^/) = X^/'). Denote
this set by X^F). Then

X^F') C X^F) if F n F' + 0, F + F'.

Proof. — We already know that X^) === X^/'). For any x e X the function M^x)
either vanishes identically on F or does not take the value zero at any point of F (see
Lemma 3.3.8 (iii)). This implies that X8^) = X8^) and hence X^) = X^').

Now,_if ^eX^F'), then M\x) ̂  0 for any / e F'. By continuity, M1'^) ̂  0
for any /' e F'. This shows that x e X^/') for any /' e F', in particular, for /' e F n F' + 0.
Hence X^F') C X^F). If F n F'+ 0 and F + F', then F and F' are connected
components of different wall equivalence classes. Hence X^F') + X^F) by
Lemma 3.3.8 (iii). D

3.3.11. Proposition-Definition. — Let F be a cell. There exists a point x e X satisfying
the following properties:

(i) x eX(>o) and the orbit of x is closed in X^F);
(ii) FCHM.

A point x satisfying the above properties is called a pivotal point of F.

Proof. — By assumption, X^F) n X^) =t= 0. Pick x e X^F) n X(>Q) such
that G.x is closed in X^F). Then M\x) is identically zero on F. That is, F C H{x). D

3.3.12. Lemma. — I f G . x i s a closed orbit in X^/) for some I e C^X), then G^ is
a reductive algebraic group.

Proof. — This is equivalent to Lemma 2.5 of [Ki2]. When / is rational, a proof
goes as follows. Let n: X^) ->XS8(^)//G be the quotient projection. Its fibers are
affine, and hence G.x is a closed subset of an affine variety. Thus G.x = G/G^g is an
affine variety. Now the assertion follows from the well-known Matsushima's criterion. D

3.3.13. Proposition. — Let x be a pivotal point for a cell F. Then the stabilizer subgroup G^
is a reductive subgroup of G.

Proof. — This immediately follows from the previous lemma and the definition
of a pivotal point. D
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3.3.14. Definition. — Let y be the set of all possible moment map stratifications of X
defined by points I e C^X). There is a natural partial order in y by refinement. We say that
s refines s' if any stratum ofs' is a union of strata of s. In this case we write s<sfifs^sf.

Let G be a subset of G^X). For any s e V, let G, be the set of elements / e C
which define the stratification s. Then G == Use^C,. Recall that by Theorem 1.3.9
the set y is finite.

The next result implies that s refines any element in the closure of Gg.

3.3.15. Proposition. — Let l^ e G^X) be a sequence of points in G°(X) that induce
the same stratification s e V. Assume that l^-^l e C^X). Then s refines the stratification s'
induced by I.

Proof. — Let Sp^ be a stratum in s. Since Sp^ = GY^), it suffices to show
that Y^) is contained in a stratum of s\ Let ^(/J be the one-parameter subgroup
generated by (3(/J. Then, by Theorem 2.4.4, we can also write Y^) as S^^, where
dn=\\ Wn) I I - Ky passing to a subsequence, we may assume that d^ -> d, p(/j -> (B(^).
Let \{l) be the one-parameter subgroup generated by (3(/). For any point x eY^,
we have M^x) == ̂ [x, X(/J) == ̂  (see Theorem 2.1.7 (iii)). By taking limits, we
find that M\x) == ̂ (x, \{l)) = d. If d == 0, we obtain that Y^CX88^). If d^ 0,
we obtain that Y^) C S^^. This completes the proof. D

The following will play a key role in the sequel.

3.3.16. Lemma. — Let IQ be in the closure of a chamber C. Then there is a sequence of
rational points l^ in C which induce the same stratification s and such that l^ ->IQ. In particular,
Xs8 (lo) is a union of strata of s.

Proof. — Take a basis Ui 3 Ug 3 ... 3 U^ 3 ... of open subsets containing IQ.
We have that U^ n C is an open non-empty subset of G. Write y = { j^, ..., s^}.
If^i occurs as the induced stratification for some'rational point ^ in Uy, n C for every n,
then we are done. Suppose it does not. Then there is n^ such that (U^ n C), =0.
Consider ̂ . Ifs^ occurs as the induced stratification for some rational point /„ in U^ n G
for every n ̂  n^, then we are done. Suppose it does not. Then there is n^ n^
such that (U^ n C)^ = 0. The next step is to consider ^3, and so on. Since the set
y = { ̂ , . . ., ̂  } is finite and Ui n G 3 Ug n G 3 ... 3 U^ n G 3 ... is infinite,
there must be an s, e y such that s, occurs as the induced stratification for some rational
point /„ in U^ n G for every n ̂  ^_r

Then { ^ } {n ^ n,_i) is the desired sequence. D

3.3.17. For any x eX and L ePic^X) let p,(L) : 0, -^GL(LJ ^ C* be the
isotropy representation. For any X e ̂ (GJ the composition

<X,p , (L )>=Xop^ :C*^C
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is equal to the map t -> ̂ L(a?'?o. The correspondence L -> p^(L) defines a homomorphism

p^PicW^^GJ.

Obviously pa;(L) is trivial if L is G-homologically trivial. Thus we can define a homo-
morphism

p,:NS°(X)->^(GJ, L->p,(L).

By linearity we can extend pa, to a linear map

p^NSTOn^^GJ^R.

For any I e NS^X)^ and X e ̂ »(GJ we have, by continuity,

<^W>W-^^
We denote by Ea, the kernel of the map p^.

3.3.18. Proposition. — Let V be a cell with a pivotal point x. Then H(;v) C E^.
Moreover, iff has a non-empty intersection with the closure of a chamber, then E^ + NS^X)^.

proof. — Take any I e'H.{x). Since x eX^/), for any one-parameter subgroup X
in G^ we have [L\X, X) =0. In fact, otherwise ^(A:, X) or [L\x,\~1) is positive, and
then x e X^). This shows that the composition of X : C* -> G^ with p^(/) : G^ -> C*
is trivial. Hence / e E^ and H(A:) C E^.

Let us prove the second assertion which is less trivial. Take a point I e F. By
assumption we can find an open neighborhood U of I ' m NS°(X)R such that it contains
a rational point // e C^X) which is not contained in any wall and the stratification
induced by /' refines the stratification induced by I (see Lemma 3.3.16). We can also
find a continuous path in U which starts from /', ends at I and does not cross any walls.
Since M^x) is a continuous function, M1'^) < 0 implies M\y) ̂  0, and M^j) < 0
implies M^jQ < 0. This shows that X8^') C X^), X8^) C X8^).

In particular, X^/) C X^'). Let us now use the moment map stratifications
for X with respect to I and /'. We can write

X = X88^) u X^) == X8^) u Sp '̂) u ... u Sp,(/') u X^).

Here, we use the fact that the strata of X^) coincide with the union of some strata
of X with respect to I ' . Now the point x must belong to some stratum S^.(Z') since it
is semistable with respect to / but unstable with respect to /'. By substituting x with
another point in the orbit G ' x if necessary, we may assume that x eY^"1^'). Let us
denote by X the one-parameter subgroup generated by p,. Let y = lim^oX^)-^. It
is contained in Y^/') C X88^) (see 1.3.2) and is obviously fixed by X(C). Because
G ' x is closed in X818^),^ must belong to the orbit of x. Since x e Y^'), we have that
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\eA'\x) (see Theorem 2.4.4 (iii) and 1.3.2). Now by Theorem 1.2.5, X belongs
to A1'^}. Hence

M^)=^>0.
II A II

Letj/ = = g ' x (g actually belongs to P(X) by Theorem 2.4.3 (i)). Applying the known
properties of the function ^'{x, X) (see I . I . I ) , we obtain

^'(^ ^) == ^'te-^ ^) = ^'(^ ̂ -1 o X o g) > 0.

Hence /' ^ E^ because X' = ̂ -1 o X o g C G^. D

3.3.19. Corollary. — Let F be a cell which has nonempty intersection with the boundary
of a chamber. Let x be a pivotal point of F. Then
(i) G^ is a reductive group whose radical R(GJ is of positive dimension,

(ii) zycodimH(A:) = 1 then H(x) equals the closure of its set of rational points.

Proof. — By Proposition 3.3.13, G^ is reductive. Then by Proposition 3.3.18,
the first assertion follows from the fact that E^ =(= NS°(X) implies ^*(GJ + { 1 }.

To prove (ii) we use that, by the previous proposition, H{x) is contained in £„.
Since E^ is a proper subspace, H(^) spans it. This implies that the relative interior r^H^)
of H{x) is an open subset ofE^. Since E^ can be defined by a linear equation over Q,
this open subset contains a dense subset of rational points. D

3.3.20. Proposition. — Any wall in the interior of G^X) is contained in a wall of codi-
mension^ 1.

Proof. — Since the union of walls is a closed subset of G°(X), each chamber is
an open subset of CP(X). Suppose there is a wall H of codimension ^ 2 which is not
contained in any wall of codimension ^ 1. Let / be a point in the relative interior ofH.
Then there exists an open subset U ofG^X) containing / such that U\H n U is contained
in the complement of the union of walls. Since H is of codimension ^ 2, the set U\H n U
is connected. Hence there exists a chamber G containing this set. Let ^, ^ e G be such
that / lies on the line segment joining ^ with ^. As in the proof of Proposition 3.3.5,

X8^) n X8^) C X8^).

By Theorem 3.3.2 (ii), we see that the left-hand side is equal to X88^). Since
the quotient X^/yC == X^y/G is compact, X^/G is compact, and hence
Xs8 (1) == Xs (V). But this contradicts the assumption that / belongs to a wall. D

3.3.21. Theorem. — Let G be a chamber. Its boundary intersects C^X) in a union of
finitely many rational supporting hyperplanes.
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Proof. — This basically follows from the proof of Proposition 3.3.18. Let / be a
point of C^X) which belongs to the boundary of a chamber G and F be a cell that
contains /. In the proof of Proposition 3.3.18, we showed that we can pick a suitable
pivotal point x of F and a one-parameter subgroup X' C G^ such that the rational linear
function [L^X, X') vanishes on the wall H(^) and is positive on the chamber G. Thus
the set of zeroes of ^{x, X') defines a rational supporting hyperplane of G at the point /.
Since the number of cells is finite, we are done. D

3.3.22. Remark. — Theorem 3.3.21 implies that each chamber is a rational convex
polyhedron away from the boundary of C^X). There is no reason to expect that the
boundary of C^X) is polyhedral. This is not true even when G is trivial. However,
some assumptions on X, for example, X is a Fano variety (the dual of the canonical
line bundle is ample) may imply that the closure of G°(X) is a convex polyhedral cone.

3.3.23. Example. — Let G be an n-dimensional torus (C*)'*, acting on X == P(V)
via a linear representation p : G ->GL(V). Then NS^X) ^ Pic(X) x ^(G) ^ Z"-^.
The splitting is achieved by fixing the G-linearization on ^x(l) defined by the linear
representation p. In addition, NSG(X)+ = ZQ X NS°(X)i, where NS^X^ is the group
of G-linearizations on the line bundle ^x(l) identified with ^(G). Thus Lo == (^x(1)? P)
corresponds to the zero in ^(G). By 1.1.5, X^Lo) + 0 (resp. X^Lo) =t= 0) if and
only i f O e Gonv(St(V)) (resp. 0 e Conv(St(V))°), where St(V) == { ^ : V^+ {0}}.I fL^
is defined by twisting the linearization of Lo by a character ^, we obtain that Xs8 (L^) 4= 0
(resp. X8^) + 0) if and only if ^-1 e Conv(St(V)) (resp. ^-1 e Gonv(St(V))°). In
particular, we get that GG(X) is equal to the cone over the convex hull Gonv(St(V))
ofSt(V). Comparing this with 2.1.6, we obtain that G^X) is equal to the cone over
the image of the moment map for the Fubini-Study symplectic form on X. For any
A: e X the image of the orbit closure G-x under the moment map is equal to the convex
hull f(x) of the state set st(x) of x. This is a subpolytope ofConv(St(V)) of codimension
equal to dim G^> 0. A wall H(x) is the cone over 1?{x) with dim Gy,> 0. The union
of walls is equal to the cone over the set of critical points of the moment map.

3.3.24. Example. — Let G = SL{n + 1) act diagonally on X == (P^. We have

Pic(X) ^ Pic°(X) ^ Z"1.

Each line bundle L over X is isomorphic to the line bundle

Lk = ̂ (Wi)) ® ... ® <,(̂ J)

for some k = (^i, ..., k^) e Z"1. Here n,: X ->?" denotes the projection map to the
i-th factor. It is easy to see that L^ is nef (resp. ample) if and only if all k^ are nonnegative
(resp. positive) integers. Let ^ = (^, .. .,j&J eX. Using the numerical criterion of
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stability, one verifies (see [MFK], p. 73) that ^ e X^Lk) if and only if for any proper
linear subspace W of P71

V ^ d i m W + 1 ̂  ^2; k^——n—(s^)-i ,^ew n + 1 *=i

The strict inequality characterizes stable points. This easily implies that

X^LJ + 0 o (TZ + 1) maxj^}< 2 yfe .
»=i

Let
m

^n,m = { x = (^i, ..., ;vJ e R'» : S .v. = " + 1, 0 ̂  A-. ̂  1, t == 1, . . . , m}.
i==l

This is the so-called {m — 1)-dimensional hypersimplex of type n.
We can express the previous condition for the non-emptiness of Xs8 (LJ as follows

X88^) + 0 o {n + 1) k E (2^) A,,,.

Consider the positive cone over A^ ^ in R^
w

C A ^ „ = { ^ e R r o : ( K + l ) A ; e ( 2 ^ ) A ^ ^ , ^.> 0, i = 1, ...,w}.
i=l

We have the injective map
Pic^X)^^ L,^(^,. . . ,AJ,

which allows us to identify Pic^X) with a subset of R^. We then have

Pic^X) n C A,^ = { L e PicG(X) : L is nef, X8^^ + 0 }.

Observe that 8^ e X^L^) if and only if there exists a proper linear subspace W
of P" such that

m

{n+ 1) S k,= (dimW+ 1) S k,.
i, pi e w i = i

This is equivalent to the condition that L^ belongs to a hyperplane

Hi,, := { (^i, .. .^J eR- : {n + 1) j^ = (S^,) rf},

where I is a proper subset o f { l , . . . , 7 7 2 } and d is an integer satisfying 1 < d^ n. Thus
a chamber is a connected component of G A^ ,^\Ui,d ̂ d- A wa!! ls defined by inter-
section of the interior of G A^ ^ with a subspace

m

Hi,,..,î ,...,,,:={(̂ i, ..., ̂ .) e R"1:(»+!) S ^,= ^ x , d , , j = l , . . . , s } ,
i £ Iy i == 1

where { 1, . . . , m} = Ii U . . . U I, {s ̂  2) and d^ + ... + d, = n + 1 is an integral
partition of n + 1 with d^ ..., d^ > 0.
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Note that the set A^ ^ is the image of the moment map for the natural action of
the torus T = (C^ on P(An+l C^). Comparing with Example 3.3.23, we obtain that
the closure of G^^^PT) is equal to G^A^ C^). There is a reason for this.
For any 8ft = (^i, .. .5^) e (P^ one can consider the matrix A of size (n + 1) X m
whose z-th column is a vector in C!7^1 representing the point p^. Let E(A) be the point
of the Grassmann variety G(n + 1, m) C P(AW+1 C"1) defined by the matrix A. A dif-
ferent choice of coordinates of the points p^ replaces E(A) by the point ^-E(A) for
some t e T. In this way we obtain a bijection between SL{n 4- l)-orbits of points
(A. • • -^J e (FT wth < A > • • ">Pm > == p" and orbits of T on G^ + 1, ^). This
is called the Gelfand-MacPherson correspondence. The T-ample cone CT{G{n + I? ^))
equals GT(P(AW+1CW) and hence coincides with the closure of the SL(TZ + l)-ample
cone of (PT- The Gelfand-MacPherson correspondence defines a natural isomorphism
between the two GIT-quotients corresponding to the same point in G A^ ^.

3.4. GIT-equivalence classes

3.4.1. Definition. — Two elements I and V in G^X) are called GIT-equivalent (resp.
weakly GIT-equivalentJ if X88^) =XS8{lf) (resp. X8^) == X8^);.

Let E C G^X) be a GIT-equivalence class. We denote by X^E) the subset of X
equal to Xs8 (Z) for any I e E. Clearly for any I e E the subset Xs (I) is equal to the subset
of the points in Xs8 (E) whose orbit is closed in Xs8 (E) and whose stabilizer is finite.
This shows that this set is independent of the choice of /, so we can denote it by Xs (E).
In particular, GIT-equivalence implies weak GIT-equivalence. Examples of GIT-
equivalence classes are chambers (Theorem 3.3.2). For these equivalence classes
X^E) == X^E).

3.4.2. Theorem. — Any GYT-equivalence class E is either a chamber or a union of cells.
If it is not a chamber, it is contained in a wall 13.{x) where x is any pivotal point of a cell F contained
in E.

Proof. — By Theorem 3.3.2 (ii), a chamber is a GIT-equivalence class. By
Lemma 3.3.10, any cell is contained in a GIT-equivalence class. This implies that
any GIT-equivalence class E, if not a chamber, is a union of cells. If F is a cell contained
in E with a pivotal point x, then x e Xs8 (E) and so E C H(^). D

3.4.3. Lemma. — Let I and I ' be two points in G^X). If X88^) C X88^'), then
X s ( I ' ) C X8^). Consequently, if X88^) C X^) and X8^) C X8^'), then I and /' are weakly
GIT'-equivalent.

Proof. — If X8^) == 0, then there is nothing to prove. Assume that X8^') + 0.
Let ^eX8^'). The inclusion X88^) C X88^') is easily seen to induce a morphism
X^/yC -»X88(Z/)//G which is an isomorphism over the open subset X^^/G. Since
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this is a dominant morphism of projective varieties it must be surjective. This implies
that x e X88^). Now G ' x is closed in X^/') and hence in X^/) C X^/'). In addition
G^ is finite, so x eX8^). This proves the inclusion X8^') C X8^). D

3.4.4. Theorem. — Let W be a weak GYT-equivalence class and E a GIT-equivalence
class. If E C W, then Gonv(E) C W.

Proof. — Let I and V be two points in E joined by a segment S of a straight line
and /" be a point on this segment. By the lower convexity of the functions M\x)
we have X8^) n X8^') C X8^") and X88^) n X^') C X^'). Since X88^) == X^Q
and hence X8^) = X8^'), we obtain X8^) C X8^"), X88^) C X88^"). By the previous
lemma, / and I " are weakly GIT-equivalent. D

3.4.5. Remark. — Two points /, /' in G°(X) are said to be strongly GIT-equivalent
if they induce the same stratification s e y (see Definition 3.3.14). It would be nice
to know precise interrelations among the three notions of GIT-equivalence.

3.4.6. Definition. — A pair of chambers (C, C') are called relevant to a cell F iff C C n G'
and there is a straight path I: [— 1, 1] -> C^X) such that l{[— 1, 0)) C G, l{0) e F and
/((O, 1]) C G'.

3.4.7. Proposition. — Let (G, G') be a pair of chambers relevant to a cell F. Then,

X^F) = X^C) n X^G'), X^F) 3 X^G) u X^G').

In particular, two cells relevant to the same pair of chambers are contained in the same weak GIT-
equivalence class.

Proof. — The fact that X^C) n X^G') C X^F) follows from the lower convexity
of the function M.\x). The fact that X^F) C X^C) n X^G') follows from the continuity
of M^x). Also, that X^C) C X^F) and X^C') C X^F) follow from the continuity
of M^x). D

4. VARIATION OF QUOTIENTS

4.1. Faithful walls

4.1 .1 . Definition. — We say that Pic^X) (or the action) is abundant if for any pivotal
point x of any cell the isotropy homomorphism ^: Pic°(X) -> .̂ (GJ has finite cokemel.

The abundance helps to control the codimensions of walls.

4.1.2. Proposition. — Assume that Pic°(X) is abundant. Let ¥ be a cell with a pivotal
point x. Assume that the wall }-l{x) is of codimension k. Then the radical of the stabilizer G^ is
of dimension k or less.

Proof. — This follows immediately from Proposition 3.3.18. D
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4.1.3. Theorem. — Let B be a Borel subgroup ofG and let G act on X x G/B diagonally.
Then Pic°(X x G/B) is abundant. In particular, when G is a torus, Pic^X) is abundant.

Proof. — Notice first that Pic°(G/B) ^ ^(T), where T is a maximal torus contained
in B (see [KKV], p. 65). We want to show that for any point (^^[B]) with reductive
stabilizer the isotropy representation homomorphism

P(^[B]) ^ Pic^X x G/B) ->^(G^,^]))

is surjective. Obviously G(^ y^ = G^ n G^] . By conjugation, we may assume that
R(a,,y(B]) C R^C T, where R^ denotes the radical of the stabilizer Gg. Pick any character
xe^G^Bj))- Extend it to a character xe^(T). Let L^ePic^G/B) be the line
bundle associated to the character ^, and let L be its inverse image in Pic^X x G/B)
under the projection map X x G/B -> G/B. Then

P(a5,y[B])(•Ll) == X | R(a?,fltB]) == Z I R(a?,ff[B])«

Thus p(a,^B]) is surjective. Hence Pic^X x G/B) is abundant.
The last statement follows immediately because G == B when G is a torus. D

4.1.4. Definition. — A cell F contained in the closure of a chamber with Xs (F) =t= 0 is
called faithful if for any pivotal point x of V the radical of G^ is one-dimensional, and truly
faithful if the stabilizer G^ is a one-dimensional diagonalizable group. In this case, the identity com-
ponent G^ofG^is a one-dimensional torus. A wall H is called faithful (truly faithful) if it
contains a faithful (truly faithful) cell.

Notice that in the absence of walls of codimension 0, any cell F is contained in
the closure of some chamber. Also, if F is contained in the interior of G^X) we have
X^F) + 0.

4.1.5. Lemma. — Let F be a cell which has a non-empty intersection with the closure of
another cell F' =(= F. Then

(i) X^F') C X^F), X^F') + X^F);
(ii) X^CX^P);
(iii) the inclusion X^P) C X^F) induces a morphism f: X^F^y/G -^X^TO/G which

is an isomorphism over X^F^G;
(iv) if X^F) 4= 0, the morphism f is surjective and birational.

Proof. — (i) Let / 'e F' and x eX88^') == X^F'). Then M^) ^ 0. So by
continuity, M\x) ̂  0 for some and hence all I e F. This proves that X^F') C X^F).
The assertion about the strict inclusion is obvious.

(ii) In the previous notation we have M\x) < 0 for any x eX^F). Thus, by
continuity, M1'^) < 0 for some and hence all // e F'. Therefore x eX^F').

(iii) Follows from (i) and (ii).
(iv) Use the same argument as in the proof of Lemma 3.4.3. D

6
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4.1.6. Proposition. — Let F be a cell which has a non-empty intersection with the closure
of another cell F'. Assume that F is faithful (resp. truly faithful). Then F' is faithful (resp. truly
faithful).

Proof. — Let x be a pivotal point of F'. The closure of the orbit G-x in X^F)
must coincide with G ' x , for otherwise there exists a pivotal point of F with stabilizer
of dimension dim G^ ^ 1. This shows that A: is a pivotal point of F and hence it inherits
all its properties. D

4.1.7. Proposition. — Let F be a cell contained in the closure of a chamber. Assume that
F has an empty intersection with the closure of any cell F' with F' =(= F. Then for any pivotal point x
off the wall H{x) is of codimension 1 and is not contained in a wall of codimension 0.

Proof. — The assumption that F n F' = 0 for F' + F implies that F is open in
the relative topology of any wall H containing it. In fact, otherwise H\F n F =|= 0,
hence F have a non-empty intersection with the closure of one of the cells contained
in H\F. It follows that all walls containing F have the same dimension. By Propo-
sition 3.3.20, H{x) is contained in a wall H' of codimension < 1. Since F is contained
in the closure of a chamber, Proposition 3.3.18 implies that codim H{x) ̂  1. Thus
H{x) must be of codimension 1. D

4.1.8. Proposition. — Assume that Pic°(X) is abundant. Let F be a cell intersecting the
closure of a chamber in a non-empty set. IfH.{x) is of codimension 1 for all pivotal points x of 7,
then F is faithful.

Proof. — By Corollary 3.3.19 (i), dim R(GJ ^ 1. Proposition 4.1.2 implies that
dimR(GJ^ 1. D

4.1.9. Corollary. — Let G act diagonally on X x G/B. Then there are no walls of
codimension 0 and all codimension 1 walls are truly faithful.

Proof. - Let (^ g\K\) e X x G/B. Then G^, = G, n G^i C G,̂  == ̂ -1.
Now if {x,g[B]) is a pivotal point for a cell F, then G^y^ is reductive. This implies
that G(^ ̂ ) is a diagonalizable group. Assume that there is a wall H of codimension 0.
Since each wall is a finite union of cells, there will be a cell F C H which is not contained
in any wall of positive codimension. Then for each pivotal point x == {x, ̂ [B]) of F,
the wall H(^) is of codimension 0. By Proposition 4.1.2 and Theorem 4.1.3, the
stabilizer G^ is of dimension 0. This contradicts the definition of a pivotal point. Now,
if H is a wall of codimension 1, then choosing a cell F C H which is not contained in
any wall of codimension 1, we repeat the argument to obtain that for any pivotal point x
of F the stabilizer G^ is a one-dimensional diagonalizable group. D

Recall from 2.2.4 that GIT quotients of X x G/B by G can be identified with
symplectic reductions of X by K. The previous corollary will assure that our main
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theorem on variation of quotients applies to symplectic reductions for general coadjoint
orbits. This is one of the main motivations of this paper.

It is worthy to mention the following:

4.1.10. Corollary. — Let G be a torus. Then there are no codimension 0 walls and all
codimension 1 walls are truly faithful.

As remarked in the introduction, the new feature in this corollary is that it takes
into account the variation of moment maps as well as the characters of the torus.

4.2. Variation of quotients

In this section we assume that X is nonsingular and all walls in C^X) are proper.
The smoothness assumption on X only enters essentially when the bundle structures
in a Bialynicki-Birula decomposition are used. Otherwise, e.g. the use of moment maps
can be avoided by always dealing with rational points in G^X). When irrational points
are used, we are working in the category of Kahler quotients.

4.2.1. Let (G4', C") be a pair of chambers relevant to a cell F. Let IQ be a point
in F. Lemma 3.3.16 implies that we can choose /+ e C+ and l~ e G~ such that their
induced stratifications of X can be arranged as follows:

X = X^o) u X^o),

X = X8^) u S:̂  u ... u S; u X^),

and X=XS(^-) uS^u . . . u S ^ " uX^/o).

To simplify the notation we shall assume that each Z^ or Z^ is connected.
Let

/., : X^G^/G -> XTO/G, /_ : X^G-^G -^ X^HG

be the morphisms defined in Lemma 4.1.5. They are birational morphisms ofprojective
varieties which are isomorphisms over the subset X^F^G of X^F^/G. The goal of
this section is to describe the fibers of the morphisms/^. and/_.

4.2.2. Lemma. — Keep the previous notation and assume that the cell F is truly faithful \
then all G-orbits ofpointsfrom Z^ are closed in X^/o), and all non-stable closed orbits in X^/o)
meet some Z^. In addition^ up to conjugation^ the o^ form the set of one-parameter subgroups
(without parametrizations) of G that have nonempty fixed point set on Xs88 (/o)c? where Xs88 (/o)^
is the union of closed orbits in X^/o). Similar statements are also true for JB, and 7^.

Proof. — Since F is truly faithful, X^/o) does not contain points with stabilizer
of dimension 1. This implies that all G-orbits of points from Z^ are closed in Xs8 (/o).
Now, by 4.2.1,

X^-X^uS^u... uS;.
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Clearly points from S^G-Z^ are not in closed orbits of X^/o). Hence all non-stable
closed orbits in Xs8 (/o) must meet some Z^. This shows that

X^o^UG.Z^.
i

Since F is a truly faithful cell, the identity component of the isotropy subgroup of any
point from Z^ is exactly the one-parameter subgroup generated by a,. Thus the last
statement for a, follows readily from the above observation. The assertions for p, can
be proved similarly. D

4.2.3. Lemma. — Keep the previous notation and assume that the cell F is truly faithful;
then we have

(i) P = y;
(ii) under a suitable arrangement (including choosing suitable Weyl chambers )y Z™^ == Z?^,

1 ^ i^ q\
(iii) a^ == — c^i (1 < i^ q) for some positive number c^\
(iv) S .̂ n S .̂ = 0 ifj + i.

Proof. — (i) and (ii) follow from the proof of Lemma 4.2.2 because

X^oL = U G.Z^ = U G.Z^.
i * i l

Now let us prove (iii). We have already seen that o^ and (^ generate the same
subgroup of G, i.e. they differ by a constant multiple. Now by the constructions of the
strata, we have S .̂ = G-Y^ and S .̂ = G-Y^, where Y^ is the preimage over Z^
under the Bialynicki-Birula contraction determined by a,, and similarly Y .̂111 is the
preimage over Z^ = Z^^ under the Bialynicki-Birula contraction determined by ^.
If o^ and p^ differ by a positive constant multiple, S .̂ and S .̂ would coincide. Let us
show that this is impossible. So, assume that S .̂ and Sp~. coincide. Then pick a point
z e Z^". Since the map

^:X8(^)//G->XSS(/o)//G

is surjective, there is a point A: eX8^) such that G ' z C G ' x . Thus ^ eX888^). Since
^ e X^^) n X^/o), we have that x ^ X^/-) because X^^) n X8^-) = X^/o)
(Proposition 3.4.7). Taking into account the stratification

X = X8^-) u Sp^ u ... u S^ u XU8(/o),

one sees that there must be j =|= i such that A? e Sp~. This is because we assume S .̂ == S^".
This shows that there is a point z ' e Z^111 == Z^ such that G- z ' C G ' x . This contradicts
the fact that G ' z and G ' z ^ are two distinct closed orbits in X^/o). Therefore a, and (3,
differ by a negative constant multiple. This proves (ii) and (iii).
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It remains to show (iv). Assume that there is a point x e Sp~ n S .̂. Then there
must be a point <? e Z^ and a point z ' e Z^ such that G^x 3 G ' z and G^v 3 G- z9.
Because x e X^/o), the above would imply that G-z and G-;?' are mapped to the same
point in the quotient X88(/o)//G. But this can not happen because G ' z and G-^' are
different closed orbits in X^/o). D

Let \ be the one-parameter subgroup generated by (B, and \~1 be the one-
parameter subgroup generated by a,. Since F is a truly faithful cell, we obtain that
G^ === X^C") if z eZ^. For convenience, we use the following notational convention.
For any P e { Pi, ..., (3y }, we shall use a to denote the corresponding element in
{ai , . . . , ap} without specifying the sub-index (cf. Lemma 4.2.3). The convention
also extends to X and X~\ and so on.

4.2.4. Proposition. — Keep the notation of 4.2.1 and the previous assumption. For any
P e { pi, ..., (^ }, let p^ : Y^ -> Z^, p_ : Y^ -> 7^ be the two natural projections.
The subgroup ofG that preserves the fiber of p^ over z e 7^ is G^-U(X) (resp. G,-U(X~1)).

Proof. — We shall consider only the map p^.. The other map is treated similarly.
First, one checks easily that G^U(X) preserves the fiber p^{ z). By 2.4.3 (i) any element
of G which preserves the fiber must belong to P(X). Let p e P(X) and x ep^^) (z e Z?111)
be such that p - x ep~^{z). Then we have

lim \(t) ' x == z, lim X(^) ' p ' x == z.

But \imUt)'p'x == limX(^).^-X-1^) \(t) x = p ' ' z ,

where p ' = lim^o X^.j&.X--1^). Hence p^z = ^ which shows that p ' e G^. Hence

^W'WP'^W-id.

That is, (^)-1^ e U(X), namely, p e p ' V ^ C G, U(X), which implies the claim. D
Following the above proposition, denote p^^z) by V^. In what follows, we will

concentrate on V4'. The other set can be treated similarly.
Now, the group G^ acts on U(X) by conjugation. Thus for any u ' z e U(X)-^ and

,?eG^ we have g - ( u ' z } == gug~1 g ' z == gug~1'z. This shows that the orbit V ( \ ) ' z is
G^-invariant. Let us take a suitable identification of V4' with the affine space C" so that
the point z is identified with the origin. By 1.3.3 the group G^ acts on V4' linearly and
has the point z in the closure of any orbit. So the action of G^ on V4' is a good C*-action.
It is well-known that it is equivalent to a positive grading on the ring of regular functions
^(V^) ^ C[Ti, ..., TJ. We assume that each coordinate function T, is homogeneous
of some degree q^> 0. Let R = \]{\)'z. Being an orbit of a unipotent group acting
on an affine variety, R is closed in V4". Since it is G^-invariant, it can be given by a
system of equations F^ == ... == F^ == 0 where the F, are (weighted) homogeneous
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generators of the ideal of regular functions on V4' vanishing on R. We can write
FZ == L,(Ti, ..., TJ + G,(Ti, ..., TJ, where L, is a linear function in Ti, ..., T^
and G, is a sum of (ordinary) homogeneous polynomials of degree 1. Since R is non-
singular at the origin, we can replace the F, by linear combinations enabling us to
assume that there exist 1 ̂  ^ < ... < ^ ̂  n, r = codim R, such that

L» == T + S a,, T,, i == 1, ..., r, L, =0, i > r.
? + 8 l , . . . , « ,

Let W be the linear subspace of V4' defined by the equations T, = 0, j 4= s^, ..., s,.
It is obviously G^-invariant. Consider the action map

a : U ( X ) x W - ^ V + .

It is U(X)-G^equivariant.

4.2.5. Lemma. — The map a is an isomorphism.

Proof. — First we claim that W n R == { 0 }. In fact, since each polynomial F
is weighted homogeneous, the variables Ty with ^, =4= 0 and T,. do not enter in G,.
This shows that R n W is given by the equations T, = 0, i = 1, . . . , % . This proves
the claim. This also implies that the tangent space at the origin of V4' is equal to the
direct sum of the tangent spaces of R and W. Now the source V :== U(X) X W and
the target V4' are affine spaces of the same dimension. The restriction of the map to
U(X) X { 0 } and to 1 X W are isomorphisms onto their images R and W, respectively.
Thus the differential of the map a at the point (1,0) is bijective. Now

a-\a(\,Q)) =a-l{z) ={ {u, w) eU(X) X W : w = u-^z}

consists of only one point (1, z ) . We know that the map is G.-equivariant and the action
of G^ ^ C* on V and on V4' is a good C^-action. This implies that the map a is defined
by a homomorphism of positively graded rings a * : ^(V4') ->ff(V). Let my+ be the
maximal ideal of the unique closed orbit { (0, 1) } ofV, and let my be the maximal ideal
of the unique closed orbit { z } of V4-. The property that a is (Stale over z and the
relation a-\z) == (1,0) imply that ^(nty.) ^(V) = nty. By ([Bo], Chapter III,
§ 1, Proposition 1), the algebra 6?(V) is generated as a C-algebra by my. This implies
that the homomorphism a* is surjective. Since both rings are integral domains of
the same dimension, this shows that the map a* is an isomorphism. Hence a is an
isomorphism. D

4.2.6. Corollary. — The quotient space of V^L^X) ' z by G^U(X) can be identified
with the quotient ofV/\{ 0} by G^ which is a quotient of a weighted projective space ((W\{ 0 })/G^)
by the finite group ̂  (G^) ^ GJG0,. The similar statement holds for V~.

Proof. — First note that from Lemma 4.2.5 the orbit space of U(X) on V4' can
be identified with W. In particular, the orbit space of U(X) on V^U^)-;? can be
identified with W\{ z } . This implies that the quotient of V^L^X)-^ by G^ U(X) can
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be identified with the quotient ofW\{ 0 } by Gy which is a quotient of a weighted projective
space by TCo(G^) because the G^-action on V4' (and hence on W) is good. D

To prepare our last main theorem, we introduce the following. Let F be a truly
faithful rational cell. Then X^F^X^F) has a canonical stratification by the so-called
orbital type: two points x andj/ ofX^F^X^F) are said to have the same orbital type
if G^ and Gy are conjugate to each other. This stratification induces a stratification of
(XTO/G^XTO/G).

4.2.7. Theorem. — Let G be a reductive algebraic group acting on a nonsingular projective
variety X. Let (G4', G~) be a pair of chambers relevant to a truly faithful rational cell F. Then,
there are two birational morphisms

^:XS(G+)//G->XS8(F)//G

and /.^(G-^/G^XTO/G

so that by letting So be (X^F^/G^X^F^/G), we have the following properties:

(i) y+ and f__ are isomorphisms over the complement to So;
(ii) over each connected component So of a stratum of^Q, each fiber of f^. (/_) is isomorphic to

a quotient of a weighted projective space of dimension d^ {d_) by the finite group (1) TC()(GJ
where z is some pivotal point of the cell F;

(iii) d^ + d_ + 1 == codim So.

Proof. — Statement (i) follows immediately from Lemma 4.1.5.
In showing (ii) and (iii), we apply the assertions and use the notation from 4.2.1

and 4.2.5.
To prove (ii), it suffices to consider any particular stratum S^. Let X be the

corresponding one-parameter subgroup and p_ : Y™ -> Z^, p^ : Y^ — Z^ be
the two natural projections. Note that for any point z e Z^{== Z^), G°, = X(C').

Let us denote the fiber p^^z) by V^. The group U^) acts on V^ (not linearly!),
G^ acts on V^ (resp. on V~") linearly with positive (resp. negative) weights. We need
only to consider V^; the other set can be treated similarly.

Now consider any non-stable closed orbit G'^CX^F) where z eZ^ for
some a. We want to describe the fiber /r^EG-O) (resp. /-^([G-O)) where
[ G ' z ] eX^F^/G is the induced point in the quotient. First we observe, by using
Proposition 3.4.7, that

X^F) ̂ X^) nX^G-).

By 4.2.1, we have

X = X^G^) u S^ u ... u S^ u X^F).

(1) This finite group was overlooked in [Hul] and also in [BP] and [Th2].
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Thus by intersecting with X^C") we obtain

X^G-) = X^F) u (X^G-) n S;,) u ... u (X^C-) n S;).

Now applying Lemma 4.2.2, we see that modulo the quotient relation in X^F).
orbits from different strata S .̂ are identified with different closed orbits. Combining
this with the above decomposition of X^G"), we conclude that the orbits of X^G")
whose induced points in the quotient X^G-^G can be mapped to [ G ' z ] by/_ are
contained in

X^G-) nS:.

Next, observe that S^ == GY™. So from Proposition 4.2.4, one sees that the fiber
of/r^CG.,?]) can be identified with the orbit space of X^G") n V"*- by the group
G^-U(X). The set X^G") n V4' is not empty because/_ is surjective, and it is also open
in V4' because X^C") is open in X. Furthermore, observe that

X^G-) nV-^CV^UW^

because any point from V { \ ) ' z has an isotropy subgroup of positive dimension. Hence

(X^G^nV^/G^.UM

is open in the quotient space of V^U^)-,? by G^-U(X) (the latter is a quotient of a
weighted projective space by a finite group by Corollary 4.2.6). But as the fiber of/_,
(X^C-) nV+)/G,-U(X) is proper, we thus have that X^G-) nV-^G^l^X) is equal
to the quotient space (V^-VUM.^/G.-UpO. This completes the proof about the fiber
ofyi.

Identical arguments can be applied to obtain a similar result for the map /^.
This finishes the proof of (ii).

To prove (iii), we first claim that, for any z e Z^",

{geG\g^eZ^in}=LW.

The inclusion

WC{geG\g^eZ^}

follows from the fact that Z^ is the set of semistable points in Z^ for the action of L(X)
(Proposition 1.3.5).

To show the opposite inclusion, first notice that if g ' z e Z^" for some z eZ^
then the identity component of the isotropy group X of z should be equal to the identity
component of the isotropy group g\g~1 of g - z because all elements of Z^ have the
same stabilizer G^. This implies that g belongs to the normalizer N^ of X. By
Theorem 2.4.3 (i), we have

{geG\g^eZ^}C{geG\g^eY^}=f(\).
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This shows that

{ 5 e G I ̂  e Z^ } C N3, n P (X).

It then suffices to prove that N^ n P(X) == L(X). Let g e N^ n P(X). Then 5-1. X(^) •.? = X(^
for some ^ and lim^X^)-.?-?^)-1 exists in G. This implies immediately that
lim^o X(^) -g'Ht)-1 = lim^o .?•^(^)fc~l exists in G. By taking some linear representation
ofG, and diagonalizing X(^), we see that this is possible only i f A = = l . This is equivalent
to the fact that g centralizes X(^), and hence belongs to the subgroup L(X) ofP(X). That is,
N, n P(X) C L(X).

The opposite inclusion is obvious. Thus, we have

N,nP(X)=L(X) .

Now, by Proposition 1.3.5, Z^ is the set of semistable points of L(X) in Z^ and
we have 5^ = GZ^/G = Z^I^X). Then, applying the Bialynicki-Birula decom-
position theorem ([B-B], Theorem 4.1), we obtain

dim X — dim Z^ = dim (fiber of^) + dim (fiber ofp_).

The description of the Lie algebra of P(X) given in 1.2.1 shows that

dim G == dim L(X) + dim U(X) + dim U(X-1).

This gives

codim So == (dim X - dim G) - (dim Z^ - dim L(X) + 1)

= dim (fiber ofp^) — dim U(X) + dim (fiber ofp_) — dim U(X-1) — 1

= (^ + 1) + (<L + 1) ~ 1 == </+ + rf- + 1. D

4.2.8. Remark. — Theorem 4.2.7 can be generalized to the case of a faithful
(but not necessary truly faithful) wall. In this case, we can still define the map
fl:U(X) x W ->V4' which is equivariant with respect to the one-dimensional radical
ofG,. We obtain that W\{ z } is contained in the union ofX8^") and some stratum S ..
Thus the orbit space V4- n X^n/G.-l^X) can be identified with the orbit space
(W\{ z}) n X8^)^. This agrees with an example showed to us by G. Walters, where
the fibers are isomorphic to Grassmannians and Gy is isomorphic to G'L{n),

We finish with the following result:

4.2.9. Corollary. — Assume that all walls are of positive codimension. Let F be a truly
faithful cell contained in the inferior o/G^X). Assume that So(F) = (X^F^/G^X^F^/G)
is irreducible. Then F has empty intersection with the closure of any cell F' =(= F. In particular^
any wall containing F is of codimension 1.

Proof. — Assume the contrary. Let A; e F n P. Take a small open neighborhood
U C CP(X) of x. Let Ci, . . . , € „ be the chambers which contain x in their closure.
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Then U\(Ci u ... u GJ is equal to the intersection ofU with a finite union of rational
hyperplanes containing x. This easily implies that one can find three chambers Gi,
Cg and €3, not necessarily distinct, such that G^ contains x in its closure, (Gi, C^) is
relevant to F and (Ci, €3) is relevant to F'. By Theorem 4.2.7, we have the maps
/^:X8(Gl)/G->XSS(F')//G, /^X^C^/G^X8^?)/^ with special fibers isomorphic
to quotients of weighted projective spaces of positive dimensions by finite groups.
Obviously ̂  == 9 o/i, where 9 : X^F'^/O -.X^F^/G is a surjective birational map
defined in Lemma 4.1.5. It is clear that 9 maps the set So(F') into 2o(F). Take a point
y e (p(So(F')). We claim that the fiber (p"1^) is a point. First observe that the fiber/^"1^)
is equal to /i"1^'"1^)) and hence it is mapped to (p"1^) with fibers over So(F') iso-
morphic to the fibers of/i. By the previous theorem, f^1^^} is finitely covered by an
ordinary projective space. Thus we obtain a regular map of a projective space onto ^~l(Jy)
with some fibers of positive dimension. However any non-constant regular map of a
projective space is a finite map. Thus we have shown that the map 9 has 0-dimensional
fibers over the points from the closed subset <p(S;o(F')) C So(F). On the other hand,
since/i is an isomorphism over X^F^G, the fibers of 9 over the open subset 2;o(F)\^(S(F'))
must coincide with fibers of f^ which are of positive dimension. This contradicts the
well-known property of dimensions of fibers of a regular map of irreducible algebraic
varieties.

The last assertion follows from Proposition 4.1.7.
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