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p-ADIC UNIFORMIZATION OF UNITARY SHIMURA VARIETIES
by YAKOV VARSHAVSKY

Introduction

Let rc PGU^_i i(R)° be a torsion-free cocompact lattice. Then F acts on the
unit ball 'Kd-lcCd~l by holomorphic automorphisms. The quotient I^B^1 is a
complex manifold, which has a unique structure of a complex projective variety Xp
(see [Sha, Gh. IX, § 3]).

Shimura had proved that when F is an arithmetic congruence subgroup, Xp has
a canonical structure of a projective variety over some number field K (see [Del] or
[Mil]). For certain arithmetic problems it is desirable to know a description of the
reduction of Xp modulo w, where w is some prime of K. In some cases it happens
that the projective variety Xp has a p-^dic uniformization. By this we mean that the
K^-analytic space (Xp ®^ KJ^ is isomorphic to A\Q for some j&-adic analytic sym-
metric space Q and some group A, acting on £1 discretely. Then a formal scheme structure
on A\f2 gives us an (9^ -integral model for Xp ®^ K^,.

Cherednik was the first who obtained a result in this direction. Let F be a totally
real number field, and let B/F be a quaternion algebra, which is definite at all infinite
places, except one, and ramified at a finite prime v of F. Then Gherednik proved in
[Ch2] that the Shimura curve corresponding to B has a ^-adic uniformization by the
j^-adic upper half-plane Q| , constructed by Mumford (see [Mumi]), when the subgroup
defining the curve is maximal at v. Gherednik's proof is based on the method of elliptic
elements, developed by lhara in [Ih],

The next significant step was done by DrinfePd in [Dr2]. First he constructed cer-
tain covers ofQj, (see below). Then, when F == Q^, he proved the existence ofa^-adic
uniformization by some of his covers for all Shimura curves, described in the previous
paragraph, without the assumption of maximality at v. The basic idea of DrinfePd's
proof was to invent some moduli problem, whose solution is the Shimura curve as well
as a certain radically uniformized curve, showing, therefore, that they are isomorphic.

Developing Drinfei'd's method, Rapoport and Zink (see [RZ1, Ra]) obtained
some higher-dimensional generalizations of the above results.

In this paper we generalize Cherednik's method and prove that certain unitary
Shimura varieties and automorphic vector bundles over them have a ^-adic unifor-
mization. Our results include all previously known results as particular cases.
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We now describe our work in more detail. Let F be a totally real number field
of degree g over Q^, and let K be a totally imaginary quadratic extension of F. Let
D and D"^ be central simple algebras of dimension d2 over K with involutions
of the second kind a and a^ respectively over F. Let G := GU(D, a) and
G^ := GL^D"^, a"^) be the corresponding algebraic groups of unitary similitudes
(see Definition 2.1.1 and Notation 2.1.2 for the notation).

Let v be a non-archimedean prime of F that splits in K, let w and w be the primes
of K that lie over v, and let oo^ be an archimedean prime of F. Suppose that D^ ®^ K^
has Brauer invariant 1/rf, that D®^ K^ ^ ̂ ^^J? and ^at the pairs (D, a) ®p F^
and (D111^ a"^) ®p F^ are isomorphic for all primes u of F, except v and oc>i. Assume
also that a is positive definite at all archimedean places F^. ̂  R of F, that is that
G(F^.) ^ GU^(R) for all z = 1, ..., g, and that the signature of a^ at o0i is (d — 1, 1),
so that G^F^) ^ GU,_^(R).

Let A^ and Ap" be the ring of finite adeles ofF and the ring of finite adeles of F
without the u-th component respectively. Set E' := F^ x G(A^), and fix a central
simple algebra D^ over K^ of dimension d2 with Brauer invariant 1/rf. Then
G^A^) ^ D^ x E' and G(A^) ^ GL^KJ x E'. In particular, the group GL^KJ
acts naturally on G(A^.) by left multiplication.

Let 0.^ be the DrinfePd's {d — 1)-dimensional upper half-space over K^, cons-
tructed in [Dri], and let {^^}n^^u{o} be the projective system of ^tale coverings
of D.^ constructed in [Dr2]. This system is equipped with an equivariant action of the
group GL^(K^) x D^ such that if T^ denotes the n-th congruence subgroup of 0^ ,
then we have T^\S^ ^ S^J for all m ̂  n (see 1.3.1 and 1.4.1 for our notation and
conventions, which differ from those of DrinfeFd).

Denote by G^F)^ the set of all ^(D^ such that d'^\d) is a totally
positive element of F. Choose an embedding K <-^ C, extending o0i: F <-> R. It defines
us an embedding G^F)^ ^> GU^_i^(R)° = Au^-1). Choose finally an embedding
of Ky, into C, extending that of K.

For each compact and open subgroup S of E' and each non-negative integer n
let Xg „ be the weakly-canonical model over K^, of the Shimura variety corresponding
to the complex analytic space (T^ x S)^-1 X G^A^/G^F)^ and to the
morphism h: S -> G^ ®Q R, described in 3.1.1 (see Definition 3.1.12 and
Remark 3.1.13 for the definitions). The experts might notice that our h is not the one
usually used in moduli problems of abelian varieties.

Let Vg „ be the canonical model of the automorphic vector bundle on Xg „
(see [Mil, III] or the last paragraph of the proof of Proposition 4.3.1 for the definitions),
corresponding to the complex analytic space

(T. x ^[(^(W^^C)!11 x G^A^/G^F),.

(see 4.1.1 for the necessary notation).
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Let Pg „ be the canonical model of the standard principal bundle over Xg „
(see [Mil, III] or Corollary 4.7.2 for the definitions), corresponding to the complex
analytic space (T, x S)^-1 x (PC^C)^ X G^A^/G^F)., (see 4.1.1 for
the necessary notation).

Main Theorem. — For each compact and open subgroup S of E' and each n e N u { 0 }
we have isomorphisms of K.^'analytic spaces'.
a) (Xgj^^GL^KJY^; x (S\G(A^)/G(F))];
b) (V^J-^GL^KJYEP^W^) X (S\G(A^)/G(F))] (see 4 . 1 . 1 for the necessary

notation), where the group GL^KJ acts on (3^ JW^) as the direct factor of (G®Q KJ (KJ,
corresponding to the natural embedding K^K^,;

c) (P^J-^tGL^KJY^; x ((PG®^,)- x {S\G(H)))IG(V)]r (see 4 . 1 . 1 for
the definition of the twisting ( )^), where the group GLy(KJ acts trivially on
(PG®^)-

These isomorphisms commute with the natural projections for S^C Sg, n^ ^ n^ and with
the action of G^A^) ^ D^ x F^ x G(A^).

The idea of the proof is the following. Consider the ^-adic analytic varieties Yg „
of the right hand side of a) of the Main Theorem. They form a projective system and
each of them has a natural structure Yg „ of a projective variety over K^,. Kurihara
proved in [Ku] that for every torsion-free cocompact lattice F C PGL^(KJ the Ghern
numbers of T\0^ are proportional to those of the (d — 1)-dimensional projective
space and that the canonical class of r\Q^ is ample. The result of Yau (see [Ya])
then implies that 3d-1 is the universal covering of each connected component of the
complex analytic space (Yg^®K C)^ for all sufficiently small S e ̂ (E) and all
embeddings K^, <-> C.

It is technically better to work with the inverse limit of the Yg ^'s equipped with
the action of the group G^A^,) ^ D^ X E' on it rather then to work with each Yg ^
separately. Generalizing the ideas of Gherednik [Gh2] we prove that there exists a
subgroup A C GU^_i^(R)° X G^A^) such that

(YS.^CT ^ (T, x S)\(B^1 x G^A^/A

for all compact open subgroups S C E' and all n e N u { 0 }.
Using Margulis9 theorem on arithmeticity we show that the groups A and G^F)^.

are almost isomorphic modulo centers. More precisely, we show that (Yg ̂ ^-K^^V
is isomorphic to a finite covering of (Xg ̂ ^K^)^- Using Kottwitz5 results [Ko] on
local Tamagawa measures we find that the volumes of (Yg^®^0^)^ and

(Xg ^®K G)^ are ^B1- lt fo1110^ that the varieties Yg^0.^C and Xg ̂ ^^c

are isomorphic over C. Comparing the action of the Galois group on the set of special
points on both sides we conclude that Yg ^ and Xg „ are actually isomorphic over K^.
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Notice that if one considers only Shimura varieties corresponding to subgroups
which are maximal at w, then the use of DrinfePd's covers in the proof of the j&-adic
uniformization is very minor. (We use them only for showing that the radically uni-
formized Shimura varieties have Brauer invariant 1/rf at w; that probably can be done
directly.) In this case the proof would be technically much easier but contain all the
essential ideas.

The proof of the ^-adic uniformization of standard principal bundles is similar.
In addition to the above considerations it uses the connection on principal bundles.
Using the ideas from [Mil, III] we show that the j&-adic uniformization of standard
principal bundles implies the ^-adic uniformization of automorphic vector bundles.
In fact Tannakian arguments show (see [DM]) that these statements are equivalent.

This paper is organized as follows. In the first section we introduce certain cons-
tructions ofprojective systems ofprojective algebraic varieties, give their basic properties
and do other technical preliminaries.

In the second section we give two basic examples of such systems. Then we for-
mulate and prove the complex version of our Main Theorem for Shimura varieties.

The third and the forth sections are devoted to the proof of the theorem on the
^-adic uniformization of Shimura varieties and of automorphic vector bundles respectively.

Our proof appears to be very general. That is starting from any reasonable ^-adic
symmetric space, whose quotient by an arithmetic cocompact subgroup is algebraizable,
we find Shimura varieties uniformized by it. For example, in another work ([Va]) we
extend our results to Shimura varieties uniformized by the product of DrinfePd's upper
half-spaces. Hence it would be interesting to have more examples of such j&-adic sym-
metric spaces.

Our result on the j^-adic uniformization of automorphic vector bundles is not
complete, because we prove the ^-adic uniformization only under the assumption that
the center acts trivially. In fact our proof of the complex version of the theorem works
also in the general case, but to get an isomorphism over Ky, one should understand
better the action of the Galois group on the set of special points.

After this work was completed, it was pointed out to the author that Rapoport
and Zink have recently obtained similar results concerning the uniformization of
Shimura varieties by completely different methods (see [RZ2]).

Notation and conventions

1) For a group G let Z(G) be the center of G, let PG := G/Z(G) be the adjoint
group of G, and let G^ be the derived group of G.

2) For a Lie group or an algebraic group G let G° be its connected component
of the identity.

3) For a totally disconnected topological group E let ^"(E) be the set of all compact
and open subgroups of E, and let E^ be the group E with the discrete topology.
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4) For a subgroup Fofa group G let Comm^(r) be the commensurator of F in G.
5) For a subgroup F of a topological group G let F be the closure of F in G.
6) For a set X and a group G acting on X let X0 be the set of all elements of X

fixed by all g e G.
7) For a set X, a subset Y of X and a group G acting on X let Stab^(Y) be the

set of all elements of G mapping Y into itself.
8) For an analytic space or a scheme X let T(X) be the tangent bundle on X.
9) For a vector bundle V on X and a point x e X let V^ be the fiber of V over x.
10) For an algebra D let D0^ be the opposite algebra of D.
11) For a finite dimensional central simple algebra D over a field let SDX be

the subgroup of Dx consisting of elements with reduced norm 1.
12) For a number field F and a finite set N of finite primes of F let A^ be the

ring of finite adeles of F, and let A^ be the ring of finite adeles of F without the com-
ponents from N.

13) For a field extension K/F let R^/p be the functor of the restriction of scalars
from K to F.

14) For a natural number n let 1̂  be the n x n identity matrix and let B'1 C C"
be the n-dimensional complex unit ball.

15) For a scheme X over a field K and a field extension LofK write X^ or X ®^ L
instead of X X gpec K Spec L.

16) For an analytic space X over a complete non-archimedean field K and a
for a complete non-archimedean field extension L of K let X ®^ L be a field extension
from K to L. (A completion sign will be omitted in the case of a finite extension.)

17) By a^-adic field we mean a finite field extension ofQ^ for some prime number^.
Let Cy be the completion of the algebraic closure of Q^p.

18) By a j&-adic analytic space we mean an analytic space over a /»-adic field in
the sense of Berkovich [Bel],

19) For an affinoid algebra A let ^(A) be the affinoid space associated to it.
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1. BASIC DEFINITIONS AND CONSTRUCTIONS

1.1. General preparations

Definition 1.1.1. — A locally profinite group is a locally compact totally disconnected
topological group. In such a group E, the set ^(E) forms a fundamental system of
neighbourhoods of the identity element, and f1 S == { 1 }.

SG^'(E)

Lemma 1.1.2. — Let E be a locally profinite group, and let X be a separated topological
space with a continuous action E x X -> X o/E. For each S e e^(E), set Xg :== S\X. Then
{ Xg }g is a projective system and X ^ lim Xg.

^~W~

Proof. — [Mil, Ch. II, Lem. 10.1]. D

This lemma motivates the following definition.
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Definition 1.1.3. —Let X be a separated scheme over a field L, let E be a locally
profinite group, acting L-rationally on X. We call X an (E, 'L)'scheme (or simply an
^'scheme if L is clear or is not important) if for each S e ̂ (E) there exists a quotient
Xg := S\X, which is a projective scheme over L, and X ^ HmXg.

s
The following remarks show that E-schemes are closely related to projective

systems of projective schemes, indexed by ^"(E).

Remark 1.1.4. — If X is an E-scheme or merely a topological space with a conti-
nuous action of E, then for each g e E and each S, T e e^(E) with S 3 gTg~1 we
have a morphism pg^Q?) '" Xp -^Xg, induced by the action of g on X and satisfying
the following conditions:
a) Ps,s(^) = I d i f 5 e S ;
b ) PS,T^) ° PT^W = Ps,n(^);
c ) if T is normal in S, then p^ defines the action of the finite group S/T on Xr^, and

Xg is isomorphic to the quotient of Xp by the action of S/T.

Remark 1.1.5. — Conversely, suppose that for each S e e^(E) there is given a
scheme Xg, and for each g e E and each S, T e ̂ "(E) with S D gTg~1, there is given
a morphism pg^(^) : X,r-> Xg, satisfying the conditions a)-c) of 1.1.4. Then for
each TC S there is a map pg,T(l) : ̂ r "^^s? which is finite, by condition c ) . In this
way we get a projective system of schemes and we can form an inverse limit scheme
X : == ^lm Xg. Then there is a unique action of E on X such that for each g e E and

s
each S e ̂ (E) the action of g on X induces an isomorphism p^-i,s : ̂ s ̂  ̂ so-1-
It follows from c ) that Xg ̂  S\X for each S e ̂ (E).

Definition 1.1.6. — Let E be a topological group, which is isomorphic to E under
an isomorphism 0 : E ̂  E. We say that an (E, L)-scheme X is Q>-equivariantly isomorphic
to an (E, L)-scheme X if there exists an isomorphism 9 : X ^> 5c of schemes over L
such that for each g e E we have <p o g = <S)(g) o 9. If in addition E == E and 9 is the
identity, then we say that 9 is an isomorphism of (E, 'L)-schemes.

Definition 1.1.7. — Let La/Li be a field extension. We say that an (E, Li)-scheme X
is an IL^I'L-1-descent of an (E, 'L^) -scheme Y if the (E, L2) -schemes X^ and Y are
isomorphic.

Suppose from now on that E is a noncompact locally profinite group.

Notation 1.1.8. — For a topological group G and a subgroup F C G x E let pr^
and pr^ be the projection maps from F to G and E respectively. Set 1^:= pr^r),
FE := pr^F) and Fg :== pr^(r n (G x S)) for each S e e^(E). For each y e F set
YG ̂  P^Y) and YE := P^M-
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Lemma 1.1.9. — Let FC G x E be a cocompact lattice. Suppose that pr^ is infective.
Then for each S e ̂ (E) we have the following9.
a) |S\E/rj<oD;
b) [r^:rj=a);
c ) Fg is a cocompact lattice of G;
d ) r^CGomm^(IY).

Proof. — a) Since the double quotient (G x S)\(G X E)/F ^ S\E/TE is compact
and discrete, it is finite.

b) The group E is noncompact, therefore | S\E | = oo. Hence, by a)y

[i\: s n i\] = | s\si\ | = oo.
But r^ == pr^(r) = pr^pr^I^)), and likewise Fg == pr^pr^I^ n S)). Since pr^
is injective, we are done.

c) The group F is a cocompact lattice in G x E, hence F n (G x S) is a cocompact
lattice in G X S, and the statement follows by projecting to G (see [Shi, Prop. 1.10]).

d) Let Y e r, and set S' == YE Sya1 e ̂ (E). Then

y(r n (G x S)) Y-1 = r n (G x S').

But S n S' e ^"(E) is a subgroup of finite index in both S and S', hence
TG ^s To 1 n r's = r^ ̂  g, is a subgroup of finite index in both Fg and YG r's To 1 • D

Suppose that d^ 2 and take G equal to PGL^(KJ for some j^-adic field K^, or
to PGU^_^i(R)°. We shall call these the ^-adic and the real (or the complex) cases
respectively.

Proposition 1.1.10. — Under the assumptions of Lemma 1.1.9 we have:

^r^G^;
b) pr^ is injective;
c) for each S e ̂ "(E), the group Fg is an arithmetic subgroup of G in the sense of Margulis

(see [Ma, p. 292];;
d) if S e <^"(E) is sufficiently small, then the subgroup r^-i is torsion-free for each a e E.

Proof. — a) For each S e <^'(E), Fg is cocompact in G and [1̂  : Fg] == oo. It
follows that TQ is a closed non-discrete cocompact subgroup of G. Therefore its inverse
image Tc'^rj in SU^_i i(R) (resp. SL^(KJ) is also closed, non-discrete and cocompact,
hence by [Ma, Gh. II, Thm. 5.1] it is all ofSL^_^(R) (resp. SL^(KJ). This completes
the proof.

b) Set FO:= pr^Kerprjg). This is a discrete (hence a closed) subgroup of G,
which is normal in 1̂ . Therefore it is normal in F^ 3 G .̂ It follows that each y e FQ
must commute with some open neighborhood of the identity in G ,̂ hence 1̂  is trivial.
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c ) is a direct corollary of [Ma, Ch. IX, Thm. 1.14] by b)-d) of Lemma 1.1.9.
d) (compare the proof of [Gh. 1, Lem. 1.3]). Choose an S e ̂ "(E), then Fg C G

is a cocompact lattice.

Lemma 1 . 1 . 1 1 . — The torsion elements of Fg comprise a finite number of conjugacy
classes in Fg.

We first complete the proof of the proposition assuming the lemma. Let
«i, ..., a,, e E be representatives of double classes F^E/S (use Lemma 1.1.9, a}). For
each i = 1, ..., n let M, C F .̂g î be a finite set of representatives of conjugacy classes of
torsion non-trivial elements ofl^i. Then the image of all non-trivial torsion elements
0{ To, so;-! under the natural injection j\: r̂ .g,̂  ^> F n (G X a. Sa,-1) ̂  a. Sa,-1 ̂  S
is contained in the set X, ={s-j\{M,)-s-1 |/eS}, which is compact and does not
contain 1. Hence there exists T e^(E) not intersecting any of the X,'s. By taking a
smaller subgroup we may suppose that T is a normal subgroup of S. Since all the j^s
are injective, the subgroup Î -i =j^•l(^') is torsion-free for each i = 1, ..., n. For
each a e E there exist i e { l , ...,n}, s e S and y e P such that a = ̂ a,s. Hence
the subgroup

r̂ .» s r n (G x aTa-1) = F n (^ G^1 x YE a. Ta,-1 yi1)

SYCr^Gxa.Tar^Y-1^!^

is torsion-free. D

Proof (of the lemma). — The group G acts continuously and isometrically on
some complete negatively curved metric space Y. Indeed, in the real case Y == 3d ~1

with the hyperbolic metric. In the j&-adic case Y is a geometric realization (see [Br,
Ch. I, appendix]) of the Bruhat-Tits building A of SL,(KJ. This is a locally finite
simplicial complex of dimension d — 1 which can be described as follows. Its vertices
are the equivalence classes of free fl^ubmodules of rank d of the vector space K71,
where M and N are said to be equivalent when there exists a e K", such that M = aN9.
The distinct vertices A^, Ag, ..., \ form a simplex when there exist for them representa-
tive lattices Mi, Mg, ..., M^ such that M^ 3 M^ 3 ... D M^ D nM^. For more informa-
tion see [Mus, § 1] or [Br, Gh. V, § 8].

The geometric realization Y o f A has a canonical metric, that makes Y a complete
metric space with negative curvature (see [Br, Ch. VI, § 3]). Moreover, the natural
action ofPGL^KJ on the set of vertices of A can be (uniquely) extended to the sim-
plicial, continuous and isometric action on Y.

Now the Bruhat-Tits fixed point theorem (see [Br, Gh. VI, § 4, Thm. 1]) implies
that any compact subgroup of G has a fixed point on Y. In particular, any torsion
element of G has a fixed point on Y. Notice that in the j&-adic case it then stabilizes the
minimal simplex, containing the fixed point.
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Conversely, the stabilizer in G of each point of Y is compact. In the real case
this is true, since the group PGU^^(R)0 acts transitively on 3d-1 and the group
K = StabB^-i(O) ^ U^_i(R) is compact. In the ^-adic case the group PGL^(KJ
acts transitively on the set of vertices, and the stabilizer of the equivalence class of
^c K^ is P01*^6^)? hence it is compact. Since the stabilizer in G of any point
y e Y must stabilize the minimal simplex a containing y, it must permute the finitely
many vertices of or, so that it is also compact. It follows that the stabilizer of any point
of Y in Fg is compact and discrete, hence it is finite.

To finish the proof of the lemma in the real case we note that for each x e B^"1

there exists an open neighbourhood U^ of x such that

r . : = { 5 e r , | ^ ( U J n U , = f = 0 } = = { 5 e r j ^ ) = ^ }

is finite (see [Shi, Prop. 1.6 and 1.7]). The space IV^-1 is compact, hence there
exist a finite number of points x^, ̂ , ..., x^ of 3d-1, such that rs(Ur==i U^.) == W-1.
If Y is a torsion element of Fg, then it fixes some point ofB^"1. By conjugation we may
assume that it fixes a point in some U^., therefore y is conjugate to an element of the
finite set Ur=i I\..

In the j^-adic case we first assert that A has only a finite number of equivalence
classes of simplexes under the action of Fg. Since A is locally finite, it is enough to prove
this assertion for vertices. The group G acts transitively on the set of vertices, and
G == FS • K for some compact set K C G. Hence if v is a vertex of A, then K- v is a compact
and discrete (because the set of all vertices of A is a discrete set in Y) subset of Y, and
our assertion follows. Now the same considerations as in the real case complete the
proof. D

1.2. GAGA results

In what follows we will need some GAGA results. Let L be equal to K^, in the
^-adic case and to C in the complex case. We will call both the complex and the j^-adic
(L-) analytic spaces simply (L-) analytic spaces. Recall that for each scheme X of locally
finite type over L and each coherent sheaf F on X a certain L-analytic space X^
and a coherent analytic sheaf F^ on X^ can be associated (see [Bel, Thm. 3.4.1] in the
p-Sidic case and [SGA1, Exp. XII] in the complex one).

Theorem 1 .2 .1 . — Let X be a projective 'L'-scheme. The functor F y-> F^ from the category
of coherent sheaves on X to the category of coherent analytic sheaves on X^ is an equivalence of
categories.

Proof. — In the complex case the theorem is proved in [Sel, § 12, Thm. 2 and 3],
in the ^-adic one the proof is the same. One first shows by a direct computation that
the j^-adic analytic and the algebraic cohomology groups of P" coincide. Next, one
concludes from KiehPs theorem (see [Bel, Prop. 3.3.5]) that the cohomology group
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of an analytic coherent sheaf on P" is a finite-dimensional vector space. Now the argu-
ments ofSerre's proof in the complex case hold in the^-adic case as well. See [Bel, 3.4]
for the relevant definitions and basic properties. D

Corollary 1.2.2. — a) IfX is an algebraic variety over L and X' is a compact Ju-analytic
subvariety of X, then X' is a proper ii-algebraic subvariety of X.

b) The functor which associates to a proper ^-scheme X the analytic space X^ is fully
faithful.

Proof. — Serre's arguments (see [Sel, § 19, Prop. 14 and 15]) hold in both the
complex and the j^-adic cases. D

Corollary 1.2.3. — Let X be a protective i-scheme. The functor X' h-> (X')^ induces
an equivalence between:

a) the category of vector bundles of finite rank on X and the category of analytic vector bundles of
finite rank on X^;

b) the category of finite schemes over X and the category of finite 'L-analytic spaces over X^, if
L is a p-adic field.

Proof. — a) To prove the statement we first notice that the category of vector
bundles of finite rank is equivalent to the category of locally free sheaves of finite rank.
In the algebraic case this is proved in [Ha, II, Ex. 5.18]. In the analytic case the proof
is similar. Now the corollary would follow from the theorem if we show that locally
free analytic sheaves of finite rank correspond to locally free algebraic ones. The analytic
structure sheaf is faithfully flat over the algebraic one (see [Sel, § 2, Prop. 3] and
[Bel, Thm. 3.4.1]). Therefore the statement follows from the fact that an algebraic
flat coherent sheaf is locally free (see [Mi2, Thm. 2.9]).

b) We first show that the correspondence (9: Y ~>X) i-> 9*(^y) (resp.
(9 :Y -^X^) ^9*(^?)) gives an equivalence between the category of finite schemes
(resp. analytic spaces) over X (resp. X^) and the category of coherent 0^ — (resp.
O^n —) algebras. In the algebraic case this is proved in [Ha, II, Ex. 5.17]. In the analytic
case the proof is exactly the same, because a finite algebra over an affinoid algebra has
a canonical structure of an affinoid algebra (see [Bel, Prop. 2.1.12]). D

Remark 1.2.4. — If X' is finite over X, then it is projective over X, therefore if,
in addition, X is projective over K^,, then X' is also projective over K^.

Corollary 1.2.5. — Let X and Y be projective 'L-schemes, and let W and V be algebraic
vector bundles of finite ranks on X and Y respectively. Then for each analytic map of vector bundles
f: W^ -> V^ covering some mapf: X -> Y there exists a unique algebraic morphism g : W -> V
such that g^ ==yT
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Proof. — By definition, /^factors uniquely as

W"1 -^ V" Xyan X"1 S (V XY X)"1 -^ V".

Corollary 1.2.3 implies that there exists a unique ̂ ' : W -> V x y X such that (^)aD = ̂ '.
Set g:== pro] o g ' .

For the uniqueness observe that if h: W -> V satisfies A" == ,̂ then it covers /.
Hence h factors asW^VXyX-^V . Since ̂  and 5' are unique, we have h' = g'
and h = g. n

Remark 1.2.6.— Using the results and ideas of [SGA1, Exp. XII] one can replace
in the above results the assumption of projectivity by properness.

We now introduce two constructions of E-schemes which are basic for this work.

1.3. First construction

1.3^1. Let Q^ be an open K^-analytic subset of (P ;̂1)"1, obtained by removing
from (P^1)111 the union of all the K^-rational hyperplanes (see [Bel] and [Be3] for
the definition and basic properties of analytic spaces). It is called the {d — 1)-dimensional
Drinfei'd upper half-space^over K^ (see also [Dri, § 6]). Then Q^ is the generic fiber
of a certain formal scheme ̂  over <P^, constructed in [Mus, Ku], generalizing [Mumi].

The group PGL,,(KJ acts naturally on Q^. (It will be convenient for us to
consider V-1 as the set of lines in A-* and not as"the set of hyperplanes, as Drinfei'd
does. Therefore our action differs by transpose inverse from that of Drinfei'd.) Moreover,
this action naturally extends to the (P^-linear action of PGL,,(KJ on 0^ . Further
more, PGL<,(KJ is the group of all formal scheme automorphisms of d[ over ^
(see [Mus, Prop. 4.2]) and of all analytic automorphisms of^ over K^ (see [Be2])"'
Though the action of PGL^(K^) on ̂  is far from being transitive, we have the
following

Lemma 1.3.2. — There is no non-trivial closed analytic subspace of Q^ ® C ,
invariant under the subgroup w " v'

^k:J^ xeK^-1 CPGL,(KJ.

Proof. — Suppose that our lemma is false. Let Y be a non-trivial U-invariant
closed analytic subset of ^®^C^. Then dimY< dimQ^®^ C, = d- 1.
Choose a regular point y e Y(C^) (the set of regular points is open" and non-empty).
Then dim T^(Y) = dimY< d- 1. Next we identify ^®^C, with an open

analytic subset of (A^-1)"1 by the map (^ : ... : z,) ̂  fe, ..., z^1). Then
Vd ^ I
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U^(^) = z + x for every 2: eA^~1 and every ^eA^'^K^). In particular, y + ^ e Y
for every ;c eA^'^KJ, contradicting the assumption that dimTy(Y) < rf — 1. D

Recall also that the group PGU^_i i(R)° acts transitively on 3d-1 and that it is
the group of all analytic (holomorphic) automorphisms ofB^1 (see [Ru, Thm. 2.1.3
and 2.2.2]).

In what follows we will need the notion of a pro-analytic space.

Definition 1.3.3. — A pro-analytic space is a projective system { X^ }^gi of analytic
spaces such that for some ao e I all transition maps cppa : Xp "-> ^a$ (B > a ^ o^ are
^tale and surjective.

Definition 1.3.4. — By a point of X :=== { X^ }agi we mean a system {^}ae i9
where Xy^ is a point of X^ for all a e I and 93a(A"p) = xa ̂  all (B ^ a in I. For a point
x={x^^o{X={X,}^let

T,(X) :== { ^ = { ^ Lei I ^ e T,JXJ, ^ap(^) = ^ for all ? ̂  a in I }

be the tangent space of ^ in X.

Definition 1.3.5. — Let X = = { X ^ } a e i and Y = = { Y p } ^ j be two pro-analytic
spaces. To give a pro-analytic morphism f: X ->Y is to give an order-preserving map
a: I —"J, whose image is cofinal in J, and a projective system of analytic morphisms
f^: X^ -> Yg^) • A morphism f is called Afl^ if there exists ao e I such that for each
a ^ (XQ the morphism Yoc i15 ^tale.

Construction 1.3.6. — Suppose that F C G X E satisfies the conditions of
Lemma 1.1.9. We are going to associate to F a certain (E, L)-scheme.

Let X° be B^"1 in the real case and Q^ in the^-adic one. Consider the L-analytic
space X:== (X° x E^/r, where F acts on X° X E^ by the natural right action:
(^3 S) Y :== (Ye1 x) ^YE)* Then E acts analytically on X by left multiplication.

Proposition 1.3.7. — For each S e <^(E) the quotient S\X == S\(X° X E)/T exists
and has a natural structure of a projective scheme Xg over L.

proof. — First take S e ̂ (E) satisfying part d ) of Proposition 1.1.10. Then S\X
has [ S\E/TE | < oo connected components, each of them is isomorphic to r^-i\X0

for some a e E. By c ) y d) of Proposition 1.1.10, each I\g^-i is a torsion-free arithmetic
cocompact lattice of G.

By [Shi, Prop. 1.6 and 1.7], [Sha, Ch. IX, 3.2] in the real case and by [Mus]
or [Ku] in the ^-adic one, each quotient r^-i\X° exists and has a unique structure
of a projective algebraic variety over L. Therefore there exists a projective scheme Xg
over L such that Xf ^ S\X.
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Take now an arbitrary S e^(E). It has a normal subgroup T e ^"(E) which
satisfies part d) of Proposition 1.1.10. The finite group S/T acts on T\X ^ X^ by
analytic automorphisms and S\X ^ (S/T)\X^. Corollary 1.2.2 implies that the
analytic action of S/T on Xf defines an algebraic action on Xrp and that the projective
scheme Xg := (S/T)\XT (the quotient exists by [Mum2, § 7]) satisfies (Xg)^ ^ S\X.
Moreover, the same corollary implies also that the algebraic structure on S\Xis unique. D

For all g G E and all S, T e ̂ -(E) with S 3 gTg-1 we obtain by Remark 1.1.4
analytic morphisms ps^C?) ^ X^ -> X^. They give us by Corollary 1.2.2 uniquely
determined algebraic morphisms ps^C?) : ̂ r -> ̂  which provide us by Remark 1.1.5
an (E, L)-scheme X := lim Xg.

"̂ T"

Proposition 1.3.8. — a) There exists the inverse limit X^ of the X|11^ in the category
of 'L-analytic spaces^ which is isomorphic to 5c.

b ) S t a b E ( X ° x { l } ) = r ^
c ) Let Xo be the connected component o/X such that X^ 3 X° x { 1 } (note that X° x { 1 }

is a connected component ofy, and that the analytic topology is stronger then the Zariski topology).
Then Stab^(Xo) = F;.

d) The group E acts faithfully on X.
e ) For each x e X the orbit E • x is (geometrically) Zariski dense. In particular^ E acts

transitively on the set of geometrically connected components of X.
f) For each S e ^"(E) satisfying part d ) of 1.1.10, the map X -> Xg is etale;
g ) For each embedding K^ <-^ C W ^A S e e^(E) ^ m ^1, B^-1 ^ ^ universal

covering of each connected component of (Xg ̂  in the p-adic case and of X^ in the complex one.

Proof. — a) We start from the following

Lemma 1.3.9. — a) Let II be a torsion-free discrete subgroup of G. Then the natural
projection X°-> II\X° is an analytic (topological) covering.

b) For each x e X° the stabilizer of x in G is compact.

Proof. — a) follows from [Shi, Prop. 1.6 and 1.7] in the real case and from [Be2,
Lem. 4 and 6] in the j&-adic one.

b) By [Dr2, § 6] there exists a PGL^KJ-equivariant map from 0^ to the
Bruhat-Tits building A of SL^(KJ, thus it suffice to show the required property for
stabilizers of points in A and B^"1. This was done in the proof of Lemma 1.1.11. D

The lemma implies that for each sufficiently small S e ̂ '(E) the analytic space X|11

admits a covering by open analytic subsets U^ satisfying the following condition: for
each i and each subgroup S D T e e^"(E) the inverse image pr^U) of U, under the
natural projection p r p : X^ -> Xf splits as a disjoint union of analytic spaces, each
of them isomorphic to U, under p^.
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Now we will define a certain L-analytic space X^ associated to X. As a set it
is the inverse limit of the underlying sets of the X^'s. To define an analytic structure
on X^ consider subsets V^ C X^ such that for some (hence for every) sufficiently small
S e ̂ "(E), the natural projection Tig : X^ -> XI11 induces a bijection of V^ with an
open analytic subset 7Tg(Va) ofX|11, described in the previous paragraph. Provide then
such a Va with an analytic structure by requiring that TTg : V^ -> TTg (VJ is an analytic
isomorphism. Then the analytic structure of the V^s does not depend on the choice
of the S's, and there exists a unique L-analytic structure on X^ such that each V^ is
an open analytic subset of X^.

By the construction, Xs"1 is the inverse limit of the Xf's in the category of L-analytic
spaces. Hence there exists a unique E-equivariant analytic map n : 5c -^ X^ such that

for each S e ̂ (E) the natural projection X -> Xg11 factors as X -^ X^ -"I Xg11, where
by Tig we denote the natural projection. It remains to show that n is an isomorphism.

For each S e ̂ '(E) satisfying part d) of Proposition 1.1.10, the natural projection
X° —" rg\X° is a local isomorphism, hence the projections X -> Xg and TT are local
isomorphisms as well.

The map Tig o TT is surjective, hence for each x e X^ there exists a point y e X
such that Ttg(^) = TTg o 7r(j). Therefore, 7r(j/) == J-A; for some j e S. Since n is E-equi-
variant, we conclude that ^(.y"1^)) == x. Hence n is surjective.

Suppose that Tr(j^) == ^(jg) for somej/i,j/2 e X. Let (A:i,<?i) and (^2,^2) be their
representatives in X° x E. Then for each S e ^"(E) there exist s e S and y e F such
that^-i == Ye1^) and^i = ̂ 2 YE- Suchy^ belong to theset{^e G | g{x^) = x^} n r^ig^,
which is compact (by the lemma) and discrete, hence finite. Therefore we can choose
sufficiently small S e ̂ (E) such that ,?i y^1 &"1 == ^ e s must be equal to 1. This means
that y^ =^2- Thus n is a surjective, one-to-one local isomorphism, hence it is an
isomorphism.

b) is clear.
c ) For each S e ̂ (E) let Yg be the connected component of Xg such that Yg11

is the image of X° X { 1 } C X^ under the natural projection TTg : X^ -^ X|11. Then
Xo == HmYg. It follows that g eE satisfies ^(X^) == X^ if and only if ^(Yg) = Yg

s
for each S e ̂ (E) if and only if X° x { g } C S(X° x 1) F for each S e ̂ "(E) if and
only if g e SI^ for each S e ̂ (E) if and only if g e fl SI\ = T'

SE^'(E)
</; I f ^ e E acts trivially on X, then it acts trivially on X^ ^ (X° X E^)/?.

By ^3,? == YE f011 some Y e ̂  and TG acts trivially on X°. Since pr^ is injective, y == ^ === 1.
^ Let Y be the Zariski closure of E.^. Then Y is E-invariant and, therefore,

Y^ n (X° x { 1 }) is a closed r-invariant analytic subspace of X° x { 1 } ̂  X°. By
Proposition 1.1.10 a), it is G^-invariant. Since G^ acts transitively on X° in the
real case and by Lemma 1.3.2 in the j^-adic one, Y^ n (X° x { 1 }) has to be all of
X° x { 1 }. It follows that Y = X.
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f) holds, since the projection TTg : X^ -> X^ is a local isomorphism (see the
proof of a)).

g ) The real case is clear, the j&-adic case is deep. It uses Yau's theorem (see [Ku
Rem. 2.2.13]). n

Remark 1.3.10. — The functorial property of projective limits implies that X^
satisfies the functorial properties of analytic spaces associated to schemes (see [Bel,
Thm. 3.4.1] or [SGA1, Exp. XII, Thm. 1.1]).

Lemma 1.3.11. — Let F C G X E and X be as above, let E' be a compact normal subgroup
of E, and let F' C G x (E'\E) be the image of F under the natural projection. Then we have
the following:
a) the map 9 : T -> F' is an isomorphism',
b) F' satisfies the conditions of Lemma 1 .1 .9 ;
c) the quotient E'\X exists and is isomorphic to the (E'\E, l^-scheme corresponding to F'.

Proof. — a) The composition map F -^ F' pr^ G is injective, therefore 9 is an
isomorphism and pr^ : F' -> G is injective.

b) f is clearly cocompact. Let U X S C G x (E'\E) be an open neighbourhood
of the identity with a compact closure. Then 9-1(U X S) is an open neighbourhood
of the identity of G x E with a compact closure. It follows that y'^U X S) n F is
finite, thus (U x S) n r is also finite. Hence F is discrete.

c) Since E' is compact and normal, we have E' S = SE' 6 ̂ "(E) for each S e ̂ (E).
Hence E'\X :== Hm X^g is the required quotient. Next we notice that for each

8 _

S e J?-(E) the subgroup S :== S\E' S belongs to ^(E'\E) and that each T e ̂ (E'\E)
is of this form. Since X^ g ^ E' S\[X° x E]/F ^ S\[X° x (E^E)]/!", we are done. D

1.4. DrinfelWs covers

1.4.1. Now we need to recall some DrinfePd's results [Dr2] concerning covers of
^. (A detailed treatment is given in [BC] for d == 2 and in [RZ2] for the general case.)

Let K^ be as before and let D^ be a central skew field over K^ with invariant I I d .
Let °^c D^ be the ring of integers. Fix a maximal commutative subfield K^ of D^
unramified over K^,. Let TC e K^ be a uniformizer and let Fr^ be the Frobenius auto-
morphism of K^ over K^. Then D^, is generated by K^ and an element n with the
following defining relations: W= TT, Il'a== Fr^(a). n for each a e K^.

Denote by 0^ the ring of integers of the completion of the maximal unramified
extension^ ]Ŝ  ofK^. Drinfei'd had constructed a commutative formal group Y over
^L ®<P«, ̂  with an action of ̂  o11 it- For a natural number n denote by I\ the
kernel of the homomorphism Y ^> Y. Let ̂  := F^ ®^ K^ be the generic fiber of F^
and let ^-^C ̂  be the kernel of II^-^ nn-lfd). w
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Put S^;:=^-^_^, and set T, :== 1 + ̂  Q^ e ̂ (D,). Then 2 ;̂ is
an (Stale Galois covering of S^° :== 0^ ®K ^ with Galois group [O^J-^Y ^ ^D,/^-
We also denote 6^ by To. The action of n induces ^tale covering maps TC^ : S^ n -> S^yk-1,
giving a ^^-pro-analytic space S^ := { 2^" }„. The group (9^ acts naturally on S^ ,
and we have S^J ^ T^\S^ for^each ^Nu{0} . Moreover, DrinfePd had also
constructed an action of the group GL^(KJ x D^ on S^ , viewed as a pro-analytic
space over Ky,, which extends the action of (P^ and satisfies the following properties
(notice that our convention 1.3.1 differ from those of DrinfePd):
a) the diagonal subgroup { ( k , k) e GL^KJ X D^ | k e K^ } acts trivially;
b) GLy(KJ (resp. D^) acts on S^=n^®^&^ by the product of the natural

action of PGL^(K^) on Q^ (resp. the trivial action on Q^ ) and the Galois action
g ̂  Fr;^^^ (resp. g h-> Fr; ̂ W^) on &^.

1.4.2. In the case d == 1 Drinfei'd's coverings can be described explicitly. Let L be
a^-adic field. Then, by property a) above, the action ofl^ X L^ on S^ is determined
uniquely by its restriction to the second factor. Denote by 6^ : I^ -> GaUL^/L) the Artin
homomorphism (sending the uniformizer to the arithmetic Frobenius automorphism).

Lemma 1.4.3. — One has 5^ ^ ̂ (L^), and the action of (1,1) e { 1 } x L" on 2^
is given by the action of OJ/)-1 e GaUL^/L) on L^.

Proof. — This follows from the fact that DrinfePd's construction for d = 1 is
equivalent to the construction of Lubin-Tate of the maximal abelian extension of L
(see, for example, [CF, Gh. VI, § 3]). D

1.4.4. Let L be an extension of K^ of degree d and of ramification index e. For
every embeddings Lc-^Mat^KJ, L<->D^ (such exist by [OF, Gh. VI, § 1, App.])
and K^" <-> L1"' and for every n e N u { 0 } there exists a closed L-rational embedding
i^: S^^S^, which is (L^ X L^-equivariant and commutes with the projec-
tions T^. Moreover, ?o : 0^®^ L111'̂ ^ ®^ ]K '̂ is the product of our embedding
S^^L^ and a closed embedding zF^^Q^, with image (O^J^ (see [Dr2,
Prop. 3.1]). Taking an inverse limit we obtain an embedding T : S^ <-> S^ .

Lemma 1.4.5. — Z^ H ̂  a subgroup of R^ (G )̂ (KJ ^ Lx, Zariski dense in
^/KJQJ- r^ Im^={A:e2^1 { l , l ) x=x fo r every leH}.

Proof. — Since for each / e H C Lx the action of (/, /) on S^ is trivial, and since
F is (L>< X Lx)-equivariant, Im T is contained in the set of fixed points of (/, /), I e H.

Conversely, if x e S^ is fixed by all [I, I ) , I e H, then its image x e Q^ under
the natural projection p:S^-^n^ belongs to (O )̂11 = (PiJ^ == ^^L)- since

p(Im7) === Imi, there exists j ^ e I m T such that p(j?) === ^(= p(A:)). Recall that
n^==D^\2^. Therefore y == SA: for some 8eD^. It follows that (/, S/S-1)^ =j^
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for each Z e H , hence also (1, §18-1 l-1)^ ==j/. Since the covering S^ -> ̂  \S|
is dtale, the group ̂  acts freely on 2 .̂ Therefore S/S-1/-1 == 1 for" each 1 e H"
Hence 8 belongs to the centralizer of H in D^, so that to L\ It follows that
x== S-^eL^ImT =ImT. D

Proposition 1.4.6. — For each n e N u { 0 } the group SD^ n T, acts trivially on the
set TCO of connected components of 2^ n ®^ Cy.

Proo/. — Recall (see 1.4.4) that each maximal commutative subfield LCD^,
gives us (after some choices) a closed L-rational L^-equivariant embedding
^.-S^^^S^. Let W be a connected component of S^^^C^. Take ^e^o,
which contains i^W). Then, by Lemma 1.4.3, 3; is defined over L^ and

(1-1) W == (e^))-W for each leL\

Fix a ̂  e TTo, and let M be the field of definition of 3;^ Then M D jK^. Since
the quotient D^\S^^Q^ is geometrically connected, D^ acts transitively10 on 7^.
Since the action ofD^ on 7^ is K^-rational, M is the field of definition of every X e T^.
In particular, M is the closure of a Galois extension of K^,, and MC L^ for every
extension L ofK^, of degree d. Taking L be unramified we see that the group Aut^M)
of continuous automorphisms of M over K^ is meta-abelian (== extension of two abelian
groups). Set H :== { 8 e D^ | there exists a CT(S) eAut^(M) such that 8(^0) == a^S)-1^) }.
Then H is a group and a : H ->Aut^(M) is a wdl-defined homomorphism.

We claim that H = D^. Take a 8 eD^, then KJ8] is a commutative subfield
ofD^. Let L be a maximal commutative subfield ofD^, containing 8. Then by (1.1),
8(aT) = (e^))-1^) for some S-e^. Take 8'eD^ such that X: = 8'(^o). Then
(8')-188'(^)=(8')- lo(6^(8))- lo8'(^)=(e^(8))- l(^), so that (8')-188 /6H.
Thus each element ofD^ is conjugate to some element of H. In particular, Z(D^) C H.
Since T^ acts trivially on S^, it is also contained in H. Hence HDT^.Z(D^) has
a finite index in D^. Therefore our claim follows from the following

Lemma i A.7. — Let G be a group and let H be a subgroup ofG of finite index. Suppose
that G == U g'Hg~1. Then G = H.

flTGG/H

Proof. — Set K:= PI gHg~1. Then K is a normal subgroup of G of

finite index, and G/K = U ^(H/K) ̂ -1 == U (^(H/K) g-1 - {1}) u { 1 }. Hence
Q G G/H g Q G/H

| G/K | < | G/H | (| H/K [ - 1) + 1 = | G/K | - | G/H | + 1, therefore G - H. n

Now the proposition follows from the fact that SD^ is the derived group of D^
(see [PR, 1.4.3]) and that T^ n SD^ is the derived group of SD^ (see [PR, 1.4.4',
Thm. 1.9]). D
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1.5. Second construction

Construction 1.5.1. — Suppose that a subgroup TC GL^(KJ X E satisfies the
following conditions:
a) Z(F) == Z(GL,_(KJ x E) n F;
b) the subgroup Z(F) C Z(GL^(KJ x E) is cocompact;
c ) PF C PGL^(K^) X PE satisfies the assumptions of Lemma 1.1.9 (this imply, in

particular, that the closure of F is cocompact in GL^(K^) X E);
d) the intersection of Z(F) with Z(GL^(KJ) X { 1 } is trivial.

We are going to associate to F a certain (D^ X E, K^,)-scheme.
Consider the quotient X:== (2^ x E)/F. The group D^ x E acts on X by

the product of the natural action of D^ on S^ and the left multiplication by E.

Proposition 1.5.2. — For each S e^(D^ X E) ̂  STO^ S\5c == S\(S^ x E)/F
has a natural structure of a K^-analytic space, which has a unique structure Xg of a projective
scheme over K.̂ ,.

Proof. — First take S = T^ x S' for some n e N u { 0 } and some sufficiently
small S' e^(F) (to be specified later). Then S\X = S'\(S^ X E)/F is a disjoint
union of | S\E/FE | < oo (as in Lemma 1.1.9) quotients of the form F^g^^S^ with
a eE. Thus it remains to prove the statement for quotients F^g^-^S^". For simplicity
of notation we assume that a == 1. Set

rs',o :- IY ^ pra(Z(F)) = pr^F n (Z(GL,(KJ) x (Z(E) n S'))).

First we construct the quotient Fg, o\S^J. Assumptions a) and b) of 1.5.1 imply that
the closure of Fg, o is cocompact in Z(GL^(KJ) ^ K^, hence val^(det(Fg, o)) = dk Z
for some k eN. Let K™ be the unique unramified extension ofK^, of degree dk', then
r \od S) K111'^ o^ (^) K^^1 S'.oV^ Q</^ ^w = ̂ ^ ^K^ -^w •

Consider the natural ^tale projection TT^ : S^-> S^->0^. Let {^(A,) },gi
be an affinoid covering of ^ . Since the projection S^-^S^0 is finite, each
^(^(A^C S^ is finite over the affinoid space ^(A,®^^)- Hence it is iso-
morphic to an affinoid space ^(BJ for a certain K^-affinoid algebra B^, finite over
A^®^ K^. Since TC^ is D^-invariant, we have a natural action of Fg, o on B,. Set
C^ :== Bf8'*0. Since an affinoid algebra is noetherian, we see that C, is finite over the
K^-affinoid algebra A,. Hence G, has a canonical structure of a K^-affinoid algebra
(see [Bel, Prop. 2.1.12]). Gluing together the.^GJ's, we obtain a K^-analytic space
Fg, ̂ S^, finite and <5tale over 0^ .

Pu^S :== S-Z(E)/Z(E) C PE. 'then S e ̂ (PE). To construct Fg,\S^ we observe
that the action of PFg = Fg, o\Fg, on Fg, ̂ o^^ covers its action on Q^ . Suppose
that S' is so small that S satisfies part d) of Proposition 1.1.10. Recall that
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by Lemma 1.3.9 each x e Q^ has an open analytic neighbourhood V^ such that
YCHJ ^ U^ =t= 0 for all Y e PFy — { 1} and, as a consequence, Prg\Qi is obtained by
gluing the U^s. Let TT^ be the natural projection from rg^S^" to i2^ . For
each y e r^o\S^ set V^ := ̂ (U^J. Then the quotient K^-analytic^ space
Prs\(r^,o\^:) == IY\S^ is obtained by gluing the V;s.

Since Fg^S^ is a finite (and (Stale) covering of Prg\Q^ , which has a structure
of a projective scheme over K^ by [Mus, Ku], rg/\S^ also has such a structure by
Corollary 1.2.3 and the remark following it.

Finally consider an arbitrary S e.^(D^ X E). It has a normal subgroup ^ of
the form 'S == T\ X S' with sufficiently small S' e ̂ (E), therefore to complete the
proof we can use the same considerations as in the end of the proof of Propo-
sition 1.3.7. D

The same argument as in Construction 1.3.6 gives us a (D^ X E, KJ -scheme
X==HmXg.

<^

Proposition 1.5.3. — a) The kernel Eo of the action of D^ x E on X is the closure of
the subgroup Z(F) C Z(GL^KJ x E) = Z(D^ x E) after the natural identification
Z(GL,(KJ)^K^=Z(D^).

b) Let Eo be the closure ofZ{F) in E, and let F C PGL^KJ x (Eo\E) be the image
of T under the natural projection. Then F' satisfies the assumptions of Lemma 1 .1 .9 .

c) The quotient D^\X exists and is isomorphic to the Eo\E-scheme corresponding to F'
by Construction 1.3.6.

d) The quotient (D^ x Z(E))\X exists and is isomorphic to the (PE, K^-scheme X'
corresponding to PF by Construction 1.3.6.

e) For each x e X the orbit (D^ x E) x is Zariski dense in X.
f) For each sufficiently small S e ̂ (E) and each n e N u { 0 } the map X -> Xp ^ s

is etale, and B^"1 is the universal covering of each connected component of (Xy ^ g ^91U for
each embedding Ky, ^-> C. TTZ particular, the projective system X^ := { X^" ^e-^^w x E)?
associated to X, ^ ^ V^^-pro-analytic space.

Proof. — fl^ Notice that ^ e Eo if and only if g acts trivially on Xg (or, equivalently,
on Xln=S\(S^ X E)/F) and normalizes S for each Se^(D^ X E). For each
Y e Z(r) C Z(D^ x E) let Yw be the projection ofy to the first factor. Since (y^ X Yy,)
acts trivially on S^, we have y([^, e]) == EY«,(^), YE 4 ̂  [(YG X YJW. 4 == [̂  4
for each x eS^ and ^ eE, that is y acts trivially on each Xg". Since y is central, it
certainly normalizes S. This shows that the closure of Z(F) is contained in Eo.

Conversely, suppose that some {gi^g^^^w x ^ wlt!1 81e^ and g^ e E
belongs to EQ. Choose S" e ̂ "(E) and n e N u {0}. It suffice to show that
{gi,g2) ^ (T, X S') Z(F). Since (^,^) acts trivially on S'\(S^; x E)/F, we have
biW? ^2] ̂  [x) 1] f011 each x e ̂ w- This means that there exists an element y = Ya; 6 r
such that ^(A:) = YG^^) ^d ^2 e S' YE- Let ^' be the projection of x to S^°, and let ^"
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be its projection to t^. The group D^ acts trivially on Q^ , therefore VG^") = A:"-
Choose x so that no non-trivial element of PGL^(KJ fixes A:", then YG belongs to
Z(GL^KJ) ^ K^. Assumption <;J of 1.5.1 implies that y e Z(F). Since

5iW ^G^) ==TwW.

we conclude that -̂1 y«,(A:) = x. Hence ^ = (̂ -1 yj OQ = Fr^^1^^1^"^'), so
that ^Y^ e6^- since s^ ^ an dtale Galois covering of S^ with Galois group
^DJT^, the equality (̂ -1 yj W = ^ implies that g^^^eT^. It follows that
(^ ^2) e (T^ x S') (Y,, y^) C (T, x S') Z(F), as claimed.

b) The natural projection PGL^KJ X (Eo\E) -> PGL<,(K^) x PE induces an
isomorphism F' ̂  PF. Hence F' is discrete and has injective projection to PGI^(K.J.
It is cocompact, because so is F C PGL^(KJ x E.

c ) Notice first that for each open subgroup E^ C S C D^ x E, compact modulo Eo,
the quotient S\X exists and is projective. Assumption b) of 1.5.1 implies that Eg
is cocompact in D^ X Z(E). Therefore for each Se^(D^ x E) the quotient
D, S\X == (D^ Eo S)\X = (D, x Eo) S\X exists. Set

S := (D, x Eo)\(D, x Eo) S e^-(Eo\E).

Then (D, S\Xr ^ (D, x Eo) S\[S^ x E]/F ^ S\[^ x (Eo\E)]/r', and the state-
ment follows as in the proof of Lemma 1 . 3 . 1 1 c).

d) follows from c ) and Lemma 1.3.11 c ) .
e ) follows from c ) and Proposition 1.3.8 e).
f) Take T e ̂ (PE) satisfying part d) of Proposition 1.1.10. Then there exists

S e^"(E) such that Z(E)\S-Z(E) = T. Since we have shown in the proof of Propo-
sition 1.5.2 that Xr^ x s is Aale over T\X' for each n e N u { 0 }, the statement follows
immediately from Proposition 1.3.8 f), g ) . D

Corollary 1.5.4. — For each a e E the composition map

Pa^^S^ x {a}^{^ x E^/F ^X-

of pro-analytic spaces over K ,̂ is etale and one-to-one.

Proof. — The Aaleness is clear. Let x^ and x^ be points of S^ such that
Pa^i) == Pa (^2)- Let d e PE' be projection of a, and let p^ be the injection

^ ̂  ̂  X { a } ̂  (Q^ x (PEr^/PF ^> (X')-.

Then we conclude from the commutative diagram

S^" -pd-^ X^
~w

proj proj
y t

(X')^
PH

that A:i and ^2 have the same projection y e Q9^ .
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Choose S e e^(E) so small that the group Pr^_i is torsion-free (use Propo-
sition 1.1.10 d)). Then no non-central element of F^-i fixes y. For each n e N let
^,s ^ the projection X^ -. (X^ s)^. Then the image of Tr^op^ is isomorphic
to ^sa-iV2^- Hence there exists y^ e F^-i such that the projections of y^i) and A:g
to 2^; coincide. Therefore y.(j0 =J^ so that Yn^Z(GL,(KJ) = K,. It follows
that the sequence { y^ L converges to some y e K^, which satisfies y^) == ^. Then
(y, 1) eZ(D^ x E) fixes z :== p^i) == p^). Since (y, 1) is central, it then fixes the
whole (D^ x E)-orbit of;?. Hence, by Proposition 1.5.3 c ) , it acts trivially on X. There-
fore by Proposition 1.5.3 a), the element (y, 1) belongs to Z(T) C Z(GL^KJ x E).
Assumption d ) of 1.5.1 implies that y = 1, hence x^ == x^. D

1.6. Relation between the ^-adic and the real constructions

The following proposition (and its proof) is a modification of lhara's theorem
(see [Ch2, Prop. 1.3]). It will allow us to establish the connection between the ^-adic
(1.3.6, 1.5.1) and the real (or complex) (1.3.6) constructions.

Proposition 1.6.1. — Let X be an (E, C)-scheme. Suppose that
a) E acts faithfully on X$
b) E acts transitively on the set of connected components q/'X;
c) there exists S e e^(E) such that the projection X ->Xg is etale, and 3d-1 is the universal
covering of each connected component ofX.^.

Then X can be obtained from the real case of Construction 1.3.6.

Remark 1.6.2. — a) It follows from Proposition 1.3.8 that all the above conditions
are necessary.

b) Let X be an (E, C)-scheme and let EQ be the kernel of the action of E on X.
Then X is an (Eo\E, C)-scheme with a faithful action ofEo\E. Conversely, any (Eo\E, C)-
scheme can be viewed as an (E, C)-scheme with a trivial action of Eg.

c ) Let X be an (E, C)-scheme and let XQ be a connected component of X. Put
X' := U <?(Xo). Then X' is an (E, C)-scheme with a transitive action of E on the set

0 G E

of its connected components, and X is a disjoint union of such (E, C)-schemes.

Remarks b) and c ) show that assumptions a) and b) of the proposition are not
so restrictive.

Proof. — We start the proof with the following

Lemma 1.6.3. — Suppose that { X^ }^ ̂  ^ is a protective system of complex manifolds such
that the transition maps Xp -> X^, where a, (3 e I with (B ^ a, are analytic coverings. Then there
exists a protective limit X of the X^s in the category of complex manifolds.
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Proof. — Choose an oc e I. Cover X^ by open balls { U^p }pe J? an^ ^et T T ; X' -^ X^
be an analytic covering. Then the inverse image Tr'^Uap) of each U^ is a disjoint
union of analytic spaces, each of them isomorphic to U^p under TT. Hence the cons-
truction of the projective limit from the proof of Proposition 1.3.8,^ can be applied. D

Now we return to the proof of the proposition. By assumption c ) , X|11 is a complex
manifold for each sufficiently small S e ̂ "(E), and the natural covering Xf -> Xy
is ftale (analytic) for each TC S in ^"(E). Therefore by the lemma there exists an
analytic space X^ :== limXl11.<^

Since Xg is a complex projective scheme for each S e <^'(E), the set of its connected
components coincides with the set of connected components of X^. Hence assumption b)
implies that the group E acts transitively on the set of connected components of X^.

Let M be a connected component of X^. Denote by F^ the stabilizer of M in E.
Then I\ acts naturally on M, and the transitivity statement above implies that
Xan^ (M X E^)/^.

For each S e ̂ (E) the analytic space X^ ^ S\(M X E)/I\ is compact. Therefore,
as in the proof of Lemma 1.1.9, | S\E/I\ | < oo and [I\ : F^ n S] = oo. Note that
Mg :== (F^ n S)\M is a connected component of X^. Suppose that S satisfies condi-
tion c)\ then the map M -> Mg is dtale and 3d-1 is the universal covering of Mg.
Hence it is also the universal covering of M. It follows that I\ C Aut(M) can be lifted
to F^C Au^B^) = PGU,_^(R)°.

The kernel A of the natural homomorphism n: Fg —^ F^ is the fundamental
group ofM. Let Fg C PGU^_i i(R)° be the fundamental group of the compact analytic
space Mg, then Fg is a cocompact lattice in PGU^_i i(R)°, satisfying Fg = TC'^r^ n S).
It follows that [FR : rj = [FE : r^ n S] = oo. Therefore, as in the proof of Propo-
sition 1.1.10 a), we see that Fg is dense in PGU^_i i(R)°. The group A is discrete
in PGUd_i,i(R)° and normal in Fg, thus it is trivial (compare the proof of Propo-
sition 1.1.10 b)). In particular, M ^ B^"1 and n is an isomorphism.

Put r :== { (y, TT;(Y)) | Y e FB }C PGl^_^(R)0 x E. Since Fg is discrete in
PGU^^i(R)0, so is r in PGl^_^(R)° X E. Let KC PGU^i(R)0 be the stabilizer
of 0 eB^-1. Then X^ ^ SN^-1' x E)/F = (K x S)\(PGU^i(R)° X E)/r. Since
K, S and XI11 are compact, F is cocompact in PGU^_i i(R)° X E. Since Ker(prJ
equals the kernel of the action of E on X, the projection pr^ is injective. This shows
that r satisfies all the assumptions of Construction 1.3.6. D

Corollary 1.6.4. — Choose an embedding K.^ <-^ C. Let X be an (E, K^)-scheme obtained
by the p-adic case of Construction 1.3.6 or an (E, KJ -scheme obtained by Construction 1.5.1.
Then Xp can be constructed by the real case of Construction 1.3.6.

Proof. — This is an immediate consequence of Propositions 1.6.1, 1.3.8 and
1.5.3. D
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1.7. Elliptic elements

Definition 1.7.1. — Suppose that a group G acts on a (pro-) analytic space (or a
scheme) X. An element g e G is called elliptic if it has a fixed point x such that the
linear transformation of the tangent space of x, induced by g, has no non-zero fixed
vectors. In such a situation we call x an elliptic point of g.

Lemma 1.7.2. — Let \, Xg, ...,^ ^ ̂  eigenvalues of some element g e GL (̂L)
fw^A multiplicities). Let v eP^-^L) ^ o^ of the fixed points of g corresponding to \. Then
Ao Ac Ay
. ? . " ? ..., <zr^ ̂  eigenvalues of the linear transformation of the tangent space of y, induced

by g.

Proof. — Simple verification. D

Proposition 1.7.3. — The set of elliptic elements of PGU^_i^(R)° with respect to its
action on 3d ~1 awrf o/'PSL^(KJ w^A r^^ ^0 ^j action on Q| ^ qSwz and non-empty.

Proof. — In the real case we observe that an element

g := diag(Xi, Xa, ..., \) e PGU^^(R)0

fixes (0,0, . . . ,0) eB^-1. Therefore by Lemma 1.7.2, g is elliptic if \ 4= \ for all
z + d. It follows that the set of elliptic elements is non-empty. It is open, because if g
has a fixed point in 3d-1 corresponding to an eigenvalue of g appearing with multi-
plicity 1, then the same is true in some open neighbourhood of g.

In the ^-adic case we start with the following

Lemma 1.7.4. — An element g e GL^(KJ is elliptic (acting on Q,^ ) if and only if
its characteristic polynomial is irreducible over K^.

Proof. — Suppose that the characteristic polynomial ̂  of g is irreducible over K
Then g has d distinct eigenvalues. Let X be some eigenvalue of g, let v =t= 0 be the eigen-
vector ofg corresponding to X, and let v e I^-^KJ be the fixed point of g corresponding
to v. By Lemma 1.7.2, the linear transformation of the tangent space of v, induced
by g, has no fixed non-zero vector. So it remains to be shown that v e £& . If v f Q^
then it lies in a K^-rational hyperplane. Therefore there exist elements a^\.., ̂  e K^,
not all 0 (say ̂  + 0) such that (^i, ..., a^) ' v = 0. We also know that (g — XI) v == "0.
Let A be the matrix obtained from g — XI by replacing the last row by (^, ..., ̂ ).
Then Av == 0, so that det A = 0. The determinant of A is a polynomial in X of
degree {d — 1) with coefficients in K^ with leading coefficient (— l)^-^ ̂  =j= 0. This
contradicts the fact that the minimal polynomial of X over K^, has degree d.

Suppose now that the characteristic polynomial ̂  ofg equals the product /r ... .̂
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of polynomials irreducible over K.̂  {k> 1). Consider the matrix f^g). If f^g) = 0,
then the minimal polynomial m^ of g divides/i. Hence each root of /^ being a root
of m^ is a root of/i. Eachj^ has only simple roots, therefore f, \f^ for each i. Since
/i is irreducible, all them's are equal up to a constant. Hence ^ = cff for some c e K^ .
In particular, each root of ^ is at least double. Lemma 1.7.2 then implies that g is
not elliptic.

Hence we can suppose that^(^) + 0 for all i = 1, 2, ..., k. Let X be an eigenvalue
of g, let v be the eigenvector corresponding to X, and let yeP^-^KJ be the fixed
point of g corresponding to v. Choose i e{ 1, ..., k } such that X is a root of^. Then
fi{g) v =f,W v == 0. The matrix f,{g) + 0 has all its entries in K^, hence v lies in a
K^-rational hyperplane. Therefore 5 is not elliptic. D

Now we return to the proof of the proposition. Embed an extension L == K^(X)
of K^ of degree d in Mat^KJ. Then XeL^GL^KJ has an irreducible cha-
racteristic polynomial over K^. Therefore the set of elliptic elements of PGL^KJ
is non-empty. It is open because by Krasner's lemma if g e GL^(KJ has a characte-
ristic polynomial irreducible over K^, then any g ' e GL^KJ, close enough to g, has
the same property (see [La, Gh. II, § 3, Prop. 4]). It follows that the set of elliptic
elements of PSL^(KJ is also open. For showing that it is non-empty observe that if
an element g e PGL^KJ is elliptic but ^d is not elliptic, then by Lemma 1.7.2 the
characteristic polynomial of any representative of^ in GL^(KJ has at least two equal
roots. Hence such a g belongs to some proper Zariski closed subset of PGL^. It follows
that there exists an elliptic element g e PGL^KJ such that ^d is elliptic as well. Since
^ always belongs to PSL^(KJ, we are done. D

Proposition 1.7.5. — a) An element (^,8) e GL^KJ x D^ is elliptic with respect
to its action on S^ (viewed as a pro-analytic space over Ky,} if and only if the characteristic
polynomials of g and 8 are K^-irreducible and coincide.

b) For every element g e GL^(KJ elliptic with respect to its action on 0^ » ^lere exlsts

a 8 e D^ such that (g, 8) is elliptic with respect to its action on S^ .

Proof. — a) Let x e 2^ be an elliptic point of {g, 8), and let x e Q^ be its image
under the natural projection p : S^ ->^. Since p is (Stale, it induces an isomorphism
of tangent spaces (up to an extension ofscalars). Hence g is elliptic with respect to its
action on D^ . By Lemma 1.7.4, g generates a maximal commutative subfield L : = K {g)
of Mat,(KJ.

Choose an embedding j : K^(g) <-^ D^ (such exists by [GF, Ch. VI, § 1, App.]).
It defines an L^equivariant embedding 7:S^<-^S^ (see 1.4.1). We know that
x e W.^ == P0^2!)- In particular, there exists y e T(S^) such that p(j/) == x.
Since 7 is L^equivariant, the element (g,j(g)) e GL^(KJ x D^, fixes y. Using the
fact that x e p-^) and that D^ \2^ == Q^, we have y == d^ x for some d^ e D^.
Hence, the elements (5, rfo-1^) d^) e GL,(KJ "x D^ and d := ̂ 1^) ̂  8-1 e D^ fix ^.

11
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In particular, d " e D^ fixes some point (the projection of A:) on S^0®^ C^, therefore
^e ̂ . Smce the Galois covering S^ -> fi^2^ is Aale, 6^ ^ts fr"eelyon S^. It fol-
lows that d = 1, hence 8 = d^lj{g) d^. This completes the proof of the implication
<c only if", because g e Mat^KJ andj(^) e D^, have the same characteristic polynomials.

Conversely, suppose that the characteristic polynomials ofg and 8 are K^-irreducible
and coincide. Then the subfields K^g) C Mat^(K.J and K.J8) C D^, have degree d
over Ky, and are isomorphic under the K^-isomorphism sending g to 8. Using
this isomorphism we obtain embeddings of the field L:= K^(^) into Mat^(KJ and
into D^,. These embeddings define (by 1.4.4) an (L^ x Lx)-equivariant embedding
?':S^<-»S;^ such that every point xeT(S^) is fixed by all elements of the form
(/,/) eL^ X Lx C GL^(KJ X D^. In particular, ^ is a fixed point of (^,8). As
before, the action of {g, 8) on the tangent space of x coincides with the action of g on
the tangent space of x. Since x is an elliptic point ofg (by Lemma 1.7.4), x is an elliptic
point of (^,8).

b) If an element g e GL^(KJ is elliptic, then by Lemma 1.7.4 it has an irreducible
characteristic polynomial over K^. Therefore KJ^) C Mat^KJ is a field extension
of K^ of degree rf. Then for every embedding j of K^(^) into D^, the element (g,j{g))
is elliptic by a). D

1.8. Euler-Poincare measures and inner twists

Here we give a brief exposition of Kottwitz5 result [Ko, § I],

1.8.1. Let L be a local field of characteristic 0, and let H be a connected reductive
group over L. Serre [Se2] proved that there exists a unique invariant measure (called
the Euler-Poincar<5 measure) [L^ on H(L) such that pLg(r\H(L)) is equal to the Euler-
Poincare characteristic ^(r) of H*(F, QJ for every torsion-free cocompact lattice F
in H(L). In particular, ^(H^L)) == 1 if the group H(L) is compact. The Euler-
Poincar^ measure is either always negative, always positive or identically zero. It is
non-zero if and only if H has an anisotropic maximal L-torus. (A result of Kneser
shows that in the j&-adic case this happens if and only if the connected center of H is
anisotropic.)

1.8.2. Let G be an inner form of H. Choose an inner twisting p : H -> G over L.
Choose a non-zero invariant differential form co^ of top degree on G. Set <«)g := p*(<x)c.).
Using the fact that H is reductive, that the twisting is inner and that <o^ is invariant, we see
that cog is invariant, defined over L, and does not depend on p. Hence co^ and cog define
invariant measures | <o^ | and | co^ | on G(L) and H(L) respectively (see [We2, 2.2]).

Definition 1.8.3. — The invariant measures [A on H(L) and (JL' on G(L) are called
compatible if there exists some c e R such that [L == c \ 0)3 [ and (JL' = c \ co^ |.

1.8.4. — Now suppose that H has an anisotropic maximal L-torus T, so that
the Euler-Poincare measure ^ on H(L) is non-trivial. (Notice that for semisimple
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groups of type A^ this assumption is satisfied automatically). Denote by | [L^ \ the
absolute value of [L^. Write ^(T, H) for the finite set Ker^^L, T) -^(L, H)] and
write | ^(T, H) | for its cardinality. It is well known that T transfers to G, thus we can
also consider the finite set ^(T, G).

Proposition 1 .8 .5 ([Ko, Thm. 1]). — The invariant measure | ̂ (T, H) [ -1 | ^g [
on H(L) is compatible with the invariant measure \ ̂ (T, G) [-1 | (AQ | on G(L).

Remark 1.8.6. — a) In the j^-adic case, the sets ^(T, H) and ^(T, G) always
have the same cardinality.

b) In the real case, ^(T, H) = 0(H(C), T(C))/Q(H(R), T(R)), where 0 stands
for the Weyl group. In particular, | ̂ (diag, PGU^) | = 1 and | ̂ (diag, PGU^^) |
is d (resp. 1) if d> 2 (resp. d = 2).

1.9. Preliminaries on torsors (= principal bundles)

Definition 1.9.1. — Let G be an affine group scheme over a field L (resp. an
L-analytic group), and let X be an L-scheme (resp. an L-analytic space). A G-torsor
over X is a scheme (resp. an analytic space) T over X with an action G X T -> T of G
on T over X such that for some surjective ftale covering X' -> X the fiber product
T XxX' is the trivial G-torsor over X' (that is isomorphic to G X X').

Remark 1.9.2. — Since each ^tale morphism of complex analytic spaces is a local
isomorphism, our definition in this case coincides with the classical one.

Lemma 1.9.3. — a) If T is a G-torsor over X, then the map 9^ : G X T ->T X x T

(PrC??f) = (̂  ^)) is an isomorphism.
b) Let T and T' be two G-torsors over X and Y respectively. Then for each G-equivariant

map f: T -^T' the natural morphism T -> T' Xy X is an isomorphism.

proof. — a) Since the problem is local for the ^tale topology on X (see [Mi2,
Gh. I, Rem. 2.24] in the algebraic case, [Be3, Prop. 4.1.3] in the p-adic analytic and
Remark 1.9.2 in the complex one), we may suppose that T is trivial. Then our morphism
(^ (^ ^)) ^ {{g^ x)^ (^ ^)) is invertible.

b) For trivial torsors the statement is clear. The general case follows as in a). D

Remark 1.9.4. — By [Mi2, Ch. I, Rem. 2.24 and Prop. 3.26] our definition in
the algebraic case is equivalent to the standard one. In particular, a G-torsor over X
is affine and faithfully flat over X.

Lemma 1.9.5. — Let X be a separated scheme over a field L, let G and H be two affine
group schemes over L, let T be a G-torsor over X, and let TV : T -> X be the natural projection.

a) The functor ^ i-> TT* 3F defines an equivalence between the category of quasi-coherent
sheaves on X and the category of G-equivariant quasi-coherent sheaves on T, that is, quasi-coherent
sheaves on T with a G-action that lifts the action of G on T.
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b) The functor Z i-» Z X x T rî m aw equivalence between the following categories:

i) the category of vector bundles of finite rank on X and the category of G-equivariant vector
bundles of finite rank on T;

n) the category of H-torsors over X and the category of G-equivariant H-torsors over T;
111) (if X is noetherian and regular) the category of ^-bundles on X and the category of

G-equivariant V-bundles on T.

The quasi-inverse functor is 2 t-* G\Z;.

Proof. — This is a consequence of a descent theory.
a) Abusing notation we will write ^ Xy, Y^ instead of p* ̂  for every morphism

p : Yi -^ and every sheaf of modules ^ on Y,. Let J? be a G-equivariant quasi-
coherent sheaf on T. Define an isomorphism <p : (^ XT T) x^ T ̂  T X (^ x T)
over T Xx T by the formula <p(/, gt, t) = ( ,̂ ̂ -iy, t) for all ^ e G, t e T^and /J^,
(use Lemma 1.9.3). Then 9 satisfies the descent conditions of [Mi2, Prop. 2.22].
Since T -> X is affine and faithfully flat, there is a unique quasi-coherent'sheaf ^- on X
such that ^-s y X^T. Since the construction of descent is functorial (see [Mi2,
2.19]), we obtain an equivalence of categories. Notice that y a G\{y x T).

b) follows from a) in a standard way (use [Ha, II, Ex. 5.18, 5.17 andV 10]). D

From now on we suppose that the reader is familiar with basic definitions of tensor
categories (see [DM]).

Notation 1.9.6. — For a field L, an affine group scheme (resp. an analytic group) G
over L and a scheme (resp. an analytic space) X over L:

a) let ^ep^(G) be the category of finite-dimensional representations of G over L;
b) let "Tec^ be the category of vector bundles of finite rank on X;
c ) let Torx(G) be the category of G-torsors over X.

We will sometimes identify categories with the sets of their objects.

Definition 1.9.7. — Let L be a field and let G be an affine group scheme over L.
A G-fibre functor with values in a separated scheme (resp. analytic space) X over L is an exact
faithful tensor functor from Siep^G} to -/^.

Remark 1.9.8. — If X = Spec R is affine, then ̂  is equivalent to the category
of finitely generated projective modules over R, hence our definition is a global version
of that of [DM, 3.1].

1.9.9. — Let T be a G-torsor over X, then by Lemma 1.9.5, the correspondence
V ̂  G\(V x T) defines a G-fibre functor with values in X. This correspondence
defines a functor v from Tor^(G) to the category of G-fibre functors with values in X
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Theorem 1.9.10. — The functor v determines an equivalence between Tor^(G) and the
category of G-fibre functors with values in X.

Proof. — The local version is [DM, Thm. 2.11 and 3.2]. The gluing works
because X is separated. D

1.9.11. Later on, we will use the following description of the quasi-inverse
functor T ofv. Let Y) be a G-fibre functor with values in X. For each morphism TCQ : To -> X
we define two tensor functors ^: V ̂  V x To and ^ = 7^ o T] from SHep^G) to
^To- Let (Ji(To, TTo) :== Isom(7]2, v]i) be the set of isomorphisms of tensor functors.
The action ofGon the first factor o f V x T ^ defines an action ofG on 7]i, and a fortiori
defines an action of G on p. (To, 71:0). Thus (JL is a functor from the category of schemes
over X to the category of sets with a G-action. Theorem 1.9.10 says that this functor
is representable by a G-torsor T(T)) over X (see [DM, Thm. 2.11 and 3.2] and their
proofs).

1.9.12. Let T be a G-torsor over X. For each Ve^^(G) the identity
map of T, viewed as a T-valued point of T, corresponds to a certain isomorphism
< p v : V x T^>(G\(V x T)) x^T. Then <py is the quotient of the G-equivariant
isomorphism Idy x 9^ : V x G x T ̂  V x T Xx T (for the diagonal action of G
on the first two factors on both sides) by the action ofG. Explicitely, ^y{v, f) = ([y? ^L t}9

Proposition 1.9.13. — Let L be equal to K^ or to C as in 1 . 3 . 1 . Let X be a projective
It-scheme, and let G be a linear algebraic group over L. The functor T (-> T^ induces an equivalence
between the category of G-torsors over X and the category of G^-torsors over X®".

Proof. — A quasi-inverse functor can be described as follows. Let % : T -> X"1

be a G^-torsor. Then the map V ̂  G^YV^ X T) defines a G-fibre functor with
values in X^. Since the correspondence described in Corollary 1.2.3 commutes with
tensor products, the tensor categories i^ec^ and fec^n are equivalent. Therefore
Theorem 1.9.10 gives us an algebraic G-torsor TT : T ->X.

It remains to show that there exists a canonical isomorphism T ̂  T^.
By the definition of T we have for each V e S9ep^(G} a canonical isomorphism
^G^VV^ X T^G^VV^ X T^). We also have (as in 1.9.12) natural iso-
morphisms T X V^ ̂  T Xx (G^VT X V^)) mapping (t, v) to (t, [t, v]). Hence each
point to of T defines canonical isomorphisms

V- ^ { t,} x V- ^>{ t,} Xx (G^C? x V-)) : v ̂  (^o, [^, .]).

Since IQ defines a point of X^ and therefore of X, it gives us by the universal property
of T (see 1.9.11) a point W e T^, satisfying ^(po, y]) = [^), v] for all V e Siep^G).

Taking V to be a faithful representation of G, we obtain that the map (of sets)
^ : T -> T^ is G^-equivariant, therefore it is one-to-one and surjective. It remains
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to show that the maps ^ and ^-1 are analytic. Let us prove it, for example, for 4'. Let
p : X' -^X^ be an etale surjective covering such that p^T^) ^ G^ X X'. By [Be3,
Prop. 4.1.3] in the j^-adic case and by Remark 1.9.2 in the complex one it will suffice
to show that p* ^ : p*(T) -> p^T^) ^ G^ x X' (or just its projection to the first
factor TC' : p*(T) -> G^) is analytic. Consider the map

^v: V^ x p*(T) -^ G^OV^ x p*(T)]

^ Gan\[Van x p^T^)] ^ Gan\(Van x G^ x X') ^ V^ x X' -^ V^.

It is analytic, and satisfies ^y{v, t) = (^'(^))~1 v- Hence n' is analytic as well. D

Corollary 1 .9.14. — Let X and Y be projective L-schemes, let G and H be algebraic
groups over L, and let ^ : G ->}-l be an algebraic group homomorphism over L. If T e rorx(G)
flTzrf S e Tor^H), ^A^ ^or ayy/ ^-equivariant analytic map f\ T^ -> S8'11 (that is, satisfying
f(gt) == ^{g)f'{t) for all g e G^ flTzrf ^ e T ;̂, ̂ ^ ^ a Mrn^^ algebraic morphism f:T->S
such thatf^ ̂

Proof (compare the proof of Corollary 1.2.5). — Since f is ^-equivariant, it covers
some algebraic morphism f: X ->Y (use Corollary 1.2.2). Therefore f factors through
S^ XyanX^ ^ (S X^Y)^. Hence we may suppose, replacing S by S XxY, that
X = Y and that / is the identity.

Consider the H-torsor H X T over T equipped with the following G-action:
g(h,t) == (/^C?)"1,^) for all g e G , A e H and t e T . By Lemma 1.9.5, there exists
an H-torsor H XQ T := G\(H x T) over X. Let i be the composition of the embedding
t h-> (1, t) of T into H X T with the natural projection to H x^ T. Then by the defi-
nition, every ^-Gq^VBri^1111 algebraic morphism (JL : T -> S factors as a composition
of i with the unique H-equivariant map H x^T-^T (defined by [A, t] h-^A^)).
Therefore (H X^T)^ ^ H^ X^anT^ is an H^-torsor over X^ having the same
functorial property.

Now we are ready to prove our corollary. From the 4'-equivariance ofywe conclude

that it factors uniquely as /: T^ ^> (H X^T)^-^ S .̂ By the proposition,/' has a
unique underlying algebraic morphism/': H XQ T -> S. Set/:=/' o i. The uniqueness
can be derived from the above considerations as in the proof of Corollary 1.2.5. D

Now we recall the notion and basic properties of connections on torsors (following
[St. Ch. VI, § 1]).

Definition 1.9.15. — Let X be a smooth scheme or an analytic space, and let
TT : P -> X be a G-torsor. A connection on P is a G-equivariant vector subbundle ^ of
the tangent bundle T(P) of P such that n^ is an isomorphism Jfp ̂  T^)(X) for
each p e P .
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1.9.16. Starting from the isomorphism 9 p : G x P ^ P X x P we obtain an
isomorphism of tangent spaces (9?), : T,(G) X T^(P) ^> T^(P) X^(X)T,,(P) and an
identification (X «-̂  proji((9p)^(X, 0)) of ^ := Lie(G) = T,(G) with the tangent space
to the fiber through p e P. Therefore a connection ̂  on P gives us a canonical decompo-
sition T^,(P) === ^CJ^, for each p e P. Now considering the projection of T^(P) onto ^
with kernel e ,̂ for each^ e P we get a certain ^-valued differential 1-form Q = ^(Jf),
called the connection form of J^.

Definition 1.9.17. — Let Jf be a connection on a G-torsor P, whose connection
form is i2. Let A be the natural projection of Ty(P) on J ,̂ for all p e P. The curvature
of the connection J^ is the 2-form DO. defined b y < X A Y | D Q > : = = < A(X) A A(Y) | d0 >.
A connection with zero curvature is called flat.

Remark 1.9.18. — The trivial torsor P ^ G X X has a natural flat connection,
consisting of vectors, tangent to X. We will call such a connection trivial,

Lemma 1.9.19. — Let X be a simply connected complex manifold, let n : P ->X be a
G-torsor, and let ̂  be aflat connection on P. Then there exists a unique decomposition P ^> G X X
such that ̂  corresponds to the trivial connection on G X X.

Proof. — By [St. Gh. VII, Thm. 1.1 and 1.2], there exists a unique G-equivariant
diffeomorphism 9 : P ^> G X X over X which maps jf to the trivial connection. Hence
9 induces complex isomorphism between tangent spaces Tp(P) = ^®J^y and
T<p(y)(G X X) = ^ ® T^)(X) for each p e P. In other words both 9 and 9~1 are almost
complex mappings between complex manifolds. [He, Ch. VIII, p. 284] then implies
that 9 is biholomorphic. D

2. FIRST MAIN THEOREM

2.1. Basic examples

Definition 2.1.1. — Let K./^ be a quadratic field extension and let D be a central
simple algebra over K. We say that a : D -> D is an involution of the second kind over k
if a(a?i + rfg) == ̂ i) + Q^)? ̂ i ^2) = ̂ ^ ̂ i) f01* au </i, </2 e D ^d tne restriction
of a to K is the conjugation over k.

Notation 2.1.2. — For k, D and a as in Definition 2.1.1, let G == GU(D, a) be the
algebraic group over k of unitary similitudes, that is G(R) == { d e (D ®^ R)x [ rfa(^) e E^ }
for each ^-algebra R. Define the similitudes homomorphism G — G^ by x \—> x<y.{x). Notice
also that by the Skolem-Noether theorem the group G satisfies PG(L) = G(L)/Z(G(L))
for every field extension L of k.

2.1.3. First basic example. — Let F be a totally real field of degree g over Q^, let
K be a totally imaginary quadratic extension on F. Let D be a central simple algebra
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of dimension d2 over K with an involution of the second kind a over F. Set G := GU(D, a),
and put D,, := D®^K^ for each prime u of K. Let v be a (non-archimedean) prime
of F that splits in K and let w and w be the primes of K that lie over v. Then
D®pF^ ^ D^®D^, and the projection to the first factor together with the similitude
homomorphism induce an isomorphism G(FJ ̂  D^ x F^. We identify G(FJ with
D^ x F^ by this isomorphism.

Suppose that D^, ^ Mat^KJ. Identifying D^, with Mat^KJ by some iso-
morphism we identify G(F^) with GL^(KJ x F^. Suppose that a is positive definite,
that is G(F^.) s GU^(R) for all archimedean completions F^. ̂  R of F. Put
E' := F^ x G(Apv), then E' is a noncompact locally profinite group. Set

r :== G(F) C G(A^) = GL,(KJ x E',

embedded diagonally.

Proposition 2 A A.—The subgroup F C G(A .̂) = GL^(K^) x E' ja^y the assumptions
of Construction 1 . 5 . 1 .

Proof. — a) is trivial.
b) is true, because the closure ofZ(F) ^ K^ is cocompact in Z(G(A^.)) ^ (A^.
c ) Since PE' == PG(A?V) and PG(FJ ^ PGL^(K,), we have to show that

PF(= PG(F)) is a cocompact lattice in PG(A^).

Lemma 2.1.5. — IfH is an 'F-anisotropic group, then H(F) is a cocompact lattice in H(Ap).

Proof. — See [PR, Thm. 5.5]. D

Since PG is anisotropic over each F^., it is anisotropic over F. Hence by the
lemma, PG(F) is a cocompact lattice in PG(Ap). The compactness of the PG(F^.)'s
implies also that the projection of PG(F) to PG(A^) is a cocompact lattice as well
(see [Shi, Prop. 1.10]). Observe also that the projection PG(F) -> PG(FJ ^ PGL^KJ
is injective.

d ) Since Z(F) ^ K^ and Z(G(A^)) ^ W, we have to show that the inter-
section of K" C (A^)x with K^ x { 1} is trivial. This can be shown either by the direct
computation or using the relation between global and local Artin maps (see [OF,
Ch. VII, Prop. 6.2]). D

Fix a central skew field B^ over K^ with invariant 1/rf. Set E ==: B^ x E', then
Construction 1.5.1 gives us an (E, KJ -scheme X corresponding to F.

2.1.6. Second basic example. — By Brauer-Hasse-Noether theorem (see [Wel,
Ch. XIII, § 6]) there exists a unique central skew field D^ over K which is locally
isomorphic to D at all places of K except w and w and has Brauer invariant 1/rf at w.
By Landherr theorem (see [Sc, Gh. 10, Thm. 2.4]), D1111 admits an involution of the
second kind over F. Fix an embedding 00^ : K ̂  C. It induces an archimedean com-
pletion F^ of F, and we have the following
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Proposition 2.1.7. — a) There exists an involution of the second kind a^ of D1^ over F
such that:
i) the pairs (D, a) ®p F^ and (D^, a^)®? F^ ar<? isomorphic at all places u of F, except v

and o0i;
ii) the signature of (D^, a^) at 00^ ^ (rf - 1, 1).

b) The group G^ :== GU^D1111, a^) ^ determined uniquely (up to an isomorphism) by
conditions i), ii) of a).

Proof. — a) follows from [Cl, (2.2) and the discussion around it] as in [Cl,
Prop. 2.3].

b) follows immediately from [Sc, Gh. 10, Thm. 6.1]. D

Let G^ be as in the proposition. Then embedding 001 defines an isomorphism
D^^K^^Mat^C), and we identify PG^F^) with PGU^^(R) by the induced
isomorphism. Set G^F)^ := G^F) n G^F^)0. Then G^F)^.' == G^F) if d> 2,
and [G^F) : G^^F)^] = 2 if d = 2. Set E^ := G^^A^) and let E^ C E^ be the clo-
sure of ZCG^F)) C E^. Embed diagonally G^^F) into G^F^) x E^ and define
1̂  to be the image of G^F)^. under the natural projection to

PG^F^) x (E^/E^) ==PGU,_^(R) x (E^/E^).

Proposition 2.1.8. — The subgroup F^ is a cocompact lattice in

PGU^,,,(R)O x (E^/E^)

and it has an injective projection to the first factor.

Proof. — Notice that the natural projection E^/E^ -> E^^E1111) == PE*"1

induces an isomorphism JT^ ̂  PG^^F)^ C PGU^_i^(R)° x PE^ and that the
group Z(EiDt)/ESlt ^ (AK)X /KX is compact. Therefore'it will suffice to prove that
PG^F) is a cocompact lattice with an injective projection to the first factor of
PG^F^) x W\ This can be proved by exactly the same considerations as in the
proof of Proposition 2.1.4, c ) . D

By the proposition, F^ satisfies the assumptions of Construction 1.3.6, so it
determines an (E^/E^, C)-scheme ̂ \ which can be regarded as an (E^, C)-scheme
with a trivial action of E^.

Remark 2.1.9. — For each S e ̂ (E^) we have the following isomorphisms

(X^an ^ s\[y-1 x (E^/E^)]/!^

s (S^G^F))^-1 x G^A^/G^F)^

^ (S^G^F))^-1 x G^A /̂G^F),.

^ SM^-1 x G^^A^l/G^^F)^.
12
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2.2. First Main Theorem

Definition 2.2.1. — An isomorphism 0 : E -5- E"^ is called admissible if it is a
product of G(A^) ^G^A^), induced by some A? "-linear algebra isomorphism
D^yA^^D^^A^^ (compare Proposition 2.1.7), and the composition map
D^ X F^ ^ (D^ x F^ .^G^FJ, constructed from some algebra isomorphism
D^D"1^1^ ^ m 2.1.3.

2.2.2. Fix a field isomorphism C^>C^,, whose composition with embedding
o0i: K <-^ C (chosen in 2.1.6) is the natural embedding K <-> K^ <->- dp. Identifying C
with Cp by means of this isomorphism we can view, in particular, K^ as a subfield of C.

First Main Theorem 2.2.3. — For some admissible isomorphism 0 : E ̂  E^ there
exists a <S>-equivariant isomorphism f^ from the (E, C)-scheme Xp to the (E1114, C)-scheme ic .̂

2.2.4. Let Eo be the kernel of the action of E on X, and put E :== E/EQ. By
Corollary 1.6.4 there exists a subgroup A C PGL^_^(R)° x E such that the (E, C)-
scheme Xp corresponds to A by the real case of Construction 1.3.6. By Proposition 1.5.3,
each admissible isomorphism 0 : E ̂  E"^ satisfies ^(Eo) == E^. Hence 0 induces an
isomorphism 0 : E -^ E^/E^.

Theorem 2.2.5. — There exists an admissible isomorphism 0 : E ^> E^ and an inner
automorphism 9 of PGU^_i i such that (9 X 0) (A) = r^.

Lemma 2.2.6. — Theorem 2.2.5 implies the First Main Theorem,

Proof. — Theorem 2.2.5 implies that there exists a 0-equivariant analytic iso-
morphism f^ : (Xg)^ ̂  (X^)^. From the 0-equivariance we obtain analytic iso-
morphism ̂  g : (Xg^)^ ̂  (XS^ for each Se^(E). Corollary 1.2.2 provides us
with an algebraic isomorphism f^ g : Xg^ -^ X^g) satisfying (/^s)^ ^As- Taking their
inverse limit we obtain a 0-equivariant isomorphismy^ : = lim^ g : Xp ̂  X"11'. D

^ s
Thus we have reduced our First Main Theorem to a purely group-theoretic

statement. For proving it we need to know more information about A. First we introduce
some auxiliary notation.

2.2.7. Let A'C PGU^^(R)0 x PE and A" C PGU^i(R)0 x PE' be the
images of A under the natural projections. Since the groups E()\Z(E) and EQ\D^-Z(E)
are compact, Lemma 1.3.11 shows that subgroups A' and A" correspond by the real
case of Construction 1.3.6 to the (PE, C)-scheme Xp := Z(E)\X(; and to the (PE', C)-
scheme X^' := (D^ x Z(E))\X(; respectively. The same lemma implies also that the
natural projections A -> A' and A -> A" are isomorphisms.

Let Eo be the image of Eo under the canonical projection to E'. Let F' be the
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image of F under the projection GL^(K^) x E' -> GL^(KJ x (EQ\E'). Then, by Pro-
position 1.5.3 c ) , the group F" corresponds by the ^-adic case of Construction 1.3.6
to the (Eo\E', KJ -scheme X'" :== D^\X. Recall also that, by Proposition 1.5.3 d ) ,
the (PE', KJ-scheme X" == (D^ X Z(E))\X is obtained from the subgroup
PEC PGL^KJ x PE' by the j&-adic case of Construction 1.3.6.

For each subset © of A, A' or A" (resp. ofF, V or PF) we denote by @^ (resp. ©^)
and ©E its projections to the first and to the second factors respectively (compare 1.1.8).

Our next task is to establish the connection between A and F. The next key
proposition is the modifications of [Ch2, Prop. 2.6]. In it we apply lhara's technique
of elliptic elements to relate elements in A and in F.

Proposition 2.2.8. — For each 8 e A with elliptic projection 8^ e PGU^_i i(R)°, there
exist y^r and YD e ̂ w wlt^ (To? Tp) E ̂ "^(K^,) x D^ elliptic (with respect to its action
on S^ ) and a representative ? = (8009^) e GU^_i^(R)° X E of 8 satisfying the following
conditions:

a) the elements (YD) Ta) an^ ^E are conjugate in E;
b) the characteristic polynomials of 8^ and YG are squal.

Conversely^ for each ye F and YD e ̂ w wlt^ (TG? YD) e ̂ ^(K^,) x D^ elliptic, there
exist 8e A with elliptic projection 8^ e PGU^_i i(R)° and a representative 8 e GU^_i i(R)° X E
of 8 satisfying conditions a) and b).

Proof. — If an element S^ e Aoo is elliptic, then 800 has a fixed elliptic
point P on B^"1. The action of S^ on 3d-1 coincides with the action of 8^ on
Bd-i ^ fid-i x { l} c (B^-1 x E)/A ^ (XJ^ therefore P, viewed as a point of (Xc)^
(or of X(C)), is an elliptic point of 8^. Using the isomorphism C ^> Cy, chosen above,
P can be considered as a point of X(C^), hence as a point of the ^-adic pro-analytic
space X^. There exists an element g e E such that the point P': = g(P) lies in ̂  : = pi(2^ )
in the notation of Corollary 1.5.4.

Let 7c be the natural projection X -> X'". Choose a representative ^ e E of
^E^eE. Since ^ fixes P', it fixes the projection P" := -TT(P') e (Xp")^. Hence
^ stabilizes the connected component Q^^®^ Cp x { 1 }c (^-c")^ containing P".
By Proposition 1.5.3 c ) , the image of 'g under the canonical projection E -> E(,\E'
belongs to the projection of F" to Eo\E'. We can therefore choose y e ^ whose
projection to EQ\E' coincides with that of ^eE. Therefore ^YE1 belongs to
JD^ x Eg = D^ EQ. Hence there exists a YD E Sw ^^ ^at ^(YD^ Ya1) e ^^o- It follows
that (YD? YE) e E is also a representative of g S ^ g ~ 1 .

The action of (YD) Ta) on ̂  tangent space of P' e ̂  is conjugate to the action
of 8^ on the tangent space of P, therefore P' is an elliptic point of (YD? Ta)' Since pi is
Aale, one-to-one (use Corollary 1.5.4) and D^, x F-equivariant, the action of (YD? Ya)
on the tangent space of P' e W coincides with the action of (yo? Yp) on ^^ tangent
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space of pi-W eS^. Therefore pi-^P') is an elliptic point of (y^ YD)- It follows
that the action of (yo, YD) on the tangent space of p'^P') e S^ is conjugate to the
action of 8^ on the tangent space of P eB^. Using the ^tal^ess of the projection
^-^^ we conclude from Lemma 1.7.2 that there exists a representative
8^ e GU^_i i(R)° of 8^ such that the characteristic polynomials of 8^ and YG ^e equal.
Hence 8 :== {^,g~1^, Ya) <?) is t^ required representative of 8.

The proof of the opposite direction is very similar, but much easier technically.
If an element (YG. YD) € ^G X D^ is elliptic, then it has an elliptic point QeS^.
Hence Q; := pi(QJ e X^ is an elliptic point of (y^, Ya) 6 E- Hence Q' can be considered
as a point of the complex analytic space (XJ^ ^ (3d-1 x E)/A. Choose a
representative {x, g) eB^-1 x E of Q\ Then the element ^(YD> YE) 5~1 6 E fixes
Q" ̂ ^Qf) eB^-1 x {1}, hence it stabilizes the connected component

B^xU^Xc)-

It follows that the image of g(^, Ya) S~1 under the projection o f E t o E belongs to A^.
The rest of the proof is exactly the same as in the other direction, n

Corollary 2.2.9. — For each 8 e A with elliptic projection 8^ e PGU^_i^(R)°, there
exists a representative

^= ^oo^J^') eGU,_^(R)° X D^ x F^ x G(A^)

•y^A j?Aa^

aj if we view K as a subset ofC, ofK^, and of K^pA^,^ respectively, then the characteristic
polynomials o/8^, 8,, and^'^ have their coefficients in K and coincide',

b) f^ and the similitude factor of^''v belong to F, viewed as a subset of^ and of (A^)x respec-
tively, and coincide.

Proof. — Take y and 8 as in the proposition. Then the statement follows from
Proposition 1.7.5. D

Proposition 2.2.10. — We have the inclusion A^ 3 (SD^ n Ti) x P(Gder(A?^?)).

Proof. — Let X^ be the connected component of Xp such that (X^ 3 3d-1 X { 1}.
Then by^Proposition 1.3.8 c), Ag = Stabp^(Xo). Proposition 1.4.6 implies that the
group SD^ nTi acts trivially on the set of connected components of Xg, therefore
it remains to show only that Ag D P(Gde^(A?v)). To prove it we first observe that by
the strong approximation theorem (see, for example, [Ma, Gh. II, Thm. 6.8]), the
closure PG(F) of PG(F) in PE' = PG(Ap;v) contains P(Gde^(A^)). So the proposition
follows from

Lemma 2.2.11. — We have A^ = PG(F).
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Proof. — Proposition 1.3.8 c ) we see that Ag is the stabilizer of the connected
component Y^ of X^ such that (YJ^ 3 W-1 x { 1} and PG(F) is the stabilizer of
the connected component Yy ofX^' such that (Y^ D Q^ x { 1}. Since the group PE'
acts transitively on the set of geometrically connected components of X", the sub-
groups AE and PG(F) are conjugate in PE'. Since A^ contains P(Gder(A^)), it is
normal. So we are done. D

2.3. Computation of Q(TrAd)

In the next subsection a field Q^(TrAd) (generated by the traces of the adjoint
representation) will be a field of definition of a certain algebraic group.

Remark 2.3.1. — If ^eGL^, then by direct computation we obtain that
TrAdg == Trg'Tr(g-1). Hence for g e PGL^ we have TrAdg == Trg'Tr{g-1) - 1
for each representative ̂  e GL^ of g.

Proposition 2.3.2. — We have (^(TrAdAJ == F ̂  R.

Proof. — It follows from Proposition 2.2.8, Proposition 1.7.5 and Remark 2.3.1
that Q/Tr Ad 8^ [ 8^ e A^ is elliptic) == %(Tr Ad YG I TG e PI^G C FGL^KJ is elliptic).
Let F' be the last-named field. Then F' C F, since PF == PG(F) and since PG is an alge-
braic group defined over F. It follows from the weak approximation theorem that for each
non-archimedean prime u + v of F, the closure of the projection to PG(FJ of the set
{ y ePr | YG is elliptic} contains an open non-empty subset of PG(FJ. (Recall that
the closure of PI^ in PGL^KJ contains PSL^(K^) by Proposition 1.1.10, and that
the set of elliptic elements of PSL^(KJ is open and non-empty by Proposition 1.7.3.)
Therefore F' is dense in each non-archimedean completion F^ of F for u + v. Thus F'
splits completely in F at almost all places. Hence F' = F (see [La, Ch. VII, § 4, Thm. 9]).
This part of the proof is completely identical with Gherednik's proof of [Ch2, Prop. 2.7].

Now we want to prove that (^(TrAdAJ == %(TrAd8^ | 5^ e A^ is elliptic).
Since the group PGU^_^i is absolutely simple, the representation

Ad:PGU,_^(R) ->GL(Lie(PGU,_^(R))) ^ GL^(R)

is absolutely irreducible. Therefore our statement is a consequence of the following
general

Lemma 2.3.3. — Let p be an absolutely irreducible algebraic representation of PGU^_i \
and let A be a dense subgroup of PGU^_i i(R)°. Then

%(Tr(p(A))) = %(Tr p(8) | 8 e A is elliptic).
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Proof. — Let L be the last-named field. I f g e PGU^_i i(R)0 is elliptic and ^ is
not elliptic for some r e Z — { 0 }, then by Lemma 1.7.2, g belongs to some Zariski closed
proper subset of PGU^_ir Therefore for eachNeN, there exists an open subset
WC PGU^_i i(R)° such that for g e W and r e Z satisfying 1 ̂  | r | ̂  N, the element
g" is elliptic. Choose g e W. By the continuity of multiplication, there exists an open
neighbourhood U C W of g such that for ^, ..., & e U, and ^i, ..., 7^ e Z, satisfying
HI + . . . + ^ + 0, | ̂ i | + . . • + | %J ^ N, the element ^n l- . . . 'g^ is elliptic. Take
N = 6m2, where m is the dimension of p.

Since PGU^_i^(R)° is a connected real Lie group, it is generated by U. The
subgroup A is dense in PGU^_i i(R)° by Proposition 1.1.10, therefore A n U generates
the group A (see [Ma, Ch. IX, Lem. 3.3]). Since the restriction of p to the Zariski
dense subgroup A is absolutely irreducible, Burnside's theorem (see [Wa, vol. II,
Ch. XVII, 130]) implies that Q := dimR(SpanB(p(A))) = m2.

Set A°: = { 1 } C A, and for each positive integer n set

A n : = { ^ l • . . . • ^ l & < = A , n U , | ^ | + ... +K|^}CA.

Denote dimR(SpanR(p(A?))) by .̂ Since A == (J A^ we have
n

1 === 0̂ ̂  1̂ ̂  • • • ^ ^n ̂  • • • ^ ^ = SUp ̂ .
n

Moreover, if^ == ^+1 for some n, then Q^ == ̂ +1 = . . . = = Q. Therefore ̂ 2-1 = m2.
Hence there exist elements 8, e A^'2"1, i == 1, ..., m2 such that { p(8,) }, constitute a
basis for Mat^(R). Choose any g e A n U and take 8, := ^W2+l 8,. Then{ p(8,) }' still
constitutes a basis for Mat^(R). Each 8, is of the form g ^ 1 ' . . . .^, where the g,'s belong
to A n U and the n^s satisfy n^ + ... + ^ ^ 2 and | n^ \ + [ ^ | + ... + | rij, \ ̂  2m2.
In particular, each 8, is elliptic, therefore Tr p(8^) e L.

Lemma 2.3.4. — If for some 8 ePGU^_^(R)° the elements 88, are elliptic for all
i = 1, . . . , w2, then p(8) can be written as a linear combination of the p(8J^ with coefficients in L.

Proof. — Let <?i, . . ., e^ be the dual basis o f { p(8J }, relative to the bilinear form
(x,jy) i-^Tr(^). If 8 is as in the lemma, then Tr p(88,) == Tr(p(8) p(8J) eL for all
i == 1, ...,m2. Hence p(8) can be written as a linear combination of the e^s with
coefficients in L. Therefore it is enough to prove that each e, can be written as a linear
combination of the p(8,)'s with coefficients in L. The last condition is equivalent to
the condition that each p(8J can be written as a linear combination of the e^s with
coefficients in L. Thus, as we mentioned above, to complete the proof it is enough to
show that each 8, satisfies the conditions of the lemma. This follows directly from the
definition of the 8,'s and of U. D

The choice of the 8/s assures that for every 8 e A n (U u U~1) the elements 88,
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are elliptic for all i = 1, ..., m2. Therefore the above lemma implies that p(8) can be
written as a linear combination of the p^'s with coefficients in L. The set U n A
generates the group A, hence for every 8 e A, the linear transformation p(8) can be
written as a polynomial in the p(8,)'s with coefficients in L. For any ij, k e{ 1, . .., m2}
the elements 8, 8, 8^ are elliptic, therefore by the lemma each p(8, 8,) = p(8J p(8.)
can be written as a linear combination of the p(8^)'s with coefficients in L. Hence every
polynomial in the p(8,)'s with coefficients in L, can be written as a linear combination
of the p(8,)'s with coefficients in L. In particular, this is true for each p(8) with 8 e A.
Hence Q/Tr p(A)) C L. D

Corollary 2.3.5. — Suppose that a subgroup AC A^ is Zariski dense in PGU^ ^ and
that A, C Gommp^_^(A). Then Q/Tr Ad A) = Q/Tr Ad A,) (= F).

Proof. — Set L :== %(Tr Ad A), then there exists an L-form V of Lie(PGU^_i ^(R))
preserved by Ad A (see [Ma, Gh. VIII, Prop. 3.22]). Take any 8 e ̂ . Then some sub-
group of finite index A' of A satisfies 8A' 8-1 C A, hence (Ad 8) (Ad A') (Ad 8)-1(V) == V.

Since the subgroup A' is also Zariski dense in PGU^_i i, Burnside's theorem
implies that Ad A' generates End V as an L-vector space. Therefore

(Ad 8) (End V) (Ad 8)-1 C End V.

In other words, Ad (Ad 8) (End V) == End V. Let H be the Zariski closure of
Ad AC GL(V). Then H is an L-form of AdPGU^i, hence LieHCEndV is an
L-form of Lie(Ad PGU^_^). In particular. Lie H == End V n Lie(Ad PGU^i ^,
therefore Ad(Ad AJ (Lie H) == Lie H. Since PGU^i is adjoint, the homomor-
phism ad:==Ad,:LiePGU^i^-^Lie(AdPGU^_^i) is an isomorphism. Therefore
V:= ad-^LieH) is an L-form of Lie(PGU^_^i) and AdA^CGL(^) . It follows
that %(TrAdAJC L. D

2.4. Proof of arithmeticity

2.4.1. Consider the subgroup A'C PGU^^R)0 x PEC PGU^_^(R) x PE,
defined in 2.2.7. For a finite place M of F let G^ be PGp for u + v and PGLi(DJ,
viewed as an algebraic group over F^ ^ K^,, for u = v. In what follows it will be also
convenient to introduce a formal symbol oo and to write F^ instead of R and G^ instead
of PGU^_i i (the algebraic group over F^ ^ R).

Let M be a finite set of non-archimedean primes of F, containing v for simplicity
of notation. Set M := M u oo and choose S e ^'(PG(AFM)). For each subset M' of M,
denote II G^(FJ by G^. Denote also the projection of A ' n (G^ x S) to G^

by A8. Let A8, (resp. A^) be the projection of A8 to G^(F^) (resp. to G^). For
u e M and 8 e A8 denote the projection of 8 to GJFJ by 8^.
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Definition 2.4.2. — A lattice F C G^ is called irreducible if for every proper non-
empty subset M' C M the subgroup (F n Gj^) (F n G^_^) is of infinite index in F
(compare [Ma, p. 133]).

Definition 2.4.3. — We say that a lattice F of G^ has property (QD') if the closure
of rGa,(FoJ in G^ has finite index.

Remark 2.4.4. — Since the group PGU^_i ^ is isotropic over R, it follows from
[Ma, p. 290, Rem. (v)] that if F has property (QD'), then it has property (QD) in the
sense of Margulis (see [Ma, p. 289]).

Proposition 2.4.5. — The subgroup A8 C G^ is a finitely generated cocompact irreducible
lattice^ which is of infinite index in Gomm^(A8) and has property (QD').

Proof. — Observe that PGU^_i^(R) x PE = G^ X PG(A^M) and that A' is
a cocompact lattice in G^ X PG(A^;M) having injective projection to PGU^_i i(R)?
hence to G^. It follows from Lemma 1.1.9 that A8 C G^ is a cocompact lattice, which
is of infinite index in Gomm^(A8). By Proposition 2.2.10 the closure of G^(F^)A'
in GM X PG(A?M) contains G^(F^) x (SB^ n T^) x P(G(le^(A^)). Hence the
closure of G,(FJA' in G^ contains G,(FJ x (SB^ n T^) x n P(Gdc^(FJ).

K G M - M
In particular, A8 has property (QD'). Let M' be a non-empty subset of M. Then

A8 n G^ =={!} , because the projection of A' to PGU^_i i(R) is injective. Suppose
that A8 is not irreducible, then [A8 : (A8 n G^ -M')] <^ °°* Hence

[G,(FJ A8 : (G,(FJ A8) n G^-M'] < oo.

Since GJFJA8 3 G,(FJ x (SD^ n T^) x n P(Gder(FJ) and
MGM-M

(G,(F,)A8)nG5_^CGM_M',

we get a contradiction. Since A8 is a cocompact lattice in G^, it is finitely generated
(see [Ma, Ch. IX, 3.1 (v)]). D

2.4.6. Now we are going to use the results of Margulis (see [Ma]). By [Ma,
Ch. VIII, Prop. 3.22], there exists a basis in Lie(PGU^_^i(R)) such that all
transformations in Ad Aoo are written in this basis as matrices with entries in
Q^(Tr Ad Aoo) = F C FOQ ^ R. Define a homomorphism 9 : G^ ->• GL^_i rational
over R by assigning to g e G^ the matrix of Ad g in the above basis. It follows that
<p(A^) C GL^_i(F). Let H be the Zariski closure of 9(A^)$ then H is an algebraic
group, defined over F and 9(AoJ C H(F). Since A^ is Zariski dense in G^ and since
the group G^ == PGU^_^ i is adjoint, 9 induces an isomorphism PGUj_i i ̂  Hy^ .
In particular, H is an F-form of PGU^_i r
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By Proposition 2.4.5, A® satisfies the conditions of Theorem (B) of [Ma, p. 298],
therefore it is arithmetic in the sense of [Ma, p. 292]. The group A8, is Zariski dense
in G, (see [Ma, Gh. IX, Lem. 2.1]) and A, C Comm^^(A^). Hence <p(A^) is
Zariski dense in H and %(TrAdA8,) == F (by Corollary 2.3.5).

It follows (see Margulis5 proof [Ma, p. 307-311]) that the following conditions
are satisfied:

a) The group H(F^.) is compact for each i = 2, ..., g.
b) There exists a unique bijection I from M to a (finite) set of non-archimedean

primes of F satisfying the following property: for each u e M there exists a continuous
isomorphism c^ : F^ -^ F^) and an c^-algebraic isomorphism T^ : G^ ̂  H (that is
T^ becomes an isomorphism of algebraic groups over F^ after the identification of F
with F^) by means of coj such that rJSJ == 9(8 J eH(F) C H(F^) for all SeA8"
Since the subgroup A8 is Zariski dense in G^ (see [Ma, Gh. IX, Lem. 2.1]), ̂  is unique.

c ) Let TM:n^MGJFJ^n^MH(FiJ be the product of the T^S. Put
(p^m):=={feF\fe^ for each finite prime M ^ I ( M ) of F}. Then the subgroup
r(A^)C H(F) is commensurable with H(^^))-

Taking M larger and larger we conclude from b) that there exists a unique one-to-one
surjective map I of the set of all non-archimedean primes of F into itself such that for
each prime u of F there exists a continuous isomorphism ^: Fy -^ F^) and a unique
(0,-algebraic isomorphism ^ : G^ H such that rJSJ = 9(8 J e"H(F) C H(F^)
for all 8 e A'. The maps T,, combined together for all non-archimedean primes u
of F give us a continuous isomorphism T : 11̂  GJFJ ^> !!„ H(FJ such that

T(A^) C H(F) C H(A^) C n, H(FJ.

By c ) , the subgroup T(A^ n S) is commensurable with H(^p) for each S e ̂ (PE).

2.5. Determination of H

2.5.1. Recall that H is an F-form of PGU^i^. In particular, it is a form of
PGL^. By the classification of simple algebraic groups (see [Ti]), there exists a quadratic
extension F' of F and a central simple algebra D' over F' of dimension d2 (defined up
to a replacement D' ̂  (D')0^) with an involution of the second kind a' over F such
that H ^ PGU(D', a'). Moreover, F' is uniquely determined if d > 2 and can be chosen
arbitrary if d = 2. We denote the group GU(D', a') by G' and will not distinguish
between H and PG'.

Claim 2.5.2. — For each non-archimedean prime uofF^we have l(u) = u and co is the
identity.

Proof. — Since the map ^: Gy ^> H is ^-algebraic, we have

TrAd(r^)) ==co,(TrAdQ?))
13



98 YAKOV VARSHAVSKY

for each g e G^(FJ. Hence for each 8 e A' we have

TrAd(cp X T) (8) = (TrAd(8J; ..., <^(TrAd(8J), . . .)

6 (r 0>i '9 • • • ? •r I(U) 3 • » • ) •

Recall that (9 X r) (A') C H(F), hence T r A d ( ( ( p X T ) A ' ) C F . On the other
hand, Corollary 2.2.9 implies that Tr Ad(8) e F C F^ X A^ for each 8 e A' with elliptic
8^. In particular, for such 8's we have TrAd(8J = TrAd(8J eF for each u. Since
we showed in the proof of Proposition 2.3.2 that %(TrAd(8J | 8^ is elliptic) = F,
we conclude from the above that the restriction of each co^: Fy ̂  F^) to F is the
identity. Since each o)y is continuous, the claim follows. D

2.5.3. Next we will show that in the case d> 2 we have F' = K. Indeed, if a
prime u of F splits in K, then PG'(FJ ^ GJFJ s PD^ for some central simple
algebra D^ over F^. It follows that u splits in F'. By [La, Ch. VII, § 4, Thm. 9], F' = K.
As we mentioned before, we may take F' = K also in the case d = 2.

Proposition 2.5.4. — The map T induces a continuous isomorphism PE^H^A^).

p^of. — Since PE ^ PD^ X PE' and H(A^) ^ H(FJ x H(A^), we need
only to show that ^ : 11̂  G^FJ ^II^H(FJ induces a continuous isomorphism
PE'-^H^A^). _

First we claim that ^ induces a continuous map from A'C PE' to H(A^). In
fact, let a sequence {8^CAE converge to g e PE'. Then the sequence {8^8^i}^
converges to 1. Therefore for each S e ̂ (PE') there exists N g e N such that
Mn-^i^E0 8 (hence ^(^^i) ̂ W ns)) for a l l . ^^Ng. Since ^(A^ n S)
is commensurable with H(C?p), it is contained in a compact subset of H(A^). Therefore
the sequence { ^(8^ 8^1) }„€ H(Apt?) has a limit point. Let h be some limit point
of { T^ 8^1) }„, and let { ^(8^. 8^1) }, be a subsequence, converging to A. Then
for each prime u =t= v of F we have

A, = 1m T,((8^. 8^)J == Tjl™(8^. 8,,.̂ )J = 1,

because ^ is continuous. It follows that 1 is the only limit point of { ^(8^ 8^1) }„,
therefore the sequence { T^(8J ^(8;-.̂ ) }„ converges to 1. Now by similar arguments
we see that the sequence { T^J }„ converges to ^{g) e H(A^).

Moreover, the same arguments also imply that if we show that T^(PE') = H(A^),
then the continuity of ^ and of (r^)"'1 will follow automatically.

Observe that for each non-archimedean place u we have G(FJder = G^FJ
(resp. G'W == (^^(FJ) (see [PR, 1.3.4 and Thm. 6.5] in the anisotropic
and [PR, Thm. 7.1 and 7.5] in the isotropic cases respectively). Therefore ^ induces
an isomorphism of derived groups 11,̂  PCG^FJ) ̂ 11,̂  POG^FJ).
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By Proposition 2.2.10, A^ 3 P(Gder(A^•")) == PG(A^") n 11̂ , P(Gde^(FJ).
Hence by the facts shown above,

-^(G^A^))) C PGW) n n P^GrTO) == P^G^W")).
M + V

In particular, T-(n,^ P(Gde^(^)) = n,^ TJP(Gder(^)) C P((G/)der(A?-)). It
follows that ^(G^^)) C P^G')^^)) for almost all M =f= v. Since each ^ is
algebraic, the subgroups" ^(G^^))" and P^G')^^)) are conjugate (hence
equal) for almost all u =t= v. It follows that -^(G^A^))) ^= P^G^^A^)).

Therefore to complete the proof it will suffice to show that PG(A^V) (resp.
PG'(A^)) is the normalizer of P(Gder(A^)) in the product 11̂ , PG(FJ, and similarly
for PG'. Since PG(A^) is the restricted topological product of the PG(FJ's with respect
to the PG(flys, it remains to show that the normalizer of P(Gder(fl?p )) in PG(FJ
is PG(^p ) for almost all u. This can be done by direct calculation. D

We will use the same letter T to denote the isomorphism between PE and PG^A^).

2.5.5. Notice that a regular function ^:=Trd/det on GL^ defines a function
on PGL^. Moreover, an algebraic automorphism ^ of PGLj is inner if and only if it
satisfies t o ^ = t. Therefore there is a unique choice of an algebra D' defining G'
(see 2.5.1) such that the function t ' : = Tr^/det on PG', defined by the natural embedding
G'(F) <-> D', satisfies ^ 0 9 = = ^ .

Proposition 2.5.6. — We have D' ̂  D ,̂ G' ̂  G^ and T is induced by some admissible
isomorphism.

Proof. — By Corollary 2.2.9, for each 8 e A' with elliptic §„ we have
^(8J === ^(8J == t^) e K. Since (9 x r) (8) e PG'(F) C PG'(F^ x A^), we have
^((<p x r) 8) eK. By our assumption, ^(<p(8J) == ^(8J for all 8 e A'. Hence for each
8 e A ' with elliptic S^ we have ^(r^(8J) = ^(8J for each non-archimedean prime
u of F.

Recall that the algebraic isomorphism T^ : PG(FJ -> PG'(FJ for u =t= v is induced
either by an F^-linear isomorphism D ®p F^ ̂  D' ®p F^ or by an F^-linear iso-
morphism D®p F^^ (D')01^®? F^, composed with an inverse map {g^->g~1). In
the first case we have ^(r^J) == t{g^) for all &eGJFJ, and in the second one
^.(&)) = t{gn1) for all g^ e GJFJ.

To exclude the second possibility we need to show the existence of a 8 e A' with
elliptic 8^ such that ^(8J 4= t{S^1). Since the condition t{g) = t{g~1) is Zariski closed
and non-trivial and since the closure of all elliptic elements of A^ ePGU^_i i(R)°
contains an open non-empty set, we are done.

It follows that D' is locally isomorphic to D"^ at every non-archimedean place
ofK, except possibly at w and w, and that the map ^ : PG(A^) ̂  PG'(A^) is induced
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by some admissible isomorphism. To prove the statement for the y-component we copy
the above proof replacing PG(FJ by PGLi(DJ and D®pF^ by D^eB^.

Since D' and D"^ are locally isomorphic at all places, they are isomorphic. We
showed before that PG'(F^) ^ PGU^^R) and that for each z = = 2 , . . . , ^ the
group PG'(F^) is compact and, therefore, is isomorphic to PGU^(R). Propo-
sition 2.1.7 b) then implies that G' ^ G^. D

From now on we identify G' with G^.

2.6. Completion of the proof

Our next task is to prove the following

Proposition 2.6.1. — We have (9 X r) (A') = PG^F)^.

Proof. — First observe that
(9 X T) (A'), = 9(AJ C 9(PGU,^,(R)o) = PG^F^o,

therefore (9 x r) (A') C PG^F)^ and (9 X T^) (A") C PG^F)^. Since the projection
of PG^F) to PG^F^) x PG^Ap^) is injective, it remains to show that
(2.1) [PG^F) : PG-^F)^] = [PG^F) : (9 x T^) (A")].

We are going to use of Kottwitz5 results described in 1.8. Recall that PG^ is
an inner form of PG. Let cop^ and (Op^mt be non-zero invariant differential forms of
top degree on PG and PG1111 respectively, connected with one another by some inner
twist as in 1.8.2. They define invariant measures | cop^ [ and | OpQint | on PG(FJ
and PG^FJ for every completion F^ of F and product measures on PG(Ap) and
PG^Ap) respectively (see [We2, Ch. 2]). It follows from Weil's conjecture on Tama-
gawa numbers and from Ono's result (see Ono's appendix to [We2]) that
(2.2) | o^ini | (PG^A^/PG^F)) == | copo | (PG(Ap)/PG(F)).

Lemma 2.6.2. — Let A and B be locally compact groups^ let S be a compact and open
subgroup of A. and let Y be a lattice in A x B with injective projection to B. Then for every right
invariant measures ^ on A and \L^ on B we have

(^A X ^) ([A x B]/F) = ^(S).^([(S\A) X B]/F).

Proof. — Let I\ be the projection of F to A. Choose representatives {flj,gi of
the double classes S\A/I\. For each ie I let F, be the projection of the subgroup
(^~1 Sfl, X B) n r to B. Then F, is a lattice in B, therefore there exists a measurable
subset U, of B such that B is the disjoint union II U, y Since F has an injective

rer,
projection to B, we have A x B = II II {Sa x UJ y. Then

v e r i e i
(^ x ^) ([A x B]/F) = S ̂ (S^).^(U) = ^(S). S ̂ (U)

= ^(S)-S ̂  x u,,) = ^(S)-(XB([(S\A) x B]/r). n
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By the lemma, for each S e^:'(PG(A^)) the left hand side of (2.2) is equal to

(2.3) A I COpoint I (PG^F,;)) . | O înt I (PG^FJ) . I <0p t̂ I (T-(S))
i=2

• I o>po,nt I (^(S^PG^F^ x PG^^Ap^j/PG^CF))

and the right hand side of (2.2) is equal to

(2.4) n^ I ̂  I (PG(F,,)).| c^ |(S).| ̂  | (S\PG(A^)/PG(F)).

By definition, | (Opoint | (PG^P .̂)) = | cop,. | (PG(F .̂)) for each i=2, . . . , d
and | o>pQtot | (T''(S)) = | <OpG | (S) for each S e ̂ '(PG(A?'')).

Since the expressions of (2.3) and (2.4) are equal. Proposition 1.8.5 and
Remark 1.8.6 imply that

(2.5) (xp^ (^(SAtPG'̂ F^) x PGlnW')]/PGfalt(F)+)

=^(WS\PG(A^)/PG(F))

(" -|- " was added to multiply the left hand side by 2 when d = 2).
If S is sufficiently small, then for each a e PG(A^") the group a-1 Sa n PG(F)

is torsion-free by Proposition 1 . 1 . 1 0 . Let Yy-ig,, be the projective variety over K^
such that Y^iga s (a-1 Sa n PG(F)),\Q^. By Kurihara's result (see [Ku, Thm. 2.2.8])
^-i(Ty^iJ = XE^"1 Sa n PG(F)).c,_i(Tp.-i), where ^_i(T^ J (resp. ^_i(Tprf-i))
is the {d — l)-st Ghern class of the tangent bundle of Y^-ig, (resp. P1-1). Notice that
^-i(Tp^) = </, hence ̂ (T^J = a-(x^((a-1 Sa n PG(F)).\PG(FJ).

Since (Y^ig^c)"1 S A^^AB"-1, we have

^-i(T^J = <-<,-i(T .̂,,,c) = XE^is.VB''-1)

(see for example [BT, Prop. 1 1 . 2 4 and (20.10.6)]). The last expression is equal to
XE(A^IS«) = ^pGu,.^(Aolis«\PGU,_^(R)). This shows that for each a e PG(A?t') we
have

d- !̂ ((a-1 S^ n PG(F)),\PG(FJ) = (XpGu (̂A»î \PGU,-i,i(R)).

Summing this equality for a running over a set of representatives of double classes
in S\PG(A^;t>)/PG(F), we obtain that

</-^/S\PG(A^)/PG(F))

= ̂ -x,̂ 1^-!,̂ ) x PG(A^")]/A").

Since the right hand side of the last expression is equal to

(W- (^(S^ITG^F^) x PG-W-):]/^ x T-) (A")),
Jfw!

we conclude (2.1) from (2.5). D
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2.6.3. By Proposition 2.5.6 there exists an admissible isomorphism 0 : E ^> E1111,
inducing the isomorphism T : PE ^> PE" .̂ Choose 8 e A with elliptic S^ e A^ and
Tr Ad(8J =t= — 1. Choose its representative i e GU^_i^(R)° x E as in Corollary 2.2.9.
Then (Tri) (Tri-^eK^. Let 8' be the projection of? to PGU^_i^(R)° x E. Set
7 := (9 X 0) (8'), and let ̂  be its projection to E.

By the definition of admissible maps, Tr(^) e K\ Let 8 be the image of 8 in A',
then Y:== (r X <p) (8) belongs to PG^F)^. Let y' eG^F)^. be some representative
of Y, then ̂  ̂  eZ(Emt). Therefore ^1 YE = (Tr^)"1^ YE) e K^ = Z(Gint(F)).
Thus ^E ^d YE have equal projections to PGU^.i i(R)° X (E^/E1111'), hence
(9 X 0) (8) e F^.

The condition { 8^ is elliptic and Tr Ad (8^) 4= — 1 } is open and non-empty,
therefore the above 8's generate the whole group A ^ A^ (see [Ma, Gh. IX, Lem. 3.3]).
It follows that (9 x 0) (A) C r^. Since the projection n: F1^ -> PG^F)^ is an
isomorphism, Proposition 2.6.1 implies that (9 X 0) (A) = F^. This completes the
proof of Theorem 2.2.5 and of the First Main Theorem.

3. THE THEOREM ON THE p-ADIC UNIFORMIZATION

The First Main Theorem implies that for some admissible isomorphism O : E r^ E1111

there exists a 0-equivariant C-rational isomorphism /o : Xp ̂  X1111. Therefore for
some C/K^-descent X^ of the (E1111, C)-scheme X^, f^ induces a K^-rational iso-
morphism X ̂  X1111. To describe X^ we need some preparations, following [Del]
(see also [Mil]).

3.1. Technical preliminaries

In this subsection we recall basic notions related to Shimura varieties and give
their explicit description in the cases we are interested in.

3.1.1. First we realize X^ as a Shimura variety. Set H^ :== Ry^ G^.
Then H^ is a reductive group over % such that H^A^ = G^A^,) and
H^R) = n:=i G^F^.). Put S := RC/R G^ and let A be a homomorphism S ̂ H^
such that for each z e Cx ^. S(R) we have

h{z) = (diag(l, . . . , ! , ̂ )-1; I,; . . . ; I,) e A G^F,.),
i==l l

using the identification of G^F^.) with GUd_i,i(R) chosen in 2.1.6. Then the
conjugacy class M^ of A in H^R) is isomorphic to B^-1 i f r f > 2 and to C — R i f r f = 2 .
Then the pair (H^, M^) satisfies Deligne's axioms (see [Del, 1.5 and 2.1] or [Mil,
II, 2.1]), and the Shimura variety M^H^, M^), corresponding to (H^, M^), is
isomorphic to ic .̂
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3.1.2. For each pair (H"^ M^) as above there is a number field E^, M^C C,
called the reflex field of (H"^, M"^), which is defined as follows (compare [Del, 1.2,
1.3 and 3.7]). The group Homc(Sc, (GJc) is a free abelian group of rank 2 with
generators z and z such that if i: S(R) <-^ S(C) is the natural inclusion, then for each
w eC" ^8(0) we have Z o i { w ) = = z and zoi{w)==w. Let r :(GJc->Sc be the
algebraic 'homomorphism such that (^a) or{x) = ̂ . Then E^, M^) is the field
of definition of the conjugacy class of the composition map r" : (GJc-^ Sc-> H^.

Proposition 3.1.3. — We have E^" ,̂ M"̂ ) == K, the latter being viewed as a subfield
of C through the embedding ooi chosen in 2.1.6.

proof. — Note that H^^C) is naturally embedded into GL^C)20 so that each
factor corresponds to an embedding of K into C. Supposing that the first and the second
factors corresponds to our fixed embedding and to its complex conjugate respectively
we have

r^z) = (diag(l, . . . , ! , z-1); diag(l, ..., 1, ^)$ I,; . . .; I,)

for each zeCX. Therefore the reflex field E^, M^) contains KC C. On the other
hand, the Skolem-Noether theorem implies that for each a e Autg^C) the homo-
morphism o(r") is conjugate to r". This implies the assertion. D

3.1.4. Let TC H^ be a maximal torus ofH^, defined over Q,, such that some
conjugate V e M^ of h in H^R) factors through T^. Then we have a natural
embedding ^ ^ ^(T, A') ̂  M^\ M^), where Mc(T, A') is the Shimura variety
corresponding to (T,A'). Since T is commutative, the reflex field ET:=E(T,A') of
(T,A') is the field of definition of the morphism r" : (GJc -^ Sc -> Tg. Hence r"
defines a morphism of algebraic groups over Q,

, ,-,, -D ^ \ BET/Q(r") p ^ ^^ET/Q _
/ : ET := RET^J ——————> -^ET/QC-1) ————> 1 -

Notice that E^ 3 E^1, M^). Let Q^ be the Artin isomorphism of global class
field theory sending the uniformizer to the arithmetic Frobenius automorphism. Let
XT : Gal(E?/Er) -^(AQ/T^^) be the composition map

E1.ei
Gal(E^) -^ Ei(R)°\Ei(A)/E;(%)

projT(R)°\T(A)/T(%) —> T(AQ/T(%).

For each E' 3 E(Hlnt, M'^) we denote the composition map

Gal(E?.E'/E') -^ Gal(E^/E^) ̂  T(AO/T(QJ

by ^a"
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Lemma 3.1.5. — Each maximal torus T o/H^, defined over %, is equal to the inter-
section of H^ with R^Q G^ for a unique maximal commutative subfield L of D .̂ (Tn such
a situation we will call T an L-torus.) In this case, a"̂  induces a nontrivial automorphism of L,
and the subgroup T(%) C Î  ^ R^ GJK) ^ Z^wAz dense in R^ G,.

Proo/: — Let L be the subalgebra of D^ spanned over K by T(Q^) C H^^) C D^,
then L is a commutative subfield and T(%) C H^Q^ nRL/qGJQ^). Since T is
connected and Q^ is infinite and perfect, the subgroup T(%) is Zariski dense in T
(see [Bo, Gh. V, Cor. 13.3]). It follows that TC H^ n R^G^. Since T is maximal,
L have to be maximal and T = H^ n R^ G^.

For each g eT(^) we have ^\g) eg-1 Fx C T(QJ, so that a^L) = L. To
prove the last assertion we observe that there exists a maximal F-rational subtorus T'
of G^ such that T == R^(T'). Then the subgroup T(%) = T(F) is Zariski dense
in TK ^ RL/K G^ x (GJg:- Hence its projection to R :̂ G^ is also Zariski dense. D

3.1.6. Now we want to calculate the reflex field E,r. Observe that
L ®Q C C D^ ®Q C ̂  Mat^C)^.

Possibly after a conjugation we may assume that L ®Q C is the subalgebra of diagonal
matrices of Mat^C)2^ Then each diagonal entry of each of the 2g copies of Mat^(C)
corresponds to an embedding of L into C, and the map r" : (GJc -> T^ is as follows:

r"(.) = (diag(l, ..., 1, ^-1); diag(l, ..., 1, z ) , I,; . . . ; I,).

Let 4 be the embedding L <-> C, corresponding to the right low entry of the first matrix,
then the right low entry of the second matrix corresponds to the embedding 4 :== ^ o a" .̂
Now we embed L into C via 4.

Proposition 3.1.7. — We have ET==LCC, and r' : E^ -> T is characterized by
r'(/) == /-W^/) for each I e E^Q,) C L\

Proo/. — As was noted before, E^ 3 E^, M^). Hence by Proposition 3.1.3,
E^K. By the definition, 0^(2)) = r" (a (z)) for each <reAut^(C), hence the
group Aut^(C) must stabilize 4, so that E^ 3 L. Finally, it is clear that r" is defined
over L C C. For each / e Erp = L we have

r\l) = N^(diag(l, ...,!, Z-1); diag(l, ..., 1, /); I,; . . . ; I,)
==/-l.aiDt(/). D

Set ^^©K^CD^D^K,. Since D^ is a division algebra, L,
is a field extension of K.^ of degree d, and Ly, = L-K^,.

Lemma 3.1.8. — The following relations hold:
a) Er.K,==L,;
^> E^K,^!^.
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Proof. — a) was proved above.
b) The group Gal(E^. K,/E^ • KJ is abelian, hence L, C E?. K, C L^.

By the class field theory, the composition of the canonical projections

GalOLJ^/LJ ^ Gal(E?. KJE^ KJ -> Gal(E^) ^ Gal(Lab/L)

is injective (use, for example, [GF, Ch. VII, Prop. 6.2]). Therefore we have the required
equality. D

Proposition 3.1.9. — For each leL^C (D^ the element

(l-\ 1, 1) e (D^ x F^ x G^A^) ^ H^AQ

Wo^ to ^A-Q, aW ̂  equivalence class in ^A^/T^QJ ^ X^ ^ (6^ (/)).

Proo/; — The statement follows immediately from the explicit formulas of Pro-
position 3.1.7 using the connection between local and global Artin maps. D

Definition 3.1.10. — A point x e M^H^, M^) (C) is called (T^special if
^e^(Mc(T,A)(C)).

Remark 3.1.11. — The group ^A^) acts naturally on the set of T-special points
and the group T(%) acts on it trivially. Hence by continuity the closure T(Q^) C ^A^
acts trivially on the set of T-special points, therefore the action of ^A^/T^QJ on it
is well-defined.

Definition 3.1.12. — Let K' 3 £(1 ,̂ M^) be a subfield of C. A C/K'-descent
of the (H^AQ, C)-scheme M^H"^ M^) is called weakly-canonical if for each
maximal torus T <-> H^ as above, each T-special point x is defined over E^.K', and
for each a e Ga^-IC'/E^K') we have a{x) =^{G){x).

Remark 3.1.13. — Our definition of the canonical model coincides with that
of [Mi3], which differs from those of [De2] and [Mil] (see the discussion in [Mi3, 1.10]).
The seeming difference (by sign) between our reciprocity map and that of [Mi3] is
due to the fact that we consider left action of the adelic group whereas Milne considers
right action.

Proposition 3.1.14. — For each field K' satisfying E^, M1111) C K' C C there exists
a unique (up to an isomorphism) weakly-canonical C^-descent of the (H^fA^ 0-scheme
M^H^, M^).

Proof. — Uniqueness is proved in [Del, 5.4], for the existence see [Del 6 4]
or [Mil, II, Thm. 5.5]. D

By Proposition 3.1.3, we have ECH^, M^) = KC K, C C (in our conven-
tion 2.2.2). Hence by Proposition 3.1.14, the (E^, C)-scheme X^ has a unique
weakly-canonical C/K^-descent X" .̂

14
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3.2. Theorem on the p-a.dic unifbrmization

Now we are ready to formulate our

Second Main Theorem 3.2.1. — For each admissible isomorphism 0 : E ̂  E"̂  there
exists a ^-equivariant isomorphism f^ from the (E, K^'scheme X to the (E"̂  K^-scheme X1111.

Corollary 3.2.2. — After the identification ofE with E^ by means o/O we have for each
S e ̂ (E) o/ ̂  /orm T^ x S', where S' e ̂ (E'), ^ isomorphism of K^analytic spaces
Ps^X^^GL^KJVS^x (S'\G(A^)/G(F))). TA^ isomorphisms commute with

o
^ T^r^ projections for T D S W z^A ̂  ac^w ofJL^> E .̂

Proo/' (of the Second Main Theorem) :

6^ 2. — W^ want to prove that for 0 and/^ as in the First Main Theorem, the
G/1 -̂̂ ^111 ̂  X^ corresponding to X is weakly-canonical. For this we have to
show that for each maximal torus T^H^ as in 3.1.4 and each T-special point
^ =/o(j) e Mc^, M^) (C) == 5^ we have:
a) y eX(C^) is defined over E^.K^;
b) a{y) ^O-'^M^Xj) for each a e Gal(E^.KJE^KJ.

By Proposition 3.1.9, Lemma 3.1.8 and the definition of admissible map, it
will suffice to show that when L^ is embedded into B^, by means of the isomorphism
^^^w fr^ Definition 2.2.1 we have
(3.1) i) every point y e X(Cy), fixed by O'^T^^)), is rational over (LJ^;

") ^(/) {y) == l-^y) for each / e L^ C D^ D, x { 1 } C D^ x E'.

Let (A:, a) e 2^ x E' be a representative ofjy e X(Cp). Then {a(x), a) is a repre-
sentative of o-(j) for each (not necessarily continuous) a eAutg: (Cy). Recall that for
each embedding L^ <-> Mat^KJ there exists an (L^ X L^-equivariant L^-rational
embedding T : S1 <-> S^- .0 ^w ^w

Proposition 3.2.3. — There exists an embedding L^ <-» Mat^(KJ such that the image
of the corresponding T : S^ <-> S| contains x.

Proof. — Let A;' e 0^ be the projection of x. Then

V := [(^ ^] e (D^X)- ^ (^ x (E')disc)/G(F) Z(G(F))

(use Proposition 1.5.3) is the projection of y. Since O'WQJ) stabilizes^, it
also stabilizes^', therefore the projection of a~~1 ̂ ~~1(^{Q^) a to E' is contained in
G(F) Z(G(F)) C E'. In other words, for each t e T(%) C D^ we have

pv^a-^-^a) = = g ' z

for some g e G(F) and some z e Z(G(F)).
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Since 0 is induced by some algebra isomorphism D(A^) ^D^A^), we have
Trt== Tr^-1^-1^)^ = (Tr g) z. Therefore for fs with non-zero trace we get
z = {Trt)(Trg)-1 e Kx C (A^'^. This means that pr^-1 O-1^) ^) e G(F) C E'.
As the set of all fs in T(%) C D^ with Tr ^ ={= 0 generates L C D^ as an algebra, the
map / \-> pr^(dT1O-1^) a) defines embeddings L <->• D and L^, <-^ D ®^ K^, ^ Mat^KJ.

This shows that pr^-1O-WQJ) a) C G(F) C E', so that

^-IO-I(T(%))^CD^ x r ^CD^ x E ' = E .

Hence O-^T^^)) preserves p,(S^) C (X^ (in the notation of Corollary 1.5.4).
Moreover, it follows from the definition of the embeddings L^, <-^ B^ and L^, <-> Mat (K )
that for each ^ T(%) C L>< C L^ the image of a-1 $-1^) a(^D^ x\ unde^r tie
canonical map D^ x I\ ̂  D^ x F^C D^ x GL,(K,) is equal to (^ ^). Since j/ is
a fixed point O'^T^^)), we conclude from the above that (t, t) {x) = x for every
t e T(QJ. Noticing that T(%) is Zariski dense in R^ G^ by Lemma 3.1.5 and that
^/K^^^ ^ ^/K^,^? Lemma 1.4.5 completes the proof. D

Since T is (L^ X L^)-equivariant and L^-rational, the proposition together
with Lemma 1.4.3 imply (3.1). In other words, we have proved that for some
admissible isomorphism 0 : E -^ E101- there exists a 0-equivariant K -linear isomorphism
/„ : X ̂  X^.

Step 2. — Let Y be another admissible isomorphism E -^ E^. The definition of
admissibility together with the theorem ofSkolem-Noether imply that Y o $--1 : E^ ^> E^
is an inner automorphism, so that there exists g^ e E^ such that Y o O-1^) = g^gg^,1

for all g e E^. Take f^ : X -^ X1111 -S X^. Then for each g e E we have

/Y ° 5 = g^F % ° 5 = <?y ° ̂ (^ o/o = (̂ r ° ̂ (5) o ,?y1) o tey o/^)

==(yo<&-i)(0(^))o^==Y^)o^,

that is/p is a Y-equivariant isomorphism. This completes the proof of the Second Main
Theorem. D

4. ^-ADIC UNIFORMIZATION
OF AUTOMORPmC VECTOR BUNDLES

In the previous section we proved that the Shimura varieties corresponding to
the pairs (H"^ M^) have ^-adic uniformization. Our next task is to show the analogous
result for automorphic vector bundles.

4.1. Equivariant vector bundles

4.1.1. Set H:=Rp^G. Then for some algebraic group fi over K
we have natural isomorphisms H^ ^ GL^ x fi, PH^ ^ PGL^ x Pfi an^
PH^ ^ PGLi(D^) x PH, where the first" factors correspond to the natural embed-
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ding F<-^K^. Using these decompositions let PH^ acts on P^~1 through the natural
action of the first factor and the trivial action of the second one, and let H(KJ, PH(KJ
and PH^R)^ PGU,_^(R)O x PGU,(R)^-1 act similarly on S^, on Q^ and
on 3d-1 respectively. Let ^ be the natural embedding B^-1 <-> (P^""1)^, and let ^
(resp. (B^ J be the composition of the natural projection 21 -> t^ (resp. S^ " -> i^ )
and the natural embedding Q.^ <-^ (P^-1)^.

Let TT £ K^ be a uniformizer, let 11 be an element of GL^(K^) satisfying fi^ == TT,
and let IT e PGL^KJ be the projection ofTl. Set

n := (n', 1) e PGL,(KJ x PH(KJ ^ PH(KJ.

Let K^ be the unramified field extension of Ky, of degree d. Since the Brauer invariant
of D^ is lid, the group PH^ is isomorphic to the quotient ofPH^®K K(^ ̂  the

equivalence relation Fr{x) ̂  H~1 xll, where Fr e Gal(K^/K^) is the Frobenius auto-
morphism. For each scheme Y over Ky, on which PH^ acts K^-rationally define a
twist Y^ : = (Fr(^) - n-1 x)\Y ®^ K^. Then Y ®^ K^^ Y^ ®^ K^ and the natural
action of PH^ on it is K^-rational.

Let W be a PH^ -equivariant vector bundle on P^T1, that is a vector bundle
on P^1 equipped with an action of the group PH^ , lifting its action on P^"1. Then
(W^J^) is a PH^-equivariant vector bundle 01̂  (P^;1)^, and %((W^)^) (resp.
P^W^), ̂  JW^)) i^ a PH-^R)^ (resp. H(KJ-)equivaria'nt analytic vector bundle on
B^ (resp.S^,S^).

For each S e ̂ (E) (resp. S e ̂ (E^)) consider a double quotient

Vs ''= SVEP^W^) x E']/r (resp. ̂  := SYEP^W^)^ X E^]/!^).

Proposition 4.1.2. — For ^A S e^(E) (r̂ . S e^E^)) ^g (r̂ . ̂  A^ a
natural structure of an affine scheme Vg over Xg (r̂ . 'V^ o^r iCg )̂. Moreover, Vg (r̂ . '̂ g11') ^
<z y^^r bundle on Xg (r̂ . Xg )̂ if S ^ sufficiently small.

Proof. — We give the proof in the^-adic case. The complex case is similar, but easier.

I) First we take S of the form T^ x S' with sufficiently small S' e ̂ (E7). Then
\^g is a finite disjoint union of quotients of the form r^g^-i\^ ^(W^) with some
aeE' . Since the projection S^ ->^ factors through each I\g^o\S^ (in the
notation of the proof of Proposition "'1.5.2), the quotient r^-i^p^W^) is
naturally an analytic vector bundle on F^-i ,o\S^. Now (as in the proof of Proposi-
tion 1.5.2) tlw quotient vector bundle P^,g,-l\(^J^.^\^^(WaD)) ^ r^^JW-)
on ^as'a-^\T'^ 1s obtained by gluing. For the algebraization we use Corollary 1.2.3^.

II) For each T e ^"(E) there exists a normal subgroup of the form S= T^ x S',
where S' e ̂ "(E') is sufficiently small. Then by the same considerations as in Propo-
sition 1.3.7, VT can be defined as (T/S)\Vg (using Corollary 1.2.3 a)).
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III) Suppose that Vg^ and Vg^, constructed in I) and II), are vector bundles
on Xg^ and Xg^ respectively for S^ C Sg in ^-(E). Then the natural morphism
f'-^si-^^s^ xxs2XSl of vector bundles on Xg^ induces an isomorphism on each
fiber. Hence it is an isomorphism.

IV) Suppose that TC S in ^-(E) and that Vg is a vector bundle on Xg. Choose
a normal subgroup So e ̂ (E) of T such that Vg^ is a vector bundle on Xg . Then
VT = (T/S,)\Vg, s (T/So)\Vg x^ Xg, s Vg x^ ((T/S,)\Xg,) s Vg x^ X,, °so V, is
a vector bundle on Xp. D

4.^.3. Choose S e ^<-(E) (resp. Se^E^)) sufficiently small. Then Vg
(rcsp. -V^) is a ̂ vector bundle on Xg (resp. X^). Thus V:=Vg x^X (resp.
ytat^Vg1* Xs^ntX1111) is a vector bundle on X (resp. X"11). By Step IH) of the
proof, V (resp. V^) does not depend on S. Each g e E (resp. g e E^) defines an iso-
morphism Vg^V^-i (resp. (Vg^0 ̂  (V^)-). Therefore by Corollary 1.2.3 a;,
^ defines an isomorphism Vg^V,g,,-i (resp. V^^V^-i). The product of this
isomorphism and the action of g on X (resp. X1"*) gives us an isomorphism
g : V = Vg Xx, X ̂  V,g,-i x^-i X = V (resp. ^ : V1111 ̂  V1114). Thus we have cons-
tructed an algebraic action of E (resp. of E^) on V (resp. V"*), satisfying S\V £ V
for all Se^-(E) (resp. S\^ s Vg"1 for all Se^E"14)). Moreover, V=limV,
and Vlnt=HmVg>t. ^a-

s
By [Mil], there exists a unique canonical model V'"* of V"* over K^ (the

definition of the canonical model will be explained in the last paragraph of the proof
of Proposition 4.3.1) such that V*"' is an E^-equivariant vector bundle on X'"1.

Our main task is to prove the following

Third Main Theorem 4.1.4. — For any admissible isomorphism 0 : E ̂  E1"1', each
isomorphism f^ from the First or the Second Main Theorem can be lifted to a <5>-equivariant wo-
morphism f^ y : V ^> V'"*.

We will prove this theorem, using standard principal bundles (= torsors) (see [Mil
Gh. Ill, § 3]).

4.2. Equivariant torsors

4.2.1. For each S e ̂ -(E) (resp. Se^E10*)) consider the double quotient
Pg := S\[2^ X (PH^)- x E']/r (resp. P^ := S^-1 X (PH^)'"1 X E'^/r^).

Proposition 4.2.2. — For each S e ̂ "(E) {resp. S e^E"14)) Pg {resp. P^) has a
natural structure of an affine scheme Pg over Xg {resp. Pg"* over Xg"*). Moreover, Pg is a PH^ -
torsor over Xg (resp. Y'f is a PH^-torsor over X^ ifS is sufficiently small).
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The proof is almost identical to that of Proposition 4.1.2 (using Proposition 1.9.13
and Lemma 1.9.3 instead of Corollary 1.2.3 a) and arguments of step III) respec-
tively). D

4.2.3. Arguing as in 4.1.3 and using Corollary 1.9.14 we obtain an E-equi-
variant PH^-torsor P = Vm\_ Pg over X (resp. an E^-equivariant PH^-torsor

P^ ^^mP^ over X^). By [Mil, III, Thm. 4.3], there exists a unique canonical

model P1^ ofP^ over K^, (the definition will be explained in Corollary 4.7.2) such
that P1^ is an E^-equivariant PH^-torsor over X1111. Let TT : P -> X and
7rmt: pmt -> xlnt be the natural projections. Denote also the natural projection from
the PH^-torsor P^ to X by n^.

Fourth Main Theorem 4.2.4. — For any admissible isomorphism <& : E ̂  E ,̂ each
isomorphism f^ from the First or the Second Main Theorems can be lifted to a ^-equivariant
isomorphism f^ p : P^ ̂  P^ of PH^ -torsors.

4.3. Connection between the Main Theorems

Proposition 4.3.1. — The Fourth Main Theorem implies the third one.

Proof. — Consider the pro-analytic maps

r: [ŝ  x (PH^)- x (Er^/r -> (p^1)-
and (y')^ : [B^-1 x (PH^)^ X (E^^j/r1111' -> (P^-1)^

given by p^, g, e) == g^{x) and ^T\x, g, e) = g^(x). Then ^ (resp. (^'y^) is
(PHK^)aD- (resp. (PH^)^-) equivariant and commutes with the action of E
(resp. E^). Hence it defines an equivariant analytic map y: P^ -> (P^-1)^ (resp.
^Q^ ^ /pintAan __^ /pd-l\an\

Proposition 4.3.2. — There exists a unique algebraic morphism p:P->P^~1 (resp.
^int; pint -^p^-i) such that p^ ^ p- (resp. (p'^)^ ^ ^int).

Proof. — We prove the statement for p (in the second case the proof is exactly
the same). We have to show that the graph G r ( p ) C P^ x (P^"1)^ corresponds to
an algebraic subscheme. For each S e ̂ "(E) let pg : P^ -> (P^-1)^ be the morphism
induced by p-. Since Gr(?) == I™Gr(pg) C (Hm P^) x (Pi-1)^ it remains to show

S 8 w

that the graph Gr(pg) C P^ x (P^T0 corresponds to a unique algebraic subvariety
for each S sufficiently small.

Take S so small that Xg is smooth, then by Lemma 1.9.5 b) there exists a quotient
Q.S '-= ^K^W X p^1) by the diagonal action of PH^. Moreover, Qg is a
y- ̂ bundle on Xg, hence it is projective over K^. Let a : Pg x P^1 -> ̂  be the
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natural projection. Since % is (PH -̂equivariant, Gr(%) is invariant under the
diagonal action of (PH )̂-. Therefore the quotient Q,:= (PH^ )an\Gr(ps) is a closed
analytic subspace of Q.̂ , so that it is algebraic (see Corollary 1.2.2). It follows that
its inverse image a-^Q) = Gr(pg) is also algebraic. The uniqueness is clear. D

Claim 4.3.3. — The map ^mt is the only (PHi?^ x ^-eguivariant analytic map
from (P101)1"1 to (P^-1)"1.

Proof. — Let p' : (P"1*)" -^ (P^-1)- be any such map. Composing it with the
natural (PH )̂™ x E -̂equivariant projection

[B"-1 X (PH )̂" X (E1114)11^]/^111 -. (Plnt)an

and, identifying a complex analytic space with the set of its C-rational points, we obtain
a PH^C) x E^-equivariant analytic map

p" : [B"-1 x PH^C) x (E1111-)11180]/^ -> (P^-1)"1.

Let po be the restriction of p to B"-1 ̂ . B"-1 x { 1 } X { 1 }. Then p"(a;, g, e) = gpy(x)
for all xeB'1-1, g e (PH^)8"1 and e eE"1*. Therefore ypoW = Po(T-<-) for all y e P11

and ^ eB"-1. Since the subgroup r^ is dense in PGU«_^(R)°, we obtain by conti-
nuity that ypoW =Po(Y-<) for all y e PGU^_i i(R)o and ^eB"-1. In particular, for
the origin OeB^1 we get Stabp^_^>o(0)C Stabp^^,,(p,,(0)). The subgroup
StabpQ^ _^^B>o(0) stabilizes precisely one point (0; ... :0: 1) eP'-^C) if d> 2 and
two points (0 : 1) and (1 : 0) in Pi(C) i f< /=2 . The case po(0) = (1 :0 ) is impossible,
because identifying P^C) with C = C u oo by (x :j>) ̂  x^ we would get in this case
Po(2) = 1/z for all zeB1, contradicting the analyticity of pg. We conclude that
po(0) = (0 : ... : 0 : 1). Hence po = pg and p' = ̂ tat. a

4.3.4. Next we show that the map p'-11: P^ ̂  (P^1)^ is K^-rational. RecaU
that the map p"1114 is PH^-equivariant and that the actions of the group PH^ on both
P'"4 and (P^1)^ are K^-rational. Therefore for each CTeAut(C/KJ the' analytic
map a^^ is (PH^ x E^-equivariant, hence it coincides with (p'1"4)1" = ̂ iDt.
By the uniqueness of the algebraic structure, ^(p'111*') = p'1"*'.

It follows thatp'1"1 defines a PH^ x E'^-equivariant map p1111: pint ̂  (P^-1)^.
Notice also that p defines a PH^ x E-equivariant map p4* : P^ -> (P^-1)^.

Suppose that the Fourth Main Theorem holds, then

Lemma 4.3.5. — We have p^o/^p = p^.

Proof. — By the claim, ^int a (p^ is equal to (p^o (A.p)^1)"1. From the
uniqueness of algebraic structures we conclude that Pc" = P^ ° (/a. p)c1- Now we
descent to K^ as in 4.3.4. a
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It follows from the definitions that p*(W) ^ TT:*(V) (hence p^W)^ ^ (^^(V))
and (^'(W^) ^ (T^T^). Lemma 1.9.5 allows us to define V^ by the requirement
that (^(V^) ^ (p^W^). (By the definition, this is the canonical model of ^int

on X^.) Lemma 4.3.5 implies that/^ p can be lifted to the 0-equivariant isomor-
phism p^W)^ ^ (p^W^) ̂  (p^W^), commuting with the PH^-action. This
gives us the PH^-equivariant isomorphism (^^(V) ̂  (7^)* (V^). Hen'ce the Third
Main Theorem follows from Lemma 1.9.5. D

Remark 4.3.6. — Tannakian arguments can be used to show (see Theorem 1.9.10
and the discussion around it) that the Third Main Theorem implies the Fourth one.
We will not use this implication.

4.4. Reduction of the problem

4.4.1. Now we start the proof of the Fourth Main Theorem. For simplicity of nota-
tion we identify E with E^ by means of 0 and X with X^ by means of/^. Recall that
Pg^c is a PHc-torsor over Xg c for all sufficiently small S eJ^(E), hence (Pg p)^ is a
(PH^-torsor over (Xg^ and (P^ == (Pg^0 x^^n (X,)^ is a (PH^^-torsor
over (Xc)^ ^ [B^-1 x (E^E^^/Pr1111. Set Y := (T^)'-1 (B^-1 X { 1}) C (P^)^. Then
Y is a (PH^-torsor over W-1. Recall that E^ == E^ acts trivially on P, hence
W ^ (Y X (E^/E^^/Pr^.

Proposition^ .4.2. — T^r^ ̂ j^ a homomorphism j : PF1^ -> PH(C) and an isomorphism
(Pc)-^ (B^1 X (PH,)- X (E-TO^/PI^ such that ^ h^g) y == (y,^, Aj(y),^)

/or all x e B^-^ A e (PH^, ,? e E^/E^ and y e PF^.

Proo/. — The proposition asserts that there exists a decomposition

Y^B^- 1 x (PHc)^

such that the group PF^ acts on B^-1 x (PHJ^ by the product of actions on factors.
The trivial connection on S^ x (PH^)^ ->S^ is F x D^-invariant, there-

fore it defines a natural E-invariant flat connection Jf on the (PH^ ̂ ^-torsor
[2^ X (PH^)- x E^J/r over [2^ x E^/F. Since for all sufficientiy small
Se^-(E) the projection (2^ x (PH^ X E^/F -> P^ is ^tale, it induces an
isomorphism of tangent spaces up to an extension of scalars. Hence JT induces a flat
connection ̂  on P^. By the definition, ^g is a (PH^^-invariant analytic vector
subbundle of (Tpj^, therefore Lemma 1.9.5 and Corollary 1.2.3 imply the existence
of a unique flat connection jfg on Pg such that J^g ^ J^. Since the projection
TTg : P -> Pg is ^tale, J^g defines a unique flat connection ^ on P satisfying
(TCg)^(Jf7) = ^fg. Moreover, J^ is E-equivariant and does not depend on S.

The connection Jf determines flat connections J^c on Pp and (^c)^ on (Pc)8'11-
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Letjr be the restriction of W to Y. Then JT is a PF^-invariant flat connection
on the (PHJ^-principal bundle Y over the simply connected complex manifold W-1.
By Lemma 1.9.19, there exists a decomposition Y s V-1 x (PHJ^ such that the
corresponding action of PF^ on B"-1 x (PHc)-" preserves the trivial connection

For each y 6 PF^ let 7: B^1 x (PH^ -> (PH^ be the analytic map such
that f(x, h) = (YW,7(;v, A)) for all .v e B"-1 and h e (PHc)8"1. Since the action of PF'"*
preserves the trivial connection, we have By/ftc = 0 for each y e PF'"*. Hence analytic 7's
depend only on h. Since the action of PF^ commutes with the action of (PHc)"1, we
have7(A) = /^(l) for all A 6 (PHc)"1 and y e PF^. Therefore the map Y^7(l)-1

is the required homomorphism. n

Theorem 4.4.3. — There exists an inner isomorphism (= inner twisting)

Oc : PHc ̂  FHe"

such that j o 0, : Pr^ = PG'̂ F),. ̂  PH-̂ C) s PG'-̂ C 0, F) is induced by the natural
(diagonal) embedding F <-» C ®n F s C".

.awwA; 4.4.4. — Algebraization considerations as in Lemma 2.2.6 (using Propo-
sition 1.9.13 instead of Corollary 1.2.2) show that Theorem 4.4.3 implies the existence
of a 0-equivariant isomorphism P^ ^> P1"1-, lifting^.

4.5. Proof of density

To prove Theorem 4.4.3 we will use Margulis' results. For this we first show
that the subgroup ^(PF'01) is sufficiently large. We start with the following technical

Lemma 4.5.1. — Let n and d be positive integers. For each i = 1, ..., n we denote by pr,
the projection to the i-th factor.

a) Let's\, ..., <&^ be Lie algebras, and let 3^ be an ideal in the Lie algebra ̂  = II"_ 'S
Then^^B^^pr^,^]. * l l'

b) Let A be a subgroup o/~PGL<,(C)". Suppose that pr,(A) is infinite/or every i = 1, .'.., n.

If A := Commp(̂ (,,,,(A) is Zariski dense in (PGL )̂", then the same is true for A.
c) If a subgroup AC PGU<,(R)" is Zariski dense (in (PGUJ-), then it is dense.

Proof. — a) If x = {x^, ..., ;vJ e II;Li ,̂ belongs to J ,̂ then

[^jr«] = (0, ..., 1>,,A], ..., 0) = [pr, x,^] e ̂  for all y, e ̂ ,.

b) Let J be the Zariski closure of A in (PGL,,)", then 8J S-1 n j is an algebraic
subgroup of finite index in J for each 8 6 A. Hence 8J°8-1 =J«. In particular, the
subgroup Ad A stabilizes LieJ°CLie(PGLJ". Since A is Zariski dense in (PGL^)»,
the Lie algebra LieJ° ==LieJis an ideal in Lie(PGL<,)». By our assumption, pr,(J)
is an infinite algebraic group for each i=\, ...,n, therefore pr,(LieJ) + 0 is an ideal

15
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in a simple Lie algebra Lie(PGL^). Therefore a) implies that LieJ = Lie(PGLJ\
Since the group (PGLJ^ is connected, J = (PGL^.

c ) Let M be the closure of A in PGU^R)^ Then M is a Lie subgroup of the Lie
group PGU^R)". Hence Lie M is an Ad M-invariant subspace of L^PGU^R))".
Since the adjoint representation is algebraic, Lie M is an ideal in L^PGU^R))^. Since
M is compact, it has a finite number of connected components. Hence M° is also Zariski
dense, therefore it is not contained in PGU^R)1"^ X { 1 } X PGU^R)""' for any
i == 1, ..., n. It follows that Lie M = Lie M° is not contained in

Lie(PGU,(R))1-1 x { 0 } x I^PGU^R)^-1,

so that pr,(Lie M) + 0. Now the assertion follows exactly in the same way as in b). D

Proposition 4.5.2. — The subgroup j^PF^) is Zariski dense in PHp.

Proof. — Let G'C PHp be the Zariski closure of^PF^). Then

R:== (B^-1 x (G')^ x (PG^A^))'1180)/?]^

is a PG^A^ ̂ -invariant (G^-subtorsor of the (PH^-torsor

(P^n ^ ((G^FJ x Z(Eint))\Pc)aQ

^ [B^-1 x (PHp)^ X (PG^A^))1"80]/?!^

over (Xc')^ [B^-1 x (PG^W^^j/Pr^. Hence by Proposition 1.9.13 there
exists an algebraic G'-subtorsor R of T?c such that R^ ^ R. Using our identification
of Cy with C, we obtain a closed analytic subspace

(R^-C (Pc;)- ^ ("^®K,Cp x (PH^)- x (PE^^/Pr.

Recall that PF == PH(%) is naturally embedded into PH(Cp).

Lemma 4.5.3. — The subgroup generated by the elements of PF with elliptic projections
to PGL^KJ is Zariski dense in PHp .

Proof. — The subgroup of PGL^(KJ generated by the set of all elliptic elements
is open and normal, because a conjugate of an elliptic element is elliptic. Hence it
contains PSL^KJ. The subgroup PI^ n PSL^KJ is dense in PSL^KJ. Therefore,
by [Ma, Gh. IX, Lem. 3.3], the subgroup of PF^ generated by all elliptic elements
of Pr^ contains PI^ n PSL^KJ. In particular, it has finite index in PI^ = PH(Q^).
Since PH is connected, the statement follows from [Bo, Ch. V, Cor. 18.3]. D

If G'=)= PHp, then by the lemma there exists y e P^ ^lt^1 elliptic pro-
jection to PGU^_ii(R) whose image y^ e PH(Cy) does not belong to G'(Cy). Let
x ea^®^Cy X { 1 }C (XcR^ be an elliptic point of y^ e PE', and let ^ be an
arbitrary point of (Rg )aln, lying over x. Then Y^S?) == Yp(^) ls another point of (Re )an,
lying over x. Hence y? must belong to G'(Cp), contradicting to our choice ofy. D
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Recall that we defined in Proposition 4.3.2 the algebraic PH^ X E-equivariant
map p:P^Pi:1. Identify PH^ with (PGL^ in such a way th^t the first factor
corresponds to the embedding oc^ : K <-> C. Denote by j^: PF1111 -» PGL^(C) the
composition ofj with the projection pr^ ofPGL^C)^ to its A-th factor. Denote also by pr1

the projection of PGL^(C)^ to the product of all factors except the z'-th. We will some-
times identify PF"^ with its projection PF^C PGU^_i i(R)°.

Proposition 4.5.4. — The subgroup j^PF^) is not relatively compact in PGL^(C).

Proof. — If not, then (̂PF1111) is contained in some maximal compact subgroup
of PGL^(C) (see for example [PR, Prop. 3.11]). After a suitable conjugation we may
assume that ^(PF^) C PGU^R). By Proposition 4.5.2, ^(PF^) is Zariski dense
in PGL^, hence it is infinite. Therefore, by Lemma 4.5.1, ̂ (PF"^) is dense in PGU^(R).

Consider the map p : P(C) ~> P^-^C) and its restriction po to B^-1 X { 1 } ̂  B^-1.
Then, as in the proof of Claim 4.3.3, po '' B^-1 -.P^-^C) satisfies po(y^) ==j^-r) poW
for all x e B^-1 and y e= PF^. The group PGU^R) acts transitively on P^-^C), hence
po(Bd-l) is dense in P^-^C).

Now we want to prove thatji : Pr^ -. PGU^(R) can be extended to a continuous
homomorphism^:PGU,_i^(R)°->PGU^R). For each g e PGU^^R)0 choose a
sequence { ̂  }„ C PF^C PGU^^i(R)0 converging to g. Since PGU^(R) is compact,
there exists a subsequence { Y ^ L C { Y n L such that {j\(^) }^ converges to some
a e PGU,(R). Then po(^) == lim po(Yn,W) = (lim^y^)) po^) = ̂ M for all x e B .̂
It follows that a = a{g) depends only on g, since pc/B^"1) is dense in P^-^C) and since
the group PGL^(C) acts faithfully on P^-^C). In particular, a{g) does not depend on the
choice o f { y ^ }^ and a{g) == limj^^). It follows thatji :== a is the required extension.

Since PGU^_i ,i(R)° is simple and ^(PF^) is dense, ^ must be injective and
surjective. Hence is it an isomorphism, a contradiction. D

Proposition 4.5.5. — For each i = 1, ..., g the homomorphism j\: PF1111 -> PGL^(C)
is injective.

Proof. — Suppose that for some i the subgroup A, := Ker(^) is non-trivial. Then
A, is a normal subgroup of PF^ ^ PF^C PGU^_,^(R)°. Hence the closure of (A,)^
is a non-trivial normal subgroup of a simple group PGUd_i^(R)0. Therefore the pro-
jection (A,)^ is dense in PGU^_i ,i(R)°. Hence there exists an element 8 e A, with elliptic
projection 8^ e PGU^^R)0. Therefore the element (j(8), 8^) e PGL^C)^ x PE'
has a fixed point [ ,̂.?, <| e P"(CJ = (^(C^) x PGL,(C^ x PE')/PF. Hence
{g'^'W ^ ̂ 1 SE ^) stabilizes [j/, 1, 1] e P"(Cp). It follows that e~1 8^ ^ = YE for some
Y e PF = PH(Q) and g-^^S) g e PH(C^) is the image of y. Hence j,(8) + 1 for all k,
contradicting to our assumption. D
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4.6. Use of rigidity

Now we are going to use the following theorem of Margulis [Ma, Gh. VII,
Thm. 5.6].

Theorem 4.6.1. — Let L be a local field, let J be a connected absolutely simple adjoint
"L-group, and let A be a finite set. For each a e A let k^ be a local field and let G^ be an adjoint
absolutely simple k^-isotropic group. Set G := II G^J. Let F be an irreducible lattice in G

a e A

and let A. be a subgroup of Comm^F). Suppose that rank G := S ran4 G^ ̂  2.
a £ A a

If the image of a homomorphism T : A ->J(L) is Zariski dense in J and not relatively
compact in J(L), then there exists a unique a eA, a continuous homomorphism 6 : k^ -^L and
a unique Q-algebraic isomorphism 73 : G^ -^J J^A that r(X) = •y)(6(pr^X))) /or all X eA.

4.6.2. We use the notation of 2.4.1 with A' = PF^. Take any M and S such
that rank G^ ^ 2. Then by Proposition 2.4.5, F := A8 is an irreducible lattice in G^.
We will try to apply Theorem 4.6.1 in the following situation. Take G = G^, A be
the projection of A' to G,,, L = C, J = (PGLJc and T be the homomorphism
j\: Pr^ --> PGL^(C) for some i e { 1 , ...,,?}. Consider first i == 1. By Proposition 4.5.2
and Proposition 4.5.4, T =j\ satisfies the conditions of Theorem 4.6.1, hence there
exists an algebraic isomorphism ^: (PGU^_i i)c -^ (PGI^)c such that ^(y) = Tj^y )
for all yePr^.

Now take i ̂  2. Suppose that ^(Pr^) is not relatively compact. Then using
again Proposition 4.5.2 we conclude from Theorem 4.6.1 that there exists an algebraic
isomorphism ^: (PGU^Jc -^ (PGLJc such that ^(y) == ^(Yoo) for all y e PF^.
In particular, j^PF^) is not Zariski dense in (PGL^. This contradicts to
Proposition 4.5.2. Therefore after a suitable conjugation we may assume that
^(Pr^) C PGU,(R) for all i == 2, ..., g.

It follows that up to an algebraic automorphism of (PGLy)^,
y(ppint) ^ PGH_^(R) x PGU^(R)^1 s PH-^R)

and thatji is the natural embedding PG^F)^ ̂  PG^F^). Therefore j together
with the natural embedding PG^F)^ <-> PG^^A^,^) embed Pr^ into

^U^-i.iW0 x PGU,(R)^-1 x PG^A^).

£^mma4.6.3. — T^ ô̂ r̂  of the projection of PF"11' to PGUd(R)<7-l x PG^A^)
^teW PGU^R)^-1 x P^G^^A^)).

Proo/: — Let (^,^) be an element of PGU^R)^-1 x PaG^^A^)), let
UCPGU^R)"-1 be an open neighbourhood of ^, and let S e ̂ (PC^A^)). We
have to show that PF^ n (PGU^i^(R) x U x ^S) 4= 0. By the strong approxi-
mation theorem there exists a y e Pr^ whose projection to PG^A^) belongs to ^S.
Let Y' be the projection of y""1 to PGU^R)^"1.
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Since ^(Pr1111) belongs to the commensurator of Ag :=j{'Pr^) in PGL^C)^
Proposition 4.5.25 Proposition 4.5.5 and Lemma 4.5.1, b), c ) imply that pr^Ag)
is dense in PGU^R)^"1. It follows that there exists 8 e PF^ whose projection to
PGU^R)"-1 X PG^A^) belongs to y' U X S. Then y8 belongs to

Pr^ n (PGU,_^(R)° x U x ^S). n

4.6.4. Now we proceed as in the proof of Theorem 2.2.5. Let M and S be as
in 2.4.1, and let PP^ be the projection of PF^ := PF^ n PGU^R)^-1 x G^ x S
to PGU^R)^ x GM. The proof of Proposition 2.4.5 holds in our case, hence PFg^
is arithmetic. It follows that there exists a permutation or of the set { 2, .. . , g } such that for
every i = 2, ..., g there exists a unique algebraic isomorphism r ^ : PGp ^> PGU^
satisfying r,(y) =J'aa)M tor each y ^ Pr;^. In particular, o- and the r^s do not depend
on M and S. Since PF1111 = U PF^, we then have ^(y) =Jad)M for all z e { 2, ..., g }

M,S

and Y s PF"11'. This shows the existence of an algebraic isomorphism O^ which will satisfy
Theorem 4.4.3 if we show that it is inner. But this can be immediately shown by the stan-
dard argument using elliptic elements and function t defined in 2.5.5 (compare for
example the proofs of Proposition 2.5.6 and Proposition 4.5.5).

4.7. Rationality question

Consider the (PH^^^-torsor (P^)^ ^ [B^-1 X (PH^)^ X (E^/E^^J/Pr"11'

over (X111*)'"1. As in the ^-adic case, it has a canonical flat connection ^int. The same
considerations as in the j&-adic case (see the proof of Proposition 4.4.2) show that there

exists a unique connection ^int on P^ such that ^int)aln ̂  ^mt. It follows from
the proofs of Proposition 4.4.2 and Theorem 4.4.3 that (J^,p),(^c) = ̂ int.

Lemma 4.7.1. — If an analytic automorphism 9: (P^)^ ̂  (P^an commutes
with the action of (PH^)^ x E^, preserves J?^ and induces the identity map on
(X^)^ == (PH^VP"1^11, then 9 is the identity.

proof. — Recall that (P^ ^ [B^1 X (PH^)^ X (E^/E^^/Pr^. Since 9
induces the identity map on (X"11')̂ , there exists a holomorphic map ^ : W~1 -> (PH^)^
such that (p[A:, 1, 1] = [x, ^(^), 1] for all x eB^"1. Since 9 preserves ^int, we have
8^18x = 0. Hence ^ is a constant, say a. Then 9 [x, h, e\ == [x, ha, e] for all x e B'^"1,
A e (PH^)^ and e e E^. In particular,

y[^ i? i] = <p[Too1 ^j(r)? YE] = [Too1 ^j(y) ̂  TE] = [^JM vW'^1]

for all Y e PF^. Therefore j(r) ^(v)"1 = ^ for all y e r^. Since PF^ is Zariski dense
in PH^, f l= 1. D
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Corollary 4.7.2. — The torsor P^ has a unique E^-equivariant structure P"^ of a
PB^-torsor over X^ such that there exists a connection Jf^ on P"̂  satisfying Jf^ ^ ̂ mt.
(P^^ ^/W the canonical model ofP1^ over X^.)

Proof. — The existence is proved in [Mil, III, § 3]. Suppose that P' and P" are
two structures satisfying the above conditions. Let/: P(; ̂ P^ ̂  P^ be the natural
isomorphism. For each a e Aut^ (C) set q^ := CT(/)~"1 of. Then the automorphism (9^)^
of (Pc)^ ^ (P^)^ satisfies the assumptions of the lemma. Hence ((pj^ is the identity,
so that (j{f) =ffor all o e Aut^ (C). It follows that P' = P". D

To finish the proof of the Fourth (and the Third) Main Theorem it remains to/^/
show that the homomorphism f^ p : P^ ^> P^ is K^-linear. Since

(A),?)*^^) == (/^pU^c) ==^cnt5

this follows from the lemma by the same considerations as the corollary.
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