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RIGIDITY OF QUASI-ISOMETRIES FOR SYMMETRIC SPACES
AND EUCLIDEAN BUILDINGS

by BRUCE KLEINER* and BERNHARD LEEB**

1. INTRODUCTION

1.1. Background and statement of results

An (L, G) quasi-isometry is a map 0 : X -> X' between metric spaces such that
for all A:i, x^ e X we have

W L~1 d{x^ x^ - G ̂  ^(O(^), 0(^)) ^ L rf(^, ̂ ) + C

and

(2) d(x\ Im(0)) < G

for all A;' e X'. Quasi-isometries occur naturally in the study of the geometry of discrete
groups since the length spaces on which a given finitely generated group acts cocompactly
and properly discontinuously by isometrics are quasi-isometric to one another [Gro].
Quasi-isometries also play a crucial role in Mostow's proof of his rigidity theorem: the
theorem is proved by showing that equivariant quasi-isometries are within bounded
distance of isometrics.

This paper is concerned with the structure of quasi-isometries between products
of symmetric spaces and Euclidean buildings. We recall that Euclidean spaces, hyperbolic
spaces, and complex hyperbolic spaces each admit an abundance of self-quasi-isometries
[Pan]. For example we get quasi-isometries E2 -^E2 by taking shears in rectangular
(x^ x^) h-> (^, ̂  +/(^i)) or polar (r, 6) h-> (r, 6 +/(r)/r) coordinates, where/: R -> R
and g : [0, oo) -> R are Lipschitz. Any diffeomorphism (1) 0 : SW -> SW of the ideal
boundary can be extended continuously to a quasi-isometry $ : H" -> H". Likewise
any contact diffeomorphism (2) BO : BCH71 -> BCH" can be extended continuously to

* The first author was supported by NSF and MSRI Postdoctoral Fellowships and the Sonderfbrschun^s-
bereich SFB 256 at Bonn. °

** The second author was supported by an MSRI Postdoctoral Fellowship, the SFB 256 and IHES.
(1) Any quasi-conformal homeomorphism arises as the boundary homeomorphism of a quasi-isometry by [Tuk].
(2) The boundary of CH^ can be endowed with an Ison^CH") invariant contact structure by projecting

the contact structure from a unit tangent sphere SJ""1 CH" to BCH^* using the exponential map.
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a quasi-isometry 0 : CH71-> CH" [Pan]. Quasi-isometries of the remaining rank 1
symmetric spaces of noncompact type, on the other hand, are very special. They are
essentially isometrics:

Theorem 1 .1 .1 ([Pan]). — Let X be either a quaternionic hyperbolic space HH71, n > 1, or the
Cayley hyperbolic plane CdH.2. Then any quasi-isometry ofX. lies within bounded distance of an isometry.

Note that Pansu's theorem is a strengthening of Mostow's rigidity theorem for
these rank one symmetric spaces X, as it applies to all quasi-isometries of X, whereas
Mostow's argument only treats those quasi-isometries which are equivariant with respect
to lattice actions. The main results of this paper are the following higher rank analogs
of Pansu's theorem.

Theorem 1 . 1 . 2 (Splitting). — For 1^ i^ k, l ^ j ^ k ' let each X,, X^. be either a
nonflat irreducible symmetric space of noncompact type or an irreducible thick Euclidean Tits
building with cocompact affine Weyl group (see section 4.1 for the precise definition). Let
X == ̂  X II?=i_X,,_X' ^E^' X n î X;. be metric products (1). Then for every L, G
there are constants L, C and D such that the following holds. IfQ> : X -> X' is an (L, G) quasi-
isometry, then n == n\ k == k\ and after reindexing the factors of X' there are (L, G) quasi-
isometries O^X.-^X,' so that rf(^'o0,n0,o^) < D, where p:X->Tl^^X, and
p' : X' -> n î X,' are the projections.

A more general theorem about quasi-isometries of products is proved in [KKL].

Theorem 1 . 1 . 3 (Rigidity). — Let X and X' be as in Theorem 1 . 1 . 2 , but assume in
addition that X is either a nonflat irreducible symmetric space of noncompact type of rank at least 2,
or a thick irreducible Euclidean building of rank at least 2 with cocompact affine Weyl group and
Moufang Tits boundary. Then any (L, G) quasi-isometry 0 : X -^ X' lies at distance < D

from a homothety <Do : X -> X7, where D depends only on (L, G).

Theorem 1.1.3 settles a conjecture made by Margulis in the late 1970's, see [Gro,
p. 179] and [GrPa, p. 73]. It is shown in [Le] that the Moufang condition on the Tits
boundary of X can be dropped.

As an immediate consequence of Theorems 1.1.2, 1.1.3, and [Mos] we have:

Corollary 1 . 1 . 4 (Quasi-isometric classification of symmetric spaces). — Let X, X' be
symmetric spaces of noncompact type. If X and X' are quasi-isometric, then they become isometric
after the metrics on their de Rham factors are suitably renormalized.

Mostow's work [Mos] implies that two quasi-isometric rank 1 symmetric spaces of
noncompact type are actually isometric (up to a scale factor); and it was known by [AS]
that two quasi-isometric symmetric spaces of noncompact type have the same rank.

We will discuss other applications of Theorems 1 1.2 and 1.1.3 elsewhere,
see [KlLe2] and [KlLe3].

(1) The distance function on the product space is given by the Pythagorean formula.
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1.2. Commentary on the proof

Our approach to Theorems 1.1.2 and 1.1.3 is based on the fact that if one scales
the metrics on X and X' by a factor X, then (L, G) quasi-isometries become (L, XC)
quasi-isometries. Starting with a sequence \ —>• 0 we apply the ultralimit construction
of [DW, Gro] to take a limit of the sequence 0 : \ X -> \ X', getting an (L, 0) quasi-
isometry (i.e. a biLipschitz homeomorphism) 0^ : X^ —^ X^ between the limit spaces.
The first step is to determine the geometric structure of these limit spaces:

Theorem 1 .2 .1 . — The spaces X^ and X^ are thick (generalized) Euclidean Tits
buildings (cf. section 4 A).

The second step is to study the topology of the Euclidean buildings X^, X^.
We establish rigidity results for homeomorphisms of Euclidean buildings which are
topological analogs of Theorems 1.1.2 and 1.1.3:

Theorem 1 .2 2. — Let Y^, Y,' be thick irreducible Euclidean buildings with topo-
logically transitive a/fine Weyl group (cf. section 4 . 1 . 1 J , and let Y == E71 xII^iY,,
Y' == E^ X n î Y;.. If Y : Y -> Y' is a homeomorphism, then n == n\ k == k\ and after
reindexing factors there are homeomorphisms Y^Y^-^Y^ so that p' o Y = XW^op where
p : Y -> n î Y, and p ' : Y' -> II?=i Y^ are the projections.

Theorem 1 .2 3. — Let Y be an irreducible thick Euclidean building with topologically
transitive affine Weyl group and rank ^ 2. Then any homeomorphism from Y to a Euclidean
building is a homothety.

For comparison we remark that if Y and Y' are thick irreducible Euclidean
buildings with crystallographic (i.e. discrete cocompact) affine Weyl group, then one
can use local homology groups to see that any homeomorphism carries simplices to
simplices. In particular, the homeomorphism induces an incidence preserving bijection
of the simplices of Y with the simplices of Y', which easily implies that the homeo-
morphism coincides with a homothety on the 0-skeleton. In contrast to this, homeo-
morphisms of rank 1 Euclidean buildings with nondiscrete affine Weyl group (i.e. R-trees)
can be quite arbitrary: there are examples of R-trees T for which every homeomorphism
A -> A of an apartment ACT can be extended to a homeomorphism of T. However,
we always have:

Proposition 1.2.4. — If X, X' are Euclidean buildings, then any homeomorphism
T : X -> X' carries apartments to apartments.

In the third step, we deduce Theorems 1 1 2 and 1.1.3 from their topological
analogs. By using a scaling argument and Proposition 1 2 4 we show that if X and X'
are as in Theorem 1 1 2 , and 0 : X —^ X' is an (L, G) quasi-isometry, then the image
of a maximal flat in X under 0 lies within uniform Hausdorff distance of a maximal
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flat in X'; the Hausdorff distance can be bounded uniformly by (L, G). In the case
of Theorem 1.1.2 we use this to deduce that the quasi-isometry respects the product
structure, and in the case of Theorem 1.1.3 we use it to show that 0 induces a well-
defined homeomorphism ^0 : ̂ X -> ^X' of the geometric boundaries which is an
isometry of Tits metrics. We conclude using Tits5 work [Til] (as in [Mos]) that ^<& is
also induced by an isometry Oo : X -> X', and d^S>, Og) is bounded uniformly by (L, C).

The reader may wonder about the relation between Theorems 1.1.2 and 1.1.3
and Mostow's argument in the higher rank case. An important step in Mostow's proof
shows that if F acts discretely and cocompactly on symmetric spaces X and X', then
any F-equivariant quasi-isometry 0 : X -> X' carries maximal flats in X to within
uniform distance of maximal flats in X'. The proof in [Mos] exploits the dense collection
of maximal flats with cocompact F-stabilizer (1). One can then ask if there is a " direct)?

argument showing that maximal flats in X are carried to within uniform distance of
maximal flats in X7 by any quasi-isometry (2) $ for instance, by analogy with the rank 1
case one may ask whether any /-quasi-flat (3) in a symmetric space of rank r must lie
within bounded distance of a maximal flat. The answer is no. If X is a rank 2 symmetric
space, then the geodesic cone { J s e s P S over ^Y embedded circle S in the Tits boundary
6^ X is a 2-quasi-flat. Similar constructions produce nontrivial r-quasi-flats in sym-
metric spaces of rank ^ 2. But in fact this is the only way to produce quasiflats:

Theorem 1 .2 .5 (Structure of quasi-flats). — Let X be as in Theorem 1 . 1 . 2 , and let
r == rank(X). Given L, G there are D, D' eN such that every (L, C) r-quasi-flat Q^C X lies
within the J)-tubular neighborhood Nĵ Up^.^ F) of a union of at most D maximal flats. Moreover^
the limit set of Q^ is the union of at most D' closed Weyl chambers in the Tits boundary ^^ X.

It follows easily that if L is sufficiently close to 1 (in terms of the geometry of the
spherical Coxeter complex (S, W) associated to X) then any (L, C) r-quasi-flat in X
is uniformly close to a maximal flat. In the special case that X is a symmetric space,
Theorem 1.2.5 was proved independently by Eskin and Farb, approximately one year
after we had obtained the main results of this paper for symmetric spaces.

We would like to mention that related rigidity results for quasi-isometries have
been proved in [Sch].

1.3. Organization of the paper

Section 2 contains background material which will be familiar to many readers;
we recommend starting with section 3, and using section 2 as a reference when needed.
We provide the straight-forward generalization of some well-known facts about Hada-

(1) If Z»' C r acts cocompactly on a maximal flat F C X, then Zr will stabilize 0(F) and a flat F' in X'.
One can then get a uniform estimate on the Hausdorff distance between 0(F) and F7.

(2) Obviously this statement is true by Theorems 1.1.2 and 1.1.3.
(3) An r-quasi-flat is a quasi-isometric embedding cp : E1' —> X; a quasi-isometric embedding is a map

satisfying condition (1), but not necessarily (2).
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mard spaces to the non locally compact case. This is needed when we study the limit
spaces X^ which are non locally compact Hadamard spaces.

Sections 3 and 4 give a self-contained exposition of the building theory used
elsewhere in the paper. This exposition has several aims. First, we hope that it will make
building theory more accessible to geometers since it is presented using the language
of metric geometry, and we do not require any knowledge of algebraic groups. Second,
it introduces a new definition of buildings (spherical and Euclidean) which is based on
metric geometry rather than a combinatorial structure such as a polysimplicial complex.
Tits' original definition of a building was motivated by applications to algebraic groups,
whereas the objectives of this paper are primarily geometric. Here buildings (spherical
and Euclidean) arise as geometric limits of symmetric spaces, and we found that the
geometric definition in sections 3 and 4 could be verified more directly than the stan-
dard one; moreover, the Euclidean buildings that arise as limits are (< nondiscrete 5?,
and do not admit a natural polysimplicial structure. Finally, sections 3 and 4 con-
tain a number of new results, and reformulations of standard results tailored to our
needs.

Section 5 shows that the asymptotic cone of a symmetric space or Euclidean
building is a Euclidean building.

Section 6 discusses the topology of Euclidean buildings, proving Theorems 1.2.2,
1.2.3, 1.2.4.

Section 7 proves that if X, X' and O are as in Theorem 1.1.2, then the image
of a maximal flat under 0 is uniformly Hausdorff close to a flat (actually the hypotheses
on X and X' can be weakened somewhat, see Corollary 7.1.5). General quasiflats are
also studied in section 7; we prove there Theorem 1.2.5.

Section 8 contains the proofs of Theorems 1.1.2 and 1.1.3, building on section 7.
There is considerable overlap in the final step of the argument with [Mos] in the
symmetric space case.

1.4. Suggestions to the reader

Readers who are already familiar with building theory will probably find it useful
to read sections 3.1, 3.2 and 4.1, to normalize definitions and terminology.

The special case of Theorem 1.1.2 when X = X' == H2 x H2 already contains
most of the conceptual difficulties of the general case, but one can understand the
argument in this case with a minimum of background. To readers who are unfamiliar
with asymptotic cones, and readers who would like to quickly understand the proof in
a special case, we recommend an abbreviated itinerary, see appendix 9. In general,
when the burden of axioms and geometric minutae seems overwhelming, the reader
may read with the Rank 1 x Rank 1 case in mind without losing much of the mathe-
matical content.
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2. PRELIMINARIES

2.1. Spaces 'with curvature bounded above

General references for this section are [ABN, Ba, BGSJ.

2.1.1. Definition
I f i ceR, let M^ be the two-dimensional model space with constant curvature K;

let D(ic) === Diam(M^). A complete metric space (X, | . |) is a CAT (K)-space if
1. Every pair x^, x^ e X with | x^ x^ \ < D(ic) is joined by a geodesic segment.

2. Triangle or Distance Comparison.

Every geodesic triangle in X with perimeter < 2D(ic) is at least as thin as the
corresponding triangle in M^. More precisely: for each geodesic triangle A in X with
sides CTI, erg, a^ with Perimeter (A) == | o-i [ + | ̂ 2 I + | ̂ 3 | < 2D(K) we construct a

16
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comparison triangle A in M^ with sides ̂  satisfying [ S'J = ] <jj. Each point A; on A
corresponds to a unique point S? on A which divides the corresponding side in the same
ratio. We require that for all x^ x^ e A we have | x^ x^ \ ^ [ %i % I -

Remark 2 .1 .1 . — Note that we do not require X to be locally compact. Also, X need not
be path connected when K > 0. This is slightly more general than some other definitions in the
literature.

Example 2.1.2. — A complete 1-connected Riemannian manifold with sectional cur-
vature < K ̂  0 and all its closed convex subsets are GAT(ic) -spaces.

In particular, Hadamard manifolds are GAT (0)-spaces. This is why we will also
call GAT (0)-spaces Hadamard spaces.

Example 2.1.3 (Berestovski). — Any simplicial complex admits a piecewise spherical
GAT(l) metric.

Condition 2 implies that any two points A:i, x^ with | ̂  ̂  | < D(K) are connected
by precisely one geodesic; hence we may speak unambiguously of x^ x^ as the geodesic
segment joining ̂  to x^. The GAT(ic)-spaces for K ^ 0 are contractible geodesic spaces.

To see that upper curvature bounds behave well under limiting operations, it is
convenient to use an equivalent definition of GAT(ic)-spaces which only refers to finite
configurations of points rather than geodesic triangles. Ifv, x , y , p e X, and?", y,y,p e M^
we say that y, S, y, P form a ^-comparison quadruple if
1. p lies on ^J.
2. |M-[?T||<8, \\vy\^\fyy\\<S, \\xy\-\yy\\<^ ||^|-|^||<8,\\py\-\py\\<s.

By a compactness argument, we note that there exists a function 8^(P, s) > 0
such that for every s > 0, and every quadruple of points y, x ^ y , p in a GAT (K)-space X
satisfying | vx \ + \ xy \ + \yv \ < P < 2D(ic), each 8^(P, e)-comparison quadrupled, ̂ J^
satisfies | vp \ ^ \V]!\ + e. We will refer to this condition as the ^-four-point condition.
It is a closed condition on four point metric spaces with respect to the Hausdorff topology.
A complete metric space X is a GAT (K)-space if and only if it satisfies the 8^-four-point
condition and every pair of points x,y e X with | xy \ < D(ic) has approximate midpoints,
i.e. for every s' > 0 there is a m e X with | xm |, | my \ < [ xy |/2 + s'. To see this, note
that in the presence of the 8^-four-point condition approximate midpoints are close to
one another, so one may produce a genuine midpoint by taking limits. By taking
successive midpoints, one can produce a geodesic segment.

2.1.2. Coning

Let S be a metric space with Diam(S) ^ n. The metric cone C(S) over S is defined
as follows. The underlying set will be S X [0, oo)/^ where ^ collapses S x { 0 } to
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a point. Given z^, v^ e S, we consider embeddings p : { z^, ^ } X [0, oo) —^E2 such that
] p(y^ ^) == | / | and LQ^(V^, ^i), p^g, ^2)) == \vlv2 I ? and we equip G(S) with the unique
metric for which these embeddings are isometric. The space C(S) is CAT(O) if and
only if S is GAT(l).

2.1.3. Angles and the space of directions of a CAT(K)-space

Henceforth we will say that a triple y, x, y defines a triangle A(y, x,y) provided
[ vx | + [ xy | + \yv \ < 2 Diam(M^). The symbol Z-^x,y) will denote the angle of the
comparison triangle at the vertex y. If x ' , y ' are interior points on the segments vx, vy,

/^/ /%/ ^^
then Z-,,(A?',y) ^ Z.^x,y). From this monotonicity it follows that lim^^^y Z - y { x ' , y )
exists, and we denote it by /-^{x,y}. This definition of angle coincides with the notion
of the angle between two segments in the Riemannian case. One checks that one obtains
the same limit if only one of the points x\ y approaches y:

(3) Z^jQ=UmZ,(^);

Z-y satisfies the triangle inequality. Note that from the definition we have

(4) L^y} ̂  l^y).

In the equality case a basic rigidity phenomenon occurs:

Triangle Filling Lemma 2.1.4. — Let x, jy , v be as before. If L^y) == Z-^,^),
then also the other angles of the triangle A(y, x^y) coincide with the corresponding comparison angles,
moreover the region in M^ bounded by the comparison triangle can be isometrically embedded into X
so that corresponding vertices are identified.

The angles of a triangle depend upper-semicontinuously on the vertices:

Lemma 2.1.5. — Suppose v, x,y eX define a triangle, »+ x,y, and v^ ->v, x^ -> x,
y^ —^y. Then ^, ^, y^ define a triangle for almost all k and

li^sup Z.^,j^) ^ 4X^jO-

In the special case that v ^ e v x ~ ^ — { v } holds lim^^ Z-^(^,^) == ^{x,y) and
lim^ ^(y,A) = n - ̂ (^^)-

Proof. — For x ' e ~ox — { v } and y e uy — { v } we can choose sequences of points

^e^^ evk7kwith ̂  -^xt and Vk ^y- Then ^(^^jk) ^ 4^-^) ̂  ̂ (^'.y)
and the first assertion follows by letting x\f ->v. If ^ e vx,, — {v, x^} then

^(^Wt) ^ anglesum(A(y, v^y^ - ̂ (^) and n ̂  L^^ ^ ̂ x^ while

limsup anglesum(A(y, v^y^) ̂  TT. Sending k to infinity, we get

^(^j0 < TC - lim mfz•^y?^) ^ lim ̂ ^^(^^fc)
and hence the second assertion. D
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The condition that two geodesic segments with initial point v e X have angle
zero at v is an equivalence relation; we denote the set of equivalence classes by 2^ X.
The angle defines a metric on S^ X, and we let S^ X be the completion of S^ X with
respect to this metric. We call elements of Sy X directions at v (or simply directions),
and zw denotes the direction represented by ~ox. We define the logarithm map as the map
log,, = logs x : By(D(K))\y —*• Sy X which carries x to the direction vx. The tangent
cone of X at v, denoted Gy X, is the metric cone G(S^, X); we have a logarithm map
log,==log^:B,(D(K))-.G,X.

Given a basepoint v e X, x e X with d(v, x) < D(ic), and X e [0, I], let XA: e X
be the point on ~vx satisfying | v(\x) |/| ux \ = X. We define a family of pseudo-
metrics on B^,(D(ic)) by d^(x,jy) === d{^Xy e^)/s. They converge to a limit pseudo-
metric do. The pseudo-metric space (B^(D(ic)), rfg) satisfies the 852 ̂ -four-point condition,
so the limit pseudo-metric space (B^(D(ic)), do) satisfies the So-f0111'-?̂ !11! condition. But
^oC^j) = ^^°§v ̂  ^°8vjy) where log,,: B^(D(K)) -> Cy X is the logarithm defined above,
so we see that the tangent cone G,, X satisfies the So-four-point condition (C(S^ X)
is dense in Cy X, and every four-tuple in G(2^ X) is homothetic to a four-tuple in
log,,(B,,(D(K)))« If z^ is the midpoint of the segment {\x) (X^), then

d(log, x, log^) == |nn ̂  d{^ oy)

=Um^rf(^^)=nm^^,^)

^ max (l™ 2d (10^ x) s 10^ ze)) I1"; 2d (10^ xy g 10^ ̂ )).

So G,, X also has approximate midpoints. Since G,, X is complete, it is a GAT(0)-space$
consequently £„ X is a GAT (1)-space. This fact is due to Nikolaev [Nik],

2.2. CAT(l)-spaces

GAT (1)-spaces are of special importance to us, because they will turn up as spaces
of directions and Tits boundaries of Hadamard spaces.

2.2.1. Spherical join

Let BI and Bg be GAT(l)-spaces with diameter Diam(B<) ^ n. Their spherical
join BI o B^ is defined as follows. The underlying set will be B^ X [0,7r/2] X B^/^, where
<( ̂  " collapses the subsets {b-^} x {0} x ~K^ and B^ X { TC/2 } X { b^} to points. Given
b,, b[ e B, (i == 1, 2), we consider embeddings p : { &i, b[} X [0, Tr/2] X { b^ b^} -> S3.
We think ofS3 as the unit sphere in C2 and require that t \-> p(^i, t, b^) and t ' ^-> p{b[, t\ b^)
are unit speed geodesic segments whose initial (resp. end) points lie on the great circle
S1 X { 0 } (resp. { 0 } X S1) and have distance d^(b^ b[) (resp. d^(b^ b^)}. The distance
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of the points in B^ o B^ represented by (b-^y t, b^) and {b[, t\ b'^ is then defined as the
(spherical) distance of their p-images in S3; it is independent of the choice of p. To see
that BI o Eg is again a GAT(l)-space and that the spherical join operation is associative,
observe that the metric cone G(BioB2) is canonically isometric to G(Bi) x C^B^) and
that the product of GAT(0)-spaces is GAT(O).

The metric suspension of a GAT (1)-space with diameter ^ n is defined as its spherical
join with the GAT (1)-space { south, north } consisting of two points with distance TT.

Lemma 2.2.1. — Let B^ and B^ be GAT (I)-spaces with diameters and suppose s is an
isometrically embedded unit sphere in the spherical join B = B^ o B2. Then there are isometrically
embedded unit spheres s^ in B^ so that s^ o s^ contains s.

Proof. — We apply lemma 2.3.8 to the metric cone G(B) ^ G(Bi) X C(B2). The
set C{s) is a flat in G(B) and hence contained in the product of flats F, c G(B,),
•̂  := ^Tits FI is a unit sphere in B, and s-^os^ == ^its(Fi X Fg) 2 8^ G{s) = s. D

2.2.2. Convex subsets and their poles

We call a subset G of a GAT (1)-space B convex if and only if for any two points
p, q e G of distance d(p, q) < TT the unique geodesic segment J&y is contained in G. Closed
convex subsets of B are CAT (1)-spaces with respect to the subspace metric inherited
from B. Basic examples of convex subsets are tubular neighborhoods with radius ^ n/2
of convex subsets, e.g. balls of radius ̂  Tr/2.

Suppose that G C B is a closed convex subset with radius Rad(G) ^ TT, i.e. for each
p e C exists q e G with d(p, q) ^ TC. We define the set of poles for G as

Poles(G):=(7]eB:^,.) |^j).

IfDiam(G) > -n; then G has no pole. IfDiam(G) = Rad(C) = n then Poles(G) is closed
and convex, because it can be written as an intersection Poles (G) = fl^c^^) °f
convex balls. The convex hull of C and Poles (C) is the union of all segments joining
points in G to points in Poles(C), and is canonically isometric to GoPoles(G). This
follows, for instance, when one applies the discussion in section 2.3.3 to the parallel
sets of C(G) in the metric cone G(B).

Consider the special case that G consists of two antipodes, i.e. points with distance TC,
^ and t. Then the convex hull o f { S , S } and Poles ({ ^, 1|}) is exactly the union of mini-
mizing geodesic segments connecting ^, 1| and it is canonically isometric to the metric
suspension of Poles ({ S? S })•

2.3. Hadamard spaces

We will call CAT (0)-spaces also Hadamard spaces^ because they are the synthetic
analog of (closed convex subsets in) Hadamard manifolds, i.e. simply connected complete
manifolds of nonpositive curvature, cf. example 2.1.3.
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2.3.1. The geometric boundary

Let X be a Hadamard space. Two geodesic rays are asymptotic if they remain at
bounded distance from one another, i.e. if their Hausdorff distance is finite. Asympto-
ticity is an equivalence relation, and we let 8^ X be the set of equivalence classes of
asymptotic rays; we sometimes refer to elements of 8^ X as ideal points or ideal boundary
points. For any point x e X and any ideal boundary point S e ^oo X there exists a unique
ray x?, starting at x which represents S. The pointed Hausdorff topology on rays emanating
from x e X induces a topology on c^o X. This topology does not depend on the base
point x and is called the cone topology on ^ X; ^ X with the cone topology is called
the geometric boundary. The cone topology naturally extends to X u ^oo X. If X is locally
compact, then 8^ X and X : == X u 8^ X are compact and X is called the geometric
compactijication of X.

2.3.2. The Tits metric

Earlier we defined the angle between two geodesies vx, vy at v e X by using the
/%«'

monotonicity of comparison angles ZL^'.j/) as x ' -> y,y -> v. Now we consider a pair
of rays y^, vr^, and define their Tits angle (or angle at infinity) by

(5) ^,J^):=^l|m^2,,(^,y)

where x ' e v^ and y ' e z^. Z-r^g defines a metric on 8^ X which is independent of the
basepoint v chosen. We call the metric space ^its ̂  :== (^oo X, Z-rrits) tlle T1^ boundary
of X and Z-y^ Ae Tits (angle) metric. The estimate

4,(^V) = ̂  - 2 ,̂y) - l^v, x-)
^^(^) ^o

y' -)-TI
——> ̂ '(S, -n)

implies, combined with (4):

z.^,7i)^2^',y)^^(s^).

Consequently, the Tits angle can be expressed as

(6) Z^(S,7j)==^mZ^(^7))

for any geodesic ray r : R4' -> X asymptotic to ^ or T], and also as:

(7) Z^,7])=supZ,(^).
a?ex
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Still another possibility (the last one which we will state) to define the Tits angle is as
follows: If r,: R4' -> X are geodesic rays asymptotic to S, then

2,̂ ..«..̂ |..̂ .('W'».
v / 2 ^^ t

The next lemma relates the cone topology on S^ X to the Tits topology. Fix v e X
and consider the comparison angle

2,:(x\{.}) x (x\{.})^[o,7tj.
By monotonicity, it can be extended to a function

2,:(x\{.}) x (x\{.})-^[o,7r].

Note that for ^ ̂  e 8^ X, we have Z^, T)) == Z-^(^ ^]).
/^/

Lemma 2.3.1 (Semicontinuity of comparison angle). — The angle Z.̂  is lower semi-
continuous with respect to the cone topology: If x^y^^ T] e X — { v } are such that ^ = lim^oo ̂

and 7) = lim^ ,̂ then L^, T)) ^ liminf^^ Z.^(^,^).

Proof. — We treat the case i;, Y) e ̂  X, the other cases are similar or easier. Since
the segments (or rays) ~ox^ ~vy~^ are converging to the rays v^, ur^ respectively, we may
choose x^ e vx~^ and^ e vy^ such that | x^ v |, \y^ v \ ->• oo and d{x^, v^) -^ 0, d{y^ vr^ -> 0.
Hence by triangle comparison we have

^(•Wfe) > ^(^fc^Jfc) -> ̂ Tits(^ 7))- 0

Lemma 2.3.2. — Every pair ^, Y] e 8^ X z^A ^Tits(^ r^) < •n: has a midpoint.

Proof. — Pick y e X. Take sequences ^ e y^, ̂  e vr^ with | ̂  | == I j ^ l -^ oo. Let w,
be the midpoint ofx^. Since A(y, ̂ ,^,) is isosceles, Z.,,(^, m,) == L^m^y^) ̂  Z.<,(^,^)/2,
by lemma 2.3.1 it suffices to show that vm^ converges to a ray V[L, for some (JL e ̂  X.

For z< j , set \, := [ vx^\l\ vx, [. By triangle comparison, we have the following
inequalities:

I ̂ (\, ̂ -) I ̂  \, I ̂  m, I = y I ̂  I.

|^(\, m,) | ̂  \, |j/, w, | = y | x,y, |,

I ̂ (\, ̂ ) I + bA, ̂ ) | ̂  | x,y, |.

Since X^. (] ̂ .̂ |/[ A:,̂  |) -̂  1 as i , j ->• oo, we have

I ̂ (\, ̂ -) I , 1^(\;^) I , .j_^A^)J .
—————^————————————————.—————— .—— -̂ ^ . ^ j . ^ - J_ ——T^" ' ^ V7

^wj 9 |^^| l^^i
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and, since ^rits(^ 7]) < 7r? tms m turn ^plî

I ̂ (\i ̂ ) I _^o
[ ywj

Fixing ^> 0, if we set tj\ vm, \ = X,, then | (^ ̂ ) (^ \, 77 .̂) [ -> 0 as z,j — oo. Since
[ y(^ ^) [ == ^ this shows that the segments vm, converge in the pointed Hausdorff
topology to a ray ~U\L as desired. D

The completeness of X implies that (^ X, Z.̂ J is complete. The metric cone
C^oo X, Z-THs) (tne ^lts cone) 1s complete and has midpoints. Moreover, since every
quadruple in G(B^ X, /-^s) is approximated metrically (up to rescaling) by quadruples
inX, G(^o X, Z.TiJ satisfies the So-four-point condition and is therefore a GAT(0)-space.
By section 2.1.1 we conclude:

Proposition 2.3.3. — The Tits boundary of a Hadamard space is a CAT^-space.

There is a natural 1-Lipschitz exponential map expy : G(^X) -> X defined as
follows: For [(^)] eG(B^X) = ̂  X X [0, oo)/-, let expj(^)] be the point on
^ at distance t {romp. The logarithm map logy : X — { ^ } - > S ^ X extends continuously
to the geometric boundary and induces there a 1-Lipschitz map logp : ̂ its X -^ 2y X.
The Triangle Filling Lemma 2.1.4 implies the following rigidity statement:

Flat Sector Lemma 2 3.4. — Suppose the restriction of logp : ̂ its ̂ - ~~^p ̂  to ^
subset A c a^ts X is distance-preserving. Then the restriction of expy : C(^its X) -> X
to C(A) c G(^its ̂ ) ls an isometric embedding.

2.3.3. Convex subsets and parallel sets

A subset of a Hadamard space is convex if, with any two points, it contains the
unique geodesic segment connecting them. Closed convex subsets of Hadamard spaces
are Hadamard themselves with respect to the subspace metric. Important examples of
convex sets are tubular neighborhoods of convex sets and horoballs. We will denote
by HB^) the horoball centered at the point ^ e ̂  X and containing x e X in its
boundary.

Let GI and Cg be closed convex subsets of a Hadamard space X. Then by (4),
the distance function d(., Cg)]^ = <Jci: ̂  ^K^o is convex and the nearest point
projection TT^ L : Gi -> Cg is distance-nonincreasing; ^Jci 1s constant if and only
if 7^ L is an isometric embedding. In this situation, we have the following rigidity

^2 I0!

statement:

Flat Strip Lemma 23.5. — Let G^ and Cg be closed convex subsets in the Hadamard space X.
Ifd^ |c =s d then there exists an isometric embedding ̂  : Ci X [0, d] -> X such that +(., o) = id^
and ^(.,rf) == Ticjci-
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This is easily derived from the Triangle Filling Lemma 2.1.4, respectively from
the following direct consequence of it:

Flat Rectangle Lemma 2.3.6. — Let x, e X, i e Z/4Z, be points so that for all i holds
Z-,.(^,_i, A:,.̂ ) ^ 7c/2. Then there exists an embedding of the flat rectangular region
[0, | XQ x^ |] X [0, | x^ x^ |] C E2 into X carrying the vertices to the points x^.

We call the closed convex sets Gi, Cg £ X parallel, Gi || Cg, if and only if d^ \^
and d e c are constant, or equivalently, ^ |c and ^ |c are isometrics inverse to
each other. Being parallel is no equivalence relation for arbitrary closed convex subsets.
However, it is an equivalence relation for closed convex sets with extendible geodesies,
because two such subsets are parallel if and only if they have finite Hausdorff distance.
(A Hadamard space is said to have extendible geodesies if each geodesic segment is contained
in a complete geodesic.)

Let Y c X be a closed convex subset with extendible geodesies. Then
Rad(&r^gY) = TT. The parallel set Py ofY is defined as the union of all convex subsets
parallel to Y; Py is closed, convex and splits canonically as a metric product

(9) Py ^ Y X Ny.

Here Ny is a Hadamard space (not necessarily with extendible geodesies) and the
subsets Y X { pt } are the convex subsets parallel to Y. The cross-sections of Py orthogonal
to these convex subsets can be constructed as intersections of horoballs:

(10) { y } x Ny = Py n f1 HB^jQ Vj eY.
^ ̂  ^Tits ̂

Applying the Flat Sector Lemma 2.3.4 one sees furthermore that &^ Ny is canonically
identified with Poles (B^ Y) C B^ X; ^Tits PY is ^e convex hull in ^os X °f ^rita Y
and Poles {^its Y) an(! we have the canonical decomposition:

( i i ) a^py ^a^YoPoies(a^Y).

2.3.4. Products

The metric product ofHadamart spaces X, is defined as usual using the Pythegorean
law. It is again Hadamard and its Tits boundary and spaces of directions decompose
canonically:

(12) ^Tiis^l X . . . X XJ = ̂  Xi o . . . o ^its ̂ ^

(13) S^,^(X, x ... X XJ = S^ X, o . . . o 2^ X,.

Proposition 2.3.7, — If X is a Hadamard space with extendible geodesies then all join
decompositions of 9^ X are induced by product decompositions of X.

17
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Proof. — Assume that the Tits boundary decomposes as a spherical join
^Tita X == BI o B_i and consider, for x e X and i = ± 1, the convex subsets
C^x) := n^^-Q_.HB^{x) obtained from intersecting horoballs. Using extendibility of
geodesies, i.e. Rad Sg, X = TC, one verifies that 8^ C, = B^, C, has extendible geodesies
and C^^(x) are orthogonal in the sense that S^ C^(x) = Poles(S^ G_,(A;)). Furthermore
any two sets C^{x) and G_i(A;') intersect in the point ^c(x}W = ̂ c M- The assertion
follows by applying the Flat Rectangle Lemma 2.3.6. D

Lemma 2.3.8. —Let X^ and Xg ^ Hadamard spaces and suppose that F is aflat in the
product space X == Xi X Xg. TA^ ^?r<? ar<? flats F, c X, ^ that F^ x Fg 3 F.

Proo/'. — Consider unit speed parametrizations <:, c ' : R ->• F for two parallel
geodesies y? T' m F. Then ^:== T^^oc and ^ :== n-^.oc' are constant speed parame-
trizations for geodesies Y»? Y»' m X,. Since the distance functions d := d^{Cy c ' ) and
^ :== d^(c^ c[) are convex, satisfy d2 == ̂  + rfj and </ is constant, it follows that the rf,
are constant, i.e. Yi a-nd y^ are parallel. Since this works for any pair of parallel geodesies
contained in F, it follows that TT ,̂ F is a flat in F,. D

2.3.5. Induced isomorphisms of Tits boundaries

We now show that any (1, A)-quasi-isometric embedding of one Hadamard space
into another induces a well-defined topological embedding of geometric boundaries
which preserves the Tits distance.

Proposition 2.3.9. — Let Xj^ and Xg be Hadamard spaces and suppose that 0 : X^ -> Xg
is a (1, A)-quasi-isometric embedding. Then there is a unique extension 0 : X^ -> Xg such that

i. o(a, Xi) <= a, x,,
2. 0 is continuous at boundary points^
3. ^ja^x ls a topological embedding which preserves the Tits distance.

[\af __

Welet^0==0|^.

Proof. — We first observe that there is a function e(R) (depending on A but not
on the spaces X^ and Xg) with e(R) -> 0 as R-> oo such that if p , x , j y e ^ K ^ and
d(p, x), d(p,y) > R then

(14) | l^y) - l^(x), 0(j0 | < e(R)).

Lemma 2.3.10. — Suppose that x.^ is a sequence of points in X^ which converges to a boundary
point ^. Then O(A;J e Xg converges to a boundary point ^3.

Proof of Lemma. — Pick a base point ̂ . There are points ̂  e ̂  such that ̂  Q&,j^) -^ oo
and lim, ,._^ Z.y(j^,j^) == 0. By (14), the points O(^) converge to a boundary point ̂ .
Applying (14) again, we conclude that O^) converges to ̂  as well. D
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Proof of Proposition continued. — From the previous lemma we see that if ^ and x[
are sequences in X^ converging to the same point in 8^ X^ then the sequences O^)
and ^O^) converge to the same point in (^ Xg. This allows us to extend 0 to a well-
defined map 0 : Xi ->• X^.

We now prove that 0 is continuous at every boundary point ^. Let ^ e X^ be
a sequence of points converging to ^ e ̂  X^. By the lemma, we may choose ̂  e X^
withj^ ej^ so that for every R the Hausdorff distance between O(^) ^(j^) ^ B^(OQ^))
and OQ&) O(^) n B^(OQ^)) tends to zero as R -> oo. Hence

lim^_^ O(^) == lim^^^ O(^) = 0^)

by the lemma.

Another consequence of the lemma is that the image ray ^(^S) diverges sublinearily
from the ray O(^) 0(i;) in the sense that

lim _ .4(^(^ ̂  W^^WW) ^ W{PW = 0
B-^oo K.

where rfg denotes the Hausdorff distance. This implies that ^oo ̂  == ^ s^x preserves
the Tits distance and is a homeomorphism onto its image. D

2.4. Ultralimits and asymptotic cones

The presentation here is a slight modification of [Gro], see also [KaLej.

2.4.1. Ultrafilters and ultralimits

Definition 2.4.1. — A nonprincipal ultra/liter is a finitely additive probability measure co
on the subsets of the natural numbers N such that

1. co(S) == 0 or 1 for every S C N.
2. co(S) == 0 for every finite subset S C N.

Given a compact metric space X and a map a: N -> X, there is a unique element
(o-lim a e X such that for every neighborhood U of <x)-lim a, ̂ (U) C N has full measure.
In particular, given any bounded sequence a: N ->R, o-lim a (or a^) is a limit point
selected by co.

2.4.2. Ultralimits of sequences of pointed metric spaces

Let (X,,^,-^) be a sequence of metric spaces with basepoints *^. Consider
X^ = { x eH^N ^i I ^(^i? *») ls bounded}. Since ^(•^,J^) is a bounded sequence
we may define ^ : X^ X X^ -^R by ^d^y) = co-lim ^(^,^)$ ^ is a pseudo-
distance. We define the ultralimit of the sequence (X,, d^ -k^ to be the quotient metric
space (X^, d^), x^ e X^ denotes the element corresponding to x == (^) eX^.
*<o:= (*i) is the basepoint of (X^, rf^).
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Lemma 2.4.2. — ̂ (X^ rf,, *,) is a sequence of pointed metric spaces, then (X^, d^, *J
is complete,

Proof. — Let ̂  be a Cauchy sequence in X^, where ̂  = co-lim ̂ . Let N^ == N.
Inductively, there is an co-full measure subset N, c N,._i such that i eN, implies
| rf^, ^) - ̂ , x1) | < 1/23, for 1 < A , ^ j. For z e N, - N,_,, define y, = ̂ .
Then ^ ->j^. D

The concept of ultralimits is an extension of HausdorfF limits.

Lemma 2.4.3. — If (X,, d^ *,) form a Hausdorjf precompact family of pointed metric
spaces^ then (X^, d^y *^) is a limit point of the sequence (X,, d^ *,) with respect to the pointed
Hausdorjf topology.

Proof. — To see this, pick s, R, and note that there is an N such that we can find
an N element sequence { x\ }̂  i C X^ which is e-dense in X^. The N sequences x\ for
l ^ J ^ N give us N elements in x^eX^. If y^ e X^, y^ e B*JR), then for <o-a.e.
(that is, (o-almost every) i, d^{y^ *,) < R. Consider rf^(j^,, x3^). Given s > 0,
I ^(j^ ̂ ) — ^(jo ̂  I < s for (*>-a.e. i, which implies that d^ (^, A:^,) < s for
some 1 ̂ j ^ N. Hence we have seen that B*^(R) is totally bounded, and for all s> 0
there is an e-net in B*^(R) which is a Hausdorff limit point of s-nets in the X/s. It
follows that (X,, d^ *,) subconverges to (X^, d^y *^) in the pointed HausdorfF topology. D

In general, the ultralimit X^, is not HausdorfT close to the spaces X^ in the <( approxi-
mating ?? sequence. However, the HausdorfF limits of any precompact sequence of
subspaces Y, C X, canonically embed into X^.

The importance of ultralimits for the study of the large-scale geometry derives
from the following fact: If for each z, f^: X, -> Y, is a (L, G)-quasi-isometry with
^(^(*J, *,) bounded, then the^ induce an (L, G)-quasi-isometryy^ : X^ ->Y^.

It follows that if for each i, and every pair of points a^, b^ e X^ the distance d^{a^ b^)
is the infimum of lengths of paths joining a^ to b^ then every pair of points <z^, b^ e X^
is joined by a geodesic segment.

Lemma 2.4.4. — If (X,, d^ *,) is a CAT(K)-space for each i, then so is (X^, d^y *^).
If d^{a^, b^) < D(K), then the geodesic segment a^b^ is an ultralimit of geodesic segments.
If K ̂  0 and each X^ has extendable geodesies then each ray (respectively complete geodesic) in X^
is an ultralimit of rays (respectively complete geodesies) in the X/^.

Proof. — If each (X,, d^ *J is a CAT(K) length space, then clearly (X^, d^, *J
satisfies the 8^-four-point condition since this is a closed condition. Hence (X^, rf^, *^)
is a GAT(ic) length space since it is a geodesic space satisfying the 8^-four-point condition.

If a^ b^ e X^ with | a^ b^ \ < D(ic), then there is a unique geodesic segment
joining a^ to b^. On the other hand, if a^ = co-lima,, b^ == co-lim 6,, then the ultra-
limit of the geodesic segments a, b^ is such a geodesic segment.
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Now suppose a°^, a^, ... determine a ray, in the sense that

<>«, 0 = <>«. 0 + ̂ «. ̂ ) for i ̂  ^

Let NI == N. Inductively, there is an co-full measure N, ^ N,_i such that a^ a\ is
within a 1 ̂ -neighborhood of the segment a^ a{ for i e N^., 0 ̂  / ̂  j. For i e N, — N,_i
extend the segment a? a( to a ray a^ ^ with initial point a^. Then the ultralimit of the
sequence a^ ^ is the ray we started with. The case of complete geodesies follows from
similar reasoning. D

Lemma 2.4.5. — Suppose that there is a D > 0 such that for each i, Isom(XJ has an
orbit which is D-dense in X,. If \ > 0 and \ -> 0, then the ultralimit of (X^, \ d^ *J is
independent of the choice of basepoints *,, and has a transitive isometry group.

2.4.3. Asymptotic cones

Let X be a metric space and let *„ e X be a sequence of basepoints. We define
the asymptotic cone Gone(X) of X with respect to the non-principal ultrafilter G), the
sequence of scale factors \ with co-lim \ == oo and basepoints *„, as the ultralimit
of the sequence of rescaled spaces (X^, d^ *J := (X, X^1-^, *„). When the sequence
*„ == * is constant, then Cone(X) does not depend on the basepoint * and has a
canonical basepoint *^ which is represented by any sequence (A?J C X satisfying
<x>-lim^ X^^rf^, *) == 0, for instance, by any constant sequence (x).

Proposition 2.4.6. —
• If X is a geodesic metric space, then Cone(X) is a geodesic metric space.
• If X is a Hadamard space, then Gone(X) is a Hadamard space.
• T^X is a CAT{ic) -space for some K < 0, then Gone(X) is a metric tree.
• If the orbits o/'Isom(X) are at bounded Hausdorjf distance from X, then Cone(X) is

a homogeneous metric space,
• A (L, C) quasi-isometry of metric spaces 9: X -> Y induces a bilipschitz map

Cone((p) : Gone(X) -> Gone(Y) of asymptotic cones.

Assume now that X is a Hadamard space. Let (FJ,^^ be a sequence of^-flats
in X and suppose that co-lim^ ̂ .(/(F^, *) < oo. Then the ultralimit of the embeddings
of pointed metric spaces

(?„, 1 .̂ , ̂ (*)) ̂  (x, 1 .4, T^(*))
\ ^n I \ ^ /

^B^

is a ^-flat
R^Q^X)

in the asymptotic cone. We denote the family of all ^-flats in Cone(X) arising in this
way by ^{k).
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3. SPHERICAL BUILDINGS

Our viewpoint on spherical buildings is slightly different from the standard one:
for us a Spherical building is a GAT(l) space equipped with an extra structure. This
viewpoint is well adapted to the needs of this paper, because the spherical buildings
which we consider arise as Tits boundaries and spaces of directions of Hadamard spaces.
Apart from the choice of definitions and the viewpoint, this section does not contain
anything new; the same results and many more can be found (often in slightly different
form) in [Til, Ron, Brbk, Brni, Brn2j.

3.1. Spherical Coxeter complexes

Let S be a Euclidean unit sphere. By a reflection on S we mean an involutive isometry
whose fixed point set, its wall, is a subsphere of codimension one. If WC Isom(S) is
a finite subgroup generated by reflections, we call the pair (S, W) a spherical Coxeter
complex and W its Weyl group.

The finite collection of walls belonging to reflections in W divide S into isometric
open convex sets. The closure of any of these sets is called a chamber, and is a funda-
mental domain for the action ofW. Chambers are convex spherical polyhedra, i.e. finite
intersections of hemispheres. A. face of a chamber is an intersection of the chamber with
some walls.

A face (resp. open face) of S is a face (resp. open face) of a chamber ofS. Two faces
of S are opposite or antipodal if they are exchanged by the canonical involution of S; two
faces are opposite if and only if they contain a pair of antipodal points in their interiors.
A panel is a codimension 1 face, a singular sphere is an intersection of walls, a half-apartment
or root is a hemisphere bounded by a wall and a regular point in S is an interior point
of a chamber. The regular points form a dense subset. The orbit space

A^-S/W

with the orbital distance metric is a spherical polyhedron isometric to each chamber.
The quotient map

(15) 9-^S-^A^

is 1-Lipschitz and its restriction to each chamber is distance-preserving. For 8, 8' e A^,
we set

D(8, 8') := { d^(x, x ' ) | x, x ' e S, Qx == 8, Qx' == 8' }
and D-^8) := D(8, 8)\{ 0 }.

Note that D4' is continuous on each open face of A^.
An isomorphism of spherical Coxeter complexes (S, W), (S', W) is an isometry

a : S ->• S' carrying W to W. We have an exact sequence
1 -> W -> Aut(S, W) -> Isom(A^) -^ 1.



RIGIDITY OF QUASI-ISOMETRIES FOR SYMMETRIC SPACES AND EUCLIDEAN BUILDINGS 135

Lemma 3 .1 .1 . — If g e W, then ¥ix(g) c S is a singular sphere. If ZCS then the
subgroup of'W fixing Z pointwise is generated by the reflections in W which fix Z point-wise.

Proof. — Every W-orbit intersects each closed chamber precisely once. Therefore
the stabiliser of a face or C S fixes cr pointwise. So for all g e W, Fix(^) is a subsphere
and a subcomplex, i.e. it is a singular sphere.

By the above, without loss of generality we may assume that Z is a singular
sphere. Let W^ be the group generated by reflections fixing Z pointwise. If c is a
top-dimensional face of the singular sphere Z then each W-chamber containing a is
contained in a unique W^-chamber; therefore W^ acts (simply) transitively on the
W-chambers containing a. Since W acts simply (transitively) on W-chambers, it follows
that Fixator(Z) == Fixator(cr) == W^. D

3.2. Definition of spherical buildings
Let (S, W) be a spherical Coxeter complex. A spherical building modelled on (S, W)

is a CAT (1)-space B together with a collection ^ of isometric embeddings t : S ->B,
called charts, which satisfies properties SB 1-2 described below and which is closed under
precomposition with isometries in W. An apartment in B is the image of a chart i : S ->B;
i is a chart of the apartment i(S). The collection ^ is called the atlas of the spherical
building.

SB1. Plenty of apartments. — Any two points in B are contained in a common
apartment.

Let ̂  ̂  be charts for apartments A^, Ag, and let C == Ai n Ag, G' == ^(C) C S.
The charts i^. are W-compatible if 1^0 i^ ^ is the restriction of an isometry in W.

SB2. Compatible apartments. — The charts are W-compatible.
It will be a consequence of corollary 3.9.2 below that the atlas ^ is maximal

among collections of charts satisfying axioms SB1 and SB2.
We define walls, singular spheres, half-apartments, chambers, faces, antipodal

points, antipodal faces, and regular points to be the images of corresponding objects
in the spherical Goxeter complex. The building is called thick if each wall belongs to
at least 3 half-apartments. The axioms yield a well-defined 1-Lipschitz anisotropy map (1)
(16) 6B:B-.S/W=:A^

satisfying the discreteness condition:
(17) ^(^, ̂ ) e D(OB(^), 6^2)) V x^ ^ e B.

If a : S -> S is an automorphism of the spherical Coxeter complex, then we modify
the atlas by precomposing with a; the atlases obtained this way correspond to symmetries
of ^od-

. J^ The motivation for this terminology comes from the role OB plays in the structure of symmetric spacesand Euclidean buildings.
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If ^ / f is an atlas of charts i : S' ->B giving a (S', W) building structure on B,
then this spherical building is equivalent to (B, J3/) if there is an isomorphism of spherical
Goxeter complexes a :(S', W) -> (S, W) so that ^ ' = { i o a | i e s/ }.

IfB and B' are spherical buildings modelled on a Coxeter complex (S, W), with
atlases ^ and J^', an isomorphism is an isometry 9 : B —> B' such that the correspondence
i h-> 9 o L defines a bijecdon j^ —>• ̂ /'.

3.3. Join products and decompositions

Let B,, i = = l , . . . , % , be spherical buildings modelled on spherical Coxeter
complexes (S,, W,) with atlases ^ and spherical model polyhedra A^. Then
W: = Wi X . . . X W^ acts canonically as a reflection group on the sphere
S == Si o ... o S^. We call the Goxeter complex (S, W) the spherical join of the Goxeter
complexes (S^, WJ and write

(18) ( S , W ) = ( S , , W , ) o . . . o ( S ^ W J .

The model polyhedron A^od °f (S? W) decomposes canonically as

(19) A^=A^o . . . oA^ .

The CAT (1)-space

(20) B = BI o . . . o B^

carries a natural spherical building structure modelled on (S, W). The charts i for its
atlas ^ are the spherical joins L = ii o . . . o ^ of charts i, e ̂ . We call B equipped
with this building structure the spherical (building) join of the buildings B,.

Proposition 3.3.1. — Let B be a spherical building modelled on the Coxeter complex (S, W)
with atlas ^ and assume that there is a decomposition (19) of its model polyhedron. Then:

1. There is a decomposition (18) of (S, W) as a join of spherical Coxeter complexes so that

S—Os^od).
2. There is a decomposition (20) o/'B as a join of spherical buildings so that B, = Og^A^).

Proof. — 1. We identify A^ with a W-chamber in S and define S, to be the
minimal geodesic subsphere containing A^. Then S, c Poles (S,) for all z = j = j and
hence S = Si o .. . o S^ for dimension reasons. Each wall containing a codimension-one
face of A^^ is orthogonal to one of the spheres S, and contains the others. Hence
W = Wi X ... X W^ where W, is generated by the reflections in W at walls orthogonal
to S^. The group W, acts as a reflection group on S, and the claim follows.

2» Since any two points in B are contained in an apartment, one sees by applying
the first assertion that the B, are convex subsets and B is canonically isometric to the
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join of GAT(l)-spaces B == Bi o ... o B^. The collection of charts i[^., i e e ,̂ forms
an atlas for a spherical building structure on B^ and B is canonically isomorphic to the
spherical building join of the B^. D

We call a spherical polyhedron irreducible if it is a spherical simplex with diameter < Tr/2
and dihedral angles ̂  n/2 or if it is a sphere or a point. Accordingly, we call a spherical
Coxeter complex (1) or a spherical building irreducible if its model polyhedron is irreducible.
The spherical model polyhedron A^ has dihedral angles ^ 7i;/2. A polyhedron of this
sort has a unique minimal decomposition as the spherical join (19) of irreducible spherical
simplices (which may be single points) and, if non-empty, the unique maximal unit
sphere contained in A^. By Proposition 3.3.1, (19) corresponds to unique minimal
decompositions (18) of the Goxeter complex (S, W) as a join of Coxeter complexes
and (20) of B as a spherical building join. We call these decompositions the de Rham
decompositions of (S, W) and B. The sphere factor in (19) occurs if and only if the fixed
point set of the Weyl group is non-empty. We call the corresponding factor in the de
Rham decomposition the spherical de Rham factor.

IfW acts without fixed point, then A^^ is a spherical simplex (2) and the collection
of chambers in S and B give rise to simplicial complexes.

Lemma 3.3.2. — Let (S, W) be an irreducible spherical Coxeter complex with non-trivial
Weyl group W. Then for each chamber a there is a wall which is disjoint from the closure 5.

Proof. — Let T' be a wall and p e Sbe a point at maximal distance n/2 from T'.
Pick a chamber a' containing^ in its closure. Then 5' n T' == 0, because Diam(cr') < Tr/2
due to irreducibility. Since W acts transitively on chambers, the claim follows. D

Proposition 3.3.3. — Assume that Bi and B^ are CAT{l)-spaces and that their join
B = Bi o Bg admits a spherical building structure. Then the B^ inherit natural spherical building
structures from B. In particular, the spherical building B cannot be thick irreducible with non-trivial
Weyl group.

Proof. — Applying lemma 2.2.1 to apartments in B, we see that there exist
^i, d^ e N so that every apartment A c B splits as A = A^ o Ag where A^ is a 4-dimensional
unit sphere in B,. Fix a chart LQ in the atlas s/ for the given spherical building structure
on B. Denote by Sg the ^-sphere i^1 Bg in the model Coxeter complex (S, W) and by
Si := Poles (83) the complementary rfi-sphere. The subgroup Wi c W generated by
reflections at walls containing Sg acts as a reflection group on Si. Consider all charts
L eja^ with ijs^ = ijg^. The collection ja^i of their restrictions i.|g^ forms an atlas for
a spherical building structure on B^ with model Goxeter complex (S^, W^).

(1) This definition is slightly different form the usual one, which corresponds to irreducibility of linear
representations.

(2) By [GrBe] [theorem 4.2.4], Amod is a simplex if W acts fixed point freely. Observe that having distance
less than w/2 is an equivalence relation on the vertices. This implies the decomposition (19).

18
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If B is thick, then its chambers are precisely the (closures of the) connected
components of the subset of manifold points. Hence the joins CTI o c^ of chambers o, C B,
are contained in chambers ofB. So the chambers ofB have diameter ^ TC/2 and B cannot
be irreducible with non-trivial Weyl group. D

3.4. Polyhedral structure

Let A' be a face of A^ and let a: A' -> B be the chart for a face in B, i.e. an
isometric embedding so that 63 o a = id L.

Sublemma 3.4.1. — The image <y(Int A') is an open subset of 652 (A').

Proof. — Let x be a point in o(Int A') and assume that there exists a sequence (x^)
in OB^A'^^In^A')) which converges to x. There are points x^elm{a) with
^B^n) == ^B^J- Since 63 has Lipschitz constant 1 and a is distance-preserving, we have

^n. ̂ ) ^ ^noc^B^ W) = W,, X)

and by the triangle inequality

2'dB^X) ^ dB{xn9 xn) ̂  ̂ B^))-
->-0

Since D4' is continuous on Int A', the right-hand side has a positive limit:

Hm^(6^J)=D+(e^))>^

a contradiction. D

Lemma 3.4.2. — Any two faces ofK with a common interior point coincide. Consequently,
the intersection effaces in B is a face in B.

Proof. — To verify the first assertion, consider two face charts ^i, ̂  : A' -> B of
the same type. By Sublemma 3.4.1, { 8 e A' | cri(8) == 03(8) } n Int A' is an open subset
of Int A'. It is also closed, and hence empty or all of Int A' if A' is connected. If A' is
disconnected, it must be the maximal sphere factor of A^j and all apartment charts
agree on A'. Hence Oi|^ == 03 [^ also in this case.

The intersections of two faces is a union of faces by the above; since it is convex,
it is a face. D

As a consequence, the collection of finite unions of faces of B is a lattice under
the binary operations of union and intersection; we will denote this lattice by JfB. In
the case that the Weyl group acts without fixed point, the chambers of B are simplices,
and JTB is the lattice of finite subcomplexes of a simplicial complex. In general the
polyhedron of this simplicial complex is not homeomorphic to B since it has the weak
topology.
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3.5. Recognizing spherical buildings

The following proposition gives an easily verified criterion for the existence of a
spherical building structure on a GAT(l)-space.

Proposition 3.5.1. — Let (S, W) be a spherical Coxeter complex, and let B be a GAT(l)-
space of diameter TT equipped with a \'Lipschitz anisotropy map 6g as in (16) satisfying the
discreteness condition (17). Suppose moreover that each point and each pair of antipodal regular
points is contained in a subset isometric to S. Then there is a unique atlas ^ of charts t : S -> B
forming a spherical building structure on B modelled on (S, W), with associated anisotropy map 6g.

Proof. — The discreteness condition (17) implies that, for any face A' of A^^,
the restriction of Q^ to Og^IntA') is locally distance-preserving and distance-preserving
on minimizing geodesic segments contained in Og^IntA'). Therefore, if A C B is a
subset isometric to S, the restriction of 6g to A"^ := A n Splint A^^) is locally
isometric and the components of A"^ are open convex polyhedra which project via 63
isometrically onto IntA^. (17) implies moreover that A"^ is dense in A. Hence A
is tesselated by isometric copies of A^ and there is an isometry i^ with 63 o L^ = 6g
which is unique up to precomposition with elements in W. If A^ and Ag are subsets
isometric to S, and L^ , i^ : S ->B are isometrics as above then A^ n Ag is convex,
and we see that i^ and i^ are W-compatible. We now refer to the isometrics i^ : S -> B
as charts and to their images as apartments. The collection ^ of all charts will be the
atlas for our spherical building structure.

Since any point lies in some apartment, it lies in particular in a face, i.e. in the
image of an isometric embedding a : A' -> B of a face A' c A^^ satisfying 63 o a = idL.
Lemma 3.4.2 applies and the faces fit together to form a polyhedral structure on B.
The apartments are subcomplexes.

It remains to verify that any two points with distance less than TC lie in a common
apartment. It suffices to check this for any regular points x^, x^ since any point lies
in a chamber and an apartment containing an interior point of a chamber contains
the whole chamber (lemma 3.4.2). There is an apartment A^ containing x^. Consider
a minimizing geodesic ^joining x^ and x^. By sublemma 3.4.1, A^ is a neighborhood
of x^. Hence near its endpoint x-^, c is a geodesic in the sphere A^. Since B is a CAT(l)-
space, we can extend c beyond x^ inside A^ to a minimizing geodesic c of length n
joining x^ through x-^ to a point x^ e A^. By our assumption, the points x^, x^ are contained
in an apartment Ag, which contains all minimizing geodesies connecting x^ and J?^,
because x^ is regular. In particular c and therefore both points x^y x^ lie in Ag. D

From the proof of Proposition 3.5.1 we have:

Corollary 3.5.2. — Let B be a spherical building of dimension d, and let T c B be a subset
isometric to the Euclidean unit sphere of dimension d. Then T is an apartment in B.
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3.6. Local conicality, projectivity classes
and spherical building structure on the spaces of directions

Suppose that the spherical building B has dimension at least 1.

Lemma 3.6.1. — Let (B, 6:3) be a spherical building modelled on A^, and let p,p e B
be antipodal points, i.e. d{p,p) = n. Then the union of the geodesic segments of length TV from?
to p is a metric suspension which contains a neighborhood of {p, p }.

Proof. — By the discussion in section 2.2.1, the union of the geodesic segments
of length TT from p to p is a metric suspension. By (17) we can choose p > 0 such that
{ q e B,^) | Q^q) == W } == { p }, ̂  e B^) | Q^q) == Q^p) } = {p}. If q e Bp(^),
then any extension ofpq to a segment pqr of length TC will satisfy 6(r) = 6(j$), forcing r = p
by the choice of p. Likewise, if we extend pq to a segment of length TC, where q e B Q&),
then it will terminate at p. Hence the lemma. D

As a consequence, for sufficiently small positive s, the ball Bg(^) is canonically
isometric to a truncated spherical cone of height s over Sp B, the isometry given by
the (c logarithm map " at p. In particular, S ,̂ B == 2y B. Any face intersecting Bg(^)
contains p and the face Gp spanned by p.

The lemma implies furthermore that for any pair of antipodes p, p e B there is
a canonical isometry

(21) persp^:S,B->S,B

determined by the property that all geodesies c of length TC joining p and p satisfy
persp^(S^) =^c.

Two points in B are antipodal if and only if they have distance TT. Two faces a^
and G2 are antipodal or opposite if there are antipodal points ^ and ^ so that ^ lies in
the interior of CT,; in this case each point in a^ has a unique antipode in a^.

Definition 3.6.2. — The relation of being antipodal generates an equivalence relation and
we call the equivalence classes projectivity classes.

Lemma 3.6.3. — Suppose that the spherical building B is thick. Then every projectivity
class intersects every chamber.

Proof. — Let Gi and G^ be adjacent chambers, i.e. n == Gi n Gg is a panel. It
suffices to show that for each point in Gi, Gg contains a point in the same projectivity
class. To see this, pick an apartment A 3 C^ u Gg and let n be the panel in A opposite
to TC (n = TT is possible). Since B is thick there is a chamber C with C n A = TC. Then
C is opposite to both G^ and Gg and our claim follows. D

Pick ?QeS so that Og(^o) = 83 (^)- Now consider the collection of all apart-
ment charts L^ : S -> B where ^{po) = p ' These induce isometric embeddings
^o ^A : ̂ o s "> ̂ p B- Let ^o c ̂ '^(^o s) be the finite S^up generated by the
reflections in walls passing through RQ.
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Proposition 3.6.4. — The space Sy B together with the collection of embeddings
S^ t^ : S^ S -> Sy B as above is a spherical building modelled on (S^ S, Wy). If p e B is
an antipode ofK, then we have a 1-1 correspondence between apartments (respectively half-apartments)
in B containing { p , p } and apartments (respectively half-apartments) in SpB; Sy B is thick
provided B ^ thick.

Proof. — Any two points pq^pq^ e Sy B lie in an apartment; namely choose ^, ^
close to p, then any apartment A containing q^ q^ will contain p and /y, e Sp A. So
SB1 holds. The space Sy B satisfies SB2 since we are only using charts L^ : S -> B with
^(A)) == P ^d B itself satisfies SB2. The remaining assertions follow immediately from
the definition of the spherical building structure on Sy B. D

3.7. Reducing to a thick building structure

A reduction of the spherical building structure on B consists of a reflection subgroup
W C W and a subset ^f C ^ which defines a spherical building structure modelled
on (S, W). The A^^-direction map 65 can then be factored as n o 63 where

6^B->W /\S=:A^

is the A^-direction map for the building modelled on (S, W), and

n:W\S=^^^==^\S

is the canonical surjecdon.

Proposition 3.7.1. — Let B be a spherical building modelled on the spherical Coxeter
complex (S, W), with anisotropy polyhedron A^ = W\S. Then there exists a reduction (W, ̂ /)
which is a thick building structure on B; W is unique up to conjugacy in W and ^ ' is determined
by W. In particular^ the thick reduction is unique up to equivalence^ so the polyhedral structure is
defined by the GAT(l) space itself.

The proof will occupy the remainder of this paper.
We set d = dim(B), Rg = {p e B | Sy B is isometric to a standard S^"1}, and

SB === B\RB. I f j & e B and p > 0 is small enough so that Bp(^) is a (spherical) conical
neighborhood of p, then Sg ^BpQ&)\{^} corresponds to the cone over S^ B- ^ ^en
follows by induction on dim(B) that Sg n A is a union of A^^-walls for each apart-
ment A C B.

Consider an apartment AC B, and a pair of walls Hi 5 HgC A contained in Sg.

Lemma 3.7.2. — ff^z ls t^ image of Hg under reflection in the wall H^ (inside the
apartment A), then Hg is contained in S^.

Proof. — To see this, consider an interior point p of a codimension 2 face a of
Hi n H^. The space 2p B decomposes as a metric join Sp o o By where By is a 1-dimen-
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sional spherical building, and the walls H^ H^, and Hg correspond to walls H^, Hg,
and Hg in By; A corresponds to an apartment A in By. The wall H^ is just a pair of
points in By, and this pair of points is joined by at least three different semi-circles of
length TT. These three semi-circles can be glued in pairs to form three different apartments
in By. Using the fact that an antipode of a point in Sg also lies in Sg , it is clear that
the image of H^ under reflection in H^ is also in 85 . Hence the wall Sy Hg C Sy B is
contained in three half-apartments, and proposition 3.6.4 then implies that H^ lies
in three half-apartments. D

The reflections in the walls in A n Sg generate a group G^, and by [Hum, p. 24]
the only reflections in G^ are reflections in walls in A n 83; also, the closures of connected
components of A\Sg are fundamental domains for the action of G^ on A.

Sublemma 3.7.3. — Let U c B be a connected component of1S\S^, and suppose U n A ={= 0
for some apartment A. Then U c A.

Proof. — The set U n A is open and closed in U, so U n A = U. D
We claim that the isomorphism class of G^ is independent of A. To show this,

it suffices to show that the isometry type of a chamber A^ is independent of A. For
i = 1, 2 let A, be an apartment, and let A^ be a chamber for G^.. If AgC B is an
apartment containing an interior point from each A^, then the sublemma gives
^wic ̂  But Aen the A^ are both chambers for G^, so they are isometric. Hence
each pair (A, G^) is isomorphic to a fixed spherical Goxeter complex (S, W111) for some
reflection subgroup W111 ^ W. We denote the quotient map and model polyhedron by

e^-s^s/w^A^.

We call the closure of components of B\Sg, A^-chambers. We can identify the
A^d-chambers with A^ in a consistent way by the following construction: Let AQ c B
be an apartment and^o e Ag n Rg be a smooth point. We define the retraction p : B -^ AQ
by assigning to each point p in the open ball B^(^o) the unique point p(^) e AQ for which
the segments p ^ p and ?Q p(j&) have same length and direction p o p = po ^ { p ) atj&o. The
map p extends continuously to the discrete set B\B^o) which maps to the antipode
of po in AQ. If A is an apartment passing through po then A n Ao contains the A^-
chamber spanned by po and p|^ : A -> A() is an isometry which preserves the tesselations
by chambers. Composing p with the quotient map Ag -> Ag/G^ we obtain a 1-Lipschitz
map

(22) e^B-^,

which restricts to an isometry on each chamber. Applying proposition 3.5.1 we see
that B is a spherical building modelled on (S, W^); B is thick since we already verified
in lemma 3.7.2 above that ifH C Sg is a wall, then it lies in at least three half-apartments.
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Corollary 3.7.4. — For i == 1, 2 let B^ be a thick spherical building modelled on (S,, W,)
with atlas £/^. T/^ cp : B^ -> Bg ̂  an isometry then we may identify the spherical Coxeter complexes
by an isometry a : (S^, Wi) -> (825 Wg) jo that 9 becomes an isomorphism of spherical buildings.

3.8. Combinatorial and geometric equivalences

We recall (section 3.4) that for any building B, J?TB is the lattice of finite unions
of faces of B.

Proposition 3.8.1. — Let B^, Bg be spherical buildings of equal dimension. Then any lattice
isomorphism JfBi -^JTBg is induced by an isometry B^ —^Bg of CAT {I)-spaces. This isometry
is unique if the buildings B, do not have a spherical de Rham factor.

Proof. — First recall that lattice isomorphisms preserve the partial ordering by
inclusion since C^ C Cg o C^ u Cg == C^.

We first assume that the buildings B, have no de Rham factor and hence the JfB,
come from simplicial complexes. In this case the lattice isomorphism JTB^ -> JfBg carries
A-dimensional faces of B^ to A-dimensional faces of Bg. To see this, note that vertices of B^
are the minimal elements of the lattice JTB, and A-simplices are characterized (induc-
tively) as precisely those subcomplexes which contain k + 1 vertices and are not contained
in the union of lower dimensional simplices.

Consider a codimension-2 face a of a chamber G in B^. For an interior point s e a ,
S, B^ is isometric to the metric join S ,<yoB? where B? is a 1-dimensional spherical
building. The dihedral angle of G along or equals the length of a chamber in the
1-dimensional building B^.

Sublemma 3.8.2. — The chamber length of a V-dimensional spherical building is determined
combinatorially as 2'Kfl where I is the combinatorial length of a minimal circuit,

Proof. — Combinatorial paths in a 1-dimensional spherical building determine
geodesies. Closed geodesies in a GAT(l)-space have length at least 2n since points at
distance < TT are joined by a unique geodesic segment. The closed paths of length 27T
are the apartments. D

Proof of Proposition 3.8.1 continued. — As a consequence of the sublemma, the
lattice isomorphism jTB^ -^-JfB^ induces a correspondence between chambers which
preserves dihedral angles. Since the dihedral angles determine the isometry type of a
spherical simplex [GrBe] [theorem 5.1.2], there is a unique map of GAT (1)-spaces
BI -> Bg which is isometric on chambers and induces the given combinatorial isomor-
phism. Since the metric on each B, is characterized as the largest metric for which the
chamber inclusions are 1-Lipschitz maps, we conclude that our map B^ -> B^g is an
isometry. In the general case, the buildings B^ may have a spherical de Rham factor S,
and split as B^ == S^ o B,'. The lattices JfB, and jTB^ are isomorphic: to a subcomplex C,'
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of JTB,' corresponds the subcomplex S, o G,' of JTB,. The lattice isomorphism
JTB^ ^ jTBi -> JTB^ ^ ^TBg is induced by a unique isometry B^ — Bg by the discussion
above. It follows that Dim B^ == Dim Bg and Dim Si = Dim Sg. Any isometry Si -> 83
gives rise to an isometry B^ —^B^ which induces the isomorphism jTBi -^JfBg. D

3.9. Geodesies, spheres, convex spherical subsets

We call a subset of a CAT (1)-space convex if with every pair of points with distance
less than n it contains the minimal geodesic segment joining them. The following
generalizes corollary 3.5.2.

Proposition 3.9.1. — Let GC B a convex subset which is isometric to a convex subset of
a unit sphere. Then G is contained in an apartment.

Proof. — We proceed by induction on the dimension of B. The claim is trivial
if dim(B) = 0. We assume therefore that dim(B) > 0 and that our claim holds for
buildings of smaller dimension than B.

Let A be an apartment so that the number of open faces in A which have non-empty
intersection with G is maximal. Suppose G $ A. Let p e G n A and q e G\A be points
with pq f 2y A. Denote by V the union of all minimizing geodesies in A which connect p
to its antipode p and intersect G — { ̂ , ̂  }; V is a convex subset of A and canonically
isometric to the suspension of Sy(G n A) = Sp G n Sp A. By the induction assumption,
there is an apartment A' through^ such that S ,̂ G £ Sy A'. A' can be chosen to contain p '
Then G n A c V c A' and pq e 2^, A'. Hence the number of open sectors in A' inter-
secting G is strictly bigger than the number of such sectors in A, a contradiction. There-
fore C c A. D

Corollary 3.9.2. — Any minimizing geodesic in a spherical building B is contained in an
apartment. Any isometrically embedded unit sphere K c B is contained in an apartment. In particular
dim(K) < rank(B) - 1.

3.10. Convex sets and subbuildings

A subbuilding is a subset B' £ B so that { i e ̂  \ i(S) c B'} forms an atlas for a
spherical building structure; in particular B' is closed and convex.

Lemma 3.10.1. — Let s C B be a subset isometric to a standard sphere. Then the union B(^)
of the apartments containing s is a subbuilding. There is a canonical reduction (W, ̂ f) of the
spherical building structure on B(^); its walls are precisely the Wr-walls ofB{s) which contain s.
When equipped with this building structure, B(^) decomposes as a join of s and another spherical
building which we call Link(̂ ). Ifp e s then logp maps Link(̂ ) isometrically to the join complement
of^yS in S^B(^). Furthermore^ ifpes lies in a Vf-face a of maximal possible dimension^ then
there is a bijective correspondence between ^N-chambers containing a, ^'-chambers ofK{s), chambers
oflAnk{s), and Vfy-chambers in SyB.
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Proof. — Let S and ^ be interior points of faces in s with maximal dimension. Then
B(^) is the union of all geodesic segments of length TC from ^ to 1|. Proposition 3.6.4
implies that every pair of points in B(^) is contained in an apartment AC B (.$").

Pick io e ^ with ^ c IQ(S), and set ^' == { i e ̂  [ L^ = io[g^}. Let W c W be
the subgroup generated by reflections fixing SQ pointwise. According to lemma 3.1.15
the coordinate changes for the charts in ^ ' are restrictions of elements of W. Therefore
^f is an atlas for a spherical building structure on B(^) modelled on (S, W).

Since SQ c S is a join factor of the spherical Coxeter complex (S, W), B(J)
decomposes as a join of spherical buildings B(^) == joLink(^) by section 3.3. Any two
points in Link(^) lie in an apartment s c AC B(^), so logy maps Link(^) isometrically
to the join complement of 2p^ in SyB(^). The remaining statements follow. D

The building B(^) splits as a spherical join of the singular sphere s and a spherical
building which we denote by Link(^):

B(^) ==^oLink(^).

Lemma 3.10.2. — If ̂  e B and T) lies in the apartment A s B, then there is a ^ e A
with TT = d(^, f) = d^ ^)) + ̂ ("y], S)- y ^(^3 'y]) ^ ^/2 ^^ S ̂  ^^ antipode in every top-
dimensional hemisphere H C A.

Proof. — When Dim B = 0 the lemma is immediate. Ifrf(S, T]) < n then by induction
T]^ e S^ B has an antipode in S^ A. Therefore we may extend ̂  to a geodesic segment ^S
with 73^ C A of length TT. The second statement follows by letting T] be the pole of the
hemisphere. D

Proposition 3.10.3. — Let G be a convex subset in the spherical building B. If C contains
an apartment then G is a subbuilding of full rank.

Proof. — By the lemma, any point E, eC has an antipode | in C. By lemma 3.6.1,
the union C^g of all minimizing geodesies from S to | which intersect G — { ^ t} is
a neighborhood of S in C. In particular, for sufficiently small s > 0, G n Bg(^) is a cone
over Sp G. Since ^ can be chosen to lie in an apartment Ag c. C by our assumption,
and since the apartment S^AQ in S^ G corresponds to an apartment in C^, we see
that C is a union of apartments. It remains to check that any two points E;, T] e C lie
in an apartment contained in G. Ghoose an apartment A with Y] e A c G. For T]^ e Sy, G
there exists an antipodal direction in S^ A and we can extend ^T] into A to a geodesic E,-^
of length TT. To the apartment 2^ A in 2^ G corresponds an apartment A' c C^
containing ^T]S. D

3.11. Building morphisms

We call a map 9 : B -^ B' between buildings of equal dimension a building morphism
if it is isometric on chambers. Later, when looking at Euclidean buildings, we will
encounter natural examples of building morphisms, namely the canonical maps from
the Tits boundary to the spaces of directions.

19
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A building morphism 9 has Lipschitz constant 1: 9 maps sufficiently short segments
emanating from a point p isometrically to geodesic segments. Therefore it induces well-
defined maps
(23) S,9:S,B-^S^B'.

Since the chambers in B containing p correspond to the chambers in 2 B (with respect
to its natural induced building structure, cf. Proposition 3.6.4), and similarly for B',
the maps (23) are building morphisms, as well. We call the morphism 9 spreading if
there is an apartment Ag c B so that 9]^ is an isometry.

Lemma 3 . 11 .1 . — Let 9 : B -> B' be a spreading building morphism. Then, if^y^eB
are points with 9(^1) = 9(^2) ==: S' -> ̂  images of S^ 9 and S^ 9 in S^ B' coincide.

Proof. — If 9 is spreading then each point ^' e 9(B) has an antipode ^' e <p(B).
Any points ^e9~ l (^ ' ) and ^e9 '~ l(^ /) are antipodes and minimizing geodesies
connecting ^ and | are mapped isometrically to geodesies connecting ^' and $', i.e.
?|B(^$) : B(^? S) -^B'^S') is the spherical suspension of the morphism S^ 9. There
are canonical isometries persp^ : S^B ->-S^B and persp^. ^ : 2^ B' -> S^ B',
cf. 3.6.1, and we have:
(24) Sg 9 o persp^ -g == persp^^ o S^ 9.

The assertion follows. D

Lemma 3.11.2. — Let 9 : B ->B' 6^ a spreading building morphism. Suppose S^B,
^ eB' fl̂  j^ ^ := <P^r

TA^% ^r^ is an apartment A c B containing ^ j^cA ^Aa^ 9 ^ ls an isometry and the
apartment A' := 9A c B' contains ^.

Proof. — Let us first assume that ^ e Ag = 9Ag where Ag is an apartment in B

such that 9^ is an isometry. Then there is a geodesic segment ^i ^2 Si °f length n such
that ^€1^ Ag (lemma 3.10.2). Let ii eAg be the lift oftr By proposition 3.6.4, the
subbuilding B(^, i;i) contains an apartment A with S^ A == S^ Ag. The map 9^ is
an isometry, because it is an isometry near Si • By construction, ^ e ?A.

The above argument implies that, since 9 is spreading by assumption, each point
^i e B lies in an apartment A^ so that 9 ^ is an isometry. Therefore the assumption
in the beginning of the proof is always satisfied and the proof is complete. D

Corollary 3.11.3. — Let 9 be as in lemma 3 . 1 1 . 2 . Then'.
1. 9(B) is a subbuilding in B'.
2. The induced morphisms S^ 9 are spreading.
3. For all ̂  e B, ^ e 9(B), there exists ^ e 9~1 ^2 •?^ ^^

(25) ^(Si, ̂  - ̂ B'(<P^ ^).

4. 7/' ̂  satisfies (25) ̂ z ̂ r^ ̂ j^ an apartment A c B containing ̂ , ̂  JM^A ^Afl^ 9 [^ ij <zyz isometry.
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Proof. — The first three assertions follow immediately from the lemma. We prove
the fourth assertion:

By 1. we find a geodesic segment ^ ̂  ̂  of length n contained in <p(B). By 3. there
exists a lift Si of ̂  such that d^^, ti) == ^B'(^ Si). Applying the previous lemma
to the morphism S^ 9, which is spreading by 2., we find an apartment A c B(^i, $1)
containing the geodesic segment ̂  ^2 Si and so that 2^ 9 ^ ^, and therefore also 9 ^,
is an isometry. D

Proposition 3.11.4. — Let B and B' be spherical buildings modelled on A^, and let
9 : B -> B' be a surjective morphism of spherical buildings so that 9g = 9^ o 9. Suppose T is
a face ofB and a is a face ofV contained in 9(B) so that 9T c <j'. T^TX ^r^ m.̂  a face a
Of B ?X^A T C <j ^^ (p(j == CT'.

Proof. — Let ^ be an interior point of T and let CTI be a face of B with ^a^ == a .
Then a^ contains (in its boundary) a point ^ with 9^1 = 9^, and by lemma 3.11.1
there exists a face a containing ^ (and therefore r) with 90 = ^a-^ == o-'. D

Corollary 3 .11.5. — Let B, B' a^rf 9 ̂  as in proposition 3.11 A. If h' C W is a half-
apartment with wall m', and m C B lifts m', then there is a half-apartment h C B containing m
which lifts h\

Proof. — Let T' C A' be a chamber with a panel cr' C w', and let aC m be the lift
of a in w. Applying proposition 3.11.4 we get a chamber T C B so that the half-apart-
ment h spanned by T u m lifts A'. D

3.12. Root groups and Moufang spherical buildings

A good reference for the material in this section is [Ron].

Definition 3.12.1 ([Ron, p. 66]). — Let (B, A^J be a spherical building, and let
a C B be a root. The root group U^ of a is defined as the subgroup of Aut(B, A^) consisting
of all automorphisms g which fix every chamber G C B with the property that C n a contains a
panel n cj: 8a.

We let Gg C Aut(B, A^) be the subgroup generated by all the root groups of B.

Proposition 3.12.2 (Properties of root groups). — Let B be a thick spherical building.

1. If UQ acts transitively on the apartments containing a for every root a contained in some apart-
ment Ao, then the group generated by these root groups acts transitively on pairs(G, A) where
C is a chamber in an apartment A s B.

2. Suppose (B, A^J is irreducible and has dimension at least 1. Then the only root group element
g e U^ which fixes an apartment containing a is the identity.
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Lemma 3.12.3. — Let A and A' be apartments in the spherical building B. Then there
exist apartments AQ = A, A^, ..., A^ == A' so that A^_^ n A^ ^ a half-apartment containing
A n A' for all i.

Proof. — Suppose that A and A' are apartments which do not satisfy the conclusion
of the lemma and so that the complex A n A' has the maximal possible number of faces.
We derive a contradiction by constructing an apartment A" whose intersection with A
respectively A' strictly contains A n A'.

If A n A' is empty, we choose A" to be any apartment which has non-empty
intersection with both A and A'. If A n A' is contained in a singular sphere s of
dimension dim (A n A') < dim(B) we pick a chambers o- C A and </ C A' with
dim(G n^) = dim(</ n s) = dims. The subbuilding B(^) contains an apartment A"
with s u or u a' C A" and A" has the desired property. It remains to consider the case
that A n A' contains chambers and is strictly contained in a half-apartment. Then
there is a half-apartment h C A containing A n A' and so that Bh n A n A' contains
a panel TT. Let </ C A' be a chamber with a ' 0 A n A' = TC. The convex hull A" of
h U a' is an apartment with the desired property. D

Proof of Proposition. — 1. Let G^ be the group generated by the root groups U^
where a runs through all roots contained in an apartment A C B. If g e U^ then
G^ = G^ because U^ = gU^g'~1 for all roots aC A. By lemma 3.12.3, given any
apartment A' there is a sequence Ao, . . . , A ^ = = A ' such that A^_i nA^ is a root.
Hence G^ = G^ = ... = G^, and it follows that Gg == G^. for all apartments A'.

Let CTI and erg be chambers in B which share a panel TT = a^ r\ erg. Since B is thick,
there is a third chamber a with a n ̂  == n. Pick apartments A, containing a U <y,.
Applying lemma 3.12.3 again, we see that there is a g e Gg so that ^(A^) = Ag, and
g fixes (JQ. Hence ga^ = a^ and we conclude by induction that G^ acts transitively on
chambers.

Let AI, Ag be apartments and a^ org be chambers such that 04 c A^. By the above
argument, there exists g e Gg with ga^ = Og. By lemma 3.12.3 there is a ^' e Gp with
^'QjAi) = Ag and .g' (73=02. Hence Gg acts transitively on pairs G C A as claimed.

2. Since B is irreducible, there is a chamber a contained in the interior of a (see
lemma 3.3.2). Since the convex set B' = Fix(^) contains the apartment A it is a sub-
building by proposition 3.10.3. Moreover, B' contains an open neighborhood of a by
the definition of U^. Note that if TT and TT' are opposite panels in B', then B' contains
every chamber containing TT if and only if it contains every chamber containing TT'
(lemma 3.6.1). Since for each panel TT there is a panel TT^C SG in the same projectivity
class (see definition 3.6.2 and lemma 3.6.3) we see that B' contains every chamber
in B with a panel in B'. When Dim(B) = Dim(B') = 1 this implies that B' is open in B,
forcing B' = B; in general we show by induction that for oil? e B' we have Sy B' = Sp B,
which implies that B' C B is open and consequently B' = B. D
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Definition 3.12.4. — A spherical building (B, A^^) is Moufang if for each root aC B
the root group V^ acts transitively on the apartments containing the roof a. When B is irreducible
and has rank at least 2, then by 2. above5 U^ acts simply transitively on apartments containing a.

The spherical building associated with a reductive algebraic group ([Til, chapter 5])
is Moufang. In particular, irreducible spherical buildings of dimension at least 2 are
Moufang.

4. EUCLIDEAN BUILDINGS

There are many different ways to axiomatize Euclidean buildings. For us, the
key geometric ingredient is an assignment of ^^-directions to geodesies segments in a
Hadamard space. Just as with symmetric spaces, A^^-directions capture the anisotropy
of the space, and they behave nicely with respect to geometric limiting operations such
as ultralimits, Tits boundaries, and spaces of directions.

4.1. Definition of Euclidean buildings

4.1.1. Euclidean Coxeter complexes

Let E be a finite-dimensional Euclidean space. Its Tits boundary is a round sphere
and there is a canonical homomorphism

(26) p : Isom(E) -> Isom^ite E)

which assigns to each affine isometry its rotational part. We call a subgroup
Wg^C Isom(E) an affine Weyl group if it is generated by reflections and if the reflection
group W := p(Wg^) C Isom(^^ E) is finite. The pair (E, W^f) is said to be a Euclidean
Coxeter complex and

(27) ^(E,W^):==(a^E,W)

is called its spherical Coxeter complex at infinity. Its anisotropy polyhedron is the spherical
dolyhedron

A^-^Tits^/W.

An oriented geodesic segment ~xy in a E determines a point in <^g E and we
call its projection to A^y^ the ^^-direction of xy.

A wall is a hyperplane which occurs as the fixed point set of a reflection in Wg^
and singular subspaces are defined as intersections of walls. A half-space bounded by a
wall is called singular or a half-apartment. An intersection of half-apartments is a Weyl-
polyhedron. Weyl cones with tip at a point p are complete cones with tip at p for which the
boundary at infinity is a single face in 8^ E.

Fix a point p e E. By W(^), we denote the subgroup of W^ which is generated
by reflections in the walls passing through p; WQ&) embeds via p as a subgroup of W.
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A Weyl sector with tip at p is a Weyl polyhedron for the Euclidean Goxeter complex
(E, WQ&))$ note that a Weyl sector need not be a Weyl cone, and a Weyl cone need
not be a Weyl sector. A subsector of a sector or is a sector CT' C o- with ^g cr' = &nts ̂
o- lies in a finite tubular neighborhood of CT'. A Weyl chamber is a Weyl polyhedron for
which the boundary at infinity is a A^^ chamber; Weyl chambers are necessarily Weyl
cones. The Coxeter group W(^) acts on S^ E, so we have a Coxeter complex

S,(E,W^):=(S,,E,W(^))

with anisotropy map by

e,:S,E->S,E/W(^)=:A^(^).

The faces in (Sy E, W(^)) correspond to the Weyl sectors of E with tip at p.
We call the Goxeter complex (E, W^) irreducible if and only if its anisotropy

polyhedron, or equivalently, its spherical Goxeter complex at infinity is irreducible.
In this case, the action of W on the translation subgroup T <1 W^ forces T to be trivial,
a lattice, or a dense subgroup. In the latter case we say that W^ is topologically transitive.

4.1.2. The Euclidean building axioms

Let (E, Wg^) be a Euclidean Coxeter complex. A Euclidean building modelled on
(E, W^) is a Hadamard space X endowed with the structure described in the following
axioms.

EB1. Directions. — To each nontrivial oriented segment ~xy C X is assigned a A^^-
direction Q{xy) eA^^. The difference in ^^^-directions of two segments emanating from the
same point is less than their comparison angle, i.e.

(28) d(Q(xy),Q(xz))^ 1^ z).

Recall that given S^S^eA^^, D($i, §2) is the finite set of possible distances
between points in the Weyl group orbits O^1 ^(^i) an(! ^a^ E^)-

EB2. Angle rigidity. — The angle between two geodesic segments xy and ~xz lies in the finite
setD{Q(xy),Q(xz)).

We assume that there is given a collection ^ of isometric embeddings i : E -> X
which preserve A^^-directions and which is closed under precomposition with isometrics
in W^. These isometric embeddings are called charts, their images apartments, and A
is called the atlas of the Euclidean building.

EB3. Plenty of apartments. — Each segment, ray and geodesic is contained in an apartment.

The Euclidean coordinate chart i^ for an apartment A is well-defined up to pre-
composition with an isometry a ep'^W). Two charts L^ , L^ for apartments A^.Ag
are said to be compatible if i^"1 o i^ is the restriction of an isometry in W^. This holds
automatically when W^ = p'^W).
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£84. Compatibility of apartments. — The Euclidean coordinate charts for the apartments
in X are compatible.

It will be a consequence of Corollary 4.6.2 below that the atlas j^ is maximal
among collections of charts satisfying axioms EB3 and EB4.

We define walls, singular flats, half-apartments, Weyl cones, Weyl sectors, and
Weyl polyhedra in the Euclidean building to be the images of the corresponding objects
in the Euclidean Goxeter complex under charts. The set of Weyl cones with tip at a
point x will be denoted by^. The rank of the Euclidean building X is defined to be
the dimension of its apartments. The building X is thick if each wall bounds at least
3 half-apartments with disjoint interiors. We call X a Euclidean ruin if its underlying
set or the atlas ^ is empty.

4.1.3. Some immediate consequences of the axioms
Axiom EB1 implies the following compatibility properties for the A^-directions

of geodesic segments.

Lemma 4 . 1 . 1 . — Let x, y, z be points in X.
1 . Ify lies on xz, then Q(xz) = Q{xy) = 6(j5).
2. If xy, xz e S^ X coincide, then Q(xy) == Q(xz).
3. Asymptotic geodesic rays in X have the same ^^-direction.

We call a segment, ray or geodesic in X regular if its A^^-direction is an interior
point of A^.

Lemma 4.1.2. — 1. Ifp eX and x^ e X — p, then the px^ initially span a flat triangle
if Z.p( î, x^) > 0, and they initially coincide if Z-y(x^, x^) = 0.

2. If p^ e X and ̂  e ̂ ^ X, then the rays p^ ̂  are asymptotic to the edges of a flat sector.

Proof. — 1. After extending the segments px^ to rays if necessary, we may
assume without loss of generality that ^ e <^ X. If z e^, then 6(i^) = Q{x^) so
^-2(^1? ^2) e D(6(^i), 6(^2)) which is a finite set. But Z-^i,^) -> Z.p(^i, x^) mono-
tonically as z ->p, which implies that Z-^i, x^) == ^p(^i, A^), Z,^p, x^) == n — Z.p(A:i, x^)
when z is sufficiently close to p. Therefore AQ&, z, x^) is a flat triangle (with a vertex
at oo) when z is sufficiently close to p.

2. follows from similar reasoning and the property (6) of the Tits distance. D

4.2. Associated spherical building structures

4.2.1. The Tits boundary

The Tits boundary ^its^ ls a GAT (1)-space, see 2.3.2. Lemma 4.1.1 implies
that there is a well-defined A^-direction map
(29) e^:a^x-^A^
which is 1-Lipschitz by (28).
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Proposition 4.2.1. — The space ft^ X carries a spherical building structure modelled on
the spherical Coxeter complex (^^ E, W) with \^^-direction map (29).

Proof. — We verify that the assumptions of proposition 3.5.1 are satisfied.
Axiom EB2 implies that (29) satisfies the discreteness condition (17). If A is a Euclidean
apartment in X then ^^ A is a standard sphere in ftp^s X. Clearly, any point S; e ft^s X
lies in a standard sphere. It remains to check that any two points Si and ^3 in ft^ X
with Tits distance TT are ideal endpoints of a geodesic in X. To see this, pick p e X and
note that the angle ^(Si? ^2) increases monotonically as z moves along the ray p^
towards Sr But by EB2 ^(Si? ^2) assumes only finitely many values, so when z is
sufficiently far out we have ^(Si, ^2) == ^Tits(^i? ^2) == TC? ^d the rays ̂  fit together
to form a geodesic with ideal endpoints ^ and ^3. D

4.2.2. The space of directions

The space of directions S^ X is a GAT(l)-space (see section 2.1.3). Lemma 4.1.1
implies that there is a well-defined 1-Lipschitz map from the space of germs of segments
in a point A; e X:

(30) e^:^X^A^.

In this section we check that this map induces a spherical building structure on S^ X.
By axiom EB2, 9 = 6^ x satisfies the discreteness condition (17).

Lemma 4.2.2. — The space S^X is complete, so S^X = 2a,X.

Proof. — Let (^) be a sequence in X — { x} such that (xx^) is Gauchy in 5^ X.
Then Q(xx^) is Gauchy in A^j and we denote its limit by S. If A^C X is an apartment
containing xx~^ then xx^ e Sg, Aj^ C S^ X and ̂  A^ contains a spherical polyhedron <^
such that xx^ e <r^ and 6| ; ^ -> A^^ is an isometry. There is a unique ̂  e o-̂  with
6(^) =8 and we have d^xx^) = d^^{8, Q{xXj,)) ->0. Hence (^) is Gauchy with
6(y = S and lim^ = lim ̂  in S^X. The discreteness condition (17) implies that
(^) is eventually constant and therefore (x^) has a limit in S^ X. D

We now apply proposition 3.5.1 to verify that ̂  X carries a natural structure
as a spherical building modelled on (a^E,W). The only condition which remains
to be checked is that antipodal points xx^ and xx^ in Sg; X lie in a subset isometric to
S == 9^ E. But Z.a,(A;i, A:g) = TC implies that ^i~^ ==xx[uxx~^ and if AC X is an
apartment containing x-^x^ then Sa, A C ̂  X is a spherical apartment containing ;Wj
and xx^.

Lemma 4.2.3. — All standard spheres in S^X are of the form S^A where A is an
apartment in X passing through x.

Proof. — By corollary 3.9.2, standard spheres are A^^-apartments, so we can
find antipodal regular points Si? ^2 e a- Then there is a segment x^x^ through x with
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xx, = ̂ . If A c X is an apartment containing x^ then S^A n a 3 { ^i, ^2} ^d
the spherical apartments a and 5^ A coincide because they share a pair of regular
antipodes (lemma 3.6.1). D

There are two natural reductions of the Weyl group which we shall consider.
First, according to section 3.7 there is a thick spherical building structure with atlas ^[x)
and anisotropy map

(31) e^:2,X^A^M;

This structure is unique up to equivalence. The second reduction is analogous to the
structure constructed in proposition 3.6.4. We postpone discussion of this structure
until 4.4.1 because we do not have an analog of lemma 3.1.1 in the case of nondiscrete
Euclidean Goxeter complexes.

4.3. Products-decompositions

Let X^ z == 1, . . . , T Z , be Euclidean buildings modelled on Goxeter complexes
(E(, W^f) with atlases ̂  and anisotropy polyhedra A^. Then

W^:=W^x ... X WS,

acts canonically as a reflection group on E : = E^ x . .. X E^. We call the Goxeter
complex (E, W^) the product of the Coxeter complexes (E,, W^) and write

(32) (E, W^) == (E,, W^) x ... x (E^ W^).

There are corresponding join decompositions

(33) (a^ E, w) = (a^ E,, w,) o . . . o (a^ E^ wj
of the spherical Coxeter complex at infinity and

(34) A^=A^o. . .oA^

of the anisotropy polyhedron. The Hadamard space

(35) X == Xi x . . . x X^

carries a natural Euclidean building structure modelled on (E, W^). The charts for
its atlas ^ are the products L = 4 X ... X ^ of charts i, e e^,. We call X equipped
with this building structure the Euclidean building product of the buildings X,.

Proposition 4.3.1. — Let X be a Euclidean building modelled on the Coxeter complex (E, W^)
with atlas ̂  and assume that there is a join decomposition (34) of its anisotropy polyhedron. Then

1. There is a decomposition (32) of (E, W^) as a product of Euclidean Coxeter complexes so that a
segment ~xy C E is parallel to the factor E, if and only if its ^^-direction Q(xy) lies in A^.

2. There is a decomposition (35) of X as a product of Euclidean buildings so that a segment
xyC E is parallel to the factor E, if and only if its ^^'direction Q{xy) lies in A^.

20
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Proof. — 1. Proposition 3.3.1 implies that the spherical Goxeter complex at infinity
decomposes as a join

(36) (a^ E, W) = (Si, Wi) o ... o (S,, WJ

of spherical Coxeter complexes. By proposition 2.3.7, this decomposition is induced
by a metric product decomposition E == Ei x . . . x E^ so that B^ E, is cano-
nically identified with S, and, hence, a segment 'xy C E is parallel to the factor E,
if and only if 6(^)eA^. (36) implies that W^f decomposes as the product
^ff = w^ X . .. X W^ of reflection groups W^ acting on E,, thus establishing
the desired decomposition (32).

2. Arguing as in the proof of the first part, we obtain a metric decomposition (35)
as a product of Hadamard spaces so that xy C X is parallel to the factor X, if and only
if Q{xy) eA^. Furthermore, the a^ X, carry spherical building structures modelled
on (^its^i? Wi) so Aat the spherical building ̂  X decomposes as the spherical
building join of the B^ X,. Each chart i : E -> X, i. e j^, decomposes as a product
of ^od-direction preserving isometric embeddings L, : E, -^X,. The collection ^ of
all i, arising in this way forms an atlas for a Euclidean building structure on X, and (35)
becomes a decomposition as a product of Euclidean buildings. D

We call a Euclidean building irreducible if its anisotropy polyhedron is irreducible,
compare section 3.3. According to the previous proposition, the unique minimal join
decomposition of the anisotropy polyhedron A^ into irreducible factors corresponds
to unique minimal product decompositions of the Euclidean Coxeter complex (E, W^)
and the Euclidean building X into irreducible factors. We call these decompositions
the de Rham decompositions and the maximal Euclidean factors with trivial affine Weyl
group the Euclidean de Rham factors.

4.4. The local behavior of Weyl-cones

In this section we study the set ̂  of Weyl cones with tip at p. The main result
(corollary 4.4.3) is that in a sufficiently small neighborhood of p, a finite union of these
cones is isometric to the metric cone over the corresponding finite union of A^^ faces
in Sp X. This proposition plays an important role in section 6.

Let Wi and W^ be Weyl cones in X with tip at p. The Weyl cone W, determines
a face 2^, W, in the spherical building (Sp X, A^).

Sublemma 4.4.1. — Suppose that S^ Wi = 2p Wg in Sp X. Then Wi n Wg is a
neighborhood ofp in Wi and W2.

Proof, — According to lemma 4.1.2 each point in the face S W^ == S W^ is
the direction of a segment in W^ n Wg which starts at p. We can pick finitely many
points in 5^ W^ == Sy W^ whose convex hull is the whole face. The convex hull of the
corresponding segments is contained in the convex set Wi n Wg and is a neighborhood
of p in Wi and Wg. D
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Locally the intersection of Weyl cones with tip at a point p is given by their
infinitesimal intersection in the space of directions 2 X:

Lemma 4.4.2. — If W^W^e^,, then there is a Weyl cone W e^ with
Sy W == Sp Wi n Sy Wg. For ^77 ̂  W there is an s > 0 so that

Wi n W^ n B,^) = W n B,^).

A^T^? ̂  intersection of Weyl cones with tip at the same point is locally a Weyl cone,

Proof. — By lemma 3.4.2 the intersection S^, Wi n 2^ Wg is a A^-face and
hence there is a W e^; such that S^ W = S^ W^ n 2^ Wg. By the previous sublemma,
there are W, e^, with W,' c W, and a positive e so that

W; n B,(^) = W, n B,Q&) == W n B,(^)

for any such W. If x is a point in Wi n V^ different from p then px e S W, so
^CW^ nW^. Therefore

Wi n W, n B,̂ ) == W; n W, n B,Q&) = W n B,̂ ). n

Corollary 4.4.3. — 7/' W^ ..., W^ e^, ^ ^r<? ^ ^ s > 0 ^A ^i?
(U, W,) n B^e) w^ isometrically to (U, G^ W,) n B(s) C C^ X ̂  log^.

Proo/. — Let ^ denote the finite subcomplex of S^ X determined by U, 2 VV,.
Pick CTI, ̂  e ̂ . By lemma 4.2.3 these lie in an apartment Sy A^^ c Sp X for some
apartment A^C X passing through p. If ^ is a face of S^W/and ^ is a face of
Sp W^., then by the sublemma above we may assume without loss of generality that
(W?i u W?2) n B^(e) c A^^ where W?i (resp. W?2) is the subcone of W, (resp. W,)
with Sy W?1 = o-i (resp. Sy W^2 = (Tg). Since there are only finitely many such pairs
(TI, 0-2 e ̂ , for sufficiently small s > 0, every pair of segments px[,px~^ c (J, W, bounds
a flat triangle provided | px^ | < s. D

4.4.1. Another building structure on Sy X, and the local behavior
of Weyl sectors

Let a C Sp X be a A^-apartment. By lemma 4.2.3 there is an apartment A C X
with Sy X = a, and by corollary 4.4.3 any two such apartments coincide near p.
Hence the walls in A which pass through p define a reflection group W^C Isom(a).

Lemma 4.4.4. — The reflection group W^ contains the reflection group W^ coming from
the thick spherical building structure on Sy X.

Proof. — Let m C a be a wall for the A^Q&) structure. There are apartments
A, C X through p, i = 1, 2, 3, so that Sy A^ = a and the S^ A, intersect in half-apart-
ments with boundary wall m. By corollary 4.4.3 the pairwise intersections of the A,
are half-spaces near p. Choose charts 1^5 ̂  ^3 e ^ anci ^t 9,, e W^ be the unique
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isometry inducing L .̂1 o L^.. Then <p^ o cpgg o (pg^ is a reflection at a wall w passing through
x === ^{p) and satisfying Sy L^ z<; = m, D

Fixing one apartment a C Sy X, we take a chart L : S -> a from the atlas ^{p),
and enlarge ^/^{p) by precomposing each chart i/ e ^^{p) with elements of
^(WJ C Isom(S). Clearly this defines an atlas ^{p) for a spherical building structure
modelled on A^(^) ^ a/W<,.

Let A, A! C X be apartments so that 2p A = a, Sy A^ == ai, and a n a^ contains
a chamber G C a. If L^ , L^ : E -> X are charts from the atlas e ,̂ then since A n A^ is
a cone near j& by lemma 4.4.3, it follows that Sp^ o i^1) : Sp A = a -> a^ == Sp A^
carries W^ faces in a to W^ faces in oc^, while at the same time it carries A^(j&) faces
of a to A^(j&) faces of ai. So every A^^(^) face oC Sy X is a W^ face for every
apartment a' containing <y. Since the W^/s are all isomorphic, this clearly implies that
2y W is a A^Q&) face for every Weyl sector with tip at p. So we have shown:

Proposition 4.4.5. — There is a spherical building structure (SyX,^(^)) modelled on
(S, A^(^)) so that ^^{p)-faces in 2^ X correspond bijectively to the spaces of directions of
Weyl sectors with tip at p. In particular^ if AC X is any apartment passing through p, then there
is a 1-1 correspondence between walls mC A passing through p and A^^(^) -walls in the apart-
ment Sy A, given by m \-> Sp m. When X is a thick building, then ^{p) coincides with ^/^(p)
for every p e X.

Corollary 4.4.6. — Corollary 4.4.3 holds when the W, are Weyl sectors with tip at p.
IfA^ and Ag be apartments in X then A^ n A^ is either empty or a Weyl polyhedron. In particular,
if AI n Ag contains a complete regular geodesic then A^ == Ag.

Proof. — Each Weyl sector with tip at p is a finite union of Weyl cones with tip
at p. Hence a finite union of Weyl sectors with tip at p is a finite union of Weyl cones
with tip at p, and the first statement follows.

If AI, A^ C X are apartments and p e A^ n A^, then Sy Qi n Sy Ag is a convex
^mod(P) subcomplex ofSy A,. Hence there are A^^(^) half apartments h^ ..., h^ C Sy A^
so that ft, A, = Sp AI n Sy Ag. By proposition 4.4.5, for each i there is a half-apartment
H, C A with S^ H, = ̂ . Therefore Ai n A^ n B^s) = (fl HJ n B^(e) and so A^ n Ag
is a Weyl polyhedron near p. Consequently A^ n Ag is a Weyl polyhedron. D

4.5. Discrete Euclidean buildings

We call the Euclidean building X discrete if the affine Weyl group Wg^ is discrete
or, equivalently, if the collection of walls in the Euclidean Coxeter complex E is locally
finite.

I f j & i s a point in E then <jy denotes the intersection of all closed half-apartments
containing^, i.e. the smallest Weyl polyhedron containing^. By corollary 4.4.6, each
affine coordinate chart i^ : E -> X maps Op to the minimal Weyl polyhedron in X which
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contains ^(p). Hence for any point x e X there is a minimal Weyl polyhedron ^
containing it. We say that x spans a^. CT^ is the intersection of all half-apartments containing
x and, if X is thick, the intersection of all such apartments. The lattice of Weyl poly-
hedra dy with x e o-y is isomorphic to the polyhedral complex JT2^ X.

Proposition 4.5.1. — In a discrete Euclidean building X each point x has a neighbor-
hood B^(x) which is canonically isometric to the truncated Euclidean cone of height s over 2^ X.

Proof. — Let L^ : E -> X be a chart with x = L^(^) and choose e > 0 so that any
wall intersecting Bg(^) contains p. Then for any point y eBg(^), the polyhedron dy
contains x and any apartment intersecting Bg(j&) passes through x. Hence any two
segments xy and 'xz of length < s lie in a common apartment and it follows that Bg(j&)
is isometric to a truncated cone. D

Assume now that W^ is discrete and cocompact. Then the walls partition E
into polysimplices which are fundamental domains for the action of Wy^. This induces
on X a structure as a polysimplicial complex. The polysimplices are spanned by their
interior points. If X is moreover irreducible, then this complex is a simplicial complex.

4.6. Flats and apartments

Proposition 4.6.1. — Any flat F in X is contained in an apartment. In particular, the
dimension of a flat is less or equal to the rank of X.

Proof. — Among the faces in a^g X which intersect the sphere c^ F we pick
a face a of maximal dimension. Then a n 8^ F is open in 8^ F. Let c be a geodesic
in F with c(co) e Int(o) and let A be an apartment containing c. Then <^its ̂  contains a
and c(— oo) and convexity implies ^its F c ^ms A- Since F n A + 0, it follows that
F is contained in the apartment A. D

As a consequence, we obtain the following geometric characterization of apartments
in Euclidean buildings:

Corollary 4.6.2. — The r-flats in X are precisely the apartments.

The next lemma says that a regular ray which stays at finite HausdorfT distance
from an apartment approaches this apartment at a certain minimal rate given by the
extent of its regularity.

Lemma 4.6.3. — Suppose ^ e 8^ X is regular and that the ray p?, remains at bounded
distance from an apartment F. Then every point x ep?, with

d{x9p^ sin(^(es,aA,j)
lies in F.
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Proof. — Letj^ be a point on the ray -n:^{p) ̂  and let z epy be the point where
the segment py enters A (we may have z ==j/). By lemma 4.1.2 Z.̂ , A) > 0, and by
lemma 3.4.1 we have Z.,{p, A) ^ d^^{Q(]Tz), 8 A^J. The comparison triangle A(a, b, c)
in the Euclidean plane for the triangle A(^, TT^(^), 2:) satisfies Z^(a, <;) ^ Tr/2 and
^ ^) ^ ̂ n^6^ a A^)_Hence ^, A) ^ ̂ , ^) sin(^^(6(^), 0 A^J). Since
6Q^) === 6(^) ->6Q^) asjy e^ tends to oo, the claim follows. D

Corollary 4.6.4. — Each complete regular geodesic which lies in a tubular neighborhood
of an apartment A must be contained in A. IfA-^ and A^ are apartments in X and Ag lies in a tubular
neighborhood of A^, then A^ = A^.

Another implication of the previous lemma is the following analogue of lemma 4.4.2
at infinity.

Lemma 4.6.5. — If C^G^CX are Weyl chambers with îts G! == ^cits ̂  then

there is a chamber G s G^ n Gg.

Proof. — It is enough to consider the case that the building X is irreducible. The
claim is trivial if the affine Weyl group is finite and we can hence assume that W^
is cocompact. If p is a regular geodesic ray in Gi then, by the previous lemma, it enters Cg
in some point p and C^ n Gg contains the metric cone K centered 3.1 p with ideal boundary
ftp^a K = ^its ̂ . Since W^g. is cocompact, K clearly contains a Weyl chamber. D

Proposition 4.6.6. — There is a bijective correspondence between apartments in X and
^Tits x g1^ h

A c x ^-> a^g A c a t̂e x.

Proof. — We have to show that every apartment K in &r^g X is the boundary
of a unique apartment in X. Since K contains a pair of regular antipodal points, there
is a regular geodesic c whose ideal endpoints lie in K. c is contained in an apartment A.
Since the apartments ft^ A and K have antipodal regular points in common, they
coincide as a consequence of lemma 3.6.1. A is unique by corollary 4.6.4. D

Lemma 4.6.7. — Let A be an apartment in X. If c is a geodesic arriving at p e A, it can
be extended into A.

Proof, — If 73 is the direction of c at p then, by lemma 3.10.2, T] has an antipode
in the spherical apartment Sp A. Hence c has an extension into A. D

Corollary 4.6.8. — For any point x and any apartment A in X the geodesic cone over A
at x lies in the cone over a^ts A. In particular, it is contained in a finite union of apartments passing
through x.
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Sublemma 4.6.9. — Let Y be a Euclidean building with associated admissible spherical
polyhedron A^. Then for each direction 8 e int(A^) the subset Q-^S) in the geometric
boundary 8^ Y is totally disconnected with respect to the cone topology.

Proof. ̂ — Suppose that y , y ' , y " eY so that 6(^/) = 6(^77) = 8. Define the
point z by^y n^/7 ==J/i. If ^ +./,./' then the angle rigidity axiom EB2 implies that
^(V^y) ^ ao^ 2^Amod(8? ^mod) and fay triangle comparison we obtain:

iy^i^—^(y,i77).sin (X.Q

As a consequence, for each z e Y the closed subset { ^ e ̂  Y | 6(S) == S and z ej^ } of
O" ̂ S) is also open and we see that each point in O'^S) has a neighborhood basis consisting
of open and closed sets. D

4.7. Subbuildings

A subbuilding X' c X is by definition a metric subspace which admits a Euclidean
building structure. This implies that X' is closed and convex and that B^ X' is a
spherical subbuilding of ^itg ̂  which is closed with respect to the cone topology. We
consider a partial converse:

Proposition 4.7.1. — Let X be a Euclidean building and B c ̂  X a subbuilding of
full rank. Then the union X' of all apartments A with ^^ A c B has the following properties'.
• If X' ^ closed then it is a subbuilding of full rank and the subbuilding a^ X' c a^ X

is the closure B of B wz7A r^^ /o ̂  ^on^ topology. Furthermore, X' ^ ̂  ̂ 'g^ subbuilding
with a^ X' = B.

• If X ^ discrete or locally compact then X' ^ closed.

Proof. — Observe that

X' U { A apartment | a^ A c B } = u { A apartment | a^ A ^ B }.

We first show that X' is a convex subset. Consider points ;q, ̂  e X'. There are apart-
ments A, with A; ieA,cX' . By lemma 3.10.2, there exist ^ e B^ A, with
^•(^-^Si) = TC. The canonical map ^ : ̂  X -^ 2^ X is a building morphism
and satisfies the assumption of proposition 3.11.2. Thus, since ^(^i, ^) == TT, there
is an apartment Sy^A c X' which contains Si, ^2 ^d projects isometrically to S^ X
via ^. This means that ^ e A. Consequently ;c^2 C A and X' is convex. Similarly, one
shows that any ray and geodesic in X' lies in an apartment A which is limit of apart-
ments A^ with a^te \ c B. i-e. ^its A <= B and A C X'. The building axioms are
inherited from X and if X' is a closed subset then it is complete and a Hadamard space.
This proves assertion (i).

(ii) Assume that X is discrete and x e X'. Any point x ' e X' lies in an apartment
A ^ X', and ifx' is sufficiently close to x then A contains x. Hence X' is closed in this case.
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Assume now that X is locally compact and that (.yj C X' is Gauchy with limit
x e X. Let p e X' be some base point. Any segment px^ lies in some apartment A^ c X'
and we can pick rays px^ ̂  in A^ so that lim x^ = x and 6^ = Qpx. After passing to
a subsequence, we may assume that (^) converges to a point ^ e B. Since 6^ = 6^,
lemma 4.1.2 implies that the segments p^ n^C X' n^ converge to p^. Hence p^
contains x and lies in X'. D

4.8. Families of parallel flats

Let X be a Euclidean building and F c X a flat. If another flat F' has finite
Hausdorff distance from F then F and F' bound a flat strip, i.e. an isometrically embedded
subset of the form F X I with a compact interval I C R. In this case, the flats F and F'
are called parallel. Consider the union Pp of all flats parallel to F; Pp is a closed convex
subset of X and splits isometrically as

Pp ^ F x Y.

Proposition 4.8.1. — The set Pp is a subbuilding of X and Y admits a Euclidean building
structure.

Proof. — By proposition 4.6.1, Pp is the union of all apartments which contain F
in a tubular neighborhood, and c^its PF ls ̂  union of all apartments in ft^ ̂  which
contain the sphere c^ite ^- ^le ^bset (^ Pp c ^Tits^ ls c^vex by lemma 4.1.2 and
a subbuilding by proposition 3.10.3. Proposition 4.7.1 implies that Pp is a subbuil-
ding of X. As a consequence, the Hadamard space Y inherits a Euclidean building
structure. D

If dim(F) = rank(X) — 1, then Y is a building of rank one, i.e. a metric tree.
Since Sy Y is in this case a zero-dimensional spherical building, any two raysj^i andjp^
in Y either initially coincide or their union is a geodesic. This implies:

Lemma 4.8.2. — (i) Let Hi and Hg be two flat half-spaces of dimension rank(X) whose
intersection H^ n H^ coincides with their boundary fiats. Then Hi u H^ is an apartment.

(ii) If AI, Ag, A3 c X are apartments, and for each i 4=j the intersection A^ n A^ is
a half-apartment, then Ai n Ag n A3 is a wall in X.

Lemma 4.8.3. — Let Gi, Cg, G3C ^nts^- ^ distinct adjacent chambers, with
TT === d n G^ n €3 their common panel. Then there is a p e X so that if

Cone{p,n) = u{p^\^en},

then logy.(G^) C Sp, X are distinct chambers for every p' e Gone(^, 71) and any apartment A C X
such that 9^ A contains two of the G, must intersect Gone(j&, 71).

Proof. — Let m C ft^ X be a wall containing the panel TT. Then each chamber C,
lies in a unique half-apartment hi bounded by m, and pairs of these half-apartments
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form apartments. Let A,, be the apartment in X with 8^^=h^h,. By
lemma 4.8.2, fl Ay is a wall M C X , and we clearly have 8^M = m. If p e M,
then the half-apartments log,, ̂  C Sp X are bounded by log, m = 2, M, so they are
distinct; otherwise f1 A« + M. Hence the chambers log, G. C log .̂ are distinct
chambers.
^ ^ If A C X is an apartment with G. u G, C 8^ A, i + j, then there are chambers
C,, C,. C A n A,, with 9^ C, = G., 8^ C, = G,. The Tits boundary of the Weyl poly-
hedron P = A,, n A contains G( u G,, so it intersects ConeQi», w). n

4.9. Reducing to a thick Euclidean building structure

This subsection is the Euclidean analog of section 3.7.

Definition 4.9.1. — Let X be a Euclidean building modelled on the Euclidean Coxeter
complex (E, W^), with atlas ^'. The a/fine Weyl group may be reduced to a reflection subgroup
XffCW^ if there is a W^ compatible subset ^' C ̂  forming an atlas for a Euclidean
building modelled on (E, W^).

In contrast to the spherical building case, the affine Weyl group of a Euclidean
building does not necessarily have a canonical reduction with respect to which it
becomes thick. For example, a metric tree with variable edge lengths does not admit
a thick Euclidean building structure. However, there is always a canonical minimal
reduction, and this is thick when it has no tree factors.

Proposition 4.9.2. — Let X be a Euclidean building modelled on (E, W^). Then there
is a unique minimal reduction W^C W^ so that (X, E, W^) splits as a product II X. where
each X, is either a thick irreducible Euclidean building or a \-dimensional Euclidean building.
The thick irreducible factors are either metric cows over their Tits boundary (when the affine Weyl
group has a fixed point) or their affine Weyl group is cocompact.

Proof. — We first treat the case when (^ X, A^) is a thick irreducible spherical
building of dimension at least 1.

Step 1. — Each apartment AC X has a canonical affine Weyl group G^. If AC X is
an apartment, a wall M C A is strongly singular if there is an apartment A' C X so that
A n A' is a half apartment bounded by M. Since 8^ X is thick and irreducible, for
every wall m C 9^ A there is a strongly singular wall M C A with 9^ M == m.

Sublemma 4.9.3. — The collection ̂  of strongly singular walls in A is invariant under
reflection in any strongly singular wall in A.

Proof. — Note that a wall M C A is strongly singular if and only if S M C S X
is a wall with respect to the thick building structure (2, X, A^)); this" is because
any half-apartment hC S, X with boundary S, M can be lifted to a half-apartment

21



162 BRUCE KLEINER AND BERNHARD LEEB

H C X with boundary M, Sy H = h by applying proposition 3.11.4 to the surjecdve
spherical building morphism logy : 8^^ X -> Sy X.

If Mi, M^C A are strongly singular walls intersecting at p e A, then Sy M^ is a
A^(^) wall in Sy A C S^, X, and so if we reflect Sy M^ in Sy M^ (inside the apart-
ment Sy A), we get another A^(^) wall which is then the space of directions of the
desired strongly singular wall M^.

Now suppose that Mi, Mg e^^ are parallel. A^^ is irreducible so there is a
strongly singular wall M3 intersecting both M^ at an acute angle. Reflect Mg in M3
to get M4, reflect M3 in M^ to get M^, and M^ in M^ to get Mg, and finally reflect Mg
in Mg to get a wall which is the image of M^ under reflection in Mr The walls M, are
all in .̂ , so we are done. D

Proof of Proposition 4.9.2 continued. — Hence for every apartment AC X the
collection of strongly singular walls in A gives us a group G^ C Isom(A) which is gene-
rated by reflections.

Step 2. — The group G^ is independent of A. Since Spits GA c ̂ "^Tite A) is an
irreducible Goxeter group, it follows that G^ is either a discrete group of isometries
or it has a dense orbit. When G^ is discrete, it is generated by the reflections in the
strongly singular walls which intersect a given G^-chamber in codimension 1 faces.
When G^ has a dense orbit, it is generated by all the reflections in strongly singular
walls passing through any open set. If two apartments Ai and Ag intersect in an open
set, it follows that G^ is isomorphic to G^ ; therefore G^ is independent of A. So there
is a well-defined Coxeter complex (E, W^) attached to X.

Step 3. — Finding (E, W^) apartment charts. If Z is a convex domain in an apart-
ment A C X and i: U -> Z is an isometry of an open set U C E onto an open set in Z,
then there is a unique extension of L to an isometry of a convex set Z C E onto Z.

Pick an apartment Ag C X and an isometry io : E -> Ao which carries W^C Isom(E)
to G^ . Then restrict to a W^ chamber C^C E and its image Go == ^o(^o) ^ AQ. Given
any chamber GC X, there is an apartment A^ containing subchambers of C and Go.
There is a unique isometry 4 : E -> A^ so that if1 and LQ" 1 agree on the subchambers
Go n AQ C AI, and a unique isometry i^ : E D C -> G so that ^1 and i^1 agree on the
subchamber G n A^. If Ag is another apartment with c^g Go, c^g G C &r^g Ag, we get
another isometry i^E-^Ag; but the convex set Ai n Ag contains subchambers of
Co and C, so 13"1 and ^ 1 agree on a subchamber of G. Therefore i^ is independent of
the choice of apartment asymptotic to Go u G.

Sublemma 4.9.4. — Let AC X be an apartment, and let G^, GgC ft^A be adjacent
^^-chambers (G^ n Gg is a panel). For i == 1, 2 we let ^ (A) : E -> A be the unique
isometric extension of L .̂ where C^ C A is a W^-chamber with 8^^ C^ = G». Then
^(^c^eW^.
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Proof. — For i == 1, 2 let A,,C X be an apartment with Co u G,C 8^\. If
GI is contained in the convex hull of Go u Gg (or G^C ConvexHull(Co u G^)) then
GI u GgC 8^(A nAg), so the sublemma follows from the fact that ^^(A) restricted
to A n Ag coincides with ^"^AnAa- So we may assume that there is a chamber
^3° ^Tits^i n ^Tite^2 which meets GI and Gg in the panel TT = G^ n G^. By
lemma 4.8.3 (applied to the original Euclidean building (X, E, W^)), there is a
point ̂  e Ai n Ag so that ConeQ&, 7r) C Ai n Ag and logy(G,) C 2y X are distinct chambers
for i = 1, 2, 3. Therefore 4"1 and i^1 agree on ConeQ^, n). Hence the isometries ̂ W^ ^a1

agree on Gone (p, n), which means that ^/(A) o I(^(A) : E-^E is a reflection. But
since S^(Gone(^, -n;)) = log^(Ci) n log^Gg) n log,^), ConeQ&, 7r) spans a strongly
singular wall in A and so the reflection ^(A) o LQ (A) e W^f. D

Proof of Proposition 4.9.2 continued. — By sublemma 4.9.4, we see that for each
apartment A C X, there is a canonical collection of isometries i.: E -> A which are
mutally W^ compatible, and which are compatible with the ^:Q ->C for every
chamber C C A. We refer to such isometries as W^y-charts, and to the collection of
W^-charts (for all apartments) as the (E, W^) atlas ^ ' .

Sublemma 4.9.5. — Let A^AgCX be apartments with d-dimensional intersection
P == Ai n A^. Ifp e P is an interior point of the Weyl polyhedron P, then there is an apartment
A3 C X so that A3 contains a neighborhood of p e P, and ̂  n A, contains a Weyl chamber.

Proof. — We have S^ Ai n S^ Ag = S^ P by lemma 4.4.3. Let (TI C S^ P be a
d — 1-dimensional face of Sy P, and let ^ be the opposite face in 2p P. If T^ C Sp A^
is a chamber containing a^ then we may find an opposite chamber T^C SyA^. But
then Tg contains a face opposite CTI, and this must be a^ since each face in an apartment
has a unique opposite face in that apartment. Let G, C ̂  A, be the chamber such
that logp G, = T,. Then there is a unique apartment A3C X with G^ u GgC ̂ ^3.
SyPC 2yA3, so A3 has the properties claimed. D

Proof'of'Proposition 4.9.2 continued. — IfA^AaCX are apartments with Ai n A^ + 0,
then any W^ charts L, : E -^A, are W^ compatible since by sublemma 4.9.5 we
have a third apartment A3 C X so that 4 and 1.2 are both W^ compatible with 13 : E -> A3
on an open set U C A^ n Ag. Hence ^ ' gives X the structure of a Euclidean building
modelled on (E, W^). From the construction of W^ it is clear that (X, ja^) is thick.

Step 4. — The case when X is a \-dimensional Euclidean building^ i.e. a metric tree. Let
AoC X be an apartment, ^Ao = { v)i, T^}- For each p eX let TC^(^) eAo be the
nearest point in AQ, and p^ e AQ be a point (there are at most two) with
^(^Ao? ^AoC?)) = ^(A Ao). Let ̂  C Ao be the set of points p^ where p e X is a branch
point: | SpX | > 3; let GC Isom(Ao) be the group generated by reflections at points
in^. For each ^ g g^its ̂ \7]! there is a unique isometry i^ from the apartment Ao = :f\^rh
to the apartment ̂  ^ which is the identity on the half-apartment r^r^ n 7 .̂ If^i + ^?
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then we have two isometrics ^.5 4 : ̂ o "> Si ^2 where ^~1 agrees with i .̂ on ̂  ^ n ̂  ^g.
By inspection ^ 1 o 4 e G. Hence for each apartment A C X we have a well-defined
set of isometrics Ag —^ A. As in step 3 it follows that these isometries are G-compatible,
so they define an atlas ^ ' for a Euclidean building structure on X.

Step 5. — X is an arbitrary Euclidean building modelled on (E, W^). Let W = ft^ W^,
and let W C WC Isom(&^ E) be the canonical reduced Weyl group of (^ X given
by section 3.7. Let W^C Isom(E) be the inverse image of W under the canonical
homomorphism Isom(E) -> Isom(^^ E). Let 6' : ̂ its ̂  ~^ ^mod = S/W be the
A^-anisotropy map. We may define A^-directions for rays x^ C X by the formula
Q\x^) = 6'(^) eA^. We define the A^-direction of a geodesic segment ^yC X by
setting 6'(^) == W[x^ for any ray x^ extending ~xy\ if ^3 is another ray extending ~xy
then ^ e ft^ X and ^ e ftp^ X are both antipodes of T] e ft^g X where J^ is a ray
extending yx, so 6'(^) is well-defined. The remaining Euclidean building axioms follow
easily from the fact that any two segments ^c, Jy initially lie in an apartment A C X
(corollary 4.4.3) and for our compatible (E, W^f) apartment charts we may take all
isometric embeddings i: E -> X for which ^^ i : ̂ nts E "̂  ^Tits ̂  ls an apartment
chart for (B^X,A^). _

We may now apply proposition 4.3.1 to see that (X, E, W^f) splits as a product
of Euclidean buildings (X, E, W^) = (FIX,, II E,, II W^) so that each S^X, is
irreducible. Let (W^)'CW^, ^ be the canonical subgroup and atlas constructed
in steps 1-4, and set W^ == II (W^)' C Isom(E), ̂ ' = IW,. Then (X,, E,, (W^)', <)
has the properties claimed in the proposition. Fix an apartment A^C X and a chart
^Ao e ̂ - 1̂  ^05 .. .3 Ag; === Ao is a sequence of apartments so that A,^ n A, is a half-
apartment for each i, then there is a unique isometry g ^ : A^_i -^A^ so that ^ is the
identity on A^ _ ^ n A^. Axiom EB4 implies that g ^ o ... o ̂ i o i^o e ̂  fo1' each i, so in
particular g==g^o ... 0^1 e i.Ao*(^aff)- F1^111 the construction of (W^)' it is clear
that the group of all such isometries g : AQ -> AQ contains ^(^aft) c Isom(Ao) where
L^ e ̂ f. So W^fC W^ is a minimal reduction of Wg^. D

4.10. Euclidean buildings with Moufang boundary

This is a continuation of section 3.12.

Proposition 4.10.1 (More properties of root groups). — Let's be a thick irreducible spherical
building of dimension at least 1, and let X be a Euclidean building with Tits boundary B.
1. For every root group U^C Aut(B, A^) and every g e U^ there is a unique automorphism

g^: X -> X so that ,̂̂  g^ == g. In other words, if G is the group generated by the root
groups, then the action of G on ft^ x " extends " to an action on X by building automorphisms.
Henceforth we will use the same notation to denote this extended action.

2. Suppose g e U^ is nontriuial. If A s X is an apartment such that a^ A D a, then g(A) n A
is a half-apartment^ moreover Fix (g) n A == g{A) n A.
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Proof. — See [Ron, Affine buildings II, esp. prop. 10.8], or [Ti2, p. 168].

For the remainder of this section X will be a thick, nonflat irreducible Euclidean
building of rank ^ 2. Therefore A^ is a spherical simplex with diameter < n/2 and
the faces of <^g X define a simplicial complex.

Lemma 4.10.2. — Let AC X be an apartment, po e X, p eA the nearest point in A,
and a C 8A a root. Then the stabilizer of p^ in the root group U^ fixes p.

JProof. — Using lemma 3.10.2 extend the geodesic segment ~p^p to a geodesic
^YPo S == Po~P u?^ so that the rayjS^ lies in the half apartment Gone{p, a)C A.lfg e U^
fixes RQ, then it fixes the ray p^ ^, and hence the half-apartment Gone(j&, a). D

We now assume that the spherical building (B^g X, A^) is Moufang. Pick
p e X, and let (2^ X, A^Q&)) denote the thick spherical building defined by the space
of directions Sy X with its reduced Weyl group (see section 3.7). Suppose H^. C X
is a half-apartment whose boundary wall passes through p, h+ drf Sp H^_ C 2^, X is a
^oa{P) root5 and let a^ == B^ H+ C B^ X. If U^ is the root group associated
to a^., and V^ C U^ is the subgroup fixing p, then we have a homomorphism
2,:V^Aut(S,X,A^)).

Z^TTza 4.10.3. — The image ofV^ is the root group U^ associated with h^, and this
acts transitively on apartments in 2^ X containing h^. In particular, (Sy X, A^(j&)) is a thick
Moufang spherical building.

Proof. — By corollary 3.11.5, if h_ C S^ X is a A^(j&) root with
^_=^=s,(aH^),

then there is a half-apartment HL C X so that H_ and H^. have the same boundary
and S^ H_ == h_. Given two such A^(^) roots AL, ̂  C 2^ X so that AL u A^. forms
an apartment in Sp X, we get two half apartments Hi. so that HL u H_^. forms an apart-
ment in X. Since (^ X, A^J is Moufang, the root group U^ C Aut^ X, A^J
contains an element which carries H1. to H2.. By 3.12.2, g ss extends " uniquely to an
isometry g : X -> X which carries the apartment HL u H^ to the apartment H2. u H^.,
fixing H^. (see 4.10.1). It remains only to show that the isometry Sp^: Sy X -> Sp X
is contained in the root group U^C Aut(S^ X, A^(^)). Clearly S^ fixes ^. Let
C C Sp X be a A^(j&) chamber such that G n h^. contains a panel n with TC 4: 8h^..
Using proposition 3.11.4 we may lift G to a (subcomplex) Q C ̂  X so that G n ̂
maps isometrically to G n BA+ under logp : a^ X -^ Sy X. ^ fixes an interior point
of C, so S^ g fixes an interior point of C, which implies that Sy g fixes G as desired. D

Definition 4.10.4. — A point s e X is a spot if either
1. The affine Weyl group W^ has a dense orbit or
2. W^y ij discrete and s corresponds to a 0-simplex in the complex associated with X.

If A c X, then Spot (A) is the set of spots in A.
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Lemma 4.10.5. — If AC X is an apartment, po e A is a spot, then for every p 4= po there
is a root a C 8^ A and a g e V^ so that g fixes po but not p.

Proof. — For each A^(^o) root h+ C S^ X we have a singular half-apartment
H^. C A with S^ H^ == h+, and this gives us a root a^ = a^ H^ C ^itsX? tne root

group U^, and the subgroup V^C U^ fixing^. By lemma 4.10.3, the image of V^
in Aut(2^X,A^(A))) is the root group U^. Since (S^X,A^(A))) is Moufang^
the group G^ generated by the V^'s as A+ runs over all A^(^o) roots in 5^ A acts
transitively on A^(j^) chambers in S^X (see 3.12.2). I f p e X — p o is fixed by
every V^, then j&o^ e ̂ o x is fixe^ ^Y ^PO' wllich means that it lies in every A^(^o)
chamber of S^ X, forcing ^oj^ eS^A. Hence the point q eA nearest p is different
from /?o, so we may find a singular half-apartment H^_ C A containing RQ but not <y
(because po is a spot), and use the root group Ug g to move ^ while fixing H^. This
contradicts the assumption that p is fixed by every V^ . D

Proposition 4.10.6. — Let X be a thick, nonflat Euclidean building of rank at least two,
and suppose c^us X ls an irreducible Moufang spherical building. Let G C Aut(^^ X, A^d)
be the subgroup generated by the root groups of <^g X, and consider the isometric action of G on X.

1. The fixed point set of a maximal bounded subgroup M C G is a spot, and the stabilizer of a
spot is a maximal bounded subgroup.

2. A spot p e X lies in the apartment A C X if and only if p is the unique spot in X which is
fixed by the stabilizer ofp in V^for every root aC a^ A.

3. If A C X is an apartment, and a C îte ̂  ls a root^ ^^ as 8 runs through all non-trivial
elements ofV^, we obtain all singular half-apartments HC A with ^ritgH == a as subsets
A n Fixte).

Proof. -— Let M c G be a maximal bounded subgroup. By the Bruhat-Tits fixed
point theorem [BT], M has a nonempty fixed-point set Fix(M), which contains a spot
since when W^ is discrete the fixed point set of a group of building automorphisms
is a subcomplex. By lemma 4.10.5, we see that if RQ e Fix(M), then maximality of M
forces Fix(M) = [p^ }. Conversely, if RQ e X is a spot, then the stabilizer of po has fixed
point set {po} by lemma 4.10.5, and by the Bruhat-Tits fixed point theorem, the
stabilizer is a maximal bounded subgroup.

For every p e X and every apartment A C X, let G(p, A) be the group generated
by the stabilizers ofp in the root groups V^, where aC ^^A is a root. I f j & e A C X
is a spot, then by lemma 4.10.5 we have Fix(GQ&, A)) == {^}. If p i AC X, then the
nearest point po^Ato? is contained in Fix(G(/», A)) bylemma4.10.2$ hence Fix {G{p, A))
contains a spot other than po.

Claim 3 follows from property 2 of proposition 4.10.1, the fact that ^rite^ ls

Moufang, and the fact that every singular half-apartment is the intersection of two
apartments. D
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Definition 4.10.7. — -if AC X is an apartment^ then the half-apartment topology on
Spot(A) is the topology generated by open singular half-apartments contained in A.

With the half-apartment topology, Spot (A) is discrete when W^ is discrete and
coincides with the metric topology when W^f has dense orbits.

5. ASYMPTOTIC CONES OF SYMMETRIC SPACES
AND EUCLIDEAN BUILDINGS

In this section we arrive at the heart of the geometric part in the proof of our
main results. We show that asymptotic cones of symmetric spaces and ultralimits of
sequences of Euclidean buildings (of bounded rank) are Euclidean buildings.

Our main motivation for choosing the Euclidean building axiomatisation EB1-4
is that these axioms behave well with respect to ultralimits. Indeed, the Euclidean
building axioms EB1, EB3 and EB4 which are also satisfied by symmetric spaces, i.e. the
existence of A^^-directions and an apartment atlas, pass directly to ultralimits. However,
unlike Euclidean buildings, symmetric spaces do not satisfy the angle rigidity axiom EB2.
The verification of EB2 for ultralimits of symmetric spaces (lemma 5.2.2) is the only
technical point and, as opposed to the building case (lemma 5.1.2), non-trivial. Sym-
metric spaces satisfy angle rigidity merely at infinity; their Tits boundaries are spherical
buildings. Intuitively speaking, the rescaling process involved in forming ultralimits
pulls the spherical building structure (the missing angle rigidity property) from infinity
to the spaces of directions.

5.1. Ultralimits of Euclidean buildings are Euclidean buildings

Theorem 5 .1 .1 . — Let X^, weN, be Euclidean buildings with the same aniso-
tropy polyhedron A^^. Then, for any sequence of basepoints *^eX^, the ultralimit
(X^, *(J = co-lim(X^, *„) admits a Euclidean building structure with anisotropy polyhedron A^.

Proof. — The building X^ is a Hadamard space (lemma 2.4.4). A Euclidean
building structure on X^ consists of an assignment of A^^-directions for segments
(axioms EB1 + EB2) and of an atlas of compatible charts for apartments (axioms EB3
+ EB4), cf. section 4.1.2. We assume that X has no Euclidean de Rham factor. The
general case allowing a Euclidean de Rham factor is a trivial consequence.

EB1. — We can assign a A^^-direction to an oriented geodesic segment in X^
as follows. A segment x^y^ arises as ultralimit of a sequence of segments x^y^ in X,
and we define the direction as:

^ i ) °(AoJU •== ̂ -lm ̂ n^n) (- ^mod-

f37) exists because A_. is compaThe ultralimit (37) exists because A^^ is compact. Inequality (28) in EB1 passes to
the ultralimit:

^nod^-1™ ^^Jn). (o-lim ̂ ^D) < ^(J^ ^J-
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This implies that the left-hand side of (37) is well-defined and

^noc^6^-^ ̂ ^D) ^ 4.jĵ  ^J-

Thus axiom EB1 holds. It implies lemma 4.1.1. Therefore, segments which contain
a given segment have the same A^-direction and we can assign A^-directions to
geodesic rays.

EB2. — Since geodesies are extendible in X^, it suffices to show:

Lemma 5.1.2. — If x^ e X^ and ^, ̂  e a^g X^ ̂  ^J^o, ̂ J ^ contained in
D:=D(6(^),6(^)).

Proo/*. — The rays x^ ̂  and ^ T)^ are ultralimits of sequences of rays x^ ̂
and ^T^ in X^ and we can choose ^, ̂  e ft^ X^ so that 6(^J = 6(^ ^J and
^(^n) = 6(^(0 ^o)- Let p^ : [0, oo) -> X^ be a unit speed parametrisation for the geodesic
ray x^ ^. The angle ^Lp (o(^, T]^) is non-decreasing and continuous from the right in t
(lemma 2.1.5) and, since X^ satisfies EB2, takes values in the finite set D. For d eD
set t^d) :=min{^ 0 : Z-p^(^, Y]J ^ rf}e[0,o)] and ^(rf) := o-lim ^(rf). Then
there exist do e D and T > 0 with t^(do) == 0 and 2T ̂  ^(rf) for all d> do. The
points ^:=p^(^(rfo)) and <':= p^(T) satisfy for co-all n, < :== <o-lim < == ̂ ,
^ := (o-lim ^^ ==[= ^ and the ideal triangle A(^, A:^', T]^) has angle sum TT. By a version
of the Triangle Filling Lemma 2.1.4 for ideal triangles in Hadamard spaces, A(^, x^ , •/)„)
can be filled in by a semi-infinite flat strip S^. The ultralimit co-lim S^ is a semi-infinite
flat strip filling in the ideal triangle A(^, x'^ Y]^) and therefore

4.J^ ^.) = <^-lim ^(Sn, ̂ J == do e D,

as desired.

EB3 and EB4. — After enlarging the affine Weyl groups of the model Coxeter
complexes of the buildings X^, we may assume that the X^ are modelled on the same
Euclidean Goxeter complex (E, W^f) whose affine Weyl group W^ contains the full
translation subgroup of Isom(E), i.e. p'^W) == W^f where p : Isom(E) -> Isom^^ E)
is the canonical homomorphism (26) associating to an affine isometry its rotational
part. (Here we use that the X^ do not have Euclidean factors.)

The atlases ̂ \ for the building structures on X^ give rise to an atlas for a building
structure on X^ as follows: If !„ e ^/^ are charts for apartments in X^ so that
co-lim d{^{e), *J < oo for (one and hence) each point ^ e E , then the ultralimit
t^ := co-lim i^ : E-> X^ is an isometric embedding which parametrises a flat
in X^. The collection s/^ of all such embeddings L^ satisfies axiom EB3 in view
of lemma 2.4.4. Axiom EB4 holds trivially, because coordinate changes i^1 o L^ between
charts L^ , i^ e ̂ ^ are A^^-direction-preserving isometrics between convex subsets
of E and such isometries are induced by isometrics in p^^W) = W^. Hence ^^ is
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an atlas for a Euclidean building structure on X^ with model Coxeter complex (E, W^y),
and the proof of the theorem is complete. D

Corollary 5.1.3. — Let X be a Euclidean building modelled on the Coxeter complex (E, W^)
and denote by Wg^ the subgroup of Isom(E) generated by Wg^ and all translations which preserve
the de Rham decomposition of (E, W^) and act trivially on the Euclidean de Rham factor. Then
any asymptotic cone X^ inherits a Euclidean building structure modelled on (E, W^f). The
building X^ is thick if X is thick and the affine Weyl group W^ is cocompact.

Proof. — We have X^ === <o-lim(X^, *J where the \ are scale factors with
co-lim \ == 0, X^ is the rescaled building \ X^ and *„ e X^ are base points; X^ inherits
the Euclidean building structure modelled on (E, W^) which was constructed in the
proof of the previous theorem.

Suppose now in addition that X is thick and W^ is cocompact. Then any wall
w^C X^ branches, i.e. there are half-apartments H^C X^, i == 1, 2, 3, so that the inter-
section of any two of them equals w^ and the union of any two of them is an apartment
(lemma 4.8.2). If a sequence of walls w^ satisfies (o-limJ(z<^, *J < oo, it follows that
the ultralimit of the sequence (wj is a branching wall in X^. Since W^ is cocompact
by assumption, there is a positive number d so that any flat in X, whose ideal boundary
is a wall in ftp^ X, lies within distance at most d from a branching wall in X. In view
of co-lim?^ = 0, this implies that any flat in X^, whose ideal boundary is a wall in
fi^X^, is a branching wall. Thus, the Euclidean building structure on X^ is thick. D

5.2. Asymptotic cones of symmetric spaces are Euclidean buildings

We start by recalling some well-known facts from the geometry of symmetric
spaces which will be needed later; as references for this material may serve [BGS, Eb].

Let X be a symmetric space of noncompact type. In particular, X is a Hadamard
manifold, i.e. a complete simply-connected Riemannian manifold of nonpositive
sectional curvature. To simplify language, we assume that X has no Euclidean factor.
The identity component G of the isometry group of X is a semisimple Lie group and
acts transitively on X. A k-flat in X is a totally geodesic submanifold isometric to
Euclidean yfe-space. We recall that G acts transitively on the family of maximal flats.
In particular, any two maximal flats in X have the same dimension r; it is called the
rank of X. We will call the maximal flats also apartments. Pick an apartment E in X and
let Wa^ be the quotient of the set-wise stabiliser Stabo(E) by the pointwise stabiliser
Fix^E). Then W^ can be identified with a subgroup W Isom(E). This subgroup is
generated by reflections at hyperplanes and contains the full translation group. We
call (E, W^) the Euclidean Coxeter complex associated to X. Its isomorphism type
does not depend on the choice of E, because G acts transitively on apartments. Consider
the collection of all isometric embeddings i: E -> X so that Wg^ is identified with
StabQ(i(E))/NormQ(i(E)). Walls, singular flats, Weyl chambers et cetera are defined

22
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as images of corresponding objects in E via the maps i. Note that the singular
flats are precisely the intersections of apartments. The induced isometric embeddings
^TitsL: ^Tits ̂  ~^ ^Tits X form an atlas for a thick spherical building structure on
ftriteX modelled on the spherical Goxeter complex (a^E,W) == ̂ (^ ^ff)- The

group W is isomorphic to the Weyl group of the symmetric space X. Composing the
anisotropy map O^x : ̂ nts X -> A^ with the map SX -> ̂  X which assigns to every
unit vector v the ideal endpoint of the geodesic ray t \-> exp(^) one obtains a natu-
ral map

(38) 6:SX-^A^

from the unit sphere bundle ofX to the anisotropy polyhedron A^. We will call Q(u)
the Indirection o f y e S X ; A^-direcdons of oriented segments, rays and geodesies
are defined as the A^-direction of the velocity vectors for a unit speed parametrisation.
The orbits for the natural G-action on SX are precisely the inverse images under 6 of
points. Let Sp X be the unit sphere at p e X, equipped with the angular metric, and
let Gy be the isotropy group of p. Then 6 induces a canonical isometry Sy/Gp ^ A^
where Sp/Gp is equipped with the orbital distance metric. The quotient map Sy X ->• A^
is 1-Lipschitz and, for any x,y e X we have the following counterpart to inequality (28):

(39) ^nodWA e(^)) < L^y} ̂  2 ,̂j).
The goal of this section is to prove the following theorem.

Theorem 5.2.1. — Let X be a non-empty symmetric space with associated Euclidean
Coxeter complex (E, W^). Then, for any sequence of base points *„ e X and scale factors \
with co-lim \ == 0, the asymptotic cone X^ = o>-lim(X^ X, *J is a thick Euclidean building
modelled on (E, W^). Moreover, X^ is homogeneous, i.e. has transitive isometry group.

Proof. — EB1. — Let A^ be the anisotropy polyhedron for (E, W^). The
construction of A^-directions for segments in X^ is the same as in the building case.
We define directions by (37) and (39) implies that the definition is good and that EB1
holds.

EB2 and EB4. — The Euclidean Goxeter complex (E, W^) is invariant under
rescaling, because W^C Isom(E) contains all translations. Apartments in X^ and
their charts arise as ultralimits of sequences of apartments and charts in X, and axioms EB3
and EB4 follow as in the building case, cf. section 5.1.

EB2. — The only nontrivial task is to verify the angle rigidity axiom EB2. This
will be done in the following lemma.

Lemma 5.2.2. — If? e X^ and x^ ̂  e X, - {p}, then Z.̂ , ̂ ) e D(6(^), 6(^)).

Proof. — If z ^ p x [ - p and z^p, then Z-^i, ̂ )-> Z.^i, ̂ ) and
^(P? ^2) -^ n — ^p(^i? ^2) by lemma 2.1.5. Since 6(^ x^ -> 9(^) we canfind x'^ e z^x^
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^e^^_and^6^ such that Z.^(^,^) -. Z,(̂ ), 2 ,̂ ̂ ) ^TC- Z^,^),
and 9(^^) = 6(2^2)-^6^2). Since geodesic segments in Xy are ultralimits of
geodesic segments in \, X, we can find sequences ̂ , ̂ , x^, ̂  e X such that ̂  e^^,

(̂̂ It, ̂ ) -^ ̂ (-tl, ̂ 2), 2^(^, ̂ ) ̂  Tt - L^, ̂ ),

^^A^) -^ 8(^2), 9(A îD -» e(^),
and finally \z^x^\, \ ̂  x^ |, | z^p^ \ -> oo. Applying a sequence of elements
gk e G = (Isom(X))0 we may assume in addition that ̂  is a constant sequence, ^ = o.
Hence the sequences of segments 0^,0^,0^ subconverge to rays o^, o^,' and OT]
respectively, which satisfy the following properties:

1. 9^x(^)=9(^)=6(^);
2. ^rite(Si, ^2) < Z-p(a;i, ̂ ), Z.Titg ,̂ ^2) < 7t — Z-p(A;i, ^2) by lemma 2 . 3 . 1 ;
3. oSi UOTI is a geodesic, so Z.Tits(Si, •n) = w.

We conclude that

^i, ̂ ) = ^Tits(^ ^2) eD(9(^i), 8^2)) = D(6(^), 6(^))
as desired. D

Hence we have constructed a Euclidean building structure on X . Since G acts
transitively on Weyl chambers in X, it follows that the isometry group of X^ acts
transitively on Weyl chambers in X^; in particular, X^ is homogeneous. To see" that
the building structure on X^ is thick it is therefore enough to check that the induced
spherical building structure of S^ X^ modelled on (a^ E, W) is thick. One way
to see this is to construct a canonical isometric embedding a of the thick spherical
building <^ X modelled on (<)„„ E, W) into S.^X^ by assigning to S e 8^ X
the initial direction in -^ of the geodesic ray <o-lim *„ ^ in X^. That a is isometric
follows, for instance, from the definition (8) of the Tits distance. This finishes the proof
of the theorem, n

6. THE TOPOLOGY OF EUCLIDEAN BUILDINGS

In this section, X will denote a rank r Euclidean building. The main goal of the
section is to understand homeomorphisms of X. As motivation for the approach taken
here, consider a closed interval I topologically embedded in an R-tree T. Because every
interior point p e I — 81 of the interval disconnects T, every path c : [0, 1] -^ T joining
the endpoints of I must pass through p, i.e. c(f0, 1]) 2 I. A similar phenomenon occurs
in X if we consider topological embeddings of closed balls B C X of dimension equal
to rank(X): if [c] e H,(X, 3B) and [9c] e H,_^B) is the fundamental class of 3B, then
the image of the chain c contains B. By using 4.6.8, we can construct such c so that
Image(c) - U is contained in finitely many flats, where U is any given neighborhood
of 3B. It follows that any b e B - BB has a neighborhood V^ in X such that B n V^
is contained in finitely many flats.



172 BRUCE KLEINER AND BERNHARD LEEB

6.1. Straightening simplices

If Z is a Hadamard space, there is a natural way to cc straighten " singular
simplices a : A^ -> Z (cf. [Thu]). Using the usual ordering on the vertices of the standard
simplex, we define the straightened simplex Str(cr) by <( coning ": if Str^^ ) has
been defined, then Str((r) is fixed by the requirement that on each segment joining
p e A^_i with the vertex opposite A^_i in \, Sir (a) restricts to a constant speed geodesic.
The simplex Str(<r) lies in the convex hull of the vertices ofcr. This straightening operation
induces a chain equivalence on C,(Z). By using the geodesic homotopy between Str(cr)
and <y, one constructs a chain homotopy H from the chain map Str to the identity with
the property that Image(H((T)) c GonvexHull (Image (o)) for any singular simplex <y.

When Z is the Euclidean building X, then it follows from lemma 4.6.8 that for
every singular chain c e G^(Cone(X)), Image(Str(^)) is contained in finitely many
apartments.

Corollary 6.1.1. — If V <= U <= X are open sets, then H^(U, V) = 0 for every
k> r==rank(X).

Proof. — If [c] e H^(U, V), then after barycentrically subdividing if necessary,
we may assume that the convex hull of every singular simplex in c (respectively <)c) lies
in U (respectively V). The straightened chain Str(f:) determines the same relative class
as c since Image(H(^)) C U, Image(H(a^) C V and

Str{c) - c = aH(<0 + H(B^).

But the straightened chain is carried by a finite union of apartments (corollary 4.6.8),
which is a polyhedron of dimension rank(X), so [Str((;)] == [c] == 0. D

Lemma 6.1.2. — Let Z be a regular topological space, and assume that H (̂Ui, U )̂ = 0
for every pair of open subsets L^ c Ui ^ Z, k > r. If Y c Z is a closed neighborhood retract
and U C Z is open, then the homomorphism Hy(Y, Y n U) -> H^(Z, U) induced by the
inclusion is a monomorphism. In particular, the inclusion Y -> Z induces a monomorphism
Hy(Y, Y —y) -^ Hy(Z, Z —j) of local homology groups for every y e Y.

proof. — If [c^\ e H,(Y, Y n U), then there is a compact pair (K^, K^) c (Y, Y n U)
and [̂ ] eH,(Ki, Kg) so that z,([^]) == [q] where i: (Ki, Kg) -> (Y, Y n U) is the
inclusion. If [cy] is in the kernel of Hy(Y, Y n U) -> Hy(Z, U) then there is a compact
pair (Ki, K,) c (Ka, K^ <= (Z, U) such that j,([^]) = 0, wherej : (K^, K^) -> ^3, KJ
is the inclusion.

Let r : V -> Y be a retraction, where V is an open neighborhood of Y in Z.
Choose disjoint open sets Wi, Wg C Z such that Y — U s Wi, K^ ^ Wg; this is possible
since Y — U is closed, K4 is compact, and Z is regular. Shrink V if necessary so that
^-i(Y - U) C Wr We now have: H/Y, Y n U) -> H,(V, r-^Y n U)) is a monomor-



RIGIDITY OF Q.UASI-ISOMETRIES FOR SYMMETRIC SPACES AND EUCLIDEAN BUILDINGS 173

phism since r is a retraction; H,(V, r-^Y n U)) ^H,(V u W^ r-^Y n U) u Wg) is an
isomorphism by excision; H,(V u Wg, r-^Y n U) u W^) -^ H,(Z, r-^Y n U) u Wg)
is a monomorphism by the exact sequence of the triple (Z, V u Wg, r-^Y n U) u W^)
and H^,(Z, V u W^) = 0. It follows that [q] == 0. D

6.2. The Local structure of support sets

Recall that X denotes a rank r Euclidean building. Let Y be a subset of a topo-
logical space Z. If [c] e H^Z, Y), then we define Support(Z, Y, [c]) C Z - Y to be the
set of points z e Z — Y such that the image of [c] in the local homology group
^(^ Z — { ^ }) is nonzero. Support(Z, Y, [c]) is a closed subset in Z — Y, and contained
in the image of the chain c.

Lemma 6.2.1. — Let B be a topologically embedded closed r'ball in X, Y a subset containing
8B, and denote by ^ the image of a generator ofH^B, 8S) induced by the inclusion (B, BE) -> (X, Y).
Then Support(X, Y, p.) = B - Y.

Proof. — We may apply lemma 6.1.2 since B is a closed (absolute) neighborhood
retract. Therefore Support(X, Y, p.) coincides with Support(B, B n Y, [B]) = B — Y
where [B] denotes the generator of H,.(B, 8K) which is mapped to (x. D

Now let U be an open subset ofX and consider [c] e H,.(X, U). After subdividing
the chain c if necessary, we may assume that the convex hull of each simplex of & is
contained in U, so that [Str(^] == [c]. By 6.1, ^ = Str{c) is carried by a finite union
of apartments ,̂ so [c] is the image of [^] e H,(^, ̂  n U) under the inclusion
H,(^^nU) —H,(X,U). Applying lemma 6.1.2 to the neighborhood retract ^
we find that the inclusion Support^, ̂  n U, [^]) in X coincides with Support(X, U, [<;]).
Hence we have reduced the problem of understanding Support(X, U, [c]) to a problem
about supports in the finite polyhedron .̂

Recall that S^, X has a thick spherical building structure with anisotropy poly-
hedron A^(^) (see section 4.2.2).

Lemma 6.2.2. — Pick pe^\p. When s>0 is sufficiently small, log^ maps
Support̂ , ̂  n U, [cj) n B^e) isometrically to (u, C(G,)) n B(s) C G(S^ X) == C^ X,
where the G, C S^ X are A^(j&) ̂ ^^ and G(G,) C C^ X ^ ̂  cone over G,.

Proo/l — The set Sft is a finite union of apartments, so by corollary 4.4.3 when
s > 0 is sufficiently small log,, maps ffi n B^(s) isometrically to (u, C^ A,) n B(s) C Cy X,
where the A, C ^ are the apartments passing through p. We may assume that
ucx\Bp(s)• ^en [q] determines a class [̂ ] eH,(^ n B^s)', ̂  n BB^s)). The
union u, Sp A, C 2^ X has a polyhedral structure induced by the thick building
atlas e '̂11^), and this induces a polyhedral structure on the pair (^ n B (s), Sft n 8B (s)).



174 BRUCE KLEINER AND BERNHARD LEEB

The r-dimensional faces of this polyhedron are (truncated) cones over A^(^) chambers
in the A^(^) subcomplex u, 2^ A, C 2^ X. Hence the lemma follows from elementary
homology theory, n

Corollary 6.2.3. — IfB is a topologically embedded r-ball in X, then/or every p e X\8B
there are finitely many A^(j&) chambers G,C S ,̂ X so that logy maps B n B^(s) isometrically
to (u, G(G,)) n B(s) C G^ X for sufficiently small e > 0.

Proof. — Let (A e Hy(B, 8E) be the relative fundamental class. Lemma 6.2.1
implies that Support(X, BB, [pi]) = B\3B and the corollary follows from lemma 6.2.2. D

6.3. The topological characterization of the link

If Z is a topological space and z e Z, then we say that two subsets S^, Sg C Z have
the same germ at z if S^ n N = 83 n N for some neighborhood N of z. The equivalence
classes of subsets with the same germ at z will be denoted Germ^(Z).

Pick a point x in the rank r Euclidean building X. Consider the collection y^x)
of germs of topological embeddings of K/ passing through x e X. Let eS^M be the
lattice of germs generated by y^x) under finite intersection and union.

Lemma 6.3.1. — The lattice y^{x) is naturally isomorphic to the lattice jTS^ X generated
by the A^(^) faces of Sg; X under finite intersection and union.

Proof. — By lemma 6.2.2 we know that elements of y^x) correspond to finite
unions of A^(;v) chambers in S^ X. Intersections of A^,(;c) chambers yield A^(^)
faces of S^ X, so we have a well-defined map of lattices 3 : V^x) ~>jT2^ X by taking
each element of y^{x) to its space of directions at x (which is a finite union of A^(;c)
faces). 3 is injective by Corollary 4.4.3. The image of 3 contains the apartments in
JT^ X, and since (S^ X, ^th) is a thick spherical building every A^(;c) face of S^ X
is an intersection of apartments, and hence 3 is onto. D

6.4. Rigidity of homeomorphisms

In this section we prove the following results about homeomorphisms of Euclidean
buildings:

Proposition 6.4.1. — A homeomorphism of Euclidean buildings carries apartments to
apartments.

Note that homeomorphic Euclidean buildings must have the same rank since the
rank is the highest dimension where local homology groups do not vanish.

Theorem 6.4.2. — Let X, X' be thick Euclidean buildings with topologically transitive
affine Weyl group and 9 : Y == X x E71 -> Y' = X' x E"' a homeomorphism. Then n == n\
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and 9 carries fibers of the projection Y -> X to fibers of the projection Y' -> X' inducing a homeo-
morphism 9 : X ->• X'.

Theorem 6.4.3. — Let X = 11^ X,, X' = II^LiX; be thick Euclidean buildings
with topologically transitive affine Weyl groups, and irreducible factors X,, X^.. Then a homeo-
morphism 9 : X -> X' preserves the product structure.

Theorem 6.4.4. — Let X, X' &^ irreducible thick Euclidean buildings with topologically
transitive affine Weyl group, and suppose rank(X) ^ 2. Then any homeomorphism X -> X' ij
a homothety.

6.4.1. The induced action on links

Let X, X' be Euclidean buildings, and let 9 : X -> X' be a homeomorphism.
Pick a point x in X, and set x ' == y(^) e X'. The homeomorphism 9 induces an iso-
morphism of lattices y^[x) -> y^{x') (see section 6.3) and therefore a dimension-
preserving isomorphism ^T<pa,: ̂ ^a; ̂  -> ̂ ^x' ̂  °^ lattices. By proposition 3.8.1
the lattice isomorphism ^(pa, is induced by an isometry S^ 9 : S^ X -> 2^ X'.

6.4.2. Preservation of flats

Consider a singular A-flat F. Its germ at a point A: e F is a subcomplex of ^Sg, X.
The image of this subcomplex L under Jfcp^ ls tne subcomplex L' associated to the
germ of <p(F) in JTS^^ X; L determines a standard (^ — 1)-sphere in S^X. Since
Jf<p^ is induced by an isometry Sg; 9 : Sg X -> Sy^) X, L7 determines a standard
(k — 1)-sphere in Sy^ X. This sphere is the space of directions of a singular A-flat F'.
<p(F) and F' coincide locally, because their germs coincide. Hence <p(F) is a complete
simply-connected metric space which is locally isometric to Euclidean A-space E^
Therefore, <p(F) is isometric to E*.

6.4.3. Homeomorphisms preserve the product structure

Let X, X' be Euclidean buildings which decompose as products

x = n x,, x' = n x;
»=1 i=l

of thick irreducible Euclidean buildings X,, X^. with almost transitive affine Weyl
group. We have a corresponding decomposition of the spherical buildings S, X and
S^ X' into joins of irreducible spherical buildings:

S^X == o2^.X,, S^X' = oS,;.X;.

We recall that this metric join decomposition is unique, cf. proposition 3.3.3, and
therefore for each x e X the isometry 2^ <p : 5^ X -> Sy^ X' decomposes as a join



176 BRUGE KLEINER AND BERNHARD LEEB

^ 9 == ° ̂ x ?» °f isometries S^ 9,: S .̂ X, -> S^^^ X^) where <? is a permutation
o f { l , ..., k }. In particular, X and X' have the same number of irreducible factors.
We claim that the permutation a is independent of the point x. To see this, note that
any two points jy, z e X lie in an apartment A and consider the map between apart-
ments 9^ : A -> 9 (A) (compare section 6.4.2). A parallel family of singular flats in A
is carried by 9^ to a continuous family of singular flats in 9 (A); since there are only
finitely many parallel families of singular subspaces, we conclude by continuity that
cp|^ carries parallel singular flats to parallel singular flats. Consequently the permu-
tation a is independent of x as claimed. We assume without loss of generality that a is
the identity. Our discussion implies that a singular flat contained in a fiber of the pro-
jection p ^ : X -> X^ is carried by 9 to a flat in a fiber of the projection p [ : X' -> X^'.
Therefore each fiber of the projection p ^ : X ->• X^ is carried by 9 to a fiber of the
projection p [ : X' ->• X,'. Hence for each i there is a homeomorphism 9,: X, -> XJ
such that 9^ o p^ = p[ o 9, and it follows that 9 == 11̂  9^.

6.4.4. Homeomorphisms are homotheties
in the irreducible higher rank case

Let X, X' be as in theorem 6.4.4. Let A be an apartment in X and consider the
foliations of A by parallel singular hyperplanes. Since X is irreducible of rank r, we
can pick out r + 1 of these foliations J^o, ..., e .̂ such that the corresponding collection
of roots is /-independent (i.e. every subset of r elements is linearly independent)
(compare section 3.1). In fact, this property of the root system is equivalent to
irreducibility.

The image of A under 9 is an apartment A' and the foliations ̂  are carried
to foliations e^' of A' by parallel singular hyperplanes. Note that these are also r-inde-
pendent, since any r-fold intersection of mutually non-parallel hyperplanes belonging
to these foliations is a point. Choose affine coordinates x^y ..., Xy for A such that the
leaves of J^o are level sets of x^ + • • • + ^r and the leaves of the foliation J^ for i ̂  1
are level sets of ^. Choose similar coordinates x[, ...,;^ on the target A' so that
9({ ̂  == 0 }) = { x[ == 0} and 9({ S^ = 1 }) === { S^ = 1 }. Consider those leaves in A
which contain lattice points. Since 9 maps leaves to leaves one sees by taking successive
intersections of these leaves that 9 carries lattice points to lattice points by a homo-
morphism. By the same reason 9 induces a homomorphism on rational points and
hence, by continuity, an R-linear isomorphism.

We now know that 9^ : A —^A' is an affine map preserving singular subspaces.
Angles between singular subspaces are preserved, because the isomorphisms of simplicial
complexes e^p^ are induced by isometries. Hence the simplices { ^ ̂  0, SA:, ̂  1 } and
{ x[ ^ 0, S^ < 1 } are homothetic and 9 is a homothety on A. By considering inter-
sections of apartments one sees that the homothety factors are the same for all apart-
ments. We conclude that 9 is a homothety.
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6.4.5. The case of Euclidean de Rham factors

We now consider Hadamard spaces X == Y x E" where Y is a thick Euclidean
building of rank r — n with almost transitive affine Weyl group. Clearly lemma 4.6.7
continues to hold for X, and so do lemma 4.6.8 and the homological statements in
section 6.1. Applying the reasoning from section 6.2 we conclude:

Lemma 6.4.5. — Every topologically embedded r-ball in X is locally a finite union
U» n X E" where the G^ C Y are Weyl chambers.

It follows that every closed subset of X which is homeomorphic to E^ is a union
of de Rham fibers, since its intersection with each fiber o f ^ : X - > Y i s open and closed
in this fiber. If x e X, we may characterize the fiber of p : X ->• Y passing through x
as the intersection of all closed subsets homeomorphic to E" which contain x,

Now let X' == Y' x E"', where Y' is a thick building of rank r' -~ n\ If 9 : X -> X'
is a homeomorphism, then we have r == r' by comparing local homology groups. Since
the fibers of the projection maps p : X —^ Y, p ' : X' -> Y' are characterized topologically
as above, we conclude that 9 maps fibers of p homeomorphically onto fibers of pf;
therefore n = n* and 9 induces a homeomorphism y : Y -> Y' of quotient spaces.

7. OUASIFLATS IN SYMMETRIC SPACES
AND EUCLIDEAN BUILDINGS

In this section, X will be a Hadamard space which is a finite product of symmetric
spaces and Euclidean buildings. We have a unique decomposition

(40) X = E r o x ^ X ,

where n e No and the X, are non-flat irreducible symmetric spaces or Euclidean buildings.
The maximal Euclidean factor E" is called the Euclidean de Rham factor. An apartment
is by definition a maximal flat and splits as a product of apartments in the factors. All
apartments in X have equal dimension and it is called the rank of X. Singular flats are
defined as products of singular flats in the factors. If the building factors are thick, then
singular flats can be characterized as finite intersections of apartments. Note that the
only singular flat in E" is E" itself and hence every singular flat in X is a union of de
Rham fibers.

7.1. Asymptotic apartments are close to apartments

Proposition 7.1.1. — Let & be a family of subsets in X with the property that for any
sequence of sets Q^ eS, base points q^ e Q^, and scale factors d^ with (o-lim d^ == oo, the
ultralimit co-lim^^-Q^, yj is an apartment in the asymptotic cone co-lim^^-X, yj. Then
there is a positive constant D so that any set Q^eS is a D Hausdorff approximation of a maximal
flat F(Q) in X.

23



178 BRUCE KLEINER AND BERNHARD LEEB

Proof. — Let us consider a single set Q^ in 3, and choose a base point q e Q .̂ The
ultralimit (o-lim^'"1-^, y) is an apartment in the asymptotic cone o-lim^'^X, q)
which contains the base point * := (y).

Step 1. — We first show that Q is, in a sense to be made precise, quasi-convex
in regular directions. Let x^y^ be a regular segment in o-lim^'"1-^, q} which contains
* as interior point, x^y^ is the ultralimit of a sequence of segments x^y^ in X with
endpoints x^y^ e Q. There is a compact set A C Int(A^) which contains the directions
of <x>-all segments x^y^. Let F^ be a maximal flat containing the segment x^y^. (F^ is
unique for o-all n.) Pick e > 0 so that ^(A, 8 A^) > e. Denote by D^ the diamond-
shaped subset of all points p e F^ so that Z.a, Q&,j^) ^ s and Z-y Q&, ;vJ < e.

Sublemma 7.1.2. — There exists r > 0 so that for u-all n the sets D^ are contained in
the tubular r-neighborhood of Q .̂

Proof. — We prove this by contradiction: Choose a point z^ e D^ at maximal
distance d^ from Q, and assume that co-lim ̂ =00. Then the asymptotic cone
(o-lim^^X, z^) = Cone(X) contains the apartments F':=== co-lim^ rf^-F,, and
F" :== co-lim^ rf^-Q^ The point ̂  == (^J is contained in F' but not in F" and therefore
F' and F^' are distinct apartments in Gone(X). Let z^ x^ (respectively z^y^) be the
ultralimits of the sequences of segments z^ x^ (respectively ^j/J. By the choice of the
points z^ the points x^ and y^ are contained in F" u 8^ F". Since we can extend
incoming geodesic segments in apartments according to 4.6.7, we may assume without
loss of generality that x'^^y^ e ̂  F". Let Wi and W^ be the Weyl chambers in Gone(X)
centered at z^ which are spanned by the rays TI:= ^ x^ and r^:== z^y^. By the
choice of e and the definition of D^, the rays r^ and rg yield in the space of directions
S^ Gone(X) interior points of antipodal chambers. Consequently, the union Wi u Wg
contains a regular geodesic c passing through z^. Since 8^ W, n 8^ F" contains the
regular point ^(oo), the chamber 8^ W, is entirely contained in 8^ F". Thus the ideal
endpoints c{^z oo) of c are contained in 8^ F" and we conclude by 4.6.4 that cC F"
and hence z^ e F", a contradiction. D

Step 2. — Suppose q^ e Q^ and co-lim 7^~ l•rf(y, q^) = 0.

Sublemma 7.1.3. — We have o)-lim^(^, DJ < oo.

Proof. — The constant sequence q and the sequence ^ yield the same point in
the ultralimit (o-lim (^"^•X,^), which is an interior point of co-lim (Tr'^D^,^).
Therefore

-im^-0-
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If co-lim d{q^ DJ == oo, then

F :== <o-lim {d(q^ DJ-^D,, yj c= co-lim (^ DJ-^F^ yj

is a complete apartment in co-lim {d{q^, DJ^-X, q^) (by (41)) which lies at unit
distance from o-lim q^ e {d{q^y DJ^-Q^ ^J. But the latter is also an apartment in
(x)-lim (d{q^, DJ"1^, ^J and we obtain a contradiction to Corollary 4.6.4. D

We now know that there is an r^ > 0 such that for every R > 0, Q, n B^(R) C N^(D^)
for co-all n, for otherwise we could produce a sequence contradicting sublemma 7.1.3.

Step 3. — By steps 1 and 2, we know that there is an r^ such that for every R,
Q^ n Bg(R) and D^ n B^(R) are r^-Hausdorff close to one another for co-all n.

Sublemma 7.1.4. — For every R> 0, D^ n Bg(R) form an ^-Cauchy sequence ( 1 ) with
respect to the Hausdorff metric.

Proof. — Suppose X is a symmetric space. Since for o-all n the sets D^ n B^(R)
have mutual Hausdorff distance ̂  2r^, if the sublemma were false we could find Haus-
dorff convergent subsequences o f{ D^ } with distinct limits. The limits would be distinct
maximal flats lying at finite HausdorfF distance from one another, which is a contradiction.

If X is a Euclidean building, then failure of the sublemma would give sequences
^n? ^» -> °° and a radius R so that the Hausdorff distance between D^ n Bg(R) and
D( n Bg(R) remains bounded away from zero. Then the o-lim(D^, q) and co-lim(D^ , q)
are distinct apartments in the Euclidean building co-lim(X, q) lying at finite Hausdorff
distance from one another, contradicting corollary 4.6.4. D

By the sublemma, co-lim D^ n Bg(R) exists for all R (as an co-limit of a sequence
in the metric space of subsets of Bg(R) endowed with the Hausdorff metric) and so we
obtain a maximal flat F C X with Hausdorff distance ̂  r^ from Q^.

Step 4. — We saw that each set Q,in J? is the Hausdorff approximation of a maximal
flat F(QJ. Denote by d{Q^) the Hausdorff distance of Q and F(Q^). Assume that there
is a sequence of sets Q^ e 2, with lim </(Q,J == oo. Choose base points u^ e X so that u^ is
contained in one of the sets Q^ or F(Q^) but not in the tubular ^(Q^)/2-neighbourhood
of the other. Then the apartments co-lim ^(Q.J'"1-^ and o-lim ^(Q,J~1•F(Q^) have
finite non-zero Hausdorff distance in the asymptotic cone co-lim^Q^^-X, ^J. This
contradicts 4.6.4. The proof of the proposition is now complete. D

Corollary 7.1.5. — There is a positive constant Do == D()(L, G, X, X') such that for
any (L, G)-quasi-isometry 9 : X —>• X' and any apartment A in X, the image 9 (A) is a DQ- Haus-
dorjf approximation of an apartment A' in X'.

(1) A sequence x^ in a metric space X is co-Cauchy if a subsequence with full oi-measure is Cauchy. If X is
complete, then we define co-lim x^ to be the limit of this subsequence.
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Proof. — According to proposition 6.4.1, for any sequence of basepoints and any
sequence of scale factors \, the asymptotic cone $^ of 0 carries apartments to apart-
ments. We can apply proposition 7.1.1 to the collection & of all images 9 (A) c X'
of apartments A in X. D

7.2. The structure of quasi-flats

In this section X will be a symmetric space or a locally compact Euclidean
building of rank r, with model polyhedron A^^, and Y will be an arbitrary Euclidean
building with model polyhedron A^^.

The goals of the section are the following two results.

Theorem 7.2.1. — For each (L, G) there is a positive real number p such that every (L, C)
r-quasiflat Q in X is contained in a ^-tubular neighbourhood of a finite union of maximal flats,
QC Np(UFe^F) where card(^) < p.

Corollary 7.2.2. — The limit set of an (L, C) r-quasiflat Q^ in X consists of finitely many
Weyl chambers in ft^ X; the number of chambers can be bounded by L and G.

Lemma 7.2.3. — Let PC Y be a closed subset homeomorphic to R''. Thus P is locally
conical (by corollary 6.2.3^, so it has a well-defined space of directions Sy P for every p e P.
We have:

1. If p e P then every v e Sy Y has an antipode in Sy P.

2. If w e Sy P, then there is a ray p^ C P, ^ e B^ Y such that fk, = w.

Proof. — Since P is locally a cone over a Sy P, we have Hy_i(Sy P) ^ Z, and
the inclusion Sy P -> 2 ,̂ Y induces a monomorphism Hy_i(SyP) ->Hy_i(S^Y) since
Sp Y is an r — 1-dimensional spherical building. Now if the first claim were not true,
then S ^ P C S y Y would lie inside the contractible open ball B^,(7r)CSyY, making
H^(S,P)^H^(S,Y) trivial.

The second claim now follows from the first by a continuity argument: w is the
direction of a geodesic segment contained in P since P is locally conical, and a maximal
extension of this segment must be a ray. D

Although we will not need the following corollary, we include it because its proof
is similar in spirit to—but more transparent than—the proof of Theorem 7.2.1.

Corollary 7.2.4. — If PC Y is bilipschitz to E1' then P is contained in a finite number
of apartments. The number of apartments is bounded by the bilipschitz constant of P.

Proof. — Let a e A^ be the barycenter of A^, and consider the collection
of rays with A^-direction oc contained in P. Since P is bilipschitz to E*', a packing
argument bounds the number of equivalence classes of such rays (we know that the
Tits distance between distinct classes of rays is bounded away from zero (cf. 4.1.2)).
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Let y C ft^ Y be the (finite) set of Weyl chambers determined by this set of rays,
and let S'be the finite collection of flats in Y which are determined by pairs of antipodal
Weyl chambers in y. We claim that P is contained in Up ̂  ̂  F. To see this, note that
ifp e P then by lemma 7.2.3 we can find a geodesic contained in P with A^^-direction a
which starts at p. This geodesic has ideal boundary points in ,̂ so by 4.6.3 the geodesic
lies in Upg^- F. D

Another consequence of lemma 7.2.3 is

Corollary 7.2.5. — Pick a e A^^ and L, C, c > 0. Then there is a positive real number D
such that if QC X is an (L, G) r'quasiflat, y e Q^ and R > D, then there is z e Q with
Wvz), a) < s, | d{y, z) - R | < sR.

Proof. — If not, then there is a sequence Q^ of quasiflats, y^ e Q^, and R^ -> oo
such that for every ^ e Qj^ with | d{y^ z^) -~ R^ | < sR^ we have Z-(6(j^ ^), a) ^ s.
Taking the ultralimit of R^1- Q^ C R^1- X we getj^ e Q^ C X^ and for every ̂  e Q^
with | rf(j^, ^) — 1 | < s we have Z-(6(^ ^), a) ^ s. But this contradicts lemma 7.2.3
since Q^ is bilipschitz to E*': we can pick v e Sy Q^ with 6(») = a and find a geodesic
segment j^ z^ C Q^ with ̂  z^ === y, and for ^ — all k ^ satisfies the conditions of
the lemma. D

Lemma 7.2.3 implies that quasi-flats " spread out": a pair of points j^o, ZQ lying
in a quasi-flat Q^C X can be extended to an almost collinear quadruple Ji^j^ ^o? z!
while maintaining the regularity of A^^-directions. To deduce this we first prove a
precise statement for Euclidean buildings.

Lemma 7.2.6. — Let ai e A^^ be a regular point, and let s^ > 0. Then there is a
§1 e (0, £1) with the following property. If P C Y is a closed subset homeomorphic to R1' and
jo, ZQ eP satisfy Z.(6(j/o -s^), ai) ^ §1, /A^ ^r^ <zr^ points y^ z-^ eP so that

(42) ^o. ̂ i) == ^(j^o^i) == ^(jo. ^o)

(43) ^0(^1^ ̂  2..o(-^o. î) > TC - £1

(44) ^(e(3^Si),a,)<8i.

The proof requires:

Sublemma 7.2.7. — 5t^w A:,J, ^ e Y W Z^(j/, -?) = max(D(6(^), Q{xz)) (cf. 3 .1^ .
rA^ A:,J/, z are the vertices of a fiat (convex) triangle andyz e Sy Y lies on the segment joining yx
to a point v e2yY, where Q{v) = Q(xz) and v and Jyx lie in a single chamber.

Proof of Sublemma 7.2.7. — Extend the geodesic segments ~xy, ~xz to geodesic rays x^
and A^2, ^ e &c^g X. By hypothesis

Z,(j/, .) = max(D(6(^), Q(xz))) = max(D(6(^), 6(^))) == ̂ (^ y.
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So ^i ̂  determine a flat convex sector S. Note thatjw andj/^ ^e m a single chamber
of 2y X since

^ ̂ ) == ^ - ̂ (Si, ^2) = ̂  - max D(6(Si), 6(^))
== minD(Ant(6(^)), 6(^)) = minD(6(^), O^)).

Hence l^xyz bounds a flat convex triangle T C S, and so j% lies on the geodesic segment
which has endpoints yx and y^ • D

Proof of Lemma 7.2.6. — Pick ^ e P so that ZQ z^ C P, ^(^o? ^i) = ^(-^o? ^o)?
6(^0^1) == a? anc^ ^o ^i e^ Y ^les m a chamber antipodal to -2'oJ^ similarly choose
y^ eP so thatjoj/iCP, rf(j/o^i) == ^(j^o. ^o). 6(3^) = Ant(a), andj^eS^Y lies
in a chamber antipodal toj/o ZQ. Applying sublemma 7.2.7 we conclude that ZQ, y^, z^
are the vertices of a flat convex triangle, and j/o z! e ̂ o ̂  ^les on t^e segment joining

j/^ ̂  to » eS^Y where 6{y) = 6(i^i) == a and u andj^o ^o lle m ^e same chamber.
In particular VQ ^ andj^oj/i lie in antipodal chambers ofS^ Y, so applying lemma 7 .2 .7
again, we find that 6( y^) lies on the segment joining O(jo^i) to Q(jhjo) = a. y^ and ^
clearly satisfy the stated conditions since

^J-̂  ^o) ^ ̂ ijĵ  ^o) = 7r - ^(e(J;0~io) , OC) > 71; - 81 > 7T - £1

and 2-^o> î) > ^^(^o. î) = n — ^(e(jo~io), a) ^ TC -- §1 > -n: — Si. D

Corollary 7.2.8. — Let ag e A^^ &^ fl regular point, and let L, C, £3 ̂  0 6^ ^z^^. TA^yz
^r^ are Dg > 0, §2 e (0, eg) with the following property. If Q, c X is an (L, C) r-quasiflat,
andyo, ZQ eQ^ satisfy

(45) d{y^ ZQ) > D^, ^(6(^0), a^ ^ S^

^^ ^r^ are points y^ z^ e Q, so that

(46) | d{z^ î) - rf(jyo, ^o) 1. I ̂ (jWi) - ̂ (^o. ^o) I < ̂  ̂ (j^o. ^o)

(47) ^o(^r ^o). 2.o(^o. î) > ̂  - ̂

(48) ^-(9(j^i), ̂ ) < S^.

Proq/*. — Let 825 ^2 be the constants produced by the previous lemma with o^ == ag,
GI = £2. We claim that when J^o^o e Q. a^d Z.(9(Jo^o), ag) < Sg 3Lnd ^(^o» ^o) ^
sufficiently large, then there will exist points^, z^ satisfying (46), (47), (48). But this
follows immediately from the previous lemma by taking ultralimits. D

By applying corollary 7.2.8 inductively we get

Corollary 7.2.9. — With notation as in corollary 7.2.8, there are sequences y^ ^ e Q,,
i^ 1 such that the inequalities (45), (46), (47), (48) hold when we increment all the indices on
the y's and z's by i.
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Lemma 7.2.10. — Fix (A> 0, and consider all configurations ( jy , z, F) where y^ z e X,
Z(6(j^), 8 A^) > (A, W F C X is a maximal flat. Then there is a 1Q^ such that the fraction
of the segment ~yz lying outside the tubular neighbourhood N^ (F) tends to zero with

v (^ z, F) ^ max( ,̂ F)/^, z), d{z, F)/rf(j/, z)).

Proof. — Recall that the distance function rf(F, .) is convex, so if the lemma were
false there would be sequences j^, ^, w^ e X, F^C X, with Z.(e(J^~^), B A^) ^ (A,
^ ^) -> oo, ^ CA^ with d(w^y^), d(w^ z^) > s rf(j^, ^), v^, ̂ , FJ -^ 0 but
^(^,F^)->oo. Let j^ .^ . r^eF^ be the points nearest j^, w^ z^ respectively.
By various triangle inequalities and property (39) from section 5.2 we have

^(A.A). ̂ (r^ ^) -^0 and ^(6(ra, 6(3^)), ^(6(^), 6(^-1,)) -^0. There-
fore if we set R^ == rf(^, 2^) and take the ultralimit of (R^-X, ^) we will get a confi-
guration ^, ze^eX^ an apartment F^CX^, and ^^e8^X^ so that ^ is
the point in F^ nearest to w^ (q^, q^) = <o-lim(^^, yj, (qj^, ?<o) == o>-lim(^, ^),
O^i, ̂ J^(o-lim(w^, ^), (^S2?yJ = ^-lim(z£^,^). In particular, the rays
^Si and ^^2 flt together to form the geodesic o-limj^ and Z-(6(^), 8 A^d) ^ P-
But this contradicts corollary 4.6.4. D

Corollary 7.2.11. — Fix 03 eA^. Then there are constants £4, ^4, D4 ^<:A ^A^ if
Lj^^eX, i^ 0 ar^ sequences which satisfy (45), (46), (47), (48) fwA^ subscripts are

incremented by i) with ̂ < £4, ^(j/o? ^o) ^> ^4.
2. ^4 maximal flat F C X satisfies d{y^ F), ̂ (^, F) < ^4 flf(^, 2'J /or ^om^ k.

Then d(^, F), rf(^, F) < ̂  rf(^, ^) for all O ^ i ^ k .

Proof. — If V4 is sufficiently small, then the trisection points J, ? of any sufficiently
long segment^ C Xwith ̂ (6(ji), B A^J ^ pi, max(d(^, F)/rf(j/, ^), rf(^, F)/rf(j/, ^)) < V4
will satisfy mnx{d[y, F)/rf(j; ?), rf(?, F)/^(j; ?)) <^ ^ by lemma 7.2.10. If we take
£4 <^ ^ then Z.(6(J^), ^ A^^) will be bounded away from zero and j^_i, ^_i will
lie close to the trisection points ofj^ so corollary 7.2.11 follows by induction on
k — i. D

Pwo/* o/ Theorem 7.2.1.

»S^ 2. — Fix 04 eA^, and let £5, v^, D^ be the constants produced by corol-
lary 7.2.11 with 03 == oc4. Let Dg, 8e be the constants given by corollary 7.2.8 with
ag == a^, £2 == £5. Finally, let Dy be the constant produced by corollary 7.2.5 with
a === 04, £ === min(8g, 1/2). Setting Dg = max(Ds, Dg, Dy), for each^o e Qwe may find
a ^ eQ^with Dg< ^(j/o, ^) < 2 Dg so that Z.(6(^o, ^o)» ^4) < 83 (by corollary 7.2.5).
By corollary 7.2.9 we may extend the pair j/o, ZQ e Q to a pair of sequences y^ ^
satisfying (45)-(48) with o^ = 004, £2=65. Then any maximal flat F C X with
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d(^ F). d^ F) < ^5 d^ ^) for some 0 ̂  k < oo satisfies rf(^, F), d(^, F) < ^ rf(j^, ^)
for all 0 ̂  i ̂  k by corollary 7.2.11; in particular

(49) ^F)<^(j^o)<2v,D,.

We may assume in addition that Sg is small enough so that

(50) 2rf(j^, z,_,) < d{^, z,) < 4rf(^_,, z,_^ and

(51) ^O^-i), ̂ , ̂ -i) < 2 ̂ _,, ^_,).

It follows that

(52) max(rf(j^o), rf(^,^)) < 2 rf(^, ^)

for all i.

Step 2. — Fix q G Q and set Vg === ^/16. For each R pick a covering of Bg(R) n Q
by Vg R-balls { B^.(vg R) } with minimal cardinality; the cardinality of this covering
can be bounded by r and the quasiflat constants (L, G). For each pair p^ pj of centers
pick a maximal flat containing them, and denote the resulting collection of maximal
flats by <^-

Claim. — IfyQ e Q, then d(y^ Upg^ F) < 2^ Dg for sufficiently large R.

Proof of claim. — We will use the sequences^, ^ constructed in step 1 and esti-
mate (49). Take the maximal i such thatj^, ^ eB^(R). Then

max(flf(j^, q), d{z^^ q)) > R

=> max(rf(^+i,^o). d^i+i^o)) > R - d(q^o)

^ rf(j.+i. ^+1) > I(R - d(q^) by (52)

^^(^.^^^(R-^Jo)) by (50).

Since «^ contains a maximal flat F with

d(^, F), rf(^, F) < v. R = ( 8V6R U (R - rf(y^o))
\R — d(q,M] 8

'̂•(R^)) '̂̂

^(irr^))^"->-



RIGIDITY OF QUASI-ISOMETRIES FOR SYMMETRIC SPACES AND EUCLIDEAN BUILDINGS 185

Therefore for sufficiently large R there is an F e<^ and k such that

rf(^,F),^,F)<v^(j^),

so d{yQ^ F) < 2^5 Dg as claimed. D

Proof of Theorem 7 .2.1 concluded. — We may now take a convergent sub-
sequence of the ^R'S, and the limit collection ^ satisfies Q^C Ngp (Up^jr F) and
card(^r) ^ lim sup card(J^) which is bounded by r and (L, G). D

Proof of Corollary 7.2.2. — By theorem 7.2.1 there is a finite collection y of
maximal flats so that Q lies in a finite tubular neighbourhood of Up^^-F. The limit
set of each F e y is its Tits boundary &^ F, which is an apartment of &^ X. The
union of these apartments gives us a finite subcomplex ^ C c^g X which is a union
of closed Weyl chambers.

Clearly LimSet(QJ c ^; we will show that if ^ e LimSet(QJ then ^ lies in a
closed Weyl chamber G C LimSet(QJ. We have & e Q, such that *^ -> ̂  in the
pointed Hausdorff topology.

Consider Up^^rF. Any ultralimit (o-lim(R^1- (Up^jr F), *) is canonically
isometric to the Euclidean cone over ^S. The set co-lin^R^-Q^, *) embeds in
co-lim(R^"1-(Up^^r F), *) as a bilipschitz copy of E*"; by the discussion in section 6.2,
(o-liiT^R^-Q^, *) is the cone over a collection of closed Weyl chambers in ^. In par-
ticular (o-lim *^ = *<7?o nes m a closed Weyl chamber contained in o-lin^R^.Q^ *),
so the corresponding Weyl chamber of ^S is contained in LimSet(Q^), and it contains S. D

8. QUASI-ISOMETRIES OF SYMMETRIC SPACES
AND EUCLIDEAN BUILDINGS

In this section our goal is to prove theorems 1.1.2 and 1.1.3 stated in the
introduction.

Let X, X', and 0 be as in theorem 1.1.2. By corollary 7.1.5, 0 carries apartments
close to apartments; in particular, X and X' have the same rank r.

8.1. Singular fiats go close to singular flats

Lemma 8 .1 .1 . — For any R > 0 there is an D(R) > 0 such that if¥ is a singular flat
in X and ^(F) is the collection of apartments containing F, then ll^^^p)N^(A) C Np^(F).

Proof. — It suffices to verify the assertion for irreducible non-flat spaces X.
Consider first the case where X is a symmetric space. The transvections along

geodesies in F preserve all the flats containing F. Hence, if there is a sequence
x^ e n^^(p) N^(A) with d(x^y F) tending to infinity, then we may assume without
loss of generality that the nearest point to x^ on F is a given point p. The segments px^

24
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subconverge to a ray p^ which lies in rLe^r) N^(A) and is orthogonal to F. Since
for each apartment A e J^(F), we have p eA and the ray p^ remains in a bounded
neighbourhood of A, it follows that^ C n^g^p, F. Hence Fl^^^p) F contains a {k + 1)-
flat, which is a contradiction.

Assume now that X is an irreducible thick Euclidean building with cocompact
affine Weyl group. Consider a point x e X\F and let p e F be the nearest point in F.
Then u := px e Sy X satisfies Z.p(^ Sy F) > 7r/2. We pick a chamber C in Sy X con-
taining u and choose a face a of G at maximum distance from u. Denote by v the vertex
of G opposite to 0'. By our assumption, diam(A^^) < 7r/2 and therefore v ^ Sp F. Since
F is a finite intersection of apartments, lemma 4.1.2 implies Sp F = ^^e^(V)^p^
and there is an apartment A with F C A C X and v ^ Sy A. Sy A is then disjoint from
the open star of y, and so d{u, Sy A) ^ d(u, a) ^ ao > 0 where ao depends only on the
geometry of A^^. If x eN^(A) then angle comparison implies that d{x, F) ^ R/sin ao
and our claim holds with D(R) = R/sin ao. This completes the proof of the lemma. D

Proposition 8.1.2. — For every apartment A C X, let A' C X' denote the unique apartment
at finite Hausdorf distance from 0(A). There are constants Do(L, C, X, X') and D(L, G, X, X')
so that iff = n^3p AC X is a singular fiat, then

LO(F)cn^pN^(A') ,
2. The Hausdorf distance d^{-F), fl^p N^(A')) < D,
3. There is a singular flat F'C n^pN^(A') with d^(F), F') < D.

In particular, two quasi-isometries $1, O^ : X -> X' inducing the same bijection on apartments
induce the same map of singular flats up to 2T)-Hausdorjf approximation,

Proof. — Let F and J^(F) be as in the previous lemma. By corollary 7.1.5, for
every apartment A s X, 9 (A) is Do-Hausdorff close to an apartment in X' which we
denote by A'. Thus 9(F) C fl^^ N^(A').

Sublemma 8.1.3. — For each d^- Do there exists a constant D^ = Di(L, G, d) > 0
with the property that n^g^p) N^(A') lies within Hausdorjf distance D^from <p(F).

Proof. — Pick a quasi-inverse cp~1 of <p. For each point y e fl^g^p) N^(A') and
each A e ̂ (F), y"1^ is uniformly close to y^A'. But (p^A' is uniformly HausdorfF
close to <p~1 yA and therefore to A. Lemma 8.1.1 implies that Y has uniformly bounded
distance from F. D

Proof of Proposition 8.1.2 continued. — Fixing Ao e cfi^(F), we conclude that
G := (H^g^p) N3^ (A')) n Ao is a convex HausdorfT approximation of <p(F).

Sublemma 8.1.4. — Let C C 'E1 be a convex subset which is quasi-isometric to E*. Then
C contains a k-dimensional affine subspace.
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Proof. — Fix q e G and let 6 c G be the convex cone consisting of all complete
rays starting in q and contained in G. For any sequence \ -> 0 of scale factors, the
ultralimit (o-lim^-G, q) is isometric to C. Therefore C is homeomorphic to E^ and
hence isometric to E*. D

Proof of Proposition 8.1.2 continued. — It follows that <p(F) is uniformly close to
a flat F in X'. Since 9^ carries singular flats to singular flats, ft^ F is a singular sphere
in a,r^ X'. X' has cocompact affine Weyl group, so F lies within uniform Hausdorff
distance from a singular flat F'. D

8.2. Rigidity of product decomposition
and Euclidean de Rham factors

We now prove theorem 1.1.2. The product decompositions of X and X' cor-
respond to a decomposition of asymptotic cones

(53) x, = E- x n x,,, x, == E"' x n x;,
where the X^, X^ are irreducible thick Euclidean buildings. They have the property
that every point is a vertex and their affine Weyl group contains the full translation
subgroup, in particular the translation subgroup is transitive. We are in a position to
apply theorems 6.4.2 and 6.4.3: The Euclidean de Rham factors of X and X' have
equal dimension, n == n', and X, X' have the same number of irreducible factors. After
remumbering the factors if necessary, there are homeomorphisms (<pJ,: X^ -> X^
such that

(9ji°A<o ==PL°^

where ^ : X -> X, and p [ : X' ->• X,' are the projections onto factors. Now let F be
a singular flat which is contained in a fiber of^. By proposition 8.1.2, cp(F) is uniformly
Hausdorff close to a flat F' C X'. Since F^ C X^ is contained in a fiber of^, F' must
be contained in a fiber of p [ . Any two points in a fiber A71^)? ^ e^ are contained
in some singular flat FC^"^) and consequently 9 carries fibers of p^ into uniform
neighbourhoods of fibers of p[. Since an analogous statement holds for a quasi-inverse
of 9, we conclude that 9 carries ^-fibers uniformly Hausdorff close to ^'-fibers and
so there are quasi-isometries 9^: X^ -> X '̂ so that

9°A =A' °9

holds up to bounded error. This concludes the proof of Theorem 1.1.2.

8.3. The irreducible case

In this section we prove theorem 1.1.3. Note that theorem 1.1.2 implies that
X' is also irreducible, with rank(X) == rank(X').
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8.3.1. Quasi-isometries are approximate homotheties

We recall from proposition 7.1.5 that $ carries each apartment A in X uniformly
close to a unique apartment in X' which we denote by A'. We prove next that in our
irreducible higher-rank situation the restriction of 0 to A can be approximated by a
homothety. As a consequence, the quasi-isometry 0 is an almost homothety. This
parallels the topological result in section 6.4.4.

Proposition 8.3.1. — There are positive constants a == a(0) and b == 6(L, G, X, X')
such that for every apartment A C X exists a homothety Y^ : A -> A' with scale factor a which
approximates OL up to pointwise error b.

Proof. — If we compose O^ with the projection X' -> A', we get a map Y^ : A -> A'
which, according to proposition 8.1.2, carries walls to within bounded distance of
walls. Parallel walls in A are carried to Hausdorff approximations of parallel walls
in A'. Moreover, due to our assumption of cocompact affine Weyl group, each hyper-
plane parallel to a wall is carried to within bounded distance of a wall. By lemma 3.3.2
exist r + 1 singular half-spaces in A which intersect in a bounded affine r-simplex with
non-empty interior. Consider the collection %7 of hyperplanes in A which are parallel
to the boundary wall of one of these half-spaces. Any r pairwise non-parallel hyperplanes
in ^ lie in general position, i.e. intersect in one point. Hence we may apply lemma 8.3.3
below to the collection ^ and conclude that Y^ is within uniform finite distance of
an affine transformation Y^ : A -> A'. Since 0^ is a homothety on asymptotic cones
by the discussion in section 6.4.4, it follows that Y^ is a homothety: For suitable positive
constants a^ and b we therefore have

| ̂ (Y^i), Y^)) - ^A d{x^ x ^ ) \ ^ b V x^ x, e A

and b depends on L, G, X, X' but not on the apartment A. To see that the constant a^
is independent of the apartment A note that for any other apartment A]_ C X there
is a geodesic asymptotic to both A and Ar It follows that a^ == a^. D

Corollary 8.3.2. — There are positive constants a = fl(0) and b = &(L, C, X, X')
such that the quasi-isometry 0 : X -> X' satisfies

|rf(<I>(^i), 0(^)) -a.d{x^x^ |^ b VA:i ,^eX.

Here L~1^ a ̂  L.

Proof. — This follows from the previous proposition, because any two points in X
lie in a common apartment. D

Lemma 8.3.3. — For n ̂  2, let ao, ..., a^ e (R")* be a collection of linear functionals
any n of which are linearly independent^ and let ̂  be the collection of affine hyperplanes { a^~1 {c) }c g R •
There is a function D(G) with lim^o^(G) ==0 satisfying the following: If 9 : R^ -^R"
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is a locally bounded map such that for all H e^., <p(H) C N^(H') for some H' eJ^, then
there is a an afftne transformation <po with scalar linear part which preserves the hyperplane families Jf̂ .
such that ^(9, 9o) < D(G).

Proof. — After applying an affine transformation if necessary we may assume
that oco = S^i x^ a, = Xy for 1 ̂ j ^ n, and 9(0) = 0. There is a Gg eR such that
the image of each k-fold intersection of hyperplanes from U^ e^ lies within the Gg neigh-
bourhood an intersection of the same type. In particular, for each 1 ̂  j ̂  n, 9 induces
a (GS? ̂  quasi-isometry 9 .̂ of the j-th coordinate axis, with 9^(0) == 0. It suffices to
verify that each 9^. lies at uniform distance from a linear map since 9 lies at uniform
distance from 11̂  ^ 9^.. Also, it suffices to treat the case n == 2 since for each 1 ̂  j ̂  %
we may consider the (€4, c^)-quasi-isometry that 9 induces on the x ^ X y coordinate
plane, and this satisfies the hypotheses of the lemma (with somewhat different constants).

We claim there is a G^ such that for j, z in the first coordinate axis, we have
I ^\{y + z) — (9i(j0 + 9i(^)) | < GS- To see this first note that when G equals zero
the additivity can be deduced from a geometric construction involving 6 lines and 6
of their intersection points. When G > 0, the same construction can be performed with
uniformly bounded error at each step.

By lemma 8.3.4 below, 9^ and analogously 9 .̂ lies at uniform distance from a
linear map. D

Lemma 8.3.4. — Suppose ^ : R —>• R is a locally bounded function satisfying
I ^{y + z) — ^(j^) — W | ̂  D for ally, z eR. Then \ ̂ ){x) — ax \ ̂  D for some a eR.

Proof. — Since | ̂ (2") - 2^(2n~l) \ < D, the sequence (+(2^/2^) is Cauchy and
converges to a real number a. Let x > 0 and choose numbers q^ e N and r^eR with
| r^ | ^ x such that V = ̂  x + r^. Then

I W - ^ W - ^ J I ^ ( ^ + 1 ) D

and hence, using that ^ is locally bounded,^-^-^(^i,
y - gn ^V^ gn ^ gn

->a -> 1 ->-0 ->-1

When n tends to infinity, we obtain in the limit

| ax — ^{x) | ^ D.

Similarly, there is a real number a_ such that for all x < 0 we have | a_ x — ^(x) \ ̂  D.
Since | ip(^) + ^(— A;) [ < D + | ̂ (0) [, it follows that a = a_. D

Proof of Theorem 1.1.3 concluded. — By corollary 8.3.2 we may scale the metric
on X' by the factor I/a so that 0 becomes a (1, A/a) quasi-isometry. Applying propo-
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sition 2.3.9 we conclude that 0 induces a map 8^ 0 : 8^ X -> 8^ X' which is a homeo-
morphism of geometric boundaries preserving the Tits metric. By the main result of 3.7,
8^ 0 gives an isomorphism of spherical buildings 8^ 0 : (8^ X, A^J -. (ft^ X', A^J,
after possibly changing to an equivalent spherical building structure on ^X'.
Consequently, for every 8(=A^, B^ $ maps the set Q~1{S)C8^X to the corres-
ponding set Qf~~l{8)C <^aX', and Ole-ifs) is a cone topology homeomorphism. When
8 is a regular point, the subsets O-^S) C 8^X and e'-^S) C a^ X' are either
manifolds of dimension at least 1 or totally disconnected spaces by sublemma 4.6.9,
depending on whether X and X' are symmetric spaces or Euclidean buildings. Therefore
either X and X' are both symmetric spaces of noncompact type, or they are both
irreducible Euclidean buildings with Moufang boundary. In the latter case we are
done by theorem 8.3.9; when X and X' are both symmetric spaces we apply propo-
sition 8.3.8 to get a homothety Oo : X -> X' with 8^ Oo == 8^ 0. By proposition 8.1.2,
d(fS>{v), OoW) < D for every vertex v e X, and since the affine Weyl group of X is
cocompact the vertices are uniform in X, and so we have ^(O, Og) < D'. Hence Oo is
an isometry. D

8.3.2. Inducing isometrics of ideal boundaries of symmetric spaces

We consider a symmetric space X of non-compact type and denote by G the
identity component of its isometry group.

Sublemma 8.3.5. — Let F C X be a maximal flat and let Wp: X -> F be the nearest
point retraction. Given a compact set K C Int(A^) and s > 0, there is a 8 > 0 such that if
p e X, x e F, Q{px) e K, and Z.̂ , TC^)) > Tr/2 - 8, then d(p, F) < e.

Proof. — Note that as q moves fromj& to TTp(^) along the segment TCpQS?) p, Z.y(A;, 7^(p))
increases monotonically. If the sublemma were false, we could find a sequence p^ e X,
^ e F so that ^(^,7Tp(^)) ->7c/2 and d(p^ F) > e. Since ^,)(^A) =^/2.
triangle comparison implies that [ p^ Trp(^) |/| p^ x^ \ -> 0. Hence by taking ^ 6^ TTp(^)
with r f ( ^ , F ) = s we have ^(A^)-^0? so ^^(^xT^)?K) -^0. Modulo the
group G, we may extract a convergent subsequence of the configurations (F, q^ x^)
getting a maximal flat F, a point q^ with d ( q ^ , ' F ) == e, and x^ e 8^ F such that
Z.^(^, TCp(^^)) = 7T/2, and 6(^) eK. This is absurd. D

Sublemma 8.3.6. — Let F, be a sequence of maximal flats in X so that 8^ F, -> ̂  F
w/^ F ̂  a maximal flat, i.e. for each open neighborhood U of 8^ F z'n 3^ X w^A r ĵ&^ <(? the
cone topology^ 8^ F, is contained in V for sufficiently large i. Then F^ -> F w the pointed Hausdorjf
topology.

Proof. — Let ^, T) e 8^ F be andpodal regular points and choose points ^, ̂  e 8^ F,
so that ^ ->S and ^ —-T]. Then for x eF we have Z-^(^,, Y)^) -^TC and consequently
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Z-^Trp. ;v, y -^TC/2, /-^(TTp. A:, T^) -^7r/2. Applying sublemma 8.3.5, we conclude that
d(x, FJ -> 0. The claim follows since this holds for all x e F. D

Lemma 8.3.7. — Let 9^ : G -^Homeo(c^ X) be the homomorphism which takes each
isometry to its induced boundary homeomorphism. Then 9^ is a topological embedding when
Homeo(^oo X) is given the compact-open topology.

Proof, — The homomorphism 9^ is continuous, because the natural action of G
on 9^ X is continuous. To see that 9^ is a topological embedding, it suffices to show
that if gi e G is a sequence with ^oo(&) ->e eHomeo(^ X), then g^ ->e e G. Let x
be a point in X and choose finitely many (e.g. two) maximal flats F^, ..., F^ with
Pi n ... n F^ = { x }. Since 9^{g,) ^ e e Homeo(^ X), 9^ g, F, converges to 9^ F,
in the sense that for each open neighborhood U, of 9^ Fj in 9^ X with respect to the
cone topology, 9^ g^ Fj is contained in Uj for sufficiently large i. By the previous
sublemma we know that g^ F, -> F .̂ in the pointed Hausdorff topology. D

Proposition 8.3.8. — Let X and X' be irreducible symmetric spaces of rank at least 2.
Then any cone topology continuous Tits isometry

^ : ^Tits x -> a^te x'
is induced by a unique homothety Y : X -> X'.

Proof. — We denote by G (resp. G') the identity component of the isometry group
of X (resp. X'). By lemma 8.3.7 the homomorphisms 9^ : G ->llomeo(9^ X) and
9^: G' ->Homeo(^ X') are topological embeddings, where Homeo(^ X) and
Homeo(^oo X') are given the compact-open topology. According to [Mos, p. 123,
cor. 16.2], conjugation by ^ carries 9^ G to 9^ G'. Hence ^ induces a continuous
isomorphism G -> G'. Such an isomorphism carries (maximal) compact subgroups
to (maximal) compact subgroups and it is a classical fact that the induced map Y : X -> X'
of the symmetric spaces is a homothety. The isometry ^ and the induced isometry
^Tita ̂  at ^fimty are G-equivariant with respect to the actions of G on ft^ X and
firing X' and we conclude that &^ "V = ({/. D

8.3.3. (I) A) quasi-isometries between Euclidean buildings

Here we prove

Theorem 8.3.9. — Let X, X' be thick Euclidean buildings with Moufang Tits boundary,
and assume that the canonical product decomposition o/*X has no 1 -dimensional factors (1). Then
for every A there is a constant G so that for every (1, A) quasi-isometry 0 : X —>- X' there is an
isometry Og '' X -> X' with J(0, Oo) < G-

(1) The statement is false for (1,A) quasi-isometries between trees.
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The proof of Theorem 8.3.9 combines corollary 7.1.5 and material from sec-
tions 3.12 and 4.10. We first sketch the argument in the case that X and X' are irre-
ducible, of rank at least 2, and have cocompact affine Weyl groups.

Let (B, A^) be a spherical building. Attached to each root (i.e. half-apartment)
in B is a root group U^ c Aut(B, A^J (see 3.12). Remarkably, when B is irreducible
and has rank at least 2, the U^'s—and consequently the group G c Aut(B, A^^)
generated by them—act canonically and isometrically on any Euclidean building
with Tits boundary B (see 4.10). Now let (B, A^J == (B^g X, A^J. If
O : X -> X' is an (L, A) quasi-isometry, then by 2.3.9 we get an induced isometry
^Tite ° : ^Tits x — ^rits x/. so the g^P G c Aut(B, A^J acts on B^X.a^X', and
hence on X and X\ By comparing images of apartments (and using the quasi-
isometry 0), one sees that a subgroup K c G has bounded orbits in X if and only if
it has bounded orbits in X'. Because B is Moufang (3.12) the maximal bounded sub-
groups M C G pick out "spots" ^M 6^- ^d ^M e X' (proposition 4.10.6), and the
resulting 1-1 correspondence between the spots of X and the spots of X' determines
a homothety $o : X -> X' with Bp^ ̂ o = ^rite 0-

Proof of Theorem 8.3.9. Step 1. — Reduction to the irreducible case.

Lemma 8.3.10. — Every (1, A) quasi-isometry 9 : W -^E*" lies within uniform distance
of a homothety.

For every distance function d: E1' -> Er the function do 9 lies within uniform
distance of a distance function. By taking limits we see that for every Busemann function
b : E*" -> E^ b o 9 is uniformly close to a Busemann function. But the Busemann functions
are affine functions, so (p is uniformly close to an affine map <po. Obviously 9^ is an
isometry. D

By corollary 7.1.5, there is a constant D(A, X, X') such that the image of every
apartment AC X is D Hausdorff close to an apartment A' C X'. Composing 0|^ with
the projection onto A' we get a map which is uniformly close to an isometry Y^ : A —^ A'.
Hence ifF C A is a flat, then 0(F) C X' is uniformly Hausdorff close to the flat T^P)c A'-
Therefore we may repeat the reasoning of 8.2 to see that if X = II X^, X' == IIX^.
are the decompositions of X and X' into thick irreducible factors, then after reindexing
the factors X^. there are (1,A) quasi-isometries ^ : X^-> X '̂ so that 0 is uniformly
close to rid^ (A depends only on the quasi-isometry constant ofO and X, X'). Hence
we are reduced to the irreducible case.

Step 2. — The buildings X and X' are irreducible. The affine Weyl groups W^, W^
of X, X' are either finite or cocompact, since their Tits boundaries are irreducible.
If W^y is finite then it has a fixed point, so all apartments intersect in a point p e X
and X is a metric cone over B^ X . I f a e A^ is a regular point, then O^a) C c^its ̂
is clearly discrete in the cone topology. On the other hand, if W^ is cocompact then
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Q"1^) C &r^g X is nondiscrete since any regular geodesic ray pi,C A can branch off
at many singular walls. Since $ induces a homeomorphism of geometric boundaries
^ $ : c^o X -> ̂  X' by 2.3.9, and this induces an isomorphism of spherical buildings
^Tits^ ^Tits ̂  "̂  ^Tits ^'? G^her X and X' are both metric cones, or they both have
cocompact affine Weyl groups. If they are both cones, we may produce an isometry
<I>o : X -> X' by taking the cone over c^ <I> : 9^ X -> c^ X'. This induces the same
bijection of apartments as 0, and lies at uniform distance from 0 by lemma 8.3.10.

Step 3. — The buildings X and X' are thick, irreducible, and have cocompact affine Weyl
group. Letting

^Tits °*
GCAut(a^X) ^ Aut(a^X')

be the group generated by the root groups of &^g X, we get actions of G on ^its ^?
ft^ X', and by 3.12.2 actions on X and X' by automorphisms as well.

Lemma 8.3.11. — A subgroup B C G has bounded orbits in X if and only if it has bounded
orbits in X'.

Proof. — We show that if K has a bounded orbit K{p) =={gp\geK}CX. then
K has a bounded orbit in X'.

Let p e X be a vertex, let ̂  be the collection of apartments passing through p,
and let <^K(P) === U^R^p. «^K(P) is a K-invariant collection of apartments in X,
and when R>Diam(K(^)) we have p eH^^y^N^(A). Let 0(^p) and O(^K( ))
denote the corresponding collections of apartments in X'. Then O(<^K, ,) is K-invariant,
and O(^) e n^,^^ ) NB^^')? where G^ is a constant such that for every apart-
ment A C X , the Hausdorff distance ^(0(A), A') < Gr By proposition 8.1.2,
n^eo^^+c^^) is bounded. Thus n^g^^ N^^A') is a nonempty
K-invariant bounded set. D

Proof of Theorem 8.3.9 continued. — By proposition 4.10.6 we now have a bijecdon

Spot(O) : Spot(X) -> Spot(X')

between spots in X and X' via their correspondence with maximal bounded subgroups
in G. Moreover by item 2 of proposition 4.10.6 for every apartment A C X , we
have Spot(O) (Spot(A)) === Spot(A') where A'C X' is the unique apartment with
^Tits^' == ^Tits^^Tits -^)- Since by item 3 of proposition 4.10.6

Spot(O) |^ot(A) •• Spot(A) ^ Spo^A')

is a homeomorphism with respect to half-apartment topologies we see that X is discrete
if and only if X' is discrete.

Case 1: Both X and X' are non-discrete, i.e. their affine Weyl groups have a dense orbit.
In this case Spot(A) == A, Spot(A') == A', and Spot(<I>)[^ : A -^A' is a homeomorphism

25
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since the half-apartment topology is the metric topology. By item 3 of proposition 4.10.6
Spot(O) L maps singular half-apartments H C A with 8^ H == a to singular half-
apartments Spot(O) (H) C A' with ar^P0^0) (H)) = ^Tits0^)- SY considering
infinite intersections of singular half-apartments with Tits boundary a C &rits ̂  lt:

follows that Spot(O) carries all half-spaces H C A with ^its H = a to half-spaces
Spot(O) (H) with ante(Spot(<D) (H)) = ^its0^)- ^Y considering intersecdons of
half-spaces H^ with opposite Tits boundaries, we see that Spot(O) carries hyperplanes
whose boundary is a wall m C ^its A to hyperplanes in A' with boundary
^Tite0^)0 ^Tits^- ^ section 6.4.4 it follows that <Do ̂  Spot(O) : X -> X' is a
homothety and ft^ Oo == ^nts<^-

Case 2: X a^rf X' are both discrete. In this case A and A' are crystallographic Euclidean
Goxeter complexes; Spot(A) and Spot(A') coincide with the 0-skeleta of A and A'.
Again by item 3 of proposition 4.10.6, if S C A is either a singular subspace or singular
half-apartment, then there is a unique singular subspace or singular half-apartment
S' C A' so that Spot(O) (S n Spot(A)) = S' n Spot(A'). k + 1 spots Sy, ..., ̂  e Spot(A)
are the vertices of a ^-simplex in the simplicial complex if and only if they do not lie
in a singular subspace of dimension < k and the intersection of all singular half-apartments
containing { SQ, ..., ̂  } contains the k + 1 spots ^. Hence

Spot(<D)|^ : Spot(A) ^ Spot(A')

is a simplicial isomorphism and hence is induced by a unique homothety A -> A'. It
follows that Spot(0) : Spot(X) -> Spot(X') is the restriction of a unique homothety
(DO : X -> X' with a^te ̂ o == ^its °-

Since vertices are uniform in X, we may apply proposition 8.1.2 to conclude
that in both cases rf(d>o» 0) < ^(L, C, X, X'), forcing (&o to be an isometry. D

9. AN ABRIDGED VERSION OF THE ARGUMENT

In this appendix we offer an introduction to the proof of Theorem 1.1.2 via the
special case when X == X' == H2 X H2.

Step 1. — The structure of asymptotic cones co-lim(\(H2 X H2), ^). Readers unfamiliar
with asymptotic cones should read Section 2.4. By 2.4.4, any asymptotic cone
(o-lim(\ H2, x,) is a GAT(ic) space for every K, so it is a metric tree; since there are
large equilateral triangles centered at any point in H2, the metric tree branches every-
where. The ultralimit operation commutes with taking products, so one concludes that
o)-lim(X,(H2 X H2), z,) ^ co-lim(\ H2, x,) X o)-lim(\ H2,^,) where z, = x, X y, and
X denotes the Euclidean product of metric spaces. So any asymptotic cone of H2 x H2

is a product of metric trees which branch everywhere.

Step 2. — Planes in a product of metric trees are < c locally finite ". For i = 1, 2 let T,
be a metric tree. For simplicity we assume that geodesic segments and rays are extendible
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to complete geodesies. Since the convex hull of two geodesies in a metric tree is contained
in the union of at most 3 geodesies, the convex hull of two 2-flats YI X S, C T^ X T^
is contained in at most nine 2-flats. Section 6 may now be read up to the paragraph
after lemma 6.2.1, replacing the word c( apartment. " with (c 2-flat ", and corollary 4.6.8
with the observation above. Hence every topologically embedded plane in T^ X Tg
is locally contained in a finite number of 2-flats.

Step 3. — Homeomorphisms of products of nondegenerate trees preserve the product structure.
We now make the additional assumption that our metric trees T^ branch everywhere:
for every x eT,, T\x has at least 3 components. Let PC T\ x T^ be a topologically
embedded plane, and let z == x X y e P. We know that there are finite trees T, C T,
with z eTi x TgC T\ x Tg so that B,(r) n PC B,(r) n (T^ x Tg). Shrinking r if
necessary, we may assume that T^ and Tg are cones (x e T^ and y e Tg are the only
vertices). Elementary topological arguments using local homology groups show that
B^r) n P coincides with Bg(r) n (UQ^), where each Q^C T\ x Tg is a quarter plane
with vertex at z, i.e. a set of the form y x 8 C T\ x Tg where y C Ti (resp. 8 C T^) is
a geodesic leaving x (resp.j).

Say that two sets Si, Sg C T^ x Tg have the same germ at z if Si n U == S^ n U
for some neighborhood U of z. We see from the above that for every z e P, P has the
same germ at z as a finite union of quarter planes. Moreover, since the intersection
of two quarter planes Qi, Q^ with vertex at z either has the same germ as Q^, the same
germ as a horizontal or vertical segment, or the same germ as { z }, it follows that a set
S C TI x Tg has the germ of a quarter plane with vertex at z if and only if it has the
same germ as a two-dimensional intersection of topologically embedded planes, and
is minimal among such. Hence we have a topological characterization of 2-flats and
vertical/horizontal geodesies: a closed, topologically embedded plane P C T^ x T^ is
a 2-flat if for every z e P, P has the same germ at z a the union of four quarter planes
with vertex at z; a closed connected subset S C Ti x Tg is a vertical or horizontal
geodesic if for every z e S, S has the same germ at z as the boundary of two adjacent
quarter planes with vertex at z. From this one may easily recover the product structure
on TI X T^ using only the topology of T\ x T^. Hence a homeomorphism
<p : TI X T^ -> TI x T^ preserves the product structure (although it may swap the
factors, of course).

Step 4. — Quasi-isometries of H2 x W preserve the product structure. Let

0:H2 x HP->H2 x H2

be a quasi-isomctry. If z, z ' e H2 x H2, let Q{z, z ' ) be the angle between the segment ~zz'
and the horizontal direction.

Sublemma 9.0.12.— There is a function f: [0, oo) -^R with lim^^/(r) =0 so
that if z, z ' are horizontal, then \ 6(0(<?), 0(^')) - 7^/4 | > 71/4 ~/(r).
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Proof. — If not, we could find a sequence z^ z[ eH2 x H2 of horizontal pairs
so that X,-1 == d{z,, z',) == oo and lim sup^ | 6(<D(^), <D(^)) - 7^/4 | < 70/4. Then
^,^ eco-lim(\(H2 X H2),^) is a horizontal pair with 6(0^(^J, OJ^)) =(= 0, Tr/2.
This contradicts step 3. a

Since any two horizontal pairs ^, z[ and ^, ̂  may be joined with a continuous
family z^ z\ of horizontal pairs with mind(z^ z\) ^ min(^(^, ^), rf(^, ^)), we see
that for horizontal pairs z, z ' , the limit lim^ ̂ _^ 9(^(^), ̂ M) exists and is either 0
or TC/2. We assume without losing generality that the former holds.

Hence as y e H2 varies, the compositions H2 -> H2 X {y } ^> H2 X H2 -S- H2 are
quasi-isometries with quasi-isometry constant independent ofj/, and they lie at finite
distance from one another. It follows that they lie at uniform distance from one another,
and so 0 preserves the fibers ofp^ up to bounded HausdorfF error. Repeating this argu-
ment for p^ we see that 0 is within uniform distance of a product O^ X 0^ °^ quasi-
isometries.
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