JEAN-MICHEL BISMUT

GILLES LEBEAU
Complex immersions and Quillen metrics

Publications mathématiques de IULH.E.S., tome 74 (1991), p. 1-298
<http://www.numdam.org/item?id=PMIHES_1991__ 74 1 _0>

© Publications mathématiques de PLH.E.S., 1991, tous droits réservés.

L’accés aux archives de la revue « Publications mathématiques de I'LH.E.S. » (httpy/
www.ihes.fr/IHES/Publications/Publications.html) implique 1’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

‘NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=PMIHES_1991__74__1_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/
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INTRODUCTION

Let i: Y > X be an embedding of compact complex manifolds. Let n be a
holomorphic vector bundle on Y and let

(01) (g,v):o—‘)&mﬁgm—l"'—’§0_>0

be a holomorphic chain complex of vector bundles on X which, together with a
restriction map, r: £,y — M, provides a resolution of the sheaf i, Oy (n).
For 0 <i<m, let A(§,) be the inverse of the determinant of the cohomology

of . Set A(§)= @ (A(E)) . Similarly, let A(n) be the inverse of the determinant

i=0

of the cohomology of 1. By Grothendieck-Knudsen-Mumford [KnM], the lines A (&)
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and A(n) are canonically isomorphic. Let o be the nonzero element of the line
A~ (M) ® A (E) which defines the canonical isomorphim.

Assume that TX, TY, &, ..., &,, n are equipped with Hermitian metrics. Then
by [Q2], [BGS3, Section 1d)], we can equip the lines A (§), A (1) with Hermitian metrics
| Ihes | |l e> Which are called Quillen metrics. The Quillen metric is the product
of the standard L, metric coming from Hodge theory by the Ray-Singer analytic
torsion of the Dolbeault complex [RS2]. The logarithm of the Ray-Singer analytic
torsion is a linear combination of derivatives at zero of the zeta functions of the
Hodge Laplacians acting on smooth forms of various degrees. The L, metric and the
Ray-Singer analytic torsion have to be normalized. The normalizations which we use
here are described in Section le) of this paper.

Let|| |-t o2 be the corresponding Quillen metric on the line A~ () @ A (€).
The purpose of this paper is to give a formula for Log (|| o ||?-1 w e1¢) in terms of
local secondary invariants of the holomorphic Hermitian bundles introduced above,
provided that the metrics satisfy certain natural assumptions.

Our first assumption is that the metric g™ on TX is Kdhler and that the metric
g™ on TY is induced by the metric g™*. Let N be the normal bundle to Y in X, and
let gN be the metric induced by g™ on N. We assume in addition that assumption (A)
in Bismut [B2, Definition 1.5] is verified, i.e. that the metrics A%, ..., A on
Eos - - -, &, are in some sense compatible with the metrics gV, g" on N, 1.

Let Td(TX, g™) be the Todd form in Chern-Weil theory assok:iated to the
holomorphic Hermitian connection on (TX, g™). Other Chern-Weil forms will be
denoted in a similar way. In particular ch (&, A%) denotes the Chern-Weil representative
of the Chern character of the Z-graded vector bundle & associated to the metrics
h%, ..., hm,

Let T (€, h°) be the Bott-Chern current on X constructed in Bismut-Gillet-Soulé
[BGS4], associated with the holomorphic chain complex (&, v). By [BGS4,
Theorem 2.5], we know that if 3y, is the current corresponding to integration over Y,
then

(0.2) 2—,‘1 T(E h)=Td ' (N, g)ch(n, g") 8y, —ch (&, A°).

Let Td(TY, TX|y, g™%!¥) be the Bott-Chern class associated with the exact
sequence 0 > TY —» TX |y — N constructed in [BGS1, Section 1f)]. The class of forms
Td(TY, TX |y, g™ !¥) on Y is such that

00

2in

0.3) Td(TY, TX |y, ™) =Td(TX |y, g™ 1)~ Td(TY, g™) Td(N, g").
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Finally let R (x) be the power series introduced by Gillet-Soulé¢ [GS3], which is
such that if {(s) is the Riemann zeta function, then

0.4) R(x)= Y (Z 3.+2—C'-(—_—”))C(—n)x—".
n>1\1 Jj §(—=n) n!
nodd

We identify R with the corresponding additive genus.
The main result of this paper (which is a consequence of Theorems 2.1 and 6.1)
is as follows.

Theorem 0.1. — The following identity holds

(0.5) Log(|o|-1menre)= —J Td(TX, g™) T, i)

X

+J Td~1 (N, g% Td(TY, TX |y, ™ '¥) ch(, £")
Y

- j Td (TX) R (TX)ch (£) + f Td (TY)R (TY)ch(n).

Y

That a formula like (0.5) holds is perhaps not too surprising. In fact if X, Y are
themselves the fibres of a locally Kédhler fibration over a complex manifold S (in the
sense of Bismut-Gillet-Soulé [BGS3, Definition 1.25]), the curvature Theorem of
[BGS1, Theorem 0.1] shows that the function on S defined by

(0.6) f©)=Log(|o -1 mere)st J Td(TX, g™) T (&, i)

Xs

—J Td " '(N, g Td(TY, TX |y, g™%!¥)ch(n, g
Ys

is pluriharmonic. Formula (0.5) says that f (s) is, in fact, constant and equal to the

topological quantity — J Td(TX)R(TX)ch(§)+ J Td(TY)R(TY)ch(n). In this
X Y
sense, our formula is a considerable refinement of the local Riemann-Roch-Grothen-

dieck theorem on determinants of direct images proved in [BGSI, 2, 3].

The archetypical application of formula (0.5) is the case where X is a curve of
genus g = 1, where Y is a point P in X, D the divisor associated to P, f the canonical
section of D, p a holomorphic line bundle on X, n the line pp and (&, v) the complex

0->pu®[-D]->p—0.
S
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If the various line bundles are equipped with Arakelov metrics [Ar], [F, p. 394],
[La, p. 85], then formula (0.5) shows that Log(|o||?-1 ¢ @1 @)=0. This result was
already proved before by [AIBMNYV, Section 5D] using the pluriharmonicity of the
function f in (0.6) on the moduli space of curves of genus > 2. If Y contains more
than one point, Arakelov metrics do not verify assumption (A) of [B2]. Still the
formulas of [AIBMNV]—which correspond to Arakelov adjunction formulas [La,
Theorem IV 5.3]—also follow from our formula (0.5) by using classical anomaly
formulas. Let us point out that the many difficulties we encounter in the analytic
proof of formula (0.5) disappear when X is a curve, the proof being very easy in this
case.

On the other hand, by a Grothendieck type of approach to an arithmetic version
of a theorem of Riemann-Roch-Grothendieck, which would extend to arbitrary
dimensions the Faltings-Riemann-Roch theorem for curves [F, Theorem 3],
[La, Theorem V 3.4], Gillet and Soulé [GS3] conjectured that the additive genus R
should play an important role. They did so by calculating the logarithm of the Ray-
Singer analytic torsion [RS2] of the trivial line bundle on P" equipped with the Fubini-
Study metric, and by substracting off natural local quantities on P". Recently, using
our formula (0.5), they have finally proved the conjectured generalization of the
Theorem of Faltings-Riemann-Roch [GS4].

To establish a formula like (0.5), one might be tempted to follow the now well-
known strategy to the proof of the theorem of Riemann-Roch-Grothendieck, i.e. the
deformation to the normal cone of Baum-Fulton-McPherson [BaFM], [BGSS,
Section 4]. Such a strategy is very difficult to follow here, because it introduces singular
fibres near which the behaviour of the Ray-Singer analytic torsion seems to be difficult
to study. ’

Here, we choose a very different route to prove Theorem 0. 1. Namely we obtain
(0.5) directly by understanding in depth the Hodge theory of resolutions.

We now briefly describe the general strategy of the proof of Theorem 0.1, and
also the techniques which we use in this paper. ‘

1. Cech cohomology and Dolbeault cohomology

Let 8%, 8" be the Cech coboundaries on X, Y. As is well known in the theory of
determinants, we can construct the double complex (O (£), 8*+v) on X which has
the following two properties:

o If X (£) is the determinant of its cohomology, then X (£) is canonically isomorphic
to A (). :

o The restriction map r: (O (€), 8 +v) = (Oy (1), 8Y) is a quasi-isomorphism of
complexes. In fact, if we filter the double complex (O (E), 8*+v) by the map v, we
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exactly obtain the complex (Uy (n), 8Y). Let p be the section of A~*(n) ® X (£) which
canonically identifies A () to X (&).

In Section 1, we construct the Dolbeault analogues (E, 6% +v) and (F, 0¥) of the
complexes (O (§), 8 +v) and (Oy (1), 8Y) and of the quasi-isomorphism r.

One essential idea of this paper is to make analytic sense of the degeneration of
the complex (E, 0% +v) into the complex (F, dY). In fact we equip the line X (£) with a
Quillen metric || ||z, We prove in Theorem 2.1 that

Log (” c ”f“ L ® 1) = Log (” p|F-1 o ® T

Then, we must evaluate Log (|| p||Z-1 ) & 7))

2. A fundamental closed form

Let 0X*, v* be the adjoints of 0%, v. Set DX=0%X+0%", V=0v+v*. Foru >0, T > 0,
set

0.7) B, r=u(DX+TV).

Let N¥, N;; be the number operators which define the Z-grading on A (T*©® VX)), &
respectively. Let B, 1 be the one-form on R% X R%

0.8) B, 1= —i—u Tr, [(NY — Np) exp (= B} )] — % Tr, [Nuexp (= B 1)].

In (0.8), Tr, is our notation of the supertrace. In Theorem 3.5, we prove that the
form B, 1 is closed. If I is a closed rectangle in R% x R*%, we get the basic identity

(0.9) J B=0,

in Theorem 3. 6.

As explained in Remark 3.7, Theorem 0.1 will be obtained by deforming I" into
the boundary of R* x R* . In this process the contributions of each side of the rectangle
diverge. Once divergences have been substracted off, one side of the rectangle ultima-
tely calculates the logarithm of the Ray-Singer analytic torsion of (E, 0* +v), another
the logarithm of the Ray-Singer analytic torsion of (F, 8¥), the third one the ratio
of the L, metrics on A(n) and A(£), and the fourth one the right-hand side of
formula (0.5).

Let us just say here that we devised this strategy by imitating the natural procedure
one would follow if (E, 0*X+v) and (F, 0Y) were finite-dimensional complexes.
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3. Degeneration of a spectral sequence in Hodge Theory

Let 0¥" be the adjoint of 8Y. Set DY=03Y+0¥". We show in Sections 8 and 9 that
in an adequate sense, the limit of the operators DX+ TV (which act on E) as T — + oo
is equal to the operator DY (which acts on F). We now make this statement more
precise. Let Ny be the number operator which grades A(T*©VY)®n. A typical
result, stated in Theorem 6.4, says that for o > a, >0, T > 1,

(0.10) | Tr, [(NX = Nyp) exp (— o (DX +TV)?)] = Tr, [NY exp (— . (DY)))] | < ——

JT
This is proved in Sections 8 and 9. The proof of (0.10) uses the fact that the metric
g™ is Kahler. Uniformity in a > o, is obtained by an adequate control of the lower
part of the spectrum of D*+TV, based on the quasi-isomorphism between the

complexes (E, 0*+v) and (F, 9Y). This is one of the key steps of the proof where a
purely algebraic fact is converted into relevant analytic information.

4. L, metrics and localization of harmonic forms

Roughly speaking, we show that, as T — + oo, the kernel of D*+ TV is deformed
into the kernel of DY. To calculate the ratio of the L, metrics on A (1) and X (£), we
must in particular show that there are no spurious interactions between the connected
components Y; of Y. This is proved in Section 10, and is also an analytic consequence
of the fact that r induces a quasi-isomorphism of complexes.

5. Local index Theory

In the whole paper, local index theory techniques play an important role. In
particular we use the rescaling of the Clifford algebra introduced by Getzler [Ge] in
his proof of the local Atiyah-Singer index Theorem.

Still, because the family of operators (u D*+TV)? which we consider depends on
two parameters u > 0, T > 0, we must adapt the rescaling of [Ge] to the variation of
the two parameters. To illustrate this point, let us just say that if T is constant, as
u — 0, the local supertraces under consideration converge (by local index theory) to a
smooth form on X. If T = (1/u), by the results of Section 12, these local supertraces
converge to a current concentrated on Y. A rather subtle problem which arises in our
proof is to describe the convergence in the full region of variation of parameters
u€]0, 1], 1 < T < (1/u). This analysis which is carried through in Section 11, is possible
by a fine tuning of Getzler’s rescaling.
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The subtlety is best revealed by the fact that, as shown in [BGS4, Section 3], the
current T (€, 4%) is not locally integrable near Y. The current T (£, 4%) on X can be
defined as a principal part of a smooth current on X\ Y whose integral near an
e-neighborhood on Y behaves like Log(e) as € —» 0, and the whole point is to show
that our proof exactly produces this specific principal part.

6. Finite propagation speed and localization

By Theorem 6.4, for one given u > 0, as T - + oo, Tr,[Nyexp (—(uD*+TV)?)]
has a limit. On the other hand, by the previous discussion and by the results in
Section 12, for a given T, > 1, as u — 0, Tr,[Nyexp (—(uD*+(T,/u) V)?)] also has a
limit. The question then arises to understand the behaviour of the quantity
Tr,[Nyexp (— (uD*+TV)?)] in the range u€]0, 1], T > (1/u). This is done in Section 13
of this paper, by using the fact that the operator cos (u D*+ TV) has finite propagation
speed [CP, Chapter VII], [T, Chapter 1V], which only depends on # > 0. This technique
permits us to gently interpolate between the values T=(1/u) and T= + oo of the
parameter T. Finite propagation speed is one of the most important and significant
of the techniques which are used in this paper.

7. Trivializations and functional analysis

Most of the analysis which is involved in this paper consists in writing the given
operators as (2,2) or (3,3) matrices, which, as explained in the introduction to
Section 12, have a preferred asymptotic structure as T — + oo. This preferred matrix
structure is not invariant under conjugation. Therefore, the choice of trivializations of
the considered vector bundles plays a key role in all the proofs. It turns out that the
choice of the right trivialization depends heavily on the domain of variation of the
parameters ¥ > 0, T > 0. In many cases, the difficulty in the proofs lies in adjusting
the trivialization to the domain of variation of the parameters, and also in delicately
estimating the transition from one trivialization to another. In particular for T < (1/u),
the preferred coordinate system is a geodesic coordinate system centered at x e X; for
T =~ (1/u), either a geodesic coordinate systems on X centered at y,€Y or a coordinate
system of geodesics which are normal to Y; for T > (1/u), a coordinate system of
geodesics normal to Y.

Once the trivialization is chosen, most of the time, we need to estimate the
resolvents of the considered rescaled operators, and in particular their regularizing
properties, which should be uniform in the given domain of variation of parameters.
To estimate the resolvents, we introduce an adequate family of norms depending on u,
T and also on the grading of the considered vector spaces on which the considered
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operators act. In particular, because we deal with resolvents, Getzler’s rescaling [Ge]
imposes an analysis of its own, which can be avoided when only heat kernels are
involved. Uniform coercivity estimates have to be proved on the operators considered.
Their regularity properties are obtained by estimating uniformly iterated commutators
with a class of test operators. These estimates have to be done carefully, since many
estimates are borderline. Again, the choice of norms has to be delicately tuned to the
domain of variation of parameters. Surprisingly enough, certain purely local problems,
if seriously dealt with, are very difficult to solve. Solving them in detail partly explains
the length of this paper.

8. Fighting the devil : heat equation and the logarithm

In the course of the proof of Theorem 0.1, one of the principal challenges is to
study the behaviour, as € — 0, of the integral

0.11) 12(g)= —rw {Trs[NHexp(—(an+eTV)2)]— %dime(n)} %T
1

(as the reader may guess, substracting off (1/2)dim Ny (n) in the integrand (0.11)
makes the integral converge). As shown in Theorem 6.14, the proof of which depends
on Sections 7-13, once logarithmic divergences are substracted off, we ultimately
produce the current T (£, %) of Bismut-Gillet-Soulé [BGS4] and the analytic torsion
forms B(TY, TX|y, ng'Y) of Bismut [B3] associated with the exact sequence
0->TY->TX|y>N-0.

9. Evaluation of the final formula: a geometric deformation

The analysis described above only involves a scaling on a two parameters family
of operators, without modifying the geometry of the immersion Y — X. The final step
of our proof— which is the evaluation of the form B(TY, TX|y, g™ '¥) modulo ¢ and
0 coboundaries —was carried through in Bismut [B3], in particular by deforming the
arbitrary short exact sequence of vector bundles 0 > TY - TX |y -» N - 0 to a split
exact sequence (in which the vector bundle in the middle is the direct sum of the two

others). The Bott-Chern class Td (TY, TX|y, g™ '¥) and the additive genus R (N)
appear in (0.5) using the results of [B3]. The arguments in [B3] are the only ones
which may resemble more classical arguments in the proof of the Theorem of Riemann-
Roch-Grothendieck.

We now briefly describe our sources and our debts. First, this work is clearly
connected with previous work by Bismut [B2] on the convergence of Chern character
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superconnection currents in the sense of Quillen [Q1] as the Quillen parameter tends
to infinity, and to the subsequent construction by Bismut-Gillet-Soulé [BGS4] of the
current T (€, A%). Also Bismut-Gillet-Soulé [BGS5] gave a direct verification that the
current T (£, 4%) verifies natural functorial properties compatible with a formula
like (0.5). As we pointed out before, the genus R (x) was conjectured to appear in a
refined formula of Riemann-Roch-Grothendieck in Gillet-Soulé [GS3] and reobtained
in Bismut [B3] as a piece of the analytic torsion forms of an exact sequence of
holomorphic Hermitian vector bundles.

In [W], Witten gave a heat equation proof of the Morse inequalities, by a
deformation of the Hodge de Rham complex which depends on the considered Morse
function h. As a parameter ¢ tends to infinity, the Witten Laplacian contains a potential
2 Idhl2 which makes the corresponding harmonic eigenforms localize on the critical
points of A, together with other eigenforms associated with asymptotically zero eigen-
values, hence the Morse inequalities. In [W], Witten also suggested a proof of the
Bott inequalities, in the case where the critical points of the function 4 form submani-
folds. Morse and Bott inequalities were proved in [B5] using the Witten complex by a
heat equation method, which involves a non-trivial deformation of the metric in the
case of non isolated critical points. In [HeSj1], Helffer and Sj6strand gave a rigorous
analytic construction of the Thom-Smale-Witten complex of a Morse function with
isolated critical points, by making mathematical sense of the instantons construction
of Witten [W]. Also in [HeS;j2], Helffer and Sjostrand made a detailed analysis of the
lower part of the spectrum and of the corresponding eigenforms of a Schrédinger
operator with a potential ¢tV as ¢ —» + oo, where the minima of V form submanifolds.
In [HeS;j3], they also proved the Bott inequalities using their previous results in [HeSj1].

It turns out that the analysis of the kernel of the operator (D*+TV)? as T -+ o
is closely related to the analysis of Witten’s Laplacian, |dh|* being replace by V2. Any
kind of “instanton” effect is here prevented by the existence of the quasi-isomorphism
r: (E, 0*+v) - (F, 0Y).

Also Cheeger [Ch] and Miiller [Mii] proved the equality between the Reidemeister
torsion of a flat vector bundle and the corresponding Ray-Singer torsion [RS1]. This
result is an equality between topological invariants. In [Ch] and [Mii], it is proved by
studying the behaviour of the Reidemeister torsion and of the Ray-Singer torsion by
surgery and by reducing the problem to a calculation on a sphere. More recently,
Tangerman [Ta] announced a proof of the equality between the Reidemeister and
analytic torsions by using the Witten complex associated with a Morse function with
isolated critical points. Althouth the problem which is solved here is of a very different
nature, there could be at least some analogy between the techniques announced in
[Ta] and our own work.

We have tried to make the paper as self-contained as possible. It is organized as
follows. In Section 1, we describe the geometric setting, we construct the Quillen
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metrics, and we introduce our fundamental assumptions on the metrics on the consi-
dered vector bundles. In Section 2, we prove that if teX ™! (&) ® A (£) is the canonical
section identifying A (£) with X (), then ||t|lz-1¢ @1 =1. In Section 3, we construct
our fundamental closed one-form B and the contours I' in R% X R*. In Section 4, we
recall the definition of Quillen’s superconnections [Q1], the results of [B2] on the
convergence of superconnection Chern character currents of a resolution, and also the
construction in [BGS4] of the current T (€, A%). In Section 5, we describe the results
of [B3] on the construction of the analytic torsion forms associated to a short exact
sequence of holomorphic Hermitian vector bundles.

In Section 6, we state seven intermediary results concerning the asymptotic
behaviour of supertraces which involve the operator exp (— (u D*+TV)?). The proofs
of six of these results is delayed to Sections 8-13. By pushing the contour I' to the
boundary of R* x R%, we then derive Theorem 0.1 by a long but, in our opinion,
quite interesting calculation. At the final stage, we use the results of Bismut [B3] on
the construction and evaluation of the analytic torsion forms B(TY, TX]|y, g"™'v)
together with the explicit formula by Bismut-Soulé [B3, Appendix 1] which relates the
final evaluation of these forms to the genus R.

In Section 7, we recall the results of [B3] which concern the Hodge theory on a
Hermitian vector space V of the Dolbeault complex associated with the resolution of
the trivial sheaf concentrated at {0} by the corresponding Koszul complex A (V*).
The results of this Section are applied in Sections 9 and 13 to the fibres of the normal
bundle N. We draw the attention of the reader on the Gaussian form B, which
represents the canonical representative 1 of the cohomology of {0} in the Hodge
theory of the Dolbeault-Koszul complex. Part of the immense work of relating the
Hodge theories on Y and X is done by such B’s.

Sections 8-13 are devoted to the proof of six intermediary results stated in
Section 6, which are needed in the proof of Theorem 0.1. In Sections 8 and 9, we
study the family of operators exp(—a(D*+TV)?) as T or/and o tend to + co.
Section 10 describes the behaviour of the kernel of DX+ TV as T — + co. In Section 11,
we establish uniform estimates on supertraces of operators involving
exp(—uD*+TV)?) in the range uel0,1], 1 <T<(/u). If u—0, T=(1/u), the
behaviour of certain supertraces is studied in Section 12 and for u —» 0, T > (1/u), the
behaviour of such supertraces is described in Section 13. Sections 8-13 are accompanied
with the description of the preferred coordinate systems, trivializations and functional
analytic apparatus.

Finally, Section 14 contains a new direct proof of the result proved in [B3]
concerning the asymptotic behaviour, as T — + oo, of certain differential forms asso-
ciated with a short exact sequence of holomorphic Hermitian vector bundles. In [B3],
the proof relied on a direct explicit computation of such forms by functional integration
techniques. Here it is obtained by an adaptation of the functional analytic techniques
which were developed in the previous Sections.
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We now say a few words concerning our notation. If A is a Z,-graded algebra,
and if A, Be A, we define the supercommutator [A, B] by the formula

(0.12) [A, B|=AB—(—1)dcsAdesBBA

If E=E, ®E_ is a Z,-graded vector space, let t=+1 on E, be the involution
defining the grading. Then End(E) is a Z,-graded algebra, the even (resp. odd)
elements commuting (resp. anticommuting) with 1. If A € End (E), its supertrace Tr,[A]
is defined by

(0.13) Tr,[A]=Tr[t Al.

By [Q1] supertraces vanish on supercommutators. As in [B1], these notations will also
be used in an infinite-dimensional context.

The results presented in this paper were announced in [BL].

The authors acknowledge helpful discussions with A. Beauville, P. Deligne and
L. Illusie concerning this paper.

The authors are very much indebted to Madame Bardot and Madame Vergne
for typing the paper.
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I - COMPLEX IMMERSIONS, DOLBEAULT RESOLUTIONS
AND QUILLEN METRICS

a) Complex vector spaces and Hermitian products.

b) Immersions and resolutions of vector bundles.

c) The determinant fibres A (), X (£) and A (n).

d) Canonical isomorphisms of determinant lines and Dolbeault resolutions.
€) Quillen metrics on the lines A (&), A (1) and & (§).

f) Assumptions on the metrics on TX, &, 1.

In this Section, we introduce our basic setting, i. e.
e an immersion i: Y — X of compact complex manifolds.
e a holomorphic chain complex of vector bundles

€, v):0-E,> ... 08, >0

v

on X, and a holomorphic restriction map r: &,y = n such that we have the exact
sequence of sheaves

0-0x@E,) > O0xEp-1)— - .. = 0x (&) = i, Oy(n) — 0.

For 0 < i< m, let A(§;,) be the inverse of the determinant of the cohomology of
the sheaf Oy (€;). Set

LE= 8 (e

Let X (£) be the inverse of the determinant of the cohomology of the complex of
sheaves Oy (€, v). Finally let A (n) be the inverse of the determinant of the cohomology
of Oy (n). _

By Grothendieck-Knudsen-Mumford [KnM], the lines A (§), A (§) and A (1)
are canonically isomorphic. More precisely A" '(M) @A (), A () ®A(E), and
A" 1(m) ® M(E) have canonical nonzero sections p, 1, ¢ and moreover c=p ® 1. In
[KnM], these canonical isomorphisms are constructed in Cech cohomology. The first
purpose of this Section is to give the corresponding construction by using the associated
Dolbeault resolutions. In particular, in Theorem 1.7, we construct an explicit quasi-
isomorphism between the double complex associated with the Dolbeault resolution of
(¢, v) on X and the Dolbeault resolution of n on Y, which corresponds to the
tautological quasi-isomorphism in Cech cohomology.

The existence of the quasi-isomorphism of Dolbeault resolutions is the key
algebraic input in the proof of our main result. From it, we will derive in Sections 9
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and 10 results of a purely analytic nature, which are essential in the proof of
Theorem 0.1.

We then give ourselves Hermitian metrics on TX, TY, &, .. ., §,, n. The second
purpose of this Section is to construct the Quillen metrics on the lines A (€), A (€),
A (n) in the sense of Quillen [Q2], Bismut-Gillet-Soulé [BGS3]. In particular, we adopt
the normalization of the L, metric on Dolbeault resolutions suggested by Deligne [De].

The third purpose of this Section is to describe the compatibility assumption (A)
between metrics on TX, &, ..., &, and n. This assumption was first introduced
in [B2]. It will be satisfied in the whole paper.

This Section is organized as follows. In a), we introduce our main conventions
concerning complex vector spaces, Hermitian metrics, the star operator acting on the
associated exterior algebras. These conventions will be used in the whole paper. In b),
we introduce the immersion i: Y — X, the vector bundle 1, and the complex (§, v).
In c), we define the determinant lines A (£), X (£), A(n). In d), we describe the various
canonical isomorphisms between determinant lines in Cech and Dolbeault cohomology.
We also exhibit an explicit quasi-isomorphism between the Dolbeault resolutions of
(¢, v) and n. In e), we construct the Quillen metrics on the lines A (£), A (1), X (§), and
we explain the main purpose of this paper, which is to calculate the Quillen norms of
the sections p, T, ¢ previously described. Finally in f), we introduce assumption (A)
on the metrics on TX, &,, ..., &, N-

a) Complex vector spaces and Hermitian products

To avoid any ambiguities, we now will explain the conventions concerning com-
plex vector spaces and Hermitian products which will be used in the remainder of the
paper.

Let Vg be a real even-dimensional vector space. Let J be a complex structure on
Vg, i.e. a linear map in End (Vi) such that J?= —1. Set

V={ze Vg ®g C; Jz=\/—712},

V={ze Vg ®gC; Jz=— /—11z}.

Here V will be called the complex vector space associated with (Vg, J). In some cases,
we will also use the notation VX' ? V© 1) jnstead of V, V. We have the identity

(1.1)

Ve ®gC=VaV.

There is a natural conjugation map zeVi—»zeV. Any ZeVy®,C can be written
uniquely in the form

Z=z+7Z, zeV, z’eV.
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Then Ze Vg if and only if Z=z+z, ze V. If zeV, z will represent Z=z+z¢€ V.

Let V*, V* be the vector spaces of C-linear forms on V, V respectively.

Let {, ) be a J-invariant scalar product on Vg. We extend ( , ) by C-linearity
to a bilinear symmetric form on Vg ®gxC. The bilinear map y, ze Vg ®g C—{y, z )
vanishes when y, zeV or when y, ze V. The map y, zeV -y, z) is a Hermitian
product on V.

If Ze Vg, zeV, set

|Z*=(2Z,Z),
1.2 _
(-2 2=z 2.
Clearly if Ze Vg is such that Z=z+z, with zeV, then
(1.3) |Z|*=2]|z]%.

Here the map ze V> Z=z+z€ Vg is not an isometry.
The Kéhler form on Vg is the 2-form

(1.4) Z,Z'eVg—0(Z,2)={Z,3Z).

Then 0 extends by C-linearity to a 2-form on Vg ®g C of complex type (1,1).

The volume form dovy of Vg is the form (—0)%™V/(dimV)!, i.e. the usual volume
form on Vg associated with the scalar product ¢ , > and the canonical orientation
of Vp.

The Hermitian product on V induces a Hermitian product on A (V*) which we
still denote ¢ , ). Let * be the Hodge operator, which maps A?(V*) into
AYmY =P (V*) ® AdimV (V*). To avoid any ambiguities in the normalization of *, we
make the convention that if a, Be AP (V*),

fp_ (_e)dimv
(1.5) anA*B (a,B)—————(dimV)l.

b) Immersions and resolutions of vector bundles

Let X be a compact connected complex manifold of complex dimension /. Let
d

Y=UY,; be a finite union of compact connected complex submanifolds of X, such
1

that for 1 <j, j'<d, j#j', then Y;N\Y; =. Let i be the immersion Y — X. For
1 <j<d, let [} be the complex dimension of Y.

Let n be a holomorphic vector bundle on the manifold Y. For 1 <j<d, let n;
be the restriction of n to Y;. In the sequel, we will often omit the subscript j in

Yja nja l;
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Let
(1.6) G v:0-E,28 ... 285>0

be a holomorphic chain complex of vector bundles on X. In the sequel, we identify £

with @ &,. Then § is a Z-graded vector bundle. Let r be a holomorphic restriction
0

map &, | y N

For 0 <i<m, let Ox(§,) be the sheaf of holomorphic sections of &; over X.
Similarly let Oy (1) be the sheaf of holomorphic sections of | over Y.

We assume that the complex (§, v) provides a projective resolution of the sheaf
i, Oy (M), i.e. we have the exact sequence of sheaves

1.7 0 0xEp) = OxEp-1) = ... = 0x(&) =i, Oy(n)—0.

¢) The determinant fibres A (€), X () and A (1))

Let 8%, 8Y, 8¥ be the Cech coboundary operators on X, Y; (1<j<d), Y
respectively. By definition the cohomology groups H* (X, &) (0 <i<m), H*(Y;, n)
(1 €j<d), H*(Y, n) are the cohomology groups of the complexes (O (§,), 8%),

d
(Oy;(n)), 8Y4), (Oy (M), 8Y). Of course H*(Y, n)= @ H*(Y;, n)).
j=1

In the sequel, we will use the results of Grothendieck-Knudsen-Mumford [KnM]
concerning determinants of the cohomology. However, we will disregard the questions
of signs which appear in [KnM], since we have only to calculate norms of sections of
determinant lines. These do not depend on signs. When we say that two determinant
lines are canonically isomorphic, we will refer implicitly to [KnM] every time a sign
has to be specified.

For 0 <i<m, let A(§;,) be the inverse of the Grothendieck-Knudsen-Mumford
determinant fibre associated with the sheaf 0y (§;) [KnM, p. 46]. By definition

l

(1.8) AME)= ® (detHP (X, &i))(_l)pﬂ-

p=0

Similarly, for 1<j<d, A(n;) denotes the inverse of the Grothendieck-Knudsen-
Mumford determinant fibre associated with the sheaf (Dyj (m;)- Then

5
(1.9) A(M)= ® (detH? (Y, )"

p=0
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Set

AE)=® AE) Y,
(1.10) o
AM=® A(My).

j=1

Let N; be the operator acting on g-cochains on X by multiplication by ¢g. Let Ny
be the operator in End (§) acting on &; by multiplication by i (0 < i< m). We will
grade the complex (&, v) by the operator -Ny, so that v increases the degree by one.

We now use sign conventions so that 8* v+ 8*=0. We define the total Z-grading
on the complex (O (), 8* +v) by the operator Ny— Ny, so that the chain map 8%+ v
increases the total degree by one. Set

(1.11) X(E)= ® (det H? (O (£), 55+ )P,

pel

We extend r to a map from Oy (§) into i, Oy (n), which vanishes on 0Oy (§;) for
i#0 and coincides with the initial r for i=0. Tautologically, the map
r: (0 (), 8 +72) - (Oy(n), 8Y) is a quasi-isomorphism of Z-graded complexes. There-
fore

(1.12) H* (0x (§), 8+1) = H* (Y, m)= ® H*(Y,, n).

ji=1

Definition 1.1. — Let p be the canonical nonzero section of A™1(n) ® X (€)
associated with the identification (1.12).

For 0 < i < m, consider the exact sequence of complexes
(1.13) 0-( @ 0Ox(E), +0) = (@ Ox(E), 5x+v)—'((9x(é) §%) - 0.
jsi—-1 B j<i

In (1.13), we give the degree —i to O (§,), so that B is indeed a map of Z-graded
complexes. From (1.13), we get a long exact sequence

(1.14) cee “’Hp(. @ @X(gj)’ 5x+v)_’Hp(_®.(0x(&j), 3% +0)

- HFX,E)->HF" (@ Ox (), 3 +v) >

jsi-1
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From (1.14), by a standard construction [KnM, Lemma 2], [BGSI, Definition 1.1],
we obtain a canonical isomorphism

1
(1.15) AE)= ® ((detH( @ 0x(E), 3% +0))~"

p=—m i<i-1
®(detHP(G—) @X(&j); 6X+v)))(—1)p+i+l.

i<i

Using (1.10), we get a canonical isomorphism
(1.16) L) =X (E).
Definition 1.2. — Let 1 be the nonzero section of the line X ™! (§) ® A (£) associated

with the canonical isomorphism (1.16).
In view of Definitions 1.1 and 1.2, we now set the following definition.

Definition 1.3. — Let o be the nonzero section of A~ (1) ® A (£) defined by
(1.17) c=p®T.

Then o is exactly the canonical nonzero section of the line A~1(n) @ A(E)
constructed in Knudsen-Mumford [KnM, p. 46].

d) Canonical isomorphisms of determinant lines and Dolbeault resolutions

We now will construct the Dolbeault resolutions of the sheaves considered in
Section 1c¢).
Let J be the complex structure of T X. Set

TEOX={UeTg X ®C; JU=\/—_1U},
TO VX ={UeTyX ®C; JU=—_/~1U}.

Let T*1L.OX, T*© X be the complex duals to T® DX, TO VX respectively. For
simplicity, we will often write TX, T*X instead of T!"9X, T*® X We will use
similar notation for the manifolds Y, Y.

Clearly

A(T*ODX)= @ AP(T*ODX),
p=0
Let N¥ be the operator defining the Z-grading on A (T*® VX). Then N¥ acts on
AP (T*© Y X) by multiplication by p.
The spaces A (T*©VX), £ being Z-graded inherit a corresponding Z,-grad-
ing. We can then form the Z,-graded tensor product A (T*®VX)&® &. We define a



18 J.-M. BISMUT AND G. LEBEAU

Z-grading on A (T*® Y X) ® & by the operator N¥ ® 1 —1 ® N,;, which we will often
denote N¥ —N;,.

Definition 1.4. — For 0 < p <1, 0 < i< m, let EF be the set of smooth sections
of AP (T*® VX)) ® E; over the manifold X. Set

E'= © ELE = @ E E=E' QFE,

(118) p even podd
E,= ®&® ErZE. = ® ELE=E,®E._.
p—ieven p—iodd

For 0 <i<m, E; is Z-graded by N¥. The splitting E,=E; @ E; describes the
corresponding Z,-grading of E,. Similarly, E can be identified with the set of smooth
sections of A (T*® VX) ® £ over X. The space E is naturally Z-graded by the operator
N¥ —Ny,;. The splitting E=E, @ E_ describes the corresponding Z,-grading of E.

Let 0% be the Dolbeault operator acting on E. If (x!, ..., x!) is a holomorphic
coordinate system on X, in a given local holomorphic trivialization of &, then

1
(1.19) X=Y dx' A 9.
1 ox*

The operator 0% acts on each E; (0 < i < m). For 0 < i< m, we have the funda-
mental identity of Z-graded vector spaces
(1.20) H* (E;, 0%) = H* (0x (&), 8%).
Equivalently, for 0 < i < m,

(1.21) H*(E;, 0*) @ H*(X, &).

The chain map v acts on § as an odd operator, i.e. it interchanges the even and
odd parts of £&. We extend v to an odd operator acting on A (T*® VX) ® &, so that if
ae AP (T*® VX)), fek, then

v(@®f)=(—1*"a®f.
We have the obvious identities of operators acting on E
(1.22) (0%)2=0; v*=0; P*v+20*=0.
From (1.22), we deduce that
(1.23) (@*+0)*=0.

We can then form the Z-graded complex (E, 0% +v).
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Proposition 1.5. — There is a canonical identification of Z-graded vector spaces
(1.24) H*(E, 0% +v) =~ H* (0 (§), 8%+ ).

Proof. — The proof of (1.24) is identical to the proof of the more classical
result (1.20). In fact we form a triple complex with chain map 8%+ 8%+ v (and choice
of signs such that this is indeed a coboundary map). By filtering this complex by the
chain map 0* and using the Poincaré lemma, we get the complex (O (§), 8*+v), by
filtering the complex by the chain map 6%, we get the complex (E, 0*+v). Our
Proposition is proved. [J

Let NY be the operator defining the Z-grading on

y
A(T*®DY)= @ AL(T*VY).

q=0

This NY acts as the operator NY ® 1 on A (T*® VYY) ® n. It will be sometimes useful
to assume that n has degree 0, so that A(T*®VY)@ n=A(T** VYY) ®n.

Definition 1.6. — For 1 <j<d, 0 <q </}, let F] be the set of smooth sections
of A4(T** VY ,) ® n over the manifold Y;. Set

(1.25) FJ, + = ('B F_I,I’ FJ, -7 (_B Fq’. F]=F.I, + @ Fl’ -5
qeven q odd
d

F,=®F, ,,F=F, ®F_.
j=1

j=

For geN, set

(1.26) Fi= @ Fi.
j=1

Then

(1.27) F= @ Fu.
qgeN

The operator Ny defines a Z-grading on F; (1 <j < d), and on F.
For 1 <j < d, let 0¥ be the Dolbeault operator acting on F;. Then we have the
canonical identification of Z-graded vector spaces

(1.28) H*(F), 3%)) = H* (Y}, n).

We will use the notation

d

(1.29) Y=Y
1
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d
Then 0¥ acts on F= @ F;. Also

j=1

d

(1.30) H*(F, 3) =~ @ H*(Y,, n)).
ji=1

j=

Recall that r is the restriction map &, |y — 1. We will extend r to a linear map
from (A(T**VX)® £)|y into . Namely if ae A (T**VX)|y, fe& |y (0 <k <m),
set

(1.31) r@® f)=0 if k#0,
*o®rf if k=0.
We now prove the following simple and essential result.
Theorem 1.7. — The map r: (E, 0*+v) —» (F, 0%) is a quasi-isomorphism of Z-
graded complexes. It induces the canonical identification (1.12) of H* (O (E), 8*+v)
d

with H* (Y, n)= @ H* (Y}, n)). In particular, the map r induces the canonical identifi-

j=1

cation p of A()) and X (€) described in Definition 1.1.
Proof. — 1t is clear that

(1.32) roX=0o"r.
Also
(1.33) ro=0.

Therefore r is a map of chain complexes. We now briefly prove that r is a quasi-
isomorphism which induces the canonical isomorphism of H* (O (E), 8*+v) with
H* (Y, n).

As in the proof of Proposition 1.5, we introduce the triple complex (E, %X+ 0%+ v)
and we also consider the complex (F, 8Y+8Y). The map r sends (E, §X+3*+7v) into
(F, 8Y+0Y). If we filter the complex (E, 8%+ 3*+v) by the map 7%, and the complex
(F, 8Y+0Y) by the map 7Y, we find that r induces the tautological quasi-isomorphism
(O (8), % +71) = (Oy (1), 8Y). If we filter the complex (E, 8*+8%+1) by the map &%
and the complex (F, §¥+3Y) by the map &Y, we obtain the complexes (E, X+ v) and
(F, 2¥). The induced map r is exactly the one described in (1.31). Therefore the
map r: (E, 0*+v) > (F, 0¥) is a quasi-isomorphism, which induces the canonical
isomorphism (1.12).

Our Theorem is proved. [
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For 0 < i < m, consider the exact sequence of complexes

(1.34) 0-( ® Ej,3*+0)— (@ E, 3+1)— (B, %) - 0.

isi-1 y j<i ¥

As before, in (1.34), we give the total degree p—i to EP, so that (1.34) is indeed an
exact sequence of Z-graded complexes. From (1.34), we get the long exact sequence

(1.35) ...o>H'( ® Ej,5x+v)—>H"((-B Ej,5x+v)
j<i-t j<i
—->HPY(E, ) ->H' (@ E;, *tv)-> ...
i<i-1

By Proposition 1.5, the vector spaces appearing in the exact sequences (1.14) and
(1.35) are canonically isomorphic.

Proposition 1.8. — The exact sequences (1.14) and (1.35) are canonically iso-
morphic. In particular, the exact sequence (1.35) induces the canonical identification 1
of X (&) and \ (£) described in Definition 1.2.

Proof. — By proceeding as in Proposition 1.5, we introduce the complexes
(@ E, 8%+0%+1) which fit into an exact sequence similar to (1.13) and (1.34). By

isj

filtering this triple complex with respect to 0* and &%, we obtain our Proposition. [

¢) Quillen metrics on the lines A (€), . (n) and X (§)

We assume that TX is equipped with a smooth Hermitian metric g"™. Let (, )
denote the corresponding scalar product on TgX. If J is the complex structure of
Tg X, the Kihler form ®* on X is defined by

(1.36) U, U'eTgX »oX(U, U)=(U, JU").

As a complex submanifold of X, Y is also naturally equipped with a Hermitian
metric g'¥ whose Kihler form oY is given by

(1.37) oY = i* X,

Let A%, ..., h*= be smooth Hermitian metrics on the vector bundles &, ..., &,.

m

Let A* be the metric on £= @ &, which is the orthogonal sum of the metrics A%. Let
i=0

g" be a smooth Hermitian metric on the vector bundle n.
We now briefly explain the construction of the Quillen metric on the determinant
lines A (&), - - ., A(E,) [Q2], [BGS3]. We use the conventions of Section 1a).
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Let * be the complex star operator associated to the given Hermitian metric on
TX. For 0 < p < dimX, if a, o’ € E?, set

(1.38) {a, cx'>=< ! )dimxj Con*a ).

2n

Equivalently, the metric on TX induces a metric on A(T*%VX). We equip
A(T*®DX)® &, with the obvious product metric. Let dvy be the volume form on X
associated with the metric g"™*. Then if a, o' € E?, we also have

1

(1.39) (a, a’>=<§_n

dim X
) J (o, o' Yp 0. 1 x) @ g dx-
X
1
The formulas (1.38), (1.39) define a Hermitian product on E?. We equip E;= & E?
p=1

with the orthogonal sum of the given Hermitian products on the EP’s.

Let 0X° be the formal adjoint of d* with respect to the Hermitian product (1.38),
(1.39).

For 0 <i<m, 0 <p <dimX, let K? be the finite-dimensional vector space
(1.40) K?={aeE?; *a=0; 0*" a=0}.

By Hodge theory, we know that K? is canonically isomorphic to H? (X, &;). As finite
dimensional vector subspaces of the EP’s, the vector spaces K? =~ H? (X, &,) inherit the
Hermitian product (1.38), (1.39). Using the identification of A(§;,) with

dim X

® (detH?(X, £)" """, we may equip A (§;) with the obvious product metric which
p=0

we denote | |y -

1
Set K;= @ KP?. Let K; be the space orthogonal to K; in E,. Let P,, P denote

p=0
the orthogonal projection operators from E; on K,, Ki. The Laplacian (0% + 0%")? acts
on K; as an invertible operator, whose inverse is denoted [(0*+ 0%")?]~ 1.
Observe that the vector spaces E;, K;, K{ are Z-graded by the operator N¥, and
so they are Z,-graded. In particular if Ae€End(E,) is trace class, we can define its
supertrace TrFi[A].

Definition 1.9. — For 0 <i<m, seC, Re(s) > dimX, set

(1.41) 0% ()= — TrE [NY [(@* + 0%)*]*P{1.

By a result of Seeley [Se], the function Og‘i (s) extends to a meromorphic function
of se C, which is holomorphic at s=0.
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Definition 1.10. — For 0 <i < m, the Quillen metric || ||, , on A(§) is given
by

1 00X
(1.42) | ||x(§.~)=eXP{_— —é'(o)}| b co-
2 0Os

The factor exp { —(90}/ds) (0)} is the Ray-Singer analytic torsion [RS2] of the complex
(Eia ax)

For 1 <i<m,let| |aey-» be the metric on the line (A(£;)) ! which is dual
to the metric | ||, ¢, on A (&)

We then equip the line A (£)= ® (A () V' with the product metric
0

(1.43) I lhe= ,(?0 I Ml g
We construct the Quillen metric || ||, my on the line L (m)) (1 <j < d) in a similar

way. In particular if 1 <j < d and B, B’eFY, set

(1.44) (B, B'>=(ﬁ) ""Y’f (BA*E S,

Equivalently if dvy, is the volume element on Y, then

1

(1.45) (B, B'>=<ﬁ

dimY;
> f B, B >A(T‘(O’1)Yj)®'ljdej'
Y

j
The definition of the Quillen metric || ||“nj) on the line A(n;) then proceeds
d

exactly as before. We equip the line A (n)= ® A(n;) with the Quillen metric || ||,
j=1

j=

which is the product of the metrics || ||, -
d
We equip F= @ F; with the orthogonal sum of the Hermitian products (1.45).
j=1 a
Let 0¥/ be the formal adjoint of 0¥/ with respect to (1.45). Then 0Y'= @ 0YJ* is the

j=1

d
formal adjoint of Y= @ 0Yi.
j=1
Remark 1.11. — Note a few differences with the conventions of Bismut-Gillet-
Soulé [BGS3, Section 1d)]. The first is the factor (1/2m)*™* or (1/2m)%4™Yi in (1.38),

(1.44) which did not appear in [BGS3]. This modification was suggested by
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Deligne [De]. Also in [BGS3], Gg‘i (s) was instead
(1.46) 0% (s)= — Trfi [N¥[2 (8% +3%)] ~*P{].

However one verifies easily that

(1.47) B ()= — Tri [N¥[(0* +20%)?] " *P{].

Now if the metric g™ on TX is changed into g™%/2, the operator 0% is changed
into 20%". Therefore B (s) is exactly the function 6% (s) in which the metric g™ is
replaced by g"™/2. The effect of such of a change in our final result will be briefly
considered in Remark 6.18.

We finally construct the Quillen metric on the line X(£), by imitating [BGS3,
Section 2a)]. Namely, we equip E=@® <;<m 0<p,<:E/ with the orthogonal sum of
the Hermitian metrics (1.38), (1.39) on the E?’s.

Let v* be the adjoint of v with respect to the Hermitian product A% on &. Then
0%"+v* is the formal adjoint of 0*+v. Set

(1.48) K={e€E; (0*+v)e=0; (0% +v*)e=0}.

By Hodge theory, we have a canonical identification of Z-graded vector spaces
K = H*(E, 0% +v). The vector space K inherits a Hermitian product from the Hermi-
tian product of E. Let | |[; « denote the corresponding metric on X ().

Let K* be the vector space orthogonal to K in E. Then the operator
(0*+v+0*" +v*)? acts as an invertible operator on K+, whose inverse is denoted
((@X+v+0% +0%)?)" L. Let P, P denote the orthogonal projection operators from E
on K, K* respectively.

For seC, Re(s) > dim X, set

(1.49) BX (5) = — TrE [(N¥ = Nyp) (% + 0+ 7% + v%)?) "* P4,

Then 62‘ (s) extends to a meromorphic function of se€ C, which is holomorphic at s=0.
The Quillen metric || ||, on the line X (€) is defined by

1 00
(1.50) I le@)=eXP{—~ —= (0)}| Iz o)
2 0Os

The lines A(E), A(E), A(n) are now equipped with Quillen metrics || ||, )
I llzes I Il We equip the inverses or the tensor products of such lines with the
inverses or the tensor products of the corresponding Quillen metrics.

Tautologically, by formula (1.17), we know that

(1.51) lolh-tmere=lPlh-tmerelltli-1eere
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The main purpose of this paper is to calculate the norms which appear
in (1.51).

This will be done under various assumptions on the metrics g™, A%, ..., h*m gn
which are described in Section If).

f) Assumptions on the metrics on TX, &, 1

Our first basic assumption is that the metric g™ is Kéhler, or equivalently that
the Kéhler form ®* defined in (1.36) is closed. Therefore the metric g™ on Y is
Kihler, and the corresponding Kihler form Y is closed.

Let N be the complex bundle normal to Y in X; N; will denote the restriction of
NtoY;

On Y, we have the exact sequence of holomorphic vector bundles

(1.52) 0->TY > TX|y>N-0.

We identify N with the bundle orthogonal to TY in TX|Y. Therefore N is now
equipped with a Hermitian metric gN. Let P™Y, PN denote the orthogonal projection
operators from TX |y on TY, N respectively.

Let g" be a Hermitian metric on n.

We now describe the special choice of metrics A0, ..., h*» on &, ..., &, in
[B2, Section 1].

Take y,eY. Let x=(y, z), ye C", ze C" be a holomorphic system of coordinates
on an open neighborhood U of y, in X such that 0 represents y,, and that

(1.53) YNU={x=(y, 2)eU, z=0}.

Then dz', ..., dz" span a trivial vector bundle N* on U, whose restriction to
Y N U is exactly N*. Let N be the dual of N*. Clearly, N extends N|y ,y to U. If U
is small enough, the holomorphic vector bundle n |y .y extends to a holomorphic
vector bundle 1 on U. We consider z as a section of N on U which exactly vanishes
on Y N U. Then the interior multiplication operator i, acts naturally on the Koszul
complex AN*® 1.

By the local uniqueness of resolutions [Ser, Chapter IV, Appendix 1], [E, Theo-
rem 8], we know that if U is small enough, there exists a Z-graded holomorphic
acyclic chain complex (A, a) on U such that we have an identification of Z-graded
holomorphic chain complexes

(1.54) G o)|v=AN*®n, /-1i)® (A, a).
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Under the identification (1.54), the restriction map r is given by
(1.55) @A g)e(ﬁ@Ao)lan'_’fen-

We now briefly describe the results of [B2, Section 1b)], which are simple conse-
quences of the previous considerations.

For yeY, let H (€, v) be the homology of the chain complex (&, v),. It is a
Z-graded vector space. Then

e For 0 < i < m, the dimension of H; , (&, v) is locally constant as y varies in Y.
Therefore H (€, v) is now a Z-graded holomorphic vector bundle on Y.

e For yeY, ueT X, let 0,v(y) be the derivative of the chain map v at y in the
direction u calculated in any holomorphic trivialization of & near y. Then J,v(y) acts
on H, (&, v) and decreases the total degree by one. The action of d,v(y) on H, (&, v)
does not depend on the trivialization of (§, v) and only depends on the image ze N,
of ue T, X. So, from now on, we will write d,v(y) instead of d, v (y).

e For any yeY, zeN,, we have (9,v(y))>=0. Also, d,v(y) depends holomorphi-
cally on y, z.

e Let © be the projection N —Y. Then there is a canonical isomorphism of
holomorphic Z-graded chain complexes on N

(1.56) (H(E, v), 0,v) = (M*(AN*® ), /—1i,).

Recall that &, ..., £, are equipped with Hermitian metrics A%, ..., h*». We
then use the same notation as in Section le). By finite-dimensional Hodge theory, we
know that for every yeY, there is a canonical isomorphism of Z-graded vector spaces

(1.57) H, (&, v) = {fe&; v(y) f=0; v* () f=0}.

The identification (1.57) induces an identification of smooth vector bundles on Y.
The bundle H (§, v) will now be considered as a smooth vector subbundle of &|y. In
particular H (€, v) inherits a Hermitian metric A" ¢ *) from the metric 4° on &.

Recall that N, n are already equipped with Hermitian metrics g~, g". The bundle
AN* is naturally equipped with the metric induced by g¥. We equip AN* ® n with
the tensor product of the metrics on AN* and n.

Definition 1.12. — We will say that the metrics A%, ..., B*mon &, ..., &, verify
assumption (A) with respect to the metrics g~, g" if the identification of holomorphic
Z-graded complexes (1.56) also identifies the metrics.

Proposition 1.13. — There exist Hermitian metrics h*, ..., h*= on &, ..., &,
which verify assumption (A) with respect to the metrics g, g" on N, 0.

Proof. — This result is proved in [B2, Proposition 1.6]. [J

In the sequel, we suppose that the metrics A%, ..., h*= verify assumption (A)
with respect to the metrics gV, g" on N, 1.



COMPLEX IMMERSIONS AND QUILLEN METRICS 27

II - EVALUATION OF THE QUILLEN NORM OF THE SECTION 1t

Recall that T is the canonical nonzero section of the line X~ ! (&) ® A (£), which
was defined in Definition 1.2. The purpose of this Section is to calculate the Quillen
norm of 1. Note that in this Section, we do not use the fact that O (€, v) is a resolution

of i, Oy(M).

Theorem 2.1. — The following identity holds

2.1) [<ll-1 @ore=1-

Proof. — For 0 <i< m, we consider the double complex (@ E;, 0*+v). This
i<i
complex is again Z-graded by N¥ — N,;. By imitating the constructions of Sections 1c),
1d), 1e) (which correspond to the case i=m), we can construct the associated determi-
nant fibre X,(¢), which we equip with the Quillen metric || || Clearly
X (€)=X, (&) and the Quillen metrics || ||z and || ||, ¢ coincide.
We now again consider the exact sequence of complexes (1.34)

2.2) 0-( @ Ej,*+v)> (@ E;, 0*+v) > (E, 0)—0.

j<i-1 Yy j<i k%

Using (2.2) and the associated long exact sequence in cohomology, we get the identifica-
tion of lines already described in (1.15)

(2.3) AEN YV 2 X @) 'O E)

We will prove that for every i=0, ..., m, the identification (2.3) is an isometry.
Then (2.1) will trivially follow.

We fix i, 0 < i < m. For i=0, there is nothing to prove, so me may assume that
i is positive.

Consider the double complex S;
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0 0 0

1 7 7

Tb I Tb G
2.4 0§ =& 12& ,—>...28 -0

Tb To Tb I

00 -8 28 ,—>...28 -0
1 1 7 1
0 0 0 0

In (2.4), the horizontal arrows v are either the original chain map v of the complex &
or the zero map. The vertical arrows b are either the identity map or the zero map.
Sign conventions can be chosen so that bv+vb=0. Therefore v+ b is a chain map on
the complex S,.

For aeC, a'eC, we can instead replace », b by av, a'b respectively. Let
(S;, av+a’ b) denote the corresponding chain complex.

The operator Ny (which defines the Z-grading on &) still acts on the complex S;
in the obvious way. Let Ny be the operator which takes the value k—1 on the kth
nonzero row of S;, the rows being numbered upwards. The complex (S;, av+a’b) is
Z-graded by the operator Nj; — Ny, and it inherits the corresponding Z,-grading.

Let I, be the set of smooth sections of A(T*® YX)® S; over the manifold X.
The Z-grading of X, will be defined by the operator N¥+ Ny —Ny. For a, a'€C,
0*+av+a' b is a chain map acting on X,.

We now equip the complex S; with the orthogonal sum of the metrics on the
various &, which appear in S;. Also o* still denotes the adjoint of v. Let b* be the
adjoint of b (which is here either the identity or the zero map). As in Section le), we
equip X; with the obvious Hermitian product. Then 0*"+av*+a’b* is the formal
adjoint of X+ av+a’b.

By proceeding as in Bismut-Gillet-Soulé [BGS3, Section 2], we can form an
analytically defined holomorphic determinant line bundle p; on C?, whose fiber p; (, 4
1s canonically isomorphic to

® (detHI(Z, 0X+av+d b))(—i)'l"'l.

qeZ

For every (a, a’)eC?, we equip the fiber y; (, ., with the corresponding Quillen
metric || || . ,,- BY [BGS3, Theorem 1.6], the metrics || induce a smooth

”Pi, a,a’
Hermitian metric || ||, on the holomorphic line bundle p. -
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Let V* be the holomorphic Hermitian connection on the line bundle (w;, || ||,.)-
By [BGS3, Proposition 2.1], the curvature of the connection V*i vanishes. The holomor-
phic Hermitian bundle p; is then trivial on C2. We will identify the fibers y; , ,, With
the fiber y; (1, o) by parallel transport with respect to the connection V*. This identifica-
tion preserves the metric.

Now in (2.4) the columns of the complex S; are acyclic. Therefore if @’ # 0, the
complex (S;, av+a’'b) is acyclic. So for a’ # 0, the fibers ; (, ., are canonically trivial.
More precisely, by [BGS3, Remark 1.10 and Section 2], on C x C* the line p; has a
canonical holomorphic nonzero section T (6X+av+a’b). Since the curvature of V*
vanishes, it follows that

(2.5 00 Log (|| T (@*+av+a’ b)||})=0 on Cx C*.
Now for 6eR
(2.6) e "NH(GX + gv+a’ b+ 0%+ av* + a’ b*) e

=0%+ae'®v+a b+ X +ae P v*+a b*.

Also if a’'eC*, by definition [BGS3, Remark 1.10] (and taking into account
Remark 1.11), we get

@.7) Log (|| T(@* +av+a'b)|]2)
d

= = ST NS+ Ny N (% + vt 0 b+ 35+ Go* +.3 59 71(0).
A

From (2.6), (2.7), we deduce that || T (@*+av+a’'b)|2 only depends on a via |a|. A
similar argument shows it depends on 4’ via |d’|.

For a’'eC*, the function aeC — Log (|| T (0* +av+a’b)||?) being smooth, radial
and harmonic is constant. In particular

(2.8) IT@+v+a b)|2=|T@ +ab)|2.

Now in (2.4), the columns are acyclic and split, in the sense that when b is non
zero, it is the identity. Therefore the Bott-Chern classes associated with the columns
of S; (in the sense of [BGSI, Section 1f)] vanish identically. By a simple direct
computation or by [BGS3, Theorem 2.4], we find that

29) IT@ -+ =1.

Let y (€;) be the Euler characteristic of &;. Set

(2.10) di=(—D' (=1 E) = x G-+ Ei-2) = - .. +(=D'x (&)
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By a direct computation or by [BGS3, Theorem 2.4] and by (2.9), we find that if
a eC*

2
=1.

@.11) ”M
a 1

Hi

From (2.8), (2.11), we see that if a'e C*

2
=1.

2.12) H T (X +'v+a' b)
a

d;

Hi

Recall that the fibres of p; are identified with p,; ; o). Using (2.12), we find that the
function

X ’
a,ec*qT(B +'v+a b)

4 €Ki, (1,0

1

is constant. Now one verifies easily that
(2.13) W, 0=hio1 O @XTTE) @ AE)N Y.

Also the identity (2.13) identifies the Quillen metrics.
Let t; be the nonzero section of p; ; o, which defines the canonical isomor-
phism (2.3). We claim that

T@*+v+4d' b)

(2.14) li
a’' eC* a
a =0

Note that (T (0*+v+ad' b)/a’*) e, . . and so (2.14) can be verified locally near 0e C.
Now (2.14) is exactly the identity proved in [BGS3, eq. (2.23)] which was essential

in proving [BGS3, Theorem 2.8]. The only difference with [BGS3] is that the chain

map 0% considered in [BGS3] is replaced by the chain map 0*+v (in [BGS3], the

map b was denoted v). The proof of [BGS3, Theorem 2.8] can otherwise be reproduced.
From (2.12), (2.14), we get

(2.15) ”ti”lzli,(l,O): L.

Since (2.13) is an identification of Hermitian lines, (2.1) follows from (2.15). Our
Theorem is proved. [

Remark 2.2. — An essentially equivalent proof of (2.1) is as follows. For
aeC, we consider the double complex (E, 0*+av) and its Cech analogue
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((—B Ox (E), 8+ av). Associated to this last complex, there is a determinant line bundle
0

X (¢) over C in the sense of Grothendieck-Knudsen-Mumford [KnM]. By [KnM], the
line bundle X! (£) ® A (£) has a nonzero holomorphic canonical section ¢ over C. By
the obvious analogue of a result of Bismut-Gillet-Soulé [BGS3, Corollary 3.9], the
Quillen metric is smooth on the Grothendieck-Knudsen-Mumford line bundle X ().
Since the curvature of the Quillen metric on X (§) vanishes, then

(2.16) 30 Log (|| o ||»)=0.

On the other hand Log(||c||?) is a radial function. Then Log(||c||?) is constant.
Trivially Log (|| o ||?) vanishes at a=0. Therefore Log (|| o ||?) is identically zero.

Our proof of Theorem 2.1 avoids any explicit consideration of the Grothendieck-
Knudsen-Mumford line bundle.
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IIT - TWO PARAMETERS SEMI-GROUPS AND CONTOUR INTEGRALS

a) Scaling of metrics on X and &.
b) A basic closed 1-form on R% x R*%.
c) A change of coordinates.

d) A contour integral.

The purpose of this Section is to construct a closed 1-form f on R% x R* associa-
ted to the two parameters semi-group u >0, T > 0 —»exp(—(u(D*+TV))?), and a

contour I in R% X R* depending on three parameters €, A, T,, so that j B=0. To
r
prove Theorem 0.1, we will then push the contour I" to the boundary of R% X R*, and

take the obvious limit in the previous identity.

The construction of the form P is directly related to results of [B2] concerning
double transgression formulas for Quillen’s superconnection forms, and their depen-
dence on the considered metrics. In fact we interpret our result in terms of the scaling
of the metrics g'%, A%, ..., K= by the factors 1/u?, 1/T? ..., 1/T?™ respectively.
This scaling will also play a key role in Section 10.

This Section is organized as follows. In a), we describe the scaling of the metrics
on TX, &,, ..., &, In b), we construct a basic closed 1-form, a, on R*% xR%.
In ¢) we obtain our form B by a change of coordinates. In d), we describe the contour
I' in R%* xR*,

a) Scaling of metrics on X and

Take u > 0, T > 0. Suppose that the metrics g%, hbo, ..., h*» are replaced by
the metrics g"™/u?, h%, h51/T2, ..., h°»/T2™ Then the adjoints of the operators 0%, v
become u? 0%", T2 v*.

The basic idea of the paper is to study the deformation of various supertraces as
u and T vary. However at a technical level, it is easier to scale 0%, 0" and v, v* in the
same way.

Our supertraces will be calculated on the Z,-graded vector space E.

Proposition 3.1. — For any u> 0, T > 0, the following identities hold
3.1 Tr, [N¥exp (— (0% + v+ u? 0% + T2 v)?)]
C =Tr, [N¥exp(— (@ +3%) + T (0+v*)?)],
Tr, [Ny exp (— (0% + v+ u? 3% + T2 v*)?)]
=Tr, [Ny exp (— (u (@*+ %)+ T (v +v*))?)].
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Proof. — Observe that
N T~ Nu @*+v+u? 0¥ +T20*) T u'N{’(=u(5x+5x‘)+T(v+v*),

3.2
G2 [NV, Ny]=0.

Using the fact that supertraces vanish on supercommutators [Q1], (3.1) follows. [

Remark 3.2. — The key fact is that in the left-hand side of (3.1), the coboundary
operator 0+ v does not change, only the metrics on TX and £ are changing. In the
right-hand side, the coboundary operator 0*+v is changed into u0*+Twv, and the

metrics on TX, § do not vary. The correct geometric picture is the one given by the
left-hand side.

b) A basic closed 1-form on R% X R*%.

Set

DX=3%+3%,

3.3
(3-3) V=v+20*

Foru>0,T >0, set

(3.4) A, 1=uD*+TV.

Then A, ; is an elliptic first order differential operator.

Theorem 3.3. — Let a, 1 be the smooth 1-form on R% x R*%

3.5) oy v= 24 Tr, [N¥exp (— AZ )] — % Tr, [Ny exp (— A2 1))
u

Then o, 1 is a closed form.

Proof. — For u >0, T > 0, the operator exp (—AZ p) is given by a smooth kernel
on the manifold X. By proceding as in [B1, Proposition 2.8] i.e. by expressing the
above supertraces as integrals on the manifold X of integrals of supertraces of heat
kernels evaluated on the diagonal, one can easily justify the following manipulations
of supertraces.

We have the identity

0
(3.6) T Tr,[NYexp (= A 1]

0 0A
= —{Tr,| N¥exp| —AZ;—b| A, ;, —2T )
s wee(ae[an G )
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Now 0A, 1/0T=V. Since supertraces vanish on supercommutators, we rewrite
(3.6) in the form

0 0
(3.7 p Tr, [NYexp (— A2 p]= — % {Tr,[[A,, 1. NJlexp(—AZ 1 =5 V)]}y=0.
Clearly
(3.8) [A, 1 N¥]= —ud*+ud®.

Using (3.6)-(3.8), we get

0
3.9) 2 Tr, [N exp (— AZ )]
- g{m (3%~ %) exp (— A2 1= b0+ v*)}s_o.
Now
(3.10) Al 1=[ud*+To, ud*+To*,

and so A2 preserves the total degree in E. Also 0%, v increase the total degree by
one and 0%, v* decrease the total degree by one. The degree counting argument of
[BGS1, Proposition 1.8] gives

@.11) 5% {Tr,[(0* =) exp (= Al r=b(w+v*)}y=0

9
ob

{Tr,[0% exp (= Al 1= bv*)] = Tr,[0"" exp (= Al + = b0)]}s=0-

Using (3.9), (3.11), we obtain

0

1
(3.12) 5%{

= Tr,[Nyexp (- Aj T)]}
u
= (—% {Tr, [0* exp (= Al 1 — bv*)] = Tr, [0%" exp (— Al 1 = b0)]}, =

By interchanging the roles of u and T, bearing in mind that the analogue of N¥
is —Ny and using again the degree counting argument of [BGS1, Proposition 1.8],
we also get

o (1 )
(3.13) a{;“;[Nnexp( A..,r)]}
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== % {Tfs [vexp(— AZ, —b z’5)(‘)] —Tr[v*exp(— Af, 1—b zrix)]}b=o~

Since supertraces vanish on supercommutators, we find that
(3.14) % {Tr,[0%exp (— AZ 1 — bv*)] = Tr,[0X exp (— AZ 1 — b)]}5-0

=i

Py {Tr,[vexp (= Al 1= b0 = Tr,[v* exp (= Al 1 =5 0]}, =0

From (3.12), (3.14), we deduce that the form a, 1 is closed. [

Remark 3.4. — Theorem 3.3 is in fact a consequence of a general result established
in [B2, Theorem 2.2] on double transgression formulas for Quillen superconnection
Chern character forms, which extend corresponding formulas of Bott and Chern
[BoC, 3.28] for ordinary connections. Here we consider E as a vector bundle over a
base S consisting of a point. In fact if A% is the metric on & which is the direct sum of
the metrics A%, h*1/T2, ..., h*=/T?™ then

_ 2Ny

ok}
3.15 Ryt L= .
(.15) k)" =% T

Similarly if g2™""* denotes the metric induced by the metric g™/u? on A (T*©* VX)),
then

AR Nt
3.16 g ! ==Y
(3.16) ou u

By [B2, Theorem 2.2], since the base S is just a single point, we find that the form
&“,T given by

o, = Tr, [( du N¥ - dTrI NH> exp (— (@ +ov+u? X" +T? v*)z):l

u

is closed. By Proposition 3.1, o, r=a, 1, and so a, 1 is closed.

¢) A change of coordinates
Foru>0,T > 0, set
3.17) B, r=u(D*+TV).

Theorem 3.5. — Let B, 1 be the 1-form on R} xR*%
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d dT
(3.18) Bur= ;”Trs (¥~ Ny exp (~ B, )] = T, [Ny exp (~ B2 )]

Then B, 1 is a closed form.

Proof. — In Theorem 3.3, we make the change of variables u > u, T —>uT.
Theorem 3.5 follows. [

d) A contour integral

We now fix constants €, A, To such that 0 <e <1 < A<+o0,1 < Ty < +00.
Let I'=T, , r, be the oriented contour in R% x R*

Iy s 0

.
o~

e - - - - - -
- - - -

1 To T

FiG. 1

As shown in Figure 1, the contour I' is made of four oriented pieces:

I':T=Ty, e <u<A,
I: 1<T<KTy u=A,
I;:T=Le<u<A,

I'y,: 1<T<T, u==s.

The orientation of I'y, ..., I', is indicated in Figure 1.
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For 1 <k <4, set
3.19) | =J Bu, -
Ty
Theorem 3.6. — The following identity holds

(3.20) Y 12=0.

Proof. — Theorem 3.6 is a trivial consequence of Theorem 3.5. [

Remark 3.7. — We now will make A -+ o0, Ty =+ 00, € > 0 in this order in
identity (3.20). Typically each term I{ (1 < k < 4) will diverge at one or several stages
of this process. However because of the identity (3.20), the divergences will cancel,
often for non trivial reasons. Once the divergences in each term will have been
substracted off, we will ultimately obtain an identity which is exactly our main
Theorem 6. 1.

Roughly speaking, in this process,

e 19 will calculate the Ray-Singer torsion of the complex (F, 9Y).

e 19 will calculate the ratio of the metrics | | ol Ra

e 19 will calculate the Ray-Singer torsion of the complex (E, 0%+ ).

e 19 will produce highly non trivial local terms, which include the Bott-Chern
current T (&, 4°) of Bismut-Gillet-Soulé [BGS4] and the class B(TY, TX |y, g™ !¥) of
Bismut [B3].

Remark 3.8. — Take t,€]0, 1[. Replacing T, by ¢,, we then obtain a contour

[ A, Again J B=0. In principle by making A -+ o0, t,—0, ¢ >0 in this
rt:, A, to

order, we may reprove Theorem 2.1. However, to carry this out, one then has to deal

analytically with spectral sequences which in general do not degenerate. The proof of

Theorem 2.1 has exactly consisted in carefully avoiding this difficulty.
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IV - A SINGULAR BOTT-CHERN CURRENT

a) Characteristic classes in Chern-Weil theory.
b) Quillen’s superconnections.
c) Convergence of the superconnection currents of the complex (€, v).

d) A Bott-Chern singular current.

This section has three purposes. We first briefly describe the superconnection
formalism of Quillen [Q1]. We also recall the result in Bismut [B2] on the convergence
of Quillen’s Chern character currents associated with the Hermitian chain complex
(&, v) as a parameter u tends to + co. Finally, we describe the construction by Bismut-
Gillet-Soulé [BGS4] of a singular Bott-Chern current T (€, 4%). This current will appear
in our final formula for Log (|| o |[?-1 ) & ) in Theorem 0.1.

This Section is organized as follows. In a), we introduce various polynomials in
Chern-Weil theory which will appear in the remainder of the paper. In b), we describe
Quillen’s superconnections [Q1]. In c¢), we recall the results of [B2] on superconnection
currents. Finally in d), we describe the construction in [BGS4] of the current T (§, A%).
This current is obtained by a non trivial extension in a geometric context of the
formalism of the Ray-Singer analytic torsion [RS2].

The assumptions of Sections 1, 2, 3 will remain in force.

a) Characteristic classes in Chern-Weil theory

Recall that the Todd power series Td (x) is defined by

X

@.1) Td (x)=

x

1—e”

Set
q
Td(xy, ..., x)=[]Td (x)
1
s 0
4.2) Td" (xy, ..., x))= 6_b[Td (x,+b, ..., x;+b)ly—0,
(Td™Y (xq, - .- X)) = ;B[Td—l(xl-Fb, A )Y

The polynomials Td’ and (Td ~!)’ play an important role in [BGS2, Section 2g)] and
in [B2, Section 4].
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Finally the Chern power series ch is defined by
q
4.3) ch(xy, ..., x)=) €.
1

We identify these power series the corresponding ad-invariant power series
evaluated on (g, ¢) matrices.
Let B be a complex manifold.

Definition 4.1. — Denote by PP the set of smooth differential forms on B which
are sums of forms of type (p, p). Denote by P®° the set of forms weP® such that
®=0uo+ 0B, where a, B are smooth forms on B.

If E is a holomorphic vector bundle on B equipped with a Hermitian metric gF,

let VE be the holomorphic Hermitian connection on (E, gF), and let (VE)? be its
curvature.

Let g=dimE, and let Q(x,, ..., x,) be a symmetric polynomial in x,, ..., x,.
By Chern-Weil theory, the form Q(—(VE)?/2ir) is closed, and its cohomology class
does not depend on the metric g&. We will use the notation Q(E, g%) instead of
Q(—(V®?/2imn). Then Q(E, g% lies in PB. We will denote by Q(E) the class of
Q(E, g°) in PB/P®°.

Let ® be the homomorphism from A" (T# B) into itself which to ae A2? (T B)
associates (2mi) Pa.

b) Quillen’s superconnections

We make the same assumptions as in Sections 1, 2 and 3.

Definition 4.2. — Let ch (€, k%), ch’ (€, h%), be the differential forms on X

ch(€, i)=Y (—1)ch(E, r%),
(4.4) o
ch' &, K=Y (—1)'ich(&, A%).

We now briefly describe the superconnection formalism of Quillen [Q1]. Set

4.5 E.,= @ & 6= &,

ieven iodd

Then £E=£, @ E_ is a Z,-graded vector bundle. Let t° be the involution of & defining
the Z,-grading, i.e. t*=+1on &,.
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The bundle of algebras End (§) is Z,-graded, the even (resp. odd) elements of
End (§) commuting (resp. anticommuting) with t°. The supertrace Tr, is the linear
form

Ae€End§ - Tr,[A]=Tr[t*A].

We then form the Z,-graded tensor product A (T X) ® End (). We extend Tr; to a
linear map from A (T% X) ® End (§) into A (T# X) such that if oe A (T¥X), AcEnd¢,
then

(4.6) Tr, [0 A]= 0 Tr, [Al.

By [Q1], the supertrace vanishes on supercommutators in A (T X) ® End ().
For 0 < i< m, let V% be the holomorphic Hermitian connection on the vector

bundle (;, 4%). Then the connection V*= @ Vi is the holomorphic Hermitian connec-
i=0
tion on (&, A°).
Now V=19v+7* is a self-adjoint section of End®% (£). For u > 0, set

@.7) C,=Vi+ fuV.

Then C, is a superconnection on the Z,-graded vector bundle {=§, @ £ _in the sense
of Quillen [Q1].

Our calculations will now be done in the graded algebra A (TEX)® End (€).
Also, V& will be considered as a first order odd differential operator, whose curvature
(V%? is the square of the connection V5. Then C? is the curvature of the super-
connection C,. It is a smooth section of (A (T X) ® End (£))***". By Quillen [Q1], we
know that the forms ® Tr,[exp (— C?2)] are closed, and represent in cohomology the
Chern character of the complex &.

Clearly

® Tr,[exp (— C3)]=ch (§, 1%,

(48) O'Tr, [Ny exp (— ) =ch’ (&, 1)

Also by Bismut-Gillet-Soulé [BGS1, Theorem 1.9], the forms ® Tr [exp (— C2)]
and the forms ® Tr [Ny, exp (— C2)] lie in PX.

¢) Convergence of the superconnection currents of the complex (E, v)
Let €' (X) be the set of differential forms on X which are continuous, with

continuous first derivatives. Let | |1 x, be a norm on ' (X). We now recall results
which are proved in [B2, Theorems 3.2 and 4.3].
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Theorem 4.3. — There is a constant C > 0 such that for any pe %" (X), and any
uz=l

f pCI)Trs[exp(—Cf)]—J *uTd ' (N, g¥)ch(n, g"
X Y

C
< —=||kler
u

(4.9) v

fu‘DTrs[NHeXp(—Cf)Hf P*p(Td ™1y (N, gMch(n, g"

Y

C
< —=||1[let -
u

J

d) A Bott-Chern singular current

For the definition of the wave front set of a current, we refer to Hormander
[H, Chapter VIII].

Definition 4.4. — Let P¥ denote the set of the currents on X which are sums of
currents of type (p, p) whose wave front set is included in Ng.

We now briefly describe the construction by Bismut-Gillet-Soulé [BGS4] of a
singular Bott-Chern current. Let 8y, be the current corresponding to integration

over Y. If p is a smooth form on X, by definition J pS{Y,=J *u.
X Y

Definition 4.5. — For seC, 0 < Re(s)< (1/2), let R (€, %) (s) be the current

(4.10) R 1) ()= —— ey {® Tr,[Nyexp(—C2)]
I'(s) Jo

+(Td 1)’ (N, g¥ch(n, g") 8y} du.

Clearly, by Theorem 4.3, the current R (§, 4°) (s) is well-defined. Also one verifies
easily that the map s — R (§, A%) (s) extends to a map which is holomorphic near s=0.

Definition 4.6. — Let T (€, h°) be the current

@.11) nam=§maww>
A)

In [BGS4, Section 2a)], it was verified that T (&, 4%) is given by the formula
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(4.12) T, h°)= Jl @ Tr, [Ny (exp (— CJ) —exp (= C))] du
0 u

+f (O Tr, INyexp (= CHI+ (T 1Y (N, £%)ch (. £}
1

=TI (1) {ch’ €, A9+ (Td~7)' (N, g")ch(n, g") 8y)}.

The following result is proved in [BGS4, Theorem 2.5].

Theorem 4.7. — The current T (E, h®) lies in P¥. Also the following equation of
currents holds on X

(4.13) %T(&, h)=Td ' (N, g")ch(n, g") 8,—ch (&, k).

Remark 4.8. — In [BGS4] and in [BGSS5, Section 2], the currents T (€, %) were
shown to have remarkable functorial properties, which are compatible with refinements
of the Theorem of Riemann-Roch-Grothendieck. Our final formula for
Log(|| o ||?-1 ¢ @ 1)) Shows directly that the currents T (§, 4%) must verify some of the
functorial properties established in [BGSS, Section 2].
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V - THE GENERALIZED ANALYTIC TORSION FORMS
OF A SHORT EXACT SEQUENCE

a) Clifford algebras and complex vector spaces.

b) Short exact sequences and superconnections in infinite dimensions.
c) Generalized supertraces.

d) Convergence of generalized supertraces.

e) Generalized analytic torsion forms.

f) Evaluation of the generalized analytic torsion forms.

g) Evaluation of the function D (x).

Let B be a complex manifold. Let 0 > L - M — N — 0 be a short exact sequence
of holomorphic vector bundles on B, and let gM be a Hermitian metric on M. The
purpose of this Section is to describe the results of Bismut [B3] which concern the
construction of an associated differential form B (L, M, g")eP® and the evaluation
of B(L, M, g™) in P®/P® ° in terms of a Bott-Chern class in the sense of [BGS1] and
of an additive genus D evaluated on N. Also we recall the evaluation by Bismut-Soulé
[B3, Theorem 1 of the Appendix] of the power series D(x) in terms of the power
series R (x) of Gillet-Soulé [GS3].

This Section is organized as follows. In a), we recall various results on Clifford
algebras. In b), we give a formula for the curvature #2 of the superconnection 4,
considered in [B3]. We also introduce two essentially equivalent curvature operators
%2 and 92. The operators &2, > and 22 will reappear in a rather extraordinary way
in Sections 12 and 13. In ¢), and following [B3] we construct the generalized supertrace
of exp(—#2), which is a smooth differential form on the manifold B.
In d), we recall the results of [B3] which concern the behaviour as u -+ 0 and u —» + o©
of the generalized supertrace. In e), we recall the construction in [B3] of the form
B(L, M, g¥) on B. The form B(L, M, g") is obtained by a non trivial extension of
the Ray-Singer analytic torsion formalism [RS2]. In f), and following [B3], we evaluate
B(L, M, g™) in PB/P® °, Finally in g), we recall an identity of Bismut-Soulé [B3].

This Section is self-contained. In the sequel, its results will be applied to the exact
sequence 0 > TY - TX |y > N - 0.

a) Clifford algebras and complex vector spaces

Let V be a finite dimensional complex Hermitian vector space of complex
dimension k. Let V be the conjugate vector space. If zeV, z represents Z=z+z€ Vg,
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so that
5.1 |Z|2=2|z|2.

Let ¢(Vg) be the Clifford algebra of Vy, i.e. the algebra generated over C by
Ue Vg and the commutation relations UU'+ U’ U= —2 (U, U’ ). Then A (V*) and
A (V*) are Clifford modules. Namely, if XeV, X' eV, let X*eV* X'*eV* be the
corresponding elements by the Hermitian product on V. Set

c(X)=\/§X* A e(X)= —\/Eix,;

eX)=—_/=2ig; ¢(X)=—_/=2X'* A.

We extend the maps ¢, ¢ into maps from Vg ®gxC by C linearity. Then for any
UeVg®rC, ¢(U), ¢(U) act as odd operators on A(V*), A(V*) respectively. If

U, U'e Vg ®,C,

(5.2)

53) c(U)eU)+e(U)e(U)=-2(U, U,
cU)e(UN+éU)eéU)=-2{U, U ).

Also ¢(U), é(U) act as odd operators on A(VE) ®gC=AV*)® AV*). If

U, U'e Vg ®g C, we also have

(5.4) ¢ (U)&(U")+ (U ¢ (U)=0.

b) Short exact sequences and superconnections in infinite dimensions

We now describe a construction by Bismut [B3] of a secondary invariant associated
with a short exact sequence of holomorphic Hermitian vector bundles.
Let B be a compact complex manifold. Let

(5.9 0-L-M->N-0

be a short exact sequence of holomorphic vector bundles on B. Let J denote the
complex structure on Mg. Then J induces the complex structures of Ly and Np.

Let g™ be a Hermitian metric on M. Then g™ induces a Hermitian metric g~
on L. We identify N with the orthogonal bundle to L in M. Therefore N inherits a
metric gN. Let P, PN denote the orthogonal projection operators from M on L, N
respectively.

Lete,, ..., e,, be an orthonormal base of Ng. In the sequel, we use the notation
of Section 5a), with V=N.
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Definition 5.1. — Let Se End®**" (A (N*) ® A (N*)) be given by the formula

— 1 2n
(5.6) S= L/—z—l Y c(e)éTey).
1

Let V&, VM, VN denote the holomorphic Hermitian connections on L, M, N
respectively, and let R, R™, RN be their curvatures.
Classically [K, Propositions 6.4 and 6.5], we know that

VL — PL VM,

7 VN=PNVM,

> A~ ~
Let RN denote the natural action of RN on A (N*). Then RN acts like 1 ® RN on
ANDH=AN*) Q@ A(N*).
Let VM=V @ VN be the connection on M which is the direct sum of the
connections V¥ and VN, Set

(5.8) A=VM_OyM

Then A is a 1-form on B which takes its values in skew-adjoint elements of End (M)
which interchange L and N.
Let f,, ..., f>, be a base of TgB, let f, ..., f2* be the dual base of T¥B.

Definition 5.2. — If Z€ My, set

c(AP*Z)=-Y fic(A(f)P 2),

2k

¢WJAPZ)=-Y fi¢(JA(f)PL2Z).

(5.9)

Let Tr[RM] denote the (1,1) form on B which is the trace of RM.

Definition 5.3. — If yeB, J, denotes the set of smooth sections of
A, (NH=(AN* ®A (N*)), over the fibre My, ,.

Since A (N§) is Z-graded, it is also Z,-graded. If yeB, let J, , (resp.J_ ) be the
set of smooth sections of A;'*"(Ng) (resp. A‘y’dd (N®)) over the fibre Mg ,. Clearly
IL=J, ,®J_,

Moreover J=J, @ J_ will be considered as an infinite dimensional Z,-graded
vector bundle over B. By the same construction as in Section 4b), we define a
Z,-grading on End(J). Our calculations will be done in the Z,-graded algebra
A (TEB) ® End (J).

We introduce the operators %2 considered in Bismut [B3, Theorem 3.10]. Let
ey, ..., €, be an orthonormal base of M.
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Definition 5.4. — For u > 0, let #2e(A (T B) ® End (J))***" be given by

2m

1 21: <Vei+<%RMZ, ei>>2

5.10 RBr=——
(5.10) 5

U pN7|2 ~ \/—uA L 1 M) LN
+5|P Z| +\/uS+ ¢(JAP Z)+5Tr[R 1+ RN,

J?

Remark 5.5. — In [B3], #2 is obtained as the curvature of a superconnection
A, The fact that %2 is the square of %, plays a crucial in the proof in
[B3, Theorem 3.12] of non trivial commutation rules for %2. Here this fact will not
play any role.

Theorem 5.6. — For u > 0, set

€*=exp (—C(AP_LZ))Q?Zexp(—_C(AI_)LZ)>,
(5.11) \/2L MpN \{2 L MpN L
@2=exp<c(AP Z) (RMPNZ P z>> ng%exp<—c(AP Z) , (RMPNZ, P Z>>_

: J2 2 J2 2

Then the following identities hold

2m L 2
gr=—1 Z(Ve,+l<(RM—PLA2PL)Z, e,.>——c(AP_""))
2 &\ Nz
N 2 ~
+M+\/ﬁs+%Tr[RM]+RN,
2m
(5.12) @,3:—% Z(Vei+%<(RM—PLA2PL)Z, e
1

L 2
+ LerMpNZ Pre Y- L(RMPLZ, PNe,.>-—~—*C(AP_e")>
2 2 J2
N 2
LUz + Jus+ %Tr[RM]+T@

Proof. — The first identity in (5.12) is proved in [B3, Theorem 4.12]. The second
identity follows from the first one. [J

Remark 5.7. — Rather mysterious identities like (5.11), (5.12) will have a very
clear geometric interpretation in Section 13i).
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¢) Generalized supertraces

Let dvy, dvy be the volume forms on the fibres of Mg, Ny respectively. All the
smooth kernels along the fibres of My will be calculated with respect to the form
doy (2)/(2 m)Hm M, .

We denote by Ny the operator in End (A (N*)) which defines the Z-grading of
A (N*), i.e. Ny acts by multiplication by p on A?(N*). Then Ny acts like 1 ® N on
A(N*) & A(N*).

For u >0, let Q}(Z, Z') (Z, Z' e My ,) denote the smooth kernel associated with
the operator exp (—%2'?). The existence and uniqueness of Q’(Z, Z') are standard.

Observe that Q}(Z, Z') e (A (T B) ® End (A (N*) ® A (N*)))s"*". We now use the
conventions of Quillen [Q1] described in Section 4b). In particular Tr [Q2(Z, Z")] lies
in A®**" (T B).

By [B3, Theorem 4.1], we know that for u > 0, there exist ¢ > 0, C > 0 such that
if yeB, ZeNg ,, then

(5.13) |QU(Z, 2)| < cexp(—C|ZP).

Note that in (5.13), it is crucial that Z is restricted to vary in Ng ,.
In view of (5.13) and following [B3, Definition 4.4], we now set the following
definition.

Definition 5.8. — For u > 0, set

Tr, [exp (— #2)], = f Tr, [Q(2, Z)] 28D
. @myimN
(5.14) >
Tr, [Ny exp (— 82)], = f Tr, [Ny Q2 (Z, 2)] S8 &)
Ne.y (2 n)dlmN

Note that Tr [exp (— %2)] and Tr, [Ny exp (—%£2)] are only generalized supertraces.
In fact the operator exp (— %?2) is in general not trace class.

Using (5.11), and the fact that supertraces vanish on supercommutators [Q1],
it is clear that exp(—%2), exp(—22), Nyexp(—%2), Nyexp(—22) also have
generalized supertraces Tr [exp(—%2)], Tr,[exp(—22)], Tr,[Nyexp(—%>2)],
Tr,[Nyexp (— 22)] and that

Tr,[exp (— B2)]= Tr,[exp (— €)= Tr,[exp (— 25)],

(5.15) Tr, [Ny exp (— #2)]=Tr, [Ny exp (—€?2)] = Tr [Ny exp (— 22)].
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d) Convergence of generalized supertraces

Recall that the map @: A**" (Tg B) - A®*" (Tg B) was defined in Section 4a).
If ueR, — o, is a family of smooth forms on B, we will write that as u — 0

(5.16) o,=n,+ 0 (u)

if for any keN, there exists C, > 0 such that for 0 < u < 1, the norm of ®,—®, in
%* (B) is dominated by C, u. We use a similar notation when u — + co.
We now recall several essential results of [B3].

Theorem 5.9. — For any u > 0, the forms Tr [exp(—#2)] are closed, lie in P®,
and their cohomology class does not depend on u > 0. The forms Tr [Nyexp (— %2)] lie
in PB.

As u—0,

D Tr, [exp (= Z)]=Td "' (N, g") Td(M, g")+ 0 (w),

(5.17) @ Tr, [Ny exp (— B2)]= —(Td 1) (N, g¥) Td (M, g") + O (u).

As u—+ o0,

@ Tr,[exp(—%2)]=Td(L, g")+ 0 ( Ly>,
(5.18) v

O Tr, [Ny exp (— #2)] = d“;‘N !

Td(L, g9 +0 <F_>
Ju
Proof. — The results stated in Theorem are proved in Bismut [B3, Theorems 4.6,

4.8 and 7.7]. Note especially [B3, eq. (4.37)] which expresses Tr, [Ny exp (—%2)] in
terms of other objects more commonly used in [B3]. O

Remark 5.10. — In Section 14, we will give a new proof of the convergence
results contained in (5.18).

Remark 5.11. — It is of crucial importance that the same class (Td ~!)" (N, gV)
appears in both formulas (4.9) and (5.17).

¢) Generalized analytic torsion forms

We now reproduce the construction in Bismut [B3, Section 8] of generalized
analytic torsion forms.

Definition 5.12. — For seC, 0 < Re(s) < 1/2, let B(s) be the form on B
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(5.19) B(s)= F% J‘m w1 {(I)Trs[NHexp(—ﬂf)]——
0

dmz’ Nrd, gL)} du.

One then easily verifies in [B3, Section 8a)] that B (s) extends to a function of s

which is holomorphic near s=0.

Definition 5.13. — Let B(L, M, g") be the form on B
(5.20) B(L. M, =22 0)
s
By [B3, eq. (4.37), (8.2)], the following identity holds

(5:21) B(L, M, g")= Jl {® Tr,[Nyexp (- 2]+ Td (M, g")(Td ') (N, g")} du
0 u

dim N
2

+J+w {(I) Tr, [Nyexp (— %2)] - Td(L, gL)}@
. u

dim N
2

+I" (1) {Td M, gM(Td 1Y (N, g%+ Td (L, gL)}.

The following result is proved [B3, Theorem 8. 3].
Theorem 5.14. — The form B(L, M, gM) lies in P®. Also

30 o Ly TdM, g%
(5.22) 5B M, g)=Td(L, ¢" TR

f) Evaluation of the generalized analytic torsion forms

We now describe the main results of [B3] concerning the evaluation of the form
B(L, M, g").
Recall that the Hirzebruch polynomial A (x) is given by

A X2
(5.23) A(x) o )

Set

(5.24) Alxy, oo x)=TTA ).
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In particular

q
1/2 Exi
1,

(5.25) Td(xy, ..., x)=A(xy, ..., x)e

For u > 0, xeC, set

4 . x+\/x2+4u ) —x+\/x2+4u
(5.26) o, x)= —smh(——4—>smh( 2 >
u

Then as one easily verifies in [B3, eq. (6.3)],
(5.27) @0, x)=A"1(x)

Also by [B3, eq. (8.8)], for xeC,

x| <2m, as u—>+ o0,

o0 _ 1
(5.28) (—a—x/(p) (u, x)=0 ( \/5 )

Definition 5.15. — For seC, 0 < Re(s) < 1/2, xeC, | x| < 2, set

1 + o 1 a(p
.29 = —— d — .
(5.29) C(s, x) ro) L u <6x / (p) (u, x)du

Then C (s, x) extends to a holomorphic function of s near s=0. Set

(5.30) D)= 2C 0, x).
os

The function D (x) is holomorphic in xeC,
additive genus

x| < 2m. We identify D (x) with the

(5.31) D(xq, ..., x)=) D(x).

Then Td (L)D (N) is a well defined element of PB/P®°.

Let Td(L, M, g™ be the Bott-Chern class in PB/P®° associated to the exact
sequence of holomorphic Hermitian vector bundles (5.5), which is constructed in
[BGS1, Theorem 1.29] and is such that

(5.32) 88 ﬁi(L, M, g =TdM, g")—Td (L, g) Td(N, g").

i
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The class Td (L, M, g") is normalized by the fact that if the exact sequence (5.5) splits

holomorphically (and here also metrically), then Td (L, M, g*)=0 in PB/PB:°,
The following result is proved in [B3, Theorem 8.5].

Theorem 5.16. — The following identity holds

(5.33) B(L, M, g*)= —Td ' (N, g")Td (L, M, g™)+Td (L) D (N) in P®/P®©,

g) Evaluation of the function D (x)

Let {(s) be the Riemann zeta function. We now state the result of Bismut and
Soulé which is proved in [B3, Theorem 1 of the Appendix].

Theorem 5.11. — For xeC, |x| < 2n, then
(5.34) DW= Y (r'(1)+21. 2—‘;'~(_—"—))C(—n)x—".

n=1 1] C(—n) n!

nodd

We recall the definition of the formal power series R (x) introduced by Gillet and
Soulé [GS3].

Definition 5.18. — Let R (x) be the formal power series

(5.35) R)=Y (Zi+2§'(_”)>g(—n)2‘_".
nz1\1J C(—=n) n!

nodd

Proposition 5§.19. — The following identity of formal power series holds

(5.36) D(x)=R(x)+I"(l)%(x).

Proof. — This simple identity immediately follows from (5.34)-(5.35) and is proved
in [B3, Remark 8.8]. O
In the sequel we will identify R (x) with the additive genus

(5.37) R(x,, ..., x)=Y R(x).
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Since the genus A is multiplicative, the genus A’/A is additive. Therefore (5.36) can
be rewritten as an identity of additive genera

-~

AI
A.

(5.38) D=R+I"(1)
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VI - THE QUILLEN NORM OF THE CANONICAL SECTION p

a) The main Theorem.

b) A rescaled metric on E.

c) Seven intermediary results.

d) The asymptotics of the I{s.

e) Matching the divergences.

f) A formula for Log (|| p|}-* oo e
g) Proof of Theorem 6. 1.

This Section is the heart of the paper. Its purpose is to calculate the Quillen
norm of peA™1(n) ® X (&).

Recall that in Section 3, we constructed a closed differential 1-form B on
R% xR*%, and a contour I' depending on three parameters €, A, T, such that

J B=0. In Theorem 3.6, we showed that this last relation is equivalent to the
r

4

equation Y I?=0, where the I{’s depend on &, A, T,. In this Section, we study each
k=1

term I separately, by making in succession A — + oo (stepa), T, — + 0o (stepp), € = 0
(step 7). At one or more of these three stages, divergences have to be subtracted off.
For every k(1 <k <4), the last stage (step 8) is to evaluate the final object I

in terms of the quantities introduced in Sections 1, 4 and 5. We finally obtain an
4

identity > I}=0 which is equivalent to the formulas in Theorem 6.1 for
k=1
Log (| p[lZ-1 mete)-

To calculate the asymptotics of the I2’s, we use all the notation and results of
Section 1 and of Sections 3-5. We also state seven intermediary results. The proofs of
six of these results are delayed to Sections 8-13. The purpose of these intermediary
results is to calculate certain limits and also to establish some key estimates. These
estimates are intimately related to the deepest aspects of the problem which is solved
in this paper. Their main object is to handle simultaneously local cancellations in
index theory and spectral theory in very degenerate situations. Also note that, as is
best revealed in Sections 9-10, the quasi-isomorphism of Dolbeault complexes of
Theorem 1.7 plays a key role in the proof of some of these intermediary results.

We hope that the behaviour of the term I as € » 0 will attract the interest of
the reader. Its devilish nature is best revealed by the fact that it produces altogether
the current T (€, A%) of Section 4 and the form B(TY, TX |y, g™ !¥) of Section 5. It
kept us busy for a long time.
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Section 6 is organized as follows. In a), we state the main result of this paper,
which consists of two equivalent formulas for Log(||p|j7-1¢ete)- In b), we again
consider the rescaled metrics on TX, &, ..., &,, which were already constructed in
Section 3a). In c), we state seven key intermediary results. In d), we study the asympto-
tics of the I’s, each of these terms being individually studied in four steps a)-3). In e),

we verify that the divergences which were obtained in steps a)-8) effectively add up to
4

zero, and we obtain the crucial identity ) I?=0. In f), we obtain a first formula for
k=1

Log(||p|[?-1ere) in terms of the current T(§, A% and of the form
B(TY, TX|Y, g™ 1Y), Finally in g), we prove Theorem 6.1 by using the evaluation
of B(TY, TX|y, g™ '¥) of [B3] which was given in Section 5.

This Section is meant to encourage the reader to read the rest of the paper.

a) The main Theorem

Recall that the additive genus R of Gillet and Soulé¢ [GS3] was defined in
Definition 5. 18.

We now state the main result of this paper, whose proof occupies Sections 6-13.

Theorem 6.1. — The following identities hold

(6.1) Log(||p[l#-1mere)= —j Td(TX, g™ T, K°)

. j Td ™' (N, gY) Td(TY, TX |y, g™ ) ch(n, g")
Y

—J Td(TY)R(N)ch(n),
(6.1 Log(|p[-1mere) =~ J Td(TX, g™) T (€, )

+ J Td ! (N, gY) Td(TY, TX|y, g™ !¥)ch(n, g")
Y

—J Td (TX) R (TX)ch (£) + J Td (TY)R (TY)ch(n).

Y
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b) A rescaled metric on E

Definition 6.2. — For T > 0, we denote by ¢ , ) the Hermitian product on E

associated with the metrics g'%, h%, A%1/T?, ..., K*»/T?™ on TX, &, ..., &, respecti-
vely. Set
(6.2) Ko={seE; (*+0)s=0; @X +T?v%)s=0}.

Let P; be the orthogonal projection operator from E on Ky with respect to the
Hermitian product { , ).

In Section le), we saw that for any T > 0, there is a canonical isomorphism of
Z-graded vector spaces

(6.3) K, = H* (E, 3*+0).

Let | |;(). r be the metric on the line X (£) inherited from the metric { , )y restricted
to K. Clearly, with the notation of Section le), we have

K;=K; P,=P;
| ko=l ke
For T > 0, set
(6.4) Ri={seE; (D*+TV)s=0}.

Let P, be the orthogonal projection operator from E on K, with respect to the
Hermitian product { , »={, >, on E.
By (3.2), we know that for T > 0

6.5 T N @*+0v+ 0% +T20*) TNu=DX+TV.

From (6.5), we deduce that
(6.6) Pr=T MNP, TN,
The map seK; - T MiseK, is an isomorphism of Z-graded vector spaces. We thus

find that as a Z-graded vector space, K is also isomorphic to H* (E, 6%+ v).
Set

6.7) DY=3"+3"",
For 1 <j < d, let DYi be the restriction of DY to Y.

Let Q be the orthogonal projection operator from F on K’ =Ker (DY) with respect
to the given Hermitian product on F.
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¢) Seven intermediary results

Recall that o*, Y are the Kihler forms of X, Y. Since these forms are closed,
they can be paired with characteristic classes of vector bundles on X, Y respectively.

For0 <i<m, 1<j<d, let x(§), x(n;) be the Euler characteristics of §;, n;. By
Theorems of Riemann-Roch-Hirzebruch [H] and Atiyah-Singer [AS], we know that

x(&i)=j Td (TX)ch (&),
(6.8) x
x(nj)=J Td(TYj)ch(n).

In the sequel, we will often use the notation
d
J dimY Td(TY)ch(n)= ) dim ij Td(TY;)ch(n)),
( 6. 9) Y jd= 1 Y;
dime(n)=zlldimij(nj).
We now state in Theorems 6.3 to 6.9 seven intermediary results which play an

essential role in the proof of Theorem 6.1. The proofs of Theorems 6.4-6.9 are
deferred to Sections 8-13.

Theorem 6.3. — As u— 0, then

(6.10) Tr, [(N¥— Ny) exp (—u (D*+V)?)]= 1 J

UJx

OLX Td (TX)ch (&)
27

+ J (dim X Td (TX) ch (£) — Td’ (TX) ch (€)
—Td (TX)ch’ (£))+ O (),

Tr, [Ny exp (—u(DY)*)] = ! f o Td (TY)ch(n)
ulJy2mn
+ J (dimY Td(TY)—Td’'(TY))ch(n)+ O (u).

Proof. — The metrics g'*, g™ being Kihler, Theorem 6.3 follows from Bismut-
Gillet-Soulé [BGS2, Theorem 2.16]. Note that in [BGS2], the operators D*, DY are
replaced by the operators \/5 DX, /2DY. This explains why the expressions o*/4m,
®Y/4n in [BGS2] are here changed into ©*/2n, o¥/2n. O
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Theorem 6.4. — For any a, > 0, there exists C > 0 such that for o > oy, T > 1,

(6.11) Tr,[Nyexp (—a(D*+TV)?)] - ldimN)((n) < —C—,

2 N
| Tr, [(N%— Nyy) exp (— o (DX + TV)?)] - T, [NY exp (— 2. (DV))] | < %

Theorem 6.5. — There exist ¢ > 0, C > 0 such that fora. > 1, T > 1,

(6.12) | Tr, [(N¥ — Ny) exp (—a(D*+ TV)?)] - Tr, [(N¥ - N) B;] | < cexp(—Cua)
Theorem 6.6. — There exist C > 0, y€]0, 1] such that for uel0, 1], 0 < T < 1/u,

then

(6.13) | Tr, [Ny exp (— (uD*+TV)?)]

- J‘ Td(TX, g™)® Tr,[Nyexp (—C}2)]| < C(1+T)).
X
There exists a constant C' > 0 such that for uel0, 11,0 <T <1
(6.14) | Tr, [Ny exp (— (uD*+TV)?)]—Tr,[Nyexp (— (uD*)?)]| < C'T.

For 1 <j<d, consider the exact sequence of holomorphic Hermitian vector
bundles

(6.15) 0—>TYJ-——>TX|YJ.—>NJ-—>0.
We will now use the notation of Section 5, which we will apply to the exact sequence
(6.15). In particular for 1 <j<d, u>0, we construct the operator %Jz . as in

Definition 5.4. Most of the time, and following the conventions in (6.8), the subscript
j will be omitted.

Theorem 6.7. — For any T > 0, the following identity holds
T 2
(6.16) lim Tr, [NH exp ( - (u DX+ —V> )]
u—0 u
= J @ Tr, [Ny exp (— #72)] ch (n, g").
Y

Theorem 6.8. — There exist C > 0, 6€]0, 1] such that for uel0, 1], T > 1

2
Trs[NHexp(—<qu+ IV) ):l— ldimN)((n)‘ < S
u 2 T

(6.17)
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Recall that the metric | |z, 1 on the line X (&) was defined in Section 6b).
Theorem 6.9. — As T >+ ©

2
(6.18) Log (IT%I>=dime (n) Log (T)
3]

1
—Log(|p[-1mere) tE (;)

Remark 6.10. — Theorems 6.4, 6.5, 6.6, 6.7 and 6.8 are related to each other
and to results of Sections 4 and 5. In fact by Theorem 6.8, and also by Theorems 4.3
and 6.6, we know that for T > 0, as u — 0, Tr,[Ngexp (— (u D*+(T/u) V)?)] remains
uniformly bounded. Of course this also follows from Theorem 6.7. Similarly, using
Theorems 4.3, 6.6 and 6.7, we find that if 0 < T < 1

(6.19)

J ® Tr, [Ny exp (— #B22)]ch (), g")

+ J *(Td(TX, g™))ch(n, g"(Td ") (N, g”)‘ < CT,
Y
which also follows from Theorem 5.9. Finally, by Theorems 6.7 and 6.8, for T > 1

(6.20)

j @ Tr, [Ny exp (— #72)]ch (n, g") — %dime(n)‘ < :rq8
Y
Equation (6.20) is also a consequence of Theorem 5.9 and of (6.8).
Sections 8 and 9 are devoted to the proofs of Theorems 6.4 and 6.5, Section 10

to the proof of Theorem 6.9, Section 11 to the proof of Theorem 6.6, Section 12 to
the proof of Theorem 6.7 and Section 13 to the proof of Theorem 6. 8.

d) The asymptotics of the I’s

We now use the notation of Section 3d). Recall that by Theorem 3.6

4

(6.21) Y I7=0.
k=1
We will study each term 19, ..., IS separately, by making in succession A — + co,

Ty —+00,e-0.
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1) The term 19

Clearly
A
(6.22) ¥= J Tr, [(N¥ = Np) exp (—u? (D*+ T, V)?)] % .
a) A—>+oo

One easily verifies that as A —» + o0

(6.23) I3 - Tr, [(NY — Ny) B ] Log (A) -

Il = f T, (NS — Ny exp (— 2 (DX + T, V)21
€ u
+ f " T, (NS = Ny xp (= 42 (DX 4T, V)
1
— T, [(NE—Nyp) By I} 2.
17}

B) Ty —+ o0
By Theorem 6.4, as T, - + «©

(6.24) r Tr, [(N¥ — Ny) exp (—u* (D*+ T, V)?)] @,
€ u
Jl Y 2 Y2y GU
Tr,[Nyexp (—u*(D")*)] —.
€ u

By (6.6), we find that for any T > 1

(6.25) Tr, [(NY — Nig) By =Tr, [(NY — Nyp) Py
Since we have the isomorphisms of Z-graded vector bundles K, =~ H* (E, 6*+v), then

(6.26) Tr, [N =N P;]= ¥ (- 1)’ pdim H? (E, 3%+ ).

pel

Also by Theorem 1.7, the Z-graded complexes (E, 0*+v) and (F, 0Y) are quasi-
isomorphic. Therefore for peZ

(6.27) dim H? (E, 3%+ v) =dim H? (Y, 7).



60 J.-M. BISMUT AND G. LEBEAU

Recall that Q is the orthogonal projection operator from F on K’'=Ker(DY). By
Hodge Theory

(6.28) Tr,INYQl= Y (=1’ pdimH? (Y, n).

pPeZ

From (6.26)-(6.28), we deduce that for T > 1

(6.29) Tr, [(N¥ — Nyy) P,]=Tr, [NV Q.
By Theorem 6.5, we find that there exist ¢ > 0, C > 0 such that foru> 1, T, > 1
(6.30) | Tr, [(N¥ — Ny) exp (— u* (D*+ T, V)?)]

—Tr, [Ny —Ny) Pr ]| < cexp(—Cu?).

Using Theorem 6.4, (6.29), (6.30) and the dominated convergence Theorem, we find
that as Ty - + ©

(6.31) J m {Tr, [(NY — Nyp) exp (— u? (DX + T, V)?)] = Tr, [(NY — Nyp) Py ]} du
1 u
- J i {Tr, [Ny exp (—u? (DY)*)] - Tr, [Ny Ql} %u :
1
From (6.23), (6.24), (6.31), we see that as T, —» + o0

1
(6.32) I-Ii= J Tr, [Ny exp (—u* (D¥)?)] du
€ u

+ I " {Tr, [Ny exp (—u* (D¥)®)] - Tr, [Ny Ql} du
) u

y) €-0
Using Theorem 6.3, we find easily that as € - 0
Y
(6.33) 2+l J O Td(TY)ch(n) <1 - l)
2 Jy 2m g2

+ f (dim Y Td (TY)—Td’ (TY)) ch (n) Log ()

al?{l{Trs[Nzexp(—uZ(DY)Z)kiz J © T4 (TY) ch (n)
0 u* Jy 2m
du

- j (dim Y Td (TY)—Td’ (TY))ch (n)}
Y u
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+ [ o nes (- 09Ty @
1

) Evaluation of I3
Set Q*=I—Q. The analogue of formula (1.41) for 6) (s) is

(6.34) 0) (5)= —Tr, [Ny [P +3Y)*]* Q"]

Theorem 6 .11. — The following identity holds

s_ 1[0y o[ @
(6.35) I 2{ n ) JY 2an(TY)ch(n)
-I'(1) (J (dimY Td(TY)—Td'(TY))ch(n)—Tr,[NY Q]>}.

Proof. — For seC, Re(s) > sup(dimY ), then

1<j<d
(6.36) oY (5)= — —— f R {Tr, [NY exp (— u (DY)?)] - Tr, [N QI} d.
') Jo

So (6.35) is now a trivial consequence of (6.33), Theorem 6.3 and (6.36). [
2) The term 19

The term 19 is given by
o_ [T 2 (X 2y 9T
(6.37) I;= Tr,[Nyexp(—A*(D*+TV)?)] T
1

a) A—>+oo
Clearly

TO ~
(6.38) 10-1i= f Tr, [Ny Py %

1

B) To—>+ 0
By making o —» + oo in Theorem 6.4, we find that for T > 1

(6.39)

Tr, [N, B,]— ldime(n)l <<
2 ST

From (6.38), (6.39), we deduce that as T, - + o0

61
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(6.40) IL— %dim Ny (n)Log(T,) »

I%=f " (e, [Ny By - %dime(n))%
1

y) €—-0
IZ remains constant and equal to I3.
8) Evaluation of I3

Let | |-1@eie be the metric on the line A~ (M) ® X (&) which is the tensor
product of the metrics | |,-14, and | |z

Theorem 6 .12. — The following identity holds

1
(6.41) I3=- ELqu PI%‘I(n)@)i(m)-
Proof. — For T, > 1, set

To ar 1 ..
(6.42) Ig,TO=J Tr, [Ny iST]Tl: - Edlme(n) Log(T,).
1

Clearly as Ty —» + o0
(6.43) B, B
Using (6.6), we find that

To dr 1 ..
(6.44) Br,= J Tr, [Ny Py] T > dim Ny (n) Log (T)).

1

By Hodge Theory, the map seK, - P;seK; is the canonical isomorphism of
K, with K (where these two finite dimensional Z-graded vector spaces are themselves
identified with H* (E, 0%+ v)). In particular, if seK;, 1 <T < T, then

(6.45) Pr s=PpPrs.

Using (6.45), we find that if se K,, s'eK,, we get

0 , oP .
(6.46) a—T<PTs, Ps >T=<6—TTPTS, P,s >1r

0P 2
+ Ps,—IPs'> — Z{NyPrs, Prs’ Hr.
<T aT T T T< H*T T >T
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Since P2=P,, then
(6.47) Prp tp Pr_Pr
oT 0T 0T

From (6.47), we find that (6P;/0T) maps K; into its orthogonal Ki with respect to
the Hermitian product  , );. We thus rewrite (6.46) in the form

0 2
6.48 — (Pys, Pys" )= — = (NgPys, Prs’ Hr.
( ) 6T< T T >T T< H*T T >T

Using (6.48), we deduce easily that

d | o) _ 2
(6.49) — Log (———gi— = = Tr, [Ny P4].
oT | |i(é) T

From (6.44), (6.49), we get
2
(6.50) B.r,= - Log (Q?—T)— L dim Ny (n) Log(T,).
2 | |i 3} 2
Using Theorem 6.9 and (6.43), (6.50), we get (6.41). Our Theorem is proved. [

3) The term 13
We have the identity

(6.51) 3= —JATrS [(N¥ =Ny exp (—u? (DX+V)2)]%.

o) A—+ oo
Clearly, as A -+ ©
(6.52) I+ Tr, [(N¥—Ny) P] Log(A) —»

! du
3= —J Tr, [(NY — Ny) exp (—u* (D*+ V)?)] —
€ u

- J - {Tr, [(NY = Ny) exp (—u* (D*+ V)’]
1

~Tr, [(NX - Ny PI} 2.
u

B) To—>+
The term I} remains constant and equal to 1.
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v) €-0
By Theorem 6.3, we find that as € — 0, then

L[ o (1)
(6.53) B+ L 5 TdMX)ch@ ( -1

- J (dim X Td (TX) ch (£) — Td’ (TX) ch (£)
—Td (TX)ch’ (8)) Log (g) —

3=~ J 1 {Trs [(NS =Ny exp (—u? (D¥+V)?)]
0

- 12 j O 14(TX) ch &) - j (dim X Td (TX) ch (%)
u X 2 T X
—Td' (TX)ch(§)—Td (TX)ch’ (E_,))} du
u

- J - {Tr, [(NY—Ny) exp (—u? (D*+V)?*)] = Tr, [(Ny — Ny) P]} du
1 u

8) Evaluation of I3
Recall that the function 8f (s) was defined in equation (1.49).

Theorem 6 .13. — The following identity holds

o0
0s

(6.54) =1 {

O)X
5 0)— J . oy Td (TX)ch (&)

- (1) ( f (dim X Td (TX) ch (£) — Td’ (TX) ch (€)

—Td (TX) ch’ (§)) — Tr, [(NY — Ny) P])}-
Proof. — By using Theorem 6.3 and the analogue of (6.36) for 62‘ (s), we obtain
(6.54). .

4) The term 13
We have the identity

To dT
(6.55) 0= - J Tr, [Ny exp (— &2 (DX +TV)?)] =

1
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a) A—>+o

I$ remains constant and equal to I}.

B) To—+ o0

Using Theorem 6.4, we find that as T, — + o0

(6.56) u+%mmemnmun»»

2= _J”’ {Trs[NHexp(—(SDX+8TV)2)]— %dime(n)}%-
1

Y) €0
We are finally reaching the problem at its heart. Set

(6.57) 9= —Jl Tr,[Nyexp (— (e DX+ TV)?)] %,

1 2
J‘2’=—f Trs[NHexp<—<sDX+ IV) >]£{_l:,
€ € T
e T x. T\ l,. dr
I3=- Tr, | Nyexp| —(eD*+ =V ——dim Ny(m);—.
1 € 2 T

(6.58) 12=J9+J9+J3—dim Ny (n) Log (g).

Clearly

1. The term J?

We have the identity

6.59) 9= —J; {Tr, [N, exp (— (e DX+ TV)?)] - Tr, [N exp (— (e D¥)?)]} g

+Tr, [Ny exp (— (e D¥)*)] Log (¢).

Let D¥ be the restriction of D* to E;. The McKean-Singer formula for y (&,
[MKS] asserts that for any € > 0

(6.60) % (&) =Tr, [exp (= (e D})?)].

Therefore

(6.61) Tr,[Ngexp (= (e D)) =Y (= 1)'ix €.
0
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Using (4.4) and (6.8), we get

(6.62) Tr,[Ngexp(— (e Dx)z)] = f Td (TX)ch' (§).
X

We now use again Theorem 6.6, which guarantees that the integrand in the
integral in the right-hand side of (6.59) has a limit as € -0, and also that the
dominated convergence theorem can be used in the integral. Combining this with
(6.62), we find that as € > 0

(6.63) Jo— J "Td (TX)ch’ (£) Log () —

0

N=— j 1 {J‘ Td (TX, g™)® Tr, [Ny (exp (— C%2)—exp (— Cg))]} % :

0

2. The term )9

We here make the crucial step of writing J in the form

0 ! xy Ty)
I=- Tr,| Nyexp| —(eD*+ -V
Je €
»

JXxX

T
T
f1/e

- {J Td(TX, g"™)® Tr, [N, exp (— C%z)]} —.
J1 X T

3

By Theorem 6.6, there exist C > 0, y€]0, 1] such that for 0 <e < T <1

e[y (e TV

- j Td (T, g"™) ® Tr, [Ny exp (— Ciiye2)]
X

(6.65)

<C(+Ty
<CQT).

We now combine Theorems 4.3, 5.9, 6.7 and the inequality (6.65), which guarantees
that we can use the dominated convergence Theorem in the first integral in the right-
hand side of (6.64). We thus find that as € > 0

(6.66) 39+ j i* (Td (TX)) (Td ~ ')’ (N) ch () Log (¢) -
Y
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1
=~ f f {® Tr, [Ny, exp (— %22)]
Y JO
% TX -1y N dr
+*(Td(TX, g™))(Td ™)' (N, g")} ?ch(n, g"
+ ©
—J {J Td(TX, ™) ® Tr, [Ny exp (— Cf2)]
1 X

+ J *(Td (TX, g™)(Td 1) (N, g¥)ch(n, g")} ?

67

Of course Theorems 4.3 and 5.9 guarantee that the integrals in the right-hand side

of (6.66) make sense.

3. The term J3

Using Theorems 6.7, 6.8 and the dominated convergence Theorem, we find that

ase—0
+ o0

(6.67) I§-13= —J {(J ® Tr, [Ny exp (— £%2))
1 Y

ch(n, g"))— %dime(n)} "T—T—

By Theorem 5.5 and by the index formula (6.8), we can rewrite J} in the form

1= ~f qm {@Trs[NHexp(—@%z)l

- % dim N Td(TY, gTY)} -‘frI ) ch(m, g").

4. The asympotics of 12

(6.68)

By using (6.58), (6.63), (6.66), (6.68), we find that as € - 0

12+ {dim Ny (n)— J Td (TX) ch’ ()
(6.69) X

+ J *(Td (TX))(Td ~ ')’ (N)ch (n)} Log(e) —»
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r1

r=-[{ [ Tacrx, £ Tr, [Ny exp (~CB) —exp (~ COI} 01
JO X

- U Td (T*, g™) @ Tr, [Ny exp (— C}2)]
X

J1

+| *(Td(TX, g™)(Td 1) (N, g¥)ch(n, g“)} %

-{ J {® Tr, [Ny exp (— #32)]

JY JO

+ % (TA (TX, g™) (Td 1) (N, g} % ch(n, g")

—J Jm {‘DTIS[NHCXP(—@%)]

- % dim N Td (TY, gTY)} % ch(m, g").

8) Evaluation of I}

We now use the notation of Sections 4 and 5.

Theorem 6.14. — The following identity holds

=- % {J Td(TX, g™) T, h°)

(6.70) +J B(TY, TX |y, g™ !¥)ch(n, g")
Y
+I"(1) <J Td (TX)ch' (§)— %dim Ny (n))}.
X
Proof. — By using formulas (4.12) for T (§, %), (5.21) for B(TY, TX|y, g"™*!v)
and (6.69) for I3 and also formula (6.8), we get (6.70). [
e) Matching the divergences

We now obtain the key identity which leads to the proof of Theorem 6. 1.
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Theorem 6 .15. — The following identity holds

4

(6.71)

g
[S—
=~w
I
(=)

Proof. — Recall that ), I?=0. The sum of the diverging terms which have been
k=1

added at the three steps A -+ oo, T, >+ 00, € > 0 is then tautologically zero. The
identity (6.71) then follows.

We will here directly verify that these diverging terms add up to zero. We will
thus check that our previous calculations are correct. Also we will establish identities
which will be useful when proving Theorem 6. 16.

a) A->+ow

By formulas (6.23), (6.52), which concern 19, I3, we must analyse the diverging
term

(6.72) (— Tr, [(NY — Nyy) Py ]+ Tr, [(NY — Nyy) P]) Log (A).

Recall that P=P,. Using (6.25), (6.29), we find that (6.72) is exactly zero.
Therefore

(6.73) Y Ii=0.

B) To—>+ o0
By formulas (6.40), (6.56), which refer to I3, I}, we get the diverging terms

(6.74) <— %dime(n)+ %dime(n)) Log(T,)=0.

From (6.73), (6.74) we find that

4

(6.75) Y 12=0.

v) €—-0
We get a first sort of terms in formulas (6.33) and (6.53) concerning 1%, I3,

(6.76) 1{[ m—YTd(TY)ch(n)——f Cl)—XTd(TX)ch(E)} <1— l).
2 (Jy 2= x 2T

82
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Now the form o* is closed. Since i* ®* =Y, using (4.13), it is clear that
o* oY
6.77) J O Td (TX) ch (&) = J © Td(TY)ch(n).
x 2T Yy 2™

So (6.76) is exactly zero.

Also by equations (6.33), (6.53), (6.69) which concern 12, I3, IZ, we get the
diverging terms

(6.78) { j (dim Y Td (TY)—Td’ (TY))ch () — f (dim X Td (TX) ch (¢)
Y X
—Td’ (TX) ch () — Td (TX) ch’ (£)) + dim N x (1)

- j Td (TX)ch’ (£) + j

Y

i* (Td (TX)) (Td 1) (N) ch (n)} Log (e).

For 1 <j < d, we have the identity
(6.79) dimY;+dim N;=dim X.
Using formulas (6.8), (6.9) we find that

(6.80) j dimY Td(TY)ch(n)+dim Ny (n)

d

=Y (dimY;+dimN)) 3 (n,)
1

d

=dimX;x(n,-)=dimXx(n).
Also (€)= (n). Using (6.8) and (6.80), we find that
(6.81) f dim Y Td (TY)ch (n)— L dim X Td (TX) ch (£) + dim N y (1) =0.
By (4.13), we get
(6.82) L Td' (TX)ch (§)= j ) i* (Td’ (TX)) Td " (N) ch ().

We have the identities in H* (Y)

(6.83) Td (TX |y)=Td(TY) Td (N),
Td' (TX |y)=Td'(TY) Td (N)+ Td (TY) Td" (N),
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Td’ (N)

(T4 (== 15

From (6.82), (6.83), we deduce that

(6.84) J Td’ (TX)ch (€) + f {i* (Td (TX)) (Td "y (N)—Td’ (TY)} ch (n)=0.
X

Y

By (6.81), (6.84), (6.78) is exactly zero. We thus obtain (6.71). [

f) A formula for Log (|| p||?-1 myei )

We now obtain an explicit expression for Log (|| p ||7-1 o e )-
Recall that A (x)=(x/2)/sinh(x/2). As in Section 5g), we identify the function
A’/A (x) with the corresponding additive genus.

Theorem 6.16. — The following identity holds

(6.85) Log (” Y ”%- 1w ®I(r;)) =- f Td(TX, g™ T, A%
X

—J B(TY, TX|y, g™ !¥)ch(n, g")
Y

~

AA' (N)ch (n).

+T(1) J Td (TY)

4

Proof. — By Theorem 6.15, we know Y I?=0. Using Theorems 6.11, 6.12,

k=1

6.13, 6.14, we find that
2 Y 0y 0% 1o :
(6.86) —Log(|plF-1mete) ~ e 0+ m 0)— | Td(TX, g HTE, #°)
X
—J B(TY, TX|y, g™*!Y)ch(n, g")
Y
oY o*
+J —Td(TY)ch(n)—J — Td (TX)ch (&)
y 2T x 2T

+1' (1) {j (dim Y Td (TY)—Td’ (TY))ch (n)
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—Tr, [Ny Q] + j (—dim X Td (TX)ch (§)+ Td'(TX)ch (&)
X

+Td(TX) ch’ (&) + Tr, [(N¥— N, P]
- LTd (TX)ch' (&) + %dime(n)}=
By (1.42), (1.50),
(6.87) Log( Pt ore)+ 0 0)- @ £ 0=Log(lpE-1 more)
We now use identities (6.25), (6.29), (6.77), (6.81), (6.82), (6.83), (6.86), (6.87), and we get
(6.88) Log(|p -1 weie) = - j Td(X, ™ TE, #)
- LB (TY, TX |y, g™!¥)

Td’

+I"(1) {J Td (TY) (N) ch(n)— 5dlmN)((n)}

Since the Todd genus is multiplicative, the genus Td'/Td is additive. Moreover
Td (x)=A (x) €2, and so

Td’ A’ 1

(6.89) Td (x)= Z(x)+ 5
Therefore
(6.90) Td'( N)= ——(N)+ dlmN

Using (6.8), (6.90), we find that
Td’

(6.91) f Td(TY) - (N)e h(n)—idlme(n)
Y

= J Td(TY) %(N) ch(m).

From (6.88), (6.91), we get (6.85). [
We now will use the results of Bismut [B3] to give a more explicit formula for
Log(|[p|[%-1meiw)-
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Recall that Td(TY, TX |y, g™ ) is the Bott-Chern class in PY/PY:® associated
to the Todd genus Td and the exact sequence of holomorphic Hermitian vector bundles
0->TY>TX|y—>N-0. Also the additive genus D was defined in Section 5g).

Theorem 6.17. — The following identity holds

(6.92) Log(|p (-1 meie)= —J Td(X, g™ T, )
X

+f Td ™' (N, ) Td(TY, TX |y, g™ V) ch(n, g")
Y

—j Td (TY) (D ~T'(1) A ) (N)ch (n).
Y A

Proof. — The form ch(n, g") lies in PY and is @ and 0 closed. Therefore it can
be paired with elements of PY/PY:°. Using Theorem 5. 16, we find that

(6.93) J B(TY, TX|y, g™!¥)ch(n, g
Y
- _J Td~'(N, g% Td(TY, TX |y, g™*¥)ch(n, g")
Y

+ f Td (TY)ch () D (N).
Y

Equation (6.92) follows from (6.85) and (6.93). [

g) Proof of Theorem 6.1

The identity (6.1) immediately follows from Proposition 5.19 and Theorem 6.17.
Also we have the identity in H* (Y)

_ *Td(TX)
(6.94) T == (N)
R (N)=* R (TX)— R(TY).

b

Using Theorem 4.7 and (6.94), we get

(6.95) f Td (TY)R (N)ch(n)
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= j Td (TX) R (TX) ch (&) - I Td (TY) R (TY)ch(n).
X Y

So (6.1") follows from (6.1) and from (6.95). The proof of Theorem 6.1 is
completed. [

Remark 6.18. — Take a > 0. Assume that in formulas (1.41), (1.49), and in their
analogues on Y, the operators 0%, 0¥ are replaced by the operators _/a 8%, _/ad¥. Let

|| lkena | ey o | |h-1ee7e,a be the corresponding Quillen metrics on the lines
X (), A(m), A~ (M) ® X (&). By redoing the calculations in (6.22), (6.95), we find that

(6.96) Log (H p “r L meie,d = Log (“ p ||r L @7 ()

+ ( Td (TY) Td (N) ch(n)—dim Ny (n)> Log(a),

Y

(6.96") Log (“ p ”r Lmeie), a) =Log (” p “r L ®F ()

+( [ Td’ (TX)ch (§)— J Td’(TY)ch(n)

X

—dim Xy (§) +dim (Y) x (n)> Log(a)

Equations (6.96), (6.96") can also be obtained as a consequence of the general anomaly
formula of [BGS3, Theorem 1.23].
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VII - THE HODGE THEORY OF THE RESOLUTION OF A POINT

a) The resolution of a point in a complex vector space.
b) The Hodge theory of the complex (', 0+ _/—1i,).

As pointed out in the Introduction, the Hodge theory of the resolution of the
point {0} in a complex Hermitian vector space plays an essential, if modest, role in
our whole paper.

The purpose of this Section is in fact to recall the elementary results established
in [B3] concerning the Dolbeault resolution of the Koszul complex on a complex
Hermitian vector space V. In the next Sections, the results of this Section will be
applied to the fibres of the normal bundle N to Y in X.

In a), we describe the Koszul complex of V, and in b), we discuss the Hodge
theory of the associated Dolbeault double complex.

We use the notation of Sections la) and Sa). This Section is otherwise self-
contained.

a) The resolution of a point in a complex vector space

We use the notation of Sections la) and 5a). In particular Vg is a real even
dimensional vector space. Also Jis a complex structure on Vg, V is the associated
complex vector space. Let n be the complex dimension of V. Recall that if zeV, z
represents Z=z+ze V.

Let i be the embedding {0} — V.

In the sequel, A(V*) will be considered as a Z-graded vector bundle on V. If
zeV, let i, be the interior multiplication operator by z. Then i, acts on A (V*). We
now consider the holomorphic chain complex on V

(1.1) (AV*, /=Ti): 0o A" (V¥ ——A"" 1 (V¥)

—1i,

—A%(V¥)=C - 0.

—1i,
Let r be the restriction map: aeA®(V*)|,, — a€C. Then by [GrH, p. 688], we
have the exact sequence of sheaves
(7.2) 0 - Oy (A" (V¥) —— Oy (A" 1 (V¥)). .. —— 0Oy - i, C—>0,

—1i, —1i, r

i.e. the complex (A V*, /—1i,) resolves the sheaf i, C.
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We can then apply the results of Sections 1b), c), d) in this situation. Let Ny,
Ny be the operators which define the Z-grading on A (V*), A (V*) respectively. We
define the Z-grading on A (V*) ® A (V*) by the operator Ny — Ny,.

Let T be the set of smooth sections of A(V*)® A (V*) over V. Then T is also
Z-graded by the operator Ny —Nj;. Let 0 be the standard Dolbeault operator acting
on I'. If zeV, the operator i, acts naturally on I', with the convention that if Ze Vy
is written in the form Z=z+z, zeV, then at ZeVy, i,a is exactly i,(o(Z)). Both
operators ¢ and \/—_1 i, are odd and increase the total degree in I by one. Also
5+\/—_liz is a chain map i.e.

(7.3) @+ /~1i)*=0.

As in (1.31), we extend r to a linear map from I" into C. Namely, if o is a smooth
section of A?(V*) ® A?(V*), if p+¢ >0, ra=0, and if p=¢g=0, ra=a(0)eC.
The Dolbeault complex of {0} is simply C——-0. By [B3, Proposition 1. 1], which

50)

is a special case of Theorem 1.7, the map r: (T, 0+ \/——_1 i,) > (C, 0% is a quasi-
isomorphism of Z-graded complexes. Therefore the cohomology of the complex
T, o0+ \/——1 i,) is concentrated in degree zero, and is one dimensional.

b) The Hodge theory of the complex (I', 0+ \/:_1 i)

We now recall the results of [B3, Section 1] which concern the Hodge theory of
the complex (I, 0+ \/:—1 i)

As in Section la), we assume that V is equipped with a Hermitian product. Let
dvy (Z) be the volume form on Vy. Let I'° be the set of the square integrable sections
of A(V*) ® A(V*) over Vg. We equip I'° with the Hermitian product

dimV
7.9 a, B—(a, B>=<i> J (o, B>A(V*)éA(v*)dvv-

The adjoint of the operator i, is the operator i*=z A. Let 0* be —the formal
adjoint of ¢ with respect to the Hermitian product (7.4). Then 0*— \/— 1:* is the
formal adjoint of 3+ \/————1 i,. Also

(7.5) (0*— \/Tl i¥)?=0.
Recall that 0 is the Kdhler form on Vg, so that if X, Ye Vg

(7.6) 0(X, Y)=(X,JY).
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Then 6 is a (1, 1) form on V or equivalently an element of A! (V*) ® A! (V*), whose

total degree is zero.
Let L be the operator

(7.7 aeA(VH)®A(V¥) > La=0 A aecA (V¥ QA (V).
Let A be the adjoint of L.

Definition 7.1. — S denotes the operator in End®'*" (A (V*) ® A (V*))
(7.8) S=—(L+A)

Then S is a self-adjoint operator. It obviously acts on I" and I'°. Let ey, . . .

be an orthonormal base of Vg. The Laplacian A of Vy is given by

2n

A=Y (V)

The operator A also acts on I'.
The following result is proved in [B3, Proposition 1.4].

Proposition 7.2. — The following identities hold
— — A, |Z)
o+ /—1li,+0*— /—1i¥)?=—-=+ 1L +§,

2
s-v !
2

(7.9)

N

c(e)é(Jey).

~M

Let C{ (Vg) be the set of real smooth functions of Vi which have compact

support. Let ¥ be the differential operator

(7.10) ££=%(—A+|Z|2—2n).

Then % is the harmonic oscillator on Vg. By [G1J, Theorem 1.5. 1], we know that
Z is essentially self-adjoint on CJ (Vg), that its closure is nonnegative and has compact
resolvent. The spectrum of & is the set of nonnegative integers N and the kernel of

& is one-dimensional and is spanned by the function exp(— (| Z |*/2)).

Let I', be the set of C* sections of A (V¥) ® A (V*) with compact support. Clearly

(7.11) Io=C& (Vo) ® (A(VH) ® A(V¥)).

Also & acts as the operator £ ® 1 on I',. By Proposition 7.2, we have the identity

(7.12) @+ /—-Iiz+5*—\/~—li;")2=$+s+n.
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Therefore the operator (0+ _/—1i,+0*— \/—_1 i*)? is essentially self-adjoint on I,
its closure is nonegative and has compact resolvent.
By definition, the form exp (0) is given by
dimV
(7.13) exp@=1+2+.  + 9"
1! (dim V)!

Since 0 has total degree zero, exp (0) also has total degree zero.

Proposition 7.3. — The lowest eigenvalue of the self-adjoint operator
SeEnd (A (V*) ® A (V*)) is equal to —n, and the corresponding eigenspace is spanned
by the form exp (0). Also

(7 14) I €Xp (6) |12\ VHOA VY~ 2dimV,

Proof. — Proposition 7.3 follows from [B3, Proposition 1. 5], and [B3, eq. (1.25)
and (1.31)]. O

Theorem 7.4. — Let BeT° be given by

2
(7.15) B=exp<6—%>.
Then B has total degree zero, and also
1 dimV
(7.16) <_> J <B, B>A(\7*)<§A(V‘)de=1‘
27 Ve

Moreover B spans the one-dimensional kernel of the operator
@+ /- 1i+3*— /-1iH

Finally

@+ \/_—_1 i,)p=0,

@~ /~1i%)B=0,

{(xu-2).8 %= (=28 p-o

Proof. — Theorem 7.4 is proved in [B3, Theorem 1.6]. The fact that B spans the
kernel of 0+ _/—1i,+0*— _/—1i*)? can also be derived from the considerations
which follow Proposition 7.2 and from Proposition 7.3. Moreover (7.15) is a conse-
quence of (7.14) and of the trivial

(7.17)

(7.18) J exp(—|Z|)?doy=n"V. O
VR
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Remark 7.5. — Since P has total degree zero, then

(7.19) (Ny—Ny) B=0.

So (7.19) is compatible with the last identity in (7.17).

Remark 7.6. — As pointed in [B3, Section 1d)], the L, cohomology of the
complex (I'°, 9+ _/—11i,) is concentrated in degree zero and H°(I'°, 6+ \/——_T i) is
spanned by B. Also observe that

(7.20) rp=1.

Since (0+ F i,)B=0, B is a representative of the element in H°(I", 3+ _/—11,)
which correspond to 1e€C via the quasi-isomorphism r: (I, 0+ \/TT i,) - (C, 0'9).
The form B is in fact the unique harmonic representative in I'° of the corresponding
cohomology class.

Observe that with the notation of Section 5a)

A /—1
(7.21) J1G—1) Nk
Let D be the operator

(1.22) D=0+ 0*.

We then have the identity

4 . % g -—1 A
(7.23) 5+\/—lzz+3 - /—1i*=D+ V\/j c(J2).
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VIII - A TAYLOR EXPANSION OF THE OPERATOR
D*+TV NEAR Y

a) Assumptions and notation.

b) The main Theorems.

c) The Dirac operators DX and DY.

d) The canonical exact sequence on Y.

e) A coordinate system on X near Y.

f) A splitting of £ near Y.

g) A trivialization of A (T*© VX) & £ along geodesics normal to Y.
h) A Taylor expansion of the operator DX+ TV near Y.

i) The projection of the operator D¥+M +(1/2) V5 V5 V ().

The purpose of the next two sections is to prove Theorems 6.4 and 6.5. In fact
we state in Theorems 8.2 and 8.3 two very general results, from which Theorems 6.4
and 6.5 immediately follow.

Let L be a smooth section of End®**" (A (T*© Y X) ® £). Theorem 8.2 states that
for oy > 0, o > 0y, as T — + 00, Tr [Lexp(—a(D*+TV)?)] converges uniformly to a
limit which can expressed in terms of the operator DY=0"+0Y" on Y. Theorem 8.3
is concerned with the determination of a uniform rate of convergence in T > 1 of
Tr,[Lexp(—a(D*+TV)?)] as a =+ oo. This last problem will be extensively dealt
with in Section 9.

The proof of Theorem 8.2 is also delayed to Section 9. Still it relies heavily on
the constructions of this Section, which consist of:

e The identification of a tubular neighborhood of Y in X with an open set in
the total space of the normal bundle N to Y in X, by using geodesic coordinates
normal to Y.

e The construction of an orthogonal splitting E=£" @ £~ of £ near Y, which
preserves the Z-grading of &, which is stable under the action of V, and is such that
&€~ |y=H (&, v). The construction of this splitting is taken from [B2].

e A trivialization of A (T*© VX) ® £ near Y along geodesics normal to Y.

e The determination of the asymptotic expansion of the operator DX+ TV in the
considered trivialization when T — + oo under the change of variables in the normal
bundle N, Z - Z/\/T.

e The explicitation of remarkable algebraic properties of the asymptotic expansion
of the operator DX+ TV, in which the harmonic oscillator considered in Section 7
and its kernel, which is spanned by B, play a key role. These algebraic considerations
will ultimately explain why the limit as T —+ oo of Tr,[Lexp(—a(D*+TV)?)] can
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be evaluated in terms of the operator DY. Here the Kihler condition on the metric
g"™* plays an essential role.

This Section is organized as follows. In a), we give our main assumptions and
notation. In b), we state the two main results of Sections 8 and 9, and we derive
Theorems 6.4 and 6.5 from them. In c), we express the operators D* and DY as
standard Dirac operators in the sense of Atiyah-Bott-Patodi [ABoP]. In d), we
construct the holomorphic Hermitian connections on the vector bundles of the exact
sequence 0 > TY » TX |Y —- N - 0. Ine), we construct the global normal geodesic
coordinate system on X near Y. In f), we describe the splitting E=E" @E~ of &
near Y. In g), we construct a trivialization of A (T** Y X) ® & near Y. In h), we obtain
the Taylor expansion of the rescaled Dirac operator DX+ TV near Y in the essential
Theorem 8.18. Finally in i), we give remarkable algebraic properties of this Taylor
expansion in Theorem 8.21.

The results of this Section will be used in Sections 9, 10 and 13. The splitting
E=E* @&~ will reappear until Section 13.

a) Assumptions and notation

We make the same assumptions and we use the same notation as in Sections 1-6.
When vector bundles have been canonically identified, we now consider them as being
equal.

Recall that H(E, v) is the Z-graded holomorphic vector bundle on Y, which is
the homology of the complex (&, v) |y. To make our notation simpler, we will write H
instead of H (§, v). By equation (1.57)

8.1) H={fek|y; of=0; v*f=0}.

Then H inherits its Hermitian metric A" from the metric A° on &.
Also by equation (1.56), we know that

(8.2) H=AN*®n.

By assumption (A) in Section 1f), (8.2) is an identification of holomorphic Z-graded
Hermitian vector bundles on Y.

Recall that N is identified with the orthogonal bundle to TY in TX|,. We thus
have the identification of C* vector bundles on Y

(8.3) TX|y=TY@®N.
From (8. 3), we deduce the identification of C® vector bundles

(8.4) AT*ODX) |, =A(T*O DY) ® A (N¥).
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Using (8.2), (8.4), we find that A (N*) ® A(N*) ® n is now a subvector bundle of
AT*OIX) Q).

For yeY, let 6, denote the Kdhler form of the fiber N ,. If J is the complex
structure of Ny, if Z, Z’'e Ny ,, then

0z, 2)=(2,37'>.
Also 0e At (N*) ® A (N*). Similarly exp (8) e A (N*) ® A (N*).
Definition 8.1. — Let ¢ denote the linear map

aexp (0)

. 0, 1)
(8.5) 0:aeA(T*>VY)®@n — 2@mN)2

eA(T** VX)), ® H.

Using (7.14), we find that ¢ is norm preserving.
Let ¢ be the orthogonal projection from (A (T*® Y X) ® &) |y on the image of ¢.

b) The main Theorems

Let L be a smooth section of End®**" (A (T** Y X) ® £) over X. Let L|, be the
restriction of L to Y.
Set

(8.6) L’=¢7'qL|yqe.

Then L® is a smooth section of End¢**™ (A (T*©* YY) ® n).
We now state the two essential results of this section.

Theorem 8.2. — For any o, > 0, there exists C > 0 such that for o > oy, T > 1

(8.7) | Tr[Lexp (—a(D*+TV)?»)]—Tr[L%exp (—a(D¥)?)]| < L__ :

N

Theorem 8.3. — There exist constants ¢ > 0, C > 0 such that for any . > 1, T > 1

(8.9) | Tr[Lexp (— o (D*+TV)?)]—Tr[LP;]| < cexp(—Ca).

Before we proceed, let us show how to deduce Theorems 6.4 and 6.5 from
Theorems 8.2 and 8.3.

Proof of Theorem 6.4. — The proof of Theorem 6.4 relies on the following
simple result.
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Proposition 8.4. — The following identities hold

1
N =-dim N
(8.9) HT S am,
(NY—Np)°=Ny.
Proof. — If ae A(T*© DY) ® m, since n is identified with H,, we get

Nyu(aexp(8)) _ aNyexp(6)

(dimN)/2 (dimN)/2

(8.10)

Now by the last equation in (7.17), or by a direct computation, we find that

@.11) Nyexp (9) - exp (6) =%dimN.

2(dimN)/2 > H(dimN)/2

From (8.11), we get the first line of (8.9). Similarly
(8.12) (N¥ — Ny) (aexp (8)) = (NY @) exp (8) + a (N3 — Ny,) exp (8).

As pointed out after equation (7.13), exp(0) is of total degree zero in
AN* Q@ A(N¥), i.e.
(8.13) (N¥—Ny) exp (0)=0.
The second line of (8.9) follows from (8.12), (8.13). O

Theorem 6.4 follows from Theorem 8.2 and from Proposition 8.4. In fact, in
Theorem 8.2, since 0 is even, ¢ commutes with the involution defining the Z,-grading
on A(T*© VX)® E. Therefore we can replace the traces Tr by supertraces Tr,. The

second line of (6.11) is now obvious. Also by the McKean-Singer formula [MKS], for
1<j<d a>0,

(8.14) % (n) =Tr, [exp (— 2 (DY)?)].

The first line of (6.11) trivially follows from Theorem 8.2, Proposition 8.4 and
equation (8.14). O

Proof of Theorem 6.5. — Let t be the involution defining the Z,-grading on
A(T*© D X)® E. Theorem 6.5 follows from Theorem 8.3, with L=1(N¥—N,)).

¢) The Dirac operators DX and DY

Let V™ (resp. VTY) be the holomorphic Hermitian connection on TX (resp. TY).
Since the metric g™ (resp. g"¥) is Kihler, V™ (resp. VTY) induces on Tg X (resp. TgY)
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the corresponding Levi-Civita connection. Then V™ (resp. V'Y) induces a unitary
connection on A (T*© VX)) (resp. A (T*© VY)) which we still note V™ (resp. VTY).

Let VX (resp. VY) be the unitary connection on A(T*®VX)®E
(resp. A (T**VY) ®n)

8.15) VX=VX®1+1® V*
(resp.
(8.15) VY=V ®1+1Q VM.

We now use the notation of Section 5a). If UeTg X, ¢(U) acts as an odd operator
on A (T*© YX), Also ¢(U) acts as c(U)® 1 on A(T*®VX) R E.

Proposition 8.5. — Let e, ..., e,, (resp. e}, ..., e5,) be an orthonormal base
of Tg X (resp. Tg Y). Then the following identity holds

21

x_v ¢(e) ox
(8.16) D ; v VX
(resp.
(8.16") pr=y <@y,

Proof. — Since the metric g™ (resp. g'¥) is Kéhler, (8.16) (resp. (8.16")) follows
from [Hi, p. 13].

d) The canonical exact sequence on Y

We now consider the exact sequence of holomorphic Hermitian vector bundles

0->TY->TX|y>N-0.

Recall that N is identified with the orthogonal bundle to TY in TX|y. Let P™Y,
P™N be the orthogonal projection operators from TX |y on TY, N respectively.

The restriction of V™ to TX |y is exactly the holomorphic Hermitian connection
V™I¥ on TX |y. Let VN be the holomorphic Hermitian connection on N.

Proposition 8.6. — The following identities hold
VTY = PTY VTX ly

8.17) PNe pNYTXy

Proof. — Proposition 8.6 is proved in [K, Propositions 6.4 and 6.6]. [J
We now use the notation of Section 5b).
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Definition 8.7. — Let °V™*Iv=V™" @ VN be the connection on TX |y which is the
direct sum of the connections V'Y and VV. Set

(8.18) A=Vl —0yTXly,

Then A is a 1-form on Y which takes values in skew-adjoint endomorphisms of
TX |y which exchange TY and N. Actually A defines the second fundamental form
of Y.

We now recall the definition of the mean curvature vector [KN, p. 34].
Definition 8.8. — If e,, ..., e,; is an orthonormal base of TR Y, set

21"

1
1
Afe)e;.
TR

(8.19) v=

Then v is a section of Ng. Of course if /=0, v is by definition set equal to 0.

e) A coordinate system on X near Y

If yeY, ZeNg ,, let teR - x,=exp;‘ (tZ)e X be the geodesic in X which is such
that xo=y, dx/dt|,-o=Z.
For 0 < € < + o0, set

(8.20) B,={ZeNg |Z| <&}

Since X and Y are compact, there exists €, > 0 such that for 0 < ¢ < g,, the map
(¥, Z)eNg — exp;‘ (Z)eX is a diffeomorphism from B, on a tubular neighborhood %,
of Y in X. From now on, we will identify B, with #%,. Also we will use the notation
x=(y, Z) instead of x=expj (Z). Finally we identify yeY with (y, 0)€ Ng.

Let dvy denote the volume element of the fibers Ng. Then doy () vay (Z) is a
natural volume element on the total space of Ng.

Let k(y, Z) be the smooth positive function defined on B,, by the equation

(8.21) dvx (v, Z)=k (y, Z) dvy (y) don, (2).
The function k has a positive lower bound on %, ,,. Also if yeY
(8.22) k(y)=1.

Then 0k/0Z (y) lies in Ng ,. We identify 0k/0Z(y) with an element of Ng , by the
metric.
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Proposition 8.9. — The following identity holds

ok, o
(8.23) 5 ()= —2@dmY)v.

Proof. — Let R™ be the curvature of the connection V™. Take yeY, ZeNg ,.
Let D/Dt be the covariant differentiation operator along the geodesic ¢ — (y, tZ) with
respect to the connection V™. If J is a Jacobi field associated with the geodesic
t—(y, tZ), then

D?J
— +R™(J,Z2)Z=0.
D d,2)

To calculate the Jacobian of the map (x, Z) — exp) (Z), we must consider two kinds
of initial conditions:
o The initial condition

DJ,

J,=0, =20
0 Dt

€N,

This corresponds to infinitesimal displacements of the geodesic ¢t — (y, ¢ Z) where only
Z varies.
e The initial condition

Joe(TrY),,

Do _ Ay ze(T, Y),

This corresponds to infinitesimal displacements of the geodesic ¢ — (y, tZ), where
yeY moves in the direction J,, and Z e Ny, is parallel with respect to the connection VN.

We then easily deduce that if e;, . . ., e,;. is an orthonormal base of (T, Y),, for

any ZeNg ,

ok 2
8.24) K.z )= (A@zZ e,

oZ 1
Equivalently

ok o
(825) 02 y=-Y(AE)e 2).

1

So (8.23) follows from (8.25). [
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f) A splitting of £ near Y

Let H* be the orthogonal bundle to H in & |y. We now recall the construction in
Bismut [B2, Section 3f)] of a splitting £=£* @ £~ near Y which extends the splitting
Ely=H @ H*.

By (8.1), we have the identity

(8.26) H={fetly; V2 f=0}.

For yeY, let p(y) be the smallest nonzero eigenvalue of the self-adjoint nonnegative
operator V2(y). Since H is a smooth vector bundle onY, the function
yeY - p(y)eR* is continuous. Since Y is compact, the function p has a positive
lower bound 2b on Y.

We may and we will assume that ¢, > 0 is small enough so that if xe%
not an eigenvalue of V2 (x).

Definition 8.10. — For 0 <k <m, xeWU,,, &, (resp. & ,) denotes the direct
sum of the eigenspaces of the restriction of V2 (x) to &, , corresponding to eigenvalues
which are smaller (resp. larger) than b.

For 0 < k < m, the £F’s are the fibres of smooth vector subbundles &F of &,
over %,,. Clearly on %,, for 0 < k < m,

b is

g0’

€0’

(8.27) &=E D& .

Set

(8.28) Er=@ g et= @ £ 8f= @ Ef
k=0 k even kodd

In (8.27), (8.28), the various splittings are orthogonal. We equip £*, £~ with the
metrics A*", A%~ induced by the metric A°.

Then v, v* and V preserve £*, £~. Let V*, V™ be the restrictions of V to £*, &~
We will often write V in matrix form with respect to the splitting E=£* @ &~

vt o
(8.29) v—[o V_].

Clearly by (8.26), we have the identity of Z-graded vector bundles over Y
(8.30) & |y=H.

From (8.2), (8.30), we get

(8.31) £ ly=AN*®n.
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The equalities in (8.30), (8.31) also identify the metrics. From (8.30), we find &_ |y is
a Z-graded holomorphic Hermitian vector bundle on Y.
Let P%* be the orthogonal projection operator from & on £*. By (8.30), the
restriction P*” |y of P* to Y is the orthogonal projection operator P from |y on H.
Let V¢* be the Hermitian connection on &*

(8.32) Vet =pe* e,

Proposition 8.11. — The connection i* V¢~ on &~ ly=H is exactly the holomorphic
Hermitian connection V** on H.

Proof. — This result is proved in [B2, Proposition 1.8]. [J

Definition 8.12. — Let Vé=V:" @ V¢~ be the connection on Ela,, =5 @&
which is the direct sum of the connections V™ and V&~ . Set

(8.33) B=V:— ¥t

Then B is a 1-form on %, which takes values in endomorphisms of & which interchange
E* and &~.

By Section 5a), if ZeNg, ¢(Z) acts on A(N*). We assume that ¢(Z) acts like
((Z)®1on A(N¥)®n.

Proposition 8.13. — If yeY, Ze Ny ,, the following identity holds

- L
(8.34) Vi v (y) Y ¢J2).

Proof. — This result is proved in [B2, Section 1c) and Section 3j)]. We reproduce
the proof for the sake of completeness.

Let V’® be an arbitrary connection on £ near Y which preserves the Z-grading
of &. Let I be the connection form of V’® in a given holomorphic trivialization of the
complex (&, v) near yeY. If Ue(Tg X),, then

(8.35) Vit v (n) =0y (») +I, (U), 2(y)]-

Recall that dyv(y) acts on H,(§, v)=H,, and that this action only depends on the
image Z of U in Ng ,. From (8.35), we deduce that ViFv(y) acts on H, in the same
way as Oyv(y). In particular, if ZeNg ,, we have the identity of operators acting
on H,

(8.36) VZEv(¥)=0z0().
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Now v and the connection V¢ preserve £, and also &~ |y =H. From (8.35), (8.36), we
deduce that

(8.37) Vs v (0)=0,2().
If zeN,, if Z=z+z, using (1.56), we rewrite (8.37) in the form
(8.38) V5 o(yn)=_/—1i,

By (5.2), (8.38) is equivalent to

(8.39) Vs v(n)=— iz_)

N3

Let f, g be smooth sections of £~ near y, €Y. Since v, v* act on ", and since the
connection V¢~ is unitary, we find that

(8.40) (V5 v fi8)=Cfi Vg »*(g).
Equivalently
(8.41) Vs v )*=V5 o* ().

From (8.39), (8.41), we get

(8.42) V5 o* ()= 5\%
Using (8.39), (8.42), we find that
—(—e@ @)

N

which is equivalent to (8.34). O
We now state a simple but essential result.

(8.43) Vs v-(»n=

Proposition 8.14. — There exists a constant C>0 such that for any
x=(y, Z) €Uy, f €E,, then

(8.44) V@) fP=C|ZP|f

Proof. — This result is proved in [B2, Proposition 3.3]. We will here deduce
Proposition 8.14 from Proposition 8.13. Recall that £* and £~ are orthogonal in &.
Also the complex (&, v) is acyclic on X\ Y. It is then clear that there is a constant
C > 0 such that if fe€&™, (8.44) holds.
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Take yeY, ZeNg ,. We identify &, 5 with & by parallel transport with respect
to the connection V*~ along the geodesic t— (y, tZ). This identification clearly
preserves the metric. Then V™ (y, Z) acts on £, =(AN* ® n),. Since V~ vanishes
on Y, by Taylor’s formula, we get

(8.45) V- 2=V vin+o(zp).
From (8.45), we deduce that if f€§__, then

Y0’

(8.46) V-0, D) fP =1V Vo) FP-o(ZP]| -

N | —

We now use Proposition 8. 13, and also the fact that
(8.47) (¢J2)*=—|Z|.

From (8.46), (8.47) we then get
(8.48) V-0, 2) f]* = <i|Z|2—O(|Z|“)>|f|2.

If |Z| is small enough, we deduce (8.44) from (8.48). Now since (&, v) is acyclic on
X\Y, V7 is invertible on %, ,,\Y. We thus obtain (8.44) for arbitrary
(y, Z)E%eo/Z' U

g) A trivialization of A (T*® V' X) ® £ along geodesics normal to Y

Take x=(y, Z)eU,,. We will identify &, with §, by parallel transport with respect
to the connection V¢ along the geodesic ¢ — (y, tZ). Under this identification, &2
is identified to &F, and the identification preserves the metric and the Z-grading
of &, E*. Also if x=(y, Z)e%,,, V(x), V' (x), V™ (x) act as self-adjoint operators
on &, &, & respectively.

If x=(y, Z)eU,,, we identify (A (T** VX), with A(T*© VX) by parallel trans-
port with respect to the connection V™ along the geodesic ¢ — (y, t Z). This identifica-
tion still preserves the metric and the Z-grading.

If x=(y, Z)€U,y, (A(T**VX) ® &), is identified with (A (T**VYX) ® &),, and
this identification preserves the metric and the Z-gradings associated to the operators
N¥ and Ny,

€0’

h) A Taylor expansion of the operator DX+ TV near Y

Recall that 7 is the canonical projection N - Y.
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Definition 8.15. — Take a > 0. Let E (o) (resp. E) be the set of smooth sections
of T* (A(T*©@ VY X) ® £)|y) on B, (resp. on the total space of Ng).

If f, g€ E have compact support, set

(8.49) s g>=<51;> " J <J (/. 8>, Z)va(Z)>de(y)-
Y NR, y

By using the construction of Section 8e), if f € E has compact support in B, , we
may and we will identify f with an element of E which has compact support in %,
Still observe that in (8.21), k is in general not identically equal to 1, so this identifica-
tion is not unitary with respect to the Hermitian products (1.38) and (8.49).

The holomorphic Hermitian connection VN on N induces a splitting
TN=N® TN of the tangent space to N, where T¥ N is the horizontal part of TN
with respect to the connection VY. If UeT,Y, let U" denote the horizontal lift of U
in Tg N, so that U"e Ta N, n, U¥=U.

Recall that the connection °V™ ¥ on TX |y was defined in Definition 8.7. Then
OV™lv induces a connection on A(T*®VX)|,, which we still denote °V™Iv. Let
VElv be the restriction of the connection V% to £|y. Let °VY be the connection on
AMOUX)®E)|y

(8.50) OVY=0yTXIy @ 14+1 & Vi,

The connection °VY lifts to a connection on 7* (A (T*'* V' X) ® £)|y), which we still
denote °VY.

Recall that B=V¢—V& If yeY, Ue(Tg X),, B, (U) acts on &, and preserves
the Z-grading of &,. Therefore B, (U)e End®**"(£,). Then ¢ (U)B,(U) acts on
(A(T*©VX)®E),. In what follows, we omit the subscript y in B,

Let e,, ..., e,;; be an orthonormal base of TRY, let e,;.,4, ..., €, be an
orthonormal base of Np.

Definition 8.16. — Let M, D¥, DN be the operators acting on E

21 c(e)
M=i; ) B (ey),

21 c(e)
H_ i) ofY,
(8.51) D ,-; \/5 Vo,

D= 3 CCogy

= e
i=21"+1 \/2

Clearly, DN acts along the fibres of Ng. Let o™ be the 0 operator along the fibres
of Ng, and let o™ be its formal adjoint with respect to the Hermitian product (8.49).
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Then one easily sees that

(8.52) DN=9N+N".

Also one verifies that M, DY, DN are self-adjoint with respect to the Hermitian product
(8.49). 1t is crucial for D¥ to be self-adjoint that the connection V™ !¥ preserves the
splitting TX |y=TY @ N.

Using the identification of (A (T*®VX) ® &), 2 with (A(T**>VX) &),
we can now consider the connection V* as a unitary connection on
T (A (T*® P X) ® £) |y) over B,,. Similarly DX acts on E (g,).

The operator DX is in general not self-adjoint with respect to the Hermitian
product (8.49). However in view of (8.21), k*/2D*k~1/2 acts as a self-adjoint operator
on E (g,) with respect to the Hermitian product (8.49).

For T>1, let Q; be a first order differential operator acting on E(g, \/T).
Then Qg can be written in the form

21 21
(8.53) Q=Y (T, »,2)°Vh+ ¥ b(T,y,2)°Vi+c(T, y, 2),
1 21'+1

where a;(T, y, Z), b;(T, y, Z), ¢(T, y, Z) are endomorphisms of
™ (AT* VX)) ® ) |y)

which depend smoothly on (y, Z).
Assume there exist constants C >0, peN such that for any T>1,
(», Z)€B,, /7, then

|a,(T, », )| < C|Z|; 1 < i< 20,
(8.54) |b,-(T,y,Z)|<C]Z|2;2l’+1<i<21,
le(T, y, Z)| < C(Z|+|Z D).
We will then use the notation
(8.55) QT=O(|Z|26N+|Z|6H+|Z|+|Z|P).

In (8.55), 0" and ON represent horizontal and vertical differentiation operators
respectively.

Definition 8.17. — Let T > 0. If feE (g), let F1 feE(g, \/T) be given by

(8.56) Fr )0, Z)=f (y, i); (7. Z)eB,, /.

T
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Take yeY, ZeNg ,. Let D/Dt denote the covariant differentiation operator along
t — (y, tZ) with respect to the connection V&. In the sequel, we use the notation

V5V ()= <%V(y, tZ))

t=0

So V5 V5V (y) is a quadratic function of Ze Ny ,.
The first essential result of this Section is as follows.

Theorem 8.18. — As T — + o0, then
Frk!2D*k~12Fr'=_ /TDN+D"+M
+_\/1—T0(|z|2aN+|z|a"+|z|),

(®.57) F,V(y, Z)Fil=V* () + —— %V ()
v\, T Yy ﬁ zvV\Y

1 o

€ ¢& 3
+2—TV s V5 V(y)+—-3ﬁ0(|Z| ).
In particular as T — + o0,
(8.58) FTk1/2(DX+TV)k_”2FT_1=TV+(y)+\/T(DN+V§V(y))
+D“+M+%V%V%V(y)+?/%0(|Z|20N+|Z|6“+|Z|+|Z|3).

Proof. — Since TX, & are identified with ©*(TXly), ©*(§|y) over %, , we can

consider V™, V¢ as unitary connections on ©* (TX |y), n* (§ |) over %,,. Set

I'= VTX _ OvTX ly
(8.59) P=ve— iy,

Now TX, & have been trivialized along the geodesics ¢t — (y, t Z) by parallel transport
with respect to the connections V™, V5. We then find that with the notation in (8.18),
(8.33), if ye Y

[,=71*A,,
(8.60) T By

We denote by I'* the action of " on 7* (A (T*® Y X)|y).
If (v, Z)eU.,, Ue(TgX),, let 1Ue(TgX),,, 2 be the parallel transport of U with
respect to the connection V™ along the geodesic ¢t — (y, tZ). Take ey, ..., e,; as in
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Definition 8.16. Using Proposition 8.5, we find that if A€ E (g,), then

(8.61) DXh(y, Z)= 2 <@ yx piy 2).

\/2 te;

Using (8.59), (8.61), we get

21 21
(8.62) DX=Y c(e) VY, + Z C—(QFA(tei)+z c—(e})f"(tei).
1 1 \/2 1 \/2
Let y=(y', ..., »") be holomorphic system of coordinates on a neighborhood

v of yoin Y. We assume that Ny is trivialized over ¥~ so that
il (¥)=v xR*".

Set #'=B,, N "1 (¥"). The map (y, Z)e W — exp, (Z) e X identifies #~ with an open
neighborhood of y in X, on which Tg X splits into

(8.63) TeX=R*" ® R?"..

Of course R?", R?" are integrable subbundles of TgX over #". Also on ¥, the
splitting (8.63) coincides with the splitting

TeX|y=Tg Y @ Ng.

Let p,, p, be the projection operators from Tg X on R?*"’, R2" respectively. Using
(8.62), we find that

c\¢;
(8.64) Frk'?DXk~ 12 Frt=_/T Z ()"VZW.U @)

o3 “5 T S * A T ce)

Y O ey @ (y i)
2 et ey v a2\ T )

Recall that e, ..., e, €TRY, €341, - .., €3;€ Ng. From (8.64), we find that as
T—+ o0,

21
(8.65) Fr kDX 12 Fri= Ty S@ogy
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cle) c(e)
Z — OVY Z =0 é/ﬁt)(pzrei)(y,tl)mo
¢ 2 V2

21 21
+M+Y Gray-1 3 Ly
A )

J2 2250, 2

+ L oqzpoN+|z|en+|z).

JT

By (8.60), I',=7* A, and so

A c(e) xa
2F €)= Z\/ZA()

Also one easily verifies that if Ue(TgY),, then

21
(8.66) v £
1

(8.67) A (U)= Y (A, (U)e, e )cle)cle)+ %Tr A, (U)].

1
4 1<jr<a2

95

Now for UeTRY, A, (U) exchanges T, Y and N,. In particular Tr[A, (U)]=0, and so

(8.68) AXU)= Y (A, (U)ej, ¢, ) cle)) c(ey).

1
2 i<jsar
21'+1<k<21

From (8.66), (8.68), we deduce that

(@) paey=— 1
N 2ﬂ<ZA(e)e,,ek>c(ek)

1

(8.69) Z

+—— Z <Ay(ei)ej_Ay(ej)ei7 ek>c(ei)c(ej)c(ek)-

4 /2 i<ij<ar
20'+1<k< 21

Since the connection V™ is torsion free, if U, Ve(TgY),
(8.70) A,(U)V—-A,(V)U=0.

So from (8.19), (8.69), (8.70), we get

3.71) Z c(e) FA( )= _dimY

f \/2 ——c(v)).
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Also by Proposition 8.9, we know that

21 .
(8.72) _1 y cle)y k(y)=dlm_Yc(vy).

2,0% S22 J2
So from (8.65), (8.71), (8.72), we find that as T — + oo

21
(8.73) Frk'?DXk""2F;'= /T ¥ c(ey) oFY

20°+1 \/2
c(e) oy cle) &
Z cle; OV Z 7).
/2

\/2 @/ot)(p2te) (v, tZ)=0

M+ o(zpaN+|z|+|Z)).

ST

Let C be the Christoffel symbols of the connection V™ over Tg X in the trivia-
lization (8.63) of T X. Since te; is the parallel transport of e; along t — (y, tZ), then

(8.74) %(T &)y, 12)=—C, ) (Z) e (y, t2).

Since V™ is torsion free, if U, Ve TgX ~ R?!, then C(U)V=C(V)U. We can then
rewrite (8.74) in the form

0
(875) arei (ys tZ)= _C(y,tZ) (Tei) (y’ tZ)Z

Since the curve ¢t — (y, tZ) is a geodesic, then
(8.76) Cy.i2)(Z)Z=0.

In particular for any ye ¥, ZeNg , ~ R?", then
8.77) C,(2)Z=0.

Since the connection V™ is torsion free, we deduce from (8.77) that if Z, Z'eNg ,

(8.78) C,(2)Z =

Using (8.75), (8.78), we find that for 1 <i <2/

8.79) -%(r ) 12)—0= —C, (p1¢) Z,
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and so
0
(8.80) 'a—tpzfei(y, tZ),-o=—p,C,(p,e) Z.

Using (8.51), (8.73), (8.80), we see that as T — + o,

3 ei—p2Cy(e)Z

21
(8.81) Frk!2D*k"2F;l= /TDV+Y ¢ (@) ogyv
1

+M+—l—T0(|Z|26N+|Z]6“+|Z|).

¥

If ZeR?" is considered as a constant vector field on R?" @ R?", for 1 <i <2/,
we have the identity

(8.82) VIXI¥ Z=C(e) Z.

By Proposition 8.6, VN=PNV™ Iy So from (8.82), we get
(8.83) V¥ Z=p,C(e) Z.

Using (8.83), we find that for 1 <i<2/'
(8.84) el (Z)=e;—p,Cl(e) Z.

From (8.81), (8.84), we get the first line of (8.57).
Since V™ (y) =0, the second line in (8.57) is obvious by Taylor expansion.
Our Theorem is proved. [

i) The projection of the operator D" + M+ (1/2) V5 V5 V ().

Definition 8.19. — Let E* be the set of smooth sections of m* (A (T*©VX)®E*)|y)
on the total space of Ng.

Then E splits into
(8.85) E=E*®E".
The operators DM and DN preserve E* and E. Let D" *, D™ * be the restrictions of
D" DN to E*.

Let E°, E*'° be the Hilbert spaces of square integrable sections of
™ (A(T*VX) R E)|y), n* (A(T*OVX)®E*)|y). We equip E°, E*° with the
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Hermitian product (8.49). Then E° splits orthogonally into
(8.86) E°=E*°@E~°

Let F° be the Hilbert space of square integrable sections of A(T*©VY)®n
over Y. We equip F° with the Hermitian product constructed in (1.44), (1.45).
Using (8.4), (8.31), we have the identity

(8.87) AT*OVX)RE)|y=AT* VYY) QAN ® AN @n.

We now use the notation of Sections 7 and 8 a). In particular, if yeY, 0, denote
the Kihler form of the fibre Ng ,. If yeY, ZeNg ,, set

Z 2
(8.88) B, =exp (9,,— %)
Definition 8.20. — Let ¥ be the linear map
(8.89) V: 6eF% - oBeE°.

Let E"° be the image of F® by { in E°. Then E"° c E™*°,
By Theorem 7.4, it is clear that { is an isometry. Using the notation of
Definition 8.1, we find that if ce F°

— 2
(8.90) Yo =24mN2exp (%)(pc.

Let p be the orthogonal projection operator from E° on E”°. Recall that g
is the orthogonal projection operator from (A(T*®YX)®¢&)|y on
A(T*© YY) ® {exp(B)} ® n. One then finds easily that if se E°,

— 2 _|7|2
891 ps(y, )= d}mNexp( 2] )q J exp(ﬂ)s(y, Z)doy (Z).
T 2 Nr 2

24

Recall that P*~ is the orthogonal projection operator from & on €. The operator
P& I acts like 1 ® P4 v on (A(T*®VX) ® £)|y.

Clearly (A(T*©>YX)®E&7)|y is the kernel of V*|,. Similarly by using
Theorem 7.4, equation (7.23), and Proposition 8.13, we find that E"° is exactly the
kernel of the operator D™ ~+ V5 V™ (). In view of Theorem 8. 18, this hierarchy of
kernels will be of utmost importance in the whole paper.

The second essential result, which is complementary to Theorem 8.18, is as
follows.
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Theorem 8.21. - The  following  identities  of  operators in
End (A (T*®*YX) ® €) |y) hold

P: IyMP%: Iv=0,
(8.92) -
aViViV(»)q=0.

The following identity of operators in End (F) holds

(8.93) V pDHpy=D".

In particular
(8.94) \IJ“p(D"+M+%V%V%V(y))p\p=DY.

Proof. — Recall that for any Ue(TgX),, B, (U) exchanges & and &, . The first
line in (8.92) follows from formula (8.51) for M. Clearly

(8.95) VEVa V() =V V50 (n) + V5 V0% ().

Recall that the connection V® preserves the Z-grading of &. Therefore
V5 ¥5 V™ () is the sum of two operators acting on &~ |y = AN* ® 1, one of which
increases the degree in AN* ® 1 by one, the other decreases this degree by one. Also
exp (0) is of total degree zero in A (N*) ® A (N*). We then find that for any Z e Ny,

(8.96) aV5 V5V (» g=0.

The second identity in (8.92) follows.

By Proposition 8.11, the connection i*V°™ on £ |y=AN*®n is exactly the
holomorphic Hermitian connection of AN* ® n. Also VN preserves the norm |Z|* of
Z e Ng. Finally the Kihler form 0eA (N*) ® A (N*) is parallel with respect to the
connection induced by VN. Therefore if Ue TR Y, if c€F, then

(8.97) o7 (oB)=(V{¥ o) B.
From (8.51), (8.97), we get
(8.98) DH (o) = (DY ).

So (8.93) follows. Then (8.94) is a trivial consequence of (8.92), (8.93). The proof of
Theorem 8.21 is completed. [

Remark 8.22. — A result closely related to (8.93) is proved in [B3, Theo-
rem 2.7].
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IX - THE ASYMPTOTICS FOR LARGE «, T OF SUPERTRACES
INVOLVING THE OPERATOR exp (—a (DX +TV)?)

a) An orthogonal splitting of the Hilbert space E°.
b) The operator DX+ TV as a (2,2) matrix.

c) Uniform estimates on the resolvent of Ay ,.

d) Estimates on the resolvent of DY.

e¢) Estimates on the resolvent of A

f) The spectrum of A;.

g) Proof of Theorem 8.2.

h) Proof of Theorem 8.3.

The purpose of this section is to prove Theorems 8.2 and 8.3. Set A;=D*+TV.
Then if C is an adequately chosen contour in C, we have the identity

exp(—aA2)= 1 J exp(—aA?)(A—Ap) " Ldh.
2im Jc

We will derive the needed informations on exp (—aA2) from the behaviour as
T — + o of the resolvent (A—A;) 1.

To study this resolvent, we roughly proceed as follows. Let B be the form
constructed in Theorem 7.4 associated to the fibres of the normal bundle N. Let E°
be the Hilbert space of square integrable sections of A (T*© V' X) ® & over X. We then
construct an orthogonal splitting E°=ES@® E¥* of E°. Here E? is essentially the
image of F® by multiplication by a rescaled truncated version of B, which concentrates
onY as T — + oo. We write A; in matrix form

ATz[AT,l AT,2:I
AT, 3 AT, 4
with respect to this splitting, and we calculate the resolvent (A\—A;) ™! using the fact
that if AeC, as T >+ o0, (A\—~Ay ,) "' is invertible. With adequate estimates on the
matrix elements of (A—A;) !, we thus obtain Theorem 8.2 for bounded a. Obtaining
Theorem 8.2 for unbounded o requires a precise information on the kernel of A;.
This information is of a purely algebraic nature, and is given to us by the quasi-
isomorphism r: (E, 0*+v) — (F, 0Y) of Theorem 1.7. We thus get Theorem 8.2 in full
generality. Theorem 8.3 also follows from the same sort of arguments.

Of course the results of Section 8, and in particular Proposition 8.13,

Theorems 8. 18 and 8.21 are constantly used in the whole Section. Of critical impor-
tance is the fact that, as shown in the proof of Theorem 9.11, the supercommutator
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[DX, V] is an operator of order zero, or equivalently that the principal symbols of D*
and V anticommute.

This section is organized as follows. In a), we construct the splitting
E°=E%@® E%*. In b), we express A;=D*+TV as a (2,2) matrix, and we establish
various estimates on the matrix components Ay ; (1 <j < 4). In particular, we prove
in Theorem 9.8 that as T — + o0, A1 ; “converges” adequately to DY and we establish
in Theorem 9.14 a key coercitivity estimate on A% ,. Inc), we establish various
estimates on the resolvent of Ag 4, and in d), we estimate the resolvent of DY. In e),
we calculate the resolvent of Ay by using the coercitivity of A% ,. We prove in
Theorem 9.23 that the resolvent of A; converges in the adequate Schatten class to
the resolvent of DY. We thus obtain in Theorem 9.24 a resolvent version of
Theorem 8.2. In f), using Theorem 1.7, we show that there is a gap in the spectrum
of A% at 0 which is uniform as T —+o00. Ing), we prove Theorem 8.2 in full
generality. Finally in h), we prove Theorem 8. 3.

a) An orthogonal splitting of the Hilbert space E°

For p > 0, let E* (resp. E¥, resp. F¥) be the set of sections of A(T*©VX)® &
over X (resp. of m*(A(T**YX)®E)|y) on the total space of Ng, resp. of
A(T*© YY) ®n over Y) which lie in the p™ Sobolev space. Let || ||gn (resp. || |[|gw
resp. || ||ew) be a Sobolev norm on E* (resp. E¥, resp. F*). We will always assume

that the norm || ||go (resp.| ||go, resp.|| ||go) is the norm associated with the
Hermitian product (1.38) (resp. (8.49), resp. (1.44)).

Recall that g, > 0 was defined in Section 8¢). We now take £€]0, g,/2]. In the
sequel the constants in our estimates will depend on €. In Theorem 9.11, we will have

to choose € small enough so that the corresponding estimates hold; € can otherwise
be assumed to be fixed.

Let y be a smooth function on R with values in [0, 1] such that

1
=1 f < -,
©.1) v (a) or a 5
=0 for a>1.
If Z e N, set
2]
6.2) p(L)=y —g— .

For T >0, yeY, set
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dvn (Z)

9. T(V)= - %) p? imN
( 3) a (y) j‘NR,yexp( TIZI )p (Z) (2n)dlmN

Clearly for 1 <j<d, oy takes the constant value o ; on Y;. We now will write o

instead of ar(y). Since for |Z| < ¢/2, p(Z)=1, there exist ¢ >0, C >0 such that
forT>1

4
©-4) TN SO S

Definition 9.1. — For n > 0, T > 0, let I} be the linear map
_ dimNy—1/2 T|Z|2
9.5) ceF' > 1;0(y, 2)=(0p29™Y) p(Z) exp G—T o(y)eEr.

For p > 0, T > 0, let E% be the image of F* in E* by I;. Let E®'* be the orthogonal
space to E} in E°, let p;, p+ be the orthogonal projection operators from E° on E9,
E% ! respectively.

Then I; maps F° onto E? isometrically. Recall that the operator ¢ was defined
in Section 8 a).

Proposition 9.2. — If seE°, if ye Y, ZeNg , then

(9.6) Pro)(y, Z)= ulp(Z) exp<——}¥|_)
qJ p(Z’)eXp<i22'|—>s(y, Z')M,’)_

dimN °
.y @2m)
Proof. — The proof is elementary and is left to the reader. [

Proposition 9.3. — There exists C > 0 such that if T > 1, ceF*
9.7) [|1r o g < C(||c||F1+\/T||c||Fo).
There exists C > 0 such that for any T = 1, any s E!, then
9.8) [[Prsller < C(ls fles + /T [Is [leo)-

Given y > 0, there exists C' > 0 such that for T > 1, for seE°, then
©9) 126 21 5lleo < g 15 llo
. Pr EQ S Ty 119 ES:

Proof.— (9.7), (9.8), (9.9) follow from (9.4)-(9.6). 0O
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Recall that on B, ~%,,, A(T**VX)®E is identified with 7*((A(T*®VX)QE ).
Therefore if o€ F*, we can also consider k™ !/21; ¢ as an element of E*.

Definition 9.4. — For p > 0, T > 0, let J; be the linear map

(9.10) ceF* > Jio=k Y?I,0€E"

Let E% be the image of F* in E* by J;. Let E>* be the orthogonal space to E$ in E°.
For p > 0, set

9.11) Bl =E* N ESL.
Then E° splits orthogonally into

9.12) E°=E9@ E% L.

Let py, p5 be the orthogonal projection operators from E° on E2, E%+.

The map se E? —» k125 E? identifies the Hilbert spaces E$ and E.

Using formula (9.6), one easily verifies that if seE°, k™ '2p k'?s is a well-
defined element of E®.

Proposition 9.5. — The following identity holds
(9.13) pr=k =12 pL k12,

Proof. — The proof of Proposition 9.5 is trivial and is left to the reader. [

b) The operator DX+ TV as a (2,2) matrix

For T > 0, set
(9.14) A;=D*+TV.
Definition 9.6. — Let R be the first order differential operator acting on E (g,)
Ry=kV2 A k™ 12—=TV* (»)—DN-TVV(»)

9.15) _DH—M- %TV%V%V(J/)-

We now use a notation similar to the notation in (8.55).

Proposition 9.7. — As T -+ oo
(9.16) RT=0(|Z|26N+|Z|6"+|Z|+T|Z|3).

Proof. — Equation (9.16) immediately follows from Theorem 8.18. U
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Set

AT, 1 =I;T ATET’ Ar, =P_T ATP_%>

.17 _ — _ _
AT, 3 =P% Arpr, AT, a4 =P'TL ATP%'

We then write the operator A in matrix form

9.18) AT=[AT’ 1 Anz ]
Arz A,

We will now establish various estimates on the Ay ;s as T — + oo.

1. The operator Ay ,

If TeER" »B; is a family of first order differential operators with smooth
coefficients acting on F, we will write that as T —» + o0

—of L
(9.19) B,=0 ( \/T)

if there exists C > 0 such that for T > 1, the sup of the norms of the coefficients are
dominated by C/ \/T.

By (9.5), (9.10), one sees easily that for any T >0, J;' Ay ,J7 is a first order
formally self-adjoint differential operator acting on F.

Theorem 9.8. — As T —» ©

(9.20) J;'Ag Jp=DY+0 <L>

ST
Proof. — Using Proposition 9.5, we find that

9.21) JT—IAT,IJTZITTIPT(kI/Z ATk_l/z)pTIT'

Since V* () maps &, into &, pr V* (»)=0. From (9.15), (9.21), we get

(9.22) Ji A =17t pr (DN+T73V(y)+D“+M

+
N | =

Vivivin+ RT>pT Iy.
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By Theorem 7.4, equation (7.23), and Proposition 8. 13, we know that

(9.23) DY+TV5V(y)exp (e - %) =0.

So from (8.51), (9.5) and (9.23), we find that if ceF
(9.24) ON+TV, V() pr o

= (ol 24imN) ~ 172 ﬁ <2—;(Z)> exp<9— —T|2Z|2>o.

Now if Ue Ng, by (5.2), ¢(U) is the sum of two operators, one of which increases the
total degree in A (N*) by one, the other decreases the total degree in A (N*) by one.
Since exp () is of total degree zero in A (N*) ® A (N*), we find that

(9.25) gc(U)exp (0)=0.
From (9.6), (9.24), (9.25), we deduce that
(9-26) It ' pr DN +TVEV(3) pr I =0.

Recall that p(Z) only depends on |Z|. Since the connection VN preserves the
metric of N, if Ue Tp Y, then

9.27) Ve p=0.

Using the same arguments as in the proof of Theorem 8.21 and also (9.27), we find
that

(9.28) 171 p, DHp I, =DY.

Also by Theorem 8.21, we get

(9.29) I py (M + -V5 V5V ( y)> prlpIp=0.

N | =

Finally using Proposition 9.7 and (9.9), we find easily that as T — + o0

_ 1
9.30) I pr Repy Iy =0 (—)

JT

Theorem 9.8 follows from (9.22), (9.26)-(9.30). [
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2. The operators Ay ,, Ay 3

We first establish several technical results.

Proposition 9.9. — For any T > 0, the following identity of operators acting on
E! holds

9.31) [DH, p,]=0.

There exists C > 0 such that for any T > 1, any seE', then

9.32) ||+ ON+T V5V () 5 ||go < % || 5lgo-

There exists C' > 0 such that for any T > 1, any se E! with support in Bs¢as then

C
9.33) xR feo < 7 5 et

Proof. — Since
°F¥6=0,
it is clear that
9.34) VY g=0.
Also if UeTgY

(9.35) [c(U), g]=0.

We now use the fact that VN preserves the norm in N and more specifically equation
(9.27). We then obtain equation (9.31).
By Proposition 9.2, if se E!, then

9.36) PrDYHTHVO)s(n 2)= ~p(D) exp<—— T2|Z| )

At

, —T|Z' |2 o (Z))
g L., e )exp(—%—')(DMTV%V(y»s(y, z)

We use (9.23), (9.24), and the fact that the operator DN+ T V5V (y) is fibrewise self-
adjoint. Integrating by parts in (9.36), we get
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(9.37) prON+TVEV () s(y, Z)

1 —-T|ZJ? ~-T|Z'|?
=——p(Z)exp(———I i)«]f exp<——l |>
Qg 2 Nr,y 2

1 (%, ) don(Z)
c(aZ(Z))s(y,Z)

\/5 (2 n)dimN :
Now 0p/0Z (Z) vanishes for | Z| small enough. From (9.37), we get (9.32).
Finally using Propositions 9.3 and 9.7, we get (9.33). O
Theorem 9.10. — There exists C >0 such that for any T > 1, any seEL*,
s'€E}, then
I nastls < € L2121 s)o),
(9.38) v

| Ag 25 [lgo < C <% s ||Eo>.

N

Proof. — Let 3 be a smooth function on R with values in [0, 1] such that
d(a)=1 for a<

b

=( for a>

KW N[—

Set

\|/(Z)=8(|—Z—|>.
€0

We will consider \ as a function defined on X, which vanishes on X\ #;,4. Also
since & < €,/2, V¥ is equal to 1 on the support of p.
Take se E3'+. Set

(9.39) s=s.

Since prs=0, using Propositions 9.2 and 9.5, we find that p;s=0, i.e. seE:",

Also A;s=A;s on the support of p, and so by Propositions 9.2 and 9.5,
PrArs=prAyrs, e
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(9.40) Ag,5=Aq 5.
Clearly since Im[V™ (y)]€&f, then
9.41) aV* (»)s(y, 2)=0.

Using Proposition 9.5 and Definition 9.6, we find that

(9.42) Ar,s(y, )=k Y (y, Z) pr {DN+TV%V(y)+D"+M

+ TV%V%V(y)+RT}k”2§(y, 7).

N | —

Since prs=0, by Proposition 9.5, prk'?5=0. By Proposition 9.9, [D" p,]=0,
and so

(9.43) pr DHE25=0.

Using Propositions 9.3, 9.9, (9.42) and (9.43), we get the first inequality in (9.38).
Take now s'€El. Then s'e&~, and so V*(y)s'=0. Using Proposition 9.5 and
Definition 9.6, we find that

(9.44) Aq 5=k 2 (y, Z)p7 {DN+TV~7§V(y)+D"+M

+
N | =

TV V%V(y)JrRT} K25 (v, Z).

By taking adjoints in equation (9.32), we know that if se E°, then

o C
(9.45) |ON+T V5V (1) prs|leo < 'ﬁ Il s ||go-

Also since prs’=s', using Proposition 9.5, we find that p; k'/?s'=k'/?s'. From (9.45),
we then deduce that

(9.46) |6~ 2 pf DN+T VLV (1) k25 ||go < 7% I|s"{|o-

Also by Proposition 9.9, [py, D¥]=0. Since pk'/*s'=k'% s, we get
(9.47) PEDYEZ ¢ =0,

Using (9.44)-(9.47) and Propositions 9.3 and 9.9, we get the second inequality in
(9.38). O
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3. The operator Ay ,

Recall that the vector spaces E, E¥'* implicitly depend on £€]0, (g,/2)].
Theorem 9.11. — There exist €€)0, (go/4)], C > 0, b > 0 such that for any T > 1,
any se EL*, then

(9.48) | Az slgo = C(| 5|3+ (T—b)||s|[0).

Proof. — The proof of Theorem 9. 11 will consist of three main steps:

e In a first step, we show that for £€]0, (¢,/4)] small enough, if the support of
se B+ is included in %, ., then (9.48) holds.

e £€]0, (g,/4)] being now fixed, we show that if se E! vanishes on Uy, (9.48)
still holds.

e Using partition of unity, we finally prove (9.48) in full generality.
Already observe that if UeTgX, c(U) acts as ¢c(U)®1 on A(T*@VX)RE,
and V acts like 1 ® V on A (T*© Y X) ® €. Since ¢(U) and V are odd operators, then

(9.49) [c (U), V]=0.

Let e,, ..., e,; be an orthonormal base of TgX. Using Proposition 8.5 and (9.49),
we find that

21
(9.50) [DX, V]=Y cle) VeV (%).
1

\/2

Therefore [D*, V] is a differential operator of order zero. This fact will play a key
role in the proof of Theorem 9.11.

Step n° 1 : The case where s is supported near Y.

The key step in the proof of Theorem 9.11 is as follows.
Proposition 9.12. — There exist €€]0, (g/4)], C> 0, b> 0 such that for any
T > 1, se EX:* whose support is included in U, ., then

9.51) || Ars||ze = C(|| 5|32 +(T—b)||s||Z0)-

Proof. — We temporarily fix €€]0, (g,/4)]. In the following estimates, the constants
which cannot be chosen independently of € will be marked with a subscript 0 like
Co, Co, - - -
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Take se Ey* whose support is included in %,,. Since € < g,/4, we can define
s'eE! by the formula

9.52) s'=ki2s.

By Proposition 9.5, since prs=0, then

(9.53) prs'=0.
Also
(9.54) | Aps|2o=]|kY? Ark™ 125 ||2o.

By (9.15), we get
(9.55) K2 ALk~ Y2 s =TV () s+ (DY+TV5V (1)) s’

+<D“+M+ %V%V%V(y))s’-FRTs'.

Let L be the first order differential operator
(9.56) L;=TV*(»)+D"¥+TV;V (y)+D".
Then by (9.55), we get

2

1 ’
9:57) [ Azs[lo > || Lrs’[leo—

’(M+ %V%V%V(y)«FRT)s’

EO

We now will estimate the various terms in the right-hand side of (9.57).
Recall that by (8.86), E° splits orthogonally into

(9.58) E°=E*°@E°.

Also L, acts as an unbounded formally self-adjoint operator on E°, which preserves
E*'° and E~'°. We now write s’ in the form

(9.59) sS=s5t+s5";5teEY0,
By (9.53), prs’=0, and so using (9.59), we get
(9.60) prsE=0.

1) An estimate on || Lys'™ ||2o.
Clearly

(9.61) L2=(DN+D")?+T[DY+DH, V* () + ¥4V ()]
+T2 (V" () + V2V )%
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There exists ¢ > 0 such that for any yeY, fe&;
(9.62) IVED S = el fI
From (9.62), we deduce

ls'+ ”éo.

(9.63) V() +VEVO)s™ |fo = <§ —c 82)

For the same reason as in (9.49)-(9.50), the operator [DN+ D", V* (»)+ V5V (»)] is of
order zero. Therefore

(9.64) |[{[DN+DH", V* (1) +VEV ()]s, s'* Ypo| < C

5 |2o.

Finally, since the operator DN+ D" is elliptic of order one on B, ,
C” > 0 such that for any se E}* whose support is included in %,

(9.65) [[(D¥+D") s [lgo > C'[|s"™ [lgr — C |5 |[go-

there exist C' > 0,

From (9.61)-(9.65), we get

7

I A i e e S [ S

2) An estimate on ||Lys'™ ||Z.

Recall that D™ ~, D"~ are the restrictions of DN, DY to E~. Similarly let L; be
the restriction of Ly to E™.
By Proposition 8. 13, we know that

/—1
9.67) Vv-(»)= ﬁ ¢(J 2).
In view of (9.67), it is clear that
(9.68) [D™~, V5 V- (»]=0.
Similarly, since the connection VN is holomorphic and unitary

(9.69) [DH:~, DN -]=0.

Using (9.67)-(9.69), we get

(9.70) (L7)?= (D™ —)2+<DN» -+ T\é ;1 ¢ z)>2.
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From (9.70), we find that

2
9.71) | Lt 5" ||go=|| D"~ 5"~ |[2o+

T /-1
(DN» -4 V\/i 30 Z)> §-
Let E;° be the image of F° in E° by the linear map

2
ceF% > oexp (G— IlQZ—I—>GE°.

EO

Let p; be the orthogonal projection operator from E° on E;°. By (8.91), we find that

.. T dimN -T Z2
6.72) prs’” (), Z)=<;> exp(—zu—)

STIZPN o
qj exp(——'—'—)s 0, Z) don(Z).
NR,y 2

Observe that

9.73) FT<DN"+ T‘/_lé(JZ))FT‘1=\/T<DN"+ V\/_ : é(JZ)).

% _

By Theorem 7.4 and by equations (7.23) and (9.73), we find that

N, - \/——1 A >r—=< N, - ~1 P ) r— -
(9.74) (D + NE TéWJZ))s D +—\/§ TeWZ) (™ —prs ).

ForyeY,let F, ' be the set of square integrable sections of
T (A(T** YY) AR ®ET)],)

over the fibre Ng ,. Recall that £ =(A(N*) ® n),. By Theorem 7.4 and by (7.23),
the kernel of the operator (D™~ +( /—1/ \/Q)é(J Z))§ acting as an unbounded
operator on F,° is the image of A(T**VY),®n, by the map | considered

in Definition 8.20. Also the spectrum of (D™~ +( \/———1/ \/f)é(J Z))? is discrete
and does not depend on yeY.

Using (9.73), (9.74), we find there exists C"" > 0 such that for se E+'* whose
support is included in %,,, then

9.75) H (DN’ 41 \j ; Lea Z)) §-

2
=>TC"(|s'~ —prs'~ |[3o).
Eo




COMPLEX IMMERSIONS AND QUILLEN METRICS 113

Equivalently

(9.76) “ <DN’ -+ TV\/_ Lo Z)> o

_ ‘ >TC" (|5 [lgo— | prs'~ |[3o).
EO

Let AMR be the flat Laplacian along the fibres of Ng. Using Proposition 7.2 and
(9.73), we also find there exists k > 0 such that for any a€]0, 1]

2

E

9.77) ll (DN’ -+ Z)> s
\/5

+§T2 11Z]s' [|Zo—ox T

| ||go.

We now fix a€]0, 1] such that C""" —ax > (C'”'/2). Using (9.76), (9.77), we find that

T /=1
(9.78) H (DN’ -+ 5 ¢ Z)) s
TCIII ,_ e T s , ,
2 |5 ||é°+%T2||IZ|s HIZEO_THPTS |-

2

> L (—=ANRS ™ 5" dpo
g 4

+

The support of s' is included in B, ,,. By using elliptic estimates, there exists
d >0, d" > 0 such that

9.79) %a (=AM, g Spo+ || DP 5 B0 > d'|

5 W= a5 .
By (9.60), prs’~ =0. Using (9.6), (9.72), we get
.. T dimN __T Z 2
0.80) pis =0, 0=( 1) e TIZE)
T 2
- T I Zl I2 r 1 — 1 r
q exp| ———— J(A—=p)(Z)s'" (y, Z') don (Z).
NR,y 2
The function 1—p (Z) vanishes for | Z| < (g/2). So from (9.80), we get

7 — C ;-
(9.81) |prs" ™ |[Bo < —2||5" ||go-

\/T
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Using (9.71), (9.78), (9.79), we finally obtain

_ ) o TC’” ‘TC CIII _
08 Les e e (TS0 - TS e

o T2 L
+T”|Z|S [|&o-

3) An estimate for ||(M+(1/2) V5 V5V (») + Ry s ||2o.

In what follows, the constants ¢, ¢’ (which do not depend on € > 0) may vary
from line to line. Clearly

(9.83) IMs" |20 < c]|s" || 2o
Also s', s'* vanish on X\ B,,. Therefore

ITVEVEV () s ||2o < ce* T2 ||s"* |20,
(9.84) - s ) s
ITVEVEV () s ||2o < c€2T2|||Z]s ™ ||2o.

By Proposition 9.7, we also get
(9.85) IRy s |[go < c(e2||s' |31 +e° T2||s" " ||Bo+e* T2 ||| Z]s" ™ ||20)-
So from (9.83)-(9.85), we obtain

2

(9.86) II <M+ %V%V%V(y)+RT> s’

EO
< c(?|| s |Br+ |5 ||Fo+e* T?||s"* |20+ T2 ||| Z| 5"~ |[20).

4) An estimate for || Aps||2o.
Using (9.57), (9.66), (9.82), (9.86), we get

087 |Arslo > Clls* I+ S

s |g1—2ce?

5" e

’r 2 7]
+<T2<£—c8 —cs“)—g:—T—C——c)“s’*”éo
4 4 2 2
TCc”  JTC,C" g~ -
H(T
8 4 2

i1 (g-e%) 11Z]s

120,
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From (9.87), it is clear that for € > 0 small enough, (9.51) holds. Proposition
9.12 is proved. [

Step n° 2: The case where s vanishes near Y.

We now fix €€]0, (g,/4)] as in Proposition 9.12.

Proposition 9.13. — There exist C > 0, b > 0, such that for any T > 1, any seE!
which vanishes on U., then

(9.88) | Ars|lze = C(||s |+ (T—5)||s||20).
Proof. — Clearly
(9.89) A:=(D*2+T[DX, V]+T2V2

Also V is invertible on X'\ %,. Therefore there exists C > 0 such that if se E! vanishes
on %,, then

(9.90) |V s]l2o > C|| s][fo.
Also by (9.50), [D*, V] is an operator of order zero, and so
(9.91) |{ DX, V1s, s Ygo| < C'|| 5|2

Finally since DX is an elliptic first order differential operator, there exists C” > 0,
C"" > 0 such that

9.92) [D*s |20 > C”||s[[E —C™

s||Zo.
From (9.89)-(9.92), we get
(9.93) || Az s||zo = C”

5|21+ (CT2=C' T-C")

| 5 |[3o-
Equation (9.88) follows. [J

Step n° 3: Proof of Theorem 9.11.

We choose £€]0, (g,/4)] as in Proposition 9.12. Let a — y(a) be the function
considered in (9.1). We consider the function ZeNg — v (| Z|/2¢) as a smooth function
on X which vanishes on X\ %,,. Set

grsata ()
PR a—pd) A\ 2e

o 1y <|Z|>'
L)\ 26

(9.94)
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Then t,, T, are smooth functions on X such that t? +rz
to 1 and t, vanishes.
Take se E}'*. For j=1, 2, set

(9.95) 5;=1;5.
Since p;s=0, using (9.6), (9.13), it is clear that
(9.96) 7oy =0.

Since t3+15=1, we find that

1. Also on %,, t, is equal

2 2
(9.97) |Ars|Zo= 3 ||Ars;llzo+ Y <Ir;, AZls, s; Yo
i=1 =1
Also by (9.50), [D*, V] and V? are differential operators of order zero. From (9.89),
we get
(9.98) [t;, Afl=[r;, (D¥)’].

Also [t;, (D®)?] is a differential operator of order one. We thus find that for any
n > 0, there exists C, > 0 such that for any s taken as before

2
(9.99) Y (lxp Afls, 550 | < n sz +C, || 5[
j=1

From (9.97), (9.99), we get

2
(9.100) IAzslleo> 2 l[Avs;llzo=nllslies =€, [I's[ge-

We now use (9.100) and Propositions 9.12 and 9.13. We obtain

2

2

(9.101) | Ars|lgo > C 2 || 5;1E: —n | s]|3: +C(T—b) Z || 55][20 = Cy || 5 ||Bo-

i=

Since 12 +12=1, it is clear that

2
Z s llEo=1ls[ee

(9.102)

Z s lEs > —II [[E: = C" [ s [l2o-

From (9.101), (9.102), we get

j=1
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5 ||Zo.

C ’
9.103) | Ags 2o > <E —n) | 5|21+ (CT—Ch—C, - CC')

By taking n €]0, (C/4)], we obtain (9.48). Theorem 9.11 is proved. []
From Theorem 9.11, we obtain the following important estimate.

Theorem 9.14. — There exist T, > 0, ¢ > 0 such that for any T > T,,, se Bl
then

(9.104) | Ar,aslleo = c(||sller+ /Tl s leo).
Proof. — Clearly
Aq 4s=Ars—Aq,s.
Then (9.104) follows from Theorems 9.10 and 9.11. O

c¢) Uniform estimates on the resolvent of Ay ,.

We now fix €€]0, (¢,/4)] once and for all as in Theorem 9.11. Also ¢ denotes the
positive constant which was determined in Theorem 9. 14.

We still write the operators acting on E° in matrix form with respect to the
splitting

E°=ES@ E%.
Definition 9.15. — Let A} be the operator

(9.105) A’T=[AT’1 0 ]
0 Ay

Proposition 9.16. — There exist To = 1, C > 0 such that:

e For any T = T,, the operator A} is self-adjoint with domain E*, and the operator
Arx 4 is one to one from Ex* into EQ*.

® Forany T 2 T,, AeC, || < c/2\/T, s€eBX*, then
C

\/T

|(A=Ag2) " sllgtt < Cllsleo,

|A=Ara) " sleot < Il lleo:+,

(9.106)

Proof. — By (9.50), [DX, V] is an operator of order zero. Since DX is elliptic of

order 1, using (9.89), we find there exists C > 0 such that for any T > 1, and any
seEl,

(9.107) [Isller < C(|Axslleo+ /T ||s]lgo)-



118 J.-M. BISMUT AND G. LEBEAU

Also by using the estimate (9.8) in Proposition 9.3, Proposition 9.5 and
Theorem 9. 10, we find that if se E!

(9.108) [(Ar—ADs|lo < C <|—Iiﬂﬁ~l— + ||S||E°>~

ST

From (9.107), (9.108), we get

(9.109) [(Ar=ADslgo < C <”A\T/¢ + ||S||E°>-

For T > 1 large enough, C'/ \/T is strictly smaller than 1. Also for any T > 1, Ay is
a self-adjoint operator with domain E!. By the Kato-Rellich theorem [ReSi,
Theorem X. 12], we deduce that for T > 1 large enough, the operator Ay is self-adjoint
with domain E'. In particular for T > 1 large enough, Ay , is self-adjoint with domain
Er*. From Theorem 9.14, we see that for T large enough, Ay , is one to one from
Eltinto E®'L.

The first line in (9.106) follows from Theorem 9.14. Also by Theorem 9. 14, if
seBYL M| < c/2\/T, then

1 A
A—Ar ) ts|lprr < - ||| /22— )s
“( T,4) SHET C'“<7v—AT,4>

B>t < C”S”E%l’

Proposition 9.16 is proved. [
Definition 9.17. — If H, H' are separable Hilbert space, if 1 < p < + oo, set
&Z,H, H)={AeZ (H, H'); Tr[(A* A)"?*] < + o0}.
If Ae Z,(H, H'), set

Al = (Telca® Ay

Then by [ReSi, Th.IX,p.42], || ||, is a norm on %,(H, H'). Similarly, if
Ae ¥ (H, H'), let ||A||,, be the usual norm of A.

In the sequel, the norms || ||, || |l Will always be calculated with respect to
the Sobolev spaces of order zero like E9, E>'*, F°.

Recall that T, has been determined in Proposition 9. 16.
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Proposition 9._18. = If p 2 2dimX+1, there exists C > 0 such that for T > T,,
reC, M| < /2 \/T, then

- C
“O‘-AT,4) ! ”oo S—=

(9.110) O —Ar) |, <C,

_ C
”A'r,z ()"—AT,4) ! “oo <

i
Proof. — The first line of (9.110) was proved in Proposition 9. 16. Also
(9.111) |A=Ar )|, < ||(D"+\/—_1)‘1 ||l,||(D"+\/—_1)(7»—AT,4)‘1 l|oo.-

Since DX is elliptic of order one, when p > 2dimX+1, |[(DX+\/—~1)‘l ||, <+ o0.
Also by Proposition 9.16, for T > T,

[(D*+ /=D —Ar) 'l <C.

The second line in (9.110) follows. Using (9.38), (9.106), we get the third line in
(9.110). O

d) Estimates on the resolvent of DY.

Recall that the linear isometry J;: F® — E? was defined in Definition 9.4.
Let Sp (DY) be the spectrum of DY. Also ¢,€]0, 1] is a constant fixed once and
for all such that

9.112) Sp(DY) N {AeR; |A| < 2¢,} = {0}

Here ¢ > 0 is the constant determined in Theorem 9. 14. Take ¢, €]0, (c¢/2)]. The precise
value of ¢, will be fixed in Theorem 9.21.
For T > 1, set

(9.113) UT={)\.EC;|X|<01\/T; inf |x—u|>i2}.
nesp(DY) 4

Proposition 9.19. — There exists a constant C > 0 such that for T > 1, Le Uy,
then

9.114) |A3 (A =1 D¥Is )|, < C.
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Proof. — Clearly if Ae Uy,
(9.115) [(A—DY ||, <C.
Since J; is an isometry from F° into E2, we get
(9.116) |A=J:DYIsH ™, < C.
By the resolvent equation, we find that
(9.117) ()M—D‘()‘1=(\/tT—DY)‘1 +(\/——1—k)(?»—DY)‘1 (\/~—1—DY)'1.
From (9.117), we see that if A e Uy, ceF°,
(9.118) |A=DY) " ollpt <C (A +|A) | o]l
Using (9.118) and Proposition 9.3, we find that if Ae Uy, se E9,
(9.119) [ =T DYIr ™ slet <C" A+ /D se.

From Theorem 9. 10 and from (9.116), (9.119), we get (9.114). O

e) Estimates on the resolvent of A,.

By Proposition 9.16, for T > T,, Ae Uy, the operator A— Ay , is an invertible
operator from EX+ into E9'L.

Definition 9.20. — For T > T,, A€ U, let M (A) be the linear map from E}
into E2

(9.120) MT()")=)\‘_AT,1_AT,Z(}“—AT,4)-1AT,3'
If seE°, set
(9.121) S =PrS; S3=Dx .

Of course s=s, +s,.
Take then T > T,, e Uy, seE!, s’ E°. Consider the equation

(9.122) A—Ap)s=s".
By (9.18), (9.121), it is clear that (9.122) is equivalent to

M (M) sy =s,1+AT,2O"_AT,4)_1 59,

(9.123) oy
SZ'—_()"_ATA) (s3+Ar 55)
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From (9.123), we deduce that to estimate (A—A;)~!, we need first to estimate
Mr ' ().

Theorem 9.21. — If ¢, €]0, (c/2)] is small enough, there exists Ty > 1 such that if
T > Ty, Ae Uy, then My (A) is invertible and moreover for any integer p > 2dim X + 1,
there exist C > 0 such that for T > Ty, Ae Uy

MM <G,
|Ar s M7 (V) |, <C,
(9.124) ||M;‘(7»)||p <CQ +|x|),

175 (M52 )P Ty — (. —DY) 7|, < %(Hlxl)"“.

Proof. — Set
(9.125) Cr=J:'A;,J;—-D".
For Ae U, set
(9.126) my(A)=1-J,C;(A—DY)"1J;!
—Ar,(A=A7 )" Ar (=3 DYIL Y7L
Clearly
(9.127) M;(A)=m; M) A—JI;DYI; ).

Now by Theorem 9.8 and inequality (9.118), we find that

(9.128) |Cx.—DY) |, < %(lﬂk]).

Also, by Propositions 9.18 and 9.19, we get

_ o (o
(9.129) ||AT,2O\'_AT,4) 1AT,:&O"_JTDYJT D) 1”00< =

v

From (9.126)-(9.129), it is clear that if 1/ \/T and |A|/ \/T are small enough, the
operator my (M) is invertible, and moreover for T > 1

(9.130) lmit ) —1|).. <7Cf(1+|x|).

In particular

9.131) Izt W]l < €
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Under such conditions, by (9.127), we get
(9.132) M '!MN)=A=J:D¥I) 'm:* V).

From (9.115), (9.131), we obtain the first inequality in (9.124). The second inequality
in (9.124) follows from (9.114), (9.131) and (9.132). From (9.131), (9.132), we also get

(9.133) M7t |, <C

0.-D%"1]),
Using the identity (9.117), we find that if Ae Uy

(9.134) |(.=DY)"1|, < C”" (A +|r].

The third inequality in (9.124) follows from (9.133), (9.134). Finally using (9.130)-
(9.134), we get the last inequality in (9.124). 0O
From now on, ¢, €]0, (¢/2)] is taken as in Theorem 9.21.

If Be #Z (E°), for any T > 1, we write B as a matrix with respect to the splitting
E°=E?@® E%* in the form

[ 2]
B, B,
Definition 9.22. — If Be £ (E®), Ce £ (F°), set
4
9.135) dB, ©)= Y ||B,]l+]|35 "B, Iz—C|;.
j=2
Clearly if Be £, (E®), Ce Z, (F°)
(9.136) | Tr (B)—Tr(C)| < d(B, C).
Theorem 9.23. — There exists Ty, > 1 such that for any T > T,, Ahe Uy, A— Ay is

invertible. For any integer p > 2dimX+2, there exists C> 0 such that if T >T,,
re Uy, then

(9.137) d(A—Ap~?, . —DY)"?) < %(1 AP

Proof. — Set

(9.138) By=(A—Ap)" L.
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In view of (9.123), we find that

B;, =M1 o),

BT,2=I\/I';1 MAr,, ()"_AT,4)—1’
BT,3 =(7‘-“AT,4)_1 AT,3 M';l M),
BT,4=()"_AT,4)_1 @ +AT,3 BT,Z)'

(9.139)

If Ae Uy, then |A| < ¢ \/T . Using Proposition 9.18 and Theorem 9.21, we find that
if p=2dimX+2, T> T, AeUy, for 2 <j <4, then

C

From Theorem 9.21 and from (9.140), we deduce that if j,, ..., j,e{l,2, 3, 4}, if
one of the j,’s is not equal to 1, then

(9.140) 1Br.;ll,-1 < G5 || Brjllo <

C
——(L+]|A]p~ L
T( A

ST

Theorem 9.23 follows from the fourth inequality in (9.124) and from (9.141). O
Let L be a smooth section of End®"*" (A (T*© V' X) ® £).We define L® as in (8.6).
We now obtain the essential technical result of this section.

(9.141) | Br,j,- - -Brj, I <

Theorem 9.24. — For any integer p = 2dim X +2, there exists a constant C > 0
such that for any T = T,, any he Uy,

(9.142) | Tr[L(A—Ap) 7] Tr[L® (A~ DY) 7| <:/C—T(1+IM)"“-
Proof. — Clearly
4
(9.143) |Tr[L(A—Ap ?]-THL*A—-DY) 7| <C ¥ ||A—AD?|;
j=2

+|Tr[py Lpr (A —Ap); Pl - Tr [L° (L — DY) 77]|.
By Theorem 9.23, for 2 < <4,if T>T,, AeU;

(9.144) 1= AD;?s s%(lﬂk[)"“.

Also since J; is an isometry of Hilbert spaces, we get

(9.145) | Tt [pr L pr (. — Ap); 71— Tr[L° (A — DY) ]|
<[Pt prLprdr =L, | A= A7y
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+C|| I ' (A—AD{ 2T —(A—DY)7?|,.

Over %,,, we have identified (A (T** VX) ® £),,, 5, with (A (T*© V' X) ® £),. Therefore
for |Z| <€, L(»,Z) now acts on (A(T*®YX)®E), Using the notation of
Section 8 a), and also Propositions 9.2 and 9.5, we get

(9.146) Ur'prLprlD ()= ai J p?(Z)exp(~T|Z'")
T JNgpy

don (Z))

gLy, Z i
¢ "qL(y )‘I‘P(M)d.mN

Using (9.145), (9.146), and the fact that p and L are smooth, we find there exists
C>0suchthatforT>1, yeY

1=y = C
(5.147) ‘(JT 'prLprI—L0) (y)| < ‘ﬁ

By Theorem 9.23, we know that

9.148) 10~ A7 ||y < [| A =Dy 2|, + %“ D

On the other hand, by (9.134), if Ae Uy
(9.149) || =Dy)77||; < C(+]|A])P.
Using again Theorem 9.23 and (9.145)-(9.149), we obtain

CI
ST

(9.150) | Tr[prLpr (A=A 7= Tr[L*(A—DY) 7| < —= (1 +|A )P+

From (9.143), (9.144), (9.150), we get (9.142). O

f) The spectrum of A;.

We now will obtain a crucial information on the spectrum of the operator A;.

Recall that the constant ¢, €]0, 1] was fixed once and for all in Section 9d). Let
Sp (Ar) be the spectrum of Ar.

Theorem 9.25. — There exists Ty > 1, such that for T > T,

(9.151) Sp(A) N {LeR; [A] < ¢,} < {0).
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Proof. — Let y be the circle in C of center 0 and radius ¢,. From (9.112), (9.113),

we find that for T large enough, y = U;. Using Theorem 9.23, we see that for T large
enough

9.152) YN Sp(Ap)=(.

Let K7? be the direct sum of the eigenspaces of A associated to eigenvalues A of
Az such that |A| < ¢,. For T large enough, set

(9.153) f>;2=ij (h—Ap)~! dh.
2ni ),
Then P37 is exactly the orthogonal projection operator from E® on K7?. Integrating

by parts in (9.153), for any peN, we get

(9.154) ﬁ;eij AP (A—Ap) Pd\.
Y

2mi

Using Theorem 9.23, we find that if Q is the orthogonal projection operator from
F° on K’'=Ker (DY), then for T large enough,

(9.155) dP?, Q) < %
From (9.155), we deduce that for T large enough

(9.156) dimR?=dimK'.

Recall that the finite dimensional vector subspace K of E was defined in (6.2).
By Hodge theory

(9.157) dim K, = dim H* (E, 3% +v).

Also by Theorem 1.7, the complexes (E, 0*+v) and (F, 0¥) are quasi-isomorphic.
Therefore

(9.158) dim H* (E, 0*+v)=dim H* (Y, n).
Using again Hodge theory, we find that
(9.159) dimH* (Y, n)=dimK'".
Recall that K, =Ker (A;). By equation (6.6), we find that for T > 0
(9.160) dim K, =dim K.
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By (9.157)-(9.160), we deduce that for any T > 0

(9.161) dimK;=dimK'.

Now clearly

(9.162) dim K7 > dim K.

In view of (9.156), (9.161), (9.162), we see that for T large enough
(9.163) K?=K,.

Our Theorem is proved. [

Remark 9.26. — Theorem 9.25 plays a very important role in the whole paper.
The key equality (9.161) follows from sheaf theoretic considerations, and does not
have a direct analytic proof.

g) Proof of Theorem 8. 2.

t 3c, /8 I\ eyl 3c214; 1 3;/:

0 3 >
3¢,/8 2 tsc 1
A a

+

Let A=A, \UA_ be the oriented contour in C indicated above. Similarly let 5 be
the circle in C of center 0 and radius c,/2.

By Theorem 9.25, for T large enough, the eigenvalues of the operator Ay lie in
the interior of the domain limited by the contour A | 4, and inside 3, the only possible
eigenvalue is 0. Therefore, for T large enough and o > 0

(9.164) exp (— 0 A2)= %jexp(-—oc?»z)(h—AT)_la')\.
TiJ,

+ L o—Aap o
2ni s



COMPLEX IMMERSIONS AND QUILLEN METRICS 127

Of course, a similar formula holds ‘when A; is replaced by DY.

Take peN. Let f, be the unique holomorphic function defined on C\_ \/—_IR
with values in C which has the following two properties.

e AsA— + oo, f,(AM)—0.
e The following equation holds

L) a2

(9.165) = exp (—A2).

Clearly

©.166) o f exp (—oA%) (A~ Ap) ! dh= ‘.f LANCLPNNS
2mi Ja 2mi Jy (S

Let L be a smooth section of End®*" (A (T* YV X) ® &), let L® be defined as
in (8.6).
Assume that p > 2dim X+ 2. By Theorem 9.24, we find that

(9.167) 'Tr[—l—f ML(X—AT)“”]
2mi AnUT (\/0‘)’) !

—Tr[_L J UANALY L**(x—DY)—P]

2mi AnUr (\/a)p—l

< c_j pr(\_/&—k)i A+A)ran.
\/T A (\/a)p !

Now there exists ¢'€]0, 1[ such that if AeA, then |ImA| < ¢'|Re)|. Also there exist
C' >0, C”" > 0 such that if LeC, |ImA| < ¢’ |Re}|,

(9.168) | £,0)] < Cexp(—C” |\ ).

Take a, > 0. From (9.167), we deduce that there exist ¢, > 0, C, > 0, such that if
a 2 aO’

A
(9.169) L %(l +| AP AL < Coexp (— ¢ ).

Also for T large enough, if Ae AN\ Uy, then |A| > ¢, \/T, |ImA|=3c¢,/8. Using
the resolvent identity as in (9.117) and also Theorem 9.23, we find that for T large
enough, and Ae AN Uy,

(9.170) | (A= Ap 7|, < CA+|A .
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From (9.170), it is clear that there exist ¢y > 0, Cy > 0 such that for T large enough
and o > o,

! LGN, L
(9.171) .Tr[mJAnCUTWL(K Ar) a?»j”scoexp( coaT).

Of course an inequality similar to (9.171) holds when A is replaced by DY.
By proceeding as in (9.153), (9.154), we also find that

9.172) 51— A=A ld= 1

niJs 2mi

J M ITA—Ap Pdi.
3
From Theorem 9.24, we then deduce that

9.173)

Tr[—l—Jm—lL(x—AT)—vdx]

2mi

—Tr[i f KP‘1L°(X—DY)‘Pﬂ]‘ <<
27ti F \/T

From (9.164), (9.167), (9.169), (9.173), we find that for T large enough

(9.174) | Tr[Lexp (—aA%)]—Tr[L%exp (—a(DY)?)]| < £

\/T
which is exactly Theorem §.2.

h) Proof of Theorem 8. 3.

We use the notation of Section 9g). By (9.151), (9.164), (9.166), for T large
enough,

(9.175) Tr[Lexp(—aA%)]—Tr[Lr)T]=Tr[ L fp(l/a_x)L(X—AT)_”d)u].
2mi Ja (\/oz)” 1

Then using (9.134), (9.137), (9.170), we find that there exist ¢ > 0, C > 0 such that
fora > 1

(9.176) | Tr[Lexp (—aA2)]—Tr[LP;]| < cexp(—Ca).

The proof of Theorem 8.3 is completed. [
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X - THE L, METRICS ON THE LINES X (¢) AND A (n)

a) The lift of harmonic forms on Y to the kernel of A;.
b) The lift of harmonic forms in F to harmonic forms on X for the metric { , »; on E.

c) The asymptotics of the Hermitian product induced by ¢ , ) on H*(E, 6X+v).
d) Proof of Theorem 6.9.

The purpose of this Section is to prove Theorem 6.9, i.e. to show that as
T+, —Log(|p|;-1 e is the constant term in the asymptotic expansion of
Log (l I%(g), T/ i Iiz'(g))'

Observe that the quasi-isomorphism r: (E, 0*+v) - (F, 0¥) of Theorem 1.7 was
already used in Section 9f) to obtain a critical information on the dimension of the
kernel of A;. In this Section, the full strength of Theorem 1.7 will be needed, i.e. the
fact that the canonical section pel™!(n) ® X (€) is precisely constructed through the
quasi-isomorphism 7.

In the case where Y has only one connected component, Theorem 6.9 is a rather
easy consequence of Theorems 9.23 and 9.25. When Y has more than one connected
component, the problem is complicated by the fact that one has to show that as
T — + oo, the harmonic forms on Y; (1 <j < d) lift “approximately” to harmonic
forms on X with respect to the Hermitian product ¢ , »; which are O(T~®) on
compact subsets of X\\Y;. This property is the asymptotic version of the mutual
orthogonality of the F;’s in F.

This Section is organized as follows. In a), we lift harmonic forms in F to elements
of Ker(Ay). In b), we use the results of a) to lift harmonic forms in F to harmonic
forms in (E, 0*+v) with respect to the Hermitian product { , »;. In c), we calculate
the asymptotics as T —+ oo of the Hermitian product on H* (E, %+ v) induced by
the metric { , ); on E via Hodge theory. Finally in d), we prove Theorem 6.9.

We here use the notation of Sections 1, 6, 8 and 9.

a) The lift of harmonic forms on Y to the kernel of A,

We take g, > 0 as in Sections 8e), f). For 1 <j < d, set
3
(10.1) B, 80,2={z€N..,,.; 1Z| < 50}.

As in Section 8e), we identify B; ., with a tubular neighborhood %; . ,, of Y; in X.

d
Also since %, is a tubular neighborhood of Y=UY; in X, we deduce that if j # j',
1
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then
(10.2) @j,ao/zﬂ@j',eo/2=@-

Recall that Q is the orthogonal projection operator from F° on Ker(DY). We

fix £€]0, (go/4)] as in Proposition 9.12. The linear map J;: F® — E? which depends
on g, was defined in Definition 9.4.

Theorem 10.1. — For any q€N, there exists C, > 0 such that for any j, 1 <j < d,
for any ceKer (DY), for any T > 1

(10.3) sup |Prlro|(®) S%HGHFO.

q
xe X\ijto/z

There exists C > 0 such that for any c eKer (DY), any T > 1

(10.4) 1Qr Py (0r 29712 I 5 — & [lpo < % 1o lso.

Ne

Proof. — The proof of Theorem 10.1 will be divided into the obvious two parts:

A) Proof of (10.3).

Let E®(X\%;,,.,,) be the Hilbert space of sections of A(T**VX)®E over
X\, o> Which are square integrable. We equip E°(X\%;, co/2) With the Hermitian
product induced by the Hermitian product (1.38), (1.39) on E°.

We will first prove that as T - + oo

(10.5) [P 376 Jleo enary, o= O (T™%).

Recall that the constant c,€]0, 1] was determined in (9.112). Let & be the circle of
center 0 and radius ¢,/2 in C. By Theorem 9.25, we know that for T large enough

(10.6) PTJTc=2_1- J h—Ap) "1 Jr o dh.
1)

T

To prove (10.5), we only need to show that uniformly in Aed, as T - +
(10.7) I|(}\‘—AT)—1JTG||EO (x\%j,ao/2)=0(T—w)'

Now by Theorem 9.25, for T large enough, if Aed, ||(A—Ap '||, is uniformly
bounded. Therefore to prove (10.7), we only need to show that for any Aed, meN,
there exists s, (A, T)€E" such that

Sm(A, T)=0 on X\%;, /25

10.8
- |t~ Ax) 3, (3, T)=J70 [lgo= 0 (T~™2).
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We now use the notation of Section 8h). By proceeding as in the proof of
Theorem 8.18, we find that there exist first order differential operators 0, .

.« ey

0;, ... acting on E such that for any meN
(10.9) Frk'? Ak~ 12 Frt=TV?* (y)+\/T DN+V5V ()
m—1
+D“+M+%V§V%V(y)+ Y T ?20,+0(T™™?).
p=1

Moreover the coefficients of the operator O); are polynomials in Z. Finally there exists
m’ €N such that for any k'eN, T > 1, the derivatives of order < k' of the coefficients
of the operator O (T ™) are dominated by CT ™2 (1 +|Z|™.

Let f (A, T) be a formal power series in E°

+ o

(10.10) fO. D=y T2LQ); fi(WeE

k=0

Recall that \ is the linear map ceF° —» oBeE°. Take oeKer(DYJ). Tautolo-
gically, o vanishes on Y. (j° # j). The equations on E° which we now consider will
in effect be solved in Ej? (which is the Hilbert space E° attached to the single
manifold Y;). For A€, consider the equation of formal power series

(10.11) (—TV*(y)—\/T(DN+V§V(y))+X—D"—M
—%V%V%V(y)— ) T"’“C%)f(?», T)=vo.

Recall that by Definition 8. 19, E° splits into
(10.12) E°=E*°@E™°.

Also by definition, E"° is the image of ¥ in E™*°. Let E"** be the orthogonal space
to E"° in E°. Let E*®%~ be the orthogonal space to E"° in E™*°. Then E° splits
orthogonally into

(10.13) EO=E+’0@E"0@E"0’J~'__

Clearly E~>° is the kernel of V* (). Similarly by Theorem 7.4 and by (7.23), E"° is
the kernel of D™ ~+ V5V~ ().
We now decompose f (A, T) and f, (A) according the splitting (10.13) of E°

fAD=f"A D+Vgh D+~ R, T),

(10.14) L= W+ Vg M+~ )
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Also we use Theorem 8.21, which asserts in particular that M maps E~ into E* and
that 1/2 V5 V5 V(») maps E"° into E»%* ~. Using (8.94) and identifying the powers
of \/T in (10.11), we find that

o for M=f"M)=0; f¢"~(M)=0; A—D")go(M)=0;
e for k =2, V* (») £,* (\) depends linearly on
{fm+ ()\’)}mSk-l’ {fnf - (}")}m$k—2’ {gm (}")}mék—z;
(10.15) e for k>0, DN+ V5V~ (1) fi** ~ (M) depends linearly on

{fm+ ()")}m <k-—1> {fm o ()")}m <k—1> {gm ()")}m <k- 1;
e for k> 1, (\—DY) g, (M) depends linearly on

{fm+ (}\” T)}mSk’ {frrJA-’_O"a T)}mSk’ {gm O")}m<k—1'

Let AN® be the Laplacian in the fibres of Ng. Let ey, . . ., e,, be an orthonormal
base of Ng. Set

— 1 2n
S= l/—z—l Y cle)ée).
1

By Proposition 7.2, equation (7.23) and Proposition 8. 13, we find that

N 2
A 1Z]

(10.16) DN~ +T, V- ()2= — 5 +8.

Let .Z be the harmonic oscillator on R?"

$=%(—A+|Z|2—2n).

Let ! denote the inverse of % acting on the orthogonal space L} to the kernel
of £, {exp—(|Z|*/2)}, in L,(R®*"). We extend #~' by the zero map on
{exp—(|Z|*/2)}. By [ReSi, Theorem V-13], £~ ! acts on the Schwartz space S (R>").
Similarly, for any a > 0, (& +a)~ ! acts on the Schwartz space S (R*").

Let U, ..., U,... and V,, ..., V,.... be arbitrary smooth sections of TgY
and N which span (TxY), and Ng , at every yeY. Let S(Ng) be the vector
space of smooth sections s of m*((A(T**VX)®E)|y) over Ng such that, if L is
any differential operator on Ny which is a product of a finite number of the
operators 07511: or °VYy, for any geN, |Z|*Ls(y,Z) remains bounded. Let
(DN"+(\/_——1/\/§)V§_ V™~ (y))"! be the inverse of DN"+(\/——1/\/§)V%—V‘ 62)
acting on E"%+ . We extend this operator to a linear map acting on E~'° which is
zero on E"°. Clearly
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1. -1 —1_ 27-1
aoan (v A )= (ov+ —é S v-o)]

(DN" + —\/_21 Vv- (y)>.

2

Using equation (10.16) and the previous considerations on the harmonic
oscillator, we find that the operator (DN~ +( \/——1/ \/5) V5"V (»)"! acts on the
Schwartz space S (Ng).

If Ae 8, we know that A ¢ Sp (DY).We then deduce from the previous considerations
that equation (10.11) determines a unique power series f (A, T)e E°. Moreover for
every n =0, £, (A), f;~~ (A) lie in S(Ng), and g, (A) lies in F.

Set
2k 2 (3, Z) o, (" B}
(10.18) 51, T)= 2@ dimN(f/Z )yt < Y AT "/2) 0, 2).
(or2 ) k=0
We consider s, (A, T) as an element of E which vanishes on X\%;, Then if
ey, ..., e, 1s an orthonormal base of Ty X, using Proposition 8.5, we get
m+1
(10.19) O~ As, 0, = P oAk F( ) fkmr"”)
(op 2977) k=0
o cle)(Vep@)k~12 (M

- Fr! (V)T k2,
21: \/5(0&2‘“"{'1\1)1/2 (kgo 5 () >

Since p is equal to 1 on %; ,, V., p is equal to 0 on %; . Using (10.9), (10.11),
(10.19) and the fact that the f, (A)’s lie in S(Ng), we easily deduce that (10.8) holds.
We have thus proved (10.5).

Since A;=D*+TV, and A, P;J;0=0, we get

(10.20) DXP.J;0=—-TVB,J,0,

and 50 || D*PrJ; 6 ||go x4, =0 (T~ ®). Similarly A7P;J; =0, and so using (9.89),
and the fact that by (9.50), [D*, V] is an operator of order zero, we get
| (D*)?B;J; 0o oo 9= 0 (T%). Also A3PJ.5=0. Now A3 is the sum of (Dy)?
and of an operator of order two with polynomial coefficients in T. Since (D*)? is an
elliptic operator of order two, we deduce from the previous estimates that
|(D*)3 P11 o ||go 0N, 4egne = O (T~ ). By iterating this procedure, we find that for
any keN

(10.21) | (D*)¢B1I; 0 |[go K ey = O (T7 %),
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Since DX is an elliptic operator, and since € < (g,/4), we immediately deduce (10.3)
from (10.21).

B) Proof of (10.4).

Take Led and ceKer(DY). We again consider equation (10.11). In view of
(10.15) and of the fact that DY o =0, we get in particular

(10.22) go)=2.
A
For meN, set
m+1
(10.23) R, (A, T)=Fk'/? ()‘_AT)k_I/ZpF{'-l( Y ﬁ‘(X)T""”)—(Fr p)Vo.
0

Recall that Ker(DY) c F. Since Ker (DY) is finite dimensional, all the norms on
Ker (DY) are equivalent. By (10.9), (10.11) and by the considerations after (10.19), we
find that R, (A, T)eS(Ng) and that if ¢ is an arbitrary semi-norm on S (Ng), there
exists C > 0 such that for any T > 1

C
(10.24) 4Ry (0 1) < 75 [0 e
Set
m+1
(10.25) S T)=k*“2pFT‘1< ) fk(?»)T“‘”)
0

Then by (10.23), (10.25), we find that
(10.26) (b D= (A= Ap) ™ (2972 Iy
=(A—Ap) 'kT'?F7 'R, (A, T).

Using (10.6), (10.26), we get
(10.27) L J s (A, T)dh— Py (029N 2 ] o
21 5

- i J (h—Ap) 'k Y2F7 1R, (A, T)d\.
)

From (7.20) and from the fact that p and k are equal to 1 on Y, we see that
(10.28) rk™ 2 pFrt (W go (M) =go (V).
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By (10.15), fo W)=V g, (A). So from (10.22), (10.28), we find that
(10.29) Pl J k=12 0 F=1 (s (V) dh=o.
2ni Jg
So for a given meN, by (10.25), (10.29), we obtain

(10.30) H& Js;,,(x, Td—o| < - |o]fo.
2mi 5 FO T

N

Using (10.27), (10.30), we see that to prove (10.4), we only need to show that if
meN is large enough, for Aed, T > 1

(10.31) Ir(— Ay~ k"2 F; 'R, (A, T)|Jpo < j’f o lso.

Let p be an integer. From (10.24), we find easily that

(10.32) IFr ' Ry, T < CT 150 ™7™ 1 50,

Also

(10.33) A—Ayp (X—Af)=(DX—X) (D*-M)+T(—A+X)V+[D*, V)+ T2 V2

Since by (9.50), [DX, V] is an operator of order zero, and since D* is an elliptic

operator of order one, using (10.33), we find that there exists C > 0, such that for
T>1,\ed, seEL,

(10.34) [[s]lgr < C(| A~ Ap)s|igo+ T || s |3o).

In particular, if O is a differential operator of order p—1 acting on E with scalar
principal symbol, then for T > 1, A€, s€E,

(10.35) || Os Hél <C (H (A—A;pOs ||]250 +T || Os ||]2.;o).
Now
[A, O]=[D*, O]+ T[V, O],

and [DX, O] and [V, O] are differential operators of order p—1 and p—2 respectively.
Using (10.35), we find there exists C' > 0 such that for T > 1, A€ 9, s€E,

(10.36) Is|lze < C" (| (A—Ap) s|[zo-1+ T || s]|2-1).
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Using (10.36) and recursion on p, we deduce that for any peN, there exists C, > 0
such that for any T > 1, A€$, seE,

(10.37) IsllBe < C, T2 (| (A — Ag) s |[2o-1+ ]| s |Z0).

By Theorem 9.25, for T large enough, if Aed, ||(A—Ap)™ !, is uniformly
bounded. From (10.37), we find that for T large enough, A€ b, s€E,

(10.38) |(A =AD" s||2 < C,T22||s||Ze-1.

Take peN, p > 2dim X. Using (10.32), (10.38), we see that for T large enough,
(10.39) |A=Ap) k™2 F; 'R, (A, T) ||er

< TP T BN
I Yy AFA .
By taking m large enough, we get from (10.39)
(10.40) |A—AD k"2 F7 'R, (A, T)||er < G Il o |lgo-

JT
On the other hand, for p > 2dimX, E? embeds continuously in the set of

continuous sections of A (T*© VX) & & over X. We thus deduce (10.31) from (10.40).
Our Theorem is proved. [

b) The lift of harmonic forms in F to harmonic forms on X for the metric {( , )y on E

We now use the notation of Section 6b). In particular for T > 0, the Hermitian
product { , >r on E was defined in Definition 6.2, The finite dimensional vector
subspace K of E was introduced in equation (6.2), P; denotes the orthogonal projec-
tion operator from E on K with respect to the Hermitian product { , ). By definition
K, =K, P, =P. Recall that by (6.3), for any T > 0, K is canonically identified with
H*(E, 0X+v). As we saw after equation (6.44), the linear map P;: K=K, - K;
provides the canonical identification of K with K.

Identity (6.6) says that

(10.41) P =T P T M,

Definition 10.2. — For T > 0, let B; be the linear map

(10.42) ceF - (Byo)(y, Z)=k™'*(y, Z) p(Z) exp (TG— E%Z—li) o(y)eE.
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Theorem 10.3. — For T > 0, let C; be the linear map
(10.43) oceKer (DY) » C;6=QrP;B,ceKer(DY).

There exists ¢ > 0 such that for any T > 1

10.44 c-1] <5
(10.44) 1Cx— 1] %

For any qeN, there exists C;> 0 such that if 1 <j<d, if T > 1 and if 6 eKer(DY)),
then

C
(10.45) sup |Cro(»)| < =4 o||o.

yeY\Y; Tq
There exists Ty > 1 such that for T > T,, Cy is invertible. Then for T > T,, if seK,

(10.46) P,s=P,B,C;!Qrs.

For any geN, there exists C; > 0 such that if 1 <j<d, if T > T, and if c eKer(DYJ),
then

(10.47) sup |Crlo(p)|< G

o .
,Sup a5 llre

Proof. — Clearly

rTNE=F

(10.48) .
T Nuexp (T 0)=exp (0).

Using (10.41), (10.48), we find that if o e Ker (DY)
(10.49) Cro=QrP (0, 24mM2 ] 5.

So (10.44) is equivalent to (10.4), (10.45) follows from (10.3) and (10.49).
By (10.44), for T large enough, C; is invertible. By definition, we know that
for T large enough, if o eKer (DY), then

(10.50) QrP;B;C;lo=o0.

On the other hand, for T > 0, the linear map se K —» P;seK; provides the
canonical identification of K with K. In particular Pys—s is a 0*+v coboundary.
Using Theorem 1.7, we find that r (P;s—s) is a 0¥ coboundary. Therefore

(10.51) QrPrs=Qrs.



138 J.-M. BISMUT AND G. LEBEAU

Also, since the map r: (E, 0*+ 1) — (F, 9Y) is a quasi-isomorphism, for se K, there is
a unique s’ € K; such that

(10.52) Qrs'=Qrs.

From (10.51), (10.52), we get

(10.53) s'=Pyps.

Using (10.50), we know that for T large enough, for se K

(10.54) QrP;B;C;1Qrs=Qrs.

From (10.52)-(10.54), we get (10.46).
d

The space Ker (DY) splits into Ker (DY) =~ @ Ker(DYJ). Let Dy, E; be the diago-
j=1
nal and non diagonal parts of the operator C; with respect to this splitting of Ker (DY).
Using (10.45), we know that as T - + o

(10.55) |Ex]|=0 (T~ ).
Also by (10.44), for T large enough, Dy is invertible, and moreover
(10.56) C;'=D;!(1+E;D;H~ 1L

Using (10.44), (10.55), (10.56), we find that if E; is the non diagonal part of C;?,
then as T —» + oo

(10.57) || Ex

=0 (T~ ™).

Since norms on finite dimensional vector spaces are equivalent, we immediately deduce
(10.47) from (10.57).

The proof of Theorem 10.3 is completed. [

Recall that by Theorem 1.7

d
(10.58) H*(E, 3 +0v) = @ H*(Y,, 1))
1

Definition 10.4. — For 1 <j<d, let H}(E, 0*+v) be the vector subspace of
H* (E, 0% +v) corresponding to H (Y}, ;) under the canonical isomorphism (10.58).

Definition 10.5. — For 1 <j < d, let K(j) be the vector subspace of K corres-
ponding to H¥ (E, 0¥ +v) via the canonical isomorphism K = H* (E, 0*+1).

If 1 <j<d,seE,letr;seF; be the restriction of rs to Y;. Similarly, for 1 <j < d,
let Q; be the orthogonal projection operator from F° on Kj=Ker (D).
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Proposition 10.6. — For 1 < j < d, the following identity holds
(10.59) K()={seK; Q;.r; s=0 for j* # j}.

Proof. — Using Theorem 1.7, it is clear that if seK, rseF is 0¥ closed. Then
seK () if and only if for j* # j, r;. seF; is 0¥i exact, i.e. if Q;. ris=0. O

Theorem 10.7. — For any qeN, there exists a constant C, such that for any j,
1<j<d, any seK(j), for T>1

C
(10.60) sup |Prs|(x) < F‘; II's |[go-

xe x\ql.l‘ £g/2

Proof. — By Theorem 10.3, for T large enough, if se K (j)
(10.61) P;s=P;B;Cr'Qrs.

By Proposition 10.6, Q(rs) vanishes except on Y;. Therefore using (10.42), (10.61),
we find that

d
(10.62) Prs= Y TN B (o ;,29mNi) 2], Q; Cy ' Q;r;s.
j'=1

For T large enough, ||C; ! || is bounded. Using Theorem 10. 1, we find that as T — + o0

(10.63) sup | (TNu B (o ; 24mN) 12 J,.Q;Cr 1 Q;r9) (x) | = O (T~ ®) || 5 |go-

xeX\twj_zo/z

On the other hand, by (10.47) in Theorem 10.3, we know that if j' # j, as T —» + o
(10.64) sup [(C5'Q;r;8)(x)|=0(T™*)|s||go-

xeY;j

Using the fact that J; is an isometry, we see from (10.64) that for j' # j
(10.65) (| Py (g, ;- 24 NiY2 J1.Q; Cr 1 Q7 ||go= O (T~ ) || 5 |go-

By proceeding as in (10.20), (10.21) we deduce from (10.65) that if j* # j
(10.66) sup | (Py (aup, ;- 29™NiN121.Q; Cr 1 Qir;8) (x) |[= O (T~ ™) || 5 ||o-

xeX

From (10.63), (10.66), we get (10.60). Our Theorem is proved. [

Remark 10.8. — Theorem 10.7 is a very important result. It asserts that as
T — + oo, the harmonic representatives of elements of H¥ (E, 0% +v) localize near Y;.
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¢) The asymptotics of the Hermitian product induced by { , > on H* (E, 0* +v)

We now prove the main result of this Section.

Theorem 10.9. — For 1<j, j'<d, take seK(j), s’€eK (). Then if j#j', as
T - + oo, for any meN

(10.67) (Pys, Prs' Sp=0(T™™).

Ifj=j,as T—>+
(10.68) (Prs, Prs' )p=T 4™ <<er,-S, Qjrys')+0 <ﬁ>>

Proof. — By definition, if se K (j), s'e K (j"), for any xe X
(10.69) {Prs, Pps' >p(x)=(T MaPrs, T" NP, s > (x)
=(P T MNus, T NP 5" ) (x)=( T NP5, P, T Mg ) (x).

Also recall that ||Py|| < 1. If j # ', we now use Theorem 10.7 and (10.69) and we
obtain (10.67).

More generally, if s, s’ €K, by (10.41), (10.42), (10.46), (10.69), we get
(10.70) (Prs, Pps’ yp=(Pr (0292 1. C7 ' Qrs, Br (0 24™M)2 1. Cr 1 Qrs” ).

If 5, s’eK(j), by Proposition 10.6, Q(rs) vanishes on U Y;. Also by (9.155),
it#F

(9.163), we know that

(10.71) d(Pr, Q) <

N;

Recall that J; is an isometry from F° on its image ES. From (10.44), (10.47), (10.70),
(10.71), we deduce that as T — + o0

C
T

(10.72) (Prs, Prs’ >T=a’[‘,j 24imN; << Qj (rjs)’ Qj (rjs,)>

+0 <ﬁ)>+0(r°°).

By formula (9.3), it is clear that as T -+ oo
1

Tdim

(10.73) oy, 28N = (1+0(T ).
J
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From (10.72), (10.73), we get (10.68). Our Theorem is proved. [

d) Proof of Theorem 6.9

The vector spaces K and K are Z-graded by the operator N¥—N,,. Let

dimX
K= ® K,

p=0

(10.74) dimx
KT= @ K{‘a

p=0

be the corresponding splittings of K and K. Recall that P;: K — K provides the
canonical identification of K and K; and preserves the Z-grading.

Let | |aerwry | |aerazy be the metrics on the lines det(K?), det(K%) induced by
the Hermitian products { , », { , >y on E. Let | |4oxr), r be the metric on the line
det (K?) which is the pull back of the metric | |4 k) by the canonical isomorphism
P : det (KP) — det (K%).

Recall that K'=Ker (DY). The vector space K’ is Z-graded by the operator NY,
and so

(10.75) K'=@® K™

p=20

Let | |etx'ry be the metric on the line det(K'?) induced by the metric (1.44), (1.45)
on F.

By Theorem 1.7, the map se K —» Qrse K’ provides the canonical isomorphism
of K and K'. This isomorphism also preserves the Z-grading. Let | |4 kr), o D the
metric on the line det(K?) which is the pull-back of the metric | |gex-» under the
canonical isomorphism det (K?) =~ det (K'?).

Of course K?, K%, K'? split into

d
K?= & K*()),
j=1

j=

d

(10.76) Ki= @ K{ (),
j=1
d

K?= @ K'?()).

ji=1

Also the various canonical isomorphisms described before preserve the splittings
(10.76).
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Let now sf ;, ..., sf; be a base of K?(1), let s ,, .

K?(2), ... Let c?edet(K?) be given by
d
(10.77) of= A A s,

We choose the s; ,’s so that
(10.78) | 67 |geery=1-

Then by definition, for any T > 0

2
| |d t(KP), T _
l I(%et(l(") det (< Py Sf, o Pr Sf', % >),
(10.79) ; ,
‘ Idet(KP). o l—l det (< Qj rjsf, o Qj rjsj",k’ >)

| Iget (KP) ji=1

Now by Theorem 10.9, it is clear that as T — + oo,

d
z dimdeimHl’(Yj, n;j)

(10.80) det (( Py, Prst  »)=T i1

.., 85, be a base of

d , , 1

From (10.79), (10.80), we deduce that with the notation of Theorem 6.9,

2 d
~ Y dimN;:x(n;) 12
(10.81) | Ee.r _ppom 1<|P 1|x-1(§)®xm)+0<——>>'

JT

| e

Theorem 6.9 follows. [
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XI - THE ANALYSIS OF THE TWO PARAMETERS SEMI-GROUP
exp (— (uD*+TV)?) IN THE RANGE u€]0, 1], Te[0, (1/u)]

a) Rescaling the Clifford algebra: Getzler’s trick.

b) Lichnerowicz’s formula.

c) The limit as u — 0 of Tr, [N, exp (— (u DX+ TV)?)].

d) Localization of the problem.

e) A rescaling of the normal coordinate Z,,.

f) A local coordinate system near Y and a trivialization of A (T*©® VX)) & &.
g) The Taylor expansion of the operator (D¥)2.

h) Replacing the manifold X by (Tg X),,.

i) Rescaling of the variable Z and of the Clifford variables.
i) The matrix structure of the operator L3-Zo/.

k) A family of Sobolev spaces with weights.

1) Estimates on the resolvent of L2 %o/,

m) Regularizing properties of the resolvent of L3-Zo/T.

n) Uniform estimates on the kernel P::TZO/T .

0) Estimates on (A— L2 %0/M)~1 — (A =L} ZoM)~ 1,

p) Proof of Theorem 11.13.

The purpose of this Section is to prove Theorem 6.6. The main point of
Theorem 6.6 is to show the existence of C >0, ye]0, 1] such that if ue]0, 1],
0 < T < (1/u), then

(11.1) Tr, [Ny exp (— (u DX+ TV)?)] - J Td (TX, g™)® Tr, [Ny exp (— C2)]
<Cu+T)).

When T remains uniformly bounded, this estimate immediately follows from local
cancellations in index theory. On the other hand, as pointed out in Remark 6. 10, the
estimate (11.1) implicitly reflects the results of [B2] stated in Theorem 4.3 on the
convergence as T — + co of the currents ® Tr, [Ny exp (— C22)].

The proof of (11.1) relies on three main ideas:

e The first simple idea is that the estimate (11.1) is local on X and that difficulties
may only occur near Y.

e The second main idea is to combine the rescaling techniques of Getzler [Ge]
with the splitting £=£* @ £~ of & near Y which was constructed in [B2, Section 1]
and in Section 8f), and was already used in the proofs of Theorems 6.4 and 6.5.

In [Ge], Getzler introduced a rescaling of the Clifford algebra of a vector space
in order to prove the local index Theorem of Atiyah-Singer. One of the main ideas of
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the proof of (11.1) is to introduce a two parameters rescaling of the Clifford algebra
of TgX. When T remains bounded, this rescaling essentially coincides with
Getzler’s [Ge]. However when T gets very large (i. e. of the order of 1/u), the Clifford
variables coming from the normal bundle Ni do not get rescaled at all, as in fact will
be the case in Section 12. This fine tuning of Getzler’s rescaling permits us to obtain
the estimate (11.1) in the range u€]0, 1], Te[0, (1/u)].

The splitting E=E* @ £~ of £ near Y also plays an important role in the proof
of the estimate (11.1). In fact, as suggested by the results of [B2] and of Sections 8
and 9, for a given u€]0, 1], as T >+ o0, £* tends to be eliminated. The difficulty is
then to obtain some sort of uniform control for u€]0, 1], 1 < T < (1/u).

e Contrary to the proofs of the local Atiyah-Singer index Theorem, functional
analytic techniques play a prominent role here. In fact, to handle together the difficul-
ties coming from the splitting £=£* @£~ and from a concentration phenomenon
near Y as T —»+ oo, we construct the heat kernels through the resolvent of the
operators obtained by rescaling from the operators (uD*+TV)2. Uniform estimates
on the resolvents in u€]0, 1], Te[0, (1/u)] are obtained by using Sobolev spaces of
sections on (TgX),, (yo€Y) of A(TgX ® £),,, With weights which explicitly depend
on the Z-grading.

This Section is organized as follows. In a), we recall Getzler’s rescaling technique
of the Clifford algebra [Ge]. In b) we establish Lichnerowicz’s formula for (DX)2.
In c), we calculate the limit as u — 0 of Tr,[Nyexp(—(uD*+TV)?)] and we obtain
the second easy half of Theorem 6.6. In d), we show that the proof of the estimate
(11.1) can be localized near Y. In e) and f), we construct a coordinate system and a
trivialization of A (T*©® VX) ® & near Y. In g), and following [Ge], we obtain a Taylor
expansion of the operator (D*)2. In h), we reduce the proof of (11.1) to an equivalent
problem on C'. In i), we perform Getzler’s rescaling on the operator (1 D*+TV)? and
in j), we describe certain key algebraic features of the new rescaled operator LS,’TZ"/T
with respect to the splitting E=E* @ £~. In k), we introduce graded Sobolev spaces
with weights. In 1) and m), we prove uniform estimates on the resolvent L3 ZO/ T, Special
attention has to be devoted to the fact that L3 ZO/T is no longer a self-ad_]omt operator.
In n), we show that the rescaled heat kernels P3 Zo/T decay rapidly in directions normal
to Y, and this uniformly in u€]0, 1]. In o), we estlmate the operator L3 ZO/T L3 Z"/T
and the difference of the resolvents of L3 ZO/ T and Lg i"/ Tin a purely operator theoretlc
sense. Finally in p), we prove the estlmate (11.1).

We here use the notation of Sections 1, 4, 6, 8 and 9.

a) Rescaling the Clifford algebra: Getzler’s trick

We here use the notation of Section 5a). In particular V denotes a complex
Hermitian vector space of complex dimension k.
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k
Recall that A (V*) is a ¢(Vg) Clifford module. Moreover A (V¥)= @ A?(V*) is
p=0

a Z-graded vector space, and so it inherits a corresponding Z,-grading. If eec(Vy),
let Tr,[e] be the supertrace of e acting on A (V*).

Let ey, ..., e,, be an orthonormal oriented base of Vg. Then by [ABo, p. 484],
c(ey)...c(ey,) is the only monomial in the c(e;)’s (1 < i< 2k) whose supertrace is
nonzero and moreover

(11.2) Tr,[c(ey). . .c(ey)]=(—20)

We now briefly describe Getzler’s trick in local index theory [Ge]. If X e Vy, let
X*e Vg correspond to X by the scalar product of V. Then the operators X* A and
ix both act on A (Vg).

For a > 0, X € Vg, let ¢*(X) e End (A (V§)) be given by

(11.3) A (X)= 1X* A —aiy.
a

Clearly if X, Y € Vg, then
X)) +HAX)AX)=—-2(X, Y ).

Therefore the map c(X)ec(Vg) = ¢*(X)eEnd (A (V§)) induces an injective algebra
homomorphism V,: ¢(Vg) = End (A (V§)). Observe that if N is the number operator
which defines the Z-grading of A (V§), then

— ,—N N
\',a_a \llla'

Now for 1 <i; < ... <i,<2k, 1<j, <...<j, <2k, the operators
il i . .
ELA .. e Ny g

are linearly independent in End (A (V§)). Due to (11.3), if eec(Vg), ¥“(e) is a linear
combination of such operators.

Definition 11.1. — For eec(Vy), let {{*(e)}™ eC be the coefficient of the
operator e* A ... A e** in the expansion of {“ (e).

Proposition 11.2. — If eec(Vy), for any a > 0, then
(11.4) Tr,[e]= (—2i)* a®* {{* (e)}™.
Proof. — Clearly
WA (c(ey). . .cle )™ =a"2k
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Also the supertraces of other monomials in c(e,), ..., c(e,,) than c(ey)...c(e,yr)
vanish. Using (11.2), Proposition 11.2 follows. [J

b) Lichnerowicz’s formula

Let e;(x), ..., e;;(x) be a locally defined smooth section of the bundle of
orthonormal frames in Tg X.
We now recall the definition of the horizontal (or Bochner) Laplacian.

Definition 11.3. — Let A* be the second order differential operator acting on E

21

(11.5) AX= Z (V3 -

2 VTX

Let K be the scalar curvature of the Riemannian manifold X.

Let (VT™®)2, (V5?2 be the curvatures of the connections V™*, V¢ on TX, &, let
Tr[(V™®)?] denote the trace of (V™*)?, considered as a 2-form on X with values in
End (TX).

Proposition 11.4. — Let e, . .., e,; be an orthonormal base of TgX. Then the
following identity holds
AX K 1

X2 _ 2 4 ™, ; .
(11.6) (D¥) >t s "2 lsi’ijc(e,)c(e,)

[(Vﬁ)z ¥ % Tr [(VTX)Z]} (e ¢)).

Proof. — By [Hi, p. 13], since the metric g’ is Kahler, the operator
2DX=_/2(0%+0%") is a standard Dirac operator of Lichnerowicz’s type. Therefore
the formula of [B6, Proposition 1.2] is applicable to the operator 2(D*)?. [

Proposition 11.5. — Let e,, ..., e,; be an orthonormal base of TgX. Then for
anyu>0,T=>0

2AX 2
uA+ K+

11.7 uDX+TV)?= — “_
(11.7) ( ) 5 3 2

Z c (ei) 4 (ej)

//\

21

[(Vﬁ)uéTr[(V“)Z]](ei, e)+uTy, j )ViV+T2V2

1

Proof. — Clearly
uDX+TV)2=u?(D*)2+uT[DX, V]+ T2 V2.
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We now use formula (9.50) for [D*, V] and Proposition 11.4 to get (11.7). O

Definition 11.6. — For u>0, T >0, let P, 1 (x, x) (x, x'€ X) be the smooth
kernel associated with the operator exp (—(uD*+TV)?), calculated with respect to
the volume element dvy/(2 m)™X,

If heE, for u >0, T > 0, xe X, we then have

(11.8) exp(— @DX*+TV)2) h(x)= f P, +(x, x) h(x") (Z”x)ﬁjf;)x :
X T

For xeX, P, 1 (x, x) lies in End&"*" (A (T*©VX) ® &).

¢) The limit as u — 0 of Tr [Nyexp(—uD*+TV)?)]

Recall that if seR,, C; is the superconnection on §
C,=V:+ \/EV.

Proposition 11.7. — Let Ty€[0, + oo[. There exists C > 0 such that for any
uel0, 1], Te[0, T,], then

(11.9) Tr, [N exp (— (uD*+TV)?)]

- j Td(TX, g™)® Tr,[Nyexp (—C?2)]| < Cu,
X

| Tr, [Ny exp (— (u D* + TV)?)] = Tr, [Ny exp (— (« D*)?)]| < CT.
Proof. — Clearly

(11.10) Tr, [Ny exp (— (u DX+ TV)?)] = J Tr, [N P, 1 (x, X)] dvx (x) |
X (2 n)dlmx

In view of formula (11.7) for (uD*+TV)?, as in [BGS2, Theorem 2.26,
eq. (2.127)], we may use local index theory techniques to show that for any T > 0,
any xeX,asu—0
dvx (x)
(2 n)dimx
— {Td (TX, g™)® Tr,[Nyexp (— C32)]} 7.

(11.11) Tr, [Ny P, 1 (%, X)]

Take T, > 0. The arguments in [BGS2, proof of Theorem 2.26] easily show that there
exists C > 0 such that for u€]0, 1], Te[0, T,], xe X,
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doy (x)
(11.12) Tr,[NgP, 1 (x, X)] (;;—)dx.ﬁ

—{Td(TX, g™)® Tr,[Nyexp (— C}2)]}™*| < Cu.

The first inequality in (11.9) follows from (11.10), (11.12). Also by proceeding as in
equations (3.6)-(3.9), we find that

(11.13) % 5‘% Tr, [Ny exp (— ( DX+ TV)?)]

=~ 2 (T, [Vexp (- @D* + TV + b 0= ol}-o:

Now the same arguments as before easily show that for T < T, as u — 0, the right-

hand side of (11.13) remains uniformly bounded. We then see that, for u€]0, 1],
TE[()’ TO],

(11.14) | Tr, [Ny exp (— (@ DX+ TV)?)] — [Ny exp (— (@ D¥)?)] | < CT2.

The second inequality in (11.9) follows. [

Remark 11.8. — The second inequality in (11.9) is exactly inequality (6.14),
which is part of Theorem 6.6. To complete the proof of Theorem 6.6, we must prove

inequality (6.13), which is much sharper than the first inequality in (11.9), since T is
allowed to vary in the interval [0, (1/u)].

d) Localization of the problem

Let a > 0 be the injectivity radius of X. For b€]0, (a/2)], xeX, let B*(x, b) be
the open ball of center x and radius 5. Let dB*(x, b) be the smooth boundary of
B* (x, b).

We now fix b€]0, (a/2)].

Definition 11.9. — For x,€X, let P3° (x', x”) (x', x" € BX(x,, b)) be the smooth

heat kernel associated to the operator exp (— (u DX+ TV)?) with Dirichlet conditions
on 0B* (x,, b).

Proposition 11.10. — There exist ¢ > 0, C > 0 such that for any x,e€X, uel0, 1],
Tel0, (1/u)], xe B* (x,, b/2), then

C
(11.15) ||(Pu,T—Pf’0T)(x, x)||<cexp(—;—>.

2
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Proof. — Clearly
(11.16) uD*+TV)*=u?(D*)2+uT[DX*, V]+T2V2,

As we saw in (9.50), the operator [D*, V] is of order zero. The proof will then
consist in using the fact that for T < (1/u), the operator u T [D¥*, V] remains uniformly
bounded, and also the fact that the operator V2 is non negative. Let A be the Laplace-
Beltrami operator on X. For ¢ > 0, let p,(x’, x"') (x’, x"" € X) be the scalar heat kernel
on X associated with the operator exp (1 A/2), calculated with respect to the volume
element doy (x"")/(2 m)4i™X,

Take x,eX. For u>0, xeB*(x,, b/2), let Q* be the probability law on
% ([0, 1]; X) of the Brownian bridge t€[0, 1] — x*e X associated with the metric g™/u?,
such that x§=x{=x. For the definition and the properties of the Brownian bridge,
we refer to [B4, Chapter IIJ.

For 0 <t < 1, let 1}, be the parallel transport operator from (A (T*© VX)) ® &),
into A(T*©VX) & €), along the path x* with respect to the unitary connection VX,
The fact that the operator tf is well-defined and depends continuously on t€[0, 1]
follows from Dynkin [Dy], It6 [I]. Set t?=(z})"!. Let e,, . . ., e,; be an orthonormal
base of (TgX),. For 0 <t < 1, let M,eEnd, (A (T*© Y X) ® &) be given by

(11.17) M,=— uzz c(e)cle) Ty ((Vg)2 + %Tr [(VTX)2]> (1) e;, 10 €)1y

u
]

— 1 (uT[DX, V]+ T2 V) (x¥) 0.
Consider the differential equation

d_H_I =HtMt’
(11.18) dt

Ho=Iar0 %80,
In (11.18), H, lies in End&"*" (A (T** Y X) ® ). Finally, let S be the stopping time
(11.19) S=inf{r > 0; x*€dBX (x,, b)}.

Let E be the expectation operator with respect to the probability measure Q.
By using Lichnerowicz’s formula of Proposition 11.5, and also It6’s formula as in
[BS, Theorem 2. 5], we find easily that

(11.20) (P, 1= P (x, X)=p,2 (x, X)

u u2 1
EQX[IKlexp(— EJ‘ K(x',‘)dt)Hlt})].
0
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Let Hf be the adjoint of H,. Since M, is self-adjoint, we find that

dH?
(11.21) dt

* — o
HE =Inaeex e,

=M, Hy,

In particular, if he (A (T*©VX) ® £),, we deduce from (11.21) that

(11.22) %|H;“h|2=2<M,H;"h, H*hd.

Now the operator 15 V2(x!)t? is self-adjoint and nonnegative. Using (11.22) and
Gronwall’s lemma, we see that there exists C > 0 such that for ue]0, 1], u T <1, <1

(11.23) |H¥h| < C|h|.
From (11.23), we get
(11.24) |IH, || < C.
Using (11.20), (11.24), we obtain
(11.25) [+ =P (x, )| < Cp,2(x, x) QLS < 1).
Let pXo(x’, x") (x', x"" € B*(x,, b)) be the scalar heat kernel associated with the

operator exp(tA/2) and Dirichlet boundary conditions on dB*(x,, ). Using Itd’s
formula again, we get

(11.26) (P2—P3) (%, X)=p,a(x, x) QLS < 1).
Therefore, by (11.25), (11.26), for ue]0, 1], uT < 1

(11.27) (P x =P (5, 1) < C (P2 =P (x, ).

Now classically, we know there exist ¢ > 0, C > 0 such that for any xeB*(x,, 5/2),
uelo, 1]

(11.28) (P2 P2 (%, %) < cexp (— %)
u

Then (11.15) follows from (11.27), (11.28). [
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Remark 11.11. — Recall that we want to show that there exist C > 0, ye]0, 1]
such that for u€]0, 1], T€[0, (1/u)]

dvx (x) )

(11.29) 2y

J‘ {Trs [NH Pu, T (xa x)]

—Td(TX, g™)® Tr, [Ny exp (— c%z)]} ‘ <Cu+T)".

By Proposition 11.7, it is clear that only large values of T may cause trouble. Also
Proposition 11. 10 shows that inequality (11.29) can in fact be proved locally on X.

e) A rescaling of the normal coordinate Z,
We use the notation of Section 8¢). We fix €€]0, inf(g,/2, a/2)]. Then %, is a

tubular neighborhood of Y which is identified with the open set B, in N defined
in (8.20).

Definition 11.12. — Let By (x) be the smooth function of T > 0, xe X such that

(11.30) Br(x)

o s = (TA(TX, €% ©Tx, Nyexp (~ ChJJ2™

The key result of this Section is as follows.

Theorem 11.13. — There exists Y€0, 1] such that for any peN, there is C, >0
such that if uel0, 1], Te[l, (1/w)], yo€Y, Zo€Ng ., | Zo| < (¢/2) T, then

Tfs [NH P, 1 ((J’Oa %)a (J’Oa ‘,Zi,9>):|_ Br <.V0a %)‘

<SG (A+[Zo ) P +T)).

1

T2 dimN

(11.31)

Proof. — The proof of Theorem 11.13 is given in the next subsections. [J
Remark 11.14. — Let us briefly show how to derive (11.29) from Theorem 11.13.
Clearly

ooy dex @
(11.32) Lm 75, NP 5 00— B2 (01| 2550

D L | (0 %) (0 %
=\ — 2 dim N Trs N Pu, Yoo —= p\ Yoo
(2 T Y T2dimN |Zo | < (eT/2) aeet T T

—Br (J’o, é)l k (J’Oa %) doy (Zo)] dvy (¥o)-

T
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From (11.31), (11.32), we deduce that

dox (x)
(2 Tt)dim X

(11.33) J |[Tr, [Ny P, 1 (x, X)] = Br ()] <CA+T)".
%/2

On the other hand, we can cover X\ #,,, by a finite number of open balls B* (x, ¢)
(with 0 < ¢ < (a/2)) such that B* (x, ¢) N\ %,,,=0. On each of these BX(x, ), we can
use (11.31) with Y= ¢J. We thus find that

dvy (x)
(2 n)dim X

(11.34) J |[Tr; [Ny P, ¢ (x, x)] = Br (%)]| <Cu(1+T)"
BX (x, c)

From (11.33), (11.34), we obtain (11.29) for u€]0, 1], Te[l, 1/u].
The purpose of the subsections which follow is to prove Theorem 11.13.

f) A local coordinate system near Y and a trivialization of A (T*©VX)® &

Recall that a is the injectivity radius of X and that €€]0, inf ((g,/2), (a/2))].

Take y,eY. If Ze(TgX),,, teR— x,=exp§‘0 (tZ) denotes the geodesic in X such
that x,=y,, dx/dt|,_o=Z. If |Z| <€, we identify Ze(TgX),, with exp) (Z)eX. Let
B;X(0, &) be the ball in (TgX),, of center 0 and radius e. The ball BJX(0, €) in
(Tr X),, is then identified with the ball B* (3, €) in X.

Let dvrx (Z) be the volume element in (Tg X),,. Let k' (Z) be the positive smooth
function on B]X (0, €) such that

(11.35) dvs (Z) =K' (Z) dvrx (2).

Then k' (0)=1.

We now fix ZoeNg o |Zo| < (6/2). Take Ze(TgX),,, |Z| < (¢/2). The curve
tel0, 11> Zy+1tZ lies in BJX(0,8). We identify TX; ., A(T**YX), ., with
TXz,» A(T"‘“"”X)ZO (resp. £z,+7z With §;.) by parallel transport with respect to the
connection V™ (resp. V%) along the line r€[0, 1] > Z,+ 1 Z.

When Z,eNg ., |Zo| < (¢/2) is itself allowed to vary, we will identify TX,,,
A(T*O-VX),  (resp. &) with TX,, A(T**>VX), ~ (resp. &,,) by parallel transport
with respect to the connection V™* (resp. V%) along t€[0, 1] - tZ,. Therefore we
identify (A(T*©PX) ® &)z,+z with (A(T**VX)®E),, by parallel transport with
respect to the connection V'* ® 1+1 ® V* along the broken curve

b

tel0, 11> 2¢Z,, 0<t<

N | —
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Zy+2t—1)Z, %<t<l.

In this case the identification depends explicitly on Z, and Z, and not only on Z,+Z.

g) The Taylor expansion of the operator (DX)?

Recall that B was defined in Definition 8.12 by
(11.36) B=V:— Ve

We fix yo€Yy, Zo€Ng,y,» |Zo| < (¢/2). We then use the trivialization of TX,
A (T*©@ D X) E considered in Section 11f), which depends on Z,.

If |Z| < (g/2), let T3 %0, Ty %0 be the connection forms of the connections VX,
V¢ on TX, & evaluated at Z,+ Z. It is clear that

TX, Zg —
FO 0‘_0,

s Lo —
r§%=B,,.

(11.37)

Also by [ABoP, Proposition 3.7], we know that

(11.38) [1XZ0 = %(VTx)ﬁo Z, )+0(Z]).

In the sequel, we consider D*, V as differential operators acting on the space of
sections of (A (T*®VX) ® &), which depend smoothly on Ze(TgX),,, | Z| < (¢/2).

If Ue(TgX)z,+2z let Vy be the standard differentiation operator in the
direction U acting on smooth sections of (A(T*©VX)&®E),,. Let ey, ..., e, be
an orthonormal base of (Tg X),,. For 1 <i< 2/ let 1e%?0(Z) be the parallel transport
of e; with respect to the connection V™ along the curve 1[0, 1] > Z,+tZ. We will
often use the notation te”0 instead of te%0(Z).

From (8.16), we find that in the considered trivialization of A (T** VX)) &® &

21
(11.39) DX=% c_(ei*) (V,eilo(z)-F 1 Y., (T3XZo(refo(Z)) e, e; ycle)ce;)
1 \/2 1<j,j'<21

+ % Tr [[3¥ %0 (x ¢%0 (Z))] + Ty %o (1 ePo (Z)).

Let Op be the set of scalar differential operators on B]X (0, £/2) with smooth
coefficients. By (11.39), it is clear that

DX e (c(Tg X) ® End&),, ® Op.
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Also V acts at Z as V(Z,+2Z) e (End £),,. Using (9.50), (11.39), we thus find that

(11.40) (D¥)?, [DX, V], V2 (c(Tg X) ® End€),, ® Op.

For peN, O(|Z|?) will denote an expression in End (TX),, or (End &), which is
such that for k€N, k < p, its derivatives are O (|Z|P~*) as |Z| - 0. Note that O (|Z|?)
will never contain any Clifford variable.

We now rewrite Lichnerowicz’s formula of Proposition 11.4 in a form close to
the one considered by Getzler [Ge].

Proposition 11.15. — The following identity holds

- % Z <Ve,-+0(|z|) + % Z <((VTX)%0 Z,e)

i j#iJ’

(11.41) (D¥)2=

+0(ZP)ej, e, c(ej)c(ej,)+0(l))2+ o)

t1 T cleelen) (9983 TR e e+ 0(2))

i*i

+Vouzpt 2 CO(ZP)e; e; ) cle)) cle;).

J#j’

Proof. — We use formula (11.5) for AX with e, replaced by te?0(Z) (1 <i<2)),
Proposition 11.4 and also (11.36), (11.37). Then (11.41) immediately follows. [J

Remark 11.16. — A minor difference with [Ge] is that we have trivialized the
vector bundle £ using the connection V, while a direct application of [Ge] would
require us to use the connection V°.

Of course, since the metric g™ is Kihler, we know that

(11.42) V™%, (Z, e ey, e )= (V) (e) €D Z, ;).

h) Replacing the manifold X by (Tg X),,

Take yoeY. For ZoeNg ., | Zo| < (g/2), it will now be very useful to identify
(A (T*©VX) ® €),, with (A (T**PX) ® £),, as indicated in Section 11f).

Definition 11.17. — Let H, be the set of smooth sections of
(A(T*®VX) ®E),, on (TgX),,-
Let A be the ordinary flat Laplacian on (Tg X),,. Then A acts naturally on H,, .
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Let 'y(a) be the smooth function of aeR considered in Section 9a), If
Ze(TgX)

)’0’

(11.43) p(2)= v<2'5’>
Then
(11.44) p@)=1 if |Z|< Z
=0 if |Z]|>Z.
2
We now fix Z,€Ng ., | Zo| < (¢/2). As indicated in Section 11f), the trivialization

under consideration of A (T*® VX) ® & depends explicitly on Z,. Therefore the action
of D* also depends on Z,.

Definition 11.18. — For u >0, T > 0, let L!:%o, M} %0 be the operators acting
on H

Yo

Liro=01-p*(2) (- %A— +T2Pé0) + p? (Z) (uDX+ TV (Zo + Z))%,

(11.45) A
M) Zo=—u?(1-p%(2)) 5 +p%(Z) (uD¥)2.

Then Li %o js a second order elliptic operator with smooth coefficients. Let
P,f Zo(z, Z) (Z, Z’ e (Tg X),,) be the smooth kernel associated with the operator
exp(— L,, Zoy calculated w1th respect to the volume k' (Z,) (dvrx (Z')/(2m)%™X). The
same argument as in the proof of Proposition 11.10 shows there exist ¢ >0, C > 0
such that if u€]0, 1], Te[0, (1/u)], yo€Y, Zo€Ng ,,» |Zo| < (¢/2), then

(11.46) [Pt (Wo> Zo)> (Wo» Zo))—Po'70(0, 0)| < cexp< %)

In the next subsections, we will prove that there exists y€]0, 1], such that for any
peN, there is C) >0 such that if u€l0,1], Tel[l, (1/u)], yoeY, ZyeN
|Z,| < (¢ T/2), then

R, y0’

1 Z
(11.47) Tzamn | T NuPur*" (0, 01 =By (yo, ?")

< CLA+|Zo)) P (1 +T)).
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If u, T, yo, Z, are taken as before, then

2
(11.48) exp<_9><exp<_ C _2C|z,| >
u? 2 2

2u €

Theorem 11.13 then follows from (11.46)-(11.48).
We now concentrate on the proof of (11.47).

i) Rescaling of the variable Z and of the Clifford variables

Take yoeY, ZoeNg Z,| < (g/2). As explained in Section 11f), we identify
TXz,, (A(T*®DX) ® £),, with TX,, (A(T**VX) & €),, by parallel transport with
respect to the connections V'™, VI* ® 1+ 1 ® V* along the curve t€[0, 1] - ¢ Z,. These
identifications play a crucial role in the sequel.

For u > 0, set F, be the linear map

(11.49) heHyanuheHyo; F, h(Z)=h<Z>.
u
Foru>0,T > 0, set

2,Zg _p-17 1,Zg
Lu,T _Fu Lu,T Fua

(11.50) Mo Zom b M Zo T,

From (11.40), (11.45), we find that

(11.51) L7 70, Mi%0e(c(Tg X) ® End £),, ® Op.

Let ey, ..., e;;- be an orthonormal oriented base of (Tg Y),,, let e;; 4 ¢, - . -, €3
be an orthonormal oriented base of Ng ., e', ..., e*'" and e*'"*1, 2! denote
the corresponding dual bases of (T§Y),, and N§ , . Thene,, ..., e, and €', ..., €*'

are orthonormal oriented bases of (Tg X)yo and (T X),, respectively.
We now will use the rescaling technique of Getzler [Ge] outlined in Section 11a),
which we will adapt to our special needs.

Definition 11.19. — For u >0, T > 0, set

u T(e)_ \/vej

ie. ].
:Z J’

2el
c",T(ej)z— A _u—T—iep 2I'+1<j<2L

uT \/2

<j<2/
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The operators c, 1 (e;) act naturally on (A (Tg X) ® E)yo
Definition 11.20. — For u>0, T>0, let L}'7°, M ¥ End (A(T% X) & £),, ® Op

be the operators obtained from Lf Lo, M2 *Z0 by replacing the Clifford variables c(e)

by the operators c, 1 (e;) considered in Definition 11.19.
Let P3 '%0(Z, Z') be the smooth kernel associated with the operator exp (— L3 Zoy

which is calculated with respect to the volume element k'(Z,) (dvrx (Z)/(2 n)d‘“’x).
Then Pi’fo (0, 0) can be expanded in the form

(11.53) P (0, 0)—1$i1<;<ip<216’1 A €PNy e,
1<j1<...<jgs21
®Qfi:h  Qlif1eEnd ©),
Set
(11.54) [P2F0 (0, 01™*=Q, . e (Endi),.

Equivalently [P3 'Zo (0, 0))™* is the operator in (End £),, which appears after
el A ... A e?!in the expansion (11.53).

Proposition 11.21. — The following identity holds
1

T2 dimN

(11.55) —samn Trs Nu P10 (0, 0)]= (= )%™ Tr, [Ny [P 27 (0, 0)]™].

Proof. — Equation (11.55) is a trivial consequence of Proposition 11.2. [J

Remark 11.22. — If T remains in a compact set in R*%, by making u — 0 in
(11.55), and by using Proposition 11.15, we would essentially reproduce the proof by
Getzler of the local index Theorem [Ge]. The critical fact is that here T varies in
the interval [0, (1/u)]. In particular in (11.52), for T=(1/u), the Clifford variables
cle)(QlI'+1<i<2l) are not rescaled at all. The two parameters rescaling of
Definition 11.19 will permit us to interpolate between the values 1 and (1/u) of T,
the value 1 corresponding to the situation considered in [Ge] and the value T=(1/u)
to the problem which is solved in Section 12.

We now briefly imitate the procedure in Getzler [Ge]. By using Proposition 11.15
and the fact that p(0)=1, we find that L,i’TZO can be extended by continuity at u=0.
More precisely, we have the formula

N

1
(11.56) L)%= —

||M

<V9i+ 1 Z <(VTX)%0 Z, ei)ej, ej«>ej Ael A
1<j

i i <21

1
2,

l 2 (V™3 (Z, e)ej e pe nel' A

2
4T 2'+1 <j,j' <21
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2T  (<j=ar
20+1<j <21

LS (™%, @ eepepdelnel A >2

Z e nel A ((Vé)%o"‘ %TI' [(VTX)%O]> (ej ;1)

Y  daéda ((V&)§0+ %Tr [(VT")%OI) (e ¢)

2
2T v v1<g,jr <21

1 S 1
+ = Z e Ane A ((Vé)%o“' —Tr [(VTX)%O]> (ejs ej’)
T 1<j=<ar 2

2U'+1<j<21

+T Y e A (V5 VNZo)

1<j<21

+ Y EA(VEVN(Zg)+TAV(Z).

20'+1 <j<21

Let Pg:%" (Z,Z')(Z, Z' €(Tg X),,) be the smooth heat kernel associated with the
operator exp (— ng%") calculated with respect to the volume element
k' (Zo) (dvrx (Z)/(2 ®)%™X), Recall that the function B; on X was defined in
Definition 11.12. The standard local index Theorem in the form proved in [Ge] asserts
that

(11.57) (—)%™X Tr [Ny [pgleTo (0, 0)]™%) = Br Vo> Zo) )

T2 dimN

Using (11.55), (11.57), we see that to establish (11.47)—i.e. to prove
Theorem 11.13—we only need to show that there exists y€]0, 1] such that for peN,
we can find C,>0 for which when u€l0, 1], Te[0, (1/w)], yoeY, Zy€Ng,,,
|Zo| < (€ T/2), then

(11.58) |27 =PI 0, 0)| < C,(1+]Z, )P (1 + ).

j) The matrix structure of the operator L3-70'"

We still use the notation of Section 11i). In the expressions which follow, all the
terms containing wedge products or interior multiplication operators will be explicitly
written. Terms like O (1), O (|Z|) will never contain such terms.

By Propositions 11.5 and 11.15, we find that if | Zy| < (¢ T/2), then
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. 21
(11.59) My = —(1-p?(u z»% +p? (12) {— % 2 (V,efoﬂ(m
i=1
tr T (™M@ e io(uzPe e )
4 1s<j,j's2r u

2 2
(ej/\ _E_ie~> (@’l A ‘_u—ie.,)

2 2
1 1
4 Dy <<(VTX)%0/T 2, e)t -0 (|“Z|2)> e e,-,>
(£ i) (55
AT | = A~ i,
T 2 J T 2 j

TX\2 1 2 ) .
> <<(V V2o (Z, €)+ » 0(|uZ| )> e e; >

1
2 i<j=ar
21'+1<j <21

+

2

o

Py
U
>

|
(SR
k:?“a

Nl

S

=l

A= Z;—T iej,)+u0(1)>2+u20(l)
<(V§)%O,T + Te (V™ +0(uZ I)) (€5 €;)
(a A- ”_2i9.> <ef' A- -l—éie”)

27 27
t <(Vé)%o/T+ % Tr [(VTX)%O/T] +0 (I ul l)) (eja ej')

1

2

el u?T . )(ef’ u?T >
— A= — )| = A —1,.,

T 2 7/\T 2 7

1

foy ((Vé)%m L [(VTX)%O,T1+0<|uZ|>) ey ¢))

1<j<2r 2
2I'+1<j'<21

. u? e’ T . ) }
nN——i, || =A——1i,, |tuVy, .
( 2 }><T 2 J 0( |Z|)

21 2
; Z
(L) LM TR B (¢80 Vg, V (2 vuz)

j=1

Also
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21 22
; T . V4
+p2 (uZ) E <e] A — u > lej> VEeJZO/T(uZ) V (—’1_? +uZ>

j=21"+1

+T?p?(u2)V? (% +uZ>+T2(1—p2(uZ))p%.

It will be very useful to write some operators of order zero which appear in
(11.60) in matrix form with respect to the splitting of E=§~ @ E*.

Observe that since our trivialization of & preserves the splitting E=§~ @ E*, we
can write the operator T2 V2 ((Z,/T)+uZ) in the form

vV)? (% +uZ> 0
(11.61) T2V? (% +uZ>=T2
0 (V*)? (% +uZ>
The matrix form of the operator
2’ i u2 . g ZO
(1162) T ~Zl e n— —2—lej VreJZO/T(uZ)V TT— +ul
i=

will be described in a subtler way. By definition

Z
(1163) [erjlo/T(uZ) \' (?0 +uZ>:|ZO_O=V§jV(yO).

Z=0

By [B2, Proposition 3.5], we know that if Ue(TgY),,, V4V (y,) maps €,, into &y
The argument is as follows. If f'is smooth section of £ |, then V f=0. Therefore

(11.64) ViV +VVE F=0.

Now by definition Im(V|y)=&" |y. From (11.64), we deduce that Vy, V(y,) indeed
maps &, into & .

For 1 <j <2/, we now write V& V ((Zy/T)+uZ) in matrix form

reJZ'O/T(uZ)
(11.65) VEeZO/T(uz)V<é +uz>=[E,~,1 Ej,z]_
! T Ej, 3 Ej,4

We just saw that, for 1 <j <2/, for Z,=0 and Z=0, E; , vanishes. Therefore, for
1<j<2l,

(11.66) E,.,1=0<'Z?°| +u|Z|>.
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To prove (11.58), we will express exp(—Li’TZO/T) as an integral over a contour I'
in C of the form

(11.67) exp(— L) FoMy= 5%5 j exp(—A) (A — L2~ g,

r

Using the matrix structure of Lf,’TZ"/T, it will then be relatively easy to “dominate”

(A— LfTZ oMy=1_(\— ng ZoM~1 for LeT, and to obtain inequality (11.58).

k) A family of Sobolev spaces with weights

In formula (11.59), we see that operators like
TX\2 ; u* y u* .
PWZ){(V)Zon (Z, eey €. ) <ej A B le,») <el A b} lej'>

do appear. These operators are not uniformly bounded for the usual L, Hermitian
product. In this Section, we introduce a new family of Hermitian products such that
these operators will remain uniformly bounded. This fact will play a key role in the
sequel.

We equip A (T§X),, with the metric induced by the metric g™. We denote by
| | the corresponding norm. Clearly

(11.68) A(TEX),,=A(TEY),, ® ANE),,-

Set n=dimN. For 0 <p <2/, 0< g < 2n, set
(11.69) AP D (T X)yo = AP (TR Y),, ® A1 (N®),o-

The various A'»?(T§ X),, are mutually orthogonal in A (T§ X),,.

Let I, be the set of smooth sections of A (Tg X),, ® &, over (TgX),,, let I, o 5o
be the set of smooth sections of A»? (T§ X),, ® &, over (TgX),,. Let I, be the set
of square integrable sections of (A (T X) ® £),, over (TgX),,, let I?, ..y, be the set
of square integrable sections of (A" ? (T X) ® £),,, over (TgX),,.

Definition 11.23. — For u€]0, 11, Te[l, (1/w)], yo€Y, Zo€Ng s | Zo| < (e T/2),

0 set

(p, 9), yo°

Z 2(21l'-p)
(11.70) |s|3,T,ZO,O=J |s|2<1+(|z|+|zo|)p<.“_>>
(Tkx)yo 2

Z| uZ\\*?"-9
1+ I— = d 7).
( T P( > )) vrx (Z)

sel
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Notice that since the function p has compact support, for any « > 0, T > 0, the norm
| lu1,2o,0 is equivalent to the usual L, norm of IY,.

Then (11.70) induces a Hermitian product { , », 17,0 on I, . ... We equip
D =@I,,. ,, with the direct sum of the Hermitian products (11.70).

We will say that a family of operators acting on Igo, which depend on u€]0, 1],
Te(l, (1/w), yo€Y, |Zo|€Ng o, | Zo| < (€ T/2), is uniformly bounded if their norms
calculated with respect to the norms | |, 1.z, o are uniformly bounded.

The Hilbert norms | |, 1, zo,0 have been taylor-made for the Proposition which
follows to be true.

Proposition 11.24. — The following families of operators acting on I;’O and
depending on uel0, 1], Te[l, (1/u)], yo€Y, Zy€Ng ,, |ZO| < (¢ T/2) are uniformly
bounded

2

. uc . X .
1u|Z|S(£/2)<e'/\—?lei), 1 <i<g2/;
1,,|Z|<(£,2,|Z|<e'/\——?zei>, 1<i<2/

é uw?T .
1u|Z|<(e/2)|Z|<f’\_

Proof. — If |Z| < (¢/2u), then p(uZ/2)=1. The Proposition follows from the
fact that if u€]0, 1], Te[l, (1/u)], | Z,| < (€ T/2), |Z| < (¢/2u), then

1 <y 1zl <1 _ %] <L
1+|Z]+]Z,| 1+|Z]|+]Z,| 1+|Z]+|Z,|
W (1 +|Z|+|Z) <Cuy  ?|Z|(1+|Z]|+]|Z,]) <G
W |Zy |1+ |Z|+|Z,]) < G

12|
1 <1 T

X1,

b

(11.72)

——<L
1+ 121
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For peR, let I, IL;* be the set of sections of (A(T§X)&®E),,
A(TEX)®&*),, over (TgX),, which lie in the p™ Sobolev space. If seIi*, we
write s in the form

— ot -. + t,p
s=sT+s5"; stelj "

Definition 11.25. — If u€l0, 1], Te[l, (1/w)], yo€Y, ZoeNg.,., |Zo| < (€ T/2),

1
selyo, set

(11.73) |S|3,T,zo,1=|S|3,T,ZO,O+T2 |S+ 3,T,ZO,0
) 21

+ 2 | Ves i1, 200
w,T,Zg,0 i=1

+T2

p(uZ)V~ (% +uZ>s‘

Then (11.73) defines a Hilbert norm on I}. Also (I}, | |, 1.z, 1) is continuously

embedded in (I), | |, 1 z,0)- We identify I? with its antidual by the Hermitian

y0?
product { , ),,,T,OZO,O. The Hermitian product { , ), 1z, o permits us to identify I !
with the antidual of I,. Let | |, 1z, —; be the norm on I ' associated with the
norm | |, 1z, on L. We then have the family of continuous dense embeddings
with norms smaller than one

g g
Theorem 11.26. — There exist constants C; >0, C, >0, C;>0, C, > 0 such

that if uel0, 1], Te[l, (1/u)], yo€Y, Zo€Ng, » |Zy | < (€ T/2), for any s, s'el,  with
compact support, then

Re( Lf,’%‘)” Sy s>u,T, Z,0 = C, IS|3,T, Zo, 1 -G, |S|5,T, Zg, 0>
(11.74) IIm < L:,HZ'O/T s, s>u,T, zo,ol <G, |s|u,T,Zo, 1 Islu,T, Zg, 0>

|<L3,’TZ°’T s, s >u,T,Z0,0| <C, |S|u,T,ZO, 1 |s' |u,T,Zo, 1

Proof. — Since p has compact support, there exists C > 0 such that under the
stated conditions on u, T, y,, Z,, if V denotes the gradient in the variable Z, then

(1stn( )<
{1+ 20(2) e
T 2
Zo/T

Observe that if |Z|<(g/2), the vectors te;® (Z), ..., tes) (Z)
span (Tg X);,/r+z- By using (11.59), Proposition 11.24, and (11.75), we find that there

(11.75)



164 J.-M. BISMUT AND G. LEBEAU

exist C > 0, C' > 0, C” > 0 such that if 5, s'e I, have compact support, then
RC<M3 ZO/TS SDuT, 25,0 = C Ivs|u T, Zo, O_C’I lu T, Zg, 0
M, Folt c” +|v
! Im ¢ Sy S>u,T,Z0,0| S (|s|u,T,Zo,0 I SIu,T,zo,o)|s|u,T,zo,o,
|<M3 o s, 8 >u,T,Zo,0| <C’ (Is'u,T,Zo,0+|Vs|u,T,Zo,0)

(l s’ lu, T,2,0 1 | Vs |u,T, zo,o)-

(11.76)

Also by (11.65), (11.66) and Proposition 11.24, we get

2l 2
; u- .
‘ < p2 u2)T .Zl (6’] A~ ? lej> VEeJZO/T(uZ) A"
j=

Z .
<~% +uZ>S+, S + >u,T,Zo,0

‘< (uZ)T Z (e’ N — ? )VtelZO/T(uZ)V
(% +uZ> st s'F >“,T'ZO’0
(11.77) <CT(|S+ |u,T,Zo,0|S'_lu,T,Zo,0+|s_ |u,T,Z0,0

21 2
; u- .
‘ < p*wZ)T .Zl (‘—” AT ’e;) Vitomuz V
f

y4 -
<?° +uZ>s , S >u,T,Zo,0

21 2 T2
’ < P (u Z) Z <e’ N — ) iej) VEeJZO/T(uZ) Vv
j=

21'+1

Z ,
(%’ +uZ> S, § >u,T,Zo,O

Using the last two lines in (11.76) and (11.77), we get the last two lines in (11.74).
Moreover for any n > 0,

(11.78) T< 1<n T2+ l).
2 n

<CT |S+ |u,T,Zo,0 ls'+ |u,T,ZO,0’

’r+

s Iu, T,Z9, 0)9

< C|s|u,T,Zo,0 |S' Iu,T,ZO,o>

< C Islu,T,Zo,O |Sl lu,T,Zo,O'
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Using the first inequality in (11.76), (11.77) with s=s" and (11.78) with n > 0 small
enough, we obtain the first inequality in (11.74). Our Theorem is proved. [

1) Estimates on the resolvent of L3 Lo/T

In the sequel, we consider the operators Lf,’%O/T as unbounded operators acting
on Iy with domain I7 .
If Ae £ (ID,) (resp. Z (L}, I ), we note || A ||27 5, (resp. ||Al|; 1 %,) the norm of

Y0 °> 7Yo
A with respect to the norm | |, 1z, o (resp. the norms | |, 1.z, -1 and | |, 1.2, 1)-

Theorem 11.27. — There exist C > 0, A > 0, 8 > 0 such that if
(11.79) U= {leC Re(A) < 8Im? (M) — A}

if uelo, 1], Te[l, (1/w)], yo€Y, ZyeNg,., |Zo|<(eT/2), AeU, the resolvent
(A— L3 ZolMy=1 exists, extends to a continuous linear operator from Iy"o1 into Iylo, and
moreover

[ =L 2R 2,

(11.80)
=L o2

<C
< C(1+]A))>

0

Proof. — By the first inequality in (11.74), we find if LeR, A < —C,, if sel, has
compact support, then

(11.81) Re((L3 ZolT M) s, S>u,T,Zo,0 = C, |S|3,T,Zo,0'

From (11.81), we get
(11.82) I |u T,Z0,0 X <Cy ! '(L3 ZO/T_)‘-)S'u,T,zo,o-
Since L3 Zo/T — ) is an elliptic operator of order two which coincides with —(A/2)— A

for |Z| large enough, if | |,2 is a Sobolev norm on I}, there exists C' > 0 (which
depends on u, T, Z,, 1) such that

(11.83) Ishz, < C (=131 5|1, 20.0 1| 5]

u,T,Zg, 0)'

From (11.82), (11.83), we find that if AeR, A < —C,, the resolvent (A—L2 70"~ !
exists.
Take now A=a+ibeC, a, b, eR. If seIZ, has compact support, then

(11.84) [ CEFT=0) 5, 5D 1.29.0] = sup {Re (L7 s, 50, 1200
—a| Iu T,Zo, 0 |Im<L3 ZO/TS’ S>u,T,Zo,0_bls|u,T,Zo,0I}'

Using (11.74) and (11.84), we get
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(11.85) [ {121 s, 5D 1,200 = 5P {Cy 5|2 1,21

—(C2+a)|s|u,T,Zo,0’ —C3|Slu,T,Zo,1 Islu,T,Zo,0+IbI |s|3,T.ZO.0}'
Set

(11.86) CW)= inf sup{C,2—(C,+a), —Cst+]|b]}.

teR,t 21

Note that |s|, 1,790 < |5, 1,2,,1- From (11.85), (11.86), we deduce that
(11.87) | =L skm.20.0 > CO)| 5|7, 26,0

It is easy to verify that if A > 0 is large enough, and if 8 > 0 is small enough, if U is
defined by (11.79), then

(11.88) C,=inf C(A) > 0.

AeU

We now fix A >0, >0 such that (11.88) holds. From (11.87), (11.88), we
deduce

(11.89) | =L27) 5]u 1, 20,0 = Co 5|7, 20, 0-

Using (11.89), we find that if A€ U, if the resolvent (X—Lfy’fO/T)‘l exists, then

(11.90) |AL2FoT) 5|90 2o < Co .

From (11.90), we see that if A'eC, |A'—A|<(Cy/2), then the resolvent
(V' —L2FoM) =1 still exists. Now we saw before that if AeR, A < —C,, the resolvent
(7\.—L,i’TZ°/T)‘1 exists. In particular there is at least one Ae U where the resolvent
(A— L,f’,’TZO/T)'1 exists. It is now clear that the resolvent (A — L‘i’fo”)‘1 exists for every
AeU, and that (11.90) holds. We have thus proved the first inequality in (11.80).

Using the third inequality in (11.74), it is clear that L)'£”'" can be extended to a
continuous linear map from Iyo into Iyol. Moreover using the ﬁrst inequality in (11.74),
we find that if A, €R, A, < —C,, if sel,  has compact support, then

(11.91) 151201 < CT o =LY 5 |l 20, -1-

From the first inequality in (11.74) and from (11.91), we find that if A,eR, A, < —C,,
Ao— LS% o'T is a one to one linear map from I, into I ! and that

(11.92) |(ho—L2FoM) "t ki, < Cr L.

Note that (11.91), (11.92) are in fact a consequence of Lax-Milgram’s lemma.
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Take now AgeR, Ay < —C,. If A e U, then
(11.93) =L =, —L3 7N
(o= A—LeT) T (Ao~ Lyt
From (11.90), (11. 92) (11.93), we deduce that (A — L3 ZolTy-1 extends to a continuous
linear map from I;,! into I9. Also if ||(A—LJ’ Z"’T) 'l %2, denotes the norm of

(—L> ZO/T) ! when L, ! and 130 are respectlvely equipped with the norms
| I“,T’ZO, R O T we find that

(11.94) |~ L3 Zo/T)-1 038 < CIl+Ca Crt A =2).
Moreover
(11.95) e e (A

+ =M (o= LI7N) "t (A —LI 7o) "L

From (11.92), (11.95), we deduce that ()»-—Li,’TZO/T)”‘ extends to a continuous linear
map from I ! into I} and that

(11.96) | —L3FoNy o4t S CTUHCIH A =R | | =L 7o) || %2,

Using (11.94), (11.96), we get the second inequality in (11.80). The proof of
Theorem 11.27 is thus completed. [

m) Regularizing properties of the resolvent of Lf"TZ"/T

Since Y is a compact manifold, there exists a finite family of smooth functions
fi» - - -, f, defined on X with values in [0, 1] which have the following properties.

e Y= {xeX; f;(x)=0}
j=1
e OnY, df,, ..., df, span Ng.
Clearly if |Z,|<(¢T/2), the functions Ze(TgX),,— puZ)f;(Zo/T)+uZ)
(1 <j < r) are well defined.
Take now u€]0, 1], Te[l, (1/u)], yo€Y, ZoeNg ,,, | Zo| < (e T/2).

Definition 11.28. — Let 2 be the family of operators acting on I
u,T,Zo Yo

(11.97) ,@u,T,z()z{vei,l i< 2lTp(uZ)f<T°+uZ> 1<j<r}.
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For keN, let 2% 1 ;, be the family of operators Q acting on I,, which can be written
in the form

(11.98) Q=Q;... Qv Q€214 <i<k).

If keN, we equip the Sobolev space I} with the Hilbert norm || ||, 1.z, x such
that if self

(11.99) 5112 v, 2o, x= Z Z | Q571,200

1=0 Qeg, p, Zo

Proposition 11.29. — Take keN. There exists C, > 0 such that, for any uel0, 1],
TE[], (l/u)]a yOEYa ZOENR,yo’ IZOI S (ST/2), l.f Qla Cea, le’@s lfS, SIEIyO have
compact support, then

(11.100) |{1Q1 [Qz -+ - [Qu LT .. .18, 8" D1 20,0
< Cklslu,T,Zo,l |s' |u,T,Zo,1‘

Proof. — We first prove (11.100) for k=1. We thus have to show if Qe 2, 1 ,,

(11.101) |<[Q L3Z°/T]Ss>urzoo| CI IuTZol u,T,Zg, 1
Suppose that Q=V, (1 <i<2/). We use formula (11.60) for L,::’,’TZO/T. By Propo-
sition 11.24, the term [Q, M3 Zo/M] can be easily dealt with. Also
21 .
(11.102) [Vei, p*(wZ)T Y, (ef A —u? %) VEeJZO/T(uZ)V <% +uZ>}
j=1

=uT{ el<p (.) Z <e’/\—u 2>V5 ZO/TV<%+'>>}(”Z)'

Since uT < 1, using Proposition 11.24, we can also control the contribution of
(11.102) to |{[Q, L)™', ' D 1. 20,0 |- Similarly

(11.103) [Vei, T2 p? (uZ) V? (% +uZ>]

=p(uZ)uT{2T(Veip)(uZ)V2 (% +uz>

+Towd)| V(% ruz) o, (2 ruz) |

Since uT < 1, from (11.103), we deduce that
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(11.104) l <[Vei, T2 p? (u, Z) V? (% + uZ)] s(2), s’ (Z)> l

T<’p(uZ)V<% +uZ)s(Z) |s' @)

+|s(Z)|

p(uZ)V<§TQ +uZ>s’(Z)D.

From (11.102)-(11.104), we easily obtain (11.101) when Q=V,, (1 <i< m). Also for
1<j<r,if Q=TpuZ) f;((Zo/T)+uZ), then

L0y QL= T[p(uZ)f ( Yy Z) MZ;%"’T].
Clearly, for 1 <i<2/

(11.106) < (uZ)f( °+uZ)) <(V p)(uZ)f( °+uZ>

+p(uZ)(Veifj)<Zf° +uZ>>.

Since uT <1, wusing Proposition 11.24, we also obtain (11.101) when
Q=TpwZ) f;((Zo/T)+uZ) (1 <j < r). We have thus proved (11.100) when k=1.

We now briefly indicate the principle of the proof of (11.100) when k=2. Take
Q,=V,, Q;=V,, 1<i, i’ <2l The only difficulty comes from the commutator
Ve, [Ve T2p? WZ) V2 ((Zo/T)+uZ)]]. However two successive derivations in the
variable Z introduce a factor »?, and u*> T? < 1. We thus obtain (11.100) in this case.
The other cases left when k=2 are trivial.

Finally when k >3, one easily verifies that (11.100) follows from Propo-
sition 11.24. O

If Ae £ (I}, It), we denote by ||| Allli:% 2, the norm of A with respect to the
norms || |, r.zo.x a0d || |1, 20,0 On I¥, and I .

We now fix A >0, 8 > 0, as in Theorem 11.27. Also U denotes the subset of C
defined in (11.79).

Theorem 11.30. — For any ke N, there exist m,eN, C, > 0 such that if uel0, 1],
Te[l, (1/w)], yo€Y, ZoeNg ,o» | Zo| < €T/2), Le U, the resolvent (A — L) +'™) =1 maps
I into B '' and moreover

R, yo’
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(11.107) A =L&7) 47, < Cet+[ A .

Proof. — We first prove (11.107) when k=0. Since for 1 <j < r, f; vanishes
on Y, there exists C > 0 such that if y,€ Yy, ZoeNg ., | Zo| <&, then

(11.108) | /i (¥o» Zo)| < C|Zy)-

Using Proposition 8. 14 and (11.108), we find that for any xe %, se&,, then
(11.109) | f;(x)s| < C'|V(x)s].

From (11.109), we deduce that

(11.110) ”s”u,T,Zo,l SC"|~‘>'|u,T,zo,1-

We then obtain (11.107) for k=0 from Theorem 11.27 and from (11.110).
More generally, if Qy, ..., Qu1;€2, 1,2, We can express

Qi Qusy (=L~
as a linear combination of operators of the type
(11.111) Q[Qs [Qs - - ALt N Qusy- - - Quirs K < k.
Let #, 1,7, be the family of operators

(11.112) Rt 20={[Qups Qs - - -[Qu LTI

Clearly, any commutator [Q;,, [Q;,, - [Q,p n— L3 ZoMy=111] is a linear combination
of operators of the form

A—LYFM~ 1R, (A—L 7N~ tR,.. . Ry L —LJ)FM)~ Y
11.113) ( 1) Ry ( T%) TR, w ( %)
Rl’ « e ey Rklegu"r’zo.
By Proposition 11.29, the operators R;e#, 1 ,, are uniformly bounded in
LGy | |urze1)» Gy | |u1,20, -1))- By Theorem 11.27, we thus find that there
exist C > 0, meN, such that the norm in & (0, | |u 1 200> Gy | |ue12,1)) Of
the

operators (11.113) is dominated by C(1+|A )™

As we saw before the operators Q (Qe 2, 1 ,) are bounded in
LG | w201 Tygs | a7, 20,0))- Our Theorem follows. [J
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n) Uniform estimates on the kernel P." 7"

Theorem 11.31. — For any meN, m' e N, there exists C > 0 such that for uel0, 1),
Tel[l, A/u)], yo€Y, Zo€Ng ,,, | Zo| < (€T/2), then
(11.114) (1+]Z,)) olel 1+ P)iT(Z,Z)| <

. " su —— P,
° la| <m’, ,3, <m |0Z%0Z% ™7
1ZI<1,|z'|<1

Proof. — Let I" be the contour in C

(11.115) '={reC; Re(M)=58Im* (L) —A}.

Using Theorem 11.27, we find that

— 1327 1 —
(11.116) exp< “2'T >=2nijexp<7>(x—L3;TZ°’T)-ldx.
r
Equivalently, for any keN
3,Zy/T _ _
aL17) CXp(‘L"’T" >=<-1>" k=112t
2

2mi Y
J exp< )(x L) 7oMy~k .,
r 2

Using Theorem 11.30 and (11.117), we find that for any ke N

L3Z0/T
€X
p( 2 )

Let A, 1,2z, be the operator

0,k

(11.118) <Cp.

u,T,Zg

2

(11.119) A,

Tp2) f; ( 0 +uZ>

From (11.118), we deduce that for any k, k', k"' eN

kAR k' LSTZO/T
A Au,T,ZO/TA exp 5 -

0,0
< C
u,T,Zg

(11.120) ‘

We claim that for any k""" eN

13- Zo/T
exp<— wT )A"

0,0

(11.121) <C.

u, T,Zg

2
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In fact let L)7°" be the formal adjoint of L}Z*" with respect to the usual
(unweighted) Hermitian product on IY,

(11.122) 5,5 el) > (s, 5 )= (s, 5" dvix (2)

(TR X)yq

Then L3  Zo/T has essentlally the same structure as the operator L3 ZO/T, except that

the operators ¢’ A, i, are changed into i,, €' A respectively. If seI?, . vo» WE NOW set

, Z 2(p—-21)
(11.123) ISIH,’T,ZO,0=J |s|? <1+(;z|+|zo|)p<“2 ))
(TR X)

2(q—2n)
(14 2L (“2)) ™ donct)

The obvious analogue of Proposition 11.24 still holds. Moreover under the stated
conditions on u, T, y,, Z,, the analogue of (11.75) is now

‘ <1+(|z|+|zo|)p<”2z>> l <1+(|Z|+|ZO|)p<u2Z>> ,
<

11.124 a
R0 i) e
T 2 |Z| (uZ)
1+ —Lpl —
T 2
The analysis of the operator exp (— Li‘f"/ T°/2) proceeds exactly as before with respect
to the new Hilbert norm. By taking adjoints again with respect to the ordinary

(unweighted) Hermitian product on I;’O, we thus obtain (11.121).
From (11.120), (11.121), we find that for any k, k', k", k"' eN

(11.125) || A% AX 1 5 A¥exp (—L> 20T A¥” |02, < C”.

Let J9 be the set of square integrable sections of (A (T¥X) ®¢E),, over
{Ze(TEX),,; | Z| < 3/2}. We equip J, with the Hermitian product

Yo’

(11.126) 5, 5'€ld (s, )= (s, 8" ) dvix (2).

1Z)<3/2

Let | | denote the associated norm JO. If Ae £ (JY), let ||A]|,, be the norm of A
with respect to the norm | |-
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Clearly J9 embeds in Iy . Moreover if seJ?

vo» from Definition 11.23, we deduce
that

s < |s,7.2. 05
(11.127) o
510, 1.20.0 < CA+|Zo > | 5].

We now consider the operators A¥ A% 1, A¥ exp (—LJ'7°") A¥” as acting on JO.
From (11.125), (11.127), we find that for any k, k', k", k""" €N, then

(11.128) || A*AX 1 2o A exp (= L7 A ||, < C" (1+]Z,)2".
By (11.128) and by Sobolev’s inequalities, we deduce that for any k', k", k""" e N
(11.129) sup |A¥ 1 L r A AL PrIT(Z, Z))

|Z| < 5/4
1Z'| < 5/4

< C(1+]|Z,))?".

If xeX, let d(x, Y) be the Riemannian distance from x to Y. Since on

Y=N {xeX, f;(x)=0}, df,, ..., df, span N§, there exists C' > 0 such that for any

=1

xeX
(11.130) ijz x)=Cd*(x,Y).

Clearly, by (11.44), if u€]0, (¢/5)], |Z| < 5/4, p(uZ)=1. From (11.129), (11.130),
we deduce that if u€]0, (¢/5)], Te[l, (1/w)], |Z,| < (e T/2)

(11.131) sup
|Z] < 5/4
|Z'| < 5/4

2k’
(Td( To +uZ, Y)) AL AL PR (Z, 7| < C(1+] Zo 2V

If T<1/u, |Z|<5/4, then uT|Z|<5/4. Since (11.131) is valid also for k'=0,
we deduce from (11.130) that for any k', k", k"’eN, if uel0, 1], Te[l, (1/u)],
1Zo| < €T/2)

(11.132) sup
|Z] < 5/4
|Z'| < 5/4

2k’
(w(%, Y)) AL A5 PO (Z, Z')‘ <CU+|Zo ).

Now by definition d((Z,/T), Y)=|Z,|/T. So (11.132) can be written in the form

(11.133) sup
|Z| < 5/4
1Z'] < 5/4

EARERE S A Z)|<C(1+|Z D2
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Using again Sobolev’s inequalities, we deduce (11.114) from (11.133). Our Theorem
is proved. O

0) Estimates on (A —LJ+°") "'~ (A—Lg 7*"
'u, T 0, T

Let sel, 4, ,, With compact support. Then as u—0, | s|u,T,ZO,0 has a limit
Is]o,r, zo,0 Such that

L3 [sBrsgo= | sPasiziszoper
(TRX)yo

2(2n—9q)
(1 + l_i—|> dvrx (Z).

Let I} ,‘,” a.yo D€ the Hilbert space which is the closure of the set of the sel, , ;.
with compact support with respect to the norm | |, 1.z, 0, and let L2 be the ortho-
gonal sum of the I{) ;) ,’s. Note that in general, L, is strictly included in I),.

Let ey, . . ., e;; be an orthornormal base of (Tg X),,.

Definition 11.32. — Let L! be the set of seL? such that for 1<i<2/

10 11
V. sell . If sel, set

(11.135) |s|(2),r,zo,1=|S|(2),T,ZO,O+T2 |s+ |(2),T,Zo,0

(%)
T
Again if seI, has compact support, as u =0, |s|, 1,201 = |]o,T, 20, 1-

Let I, ! be the antidual of Ly, and let | |y 1,7, —; be the norm on I~ ' corres-
ponding to | |o 1.z, 1. Identifying I with its antidual by the Hermitian product
associated to | |o 1z, 0, We have the continuous embeddings with norm smaller
than one I,) > L0 — 1 1.

If a=(ay, ..., ®y;) is a multiindex, set Z*=27Z*. . .Z"2!

Definition 11.33. — If k=—1, 0, 1, k'eN, let L%*) be the set of sel;* such
that if |o| < k', Z*seLf. If se L%, set

(11.136) |S|(2),T,ZO,(k,k')= Z |Zasl(2),T,Zo,k'

la| <k’

2 21

+ Z |Veislg,T,Z0,O'
0,T,Zg,0 i=1

+T2

Clearly L% Y=Lk and | |o.1,20.0.00=| lo.7.20.
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Proposition 11.34. — For keN, there exist C > 0, k'€ N such that if Te[l, + o],
Yo€Y, Zo€Ng ., |ZOI < (eT/2), Ae U, if sel, has compact support, then

(11.137) |()"—Lg:¥0/1‘)“1SIO,T,ZO,(I,k) S CA+|MDY |50, 1, 20, 0. b
Proof. — Using Theorem 11.27 and proceeding as in the proof of Theo-

rem 11.30, we see that to prove Proposition 11.34, we only need to show that
if X is an operator of the type

(11.138) =[Z", [Z", ...[Z7 Ly %M,
then
(11.139) 12159 2, < C.

Now clearly
(11.140) =[Z", [Z%, .. .[Z'», M3 2],

Then (11.139) follows from formula (11.59) for MJ' 7. [

Theorem 11.35. — There exists C > 0 such that for any uel0, 1], Te[l, (1/u)],
Y0€Y, Zo€Ng ., | Zo| < (€ T/2), if sel,, has compact support, then

(11.141) |(L 7T —Le 2 ) 8| 120, -1 S CuT(A+|Zo]) |$]o,7. 20, (1, 4y

Proof. — Take s, s"el, ) with compact support. Using (11.75), we find that
(11.142) |<(1_ 2(uZ)As, s’ >u T, Zo, o| Cu| |0 T,Zg,(1,1) |S |u T, Zg, 1>

{ < <p (llZ) <ZvreZO/T(uZ)> Z V >
" u,T,Zg, 0

Cu| |0TZO(1 l)|s|uTZOI

Observe that

(11.143) | hrzoo <I lorze0

From Proposition 11.24 and from (11.143), we find that for 1 <i<2/'
(11.144) |(p(uZ)—1)e As|uTZOO Cu| |OTZQO

Also for Te[l, (1/u)), |Z,| < (€ T/2), we get

(11.145) <1+(|z|+|zo|)p(“zz)><cu.
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From (11.143), (11.145), we deduce that for 1 <i <2/’
(11.146) lp(Z) i, s, 1,200 < Culslo,r,z,0-

So using (11.144), (11.146), we get for 1 <i <2/

2
(11.147) }(p(uZ)(e"/\— u—iei)—eiA>s < Culslo 1,20, 0-
2 u,T,Zg, 0
Similarly, by using again Proposition 11.24, we obtain for 2/'+1 <i <2/
en T e A
11.148 uz - i, |— s <Cuj|s .
(11.148) l(p( )< 5 ) < ) o |51o.7,20.0

From (11.59), (11.142), (11.147), (11.148), we finally obtain
(11.149) |<(M3,’TZO/T—M(3):%0/T) s, s >u,T, Zo,0| <Cu |S|0,T,zo,(1,4) |S’ |u,T, Zo, 1°

By (11.149), we get

3,Zo/T 3,Zo/T
(11.150) |(Mu,T0 My 1° )S|u,T,zo,—1 <Cu|S|O,T,Zo,(1,4)~

Using (11.147), (11.148) we find that

210 )
(11.151) ‘(T p*(uZ) ), (ej AT u?iej> (VEeJZO/T(uZ) V) <% +uZ>
i=1

21

CTY e (VEJ.V)(%))S

J

21 22
: i V4
\(p2 (uZ) Z (ef A — u 5 lej> (VEeJZO/T(uZ) V) (% +uZ)

< CuT|so, 1,200, 1)
u,T,Zg, 0

j=21"+1
21 Z
- ) én (VEJ.V)(—%))S < CuT|slo,1,20, 00, 1
j=2r+1 u,T,Zg,0
Also for any Ze (TgX),,,
(11.152) ‘(TZ 02 (uZ)(V*)? <% +uZ>—T2 (V*)? (%))f (Z)\

<CuT?|Z||s* (@)|.
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From (11.152), we get

(11.153) '(szz(uz)(w)z(zTg+uz>_Tz(V+)z<_i_o>>s+

u,T,Z9,0

<CuT|s|o 1,20 1,1

Recall that V~ vanishes on Y. Therefore
(11.154) V- <5 +uz>=0<‘—zﬂ +u|Z|).
T T

From (11.154), we find that for T < (1/u), for Ze(Tg X)

(11.155) KTZ p2(uZ)(V")? <% +uz>—T2 (V) <%>> s (Z)‘
<SCuT(ZP+|Z||Z]) |5~ @)].

From (11.155), we get
(11.156) KT PP UZ) (V") (ZT +uZ>—T2 V)2 (ZT»S

< CUT(1+|ZO |) ISIO,T,Z(),(O,Z)'

u,T,Zg, 0

From (11.150), (11.151), (11.153), (11.156), we get (11.141). O

Theorem 11.36. — There exist C > 0, ke N such that for uel0, 1], Te[l, (1/u)],
Y0€Y, ZyeNg ., | Zo| < (€T/2), Ae U, if seX,, then

(11.157) (=L ==L ) )5 0,1, 26,0
SCuTA+|ZoDA+|AD*| 50,1, 20. 0. 4

Proof. — We use the formula
(11.158) ()"_LS,’TZ“O/T)—I_()‘_Lg:%o/T)_l

_ 3,Zo/Ty — 3,Zo/T 3,Zo/T 3,Z0/T —
_O‘-_Lu,To/) 1(Lu,To/ —LO,TO )()"_Lo,'ro/) L

By Theorem 11.27, Proposition 11.34 and Theorem 11.35, we get (11.156). O

p) Proof of Theorem 11.13.

Let I' be the contour (11.115). By Theorem 11.27 and by its analogue for

3,Zg/T
LO,T ’
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(11.159) exp(— L) 7'M —exp (— L3 %)
S f exp (= 1) (A— L2y~ 1 — (L — L2 20y "1y .
2ni Jr

Let J)) be the set of square integrable sections of (A(T¥X)®E),, over
{Ze(T§X),,; |Z| <3/2} which we equip with the Hermitian product (11.126). If
AeZ(19), we denote by || A ||, the associated norm of A. Using Theorem 11.36 and
proceeding as in (11.125)-(11.128), we find that

(11.160) lexp (=L 7o) —exp (=L 7)o < CuT(1+|Z,])?" 1.

By Theorem 11.31 and (11.160), Theorem 11.31 is also true for u=0.
Let now ¢ be a smooth function defined on (TgX),, with values in R, with

support in {Ze(TgX)

Yo’

|Z| <1} and such that J ¢ (Z) dvpx (Z)=1. Take
(TR Xy,

Be10, 1]. Using Theorem 11.31, it is clear that for U, U’ e(A (T X) ® Eyo

(11.161) ’ (PrFT—Py2My (0,00 U, U

(PrPT-PyPN(Z,2)U, U

L¢<Z> icp@)dvm (Z)dvrx (Z)| < CB.

J‘(TR x)yo x (Tr x)yo

BZ! B BZ! B

On the other hand, by (11.160), we get
(11.162) J (@IT-PMN(zZ,2)U, U )

(TR X)y, X (TR X)y,

1 Z\ 1 Z' , CuT .

@‘P <E>@(P <E)dvrx (Z) dvrx (Z)‘ < F(l"‘lzo |)Zl 1
By choosing B=(uT)/?!* 1 we obtain from (11.161), (11.162)
(11.163) [K@EFT=PYM) (0,00 U, U Y| < C @DV (14|Z, )1
By (11.163), we find that
(11.164) |2 FM—P3 20y (0, 0)| < C'(WT)YEHD (14]Z, )2+

Take now meN. By Theorem 11.31 and by (11.164), we obtain for u€]0, 1],
Te(l, (1/u)],
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c” .
11.165 PH2T_p32oMy () )| — = (uT)VR@IHD) (] 4|7 [} +1I2.
(11.165) (@RI 0,0 < s D) (1+]Z,))
By taking m large enough in (11.165), we obtain (11.58) for u€]0, 1], Te[l, (1/u)].
The proof of Theorem 11.13 is completed. O
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XII - THE ANALYSIS OF THE KERNEL OF exp (— (¢ D*+ (T/u) V)?)
FOR T POSITIVE AS « TENDS TO ZERO

a) Assumptions and notation.

b) The problem is localizable near Y.

¢) A local coordinate system near y,eY and a trivialization of A (T*®VX)® &.
d) Replacing the manifold X by (TgX),,.

e) Rescaling of the variable Z and of the horizontal Clifford variables.

: 3,y
f) The asymptotics of the operator L, Ty A U 0.

3,3

g) Uniform estimates on | o

h) Convergence of the resolvent in distribution sense.
i) Proof of Theorems 12.4 and 6.7.

J) A remark on Sobolev spaces with weights.

The purpose of this Section is to prove Theorem 6.7, i.e. to show that for any
T>0

2
(12.1) lim Tr, [NHexp<—<uDX+ IV) )]
u—0 u
= J @ Tr, [Ny exp (— %%2)]ch(n, g").
Y

In particular, the operator %322 associated with the exact sequence
0-TY —>TX|Y — N — 0 appears here for the first time and is produced by a non-
trivial asymptotic analysis near Y.

Note that the range of variation of the parameters (u, (T/u)) (ue€]0, 1], T fixed)
is included in the range considered in Section 11. The splitting §=£~ @ £* plays again
an important role, not only, as in Section 11, for functional analytic reasons, but also
for computational purposes. As in Section 11, this splitting defines a corresponding
splitting of the vector space of smooth sections of A (T*© Y X)&® &, and the analysis
is in fact done on a splitted infinite dimensional vector space.

In Section 13, a more elaborated splitting of infinite dimensional vector spaces
will be considered. Still the computational ideas being essentially the same, we briefly
describe them in a finite dimensional context. Let E=E~ @ E* be a finite dimensional
vector space, and let M be an element of End (E) which we write in matrix form as

(12.2) M=[M1 MZ].
M, M,
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Then under natural assumptions on Ae C, A—M is invertible and moreover

(123) (X_M)ﬂ:[ (-~ M, ~M, (A= M)~ My (=M, M, (b= M) ™ My) ™ M, (.= M) !
’ (}V“M4)_1M30‘_M1_Mzo"_Ma)-lMs)-l (),—M4)_1+(}\,—M4)_‘M3(7\.—M1—M2(7\,—M4)_1M3)_‘MZ().—M4)_1 .

Assume now that M =M and that as T - + o

1 P— T .
MI,T—M1+0<—T->, M, r=/TM,+0(1);

(12.4) v
My = /TM;+0(1); M, =TM,+0 (ﬁ)

From (12.3), (12.4), we deduce, under natural assumptions, that as T — + oo
_ -1 —1
(12.5) = M)~ [(X M, +M(2) M; ' M,) g]‘

By using a contour integral formula, we can prove, under certain circumstances, that
if P is the projection operator E — E~, then as T —+ o0

(12.6) exp(—M;) - PE exp(—(M,—M, M, M,))PE".

Formula (12.6) was used in an infinite dimensional context by Berline-Vergne [BeV]
in their proof of the local families index Theorem of Bismut [B1].

In this Section and also in Section 13, infinite-dimensional and still local versions
of (12.6) will appear, the difficulty being of course to make sense of the various
asymptotic formulas in (12.4). Understanding the algebra underlying (12.5) is a useful
guide to the computations in this Section and in Section 13.

This Section is organized as follows. In a), we introduce our assumptions and
notation. In b), we show that the problem under consideration in Theorem 6.7 can
be localized near Y. In c), we construct a coordinate system near y,eY and also a
trivialization of A(T*©VX) ® &. In d), we replace the manifold X by (TgX),,. In e),
we rescale the coordinate Z in (TgX),, and also the Clifford variables. In f), we
calculate the asymptotics as u — 0 of the operator Li’{j’“ obtained from (u D*+ (T/u) V)?
by such a rescaling. The building blocks of the operator #3%: appear in this process.
In g), we obtain uniform estimates on the rescaled heat kernels. In h), we prove the
convergence as u — 0 of the resolvent of the rescaled operator L:{z‘ to the resolvent
of 93%’}0+(V“)§0 in the sense of distributions. In i), we prove Theorem 6.7. Finally
in j), we show how to simplify the functional analytic constructions of Section 11 in
the specific situation considered in this Section.
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a) Assumptions and notation

Consider the exact sequence of holomorphic Hermitian vector bundles on Y

(12.7) 0->TY - TX|y > N—-0.

We use the notation of Section 5 applied to this exact sequence. In particular for
u>0, #2 denotes the operator constructed in Definition 5.4, and Q)(Z, Z')
(yeY, Z,7Z'e(Tg X),) denotes the heat kernel associated with the operator
exp (—#2?) calculated with respect to the volume element of (Tg X),, (dvrx/(2 m)%m¥).
We otherwise use the notation of Section 11.

Clearly foru >0, T >0

(12.8) Tr, [NH exp(—<u DX+ Iv)ﬂ:j Tr, Ny P, i, (5, )] 22X

u (2 n)dim X’

Note that Te]0, + oo[ will be fixed in the whole section.

b) The problem is localizable near Y

We now will show that the proof of Theorem 6.7 can be localized in a
neighborhood of any given y €Y.

Proposition 12.1. — Take o > 0. There exist ¢ > 0, C > 0 such that for any xeX,
with d(x, Y) = «, and any ue]0, 1], then

(12.9) | P, 1 (x, )| < cexp <— %)
u

Proof. — Let a be be the injectivity radius of X. Take b=inf((a/2), (2/2)). Let
P} 1 (x', x") be the heat kernel associated with the operator exp (— (u DX+ (T/u) V)?)
and the Dirichlet boundary conditions on dB* (x, b). Then by Proposition 11.10, there
exist ¢ > 0, C > 0 such that if u€]0, 1], Te]0, 1]

C
(12.10) I(Pu,T/u_P:,T/“)(x’ x)| Scexp(‘;).

Observe that the condition T < 1 can easily be lifted by a simple scaling argument.
We now use the notation of the proof of Proposition 11. 10, with x,=x, and T
replaced by T/u.
By using Lichnerowicz’s formula of Proposition 11.5, and also It6’s formula, we
find that if S is defined by (11.19) (with x,=x), then
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2 1
(12.11) P 1 (%, ) =P, (%, x)EQi[ls>lexp< . J K(x?)dt)Hl ré].

0

For 0 <r<1, M, is still given by (11.17) (with T replaced by T/u), and H, is the
solution of the differential equation (11.18). Since V is invertible on X\|'Y, there exists
C > 0 such that for any xe X with d(x, Y) > a, and any x'eB (x, b), if f €&,

(12.12) V) fIP=C|f]>

Using now equation (11.18) and Gronwall’s lemma, we find that if
he(A(T*®VX)RE),, on (S > 1) (so that x* remains in BX(x, b) for 1€[0, 1]), then

2
(12.13) |H’{‘h|2<exp(—%+C’T).
u
Classically, for u€]0, 1]
CII

(12.14) pul (x, x) < m.

Also recall that the linear map 1} is unitary. From (12.11)-(12.14), we obtain

2dimX u2

27 2
(12.15) |PX 1 (x, x)| <£—exp<—CT +C'T>.
u

Since T is positive, from (12.10), (12.15), we get (12.9). O
We now fix € > 0 as in Section 11e). The tubular neighborhood %, of Y in X
was defined in Section 8¢). The main result of this Section is as follows.

Theorem 12.2. — For any Te]0, + oo

dvx (x)
(2 n)dim X

(12.16) lim f Tr, [Ny P, 17, (%, %)]
%5/8

u—0
= J @ Tr, [Ny exp (— #372)]ch (n, g").
Y

Proof. — The whole section is devoted to the proof of Theorem 12.2. [
Remark 12.3. — Clearly

a21) ToNenn (404 TVY) = [ 004, Py 01 B2
u X (2 n)dlmx

Theorem 6.7 is then a trivial consequence of Proposition 12.1, Theorem 12.2 and of
(12.17).
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As explained in Section 5c), for any T >0, y,€Y, ZoeNg ,, Tr; Q2% (Z,,
lies in A (T§ Y),,. Therefore Tr, [Qi"z (Zo, Zy)] ch(n, g"),, also lies in A(TRY),,.
The main technical result of this Section is as follows.

Theorem 12.4. — For any T >0, yo€Y, Zo€Ng ,, then

12.18 lim -
( ) uo0 (2n)dlmx

u2 dimN Trs [NH Pu, T/u ((yo, u Zo), (y()a u ZO))]

_ [(—zI)IT OTr, [QS (Zo, Zo)l ch (, g")yo]m-

For any T > 0, peN, there exists C > 0 such that for any uel0, 1], yoeY, Z,eN
|Zy | < €/8u, then

(12.19) w? 4N | Trg [Ny Py 1y (D0, uZo), (o, uZo))]| S C(A+|Zo )77

Proof. — The proof of Theorem 12.4 is delayed to Sections 12¢)—121). [
Remark 12.5. — Using (8.21), we find that

d X(x) _ 1 dim X
(12.20) Lw Tr, [Ny P, 1y (%, )] (zi)dimx‘ (ﬂ)

j {j u? dimN Tr, [Ny Pu,T/u ((yo> uZy), (yo, uZy))]
Y |1Zg| <¢/8u

k(yo, uZy) dvoy (Zo)} dvy

Using Theorem 12.4 and dominated convergence, we find that for any T >
u—0

(12.21) J Tr, [Ny P, 10 (%, %)] dv"d(?‘)x
0)15/8 (2 ’ﬂ:) im
- J {J O Tr, [Ny Q2 (Zo, Zo)] dow Szn?l } ch(n, gy,
v Un 2m)

Using Definition 5.8, we can rewrite (12.21) in the form

dvy (x)
(2 n)dimx

(12.22) J Trg [Ny P, 1/ (%, X)]
WUe8

- j @ Tr, [Ny exp (— #72)] ch(n, g"),
Y

Z,)]

R, yo>

(Yo)-

), as
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which is exactly Theorem 12.2.
We now concentrate on the proof of Theorem 12.4.

¢©) A local coordinate system near y,cY and a trivialization of A (T**VX) ® &.

We here use the notation of Section 11f). Take y,eY. If Ze(TgX),,,
teR - x,= expi,‘0 (1Z) e X still denotes the geodesic in X such that x,= y,, dx/dt |,-o=Z.
If | Z| < €, we identify Z e (TgX),, with exp) (Z)eX. The ball B™(0, ) in (Tg X),, is
identified with the ball BX(y,, €) in X. The function k' (Z) on B™ (0, ¢) is still defined
by equation (11.35). Recall that k' (0)=1.

If |Z| <e, we identify TX,, A(T*©VX), with TX, , A(T**VX), = (resp. &,
with &) by parallel transport with respect to the connection V™ (resp. V%) along the
curve tel0, 1] » ¢t Z.

With respect to Section 11f), the main difference is that we do not need any
more the intermediary Z, e Ng , , which is now identically zero.

For |Z| < ¢/2, let T'7%, T’ be the connection forms of the connections V', V¢ in
the considered trivializations of TX, &. Using (11.37), (11.38), we get

- I'5=B,,,

(12.23) r;x= %(VTX))Z’O (z, ,)+0(|Z|2).

If |Z| <& Ue(TgX)z Vy denotes the standard differentiation operator in the
direction U acting on smooth sections of (A (T*®VX) ® €),, over (Tg X),,.

d) Replacing the manifold X by (T X)),

We still define the vector space H, as in Definition 11.17. Also the function
p(Z) is given by formula (11.43).

Let A be the ordinary flat Laplacian on (Tg X),,.

As in Section 11, both operators D* and V now act on smooth sections of
(A(T*®VX) ®E),, over {Ze(TgX),,; |Z| <&}

Yo’
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Definition 12.6. — For u> 0, T >0, y,€Y, let L?° be the operator acting on

u, T/u
H.VO
2
L, 35,=—u*(1-p*(2) % +p*(2) (u DX+ % \Y% (Z))
2
(12.24) (1= p* @)Y,

Mivo= —u2(1=p*@) 5 +p* @ OV,

Let P :”;"u (Z,Z) (Z, Z €(Tg X),,) be the smooth kernel associated with the opera-
tor exp (—L,’1%), which is calculated with respect to the measure doyy (Z')/(2 m)*™X.
Using the notation of Definition 11.18, we find that L:,’]’.’;’u= Lyt
The same arguments as in the proof of Proposition 11.10 show that given T > 0,

there exist ¢ > 0, C > 0 such that for u€l0, 1], yo€Y, ZoeNg ., | Zo| < /8, then
’ - C
(12.25) IPu,T/u (Zo, Zo) k' (Zo)— P:, T/u (Zo, Zy) | < cexp (7)

From (12.25) it is clear that to prove Theorem 12.4, we only need to show that for
any T >0, ZyeNg ,,

u—->0 2TC M.T/u

dimX
(12.26) lim <L> umN T (NG PL20 (W Zo, uZ,)]

1 \dimN
= ( 2n > [@Tr, [Ny Q,;% (Zo, Zo)Ich(n, g, ],

and that given T >0, peN, there exists C> 0 such that for u€]0, 1], y,€Y,
Z,eN |Z,| < €/8u, then

R,y0°

(12.27) w?4mN | Tr [N P22 (uZo, uZo)]| < C(1+|Zo )77

u, T/u

e) Rescaling of the variable Z and of the horizontal Clifford variables

For u > 0, let F, be the linear map acting on H,, defined in (11.49). For u > 0,
T > 0, set

L2Y =F; 'L, F,
(1228) u, T/u u, T/u
MZYo=F, M} F,.
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As in (11.51), we find that

Lo, M20¢e (c(TgX) & £),, ® Op.

Let ey, ..., e;;- be an orthonormal oriented base of (Tg Y),, let e, 4, . . ., €y
be an orthonormal oriented base of (Ng),,. Let e!, ..., e*'" and €*'"*!, ..., ! be
the corresponding dual bases of (Tg Y),, and (Ng),,.

Definition 12.7. — Let K, K;—;) be the sets of smooth sections of
A(TEY) ® AN*) ® 8),,, (A(TFY) ® A(N*) ® £*),, over (TgX),,.

Then K, =K, @K . For 1 <i< 2/, the operators ¢' A, i, act on A(T}Y),  as
odd operators. Therefore they also act as odd operators on K, K;—:).

Similarly, by Section 5a), A(N*) is a ¢(Ng)-Clifford module. Therefore for
20I'+1 < i< 2l the operators c(e;) act as odd operators on K Ky’—'o.

Definition 12.8. — Foru>0,1<i<2/', set

Y0’

(12.29) c,(e)= f \/2 g
For u>0, T> 0, let L: i;’, M2?oe End (K, ,) be the operators obtained from
L: ;;’“, M2:%0 by replacing the Clifford variables c(e) by c,(e;) for 1 <i< 2!’ while
leaving unchanged the operators c(e;)) 21'+1 <j < 2).

Let Pf 1”.;’" (Z,Z') (Z, Z' € (Tg X),,) be the smooth kernel associated with the ope-
rator exp (— L“ T /u), which is calculated with respect to the measure dvry (Z')/(2 T)*™X,
Then P3 '+% (Z, Z') can be expanded in the form

P> (Z, 2= Y E1A ... AEP A i

u, T/u 1t e
(12.30) 1<ip<...<ip<2l ' !

1sj1<...<jgs2U

®Q) iz, Z), Q1 (Z, Z)eEnd (A (N%),, B E,).
Set

(12.31) [P0, (Z, Z)™*=Q, .. 21 (Z, Z)€End (A (N*) ® ),
Equivalently, [P;:;;’u (Z, Z")]™* is the operator which factors e! A ... A e*!"in (12.30).

Proposition 12.9. — For any u >0, T > 0, yo€Y, Zy€ Ny ,,, the following identity
holds
(12.32) u24mN Tr [Ny P12 (uZ,, uZ,)]

u, T/u

= (=)™ Tr, [Ny [P35, (Zo, Zo)I™]-

u, T/u
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Proof. — Clearly
(12.33) P10 (uZo, uZy)=u"24mXp2yo (7 7.

u, T/u u, T/u

Then (12.32) is a trivial consequence of (12.33) and of Proposition 11.2. [J

f) The asymptotics of the operator L "1 a8 u— 0.
If Be A(TRY),,, B acts on A(TgY),, by the map
aeA(TEY),, - B A aeA(TEY),,

Clearly i* (V™®)2, i* (V®)2, which are the restrictions to Y of the curvatures (V7¥)2,
(V5)? of V™, V&, lie in A%(T{Y)® End (TX ly), A*(T§Y) ® End (§|y). Therefore

* V2, * (V)2 * 1/2Tr [(V™)? ] act on K,
For 1 <i<2I, set te;=1e’° (here ZO—O) Usmg (12.24), we get
T 2V 2
(12.34) LS {;’u—Mf’y0+ p2(uZ) {— Y (ei A= 5 e,> Vi, V) (uZ)
u 1

21

+T Y 9w vy z)+T Vz(uZ)}+—(1—p (uZ)) P,

21'+1

Observe that in (12.34), the divergent factor T/u has been forced into L3 y° by
the Clifford rescaling. It is exactly at this stage that the Todd form Td (TX, ng) ‘and
the Chern character form ch (€, 4%) will in fact interact with each other.

We will now describe the asymptotics as u — 0 of the various terms in (12.34).

We first write the asymptotics as u — 0 of MY, In the sequel, all the operators

A, B, (1<i< H...
will never contain such terms in implicit form.

Using Proposition 11.4, (12.23) and proceeding as in (11.59), we find easily that

21
(12.35) My vo=—(1-p*(uZ)) % —-p*(u2) {% Y (Vtei(m

1

1

e <«V"‘) @ )+ LO(uZPese, )

- u? . u? | 1

(e’/\——zej)<e’ /\“—lej,>+- Z (O|Z))e, ¢;. )
2 2 4 (<<

2I'+1<j'<21
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<\/2e’/\—7— )c(e )+u0(1)> +u20(1)

NI'—‘

Z <(V§)§0 + % Tr [(VTx)go] +0(uz |)>
INIE Y1

(€ €;) (ef A= ”22 > (e’ A= ”22 zej>+ LY 0M)ee;)

2 1<j=ar
21'+1<j' <21

(\/261/\— \/ )c(e )+uV0(,,|ZD}

We will write that as u — 0, M2 Y0 converges to the differential operator M3 if
the smooth coefficients of M>:7 converge to the corresponding coefficients of M3:¥o
together with their derivatives, uniformly over compact sets of (Tg X),,.

From (12.35), we deduce the following result.

Theorem 12.10. — Let M3:?0 be the operator

121

(12.36) M3 o= — — Z <ve,+ (V™2 Z, ¢ >>2

+i* ((VE);‘,’O + 2 Tr [(VTX)}Z,O]>.
Then as u— 0, M3:70 — M3+ 7o,

Proof. — From (12.35), we find that as u —> 0

21 2
12.37) M2vo 5 — 1 v, + 1 (V™2 (Z,e) e, e el ne' A
2 i Yo J J

1 4 1< <2

%

+ % ((V5)§0+ %Tr [(VTX)§0]> (e e) A& .
1<j,j <

210

Since the metric g™ is Kihler, we know that
(12.38) ((VTX))%O (Z, e)e; e )= <(VTX) e, e)Z, e ).

Then (12.36) follows from (12.37), (12.38). O

Recall that the l-form A on Y with values in End(TX|y) was defined in
Definition 8.7. Note that A is exactly the object considered in (5.8) associated with
the exact sequence 0 > TY - TX |y > N - 0.

We now use the notation of Section 5 a).
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Definition 12.11. — Let Se End (A (N*) ® A (N*)) be given by

(12.39) S=— % c(e)éJe).

Clearly S extends to an even operator acting on
(A(TFY) ® A(N*) @ A(N*) ® n),,.

Also recall that by (8.31), & |y=AN*)®mn. Therefore S acts on
ATEY)® AR ®E),,.

With the notation of Definition 5.2, if Ze(TgX),,, ¢(J AP™ Z7) is a 1-form on
(TrY),, taking values in odd endomorphisms of A (N*), . Therefore ¢ (J APTYZ) acts
as an even linear map on

ATEY) ® A(N*) @ AN*) ® 1), = (A(TFY) ® A(N¥),, ® &

In the sequel, i* V5V denotes the 1-form on Y taking values in End®* (€ |y)

21

(12.40) FVEV=Y ¢ A VEV.
1

Also if D/Dt denotes the covariant differentiation operator with respect to the connec-
tion V¢ along the curve teR — tZ, set for 1 < i< 2/’

(12.41) (V2 V2, V) (o) = g [Vie, V(D=0

In the expressions which follow, Taylor expansions of matrix valued operators
will be taken in a naive sense. In particular O(|Z|), O(|Z|*), O(4*) may contain
operators like ¢’ A or i,, in implicit form.

We now prove one of the essential geometric results of this Section.

Theorem 12.12. — For any y,€Y, Ze(TgX),,, as u—0
1 21 2 1
(12.42) =y <e" A— %iei) Ve, V(uZ)= - i* VEV ()
U 1 u

21
+Y 6 A TEVE, V) (o) + L O(uZP+ud),
1 u

21 21
y @ w vywz= ¥ 9wV +o(uz),

21'+1 \/i 21'+1 \/z
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1 a2 1 2 1

~ (VY @Z)=— (V2 (o) + — O (uZ)),

u ‘U u

2
%(v-)Z(uZ)=<V%V*(yO)+ ioquzm) .
Moreover the following identities hold

(12.43) P: *VEVPE =,

21 T
_ ) _ A _
Pt (Z e'A(V%Va,iv)(yo)>1>g =Pt JJ—Eé(JAP”Z)Pg ,
i=1

Pe” ( ) i@(vszo)) Pt =pi S, PY,

i=21'+1 \/2

TV~ ()= % pe,

*(V87)2=* (P57 (V52 P8 — P8 (VEV)PE" [(V*)?] 71 PE" (VEV) PY).
Proof. — Since £, is identified with £, by parallel transport along the curve

t —» tZ with respect to the connection V% and since V™ (y,)=0, (12.42) follows by
Taylor expansion.

As we saw after (11.64), if Ue(TrY),,, V4V (y,) maps g, into & . The first
identity in (12.43) follows.

Recall that B=V%— V%, Also B takes values in endomorphisms of & which exchange
&* and 7. If Ze TgX|q,, we then find that

(12.44) viv=V5V+[B(2), V].
Now V preserves £* and &~. Therefore
(12.45) P8 V5 VP =P V5 VP,

Note that (12.45) is valid on %, and not only on Y. Using (12.45) and
Proposition 8.13, we get the third identity in (12.43).
Take ie{1, ..., 2/'}. From (12.45), we find that

(12.46) P& Ve, VPS =Pt Vi, VP,

and so

(12.47) Pe V5 Ve, VPe =P V5 Ve, VPET.
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Moreover
(12.48) VsV, v=0, Vsv—VE, , VHIVO2(Z, te), VI.
Using Proposition 8.13, (12.47), (12.48), we then obtain
(12.49) P V5 VE, V(yo) PY
=Pp¢ (VE —\/j éJPNZ)— ‘/? é(JPN[te, Z])) Pt (o).
V2 v
Since we have the identification of holomorphic Hermitian vector bundles

£” |y=AN*® n, we deduce from (12.49) that
(12.50) PE” 5 V5, V (7o) P4

—pt Y W PV Z PN, ZD)PE ().

J2

Now by definition, since ¢;e(Tg Y),,

(12.51) PNVZi"Z=V1:iPNZ+A(ei)PTYZ.
Therefore
(12.52) VZPNZ—PN[t e, Z]1= —Al(e) PTYZ+PN(VZixZ—[r e;, Z)).

Since the connection V'™ is torsion free, we find that
(12.53) ViXZ—[te, Z]=V; 1e,

From (12.50)-(12.53), we get

(12.54) P (V5 Ve, V) (yo) P

/-1 _
—pt %/—z—é(—JA(ei)PTYZ+JPNV§xrei)P"= (o).

Now, by construction
(12.55) (VE¥ 1) (1) =0.

From (12.54), (12.55), we obtain the second identity in (12.43).
By Proposition 8. 13, we get

(12.56) V5V (yo)= \{/; ¢JPNZ).




COMPLEX IMMERSIONS AND QUILLEN METRICS 193

The fourth identity in (12.43) follows from (12.56). The fifth identity in (12.43) follows
from [BeV, Lemma 1.17] or [B2, Proposition 3.5]. The proof of Theorem 12.12 is
completed. [J

Remark 12.13. — In view of Theorems 12.10 and 12.12, we see that the main
actors which appear in the operator 9322 are already on stage. Via Proposition 12.9,
the proof of (12.26) will now consist in explaining why, as u — 0, |Y is replaced by
£ |y=AN* ® m. This is in fact an infinite dimensional version of the results of [B2].

g) Uniform estimates on plle T

Theorem 12.14. — For any T > 0, meN, there exists C > 0 such that if uel0, 1],
Yo€Y, then

(12.57) sup  (1+|Zo )" [P35, (Zo, Zo)| < C
ZOENR,yO
1Zo| <¢/8u

Forany T >0, M > 0, m'eN, there exists C' > 0 such that if uel0, 1], yo,€Y, then

el 1o

12.58) su ~___Pp>r (7 7)|<C.
( Z,Z’els:(’yo 07> aZra u T/u
1Z],1Z'| <M
lal, || <m’
Proof. — We will use the notation of Section 11. In fact recall that
Ly 1%=Li 7. Therefore LJ:7, can be obtained from L 1%, by replacing, for

21'+1 < i< 21, the Clifford variables ¢ (e;) by the operators ( \/2/T)e A —(Ti,/ \/2)
and this is harmless for our estimates. Also to simplify our notation and to make our
references to Section 11 easier, we will assume that T=1.

By inequality (11.125) calculated with Z,=0, T=1/u, we find that for any &, k',
k", k"' eN

(12.59) [ A A 10,0 A exp (— L3 2) A ||| D0 < C.

Let T, be the lattice of elements of (Tg X),, which have integer coordinates with

respect to the base e, ..., e, If ael’,, let J‘y’(’)" be the set of square integrable

sections of (A(TEX)®E),, over {Ze(TgX),,;|Z—a|<3/2}. We equip JO°
with the obvious analogue of the Hermitian product (11.126). Let | | denote the

corresponding norm. Then J9:¢ embeds into I%. Moreover, from (11.70), we
deduce that if seJ);”

Is| <8l 1/ 0,0
12.60 P ,
(12.60) (] 100 < CL+|aD? [s].
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If Be £(J);"), let || B||,, be the norm of B with respect to the norm | | on J3:“.
From (12.59), (12.60), we find that

(12.61) | A¥AY 10 A exp(—L30) A ||, < C' (1+]al)?".

Using (12.61) with k=k'=0 and Sobolev’s inequalities, we get (12.58). From (12.61),
we also deduce that for any k'eN

(12.62) sup  |AY .0 (@DP).(Z, Z)| <C+|a])?.
|1Z-al <1
12'—a| <1

Using (11.130), (12.62) and the fact that if |Z| < &/8u, p(uZ)=1, we get

2k’
(12.63) sup (1 duZz, Y)> P> (2, Z')I < C(1+]|a])?".
|Z-a|<1,|Z|<e8u| \U ’
|Z'-al <1

If ZeNg, ,,, duZ, Y)/u=|Z|. We thus deduce from (12.63) that
(12.64) sup |Z2* |P2Y0 (Z, Z)| < C(1+]|a])?".

u, 1/u
ZeNpg, Yo

|Z—a|<1,|Z|<¢/8u

By taking aeNg , N T, and k'eN large enough in (12.64), we get (12.57). Our
Theorem is proved, when T=1. The extension of our results to the case where T is
any number in ]J0, + oo[ is easy by a trivial scaling argument. [

h) Convergence of the resolvent in distribution sense

We still use the notation of Section 11.
If sel, 4, ,, has compact support, it is clear that if Te]0, + oo[, as u — 0, the
function u — | s, 1/, 0,0 has a limit |s|, o given by

(12.65) |s|g,0=f [s? A+|Z)* PV =P dory (Z).
(TR X)y

Let I, denotes the Hilbert space associated with the norm | |, o. Then I, still splits
into LX=L*°@T,°.

Definition 12.15. — Take y,eY. If sl has compact support, set

i T2 21
(12.66) |S|0,’12=|s|(2),0+'Z—HPNZIS|(2),0+ IVe,-S|(2),0-
i=1

13
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Observe that if Ze (TgX),,, by Theorem 12.12, we find that as u — 0
- 2
(12.67) <V—(uZ)> —>%|PNZ|2P§;0.
u

From (12.67), we see that if sel, has compact support, then as u—0,
Islu,T/u,O,l - |S|6, I

Let I ' denote the Hilbert space associated with the norm | |5 ;. Let | |o o be
the restriction of the norm | |y o to I,.+% Then (I,;>*, | |o,,) embeds continuously
as a dense subspace of (I,."% | |5.0) and the norm of the embedding is smaller than
one. We identify (I}~ %] |5.0) with its antidual by the Hermitian product associated
with | |go. Then if (I,;> "', | |g -;) is the Hilbert space which is antidual to
@,.>" | lo.1), we have the continuous dense embeddings with norms smaller than
one

(12.68) @y h | o)~ @e %] o0~ @y o -

Also for u€]0, 1], (I,;°% | |o.0) embeds continuously in (I)), | |, 1/ 0,0) and the
norm of the embedding is smaller than a constant C(T). This essentially follows from
the fact that

u|Z| (uZ) C
12.69 —L — <=
( ) T P 2 T

If Be (I, "1, L"), let || Bljg ! be the norm of B with respect to the norms
| o, -1 and |

Now in the operator .@Tz , we replace, for 2/'+1 < j < 2/, the Clifford variables
c(e;) by the operators \/2 (€/T) A — (T \/2)1 For 1 <j <2/, the operators e/ A
act I . Recall that £, =(AN* ® n),,- We thus obtain an operator acting on I, which
we stlll note 93 20, Also the operator (V") acts on I

Similarly, the operator LJD, is obtamed from the operator Lu 1. DY replacing,
for 2I'+1<j<2l, the Clifford variables «c(e;) by the operators
\/_ (e’/T) A—(T/ f )z We will use the notation L") o instead of L}'7,,. The opera-
tor L 15, NOW acts on I

ForA>O 6>0, set

(12.70) U={AeC, Re() < 5Im>(})—A}.

Yo’

By Theorem 11.27, we know that if A is large enough and if § is small enough, there

exists C > 0 such that for any u€]0, 1], if AeU, the resolvent (A— Li %?u) ! exists,

extends to a continuous linear map from Iy_o1 into I;O, and that moreover

(12.71) [O=L230) ™ etk o < CU |2

u, T/u
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By proceeding as in the proof of Theorem 11.27, we may as well assume that if Ae U,
the resolvent (7»—.%’%’}0—(V")§o)" exists, extends to a continuous linear map from
L. ~'into I ', and moreover

(12.72) | A= B2 = (V2) gt < CA+|ADA

From (12.71), (12.72), it is clear that if Ae U, (A —L>'22)"! and (A—#3"° —(V")2) ™!

u, T/u
define matrix valued distributions on (Tg X), * (Tg X),,.

The main technical result of this Section is as follows.

Theorem 12.16. — For any T >0, yoeY, AeU, asu—0

(12.73) (A—L2}20)~1 - Pl (A— B30 — (VM)2) 1 Po%

u, T/u

in the sense of distributions on (Tg X),, X (Tg X),,.

Proof. — Set

+

—_p&, 1 3y o — P&, T 3
L, =P%L2% Pi, L, ,=P%L}70 Phy,

—_pet 3.y - —_ptr 13y +
L, ;= P&y, Lu’ T;L P&y, L, .= P&y Lu’ T?u PSy,.

(12.74)

We then write the operator L:,’;‘/)u in matrix form with respect to the splitting

L,=L, & 1" so that

Yo’

Lll Lu
(12.75) Lj;zyf[ L2 ]
Lu, 3 Lu, 4

If CeZ 1,y 1, I 1), we denote by ||C||, Tj.o the norm of C with respect to
the norms induced by | |, 1.0, -1>| |u10,1 00 Ly 7 Lt

Using Theorem 11.26 (where s, s’ are now restricted to vary in Iy+0 and still have
compact support), and by proceeding as in the proof of Theorem 11.27, we find that
if AeU, the resolvent (\—L, ,)~* exists, extends to a continuous linear map from

I;> ~'into I>' and moreover
(12.76) |2 =Ly o)™ " |li T 0 < CA+[AD™

If sel, , we still write s=s* +s~, with s* eL;}. We now fix Ae U. The constants
C > 0 which appear in the sequel may depend on |A| and T.

To prove our Theorem, we only need to show that if 5"l has compact support,
then as u —» 0
(12.77) (A—L>20)" 15 (L — B2y — (V"2,) "' s’ “in the sense of distributions.

u, T/u
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Set
(12.78) s=(A—L>20) 1y

u, T/u

Since | " |y, 1w, 0, —1 < |5 |u. 7w, 0, 0> We find that as u — 0, | 5’|, 1/, 0, - remains bounded.
From (12.71), (12.78), we deduce that |s|, 1), o, stays bounded. Moreover

(12.79) | |u T/, 0,1 = |S |u T/u, 0, 0"

Therefore, as u — 0, |s* |, 1/u.0,0 — 0, and so
(12.80) s* — 0 in the sense of distributions.
Using (12.75), (12.78), we get

()“_Lu,l)s‘ _Lu,2s+=s'_’

12.81
( ) —L, 3 s +A-L, st =s5"

From (12.81), we deduce that
S+ =()"_Lu.4-)_1 (S’+ +Lu,3s—)’

12.82

( ) ()"—Lu,l_Lu,Z()"_Lu,4)_lLu,3)s_=sl—+Lu,2()“_Lu,4)_1s,+‘
Set

(12.83) E,=A-L, ,—L,,(A—L, ) 'L, ;.

From (12.71), (12. 76) (12.82), we find that E, is one to one from I ! into L > 1,
and that if ||E; !|, T o denotes the norm of E; ! with respect to the norms induced
by | |u,T/u, 0,—-1 and | |u T/u, 0,1 on I s Iyo 1, then

(12.84) |Es ! o o < C.
From (12.82), (12.83), we find that
(12.85) sT=E; 'L, ,(A—L, ) 's*+E 15 ".

We now study the two terms which appear in the right-hand side of (12.85).

1. The term E; L, ,(A—L, o)~ s'".
Using (12.84), we get

(1286) IE Lu 2()\' Lu 4) ! ’+ |u T/u,0,0 X ClLu 2 ()“ 14,4)_1‘?,+ |u,T/u,0, -1

Observe that V2 (uZ) preserves &, and & and that the principal symbol of

L: ]y.;’u is scalar, so that L, , is a first order differential operator. Using the previous
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considerations, formulas (11.59), (11.60), (12.34) for L>2° M32:%, Proposition 11.24

u, T/u’

and proceeding as in the proof of Theorem 11.26, we find that if s"eI;:) 0 then

(12.87) L.,

uT/uO—-l lS”|uT/u00
u

From (12.76), (12.86), (12.87), we obtain
(1288) |Eu_1 Lu,2 ()“_Lu,4)_ls'+ |u,T/u,0,0

C ’ ’
<;l()“ u4) ! +|uT/uOO Cl()" Lu4) ! +|uT/uOl

< C'|S’Jr |u,T/u,0, -1 S C"“|5’+ |u,T/u,0,0'
By (12.88), we find that as u — 0

(12.89) E, 'L, ,(A—L, )~ 's"* -0 inthe sense of distributions.

2. The term E's'~

In view of (12.80), (12.85), (12.89), we find that to prove (12.77), we only need
to show that as u —» 0

(12.90) E ls' ™ - (B3P0 - (VM7,)~'s'~ in the sense of distributions.
Clearly
(12.91) B, '—(A =%~ (V)2) '=E; ' (L, +L, (AL, )"

Lu,3 = #7270 = (V50) (b= 8370 = (V5) .
Set

(12.92) o=(A—AB30—(V)2) 15",

Since s~ has compact support, using the notation of Section 12h), we see that
for any multiindex a, Z*s'~ €L}~ "% As in the proof of Proposition 11.34, one verifies
that the commutators [Z°1, ..., [Z°, .@i’zv °+(V")§0]. . .] are bounded operators from
@Y o o into I ~h | o, - 1) By proceeding as in the proof of Theorem 11.30,
we find that for any multiindex a, Z*c el

In view of (12.84), (12 91), we see that to prove (12.90), we only need to show
that as u —» 0

(12.93) |(Ly, 1 +Lu 2 =L, )7 Ly 3= B77° = (V)50 O b 10, -1 = O-
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We identify the operators M;*0 and MJ'J,, i.e. for 2/'+1 <j < 21, we replace
in M7 the Clifford variables c (e;) by the operators ( \/5 e/T) A — (T/ \/5) i, Clearly,

21 2
(12.94) L, . =P% M2 P&+ p? (uZ) {I Y (e" A— “? z;_,i>
u

1

21 i
P& (VE, V) Z) P +T Y <5A—Iiei>

21'+1 2
- - T?
P& (V:,, V) (uZ)Poo+ — V) (u Z)}.
u
Recall that for any a, Z*c eI, '. By proceeding as in the proof of Theorem 11.26,

using (12.94), and also Theorems 12.10, 12.12 and in particular the fundamental
identities (12.43), we find that as u —» 0

_ _ T /-1
(12.95) ‘ (L,,, L — Pt M3:%0 Péio— V\/Q ¢(JAPTYZ)
N 2
—TSyO—TZM)G - 0.
2 u, T/u,0, — 1

We now calculate the asymptotics of L, ,(A—L, ,)" 'L, 30. Set

21 i
(12.96) L, ,=P%o (Ms"’°+p2 w)T Y (i A— %iei)(eriV) (uZ))Péy*o,
21'+1
21

2 —_
=Pt WD)T Y, (e" A= z) P (V2,, V) (4 Z) P,
1

21 ; .
L;,3=P§y+o (Ms,yo+p2 u2)T Z (e_ A — %ie,) (Vgeiv) (uZ)>p&y0,

21'+1
20

2 -
v=p?(WZ)TY <e" A— “? iei> P&5o (V,, V) (uZ) Po.
1

Then

L,,=L,,t-L,,,
(12.97)
Lu,3=L|'4,3+ —L;',a-

u
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Also L, ,, L, 5 are first order differential operators, and L; ,, L, ; are operators of
order zero.

Observe that if tel;:), ' el have compact support, then

|T|u,T/u,o,o < CuITIu,T/u,o,b
T 1 <Cujlt
(1298) | ,|ll, T/u,0, -1 i | |“,T/“,0,0’
IT Iu,T/u,0,0 < IT Iu,T/u,O,l’
lt’ |u, T/u,0, —1 S |T’ |u, T/u, 0,0
In the inequalities which follow, the positive constants C > 0 may vary from line
to line.

Using (12.76), (12.98) and proceeding as in the proof of Theorem 11.26, we find
that

(12.99) |L|,4 2 (A= Lu,4)_ ! L;, 30 |u,T/u, 0,-1 S C | (e L4~ ! L,s;0 Iu,T/u, 0,0
< C“I ()"_Lu,4)_1 L, s 0'lu,T/u,o, 1
< Cu|Lt'4,3G|u,T/u,0, -1 S Cu|0'|u,r/u,o,0-
Similarly using in particular (11.72) to handle the operators u? i, (1<i<2l'), we get

”n
lLu3

L,,A—L,,) ' —=0c
u

(12.100) < CILY 30| 0, -1

u,T/u,0, — 1

< C“lL;I,s GIu,T/u,O,O < C“l0'|u,T/u,o,o,

Lizg-L, ) 'L, 0 <Sla-Lo 'L
u

u,3 0 |u,T/u,0,0
u, T/u,0, —1 u

< Cl()“_Lu,4)_1 L;,3G|u,T/u,0,l < ClL;,s O'Iu,T/u,o, -1

< CuIL;A,3G|u,Tlu,O,O < Cu|6|u,T/u,0,1’

(L;I 37 LZ)', 3 &
u

T2, )
u

u,T/u,0, — 1

C - ”n n
< P I()"_Lu,4) ! (L, 5— Lo, 3) O'Iu,T/u,o,o

C — n n
SZI(}\’_Lu,4) 1(]-«4,3*]-40,3)0'|u,T/u,0,1
C

< — I(LL' 3_L6', 3) 0'|u,T/u,o, -1

N

< C|(L|,4:3—L£)I,3)G|u,T/u,0,0 < C“|(1+|Z|)0'|u,T/u,o,o.
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One easily verifies that as u — 0, the right-hand sides of the inequalities (12.99),
(12.100) tend to zero, in particular by using (12.67), which implies that as u— 0,
| 6|4, 7/u, 0,1 has a finite limit. Also

(12.101) (L—“’QO'—Z)()\,—LM')* Lo,so_
u u u, T/u, 0, —1

C - ”
< ” l(l +IZ|)(7\'_Lu,4) ! Lo,3°'|u,1‘/u,o,o-
By studying the commutators [Z', L, ,] as in the proof of Proposition 11.34, we
find that for 1 <i< 2!/

(12.102) |Z' (A =Ly, 0) "' Lo, 3 6wt 0,1

< C(I Lyso Iu,T/u,O, 7t | Z Lo, 3 O'Iu,'r/u, 0, —1)-

So from (12.96), (12.101), (12.102), we obtain

(12.103) M(X—Lu,‘;)_l Lo,s G
u u u, T/u,0, =1

< C“(' O-Iu,T/u,O,O+”Z‘Glu,T/u,O,O)'

The right-hand side of (12.103) also tends to zero as u — 0.

1 n

We now calculate the asymptotics as u — 0 of =22 (A—L, ,) ' =22 c. Set
u u

(12.104) . 4=PH M0 P&y,
21

2 + +
L, ,=p*(uZ) {T (Z (ei A — 1—% ie,~> Py (V2 V) (uZ) P¢y0>

1

21 ;
+Tu Y (i A= %:) P& (Vi V) (uZ)P%},

21'+1

Ly, =T2((1—p*(uZ)) Py +p> WZ) (V*)? (uZ)).

Then

”n s
Lu,4 + Lu,4
u u?

(12.105) L, =L, ,+
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Here L;’, is a matrix-valued positive operator acting on &jo. Therefore if AeU,
uel0, 1], Au*—1L,",) ! exists and is uniformly bounded. Also

s -1
(12.106) %((}\’_Lu"t)—l_()"_ u,4) )
u u2

=(7\-—Lu,4)—1 <LL,4+ L:4> (7"“2_1«'4:'4)_1-

Then by using (12.76), (12.98), we get

(12.107) L(,',z(k—Lu,“)‘1 w4 (?\.uz—L;:’4)_1 Ly 30
u u,T/u,0, — 1
C'(X—Lu,4)_1—“’—‘E(kuz-—L,":"t)_lL{)',sc
u u,T/u,0,0
<C|L,’,f4(ku2—L,’,f’4)_1L O'IuT/uo—l C“|0'|uT/uoo
Moreover
(12.108) |Lg, . (A—L, ) 'L, s A? =L ) ' LG 36|y 1,0, -1
SC“IL;AO”‘Z_ wa) 1L0,3o-|u,T/u,0,—1'
If tel}, se
21
(12.109) Itlu T/u, 0, 1 |T|3,T/u,0,0+ Z |Ve,"c|3,T/u,O,0'
i=1
Then for u>0, | |7ty i @ norm on L. Let | |7y, -; be the corres-

ponding norm on I ' If tely, |t| 14 0,1 < Itlu Tm,0,1- Therefore if v el !,
17" ot 0, -1 < |7 | tju, 0, —1- From (12.108), we thus get

(12.110) |Lo (=L, ) 'L s> =Ly " Ly 3 O Ly w0, -1
<Cu|L;, ;> —L") 'L§ 3 0|0 10, -1

Then L; , is a differential operator of order two. Using Proposition 11.24 and
proceeding as in (11.75), (11.76), we deduce from (12.110) that

(12.111) ng,ZO\'—Lu,4)_1 L,',,4(7\.u2— L&)~ ! Lo, CIu,T/u,o, -1
< CuI(XuZ—L;:'4)_1 Lo, s 0'|u,T/u,0,1~
It is now elementary to verify that as u — 0

(12.112) A =L") " 1§ 3 6|0, 0.1
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remains uniformly bounded. Therefore the right-hand side of (12.111) tends to zero
as u—0.
From (12.105)-(12.112), we deduce that as u — 0

(12.113) K—L—O’—%(x—Lm‘t)—lLO’3 —L(,’,z()»uz—L,’,’,"‘)'lL(,’J)0' 0.
u u,T/u,0, —1

Finally it is elementary to verify that, as u — 0
(12.114) |Lo, 2 h® —L") "' Ly 3+ Lg , (Lg'4) "' L§.3) O lu tu0, -1 = O
Equivalently, as u — 0
(12.115) |(Lo , @*A—L;"%) 'Ly 3+ P (i* Ve V),
P40 [(V*)2)™! (70) P%0 (* VE V), P50) O, 10,0, -1 = 0.

From (12.36), (12.95), (12.99), (12.100), (12.103), (12.113), (12.115), we conclude
that

21

'y (V + ; (F OV Z, e, >)2

(12116) ‘(Lu,l+Lu,2()“_Lu,4)_1Lu,3_{_2
1

T2 T 1
+ 7|PNZ|2+TSyO+ —j—c(JAP”Z)y0

+i* G Tr [(VTX)2]) +i* (PE (VE)2 P4~

Yo

— P& V€VPg+[(V+)2]—1P§+ V&VPQ‘)M})G - 0.
u, T/u,0, — 1
Now by Theorem 12.12, we know that
(12.117) * (V)2 =% (Pt (V5)2PS —P% VEVPE' (V)] 1 PET VEVPE ).

Also by Proposition 8.11, the connection i* V%™ on £~ |y is exactly the holomorphic
Hermitian connection on &~ |y. Finally we have the identifications of holomorphic

T
Hermitian vector bundles on Y, &~ |y =AN* ® n. Therefore if (VN)? is the natural
action of the curvature (VN)2 on AN*, we find that

o o~
(12.118) i*(VE7)2= (VM2 4+ (V)2

Using (5.10), (12.116)-(12.118), it is now clear that (12.93) holds. Our Theorem
is proved. [
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i) Proof of Theorems 12.4 and 6.7.

We now prove Theorem 12.4, or equivalently (12.26) and (12.27). By Propo-
sition 12.9 and by Theorem 12. 14, it is clear that (12.27) holds.

Also by Theorem 11.27 and by its analogue for exp (— (%’iz’yo + (V")fo)), we know
that if I is the contour (11.115), then

(12.119) exp(—L220)= ij exp (—M) (A =L},
’ 2ni Jr ’
1 _
exp (— (B32°+ (V"2 ) = e f exp (—A) (A—B5"°— (V"2 )~ L d.
r

Also
exp (— (832" +(V"?2,))) = exp (— B37°) exp (— (V")2,).

From the uniform inequality (12.71), from Theorem 12.16 and from (12.119), we find
that as u — 0

(12.120) P2 - Qpyexp(—V"2)

in the sense of distributions on (Tg X),, X (Tg X),,.
Using the uniform bounds of Theorem 12.14, we deduce from (12.120) that as u —» 0
(12.121) Pi’%j’“ (Z,Z)->Q%(Z, Z)exp(— (V™2)

uniformly over compact sets of (Tg X),, X (Tg X),,-
From (12.121), we find that as u — 0, for any Z,e Ny,
(12.122) Tr, [Ny [P35, (Zo, Zo)I™]

= {Tr, [Ny Q13 (Zo, Zo)I Tr [exp (— (V)5 )1} ™.

Using Proposition 12.9 and (12.122), we see that as u — 0, for any Z,€ Ng

(12.123) w2 4mN Tr [N P20 (uZ,, uZ,)]

u, T/u

= {(= D)"Y Tr, [Ny Q2 (Zo, Zo)) Tr [exp (= (V51"

from which (12.26) follows. Theorem 12.4 is proved.
The proof of Theorem 6.7 is thus completed. [
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j) A remark on Sobolev spaces with weights.

As pointed out in the introduction to this Section, the scaling on the Clifford
variables c(e;)(2/'+1 < i< 2/) does not play any role in the proof of Theorem 6.7.
We used the norm | |, 1, 0,0 €ssentially for convenience.

A more adapted choice of norms would have been as follows. Let K? be the set
of smooth sections of (A?(T§Y)® A (N*) ® &), over (TgX),,. For u >0, if seK?
has compact support, set

2(21'—-p)
(12.124) |s|3,0=j |s|? (1+|Z| p(u—2Z—>> dvrx (2),
(TR X)yq
21

152 =[5 ot = |5 ot = p@Z)V WZ)s 2o+ T |Ves[ o
u? u?

i=1

Note that these new norms do not depend on T. We could have used as well the
associated function spaces to prove Theorem 6.7 for any T > 0.
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XIII - THE ANALYSIS OF THE TWO PARAMETERS SEMI-GROUP
exp (— (DX +TV)?) IN THE RANGE u€]0, 1], T > 1/u

a) The problem is localizable globally near Y.

b) Finite propagation speed and localization.

¢) The function F,(a) as a function of a2.

d) An orthogonal splitting of TX and a connection on TX.

e) A local coordinate system near y,€Y and a trivialization of A(T*© VX)) ® &.
f) Replacing the manifold X by (T X),,.

g) Rescaling of the variable Z and of the horizontal Clifford variables.
h) A formula for the operator .‘?i’";".

i) The algebraic structure of the operator 5/1’?’ as u —0.

j) The matrix structure of the operator 3:_‘:0 as T - +o0.

k) A family of Sobolev spaces with weights.

1) Estimates on the resolvent of 7”0

u,T°
m

=

Regularizing properties of the resolvent of 3’:_':0.

n) Uniform estimates on the kernel F, (33";")

0) The asymptotics of the operator F, (2:}") as T — + 0.
p) Identification of the operator Eo.

q) Proof of Theorem 13.6.

The purpose of this Section is to prove Theorem 6.8, i.e. to show the existence
of C >0, 8]0, 1] such that if u€]0, 1], T > 1

<. T\ 1 .. C
Tr,| Nyexp| —(uD*+ =V ——dimNy(n)| < —=.
u 2 T

Let us point out that for a fixed u€]0, 1], inequality (13.1) follows from
Theorem 6.4. The whole point of (13.1) is to obtain uniformity in u€]0, 1]. On the
other hand, the fact that for fixed Te€]0, + oo, the left-hand side of (13.1) remains
bounded as u — 0 is non trivial, and of course follows from Theorem 6.7. This exactly
means that to prove Theorem 6.8, we have to face the difficulties in the proofs of
Theorems 6.4 and 6.7 simultaneously. We must in fact control the concentration
of the considered supertraces as T —+ oo near Y and also the local cancellations
mechanism in these supertraces as u — 0.

The first key idea of this Section is that the proof of (13.1) can be localized near
any y,€ Y. To prove this, we use the finite propagation speed of solutions of hyperbolic

(13.1)
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equations in an essential way. This permits us to split

1oy (- (% TV

into two pieces, the first piece being dealt with by the techniques of Sections 8 and 9,
the second piece, being local near y,€Y, is accessible in principle to the techniques of
Sections 11 and 12. That this is not directly the case comes as a bad but understandable
surprise.

In fact, recall that in Sections 8 and 9, we trivialized the considered vector bundles
along geodesics in X normal to the submanifold Y. In Section 12, these vector bundles
were trivialized along geodesics in X starting from y,eY. These two trivializations
are not compatible. In order to reduce the proof of (13.1) to an infinite dimensional
version of the simple problem on matrices considered in the introduction of Section 12,
we must construct here a new trivialization of these vector bundles, along geodesics
in X normal to Y, and along geodesics in Y starting at y,eY.

This Section is very much organized as Section 11, to which the reader is referred
when necessary. In a), we show that the proof of (13.1) can be localized globally
near Y. In b), using finite propagation speed, we reduce the proof of (13.1) to a local
problem near an arbitrary y,e Y. We thus construct a function Ae C —» F,(\)eC, and
we replace exp (—(uD*+(T/u)V)?) by F,((wD*+(T/u)V)?) which is an operator
which can be studied locally. In c), we describe the properties of the function F,(A)
as |A| -+ o0.

In d) and e), we construct a coordinate system and a trivialization of
A(T*©DX) ® & near a given y,€Y. In f), we reduce the proof of the inequality (13.1)
to a uniform estimate on certain smooth kernels over (Tg X),,. In g), we rescale the
coordinate Ze (T X),, and also we use Getzler’s rescaling [Ge] on certain Clifford
variables. The operator (uD*+(T/u) V)? is now replaced by an operator $3”$°. We
will prove (13.1) by establishing uniform estimates on the smooth kernel of the
operator F, (£229).

In h), we write an explicit formula for fi’{". In i), we briefly study the asymptotics
as u—0 of Lﬂi’;o. This permits us to recover the results of Section 12 in a different
trivialization.

In j), we calculate the asymptotics as T — + oo of the (3, 3) matrix of the operator
23”;0 with respect to a natural orthogonal splitting of the Hilbert space K;’O, on
which 33”;’0 acts as an unbounded operator. Theorem 13.22, in which the asymptotics
of the operator .5,”3’;0 is described, plays a crucial role in the whole Section.

In k), we introduce a new family of Sobolev norms which depend on u, T and
we prove certain uniform estimates on the operator gi‘{‘). These estimates, which are
established in Theorem 13.27, depend in a crucial way on the results of j). Their
proof is long, and sometimes painful. In 1), we derive from k) natural uniform estimates
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on the resolvent of ,?3 20, In m), we prove uniform regularizing properties of this
resolvent. The proof 1nvolves estimates on commutators of £’ 3 +° with a natural class
of operators. These estimates are not trivial.

In n), we finally obtain our first uniform estimates on the smooth kernel of
F (.5,”3 ’19). In 0), we calculate the asymptotics as T — + oo of the operator F (5,”3 °70).
This is done by studying the (3, 3) matrix of the resolvent of 2’3 'Y0_ This study is
slightly complicated by the need to split certain Sobolev spaces of negatlve index. We
also have to control a very large number of terms in ,Sf:,’;"’ and this makes the
proofs relatively technical. The main outcome of this subsection is the production
of a mysterious second order elliptic operator E.°, such that as T — + oo, F L) 3.7 )
converges uniformly to F .(E)°) in norm theoretlc sense. In p), by using the results of
Section 8, we identify E'° as being essentially the operator (x DY)? written in a natural
trivialization of the vector bundles under consideration near y,eY.

In q), comes the long awaited and yet happy end, i.e. the proof of (13.1).

a) The problem is localizable globally near Y.

Proposition 13.1. — Take o > 0. There exist ¢ > 0, C > 0 such that for any xeX,
withd(x, Y) > o, and any uel0, 1], T > 1, then

(13.2) | P, 1 (%, X)| < cexp(—CT).
Proof. — The operator (uD*+ (T/u)V)? is self-adjoint and nonnegative. Using
spectral theory, we find that for any xe X, peR*% — Tr[P,; 14, (x, X)] is a decreasing

function. Since P, 1, (x, x) is self-adjoint and positive, we find that if | | denotes the
norm associated with the trace on elements of End (A (T*©VX) ® &), for any xeX,

pelo, 1]

| Pu, s O X) | < | Pup, 1o (6, X)|-
Assume that u€]0, 1], T > 1. By taking =1/ \/T, we obtain
(13.3) | Pu, 1 (6 X) | < [Py, yau (6, X)].

Now observe that u/ \/T €]0, 1]. Using Proposition 12.1, we get

(13.4) |P, 7, (%, X)| < cexp( %)

Then (13.2) follows from (13.3), (13.4). O
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Remark 13.2. — One can also give a proof of Proposition 13.1 which does not
use the positivity of (wD*+(T/u)V)?, by directly imitating the proof of
Proposition 12.1.

We here use the notation of Section 8e). Take €€]0, (gy/2)]. From
Proposition 13. 1, one finds that there exist ¢ > 0, C > 0 such that for ue€]0, 1], T > 1

(13.5) < cexp (—CT).

dvy (x)
Trs [N Pu, u (x’ X)] X—
J‘X\q[els H T/ (2 n)dlmX

It is now clear that to prove Theorem 6.8, we only need to show that there exist
C >0, 5€]0, 1] such that for ue]0, 1], T > 1

dug(x) 1 .. C
@n)m Edlme(T])‘SF.

(13.6)

J Trs [NH Pu, T/u (x’ X)]
%5/8

We have thus shown that the problem is globally local near Y, i.e. depends only on
the kernel P, 1, (x, x) near Y.

Showing that the problem can be localized near any arbitrary y,eY is much
subtler. This question will be dealt with in the next subsection.

b) Finite propagation speed and localization.

Recall that g, > 0 was determined in Section 8¢) and that a is the injectivity
radius of X. Let b be the injectivity radius of Y.

We now fix €€]0, inf(gy/2, a/2, b/2)]. Let a be a positive constant. The precise
value of a will be determined in Section 13e).

Let f be a smooth even function defined on R with values in [0, 1] such that

(13.7) fO=1 if |t <

it
2’
=0 if |t|>a
Set

(13.8) g=1-f().
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Definition 13.3. — If ue]0, 1], aeC, set

+

© -2 dt

F,(a)= exp(it\/ia)exp(——t—)f(ut)———,
(13.9) % 2 , VT
e . —1 dt

Gu(a)=j_w exp(ztﬁa)exp(—z—)g(ut)—\/ﬁ.

Then

(13.10) exp(—a?)=F, (a)+ G, (a).

Since f'is even, F, and G, are even functions, which take real values on R. Moreover
F, and G, lie in the Schwartz space S (R).
From (13.10), we deduce that

2
(13.11) exp<—<qu+ Iv) >=Fu <qu+ IV)+G,, <uDX+ IV).

u u u

Since F,, G,eS(R) and since uD*+(T/u)V is an elliptic operator, using integration
by parts, it is clear that the operators F, (u D*+(T/u) V), G, (uD*+(T/u) V) are given
by smooth kernels, and so are trace class.

Our first fundamental result is as follows.

Theorem 13.4. — There exist ¢ > 0, C > 0 such that for any uel0, 1, T > 1

(13.12) Tr, [NHG,, <qu+ %V)]— di‘;N x(n)Gu(O)‘ < ﬁexp (;—f)
Proof. — Set

(13.13) H,,(a)=fj: exp (it . /24) exp ( 2_;22 > £()- dtzn .

Then

(13.14) G,(@=H, (g)

Recall that g (¢) vanishes near t=0. For peN, set

. A —1? g dt
exp(zt\/2a)exp<2uz>(it\/i)P_1 u\/.Z—n.

+ o0

(13.15) H,,,,,(a)=(p—1)!J

— o
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Clearly

H(p 1’((1)

(13.16) (=1

=H, (a).

Then aeC—H, ,(a) is holomorphic. Moreover for any ¢ >0, if |Ima|<c, as
la| -+ o0, Hu,p(a) decays faster than any |a| ™ (meN).

Let A, & be the contours in C considered in Section 9g). From the previous
considerations, we deduce that for any aeC lying inside the domain bounded by
AU S, then

(13.17) H,(a)= LJ‘ H,(AM)(A—a) ' d\.
2Wi Jaos

Equivalently, for any peN

(13.18) H,(a)= ZL H, , (V) (A—a) 7 d\.

Tl Jaus

We now use the notation of Section 9. Observe that

(13.19) 1(uDX+ IV>=AT/,‘2.

u u

From (13.14), (13.19), we get

(13.20) G, (u D*+ T V) =H, (Ay),2).
u
Take now peN, p > 2dim X + 2. From (13.18), (13.20), we find that

(13.21) G, ( DX+ TV)— L J H, , M) (A—Aq,2) Pdr
u 21i Jaos

For T > 0, let U; be the subset of C defined in (9.113) (the value of ¢, > 0 is

determined in Theorem 9.21). Using Theorem 9.24, we find that if T/u? is large
enough, if Ae Uy,

(13.22) | T, [Ny (A — Aqy,2) “71— Tr, [N§ (A — DY) 7] | < % (14|t
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On the other hand, since g (¢) vanishes near 0, we deduce from (13.15) that for any
meN, there exists ¢,, > 0, C,, > 0 such that if A.e AU 8,

(13.23) |A"H, , (M| < cnexp ( _(23'").
u
From (13.22), (13.23), it is clear that
(13.24) Tr, [NH 1 H, , () (— AT/“z)‘Pﬁ]
Tl JAus)nUgy2

—Tr, I:Ng, 1 H, , M) *— DY)_"d)»:I '

2mi (AU 8) A U2

Also, for T/u? large enough, if Ae (A U 8) N “Uyy,z2, then |A | > ¢, ﬁ/u. Using (9.170)
and (13.23), we find that for any meN, if T/u? is large enough, then

(13.25)

Tr, [NH 1 H, ,AM)(A=Ay,2)"" d}»] ‘

2mi (AUS) N UT)y2
2\m
u —-C
<c|— | exp — )
T u

Trs[N 1 Hu,p(x)(x—DY)—vdx]’

H .
2mi Jaus A U2

From (13.24), (13.25), we deduce

(13.26)

Tr, [NH G, <u DX+ T V>] —Tr [N} G, (uDY))
u

cu -C
< ——ex — |.
JT p( u2)

Now by Proposition 8.4, N},=1/2dimN. On the other hand, since f is an even
function, G, (@) is a smooth function of a?. By the analogue of the McKean-Singer
formula [MKS], we find that for 1 <j<d

(13.27) Tr,[G, (@DY)]=x (n) G, (0).

Using (13.26), (13.27), we obtain (13.12). O
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Remark 13.5. — By (13.10), we know that
(13.28) F,(0)+G,(0)=1.

In view of Theorem 13.4 and of (13.28), we see that to prove Theorem 6.8, we only
need to show there exist C > 0, €]0, 1] such that for u€]0, 1], T > 1

T 1 .. C
—~V]) |- =dmN F, (0 <—.
):I 5 x (M F,( )\ T

u

(13.29)

Tr, [NH F, (u D*+

Since f (f) vanishes for |¢| > &, we find that

o/u

(13.30) F, (@)= exp (it \/2 a) exp < >

—afu

\/ T
In particular

(13.31) F, <uDX+ IV)

u

=Ju/u exp <it \/5 <uDX+ IV>> exp <_—t2> f (ut) _dr
—afu u 2 2n
Note that since f'is even, (13.31) can also be written in the form

(13.32) F, (u DX+ IV)

u

[ (rrleor vfoe () e S

By general results on hyperbolic equations [CP, Section 7.8], [T, Section 4.4],
for any teR, xeX, he (A(T*®VX) R €),,

uDX+ = V

(13.33) supp exp <it \/5 (u DX+ T V)) hd, = BX(x, ur).
u

In particular if |uz| < o, then

(13.34) supp exp <it ﬂ <u D*+ T V>> hd, = B*(x, ).
u

Let F,wD*+(T/u)V) (x, x) (x, x'€X) be the smooth kernel of the operator
F, (uD*+ (T/u) V) with respect to the volume form dvy/(2 1)*™*. From (13.31), (13.34),
we conclude that for any xe X, the map x’ - F,(uD*+(T/u) V) (x, x') only depends
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on the restrictions of the operators D*, V to the ball BX(x, o), and that moreover if
x' ¢ BX(x, o), F,(uD*+(T/u) V) (x, x') vanishes. In particular F,(x, x) only depends
on the restriction of the operators D*, V to the ball BX (x, o).

Now

(13.35) Tr, [NH F, (u DX+ L V)]

u
=J Tr, [NH F, (u DX+ L V) (x, x):l dvx (.x) :
X u (2 n)dlmX

Using (13.35) and the previous considerations, it is clear that the proof of (13.29) is
local on X, i.e. it can be obtained by studying the restrictions of the operators DX, V
to an arbitrary open covering of the manifold X.

Observe that, by using (8.21), we get

(13.36) J Tr, [NH F, <u DX+ L V> (x, x):l dox (x)
- u (2 n)dlm X

=<i>dimx L {Lzmaﬁ/h <w\uff>2dimN
Tr, [NH F, <u DX+ {-V) ((yo, l:/—ZTO> (yo’ %))]

Z
k <)’0’ %) doy (Zo)} dvy (¥o)-
Let F,(uDY)(y, ') (y, '€ Y) be the smooth kernel of the operator F, (u DY) with

respect to the volume element dvy (y')/(2 m)%™Y.
Recall that o > 0 is a parameter which appears in the definition of f.

Theorem 13.6. — If €€]0, inf (go/2, a/2, b/2)], o > 0 are small enough, for any
PEN, there exists C>0 such that for any uel0,1], T>1, y,eY, ZyeNg .,
|Z,| < a\/T/Su, then

Tr, [NH F, <u DX+ L V)
u

(b5 23]

, L 2dimN
(13.37) (1+]Z, ) <\/T>

<C
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There exist C' >0, 8'€]0, 1/2] such that for any uel0, 1], T>1, y,eY, Z,eN

|Z0|<aﬁ/8u, then
(1338) I(L>dimx<L>2dimN
' 2n JT

Trs[NHFu<qu+§V> (( l:/zi)) ( o ﬁ))]

_ 2 : dimY
_exp(—|Z, ) d‘mN(—l—) Tty [F, (uDY) (o, yo)l| <
dim N 2 2.":

R,yo°

’

T T

Proof. — The proof of Theorem 13.6 is delayed to the next subsections. [

Remark 13.7. — We now briefly show how to deduce (13.29) from Theo-
rem 13.6, from which Theorem 6.8 follows.
In fact from (13.37), (13.38), we see that for any peN

() ()
e 19 () (%)

_exp(—|Zy|*) dimN

ndimN 2

(13.39) (A+|Z, |

”n

T?'/2 )

( L) " Tz, [F, DY) (yo, y0)]| <
27

From (13.39), it is clear that for u€]0, 1], T> 1

j Tr, [NH F, <u DX+ 1 V) (x, x)] dox (¥)
2y u (2 n)dnmx

dim N Y dvy (o)
_JY 11121 Tr, [F,(uD") (yo, ¥o)] (zvy)d)l)n?Y

(13.40)

III

Tﬁ /2

On the other hand, Theorem 13. 6 also holds in the case where Y = (J. More precisely,
as the reader will easily check, the proof of Theorem 13.6 can be modified on X\ %,s

so that
J Tr, [NH F, <u px4 L V> (x, x)i' dx () | €
X\ ¥e/8 u (2 n) "

(13.41) ST
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Finally by using the McKean-Singer formula [MKS] as in (13.27), for 1 <j < d, we
get

dvy ] )

13.42 Tr, [F, @ DY) (y, y)] ——~
(13.42) L I, [F,(wD") (y, y)] PyRs

J

=yx(myF,(0).

From (13.40)-(13.42), we obtain (13.29).

¢) The function F.(a) as a function of a?.
Proposition 13.8. — For any ¢ >0, meN, m'eN, there exists C > 0 such that
for any uelo, 1]

(13.43) sup |a|"|F" (a)| < C.
aeC
|Ima| <c¢

Proof. — Observe that if ae C, |Ima| < ¢, then

_2 2 2
exp(it\/ia)exp(—%)l < exp (c \/fltl— %) < Cexp(—{—).

Then (13.43) immediately follows from (13.9) and (13.44). O
Observe that since F,(a) is an even function of a, there exists a unique holomor-
phic function F, (a) on C such that

(13.44)

(13.45) F,(a)=F, (.

Definition 13.9. — For ¢ > 0, set

(13.46) Vc={keC; Ren) > 0V —CZ}.

4c?
Proposition 13.10. — For any ¢ >0, meN, m’'eN, there exists C > 0 such that
for any uel0, 1],

(13.47) sup |a|™|F™) (a)| < C.

aeV,

Proof. — Observe that V_ is exactly the image of U,={AeC;
map A — A2, Our result now follows from Proposition 13.8. [

ImA| < c} by the
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Using (13.45), we find that

T\ T.\?
(13.48) Fu(qu+;V>—F‘u<<qu+ ;V) ),

F,(D")=F,(«D")?.

d) An orthogonal splitting of TX and a connection on TX.

We here use the notation of Section 8e¢).
On Y, we have the splitting of C® vector bundles

(13.49) TX|y=TY ®N.

We will extend the splitting (13.49) to %..

Definition 13.11. — If y,€Y, ZyeNg ., | Zo| <&, let TX], x X 2o TX?
the subspaces of TXexp (o) which are obtained by parallel transport of TY
respect to the connection V™ along the geodesic t€[0, 1] — exp}, (tZ,).

Then TX', TX? are smooth vector subbundles of TX |, such that

exp 0(Zo) be

N, w1th

Yo’

TX!|y=TY,

13.50
(13.50) TX?|y=N

Moreover over %,, TX splits orthogonally into
(13.51) TX=TX' ® TX?2.

Let P™' P™? be the orthogonal projection operators from TX |y, on TX!, TX?
respectively. Let VTX', VT2 be the connections on TX?, TX?

TX1 _ PTxl TX
(13.52) ng2=PTx2 ‘vaxj
Then the restriction of the connection V™' to Y coincides with VY.
Let °V™X=V™' @ V™% be the direct sum of the connections V™', V™** on
TX=TX! @ TX2. Then the connection °V™X restricts on Y to the connection °V™*ly
defined in Definition 8.7. Set

(13.53) A'=VTX-0yTX,

Then A’ is a 1-form on %, taking values in skew-adjoint endomorphisms of TX which
exchange TX! and TX?2.
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Recall that A was defined in Definition 8.7 as a 1-form on Y taking values in
skew-adjoint elements of End (TX |y) exchanging TY and N. By construction

(13.54) *A'=A.
Also if yoeY, ZyeNg ,, then

(13.55) Al (Zo)=0.

We now prove a fundamental identity, which extends the well-known symmetry
identity of the curvature of the Levi-Civita connection.

Proposition 13.12. — If y,e Y, U, U e(TxY),., Z, Z' € (Tg X), ., then

Yo’ Yo’

(13.56) OV (Z,Z2)U0, U y=(V™E,—PT™Y AL P™)(U,UNZ,Z").
Proof. — From (13.53), we get
(13.57) OV™2 (Z2,Z2)U0,U")

={((V™,(Z,Z2)U, U Y- (A2(Z,Z)U, U").

Since the metric g™ is Kahler, V™ induces the Levi-Civita connection on TgX,
and so

(13.58) (V™2 (Z, Z)U, U Y= (V™2 (U, U Z, Z').

Using (13.54), (13.55), we find that

(13.59) (A2(Z,Z)U, U Y= (A, (PTYZ)U,A, (PTYZ)U')
+< Ayo P™YZ)U, Ayo PT™YZHU" ).

Since the connection V™ is torsion free, if H, H' e (Tg Y),,

(13.60) A, (H)H'=A, (H)H.

Using (13.59), (13.60), we get

(13.61) (A2(Z,Z)U, U Y=—(A, (V)P Z, A, (U)P™Z)
+(A,,(U)PTVZ, A, (U)PTYZ')
= (A% (U, U)P™YZ, PTYZ").
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From (13.57), (13.58), (13.61), we obtain (13.56). [

e) A local coordinate system near y,cY and a trivialization of A (T**VX) ® E.

For a >0, yoeY, let BY(yy, @) (resp. B]Y (0, ®)) be the open ball in Y
(resp. (Ty Y),,) of center y, (resp. 0) and radius a.

Take y,eY. If Ue(TgY),,, let teR—y,= exp;’o (tU)eY be the geodesic
in Y such that y|_o=y, dy/dt|,-o=U. Since e<b/2, the map
UeBJY (0, ) - expy, (U)eBY (,, €) is a diffeomorphism.

If Ue(TY),,, |U| <&, VeNg,,, let rUVeNR,exp;rO «, be the parallel transport
of V with respect to the connection VN along the curve t€[0, 1] — exp}’o (tU).

Recall that 7 is the projection N — Y. Then the map

(U, V)eB; (0, &) X Ng ,, = (expy;, (U), g V)en ™! (B(y,, €))

is a trivialization of Ng ,  over BY (y,, €).

If xeX, Ze(TgX),, let teR — x,=expX (¢ Z) be the geodesic in X such that x,=x,
dx/dt|,-o=Z.

Recall that N is identified with the orthogonal bundle to TY in TX|y. Let
B;"O (0, €) be the open ball in Ny, of center 0 and radius &.

If Ze(TgX),, Z=U+U", Ue(TxY),,, UeNg,, |U|<e |U|<e we
identify Z with epo‘xp;!OU (tyU")€e%.. This identification is in fact a diffeomor-
phism from B]Y (0, ) x B} (0, €) into an open neighborhood #",(y,) of y, in X
contained in #%,. In Section 8¢), %, is itself identified with an open set B, in Ng.
The image of B]Y (0, &)xBJ (0, &) under the previous diffeomorphism is exactly
™1 (BY (o, €)) N B, = Ng. In particular

W .(yo) NY=B]Y(0, &) x {0}.

From now on, we use indifferently the notation B]Y (0, €) x B} (0, €) or #",(y,),
yoorO...

Clearly there exists a, (€) > 0 such that for any y,€Y, ZoeNg ., | Zo| < /8, the
open Riemannian ball in X, BX(Z,, o, (¢)), is contained in #°,, (y,). In particular
0<ay(e) <e/2<b/4.

We now fix a€]0, a, (€)]. Recall that the precise value of € will be determined in
Theorem 13.27.

Let k"' (Z) be the function defined on %, (y,) by

(13.62) dvy (Z)=k" (Z) dvrx (Z).

Then k" (0)=1.
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If Ze(TgX),, Z=U+U’, Ue(TgY),,, U'eNg ., |U| <t |U’| <&, we identify
TXz, A(T*®VX), (resp. &) with TX,, A(T*®VYX) = (resp.&,) by parallel
transport with respect to the connection °V'™* (resp. V%) along the curve
tel0,1]-2:U0<r<1/2), U+2:t—1)U'(1/2<t<1). It is very important to
observe that for 1/2 < ¢ < 1, parallel transport with respect to the connection °V™*
coincides with parallel transport with respect to the connection V™. Also note that
under the identification of TX, with TX, , TX}, TXZ are respectively identified with
TYyo’ Nyo’

Let I'ZX, °T7X, IS, % be the connection forms of the connections V™, VX V5,
V¢ in the considered trivializations. By (8.33), (13.53), we know that

Yo’

TJ*=CT]*+ Ay,

13.63
(13.63) ry=r5+B,.

By [ABoP, Proposition 3.7], we know that
1
(13.64) TP (U)= 2 V™5, (2, U)
+0(Z»)U if Z, Ue(TgY),, orif Z, UeNg ,,.

By construction

TIX(U)=0 if Ze(TxY),, UeNg,;

13.65
(13.65) BU)=0 if Ze(TxY),, UeNg,,.

Also by using the definition of curvature, we find easily that

(13.66) TIX(U)=CV™Z (Z, U)+0(ZHU  if ZeNg,, Ue(TrY),.

Remark 13.13. — The trivialization of § is imposed by the structure of the
problem. However instead of the considered trivialization of TX, A (T*©@VX), we
might as well trivialize TX, A(T*©VYX) by identifying (TX),, A(T*© DX), with
(TX),, A(T*©DX), by parallel transport along the curve z€[0, 1] — ¢ Z with respect
to the connection °V™. If °T";™ denotes the connection form of °V™ in this new
trivialization, by [ABoP, Proposition 3.7]

(13.67) o, TX — %("V"‘)fo @, )+o(ZP.

The main justification for the choice of the trivializations of A (T* 1V X) and & which
were described before is that they are compatible with the trivializations of A (T*(©: 1V X)
and € near Y considered in Section 8 g). In fact the only new ingredient with respect
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to Section 8g), is that, for yeY near y,, the fibres A(T** VX)), & have been
identified with the fibres A (T*©: D X)

Yo’ &yo'

f) Replacing the manifold X by (Tg X),,.

We use the trivialization of A(T*©VX)®E described in Section 13e). In
particular the operators DX, V now act on the set of smooth sections of
(A(T*@VX) ® §),, over #', (¥o)-

If Ue(TgX),,, ZeW (o), let °TU(Z) be the parallel transport of U with
respect to the connection °V™ along the curve te[0, 1]-2tP™Z, 0<1<1/2,
PYZ+R2t—1)PNZ, 12<t< 1.

Let ey, ..., e;; be an orthonormal base of (TgX),,. Then by Proposition 8.5,
we find that

x__ZI c(e) ux
(13.68) D —Z V

- \ﬁ Ore;(Z)’

Recall that b is the injectivity radius of Y. Let aeR — y(a)€[0, 1] be the function
considered in (9.1). If y,e Y, Ue(TrY),,, set

4|U|>
13.69 U)=y( 1=1).
( ) p(U) Y( 35
Then
(13.70) p(U)=1 if lUls%,
=0 if {U|>3—b.
4

Let A™ be the Euclidean Laplacian on (TgY),,.
Definition 13.14. — Let L be the differential operator on (Tg X),,
21

(13.71) L=(1—-p2P™Z)A™ +u2 (PTYZ) ¥ V2

Ore; (PTY )"

Recall that & =(AN*®m),,. If e, ..y, ..., e, is an orthonormal base of
Ng, o> let S€End (A(T**VX)® &7),, be given by

— 21
(13.72) s-v/ ! Y c(e)ée).

2 21'+1
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Let (a, b)eR* = x(a, b)€[0, 1] be a smooth function such that

(13.73) k@ b=1 if |a|<%, |b|<%
=0 if |a|>§, or |b|> §
4 4
If Ze(TgX),,, se
TY N
(13.74) (p(Z)=K<|P Z| |p Z').
€ €
Then
(13.75) 0@)=1 if |PTYZ|<§, IPNZ|<§,

=0 if |P“Z|>¥, or [PNZ| > 38

We still define the vector space H,, as in Definition 11.17. Let AN be the
Laplacian on Ng .

Definition 13.15. — For u>0, T> 0, y,eY, let ,?i % M, L 7° be the operators
acting on H,

(13.76) ZLrr=(1-¢? (Z))( AN)+TP:™ SP&~
L <P€* 4 [PNZP Pé‘>>+q>2(2) <qu+ IV(Z)>2,
u? 2 u

M=~ (1-9%(2) = (L+AN)+<P (Z) (wD¥)”.

Ford >0, A > 0, let U, I" be the subsets of C

13.77 U={reC; Re(A) <3Im*(\)—A},
(13.77) ={LeC; Re(A)=8Im* (M) —A}.
By proceeding as in the proof of Theorem 11.27, we find that for given u€]0, 1],
T >0, if  is small enough, and if A is large enough, if AeU, the resolvent
(L~ 2,70 exists.

Moreover by Proposition 13.10, the function F,(a) and its derivatives decay as
ael -+ oo faster than any |a| ™. Therefore if § > 0, A > 0 are chosen as before, we
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may define the operator F WL 1y +°) by the formula
(13.78) F.(2.79 f E,0(—2,20) dn

Let F L Ly DEZ, Z), (Z, Z' e (Tg X),,) be the smooth kernel associated with the
operator F, (£} i,y 7°) with respect to the measure dory (Z')/(2 m)%™X,

Recall that the function k" was defined in (13.62). Also if Z,eNg ., | Zo| < &/8,
by construction BX(Z,, o) = #7,, (y,), so that ¢? is equal to 1 on BX(Z,, o). By using
finite propagation speed as in Section 13b), we find that if Z,eNg |Zo| < /8,
then

2
(13.79) F, ((u D*+ %V> >((J’o» Zy), (Yo, Zo) k" (Zo)=F ,(£,77°) (Zo, Zo).

g) Rescaling of the variable Z and of the horizontal Clifford variables.

Foru >0, T >0, let G, 1 be the linear map heH, - G, rhe H,  with

TY TPNZ
(13.80) G,,,Th(Z)=h<P z, )
u [Z]
Set
Lr0=G,1 L, 1G, 1,
(13.81) oT wrTwT el
MEP =Gt MG,

By proceeding as in Section 11g), we know that ft’f 7, M f,’;o lie in
(¢(TgX) ® End (§)),, ® Op.

Let ey, ..., e;;- be an orthonormal oriented base of (TgY),,, let €;.44, .. ., €5
be an orthonormal oriented base of Ng ,. Let e', ..., e?' and "%, ..., ¢*' be
the corresponding dual bases of (Tg Y),, and (Ng),,.

Recall that the vector spaces K, K+ were deﬁned in Definition 12.7. Also for
1 <i< 2/, the operators c, (e;) were deﬁned in Definition 12.8.

Definition 13.16. — Let .55’: 10, M 3. 1°€End (K, ) be the operators obtained from
Zf 1%, .//l2 'Y0 be replacing the Chfford variables c(e) by c,(e;) for 1 <i<2/', while
leaving unchanged the operators c(e;) for 2/'+1 <i< 21l

Let F, (3’3 Z, Z), (Z, Z' e (Tg X),,) be the smooth kernel associated with the
operator F, (£ 3.y 70) with respect to the volume dvry (Z')/(2 m)*™X.

We still define [F, (£22°)(Z, Z)™ as in (12.31).
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Proposition 13.17. — For any u >0, T >0, yo€Y, ZyeNg ,, |Z,| < e \/T/S u,
the following identity holds

(13.82) ( u >2dimNT NuF, (uD*+ Ly
. \_/—f rs|: H u<u _1; )
uZo UZo \\ | g (“_Zo)
<<y0, \/T >, (yO’ \/—T ))] \/T
= (= )¥™Y Tr, [Ny [F, (2579 (Zo, Zo)I™].

Proof. — We start from the identity (13.79) and we proceed as in the proof of
Proposition 12.9. [

h) A formula for the operator #>2°

u,T *®

Observe that by (9.50), (13.76), we have the identity

(13.83) Li0=M>0+¢? <uPTYz+ _"T PNZ>
2l 2
{I y (e" A— “—ie_> (V& V) <uPTYz+ L_PNZ>
u 1 2 e \/T

+T ¥ el (v V)<uPTYz+ %PNZ>

0. N
20 +1 \/2 e

2
+Dve(upmze Lprz
2 \/T

+<1—(p2 <uPTYz+ ﬁPNz»

2 N7 |2
<TP€_ SP: ™ + T_ pet +T|P_Z|_ P&_>.
u? 2

Let us recall that if g is a smooth function from R into R, then

(13.84) gx)—g0)=) x' Jl gig—i(tx)dt.
1

o 0X
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We will write (13.84) in the form
(13.85) g(x)—g0)=<(x, [g](x)).

In particular, [g] (0) is the derivative of g at 0.

Then if 4 is a smooth function defined on (TgX),, with values in R, we use the
notation

(13.86) h<uPTYz+ %PNZ)—h(uPTYZ)

=_4 N TY _U bN
\/_T, <P Z, [h](uP Z+ \/TP Z>>

If Ze(TgX),,, let V;, be the ordinary differentiation operator in the direction Z
acting on K .

Theorem 13.18. — The following identity holds

(13.87) MEYo=— %(1 — @2 (uPTYZ+ ?/% PNZ>> (L,prv,+TAY)

+ o2 (uPTYZ+ %PNZ>

21
1
{_5 Z \/TVP °re,(uPTYz+(u/f)PNZ)+VP oce; wPTY Z+u//T)PNZ)

<<PTY2+ £ [°T™ (°te))] (uPTYz

1
2 k<21

S WD

+2 Y <°rTX (°te;) <u PTYZ

4 2I'+1<j,ks 21

*PNZ) e 6 ) cle)cle

1 < 1 (0 ( TY U 5N ) >< “2->
+ — A'"("te)|uP ' Z+ —P Z]e, ¢ e n——i,)c(e
\/z 161621 ( ) \/T J k 2 j (k)

2U'+1<k<2l
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al OTX)O.( TY J‘_N))Z
+u<F +2Tr[I‘ 1) Cte)|{ uP Z+\/TP V4

1
+1 = f 21 21
2u( TVPN L VX °te~+VPTY  viX °1:e')
i=1 Ore; ¢ Ore; °t

i=1

2 21
u
+ 2 Y <FTX < Y VoT:i °1:e,-> ej, e,,> c(e;) c(ey)
8 2ir+v1<jk<21 i=1 !
21

u
+ <FTX( vIx 01:8,-)6-, e >
2. /2 (Za Z Voo »

2lI'+1<k<2l

; u? u?
en——i, )cle)+ —K
(0= 1) et

2 2
; u® u
Y (e’/\—hze.)<e"/\——te)
J k
1<jks2U 2 2

1
2
<(V€)2+ Tr [(VTX)2]> Cte;, *tey)

+ 3 Y c(e)c(e) <(V"=)2 + % Tr [(VTX)2]> (®tej, °tey)

2U'+1 < j, k<21

u ; u?
+ — en——i, |c(e
J2 ls,zw ( 2 ) (@

21'+1 <k<2l

<(V€)2 + % Tr [(VTX)Z]) RTA ek):l (u P™YZ+ % pN Z)}

Proof. — Recall that on #7,(y,), TX has been identified with (TX), . Under
this identification the connection °V™ preserves the splitting (TX), =(TY), @ N,,.
Equivalently the connection form °T'™ preserve this splitting. On the other hand,
the 1-form A’ exchanges (TY), and N, .
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If CeEnd(TX),, is skew-adjoint, the action C* of C on (A(T**PX)® &), is
given by

(13.88) CA=‘—11 T (Ce ej)c(e,-)c(ej)+%Tr[C].

From (13.88), we deduce that the action of I'™ on (A (T**VX) & &), is given by

(13.89) Y (°T™e, e )cle)cle)

1sj,ks2l’

+ 1 Y (T™e;, e, ) cle;) cley)

4 21 +1<j,k<21

1 , 1

+ = Y (A’ej, ¢, c(e))cle) + - Tr[°T™].

2 g<j=ar 2
20041 <k <21

-

Also since °T'§*=0, by (13.86), we have the identity

( ) uP“Z+u/\/_ll’ z

Then (13.87) follows from Proposition 11.4 and from (13.76), (13.88)-(13.90). O

Pt Thleorem 13.19. — For any y,eY, ue€l0,1], Ze(TgX),, such that
P™YZ|<3¢/du,as T>+ 0

T & u? u
(13.91) -y <e" A— —ie,) (VS _V)(uPTYZ+ —PNZ>
U 1 2 Tei \/T
T 21 2
==y <ei A— f‘—iei> (Vs V)uPTYZ)
u T 2 tTe;

21
+ /T Z(e"/\ )(VPNZ Vi, VYUP™Z)+0u|PNZ}?),

1

a c(e) TY U pN
T ¥ (VoteV)(uP Z+ 2P z)

21'+1

1y @ Vi V) @P™Z c(@)
2124—1 ( )(u )+u\/TZIZ-;-1 \/2
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Veng Vi V@P™Z)+0(uPNZP),

2 N7 |2 T
I?(V_)z (uPTYZ+ ——u——PNZ>=T—————IP Zf pe-y 4T
u \/T 2 2

[——————V\/;lé(JPNZ), Tn VPNZV"(uPTYZ)]+0(u2[PNZ|4).

Moreover for any y,€Y, u€l0, 1, Ze (Tg X),, such that |P™ Z| < 3 ¢/4u, the following
identities hold

21 2
ps Y (e A— E—le,> (VPNZVEWV) wP™Z)Pt =0

1

(13.92) .
Pt Y c("*)(sﬂ V) @PTYZ)PE =PiTS, PE

2I'+1 \/2

Proof. — Since the vector bundle & is trivialized along the curve
t »uPTYZ+¢PNZ by parallel transport with respect to the connection V5, the iden-
tities (13.91) follow by Taylor expansion.

By Proposition 8.13, we find that

e w c(e)
(13.93) ISEEDY (Ve

21'+1 f

V)uP™Z)Pt~

Ore;

=pt ¥ Z c(e)é(J°te) wP™Z)PE .

2l'+1

For2I'+1 < i< 2/, %e;(uP™ Z)eNg ,p1v7 is the parallel transport of e; with respect
to the connection VN along the curve t€[0, 1] — uP™Y Z. On the other hand, recall
that & prv, is identified with & by parallel transport with respect to the connection
V&~ along the curve r€[0, 1] - tuPTY Z. Finally by (8.31), we have the identification
of holomorphic Hermitian vector bundles £~ |y ~ AN* ® n. It then follows that,
under the identification & prv, ~ &, for 2/'+1 < i< 2/, é(J%tey) is identified with
¢é(Je). Using (13.72), (13.93), we get the second identity in (13.92).

Take now ie{l,...,2I'}. If |P™Z|<3e/4, then by construction,
Ote;(P"YZ)e(Tg Y)pry,. We can then use formula (12.54) with Z replaced by PNZ,
and we find that

(13.94) ps V5

pNz

Vi, V@P™Z)PS =P \i/_z ¢(IPNVEX, Ote) P
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Now by construction

(13.95) VIX, %te;=0.

pNz

The first identity in (13.92) follows from (13.94), (13.95). O

i) The algebraic structure of the operator 55’3”;" as u—0.

We first describe the behaviour of the operator Zi’zo as u — 0. This is not directly
related to the main purpose of this Section, which is to obtain some sort of uniformity
in u€]0, 1] as T - + oo. Still the obtained formulas will be illuminating, and will also
fit nicely with the conjugation formulas of Theorem 5. 6.

Recall that by (13.54), (13.55), Aj, vanishes on vectors of Ng , and coincides
with A, on vectors of (Tg Y),,. Also by (13.60), if U, U’ e(TgY),,

A, (U)U'=A, (U)U.

Using these two facts together with Proposition 13.12 and with the identities (13.64)-
(13.66), (13.87), we find that as u — 0, the operator Jl3 70 converges to an operator
My >'%0 given by the formula

121

(13.96) MY =~ 5 ; ( ST Ven +Vprv,,

1 TX\2 TY 2 TY TY PNZ
+= { (V™2 -P™ A2 P™) (P Z+ e
2 JT

<(VTX)2 RN

1 <(VTX)2 PTYZ, PNe, ) — c(AP™¢) )2
5 Yo ’ i

J2

s ((Vé)2 + i1y [(VTX)2]> .
2 Yo
Alsoasu—0
21

2
y <e" A— “—ie.> (V& V) <uPTYz+ L_PNZ>
1 2 i 1€ \/T

(13.97)

| | =
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21

= ii* (Vg V)(yo) + Z e A (VE’TYZ+PNZ/\/'F Vi V) (¥0)
1

N 2
+10<u2<1+|PTYZ|2+——-|P Z| ))
u T

In (13.94), (13.95), we saw that for 1 <i<2/’
(13.98) PE” (Vin, Vi, V) (o) P* =0.
Also by formula (12.54), we find that

(13.99) P¢” (Vorv, V5, V) (00) PY

pTYZ

_ /-1 _
=Pt \{/j g-(—JA(ei)P”Z+JPNVTx otei)Pg.

Now for 1 <i<2/l,if Ze(TRY),,, |Z| <&, (°1e;)(Z)e(Tg Y);. Therefore

Yo’

(13.100) PNVilv, %te; (o) =A, , (PTYZ)e;=A(e) P™Y Z.
From (13.99), (13.100), we deduce that
(13.101) P¢” (Virv, V5. V) (yo) P =0.

Ore;

Using (13.98), (13.101), we get

210

(13.102) P Y e A (Vorvyipng, 5 Vi, V) (Do) P =0.
1

Identity (13.96) now plays the role of identity (12.36). Identity (13.97) replaces
the first identity in (12.42). The second identity in (12.43) is replaced by (13.102), the
third identity in (12.43) by the last identity in (13.92).

For u>0, let 22 be the operator defined in Theorem 5.6 associated to
the exact sequence of holomorphic Hermitian vector bundles on Y
0-TY ->TX |Y — N — 0. Using the previous formulas, the second identity in (5.12),
and proceeding as in Section 12, we find that for any T > 0

2
(13.103) lim Tr, [Nﬂexp <—<qu+ IV) >:|
u—0 u

=j @ Tr, [Nyexp(— Gy 22, G, Dl ch(n, g.
Y
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Clearly
Tr,[Nyexp(— Gr} 232G, )] =Tr,[Nyexp (— 232)].

Then (13.103) is equivalent to

2
(13.104) lim Tr, [NH exp <—<uDX+ T V) )]
u—>0 u

= J @ Tr, [Ny exp (— 222)]ch(n, g".

Of course (13.104) is compatible with Theorem 6.7, since as we saw in (5.15)
(13.105) Tr, [Ny exp (— B32)] = Tr, [Ny exp (— 2322)].

The second identity in (5.11), which defines Qiz in terms of the operator @iz
should also have a clear interpretation. In fact the operators @iz and 9# are the
“limits” as u — 0 of the same family of operators calculated in two different trivializa-
tions. Although the gauge transformation which passes from one trivialization to the
other tends to the identity as u — 0, the effect of the Clifford rescaling inflates the
gauge transformation to such a point it survives as a non trivial gauge transformation
in the limit. This is the geometric interpretation of identity (5.11) in this very special
situation.

j) The matrix structure of the operator .,?’:,"T"" as T — + 0.

Definition 13.20. — Let F, (resp. F;’o) be the vector space of smooth
(resp. square integrable) sections of (A(TxY)® mn),, over (TgY),,. Let K, K=-°
be the vector spaces of square integrable sections of (A(TEY)®AN*)®E)
ATEY)®AN®® £*),, over (TgX),,.

We equip F‘y)0 with the Hermitian product

Yo’

(13.106) 0,0'eF°>(o,0" )= (o, c’)(Z)dLTY%.
(TR Y)y @2m)a™
We equip K}, with the Hermitian product
dvrx (£)

(13.107) 5, 5'eK) = (s, 8 )= (s, 5" Y(2)

(T X)yo (2 n)dim X
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We now use the notation of Sections 7, 8a) and 81i). In particular 0,  denotes
the Kahler form of the fiber Ny . Set for Z e (TgX),,

(13.108) B,, (Z)=exp (eyo - Eﬁ)

Here B, (Z) is considered as a section of (A (N*)@A(N*))yo. Recall that
Ero= (AN*® n),,.

Definition 13.21. — Let \ be the linear map : 6eF° —» o B, eK?..

Let K;° be the image of F9 in K . By Theorem 7.4, \ is an isometry from
F), onto K;;°.

Let K;; %+, K %+~ be the orthogonal vector spaces to K} ° in K

o K@ respecti-
vely. We then have the orthogonal splittings

0 k"o 0,1
K.VO KJ’O ®KY0 ’

13.109
(1% K, =K’ @ K> -7

Let p, p* denote the orthogonal projection operators from Ky on K;°, K} ** with
respect to the Hermitian product (13.107).
Set

A, r=p L1 p; B, r=p L 0 pt P, C,r=p L P,
(13.110) D, =P pt £22p; E, ;=P pt £} 20pt P, F, =P% ptgllopt;
G, r=P*" £0°p;  H, =P Z3°ptP; 1, =P Z0P.
Then we write the operator 31’{0 as a (3, 3) matrix with respect to the splitting
K=K, @ K> -~ @ K °
A,r B,r Cur

(13.111) £22=|D,r E,r F.r
Gu,T Hu,T Iu,T

By proceeding as in Section 8h), we know that for u€]0, 1], as T — + oo, the
differential operator ¥ 3,’¥0 has an asymptotic expansion of the form

(13.112) Prr=3% 0,,T"
k<4
Therefore as T — + oo, the operators A, r, B, 1, ... have asymptotic expansions

similar to (13.112).
Recall that v was defined in Definition 8.8. We now prove one of the central
results of this Section.
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Theorem 13.22. — For u€]0, 1], there exist operators A,, B,, C,, D,, E, F,, G,,

H,, I, such that as T - + oo,

A,,,T=Au+0(—1—>; B, =T B,+0();

T
(13.113) VT

Du,T=\/TD,,+0(1); Eu,T=TE+0(\/T);
Gu,T=TGu+O(\/T); Hu,T=THu+0(\/T);

Let 2, be the operator acting on K,

(13114) ‘@uzupé— {(PZ (uPTY Z) Vdiva(ul’TYZ)

21

+ Y i%) Vin, (<p’-V§in) uPT™YZ)

21'+1

C,.1=TC,+0(/T);

F,.r=TF,+0(/T)
I, r=T21,+0(T%?).

+ %[Vf,NZ((pV’)(uPTYZ), Vin, Van, (0 V) wP™ 2))

N 2
— (Von, 02) (uPTY Z) <s+ LP_{ZI—» pe-.
Then the following identities hold
(13.115) B,=p?,p*P*;

210 2
C,=pP%” (pz(uPTYZ)<l y (ef A— %iei)(Vi

Ore:
u g te;

21
c(e) o v ) g+
+2rz+1 N (V5 V) @P™Z) | PE7,

D,=P% p*2,p,
E=p' Pt~ <— %AN+ %|PNZ|2+S) Pt pt,

21

1

V)uP™2Z)

2
G,=P%" @2 (uP™V Z) <_ y <ef A— ”E iei> (V5. V) @P™Z)

U 1

+ 3 Cw e Z)> »

1

u2

I,=— P (V)2 +(1—9?)P") (uP™Z)P%.
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Proof. — Using formulas (13.83), (13.87), (13.91), (13.92), we will calculate the
Taylor expansion of the operator 3’1’{0 as T—> + oo, and we will obtain (13.113),
(13.115).

Inspection of (13.83), (13.87) shows that the coefficient of T2 in the Taylor
expansion of 5,”3”;0 is the operator

1
u2

(13.116) P (@2 (V)2 +(1— )P ) wP™ Z) P4 .

We thus obtain the formula in (13.115) for I,. The coefficient of T*? maps K into
itself. Therefore it can be disregarded.

Observe that if |P™YZ|<3¢/4u, ®tey wP™Z), ..., %e,uP™Z) is an
orthonormal base of Ng , and so

21

(13.117) Y. VZorqupTrzy=AN.

21'+1

If, in the coefficient of T, we eliminate the piece which obviously maps K into itself,
we then obtain

N N 2
(13.118) Pg_(l——(pz(uPTYZ))<—A?+|—PE—Z—|+S)P§—

AN 1 2 u?
-|—(p2 (uPTYZ)(— 7 + — z <e‘ A — ? ie,-) (VEIC.V) (uPTY Z)
u 1 !

21
+y @y V)(uPTYZ)+—_|PZZ|2P€‘>.

0. N
21'+1 \/i Tei

By Proposition 7.2 and Theorem 7.4, K;’OO is exactly the kernel of the operator

_ AN N 2
(13.119) Pi‘( 2A + |P22| +s)P€‘,

which acts as an unbounded operator on K;’OO’L’ ~. Using the first identity in (12.43),
(13.92) and (13.118), we get all the coefficients of T in (13.113), together with the
formulas for C,, E, G, in (13.115).

We now study the coefficient of _ /T. This is the most difficult term. In view of
the previous results, we apply on both sides of this operator the operator P*™. In the
sequel, [, ], denotes an anticommutator. We then obtain as the relevant coefficient
of \/T the operator 2, given by
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- \u
(13.120) #,=Pt {5<d<p2(uP“Z), P”Z><AN 2IZH( o,e(u.,wzf)
21

1, TY
- E(P P "2Z) Z Vo,ei(uprvz)a uV(PNZ,[PN"tei](uPTyZ))

21'+1

+

% Z << PTYZ, [’T™ (°1e)]uP™2Z) ) e}, ¢, ) (ej A= ug iej)

jk<
u u O7-TX (0 TY
n——i le +Z Y CT™*(Cte) wP™Z)ej, ¢ )

20'+1<j, k<21

3]

clecle)t — Y (A Crte)@PZ)ej )
1<j<2l
21’+11$k<21

<ef A— ‘_‘2— ) cle) +u <r€+ %Tr [OFTX]> (°te) (uPT™Y Z)]

%\”

+
—uV _2v

pN z (sz Oxei)(uPTYZ)}
21

+Z (e A —?z )VE,NZ(q; Ve, V)P Z)

21

tu Y, c(e)v*’ 2 (92 V5, V) @P™ Z)

[VpNz (@V)P™Z),(Vin, Vin, 0 V) uPTY Z)]

N 2
— u(Vony 0 (uPTY Z) <s+ “’%')}Pi‘.

Formula (13.120) for £, can be simplified. In fact:
e By (8.80), we know that for 1 <i< 2/

(13.121) %PN Cre) WP™Z+tPNZ)|,-,

= —PNC,prv, P™ %te,(uP™YZ)) PNZ,
andsoif 2/'+1 <i<2/

(13.122) %PN(Otei) @P™+tPNZ)|,_o=0.
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From (13.122), we deduce that for 2/'+1 <i <2/
(13.123) (PNZ, [PN°e](uPT™Z))=0.
e Using (13.65), it is clear that for 2/'+1 <i< 2/

r™ (°te) uP™ Z2)=0,

(13124) < PTY Z, [orTx (01_ ei)] (uPTY Z) > =0

e From (13.55), we find that if 2/"+1 <i< 2/
(13.125) Alpry, (°te; uP™ Z))=0.

e Using (13.63), (13.65) and the fact that B,pvyr, exchanges &, and &,0 WeE get
for2I'+1<i<2l!

(13.126) P& T (%te) (uP™Y Z)PE =0.

e Using the first identity in (12.43) and the first identity in (13.92), we also see
that

21 2
(13.127) P Y (e a— L, ) ¥in, (@2 Vi V) @P™YZ) P4 =0.
2 13 P Z Tei

1

From (13.117), (13.120)-(13.127), we find that £, is in fact given by formula
(13.114). Also observe that if 2/'+1 < i, j, k < 21, then

~ 5 )
exp(- |Zo] )Ve,.exp<— |Zo] ) dDN(dZOZ,=0,
“NR,yo 2 2 (275) m
r 2 2
(13.128) exp(_ |Z,| > f)exp(— |Z, | > va(dzor)FO’
INR, yo 2 2 (211;) im
r 2 2
exp<_|__zi>zgzézgexp<_ Z| ) don(Zo) _o
VNR, y 2 2 (zn)dlmN
» YO

From (13.120)-(13.128), we deduce that
(13.129) p2,p=0.

Using (13.114), (13.127), we also get the formulas in (13.115) for B, and D,.
Theorem 13.22 is proved. [

Remark 13.23. — 1t is here time to relate the previous calculations to the
asymptotic formulas (8.57), (8.58) of Theorem 8. 18.
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In fact recall that as pointed out in Remark 13.13, our trivialization of
A(T*©DX)® £ is compatible with the trivialization of A (T*© Y X) ® & considered
in Section 8 g). The only minor difference is that on a neighborhood ¥~ of y, in Y,
the fibres of the vector bundle A(T*®VX)&®E|, have been identified to
(A(T*®VX) ®E),, by parallel transport with respect to the connection °VY defined
in (8.50) along radial geodesics in Y. Also note that G, +=F1'. Using Proposition 8.9
and Theorem 8. 18, we find that as T - + o

(13.130) GI‘,ITDXGLT=\/TDN+DH+M—dl\r/anc(v)+0<—l—).

From (13.130), we deduce that as T — + o0

dimY
NE

(13.131) G} (DY Gy 7 =T(DY*+ /T [DN, DH+M-— c(v)]+0(l).

By proceeding as in (9.69), we find that
(13.132) [DN, DH]=0.

Also using (8.51), we get

21

[DY, M]=— 3 B(e)V,,

21'+1

I:DN, _—dH;l—Y 4 (V):l = Vdimyv-

N

Using (13.131)-(13.133), we see that as T - +

(13.133)

21

(13134) GI_,IT(DX)ZGI,T=T(DN)2+\/T<_ Z B(ei)vei+vdiva>+0(l),
21'+1

and so

(13.135) Pi_GI_,IT(DX)ZGI,TPE‘zTPE‘(DN,—)2P§—

+ /TPY Yy, PE +0(D).

The simplicity of formula (13.114) for 2, is now entirely explained by (13.135). By a
simple scaling argument, we obtain the corresponding result for 2, u€]0, 1].

Of course at least when ¢ (uP™ Z)=1, the whole asymptotic expansion of the
operator 33”;0 as T — + oo is entirely explained by formula (8.58) in Theorem 8. 18.
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We are anyway forced to forget Theorem 8.18 for the moment, because we also
need to understand the cancellations which occur as u — 0.

k) A family of Sobolev spaces with weights.

Let g be the orthogonal projection operator from (A(T§¥Y)® A(N*) ® £),, on
(A(TEY) ® {exp}),,.

Recall that p is the orthogonal projection operator from K‘y’0 on K;’OO and that
pt=1—p. By an obvious analogue of (8.91), we know that if seK;’0

1 —|PNZ|?
(13.136) ps(Z)= i exp <#
_|Z'|2 TY , '
q exp| ——— |s(P"Y Z+Z")dvy(Z').
NR, yo 2

Let y* be the adjoint of the map : F® — K‘y) defined in Definition 13.21 with respect

Yo 0

to the Hermitian products (13.106), (13.107). Then
(13.137) Y =y !p.

Definition 13.24. — If Ze(TgX),,, Ue(TgY),,, set

Yo’

(13.138) gu1(@)=1+(1+|PTYZ )12 ¢ (%w“z)

N 2\1/2
+<1+—|P Z| > <p<—“ PNZ>,
T 2\/T

ZU)=1+(1+| U ¢ (%)

The algebra A (TR Y),, splits into
21
(13.139) A(TRY),,=® A" (TR Y),,.
(1]

This splitting induces corresponding splittings

21
= 0
KSO_. (? K',}’O’
(13.140) o
F),= e(::) F,

r, Yo"
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Definition 13.25. — If seK?

r, }’0’

1314 |sPa,. o= j |5 g @7 (2) dor (Z).
(Tr X)y,

Let {, )4 1,0,0 be the Hermitian product on K) which is the direct sum of the
Hermitian products on the K? vo S associated with formula (13.141).
Observe that by (13.136)

| |uTy00 lpsluTy00+|p S|uTy00’
(13142) IpS Iu,T,yo,O =< CI lu,T,yo,O’

Iplslu,T.yo,O <C |s|u,T,yo.0'

If peR, let Kj, K;—LO”‘ be the Sobolev spaces of order p of sections of
(A(TEY) ® A (N*) ® ﬁ)yo, ATEY)®AN*®E*),, over (T X))o If seKb, w
write s=s* +57, sTeK",

Definition 13.26. — If seK!

YO’

T2

(13.143) Is2ry0.1= = 15" Bty 0t TP s o y0.0

21
+T“PNZ|pls_ iT,yo 0+Ips u, T, y0, 0+Z lveisﬁ,T,yo,O
1

21

+T Z |VeiplS|Z.T.yo,0'

21'+1

Then (13.143) defines a Hilbert norm on K; . Let K, ! be the antidual of K}, and let
| |u.y0, —1 be the norm on K, ' associated with the norm | |, 1., on Kj . We
identify K9 with its antidual by the Hermitian product < , ), ., o-

We then have the family of continuous dense embeddings with uniformly bounded
norms

K;o - Kgo - KJ’—OI‘
Theorem 13.27. — If €€]0, inf (g,/2, a/2, b/2)] is small enough, there exists

constants C; > 0,C, >0,C;>0,C, >0, Ty > 1 such that if yoeY, uel0, 1], T > T,
for any s, s'e K, with compact support, then

(13144) RC<$3 —Vos S>uTy00 C | |uT_v0 l_CZI IuTJ’O 0’
|Im<$3 -Vos s>uTy0 0| C3|SIM,T,y0,l|s|u,T,y0,0’

|<«3’3 195, 8" Yuty0, 0| < Cal S|t y0,1 15 i muyor 1
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Proof. — The proof of Theorem 13.27 is divided into two parts. In the first part,
we construct an operator 5,”3 20 which is a “principal part” of 23 20 and we prove
that it verifies estimates s1m11ar to (13.144). In a second part (Wthh is the most
difficult), we show that for & small enough, #,°, = 3’3 Y0 — 2’3 70 is a “small” perturba-
tion of ,,SP 70 with respect to these estimates.

In the whole proof the constants C, C'... are assumed to be positive, and
independent of y,, u, T. They may vary from line to line. Constants which may be
chosen to be also independent of & will be underlined like C, C’, . ..

Theorem 13.22 and its proof will play an essential role in the proof of
Theorem 13.27.

a) Estimates on the operator £’ 3 1

We now fix € for the moment. Set

21

(13.145) 33,’$°=— (1-9*>WP™Z)) L,p1v,— Ecp (uPTYZ)Z oo wPTY 2)
1 N T 2 +1\2 2 gt TY u N
—2TAN+ = (@2(VH)2+(1—?) P (uPTY+ L pNZ
2 u? \/T
N 2
7P ZF pe- | ppe-gpe-,

RO =Ly~ L0
u, T u, )

~u,T
Note the trivial inequalities
Ve8| <G |V,2.|<C 1<ig2r

C
|Veggu,T| < =

(13.146) T; 20'+1<i<2l

Observe that K;>°, K, -°, and K, !, K, ! are mutually orthogonal with respect
to the Hermitian products < , ), . ,, 0 and < Du,T, 0,1 Also the operator £ pre-
serves K+ and K. To verify the analogue of (13.144) for ,Z,i Yo we can then assume
that s, §’ both 11e in K or K and have compact support.

If s, s eK;:), using (13. 146) the inequalities (13.144) for the operator ,S,” 70 are
trivial. Also the constant corresponding to C, can be fixed independently of €. So we
now assume that s, s'e K, .

Let &£, be the operator
1 20l
(13.147) L= 5(1 —@*WP™Z)L,prv,— —(p 2wP™7Z) Z \%

Ore; wPTY Z)
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If UeTpY, |U|[<3e/4, %te;(U), ..., %e, (U) span (TgY),,. Using (13.71),
(13.146), we find that

21

(13.148) Re(F,uS8, 5 Dut.y0.0=C Y Vo5 |2 —C'|s|?
1

u,T,y0,0 u, T, yg, 0>

|1m<yus9 s>u,’l‘,yo,0| < C|S|u,T,y0,1 Islu,T,yo,O’

| <yus9 S’ >u,T,yo,0| < C |s|u,T,yo,1 Isl |u,T,y0, 1
Let E be the operator

N 2
(13.149) E=—%A“+——'P Z|

P +P% SP&.

By Proposition 7.2 and Theorem 7.4, we get
(13]50) <ES9 S’ >u,T,y0,0= < Ep-L S, p—L sl >u,T,y0,0 + < Ep'LS,pS’ >u,T,yo,O'

Using (13.146) and Cauchy-Schwarz’s inequality, we find that, if T is large enough

21
(13151) RC(EpJ'S, pls>u,T,y0,0 2 C < Z !Veiplsﬁ,T,yo,O

21'+1
+“PNZIPLS|3,T,yo,0>_CI |pLS|5,T,yo,0‘

We will show there exists C"" > 0 such that if T > 1 is large enough, if se K has
compact support, then

(13.152) Re CEp*s, p*s )y 1,500 = C [P 512 1,50, 0-

To prove (13.152), we may and we will assume that seK, , (0 <r<2/). If r=21/,

then (13.152) follows from Theorem 7.4. So we suppose that 0 < r < 2/'—1. We only
need to show that there exist ¢, > 0, C”” > 0, such that for T large enough

(13.153) Re{(E+¢op)s, $ Du 1,500 = C" | 5|2

u, T,y0,0°*
Let E, be the operator
(13.154) E;=git " (E+cop) gy

Recall that { , ) is the ordinary unweighted L, Hermitian product (13.107) on KJ .
Let | | denote the corresponding norm. Let E/* be the adjoint of E; with respect to
{, ). In the sequel, E,+E* is considered as an unbounded operator acting on
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(K, ° | |- Then (13.153) is equivalent to

Yo °?
(13.155) %(E;+E;*) >C.
Now
21 -
\vj 2l'—-r|2
(13.156) le+Em=e-1 v Tadut
2 2 2141 gt
500 (A AP o APl 7 i )
By (13.146), we find that
21 ’
\vj 21" -r|2
(13.157) y |rafer FLC
20 +1 guT i T
If seK? , , then by (13.136)
_ 2 -r PNZ 2
(13.158) g2 pg A s(2)= ganlmIS ) ex (_|_7|_>

),

Also if UeTrY, Zy, Zg €Ny ,,,, we have

2

R, yo

exp (— |z ) &) PTYZ+Z')dvn (Z).

|2 1/2 ”
§,,(U)+(1+ 1z5? > (p(l “Zg>
gur (U+Zy) _ T 2 /T

+7 N 12\ 1/2 o\
T 2 \/T

(13.159)

From (13.159), we deduce that

(13.160) 8u.1 (U+ Zo) —1‘<—|zg—z;,
8, 1(UtZo) \/T

and so if r <2/
20 —r ”

(13.161) gur " (UrZo) _ l Ca+|zg-z )
g1 (UtZy) \/T
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From (13.158), (13.161), we see that if 0 < r <2/, if seK®

r, Y0

o C
(13.162) f (€24 pg it —p) s dope < j 5] dorx.
(TR X)yq T Jagrx,,

C
J |7 peli " —p) s dorx < = f | s|? dorx.
(TR X)yo T Jagx,,

Using Theorem 7.4, (13.156), (13.157), (13.162), we get (13.155).
We have thus proved (13.152). Combining (13.151) and (13.152), we find that
for T large enough, for 0 <n < 1

21

(13.163) Re<EP S, D S>uTy00 Cn( Z |VeiplS|3,T,yo,0

21'+1
+HPNZ| p* 52y, 0)"‘(9"(1"“)—@"1)|Pls|3.T,yo,0'

By taking 1 small enough, we see that for T large enough

21

(13.164) ReT (Ep*s, p* )i 1.y0.0 = C”’(T Y Veart st 00

21'+1
FT[PYZ| 0+ T2 sEoro)

Let p, p* be the adjoints of p, p* with respect to the Hermitian product

< >u T, yo. 0- Then p’p act on Kr Yo as g—2(21’—r)pg2(2!’—r), g 22U —r)p_l_ g2(21 -r)
respectively.
Using Theorem 7.4, we find that if s, s'e K, have compact support,
(13165) < Epl s, PS’ >u,T,yo,0 = < Ep-L S, ELPS’ >u,T,yo,0
or equivalently
(13.166) CEP*s, pS" Yu1.y0,0=CEP* S, (D= P)PS Du 1,50, 0-
Using (13.146), (13.161) and integration by parts, we deduce from (13.166) that
(13167) lT < Epl Sy pS’ >u,T, yo,Ol S c \/T Ipls Iu,T,yo,O lpS’ Iu,T,yo,O'

In particular, we find from (13.167) that for any a > 0

C
(13.168) |ReT CEp*s, ps )y 1.y0.0] < <aT|p SIZ 100t — |ps“Ty0 0)
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From (13.150), (13.164), (13.168), by taking a > 0 small enough, we get for T
large

21

(13.169) |ReTCES, $ )y 1,y0.0| = <T Y VP 5100

21'+1

FTIPYZ] 50+ T Bons )€ 15

Using (13.146), (13.150), (13.167) and the fact that S and |PNZ|* P* ™ are self-
adjoint operators, we also find that if s, s'e K have compact support, then

|ImT<Es S>uTng| CI IuTyoll |uTy00’
lT <ES’ s’ >u.T,yo.0| = CI lu,T,yo,l ls Iu,T,yo,l'
From (13.145), (13.148), (13.169), (13.170), we finally find that there exists

€, >0,C,>0, Cy>0, Cy >0 such that if 5, s'eK,  have compact support, for T
large enough

(13.170)

Re<$3 105, 8 YuT,y0.0 = Ci

uTyol—C'i |“T}’00’

(13171) |1m<$3yos S>uTy0 Ol C ' luTyoll ‘uTyOO’

|<$3 Y05, s " Du T yo, o| I |u T, y0, 1 !S I“vT'YO'I'

b) The operator R¥°. is a small perturbation of the operator £>2°.
P u, T P p ZuT

We will show that given ¢ > 0, if €€]0, inf (go/2, a/2, b/2)] is small enough, there
exist To > 1, C > 0 such that if y,eY, uel0, 1], T = T, if s, s'e K, have compact
support

(13'172) |<‘@ﬁ?T S, s’ >u,T,y0,0 I Sc¢ lslu,T,yo,l IS' Iu,T,yoyl
+C (lslu,T,yo,l IS’ Iu,T.yo,0+|s|u,T,yo,0 Is' |u,T,y0'1)’

|1m<9"ﬁf’T S, s>u,T,yo,0| <C |S|u,T,yo,1 lslu,T,yo.O'

Using (13.171), it is clear that the proof of Theorem 13.27 will then be completed.

In the proof of (13.172), the fact that the function Z,eNg , — exp(—|Z,|?*/2)
lies in the Schwartz space S (Ng ,,) of the fibre N , will play a key role. Also observe
that for 1 <i<2/

(13.173) [V, p]=0.

Finally, Theorem 13.22 will play a crucial role in establishing (13.172).
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Note that if |uPTYZ| < 3¢/4, |(u/\/T) PNZ|<3¢/4, then o ((/2)P™2Z2)=1,
o ((u/2 ﬁ) PNZ)=1. By proceeding as in the proof of Proposition 11.24, we find
that the operators indexed by i, 1 <i <2/

; u? .
(13.174) lluPTYzl <3¢/4, | (w//T)PNZ| < 3¢/4 (e AT 3 lei>,

PNZ i 2.
LiupTY z) < 364, |/ T)PNZ | < 354 <|PTYZ|+ |—\/—T—I> (e' A %‘le,-)

act as a uniformly bounded family of operators on the Hilbert space
;)0’ l |u, T, y0, O)'

To prove (13.172), we will consider first the part of #,° which belongs to .# 3{0
and later the part which belongs to 31’{"— M i’%o.

1. The contribution of M2'2° to B,

In the contribution of //li’{" to #°°, we will consider in succession second

. u, T
derivatives in the direction of (TgY),,, in the directions of Ng , , mixed derivatives,
and remaining terms.

Yo’

a) Second derivatives in the directions of (TgY),,.

Let o/, 1 be the operator

(13.175) Ay = %((pz <uPTYZ+ ﬁ PNZ>——(p2 (uPTY Z)) L,pTyy

21
1 u
— _(p2 <uPTYZ+ _ PNZ> Z Vlz)TYDTei(MPTYZ+(M/ﬁ)PNZ)
2 ﬁ 1
21

+ %(pz(uPTYZ) Z V2
1

Ote;(u pTY 7y

Clearly
(13.176) o, = %(@2 <uPTYz+ 7‘%PNZ>—¢2 @PTY Z))
21 1 u
— 2 — 2 TY N
(Lu,,nz ;Voni(myz) S0 <uP Z+ﬁp z>

21

2 2
Z (Very ore; wPTYZ+@//T)PNZ) ™~ Very Ore; uPTY Z))'
1
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By (13.75), ¢* (uPTYZ+(u/\/T')PNZ)—(p2 P™2Z) is nonzero only if |[uP™Z|<3¢/4
Recall that € < b/2. By (13.70), we find that if |uP™YZ| < 3¢/4, then p(uP™ Z)=1.
From (13.71), (13.176), we deduce that

1 u
13.177 A, == 2{ uP™Y + ——PNZ>
( ) ,T 2(P ( \/T

21

Z (Vlz’TY Ore; wPTYZ+ () /T)PNZ) V12>TY Ore;uPTY Z))'

1
Also, ¢? (uP“Z+(u/\/’T')PND is nonzero only if |uP™ Z|<3¢/4, ](u/\ﬁ) PNZ|<3¢/4.
Using (13.146), (13.177) and the previous considerations, we find that

(13178) |<Mu,Tss S’ >u,T,y0,0| < Cglsl |u,T,yo,1 |SI |u,T,y0,1
+C (8]0, 1.y0.1 151 50,015 730, 0 5" a7, o0 1)

|Im<du,Ts’ s>u,T,y0,0| s C |s|u,T,y0,l |s|u,T,yo,0'

From (13.178), we deduce that &, 1 is harmless for the estimates (13.172).

B) Second derivatives in the directions of Ng ..

Let o/, 1 be the operator

(13.179) o = L2 <uPTYz+ L_PNZ>
’ 2 T
21
2
(“; VPN°re,~(uPTYZ+(u/ﬁ)PNZ)+AN)'

Using the identity (13.117), we find that

T u
13.180 AL == —@? uPTYZ+~——PNZ)
( ) , T 2(p ( \/T
21

§ (;pNO pTYZ+ Ty PN v No. TY )
Te;(u z (“/f) zZ) PN%te;(uP' Y Z))"
1

Clearly if s, s'€e K, have compact support, then

(13.181) <‘QI:4T 5, §' >u,T,yo,0 = < d:«,TPS’ ps’ >u,T,y0,0
+ < ‘M;,Tpl S, Pl sl >u,T,y0,0+ < JZ¢:"TP'LS, pS' >u,T,yo,0
+ < dlll,'l'ps’ pl S’ >u,T, y0,0*
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Recall that for 1<i<2/l, PN%e¢uP"™Z)=0. From (13.146), from
Theorem 13.22 and its proof (especially equations (13.122) and (13.123)) and from
obvious properties of the function Z,eNg , — exp (—|Z,|*/2), we find that

(13.182) | <295 PS' Dut50,0] S Clsbutiyo 1 [ lur50.0
Using (13.146), (13.180) and proceeding as in (13.178), we get
(13.183) [ a P s P S Duryo,0l SCELS | yo,1 8 lumyonn
+C (8]0, 150,015l 1 y0, 1 F8 b 150,115 7,50, 0)-
[Im {1 %8, P* 5 Yuty0,0l SCslityo,1 15 hmv0,0:

Using again (13.146), Theorem 13.22 (in particular equations (13.122)-(13.123)) and
elementary properties of the function Z,eNg , — exp (—|Z,?/2), we find

(13.184) |<~Q¢;,TPJ'S, ps >u,T,y0,0|+| <~2¢;,TPS, Plsl >u,T,yo,0|
< C(| N Iu,T,yo, 1 IS' |u,T,y0,0+ IS |u,T,y0,0 IS' |u,T,y0, 1)'
From (13.181)-(13.184), we deduce that ./,  is harmless for the estimate (13.172).

Y) Mixed derivatives.
Let &7, 1 be the operator

T
(13.185) o= \/T(p2 <uPTYZ+ Q%P“Z)

21

Z [VPN%ei @PTY Z+ @/ /T)PNZ) VPTY oce; wPTY Z+ (u/y/T) PN Z)] +-
1

Recall that for 1 <i<2/, °te;(uP™ Z) lies in (TgY),, or in Ng , . By proceeding in
the same way as for the operator <7, 1, one finds easily that ;' is also inoffensive
for the estimate (13.172).
8) The remaining terms in M ::%0.

Using (13.128) and proceeding as in (13.166), we find that if s, s'eK, have
compact support, then

(13.186) <\/TVV(“pTYZ)pS’ ps’ >u,'l‘,y0,0=\/:f (P Vywe™ 2 D5, DS Yu1, 50,0
=\/T<VV(“|>TYZ)PS, (P_ﬁ)PS>u,T,.v0,0'

By (13.161), (13.186), we get
(13.187) |<\/TVV(uPTYZ)psa ps >u,T,y0,0| <C Islu,T,yo,l | |u,T,y0,0'
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By using (13.128) again, we find easily that if o/, 7 is the remaining contribution of
M 3”{0 to #.,°;, &, is harmless for the estimate (13.172).

T 3,90 _ g3, y
2. The contribution of L '1°— M,'{° to R,

By (13.83), (13.145), the contribution of fi’{"—/li’{o to #,°; is the operator
%, 1 given by

Ore;

21 2
(13.188) G, 1= 0> (I y <ei A— "7;,) 3

21 2
+T z C(ei) Vg V+ Tj(v—)Z) (uPTYz+ :_/uTT_PNz>
u

[ .
20 +1 \/2 Tei

N 2
+(1 — 2 (uPTYZ+ T}‘T PNZ> (TPé‘ SP:™ + Lpz Z| Pé')

N 2
—TIPTZ| —TP% SP¢ .
Clearly
21 2 21
(13.189) <g,,j=<p2<I y <ei/\—iiei>v§wv+T y cled e
u 2 ! 20'+1 \/2 Te

— TP SP€‘> (uPTYZ+ %PNZ>+¢2 <uPTYz+ L_PNZ>

\/T

2 N 2
(T—(V‘)2 (uPTYZ+ LPNZ)—TM Pé‘).
u? \/T 2

Take s, s’e K, with compact support. Then
(13190) <(gu,T S, S' >u,T,yo,0 = < (gu,TpS’ pS’ >u,T, 0,0
+<(gu,Tp-LS7 PJ'S' >u,T,y0,0+ <(gu,Tp‘L S, PS' >u,T,y0,0
+ < (gu,Tps’ pl S’ >u, T, y0,0°*

By using the first identity in (12.43), Theorem 13.19, Theorem 13.22 and its
proof and more precisely equation (13.128), and also (13.160), we find that

(13191) |<(gu,Tps, pS' >u,T,y0,0| < C lslu,T,yo,l

s Iu,T, ¥0,0°

Using the first identity in (12.43) and Theorem 13.19, we also find that
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21 2
(13.192) ’ <<<p2 oy (ei A= ”7) vﬁw.V>
U 1 '

(uPTYZ+ LP“Z)pls, pls'>
\/T u,T,y0,0

<C|s|u,T,yo,1

s’ Iu, T, 0, 0>

21
’ <(p2(T Y "—(e—%)vng—TPé‘ spé')
21 +1 '

(uPTYZ+ —«u:PNZ>pls, pls’>
\/T u, T, 0,0

<C Islu,T,yo,l |S' |u,T,y0,0'

Recall that ¢? (u PTYZ+(u/ﬁ) PNZ) vanishes for |(u/\/:l“) PNZ| > 3¢/4. Using
Theorem 13.19, we find that

2
(13.193) }<(p2 (uPTYZ+ L_PNZ> (FI;(V_)2 (uPTYZ+ LPNZ>
\/T u? \/T
PNZ 2 - ’ ’
_T*| | Pt )Pls’ pts > < (_:3|s|u,T,yo,1 |'s |u,T,yo,1-
2 u, T,y0,0

Using again the first identity in (12.43), Theorem 13. 19 and elementary properties
of the function exp (—|Z,|*/2), we also find that

(13 194) |<(gu’Tps’ pls' >"'T’Y0’0| <C |S|u,T,yo,0 |s, |u,T,y0,1
|<(gu,TplS9 Ps’ >u,T,y0,0| <C |s|u,T,y0,0 ISI |u,T,y0,1-

For any Z e (T X), ., the operator

Yo’

(13.195) > <uPTYz+ LTPNZ>
2 N 2
<T_(V-)2 (uPTYZ+ LPN2>_TM p&‘)
u? \/T 2

acting on (A (T¥Y) ® A(N*) ®E_,)y0 is self-adjoint. Therefore it does not contribute
to Im (€, 1" s, p*5' D 1.y 0- I view of (13.190)-(13.195), we find that €,  is also
compatible with (13.172).
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The proof of Theorem 13.27 is completed. [

1) Estimates on the resolvent of ¥ 3”;".

From now on, € and T, > 1 are fixed as in Theorem 13.27.
In the sequel, we consider the operator ,Sﬁu’ 7 as an unbounded operator, with
domain

D={sek?

Y0’

|PNZ|?seKS ).

We use notations which are formally similar to the notation in Section 111). In
particular if Ae & (K ) (resp. £ (K,;.)', K})), || A||&2,, (resp. ||A|l; 1 ,,) denotes the
norm of A with respect to the norm | lT.50,0 On KD (resp. to the norms

I |u, T,y0, —1 and I Iu,T,yo, 1)'

Theorem 13.28. — There exist C > 0, A > 0, & > 0 such that if
(13.196) U={reC, Re(A) <8Im*(A)—A},

if uelo, 1), T=>T,y, yo€Y, AeU, the resolvent (A— _‘Zi’]yf’)" 1 exists, extends to a
continuous linear map from K‘O1 into K} and moreover

la—22)7 o

(13.197) T:v0
| (A~ 33 )7 e 5

<G,
< C(1+|A)2

Proof. — Using Theorem 13.27 instead of Theorem 11.26, the proof of
Theorem 13.28 is the same as the proof of Theorem 11.27. O

m) Regularizing properties of the resolvent of 3’3 o,

We consider the family of functions fi, . .., f, defined on X with values in [0, 1]
which has been constructed in Section 11 m).

Definition 13.29. — Let 2 be the family of operators acting on K,

u, T, yo

(13.198) ,@“,T,yo={vei, 1<i<2l3ptV, ph 2l +1<i<2l;

f P ©f) (uP“Z+ —"—P“Z>pl, 1<)j< r}.
JT
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For meN, let 27 1 ,, be the family of operators Q which can be written in the form

Q=Q1"'Qm; Qie‘@u,T,yo'

For meN, we equip the Sobolev space KJ. with the norm || || such that if

seKj,, then

u, T,yo,m

(13.199) 5112 1. 00m= 2 |Qs 2 7,500

P=0 Qea?P

The analogue of Proposition 11.29 is the following result.

Theorem 13.30. — Take meN. There exists C,, > 0 such that for any uel0, 1],
T>To yo€Y, Qs - .., Que2, 1,50 if 5, S’ €K, have compact support, then

(13.200) 1<IQy, [Qy- - .[Qus L2215, 5 Dutyor0|

I
< Cm IS'M,T,yo.l |S |u,T,yo.1'

Proof. — We will use the notation and also the organization of the proof of
Theorem 13.27.

a) The case where Q=V, (1 <i<2l').

We make the key observations that [Q, E]=0, and also that the properties of the
various operators considered in the proof of Theorem 13.27, which lead in particular
to the third inequality in (13.144), are invariant by translations by elements of
(TrY),,

b) The case where Q=p*V, p* 2I'+1 <i<2l).
Clearly
2
(13.201) [Q, L @ (v +(1-9?)P+) (uPTYz+ L_PNZ>]
u \/T

T3/2 + u
= —V, (9*(V*)?*+(1—?) P¢ )<uPTYz+ —_PNZ).
u \/T

We then easily find that the operator (13.201) is harmless in the proof of (13.200).
Also

(13.202) [PV, p, £J)=0.

By Theorem 7.4, we find that
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(13.203) [Q, El=p* [V, E| p*=P% p* (PNZ, ¢,) p* P .
In the estimates which follow, we assume that s, s’€ K have compact support. Clearly
(13.204) <[Q, TE]s, s’ >u, T,y0.0 T <PJ' <PNZ» e prs, ps’ >u, T, y0, 0
+T{(p* (PNZ, ¢;) p*s, p*s >u,T,yo,0'
By proceeding as in (13.165), (13.166), we find that
(13.205) T{p" (P Z &) p* s, pS' Du1.y0.0
=T << PNZ, €; > Pl S, (P“E) ps’ >u,T,y0,0'

Using (13.161), (13.205), we get

(13.206) [T (P (PYZ, &) p* 5. S Dutino.0| < Clslumyo.t |5 lmvo. e
From (13.142), we see that
(13.207) \/T [Pt <{PNZ, €;) p* $|ut.y0.0 S C|S|ut0.1-

By (13.204)-(13.207) we finally obtain

(13.208) |<IQ, TE]s, ' D 1.y0.0| < Cl8|ut.v0.1 |5 Ju 1. 50, 1-
i.e. [Q, TE] is harmless in our proof of (13.200).
Also by (13.128), pV,. p=0, and so

(13209) [Qa 'Mu, T] = [Vei— Ve,-p—p Vei’ ‘du, T]'

Now [V, o, 1] is a scalar second order differential operator which only involves
differentials in the directions of (TxY),,. Using (13.146) and integration by parts, we
find that [V, &, 1] is harmless for our estimates.

The remaining terms in the right-hand side of (13.209) are also inoffensive. In
fact because of trivial properties of the function Z,eNg , —exp (—|Z,|*/2), the
operators V,, p, pV,, act as uniformly bounded operators on (K3, | |, 1,0 0)> and
they commute with the V.'s (1 <j<2!l). We can then use (13.146) and integration
by parts to take care of the remaining terms in (13.209).

Similarly
(13.210) Q o 1l=[Ve,= Ve, P =P Ve Lyal-

Using (13.146), Theorem 13.22 and its proof (especially equations (13.122)-(13.123)),
we find that [V, o/, 1] is a second order operator only involving differentiation in
the directions of Ng , , which is essentially of the same type as </, 1, with obvious
modifications of the powers of T which appear as factors. By proceeding as in
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(13.180)-(13.184), we find that [V,, o/, {] is harmless. Using the same properties

of &/, as before and also the fact that exp (—|Z,|*/2)eS(Ng,,,), we find

that the remaining terms in the right-hand side of (13.210) are also harmless.
Handling the operator [Q, 7} {] is also easy and left to the reader. The commu-

tators of Q with the remaining terms in Jli’{o can be easily dealt with as before.
Set

21 2
(13.211) €. T=((p2 Ty <ef A=t 1) Vi v) <uPTYz+ —u_—PNZ>,
4 u 2 J tej \/T

1

21
fg;jT=<p2(T y €@y y_pe spi)

Otej
21'+1 \/2

<uPTYz+ %PNZ>+¢2 <uPTYz+ ﬁPNZ>

T2 . _ 2( u ) |PNZ|? _>
— uP™zZ+ —_PNZ|)-T1 ==L pt ).
<u2(V ) \/T 2

Then
(13.212) €. 1=%, 1+, 1
Clearly
(13.213) [Q, €, 11=[V.,~Ve.p—p V., €. 1l.

The operator [V, €, 1] is a matrix valued operator with a coefficient \/T. By the
first identity in (12.43) and by Theorem 13.19, the operator P%~ Ve, €. 1] P
vanishes for PNZ=0. By proceeding as in (13.180)-(13.184), we find that if s, s'eK,,
have compact support

(13214) I<[Ve, T]ss>uTy00| Cl IuTyollsluTyol

Using the same arguments as before and obvious properties of the function
exp (—|Z,|?/2), we also see that the remaining two terms in (13.213) can be handled
in the same way. Therefore the commutator [Q, %, 1] is harmless for our estimates.

Take s, s’ €K, with compact support. Then by proceeding as in (13.165)-(13.166),
we find that

(13.215) C[Q, €. 11 ps, PS" Yu,1,50,0
=<Veip_LP£_ (g;I,TP§~ DS, (p—ﬁ)pS' >u,T,YO,0'

Using Theorem 13.19 and (13.161), we get
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(13.216) [<IQ, €175, PS5 Dutyo.0l < Clsluriye, 1 [ lutpo
On the other hand, we have
(13.217) (IQ. uxl S, P* ' Du1,30,0 =P Ve, P €01 DS, PS5 Du1, 36,0
By proceeding as before, we find that
(13.218) |<[Q, 1l Ps, ps >u,T,yo,o| <C Islu,T,yo,l |s' Iu,’l‘,yo,l'
Also
(13.219) <[Qa €. 1) Pl s, ps’ >u,T,yo,0

=<pl Veipl(g;',_rpl S, pS’ >u,T,y0,0_ <p_L Veipls’ (gt’c,,’l‘ps, >u,T,yo,O'

Using (13.146) and integrating by parts in (13.219), we find that

(13.220) |<[Q’ %;:T]Pls, ps' >u,T,yo,0I <C |5|u,T,yo,1 Isllu,'l',yo, 1
Finally
(13.221) [Q, €. 1]=[Ve,— Ve, p—P Ve, €l

Using obvious properties of the function exp (—|Z,|?/2), we easily deduce from
(13.221) that

(13222) I<[Q7 (gllc’,T]Pl S, plsl >u,T,y0,O| S C 'Slu,T,yo,l |S, |u,T,yo,1'

From (13.215)-(13.222), we deduce that the commutator [Q, ¥, 1] is harmless.

T
¢) The case where Q= l/—p‘L (@f) (uPTYZ+ -E:PNZ>pL a<j<n.
u \/T
In this case
2
(13.223) [Q, L @V +1-9?) Pt (uPTYZ+ L_pNz)]=o.
u \/T
Also

(13.224) [Q, #.]=p* [ﬁ 0f <uPTYz+ % PNZ>, y’u] .

u
The operator [ \/T/u ¢ f; uP™ Z+ (uf \/T) PNZ), #,] is a first order differential

operator which only involves differentiation in the directions of (Tg Y),,, which comes

Yo’
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with a coefficient \/’T . By using in particular (13.161) as in (13.167), we find that
[Q, &,] is harmless.
Also

(13.225) [Q, TE]=p* [MAN ©f) <uPTYZ+ —K:PNZ>
2 JT

21
T Y (V0 (uP“Z+ —“:PNZ) V] P
i=20"+1 \/T
From (13.161), (13.225), we deduce as before that

| < [Qa TE] s, s’ >u,T,y0,0 | < C |S|u,T,.v0s 1 IS’ Iu,T,yo, 1

Also if s, s'e K, have compact support, then

(13226) < [Q, "Q{u, T] ps9 S' >u, T, y0,0

JT u
={( X _ptofi|uP™YZ+ —PNZ|p* A, 1ps, s'> .
< P <pf,< T )p TP " Toye.0

Using the fact that ¢ f; vanishes for PNZ=0, (13.146) and integration by parts, we
find that

(13227) |<[Q’ e5yu,'l‘] ps’ SI >u,T, 0,0 I S C IS |u,T,y0, 1 |S, lu,T,yo, 1

Also

(13.228) [Q, o, 1= ST <[(p f; <uPTYz+ % PN z), d“]

Cu
+[p of; (uPTYZ-l- L_PNZ>p-p(pfj<uPTYz+ _“___pNz>
/T 7
—(pfj<uPTYZ+ ——j—fPNZ>p, d”]).

The operator

T
N [q,fj <uPTYz+ %P“Y), sz”]

u
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is a first order differential operator only involving differentiations in the directions
of (TgY),, and a coefficient ﬁ . Also since f; vanishes for PNZ =0, the operators

T

ip(pﬁ(uPTYZ+ —u—PNZ>p,
u ﬁ

T u

—p(pf1<uPTYZ+ *—:PNZ>,
u \/T

gt u

N of (uP™zZ+ L PNZ))p
u \/T

remain uniformly bounded on (K3, | |, 1.,, 0) together with their derivatives in the

variable PTYZ. We thus deduce from (13.146), (13.228) that
(13‘229) l < [Q’ ‘du,T] p-L s, S’ >u,T,y0,0I < C lS |u,T,y0, 1 lS, lu,T,yo, 1-

Also

T
(13.230) Q. Al ps, 8= <pl —{7 0,

u, T,y0,0

(uPTYZ+ %PNZ>1)l o, ¢ ps, s'>

Since ¢ f; WP Z+ (u/ \/T ) PNZ) vanishes for PNZ =0, using the properties of </, 1
which follow from (13.121)-(13.122) and from (13.180), we deduce from (13.230) that

(13.231) [<IQ, 0 11PS, 8 Du1,y0,0| < C5]u1,50,1

’

N

u, T,y0, 1°
We now use the analogue of (13.228) with &/, | replaced by ./, 1. The operator
T
NA) [(pfj (uPTYz+ —u—_PNZ), M;,T]
u \/T
is a first order differential operator only involving differentiation in the directions of

Ng,,, which comes with a factor T, whose coefficients vanish for PNZ=0, i.e. its
coefficients grow at most like u ﬁ | PNZ|. One then easily finds that

T
(13.232) \ <*/— I:(pfj <uPTYz+ L_PNZ), &/;,T]pl 5, s’>
u \/T u,T, 0,0

’
< C Islu,T,yo.l |s Iu,T,yo,l‘
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Because of the properties of f; and of .o/, ; stated before, the other commutators in
the analogue of (13.228) do not raise any difficulty in establishing the estimate

(13233) |<[Q9 '-Q{:J,T]pl S, S’ >u,T,y0,0| < C Islu,T,yo, 1 IS' |u,T,y0,1'

From (13.230)-(13.233), we find that [Q, &, 1] is harmless.

The commutator [Q, 7, 1] can be handled by the same techniques. In fact the
operator ( \/T/u) [o f;, #, 1] is a first order differential operator, and each coefficient
has to be analyzed. Details are left to the reader.

By using in particular (13.161) and by proceeding as in (13.215)-(13.222), the
commutators of Q with the remaining terms in Zi’{" are easily dealt with by the
same techniques as before.

We still define €, 1, €, r as in (13.211). Clearly

Jt ,
N o f (uP™Z+ L PNZ), %, . |=0,
u \/T
JT :
N o f (uP™Z+ L PNZ), €, |=0.
u \/T

By proceeding as in (13.213), (13.214) and using the properties of %, r and f; which
were listed before, we find that the commutator [Q, €, ] is harmless. Also the
commutator [Q, €, 1] can be dealt with by the same arguments as in (13.215)-(13.222).

We have thus shown that the commutator [Q, Zi’%o] verifies the estimate (13.200).

(13.234)

d) Higher order commutators.

It appears from the analysis which has been done before that the commutators
of length one are operators whose matrix and differential structures are roughly similar
to the corresponding structure of 3 79, One can then iterate the process which was
described before and obtain Theorem 13 30 in full generality. [J

If Ae £ (K., Kiv), we denote by ||| A |||, the norm of A with respect to the
norms ” ”u,T,yo,m’ |u,T.yo.m on K;wno’ K;'n(;‘

Theorem 13.31. — For any meN, there exists p,,eN, C,, > 0 such that ifuelo, 1],
T>T,, yoeY, LeU, the resolvent (X—ffi’{f’)_l extends to a continuous linear map
Sfrom K7, into K"'+ ! and moreover

(13.235) = L32[l t < Cp(1+|A])Pm.

u, T,yo

Proof. — We first prove (13.235) when m=0. By (13.142), if seK has compact
support, then for 2/'+1<i<2L1<j<r

(13236) |p Ve,P slu T,y0,0 Clve,p slu T,y0,0 < C

s |u,T,yo, 1>
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.TPJ'(pf:’(uPTYZ+ LPNZ>pLS

NG

sc—*/j ’ 0 (uPTYZ+ L_PNz)pis
u \/T

u,T,y0,0

u, T,y0,0

<0 (L1 o P21 5 o 0) € Dot

From (13.236), we deduce

(13.237) 51,5001 < C7 I8 |1, yo 1

When m=0, (13.235) follows from Theorem 13.28 and from (13.237).
Using Theorem 13.28 and Theorem 13.30 instead of Theorem 11.27 and Propo-
sition 11.29, the proof then proceeds as the proof of Theorem 11.30. [

n) Uniform estimates on the kernel F, (,‘t’i’{").

Theorem 13.32. — For any meN, there exists C > 0 such that if uel0, 1], T > T,,
Yo€Y, then

(13.238) sup A+|Z, )" |I~7u (3:,’}’0) (Zo, Zy)| < C.
ZOENl,yo
|Zo| Se/T/4u
For any M > 0, m'eN, there exists C' > 0 such that if uel0, 1], T > T,, yoeY

olel+lel
(13.239) sup v —
Z,Z' (TR X)y, 0Z* 7'
1IPTYZ|, 1PTYZ | <¢/4

|PNZ|, |PNZ'| <& /T/4u
laf, Jo’| < m’

F,#2z 2)|<cC.

Proof. — We proceed very much as in the proofs of Theorems 11.31 and 12.14.
We take 6 > 0, A > 0 as in Theorem 13.28. Let I" be the contour in C

(13.240) I'={AeC; Re(\)=5Im*>(1)— A}.

By using Proposition 13.10 with ¢? > sup (A, 1/43), we find that in the domain I" of
C which is limited by T, if u€]0, 1], the function F,(a) and its derivatives exhibit
polynomial decay at infinity and this uniformly in u€]0, 1].
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By Theorem 13.28, we see that if u€]0, 1], T > T, then
(13.241) F, (&2 YO)— — j F,0—223) dn,

For peN, let I:“u, » (A) be the unique holomorphic function defined on a neighborhood
of I*, which is such that

° Fu,p(k) —0asiel' >+ 0.
e The following equation holds

F(p 1)()0
(p—1)

Of course, for uel0, 1], F‘“, »(A) and its derivatives decay polynomially at infinity
in I, and this uniformly in #€]0, 1]. From (13.241), (13.242), we deduce that

(13.242) F,(\).

(13.243) F.(£019= J Fo2, M —2070) 2P dh.
nl Jr

By Theorem 13.31, we know there exist C > 0, geN such that if Qe 2!
[ < p, then

u, T, y0, 0>

(13.244) QA—223)77||82,, < CA+|A|e

By introducing the adjoint operator 2’3 0% of ,?3 70 with respect to the ordinary
Hermitian product (13.107) on K° and the correspondmg adjoint Sobolev weights as
in the proof of Theorem 11.31, we also find that if Qe,@u T.y0» | < P, then

(13.245) | A= 227977Q|%2,, < C(+|A ]

From (13.244)-(13.245), we find that Qe 2, 1, vor Q e, vor b I' < p, then
(13.246) |Q(r— ,55’3 )P Q|0 ,, S CU+|A]*e

Using (13.243), (13.246), we deduce that if [, I'eN, Qe 2, 1, 0, Q'€ 2% 1, then

(13.247) |QF, + (£.2 <C.

uTyo

Let R be one of the operators V,(2I'+t1<i<2)), (\/T/u) ¢ f; uP™Z
+(u/ﬁ) PNZ).IfQ,, ..., QE€2, 1 ,, set

(13.248) H=Q,...Qp*Rp.

If all the Qs are of the form p*V, p* 2I'+1<i<2)), (\/T/u) (o f) WP™Z
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+(u/\/T) PNZ) pt (1 <j <), it is clear that

(13.249) |H|2L,, <C.

u, T,yo X

Equation (13.249) still holds if p* and p are interchanged in (13.248).
If some Q;’s are equal to V,, (1 <i<2/'), we can commute such operators in
order to put them at the very right. We thus express H in the form

(13.250) H=Y U,V,

where the U;’s are such that ||U;||>2, < C, and the V;’s are products of operators
V,; (1 <j < 2I'). The same result holds if in (13.248), p and p* are interchanged.

Let 2, 1 ,, be the family of operators

(13.251) 2, 1,0=1{V., 1 <i <25 (/T/0) (0 /) WPTYZ+(u/ /THIPNZ), 1 <j< 7).

For leN, let 2;'; o De the set of operators which are products of / operators in
2,1, y,- From (13. 247) and from the previous considerations, we deduce that if /, I’e N,
if Qe 21 ,,, Q' €2!; ., then

(13.252) I QF, 1 (

uTyo\C'

Using (13.252), the proof of Theorem 13.32 continues very much as the proof of
Theorem 11.31. Details are easy to fill and are left to the reader. [

o) The asymptotics of the operator F, (.5,”3,';’“) as T -+ oo,

We now will calculate the asymptotics of the operator F (33 79, and this
uniformly in u#€]0, 1]. The general organization of this Section is closely related to
the proof of Theorem 12. 16.

Proposition 13.33. — There exists C > 0 such that if uel0, 1], T>T,, yo€Y,
ALeU, if s'e K, has compact support, then

(13.253) |pt (A =220t ',,Tmo\\[(1+|>»|)2 u, T, 30, 0°
Proof. — By Theorem 13.28, we know that
(13.254) A= L2271 5 |1, y01 S CAFIAD? 51,50, -1

< C(1+|)"|)2 |s|u,T.yov0'
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Now by (13.143)

C' 3, - 2
T I()“_gu,ly‘o) s |u,T,yoy1'

NG

(13.255) | =222 5 | ty00 <

u, T

From (13.254), (13.255), we get (13.253). O
Set

K:!'=K! NK-°,

(13.256) ,f‘l i"m o

Ky =K, NK; ™~

Then K;; ', K;; "'+ are closed subspaces of K, , which inherit the norm | |, 1, 1-
: . 0 1 0 70,1 ;
_ By (13.142), (13.143),‘ the linear map p: seK; — (ps, p~5) €K’ @ K}, ”~ induces
a linear map from K into K;' @K "*. Moreover p acts in both cases as an
invertible operator, and the norms of p and p~! with respect to the norms | |
and | |, 1,1 are uniformly bounded.

-1 n—1,1 : n1 1,1 : : 0 70, 3
Let K;," ", K be the antiduals of K;*, K| *-~. We identify K °, K} 1 with

Yo

u, T,y0,0

their antiduals by the Hermitian product  , >, 1,0 0- Let| |i 1.0 15 |0T. 50 -1 D€
-1 n—=1,1 . . . . "1
the norms on K ~!, K associated with the restriction of | |, 1,1 to K,

K}, I**+. We then have the continuous dense embeddings with bounded norm
n1 0 r,—1
KYO - K)’O - K.VO 4

i, L ,0,1 "—1,1
Ko =Ky =Ky .

The main purpose of the next Proposition is to show that for T large enough,
K, ', K;; !+ can be considered as closed vector subspaces of K '.

Proposition 13.34. — The linear map p: K - K, * @ K;; " extends to a conti-
nuous linear map from K ' into K; ~' @ K;; ~'*. There exists Ty > 1 such that for
uel0, 1], T>Tq, yoeY, the linear map p: K, ' > K~ ' @K~ U+ is invertible, and
the norms of p and p~' with respect to the norms | |

| | yo, -1 are uniformly bounded.

I
u,T,yo, — 1> | Iu,T,yo, -1

Proof. — As in the proof of Theorem 13.27, we denote by p, p* the adjoints of
p, p* with respect to the Hermitian product { , ), 1, vo,0- BY the explicit formula for
p, p* given in the proof of Theorem 13.27 after (13.164), we find that p, p* map K},
into itself with a uniformly bounded norm with respect to | |, 1, vo, 1+ It 18 now clear

that p extends by continuity to a linear map from K, into K; "' @ K;; ~ 1+,

We claim that for T large enough, the operators p+ p* and p* +p are continuous
invertible operators from K;O into itself, and that the norms of the inverses are
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uniformly bounded with respect to the norm | |, r,,,. ;. In fact

pt+p=1+p—p

13.257 - ~
( ) p+p=1+p-p.

Using (13.159), (13.160) and corresponding identities for derivatives, we find easily
that if 5, s’e K, ) have compact support, then

IP(P p)psluTyol\ IpsuT_vo 1

\/T

C
(13258) |p(p p)p SI" T, yo0, 1 T Ip S|u T, yo, 1°

IP P)Pslu T,y0, 1 C |pS |u T,y0, 1°

\/T

Recall that p is an isomorphism from K} into K;' @ Kj; '+ and that the corresponding
norms | |, 1. yo1_ on these two vector spaces are unlformly equivalent. The matrices
of the operators p*+p or p+ p* acting on Kj;' @ K} !+ are then of the form

1+0(\/T> 0(%)
o) 1+0(?/%>

It is now clear that for T large enough, p+p* and p+p* act as invertible operators
on K;O, and that their norms and the norms of their inverses are uniformly bounded.
The Hermitian product { , ), r ,,. o €xtends to a map from K) xK ' into C,
which is linear in the first variable, and antilinear in the second varlable
Let o be the linear map from Kj; "' @ K;; "+ into K; !, which is such that if

B, eK; ' @K; 4, if seK} , then

Yo’

(13.260) (8, 6By M D 130.0 =P @+P) ' DS, Bu 13000
+ <pl (p~l+p)_ ! Elsa Y >u,T,y0,0'

|P(P p)p sluTyol\ |p S|uTy01

(13.259)

For T large enough, ¢ is a continuous linear map whose norm is uniformly bounded.
We claim that o is an inverse of p. In fact p’=p, (pH?*=p*, pp*=0,
ptp=0. Also if seK!!, p*5s=0, and so

Yo 2

(13.261) p(+pH) tps=p(+pY)t (p+pt)s=ps=s.
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Similarly, if s’ €K} "4,
(13.262) pr@ttp) T pts =y

From the previous considerations, we deduce easily that p° o is the identity.
Also if seK}  aeK; !, then

0? o
(13.263) {8, (6°P) (@ Du,m.y0,0
={@p@+p) ' p+p P (TP TIPS Aty
We claim that
(13.264) pp(p+p) ' p=p.
To verify (13.264), since p* + p is invertible, we only need to show that
(13.265) pp(p+pY) "' p(p* +p)=p (P +p),
or equivalently that
(13.266) pp(p+p*) " pp=pp.

Now (13.266) is an obvious consequence of the fact that pp=(p+p*)p. Therefore
(13.264) holds. Similarly

(13.267) prpt(t+p) Tt =pt

From (13.263)-(13.267), we find that o° p is the identity.

The proof of Proposition 13.34 is thus completed. O

Of course we can always assume that in Theorem 13.27, T, is larger than Tj, so
that Proposition 13.34 in fact holds with T,=T,.

Since p, p* map K;O into itself with uniformly bounded norms with respect to
| |uT.y0 1> #» p* map K ! into itself with uniformly bounded norms with respect to

wT,y0, —1° Set

OK', -1_ K- 1
(13.268) o TP
L
Then °K; "', °K;;~"* inherit the norm | |, r . -1 Let °p be the linear map
-1 0 — 1 oy, —1 oy, —1, 0 : : : :
seK, ' = ps=(ps, p~5)e"K; " @ K}, 1. Then °p is a continuous linear isomor-
phism and the norms of %°p and (°p)~! are uniformly bounded with respect to the
norm | |u,T,y0, -1
We now identify K; ' with °Kj;~' @ °K;; ~"* by °p. Then Proposition 13.34
exactly says that for T > T,, p is a linear isomorphism from K; '=°K} ~' @ °K;; "+
into K;’O_l ® K;’O‘l'l, and that the norms of p and p~! are uniformly bounded.
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Therefore, for T > T,, we see that K;;O_l, K;’o'l’l can be safely considered as
closed subspaces of K, !, that K, ' =K, ' @ K;; "' and that p=(p, p*) provides the
canonical projection from K; ' on Kj; ~! and Kj; ~*:*. This fact plays a crucial role in
the sequel.

Set

=pZLr0p,  Lur,=pL Pt

(13.269)
3=PL$3%OPs gu,T,4=p gi%’op,

The Z, 1,;’s (1 <j<4) will now be considered as the matrix components of 33 Yo,
Also for T > T, these operators map K into K} '.

Proposition 13.35. — There exist C > 0, T0 > 1 such that if uel0, 1], T > T,,
yo€Y, AeU, |A| < TY8, the resolvent (\— %, 1,4)~ " exists, extends to a linear conti-
nuous map from K;; =+ into K V', and is such that

(13.270) T o SC(1+|A]2
Proof. — We use the notation of the proof of Theorem 13.27. Let p, 1 be the

orthogonal projection operator from K;’O on K;’oo'L with respect to the Hermitian
product { , ), 1.y, 0- Set

(13.271) Lot a=Par L0 pt
Then if 5, s'€ K, have compact support
(13272) <$3y0psps>uTy00 <$uT4psps>uTy00

From (13.272) and Theorem 13.27, it is clear that the operator %, , , verifies
estimates similar to (13.144). By proceeding as in (12.76) and in Theorem 13.28, we
find that if Le U, A\ — &, 1.4) ! exists and also that

(13.273) | (A= L v, )" e E o < CA+|A]P).
Clearly
(13.274) Lira—Lura=tr—p) L2V pt.

Therefore if s, s'€ K, have compact support, then
(13.275) ((Zhira=Lur,d PSP S Dutyo.0
=((1=p") L3P 5, P Dutiy0,0={P L0 P8, IS Du 1, y0,0-
By proceeding as in (13.165)-(13.166), we deduce from (13.275) that
(13.276) ((Zira=Lur,d PSP Dutyo,0
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={ &30Pt s, (=D P 5 Dut,yo,0-
From (13.144) and (13.276), we find that
(13.277) [{(ZLur.a= Lur. ) P* 5 P75 Dutiy000]
SCIP S|ty 1 [=P) P8 |t y0 10

Now using (13.159), (13.160) and analogue inequalities for derivatives with respect to
U and Z;, we find that

- , c .,
(13.278) |P=P) P 5 |ty 1 < o 1% 5" a1, y0, 1

By (13.275)-(13.278), we deduce that

_ C
(13.279) 1(Zir.a= Lur.d iy

uTyo\ﬁ'

From (13.273), (13.279), we find that for T large enough, i
(A= %, 1.4)" ! exists and is such that (13.270) holds.

The proof of Proposition 13.35 is completed. [J

In the sequel, we take T, > 1 large enough so that Theorems 13.27, 13.28,
13.30, 13.31, 13.32, Propositions 13.33, 13.34 and 13.35 are simultaneously verified
for T > T,,.

If seK?

YO’

(13.280) s”=ps, st=pts.

< TS,

If Ae U, the equation
(13.281) s=(A=ZL20) s

is equivalent to

(K“gu,'r,ﬂ S“_gu,T,Z st=s1

13.282
( ) —Zu13 s”"‘()v_gu,n‘t)sl:sll-

By Proposition 13.33, we already know that for T > Ty, Ae U

(13.283)

u, T,y0,0°

|s I“T)’OO\\/_

Definition 13.36. — If T > T, AeU, let &, + (A) be the operator
(13.284) EurMN)=A—Zy 11~ Lu12 ()"_gu,T,‘t)_l L1, 3
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Proposition 13.37. — There exists C > 0 such that if uel0, 1], T > T,, y,€Y,
AeU, then

” (X)”uTy <
llé”ur(?»)lln L<C+|A)>

Yo

(13.285)

Proof. — Equation (13.285) follows from Theorem 13.28 and from (13.282). O

Proposition 13.38. — There exists C> 0 such that for any uel0, 1], T>T,,
y0€Y, LeU, |A| < T8, then

(13.286) 602 0) Lumz = Loz M0, < _(1+|x|)4

VT

Proof. — By Theorem 13.27, %, 1 , is a uniformly bounded operator from K;
into K, '. From Propositions 13.35 and 13.37, we find that

(13.287) 184 Lurz (= Lo, ko < CA+|A]*

Then (13.286) follows from (13.143), (13.287). O
We now obtain an essential result on three matrix components of the operator

F (222

Theorem 13.39. — There exists C > 0 such that for any uel0, 1, T > Ty, yo€Y,
then

”plF ("?3 yO)p ”u T, yo \

O%JO

(13.288) |p* Fo(L229p |02, <

-

”pF ("?3 .VO)p ||u T,yo0 \

k—11_}(’ }!

Proof. — The first two lines in (13.288) follow from (13.47), (13.241) and (13.283).
We rewrite (13.241) in the form

(13.289) F(2)10= — F,0M—2220) 1 dn

T Jraps|a) <TU8

—

— F.O)M—-20 1) dn

21 Jrapsi =118
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Using (13.47), (13.282), (13.284), (13.286), we find that

0,0

< .
u, T, yo - \/T

(13.290) FE,0 =220 L dnpt

“ 27” T |2 STU8

Also by (13.47) and (13.197), we see that

0,0

<.__
u, T, yo \/T

Using (13.142), (13.289)-(13.291), we get the last inequality in (13.288). O
We now use the notation of Theorem 13.22. Observe that E is an unbounded
invertible operator from K;;%* ~ into itself.

—LJ FLOM—227)dn
Fn{;|r] = T8}

2mi

(13.291)

Definition 13.40. — For u > 0, y,€Y, let E}° be the operator from F,  into itself
(13.292) o=y 1(A,-B,E"'D,—C,I.!G)\.

In view of Theorem 13.22, one easily verifies that 220 is a second order elliptic
differential operator.

To study the last matrix component of the operator F, (&, 3.7 %), we now establish
an important result.

Theorem 13.41. — There exists a€]0, 1/8], C > 0 such that if uel0, 1], T > T,,
reU, |A| < T then

C

(13.293) ||°gu,T,1+°gu,T,2()“_gu,T,lt)—lgu,T,&l—p\l’:‘ . P|;T—;0\Tl/4'

Proof. — In view of the properties of the function ZyeNg , — exp(—|Zy|?/2),
using Theorem 13.22 and by proceeding as in Theorem 13.27, we find that
(13.294) | Lot 1= Aulliirye S —=

\/T
By Theorem 13.27 and by Proposition 13.35, we know that for T >T,, AeU,
|A| < T3, then

”()"_gu,T,‘t)_l u,T, 3”u T, yo. 0<C(1+|)"|)2’

(13.295)
| Lur 2 A=ZLr ) |78 T <CA+|A]A

Let 33 'Y° be the operator considered in equation (13. 145) As we saw in the
proof of Thcorem 13.27, the (2, 2) matrix of the operator ;Z’ ° with respect to the
splitting K =K;° @ K;; >+ is diagonal. If 2., = 23, 70— .,Zi ¥°, only #.°; contributes
to L, 1.2 and .,i”,,,TJ
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We can expand %, ; ; according to its partial degree in the differentiation
operators V, (1 <i<2/'), i.e.

2

(13.296) Lur,i= 2 Lhny

p=0
Also by (13.112), each £} ; ; has an asymptotic expansion as T — + co of the type
(13.297) L= Y, LokT2

k<4
By (13.87), (13.177), (13.185) if j=2, 3

Loy =0 if p=2, k=0

13.298
( ) =0 if p=1, k>0.

From (13.295), (13.298), we deduce that if e U, |[A| < T'/®

(13.299) [Lir 20 Lour )™ Lur sl
C _
—T”O‘_ﬂgu,TA) 'y uT3|uTy0 _(1+|7\,|)2

VT

”ﬁf“Tz(>b Lut1.4)” 1$3T3”uTY0

_ C
————\/,”guTZ()" guT4) 1||u%‘y01\\//
”gti,T,Z ()"—""C’pu,T,4)—_1 gu,T,3l|i T_;O C”()\f_.fu,'r,‘;)_l gu,T,3I|1,O
C _ C’
<——“(}“_°gu,'r,4) 1°gu,T,3“l’1 < ~(1+|)"|)2a
/T N

HZOTZ(X—guT,‘t)—lg;,T,3”;,’T_,;o<C”g Tz()\ guT4) 1||uTyo

(1+]A])3,

Tllﬁf 12 A= Lo ) T < _(1+|x|)2

Y, VT

By (13.270), (13.294), (13.299) and the properties of the function Z,€Ng
—>exp (—|Zy|*/2), we see that to prove (13.293), we only need to show that if
ael0, 1/8] is small enough if Ae U, |A| < T° then

(13.300)

Z QO k Tk/2 ()\' g T, 4) 1 Z go k' Tk /2
k=0 k'=
1, -1 C

1/4°
u, T, yo T

+B,E"'D,+C,I G,
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a) The terms with k=2, kK'=2.
By Theorem 13.22, we find that

0,2 _
(13.301) Zu2=Co
£23=G,,
and so
(13.302) T2 02 (A =Ly ra) LO2=T2C,Pt \— 2, + ) ' P G,

We now write %, 1, as a (2,2) matrix acting as an unbounded operator on
K;>+=K; %+~ @K, ° Using the notation of (13.111), we get

(13.303) Lur 4=[E"'T F"'T].
' Hu,T Iu,T

Then if s=s5s"+s57, s'=s"" +5'~, the equation
(13.304) ()\.—gu,T,‘t)S:S'
is equivalent to

A—E,)s —F, 1s"=s",
(13.305) ( ) T
—H, s +A—L, pst=s".

If AeU, the operator A—1I, ¢ is invertible. More precisely using Theorem 13.27
and proceeding as in the proof of (12.76) or of Theorem 13.28, we get

(13.306) =L, )" lk k< CA+|A]2

u, T,yo

Moreover the principal symbol of the operator 31’{0 is scalar, and the operator V?
preserves the splitting £, = y‘:) @ &,,- By proceeding as in the proof of Theorem 13.27,
we deduce that

(13.307) |H,.||” ' <C

Assume that s'~ =0. Then if s'* €K has compact support, we find from (13.305)
that

(13.308) st=(\ =1, ' (¢t +H, 15).

From (13.270), (13.306)-(13.308), we see that if L e U, |A| < T'/8, then

_ - Cu _ _
(13309) I()"—Iu,T) lI-Iu,’l"s Iu,T,yo,Os?I()\'_Iu,T) lHu,Ts lu,T,yo,l
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Cu
<=—(@+|AD?]|s”
T( D2 s |

u, T,y0,0

s D (A=, r )7 5

T3/2 u, T, yp, 1
, Cu? :
T3/2 (1+|7»|)4|s o Toye -1 < W(IHM)”S * oo 0

From (13.308), (13.309), we deduce that if Ae U, |A| < TY®

Cu?

(13.310) [P** =L, 1.0 ' PE —(A—1, o)~ 1||,,Ty0\T5/2

a+|a)*

Also using formula (13.115) for #2'2=G,, by proceeding as in Proposition 11.24
and in (13.174) and also by using again the fact that exp (—|Z,|*/2)eS(Ng ,,), we

R,y0
find that if seK, has compact support, then

e
(13.311) | 223 5w T, y0.0 S

| |uTy00

Using formula (13.115) for £y 7=C, and (13.310), (13.311), we find that if AeU,
A< T

(13.312) T |20 (A= ZLur,o) ' ==L, D7) L33l 50.0
<T2“$2’22 (()"_gu,TA-)—l—()\'_Iu,T)_l)g “uTyoO
]T,z(l |AD*.
Also
(13.313) AL D '-A-T L) '=—1,p 'd,—TL)A-T>I) "

Using formula (13.115) for £3=G, and the fact that for any meN,
|Zo|"exp(—|Zo|?/2) is square mtegrable in Ng,,, by formula (13.87) for .23}
and proceeding as in the proof of Theorem 13.27, we find that if A e U, |A| < TY 8

— _ u
(13.314) @~ T2L)A-T?1) ' £2||brl < C T

From (13.306), (13.311), (13.313), (13.314), if Ae U, |A| < TY/%, we get
(13.315) T2|| 202 (A—1, 1) ' —(A—T21L) 1) L2 ||t L

u, T, yo
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CT2
”(x IuT) 1(IuT_'T2 u)(x TZI) lg ”uTyo

sCTn(x—Iu,T)“(Iu,T—TZIu) A=T* L)' L23lart. yo

2
<CO+|A) i
Also
! It
(13316 (-TAL) L =AA-TA) T A
<Tl/8
-1 1, -1
wam vl e (o-Ty e i) g
T u, T, yo
—1 0,0 2 2
<T 33,’22((%42 ) 1"2)33;32 < ClIMw® Cu
T u,T,yo T T

Using (13.301), (13.312), (13.315), (13.317), we find that if Ae U, |A| < T*/8

_ . C
(13.318) | T2 02 (A= L. 1) ' £22+C,I; G, ||3T30\T1/2(1+|7~|)4-

b) The terms with k=2, k' <2 ork <2, k'=2.
Consider again the system (13.304), (13.305). We then find
(13.319) st=(—1,p) ' +H, r57),
A—E, 1=F,r AL ) 'H,ps =5 +F, AL 's"

By (13.307) and its analogue for F, 1, we know that

T
(13.320) [Hy x| "1 < G ||Fux|® ' <C ST
17}

From (13.270), (13.306), (13.319), (13.320), we get for Ae U, |A| < T'/®

(13.321) IS IuTyoo\Tls |uTyol

Cu
<= (1+|AD? (s
1+

u,T,y0, — 1 +|Hu,T s Iu,T,yo, —1)
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, N7 u, _
SC(1+|r)) Fls lu,T,yo,o+¥‘S . 7. v0.0 J»
_ 1 _
|s |u,T,yo,o<——\/T|s . T, v0. 1

C ’r— — ’
<—\/—T(1+[7~|)2(|S ’u,T,yo,—1+|Fu,T0\'—Iu,T) 1s+|u,T,yo,—l)

1, ,_ 1 .,
<(:(1_‘_|)“D2 (?ls |u,T,y0,0+;|O"_Iu,T) 1S+|u,T,yo,0>

1 ;- ’
< (15 Lm0 tOHAD 2515 o)

By (13.321), we deduce that if Le U, |A| < T'/8

[

5 bt S COFRD (15 b 251 o)
(13.322)

_ , 1
5 o < COHRDS (515 bt

T SI- |u, T, y0, 0)'

Using (13.87), (13.91), the fact that #%2= 292 Pt" and obvious properties of
the function exp (—|Z, |*/2), we deduce from the first inequality in (13.322) that

1 0,0
(13.323) HT,fzg;g A—Lor ' T Lo TeR
k=

'=0

C
< ——(1+]|A)S.
1+

u, T, yo

Similarly since #%2=P%" 292 we deduce from the second inequality in (13.322)
that

1 0,0
(13.324) Y LT L1, ' TLYS

k=0

<yc—f(1+|x|)6.

From (13.323), (13.324), we find that the terms with k=2, k' <2 or k < 2, k'=2 are
harmless for the estimate (13.300).
¢) The terms with k=1, kK'=1.

Using (13.115), (13.322), we find that in TLY) A—L, 1.4 ' L1, the only
relevant term to be considered is given by

(13.325) TLOIPY pt (A= &, 1.0 ' p* P 223
=TB,P* p* (M=%, 1,4) ' p*P* D,
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Now by (13.319), we find that

(13326) Pé_pl (}"_ gu,T,‘t)_l plPE_ =(}“_Eu,T_Fu,'l‘()"__Iu,T)_1 Hu,T)*l'
Set
(13327) Ju,T()“)=(x—Eu,T)—1 Fu,T (x_Iu,T)--1 Hu,T‘

From (13.326), we obtain
(13.328) P pt(A—ZLyr ) PP =10, c W) A —E, )7

By the analogue of Proposition 13.35 for E,  (with practically the same proof), we
know that if e U, |A| < T', then

(13.329) |A—E, D)7 ot 5o S C(L+|A])2

Using (13.306), (13.320), (13.329), we find that if Ae U, |A| < T'/8, then

(13.330) [Jur s~ |,,Ty00\\/_|JuTO»)s i, T, 50, 1
C

e 1+|7\.|)2|FuT0" Lo~ 'H Ts—lu,T,yo,"l

}

O

;(1+|x|)2|(x Lo ' Hyrs™ lutye0

O

C -
_(1+|x|)4|H”s e, T, o, — 1 <¥(1+|x|)4|s |

u, T,y0,0°

From (13.330), we deduce that for T > 1 large enough, if Ae U, |A| < T'/®

C
(13.331) ||(1 “T(X)) 1—IH“Tm\ﬁ.
< T8
(13.332) T||B,(P* p* (A= ZLy1,0) ' PP —(A—E, ) ) D,|li1. 50

=T|[B,(1=J,r W) "' =DA—E, 1) " Dylu'r. 5,
S CT||B,(1=J, s M) ' =DA~E, D ' D, |1 5,

<(:\/T”()" uT) 1||uTy()\ \/*”(7" uT) IH“TYO
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C
< —— (1+]|A)%
< \/T( |A))

Also
(13.333) (A~E, 1) ' =(A—TE)"'=(A—E, 1) ! (E, r— TE) A\~ TE)~".
Using (13.115), (13.329) we find that if Ae U, |A| < T*/®

(13.334) T||B,(A~E, )" (E, r—TE)(A\~TE) ' D, ||
<CT||(A—E, ) " (E,r—~TE)(A~TE)"'D,||"°
<C /TA+[A)*||(E,r—TE)A—TE)"'D,[|" ~*.

Let L,, L, be the sets of smooth sections of (A(TXY)®A(N*)®E),,
ATEY) @ AN*) ® £*),, over Ng . For peR, we also introduce the corresponding
Sobolev spaces L , Lyl;"‘. We equip L;’o with its standard L, Hermitian product. Let
| | be the corresponding norm. Let L, ° be the finite dimensional subvector space of
L% A(T}Y)® {exp(6,,—|Z,|*/2)} ®n, and let L;>*~ be its orthogonal in
L% Thenif T>1, AeU, |A| < TY®, W —TE) ™! acts on L%+ If “(k—TE)“H
denotes the norm of (A\—TE)~! with respect to the norm | | on L 0. . , then

(13.335) |A=TE)™ | < ¢

By fixing for the moment uPTYZ, using (13.114), (13.115), it is clear that the
operator D, maps L into functions in L, which exhibit polynomial decay at infinity
together with their denvatlves Also for any keN, EX(A\—TE) " '=(\—TE) 'E* If
oeL;°% E*D,ceLf, and so E“(A—TE) " 'D,ceLy . By a simple property of the
harmonic oscillator, we thus deduce that if ceL;,OO, (7»—TE)_1 D, o is smooth and
decays polynomially at infinity together with its derivatives. From (13.335), we find
that if P is any differential operator with polynomial coefficients on N, then if

R,y0°
reU, |[A| < TY®

(13.336) |P(A—TE)"'D, o] <%|0'|.

Using (13.336), taking the obvious Taylor expansion of the operator E, —TE
as T -+ oo and by proceeding as in Theorem 13.27, we find that if Ae U, |A| < T'/®

u, T,yo =

(13.337) |, =~ TE)A—TE)"'D, ||+ %
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Using (13.333)-(13.337), we find that if Ae U, |A| < T'/®

(13.338) T||B,(A~E, ) '~(A—TE)")D, [}, < 7—(1+|x|)2
Finally
(13.339) TA—TE) '+E " '=AE"'(A\—TE)" .

Using (13.335), (13.336), (13.339), we find that if e U, |A| < T'/®

B} C
(13.340) |B,(T(A—TE)"*+E~)D,||L5 ) < NG

By (13.332), (13.338), (13.340), we find that if a€]0, 1/8] is small enough, AeU,
|A| < T8, then

C

(13.341) ITBPY p* (o= Lor.) ™' p*P¥ DL+ BLET' D, i}, < -

d) The terms withk <1 or k' < 1.

In view of (13.322), we find these terms are harmless.

By (13.318), (13.323), (13.324), (13.341), we obtain (13.300). The proof of
Theorem 13.41 is completed. O

Recall that I' is the contour in C defined in (13.240). Before we proceed, let us
just say one can easily show that the operator EJ° verifies estimates which are very
similar to the estimates (13.144). We may assume that, in Theorem 13.28, 8 > 0 is
small enough, and A > 0 is large enough, so that if Ae U, the resolvent (A—E20)" ! is
well defined, and also

(13.342) lpY A=) v~ p|l02,,
||p¢(x—=YO) T plla s

b

<C
<CI+|A]3

F@E0= 1 j F. ) —220)""
2ni Jr

Also F,(E}) has a smooth kernel F,(E°)(U, U’) (U, U’'e(TgY),,) with respect to
the volume dvpy (U")/(2 m)%imY.
We now prove the following essential result.

Theorem 13.42. — There exists C > 0 such that if uel0, 11, T > T, then

C

(13.343) |E. (&L 0 -pVE.E)Vv 1 plI22,, < i/
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Proof. — In view of Theorem 13.39, we only need to show that

C

(13.344) lPE (22 p=P Y ELE VT Pl <

By (13.241), (13.282), (13.284), (13.285), we know that

(13.345) pF (g2 p= —1— f F.) é0: ) an.
’ 2Ttl r
Now if AeT"
(13.346) Eax W) —pUA—E0) 'V p

=éau—'}'(}") (gu,T,1+$u,T,2 O"_gu,'r,‘t)_l gu,T,ii
—pVEPY I p) pY(A—EP) 1 p.

We take a€]0, 1/8] as in Theorem 13.41. Using Proposition 13.10 and also (13.285),
(13.293), (13.342), (13.346), we get

1 = _
— J F,W) (@&t
LAl <TY

13.347
( ) 2ni

0,0 C
<__

1/4°
u, T,yo T/

—pUA—Ep) "'y p)dr

On the other hand, by Proposition 13.10, by (13.285), (13.342), we find that for
any geN

(13.348) — F,(V) é"“,T(X)d)» < 4,
2mi oA 2TY u, T,yo T
1 ~ 0.0 C
— J F,Mpy (A —20) "y~ pdr < L
2mi Caf;|r] =T wTyo 17

From (13.344)-(13.348), we get (13.343). O

p) Identification of the operator =)°.

If UeBj) (0, €), we identify (TY)y, ny with (TY),,, n,, by parallel transport
along the geodesic in Y, t€[0, 1] - tU, with respect to the connections V'Y, V™.
Therefore if Ue B} (0, &), (A(T*® 1Y) ® n)y is identified with (A (T** YY) ® n),,.
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Using the previous trivialization, we find that the operator (# DY)? now acts on smooth
sections of (A (T** 1Y) ® n),, over B (0, €).
Let G, be the linear map

(13.349) heF,, - G,heF,; G,,h(U)=h<9>, Ue(TpY),,.
u

Let £27° be the operator acting on smooth sections of A(T*®VY)®m over
B} (0, &/u)

(13.350) T2 =G 1 (uDY)?G,.
As in (11.51), we find that
(13.351) 2379e(c(Tg Y) ® Endn),, ® Op.

Let 2°7° be the operator obtained from £2”° by replacing the Clifford variables
cle)(1<i<2l') by \/ﬁ (€'/u) A — (u/ \/5) i,. Then Z27° is a differential operator
acting on smooth sections of (A (TgY)® n),, over BI;{ (0, g/u). Of course E)o also
acts on smooth sections of (A (T§Y) ® n),, over B} Y (0, &/u).

Theorem 13.43. — Over B}) (0, £/2u) we have the identity of differential operators

(13.352) $3:%0=gYo,

Proof. — Clearly, we -only need to prove (13.352) for u=1. In the identities which
follow, the Clifford variables c(e;) (1 < i< 21’) are replaced by \/5 € A—i,f \/5.

As pointed out in Remark 13. 13, the trivialization of A (T*© Y X) ® & considered
in Section 8 g) is compatible with the trivialization of A (T*©®VX) &® £ of Section 13e).

By the methods used in the proof of Theorem 8.18, we find that as T — + oo,
the operator G{ % (D*+TV) G, 1 has a Taylor expansion

(13.353) GiL(D*+TV)G, ;= ¥ 2, T¥2.

k<2

Using Theorem 8. 18, and also equations (8.65), (8.71), we obtain the first coefficients
in (13.353)

(13.354) G 1 (D*+TV)G, {=TV*(P™Z)+ \/T (DN +Vin, V(P™Y 2))
DU M+ L T, Vo, VT Z)— Y v )+ 0 (L)

2 \/2 \/T

By squaring (13.354), we thus obtain the expansion of the operator

G i (D*+TV)*G, ras T >+ 0.
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By (13.75), (13.76), for |P™Z|<e¢/2, |PNZ] SS\/T/2, the operators
G5 (D*+TV)>G, ¢ and £3}° coincide. If Ze(TgX),, |P™Z|<¢/2, we thus
find that the asymptotic expansion (13.112) of 3’?:’;0 is simply obtained by
squaring (13.354).

Let D be the operator

(13.355) D=D"+M+ %V,ENZ Vin, VPT™YZ)— d‘m; ¢ (VpTY 5).

Using (13.354), (13.355), we find that in the asymptotic expansion as T — + co of the
operator Gy} (D*+TV)? G, ¢

e The coefficient of T2 is (V*)? (PTY Z).
e The coefficient of T*? is the supercommutator

[V* (PTYZ), DN+ Vin, V(PTY Z)].
o The coefficient of T is given by

(DN+Vin, V(PTYZ))2+ [V (PTY Z), D).
e The coefficient of \/T is the sum of

[DN+¥in, V(PTY 2), D]

and of the supercommutator of V* (P™Y Z) with a differential operator of order one.

e The constant coefficient is the sum of (D)2, of a supercommutator with
V* (P™Z) and of a supercommutator with DN+ Vin, V (PTY Z).

Let D™ ~ be the restriction of DY to smooth sections of (A(T*©PX)® &™), .
Using the previous considerations, Theorem 7.4, (7.23), and comparing with
Theorem 13.22, we easily deduce that

A,=p([D)*p,
B,=p[D™ ~+Vin, V™ (P™Y Z), D] P pt,
C,=p[V*(P"2), D]P*,

(13.356) D,=p*P¢ DY~ +Vin, V™ (PTV2Z), D] p,
E=p'P*” (DY ~+Vin, V- (PTYZ))2 P* pt,
G,=P¢" [V* (PTVZ), D] p,
I,=(V* (P Z))2.
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Using Theorem 7.4, (7.23), Proposition 8.13 and (13.356), we get
B,=pD (DN’ “+ % é (JPNZ)> PS¢ pt,
C,=pDV* (P™Z)P¢",

_ /—1 -
(13.357) D, =p' Pt (DN' -+ 7é(JPNZ)) Dp,

_ 1 2
E=p' P¢ (DN"+Té(JPNZ)> P¢ pt,
G,=P"V* (P™Z) Dp.

From (13.356), (13.357), we find that

(13.358) A,-B,E"'D,—C,I;'G,=p(D)?p—pDp* P Dp—pDP: Dp.
Now
(13.359) pt=pt P +pt".

From (13.358), (13.359), we get
(13.360) A,—-B,E"'D,-C,I"'G,=(pDp)>

Since c(vprY,) is the sum of two operators, one which increases the total degree
in A(N*) ® A(N*) by one, and the other which decreases the total degree by one,
since exp (0,,) is of total degree zero, then, as in (8.46), we get

(13.361) pc(vpryz) p=0.

Using Theorem 8.21, and (13.361) we find that
(13.362) V™ 1pDpy=DY.

From (13.360), (13.362), we find that

(13.363) B =(DY)?,

which is exactly the identity (13.352) for u=1. Our Theorem is proved. [

Remark 13.44. — Needless to say, Theorem 13.43 can also be obtained by
completely calculating the operator E° and by comparing with Lichnerowicz’s formula
for (DY)2. In Section 14d), we will make this calculation in the very degenerate case
where u is equal to zero.
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Let now F,(20)(U, U), F,(E>) (U, U) (U, U’'e(TrY),,) be the smooth
kernels of the operators F,(E2), F,(Z27) calculated with respect to the volume
element doyy (U")/(2 m)4imY,

Theorem 13.45. — For any u€el0, 1], the following identity holds
(13.364) F.(E0) 0, 0)=F, (X370, 0).

Proof. — By Theorem 13.43, the operators =0 and X.°’° coincide on
BIJ (0, €/2u). As we saw in Section 13e), a€]0, €/2]. Using the analogue of formula
(13.32) and finite propagation speed, Theorem 13.45 follows. [J

q) Proof of Theorem 13. 6.

For T>T, (13.37) immediately follows from Proposition 13.17 and
Theorem 13.32.

Using Theorem 13.32, Theorem 13.42, and by proceeding as in Section 11 p),
we find there exists C >0, 6'€]0, 1/2] such that if ue]0, 1], T>T,, Z,eN
|Zo| <€ \/T/Su

R, yo’

dim X
(13.365) ‘ <ﬁ> F (22192, Zo)

_exp(=|Zo]) (L
dimN 27t

dimY~ C
F,(E2) (0, 0)q| < —.
. ) (E20)( )q} =

Using (13.364), (13.365), we find that if | Z,| < 8\/T/8u

dimX
(13.366) I(ﬁ) F. (207 (Zo, Zo)
_exp(=[Zo[) (1 V"™ & (53, C
=\ 5n)  F@E700.0¢)< 5

Let F, (1DY)?) (, ) (», ¥ € Y) be the smooth kernel of the operator F, (1 DY)?)
with respect to the volume element dovry (3)/(2m)%™Y . By the analogue of Proposition
11.21, we know that

(13.367) Tr, [F, (@DY)?) (o, yo)l = (= D)*™Y Tr [[F, (Z3°) (0, 0)]*].

Using (13.48), (13.367), we get
(13.368) Tr, [F, DY) (o, yo)l = (= )*™Y Tr [[F, (Z3"°) (0, 0)]™*].
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From Proposition 8.4 and from (13.368), we find that

(13.369) T, [N" exp (~| Zo[) (ﬁ)m [F, (2279) (0, Oy q]

ndlm N

~dimy €XP(—|Zo[?) dimN [ 1 \4mY
= (@)Y pftdilLN0|) 2 <_2_1t> Tr, [F, DY) (yo, yo)l-

We now use Proposition 13.17, (13.366)-(13.369), and we obtain for T > T,,
|Zy| <€ JT8u

(13.370) I(i)dimx (ﬁ)mm Tr, [NH F, (uDX+ 5V>
(e 2 ) o2 (45)

_ 2 . dimY
_exp(—|Z,[|*) dimN (L) Tz, [F, @ DY) (3o, yo)]

<&
ndimN 2 \2n ST

Recall that k" (0)=1. Therefore if |Z,| < € \/T/8u

(13.371) ‘k"(“—z‘)>—1 <c ¥l
JT JT
From (13.37), (13.370), (13.371), we obtain (13.38) for T > T,.

We have thus established Theorem 13.6 when T > T,,.

On the other hand by local index theory, Tr,[F, (u DY)]=Tr,[F, (1« D¥)?)] remains
uniformly bounded for u€]0, 1]. So to prove Theorem 13.6, we only need to establish
the estimate (13.37) in the range 1 < T < T, However this estimate easily follows
from the techniques used in Section 12 g). We have thus established Theorem 13.6 in
full generality.

The proof of Theorem 6.8 is finally completed.

u|Z, |
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XIV - A NEW DERIVATION OF THE ASYMPTOTICS
OF THE ANALYTIC TORSION FORMS
OF A SHORT EXACT SEQUENCE

a) Assumptions and notation.

b) The operator #; as a (2, 2) matrix.
c) The asymptotics of Tr,[Eexp (— 9;;)].
d) A formula for the operator E.

€) A new proof of equation (5.18).

To conclude this paper on a lighter note, we here give a new derivation of
the second half of Theorem 5.9, which concerns the asymptotics of the forms
® Tr, [exp (— #2)] and ® Tr,[Nyexp(—%2)]) as u - + 0.

This result was first obtained in [B3, Theorem 7.7] by an explicit evaluation of
the considered forms. We here obtain the asymptotics of these forms by using the
techniques of Section 13. The identification of the limit of these forms as u — + oo
relies on a remarkable algebraic identity, which is proved in Theorem 14.12.

This Section is organized as follows. In a), we introduce our main assumptions
and notation. We then construct from the operator Qi’zy % considered in Theorem 5.6
an operator £, which we write in b) as a (2, 2) matrix. In ¢), if E is any matrix, we
calculate the asymptotics of Tr,[E exp(—@iz)] as T >+ o0, by means of a limit
operator E, which we identify in d). Finally in e), we give a slightly weaker version of
[B3, Theorem 7.7].

An initial version of this Section was written using the operator (gi’zy 0 instead of
@iay . which led to slightly more complicate calculations.

a) Assumptions and notation

We make the same assumptions and we use the same notation as in Section 5. In
particular

(14.1) 0-L-M->N-0
denotes an exact sequence of holomorphic vector bundles on a complex manifold B,
gM is a Hermitian metric on M, and g%, g" are the induced metrics on L, N.

Definition 14.1. — If y,€B, let K, (resp. K;’o) be the set of smooth (resp. square
integrable) sections of A (T§ B) ® A (N*) ® A (N*) over the fibre Mg .

We equip K with the Hermitian product
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doy (Z)

I} 0 _, '\ — '
(142) kK€K > (kK (kYD Gl

MR, y

For any u > 0, the operator 22'”° defined in Theorem 5.6 acts on K,

Definition 14.2. — For T > 0, let Fy be the linear map heK, — FrheK, , with

(o, PVZ
(14.3) Frh(Z)=h <P Z+ % )

Let AL, AM, AN be the Euclidean Laplacians on the fibres of L, M, N. Then

(14.4) AM=AL+ AN,

/\ . . . .
Recall that RN is the natural action of RN on A (N*). Similarly, BNA2PN is a
2-form on B with values in skew-adjoint endomorphisms of N. Let PNA2PN pe the
natural action of PNA2PN on A (N*).
P

P /\ A — A
Then RN and PN A2 PN act naturally on A (TEB) ® A (N*) ® A (N*).
Let ey, ..., e;, be an orthonormal base of Ly ,, and let e;,,,, ..., e,, be an
orthonormal base of Ng ,, .

Theorem 14.3. — For T > 0, let ¥ be the operator

(14.5) Lr=F 22, F; L.

Then, the following identity holds

N N 2
(14.6) gT=T(_A__+|_P_£|_+S>_lAL
2 2 2

21

1
- EV(PLRM+PLRMPN—PLA2PL) ®LZ+@Nz//T) +PNRMPNZ T A Z c(Ae) V., -
1

2

1 M L A2pL LpPpMpN NpMpL L PNZ
~ ¢ |(R¥—PTAZPL+PLRMPN-PNRYPY) (P1Z+

1 LmM MpN L A2pL L PNZ
+——c (AP (RM+RMPN-PLA’PY) (P'Z+ —=
2./2

\/T
A~ //\ 1 1
+RN+PNAZPN+ 5Tr[R"‘]— ETr[PNAZPN].




284 J.-M. BISMUT AND G. LEBEAU

Proof. — From identity (5.12), we find that

(14.7) P2,=— % {AM+ %](RM—PLAZPL+PLRMPN—PN RMPL)Z |2

21

1
+ 5 Z (c(A ei))2 +V(RM+PLRMPN—PNRMPL—PLA2PL)Z
1

21
- /2Yc(Ae) Y, ~ 715c(APL(RM+RMPN—PLA2PL)Z)}
1

N 2
pr2 P2 2Z| +TS+RV+ %Tr [RM].

Then A is a 1-form on B taking values in skew-adjoint endomorphisms of M which
exchange L and N. Therefore

21
(14.8) Z (c(Ae))*= Z (Ae, ej> c(ej) (Aey, e ) cle)
1 1<i<2l
21+1<j,k<2m

=— Y (Aej, Aey)cle)cle)

21+1<j,k<2m

= y (PNAZPNej, ¢ ) c(e)) c(ey).

21+41<j,k<2m

Now one easily verifies that

X
(14.9) Foprpie L T (PNA2PNe, ) cle)cley)

21+1<j,k<2m

+ %Tr [PNA2PY,

Then (14.6) follows from (14.7)-(14.9). O

b) The operator £, as a (2, 2) matrix

Definition 14.4. — 1f y,€B, let F,  (resp. F;’o) be the set of smooth (resp. square
integrable) sections of (A (Tg B),, over the fibre Ly .
We equip F;’O with the Hermitian product

dv (Z)
(2 n)dimL '

(14.10) L eRy, > f )= (L@

LR, yo
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Let 0,, be the Kahler form of the fibre N .
Definition 14.5. — Let @ be the linear map

2eC— 2%PO) A "y @ AN,

dimN/2

Let ¥ be the linear map
PNZ|?
(14.11) feFY — fexp (E)yo— |—2—~|—>ng0.

Let g be the orthogonal projection operator from A (N*) ® A (N*) on the image
of .

Let K;;° be the image of { in K) . By Theorem 7.4, one verifies that { is an

. 0 .0
isometry from F, into K.

Let K; >+ be the orthogonal space to K;;° in KJ. Let p, p* be the orthogonal

projection operators from K) on K;;°, K;: %+ respectively.
Set
LR =pLYp,  LY,=pLYp

(14.12) Yo L Yo Yo L Yo L
Lr=p L, L= p L

Then we can write %7° as a matrix with respect to the splitting
K; =K’ @ K>+
‘S/pyo _gyo
(14.13) $;°=[ ! j(;z]
°g’l‘,B "gT,4
By (14.6), #7° can be written in the form

2
(14.14) L= Z 0, T2,
k=-2
Therefore, for j=1, ..., 4, the operators £f¥° ; have a similar decomposition.

Theorem 14.6. — There exist operators £°°, £'° such that as T — +
L2A =,§f”0+0(——1 )
T, 1 1 T I’

N

(14.15) Zp,=0(1),
ZP,=0(),
LR =T LP+0(T).
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Moreover, the following identities hold

AL 1 1 LplL 2 1 L
$1=—‘2—‘5VRLPLZ—§IR PLZ| +§Tr[R 1
(14.16) AN pN7Z |2

Proof. — By Theorem 7.4, we know that
(14.17) K °=Ker (£).

Moreover, using the fact that PNRMPN takes values in skew-adjoint endomorphisms
of N, we find

(14.18) P VpNgmpNz p=0.
Also, we have the trivial identity
(14.19) P (RM—-A?)PL=PLR'PL.

For 1 <i<2l, c(Ae¢) is a 1-form with values in operators which are sums of
operators increasing or decreasing the total degree in A (N*) ® A (N*) by one. Since
exp (0) is of total degree zero, we find that, if 1 < i< 2/, pc(Ae;)p=0. Therefore

21

(14.20) pY.c(Ae)V,p=0.
1
The same argument shows that
(14.21) pc (AP (RM+RMPN—-PLA2PY)PLZ) p=0.

Also, by proceeding as in the proof of Proposition 8.4, we find that

A~ 1
pRYp=— 5 Tr[RN],

m _1 N A2 pN
pP AP p 2Tr[PAP].

Finally, we have the trivial
(14.23) Tr[RM]=Tr [RY]+ Tr[RN].

Theorem 14 .6 immediately follows from Theorem 14.3 and from (14.17)-(14.23). O
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Remark 14.7. — We can also derive Theorem 14.6 by making =0 in
Theorem 13.22. The fact that &, vanishes at u=0 is directly related to the simple
asymptotics of £1°, and £7°,. :

¢) The asymptotics of Tr;[Eexp(— @-f-z)]

Let PY°(Z, Z'), PP°(Z, Z') (Z, Z' €My, ,,) be the smooth kernels of the operators
exp (— 227°), exp (— £2°) with respect to the volume element doy/(2 m)¥™M,

By (5.11), (5.13), we know that for any T > 0, there exist ¢, C > 0 such that if
Z,eN

R, y0

(14.24) |P’T'°(Z0, Zo)lgcexP(_C‘ZOP)a
. |<

|P'Ty° (Zy, Z,) cexp(—CIZo Iz)

Let E be a smooth section of End (A (N*) ® A (N*)) on B.

Definition 14.8. — The generalized supertraces of Eexp(—@iz), Eexp(—%q)
are defined by the formulas

Tr, [Eexp (- 22)]= J Tr, [EPy (Zo, Zo)] Z8Z0)
Ng (2 n)dlmN
(14.25) o (Z0)
, v
Tr,[Eexp(— &)= L.. Tr,[EPy (Zo, Zo)] 2 :)di,,‘,’N :
Clearly
(14.26) Tr, [E exp (— 233°)] = Tr, [E exp (— £7°)].

Definition 14.9. — Let E” be the second order differential operator acting on F,

(14.27) Bro=y ! £\

Let Q° (U, U')(U, U'eLy ,,) be the smooth kernel associated to the operator
exp (— E0), calculated with respect to the volume dv; (U’)/(2 m)%™L,

Definition 14.10. — Let E® be the smooth function on B
(14.28) E=¢"!'qEqo.
Theorem 14.11. — There exists 6€]0, 1] such that, as T - + o0

T

(14.29) Tr,[Eexp (— 222)]=E* Q" (0, 0)+ O ( I >
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and O (1/T®) is uniform over the compact sets in B.

Proof. — By Theorem 14.6, we find that the algebraic structure of the (2, 2)
matrix of £3° as T — + oo is very similar to the corresponding structure of 31’;’0 in
Theorem 13.22 when &*={0}. The analogues of the norms | |, 1,000 | |ut. 0,15
defined in (13.141), (13.143), have to be used here, with £* ={0}, n=C, u=0. The
only minor difference is that the norms | IO,T,yo,O are norms on a smaller space than
K;’O. This is a situation we already met in Section 110). The proof then proceeds as
the proof of Theorem 13.6, by following the strategy indicated in Sections 13j)-13 0)
and in Section 13 q). Details are easy to fill and are left to the reader. [

d) A formula for the operator =

If yoe ¥, U denotes the generic element of Ly .

We now prove a remarkable identity. Let e,, ..., e,; be an orthonormal base
of Lg.

Theorem 14.12. — The following identity holds

21

2
Iy (Vei+ %(RLU, e, >> + %Tr[RL].
1

14.30 BE=—-
(14.30) 5

Proof. — Using (14.16), (14.30) follows. [

Remark 14.13. — As explained in [B3, Remark 3.7], the operator in the right-
hand side of (14.30) is a generalization of the Getzler operator [Ge] in local index
theory.

e) A new proof of equation (5.18)

Theorem 14.14. — There exists 6€]0, 1] such that as T — + oo

(14.31) @ Tr, [Eexp (— 22,)]=E°Td (L, gL)+O< ! )

T
and O (1/T®) is uniform on the compact subsets of B.
Proof. — Using Theorem 14.12 and equation (5.17) (with N={0}), we find that

(14.32) Q(0, 0)=Td (- RY).

Then (14.31) follows from Theorem 14.11 and from (14.32). O
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Remark 14.15. — Clearly 1°=1. Also, by Proposition 8.4, we know that

N¢, =dim N/2. We thus deduce from Theorem 14.14 that as T — + oo

@ Tr,[exp (— 22,)]=Td (L, gH)+ O <%>,

dim N
2

(14.33)
® Tr, [Ny exp (— 272)] =

Td(L, gL)+O<%>.

Using (5.15), we obtain the same asymptotics for @ Tr, [exp(—gaiz)] and

® Tr, [Ny, exp (— 222)].
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