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A DIFFERENTIAL GEOMETRIC CHARACTERIZATION
OF SYMMETRIC SPACES OF HIGHER RANK

by PATRICK EBERLEIN and JENS HEBER

Introduction

In this paper we consider simply connected Riemannian manifolds M of non-
positive sectional curvature whose isometry group I(M) is large in an appropriate sense./^/
We do not assume that M has a lower bound for the sectional curvature, and we do not
assume that I(M) contains a discrete lattice subgroup. The manifolds that we consider
will have rank at least two in the sense of [BBE]; see (1.1) below for a definition.

We now define the duality condition, the basic hypothesis that we impose on the
isometry group I(M) ofM. Let F c I(M) be an arbitrary subgroup. A vector v in the
unit tangent bundle SM is said to be nonwandering modulo T if for every neighborhood
0 c SM of v there exist sequences { t ^ } S St and { <?„} c r such that t^ -> oo and
(^9n ° g1") (0) n 0 is nonempty for every n, where { g t } denotes the geodesic flow in SM
([Bal]). The group r c I(M) is said to satisfy the duality condition if every vector v
in SM is nonwandering modulo F. The duality condition is often defined in an equivalent
way that we present below in (1.3).

The main result in this paper is the following

Theorem. — Let M be a complete, simply connected, irreducible Riemannian manifold of
nonpositive sectional curvature with rank(M) = k ^ 2. If I(M) satisfies the duality condition,
then M is isometric to a symmetric space of noncompact type and rank k.

As corollaries we obtain the following results:

Corollary 1. — Let M. be a complete, Riemannian manifold of nonpositive sectional curvature
and finite volume. If the universal Riemannian cover M is irreducible and has rank(M) = k ̂  2,
then M is isometric to a symmetric space of noncompact type and rank k.
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From the theorem above and Proposition 4.1 of [E3] we also obtain

Corollary 2. — Let M denote a complete, simply connected Riemannian manifold with non-/^/ _ ^/
positive sectional curvature whose isometry group I(M) satisfies the duality condition. Then M is
the Riemannian product of a Euclidean space, a symmetric space of noncompact type and an arbitrary
number N ̂  0 of spaces with rank 1 whose isometry groups are discrete and satisfy the duality condition.

In Corollary 2 any of the factors listed could be absent. Corollary 1 is proved
/-S^

in [Ba2] and [BS] under the additional hypothesis that M admit a lower bound for the
sectional curvature. If M has finite volume and nonpositive sectional curvature, then
its fundamental group may be regarded as a discrete group F of isometrics of the uni-
versal Riemannian covering space M. The finite volume hypothesis then implies that F
satisfies the duality condition by a standard recurrence argument due to Poincar^.
Corollary 1 now follows from the main theorem.

The proof of the main result uses results from sections 1 and 2 of [BBE] and the
following result of [E5], stated below as Theorem 2.3:

Theorem. — Let M be irreducible and assume that I(M) satisfies the duality condition. If
I(M) leaves invariant a proper closed subset of the boundary sphere M(oo), then M is isometric
to a symmetric space of noncompact type and rank at least 2.

The main technical tool of this paper is the Tits geometry of the boundary sphere
M(oo) as developed by Gromov in section 4 of [BGS]. We summarize the features of
the Tits geometry that we need in section 1. In section 2 we state relevant results from
[BBE] and [E5].

We now outline the proof of the main theorem. For any number a, with 0 < a ̂  TT,
we define Ma(oo) = { x e M(oo): there exists y e M(oo) with L^[x,y) = a for all q e M.}.
Here La{x,y) denotes the angle subtended at q by the points x andj/. See section 1 for/^/ f«^
further discussion and appropriate definitions. The sets Ma(oo) are closed in M(oo) and
invariant under I(M) for every a. In sections 3 and 4 we show that under the hypotheses
of the main theorem one of the sets Ma(oo) is a nonempty proper subset of M(oo). The
main result now follows immediately from the result of [E5] stated above.

For a symmetric space M of noncompact type and rank at least 2 the sets M^(oo)
correspond in a natural way to Weyl chambers in the unit tangent bundle SM as defined
in section 2 of [BBS]. If y is a regular vector of SM and if C(») c SM denotes the Weyl
chamber of v in the sense of [BBS], then for any vectors, v, w with G(v) = G{w) thef^/ /^
function^ ̂  ^p{x,y) is constant in M, where x andjy are the points in M(oo) determined
by the geodesies y^? Yw with initial velocities v and w. To prove this one shows that if
C(y) == C{w) then 0, = G^ where G = Io(M) and G, = {g e G: g{x) == x}. It then
follows that the function p t-> Ly{x,y) is constant in M since Gy^ acts transitively on M.

This paper supersedes a preprint of the first author ([El]), which gives a much
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longer proof of the main result presented here. The second author has also obtained an
alternate proof of the main result based on showing the existence of singular vectors.
See the remarks following the statement of Theorem 2.3.

1. Preliminaries

In general we shall assume the results of [BO] and [EO]. For a brief reference see
also section 1 of [BBE].

Notation. — Let M denote a complete, simply connected Riemannian manifold
with nonpositive sectional curvature K. Let SM denote the unit tangent bundle of M,
and let n : SM -> M denote the projection. All geodesies of JM are assumed to have unit
speed, and { g t } denotes the geodesic flow in SM. Ifv e SM is any vector, then y^ denotes
the geodesic with initial velocity v. We denote the isometry group of M by I(M) and the
Riemannian distance function of M by d( , ).

We let M(oo) denote the boundary sphere ofM that consists of equivalence classes
of asymptotic geodesies of M. If y is any geodesic of M then we let y(oo) denote respec-
tively the points in M(oo) that are determined by y and y"1 '" t •-> T(— t)- I f j ^ e M
and x eM(oo) are any points, then y^ denotes the unique geodesic of M that belongs
to the asymptote class x and satisfies Ypa;(0) = P ' Let VQ&, x) denote the initial velocity
ofy^. Ifp is any point ofM and if x,y are any points of M(oo), then Ly{x,y) denotes the
angle subtended by VQ&, x) and V(^). The space M == M u M(oo) admits a topology
such that M is a dense open subset of M; M is homeomorphic to a closed %-ball, and for
any point p of M the map x h-> VQ&, x) is a homeomorphism of M(oo) onto Sp M, the
sphere of unit vectors at p.

Rank and regular vectors. — For each vector v e SM we define r(v) to be the dimen-
sion of the vector space of all parallel Jacobi vector fields along y^.

(1.1) Definition. — Rank(M) = min{ r(v) : v e SM }.

A vector u e SM is said to be regular if r(v) = rank(M). We let St denote the set
of regular vectors in SM. The set St is invariant under the geodesic flow. If w e SM
is sufficiently close to a given vector v e SM, then r(w} ^ r(v). In particular the set 31
of regular vectors is open in SM.

Duality Condition. — Let F c I(M) be any group ofisometries ofM, not necessarily
discrete. Following [Bal] we define a subset Q(r) c sM, the nonwandering set of the
geodesic flow mod F, as follows: a unit vector v lies in fiS(r) if and only if for every open
set 0 in SM that contains v and every positive number T there exist an isometry 9 e F
and a number t> T such that (Ap o g1) (0) n 0 is nonempty.

From Proposition 3.7 of [E2] we obtain the following characterization oft2(r).
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(1.2) Proposition. — Let F c I(M) be any group. Then v e£2(F) if and only if there
exists a sequence {<?„} c F .y^A ^A^ 9n(j&) —^Yi^00) ^ ^n'1^) -^Yi?(— 00) ^ 7Z -^ 00

y<?r fl7^ j&o^ p of M..

(1.3) Definition. — A group F ^ I(M) is said to satisfy the duality condition if
^(F) = SM.

If F c I(M) is a /fl^'^, that is, if the quotient space M/F is a smooth manifold
of finite Riemannian volume, then a standard argument due to Poincar^ shows that F
satisfies the duality condition.

The duality condition has the merit that it is preserved under projection homo-
morphisms while discreteness, and hence the condition of being a lattice, is in general
not preserved. More precisely, i f jMisa Riemannian product Sli X Mg anc!- if F c I(M)
is a group that preserves the product structure and satisfies the duality condition, then,
for i == 1, 2, the group A(F) satisfies the duality condition in M,, where p,: F -> I(MJ
denotes the projection homomorphism.

^'recurrent vectors. — If F c I(M) is any group, then a vector v e SM is called
T-recurrent if there exist a sequence { <?„ } c F and a sequence { ^ } c ̂  such that
tn -> + oo and (rf<p^ o ̂ (n) {u) -> v as n -> oo.

(1.4) Proposition. — Let T c I(M) &^ <z ^ro^ ^^ satisfies the duality condition. Then
the set of regular Y-recurrent vectors is a dense G§ subset of SM.

Proof. — The set 3t of regular vectors is a dense open subset of SM by
the definition of OS, and Theorem 2.6 of [BBE]. It suffices to prove that the
r-recurrent vectors of SM form a dense G§. Let d* be any metric on SM whose
topology is the same as the usual topology of SM. For every positive integer n, let
A^ = { v e SM : d*{v, (Ap o g1) {v)) < Ifn for some element <p e F and some number t > n}.
The set A^ is clearly open in SM and is dense in SM since F satisfies the duality condition.
The set of r-recurrent vectors in SM is the intersection of the sets A^ and is dense by a
Baire category argument. D

Tits geometry in M(oo). — We discuss briefly the Tits geometry in M(oo) as defined
by Gromov in [BGS]. For further details see section 4 of [BGS],

One defines first a complete metric Z on M(oo) by setting

L{x,y) =-. sup{^,jQ : p e M }.

If a curve o : [a, b] -> M(oo) is continuous with respect to Z, then we define the Z-length
L((T) to be

»—i
sup{ S /.(a-(^), <^+i)) : a == IQ< t^< . .. < ^ = b is a partition of [a, b]}.

»«o
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(1.5) Definition. — For any points x, y in M(oo) we define

T d{x,y) == inf{L((r) : a is an /.-continuous curve in M(oo) from x to y}.

If no /.-continuous curve in M(oo) from x toy exists, then we define T d{x,y) == + oo.
The pseudometric T d{x,y) is called the Tits (pseudo)metric on M(oo). It is the

inner metric determined by L From the definition, it follows that T d{x,y) ̂  ^{x,y}
for all points x,y eM(oo).

Remark. — lfrTd{x,y) < oo, then, in a sense that can be made precise, the geodesic
^y5 TpJ0? °°] ^d Y»i/[°? °°] bound an asymptotically flat triangular sector in M for
any point p e M. If M has sectional curvature K ^ c < 0, then T d{x,y) == + oo
whenever x + y. In fact, this degeneration of T d characterizes the visibility axiom
([BGS], p. 54). We shall not need these facts.

(1.6) Definition. — A curve a : [a, b] -> M(oo) is called a Tits geodesic if the fol-
lowing two conditions are satisfied:

(1) There exists a constant c ^ 0 such that
L((T | [a, t]) := c(t - a) for all t e [<z, b}.

(2) a is locally distance minimizing, that is, for every t e {a, b) there exists e > 0
such that L(o | [t — z,t + s]) = T d(a(t — e), a{t + e)).

We say that the Tits geodesic a has unit speed if c = 1 in (1) above, and cr is
minimizing if T d[a[d), a{b)) == L((r[<z, b]).

We collect some useful facts from [BGS].

(1.7) Proposition. — Let x, y he any points o/'M(oo). Then'.

(1) L^y) =Td{x^) ifTd{x^) ̂  n.
(2) IfT d(x,jy) < oo, then there is a minimizing Tits geodesic joining x toy. This geodesic

is unique if T d(x,y} < n.
(3) Ly[x,y) == L{x,y} for some point p of M if and only if the geodesic rays YpJO, oo)

ana YpJ0? °°) hound a flat, convex surface A = AQ&, x,y} in M. In this case Ly{x,y) == T d{x,y).
(4) Ifx.y are any points o/M(oo) and if{ x^ }, {y^} are sequences in M(oo) that converge

to x, y in the sphere topology, then T d{x,y} ^ lim infTrf(^,^J.
n —> oo

In the sequel the surface A that arises in (3) will be called aflat triangular sector.

Proof. — Assertion (1) follows from Lemma 4.7 of [BGS, p. 40] and the fact that
TT == L(x,jy) ^ T d[x,y} if there exists a geodesic y w1^ Y(°°) == x and y(— °o) =J/•
Assertion (2) is proved in [BGS, p. 49]. Assertion (4) is a strengthened version of the
assertion in [BGS, p. 46], but the proof is the same. We prove (3). Ifj&, x andj^ determine
a flat triangular sector in M for some point p in M, then Ly[x,y) == L[x,y) by Lemma 4.2
of [BGS, p. 33]. Conversely, suppose thatZ.p(^,j) = L{x,y) for some point p of M. The
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angle y(j-) subtended by x andj/ at y^W (or YpyM) ls a nondecreasing function of s
since the sum of the interior angles of a geodesic triangle in M is at most TT, even if one
vertex is in M(oo). Hence <p(J) = <p(0) = ^y{x,y) andj&, x andj/ determine a flat triangular
sector by the following result from [E4, p. 78].

(1.8) Lemma. — Let a : [0, c) -> M be a unit speed geodesic, where c is some positive
number. Let x e M(oo) be a point such that the function t h-> L{a'{t), V(<^, x)) is constant and
equal to a, where 0 < a < TT. Then S = U { Yya;[0? °°) : P e ^EO) c]} is a flat, totally geodesic
embedded surface in M. D

The next result on flat triangular sectors will be useful in section 4.

(1.9) Proposition. — Let p e M and x,jy e M(oo) be points such that p, x andy determine
a flat triangular sector A with L^x^y) == T d{x,jy) = p < n. Let a : [0, p] —>• M(oo) denote
the unique unit speed Tits geodesic from x = cr(0) to y == cr((B). Then V(^, at) is tangent to A
for all t e [0, p].

Proof. — Let v : [0, [B] -> Ty A be the unit speed curve of unit vectors tangent
to A at p such that v{0) == VQ&, x) and y((B) == V(j&,j^). Define CT" : [0, p] -> M(oo) by
setting a*{t) == Yv(o(00)- Let ^, t be any numbers in [0, p] with ^ < t. The geodesic rays
determined by v{s) and y{^) span a flat triangular sector A(J, t) ^ A. By (1.7), the
definition of the /.-length and the flat Euclidean geometry of A, it follows that
T d{a*{s), o*(^)) == Ly(a*{t), cr*(^)) == L((T*[^, ^]). Hence (T* is a minimizing unit speed
Tits geodesic from x = cy*(0) to y = ^((B). We conclude that cr = CT* by the uniqueness
assertion (2) in (1.7). D

We conclude this section with a characterization of Euclidean spaces.

(1 .10) Proposition. — Let M have the property that for every ^eM(oo) there
exists a point y e M(oo) such that Ly{x,y) == nfor all p e M. Then M is isometric to a Euclidean
space with K = 0.

Proof. — Let II be a 2-plane in Ty M, where p is any point of M, and let v, w be a
basis ofll. By hypothesis there exists a geodesic (T containing the point Yw(l) suc!'1 ̂ ^
<7(oo) == Y^(oo) and a{— oo) = Y^(— oo). The geodesies a and y» bound a flat, totally
geodesic strip S in M by [EO], and the tangent space to S at p is II. D

2. A characterization of symmetric spaces of higher rank

(2.1) Definition. — For an integer k ^ 2, a k-flat in M is a complete, totally geodesic
submanifold F of M that is isometric to a flat A-dimensional Euclidean space.

If v e SM, we define F(y,,) to be the union of all geodesies a in M such that
0(00) = y,,(oo) and (y(— oo) = Y^(— oo). The next result is a restatement of Theorem 2.6
from [BBE].
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(2.2) Theorem. — Let rank(M) == k ̂  2 and suppose that I(M) satisfies the duality
condition. Ifv is a regular vector ofSM, then F(yJ is a k-flat, the unique k-flat of M that contains ̂ .
Every geodesic ofM is contained in at least one k-flat.

The statements in [BBE] of this result and the supporting Lemma 2.5 require
that M admit a quotient manifold of finite volume. Nevertheless an inspection of the
proof shows that it is enough to require that I(M) satisfy the duality condition.

The main tool needed for the proof of the main result stated in the introduction
is the following result from [E5, Theorem 4.1].

(2.3) Theorem. — Let M be irreducible and suppose that I(M) satisfies the duality
condition. IfI(M) leaves invariant a proper, closed subset o/*M(oo), then JM is isometric to a sym-
metric space of noncompact type and rank k ^ 2.

Remarks. — 1) If M is a symmetric space of noncompact type and rank k ^ 2, then
the closure in M(oo) of any orbit ofI(M) is a proper subset ofM(oo). We omit a proof
of this fact since we do not use it.

2) Define a point x eM(oo) to be singular if V(^, x) is singular (i.e. not regular)
for every point p eM. The set of singular points at infinity is clearly a closed subset
ofM(oo) invariant under I(M). If M is a symmetric space of noncompact type and
rank k ^ 2, then the set of singular points at infinity is nonempty, but this set might be
empty if M is arbitrary. The second author has proved that the set of singular points
at infinity is nonempty ifI(M) satisfies the duality condition and M is irreducible with
rank ^ 2. Combining this result with Theorem 2.3 above one obtains an alternate proof
of the main theorem.

3. Weyl chambers in M(oo)

To motivate the title and the discussion of this section we consider the case that jM
is a symmetric space of noncompact type and rank k ^ 2. Let p be a point of M, and
let »i, z/2 be regular unit vectors in Ty M that determine the same Weyl chamber in SM
as defined in section 2 of [BBS]. If x, = Y^(°°) for i = I? 2, then one can show that
G^ - G^, where G = Io(M) and G .̂ = { ^ e G : g{x,) == x,} for i = 1, 2. It follows
that p \-> Z.p(A:i, x^) is a constant function in M since G^ == G^ acts transitively on M.
In particular Ly{x^, x^) == T d{x^, x^) for all points p eM by (1.7). We omit the proofs
of these assertions. The purpose of our remarks is to point out that the ideas in this section
are closely related to more standard notions of Weyl chamber.

The main result of this section is the following.
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(3.1) Proposition. — Let M be irreducible and suppose that I(M) satisfies the duality
condition. Then M is isometric to a symmetric space of noncompact type and rank k ^ 2 if there
exist a constant a* > 0 and a point x eM(oo) that satisfy the following conditions:

(1) Ba*(.y) = {y eM(oo) : T d{x,y) < a*} contains a point other than x;

(*) (2) ifji, y^ are any two points of B^), then Lq{y^y^) == T d{y^y^ for all points
q eM.

Proof. — For any number a with 0 < a < TC we define

Ma(oo) == { x e M(oo) : there exists y e M(oo) with Ly{x,y) = a for all q e f̂ }.

Let j^ e Ba»(^) — { ^ } and let T d{x,y) = p e (0, a"), where A? and a* are defined above
in (*). The set Mp(oo) is nonempty since it contains A:. From the definition one sees imme-
diately that M^(oo) is closed in M(oo) and invariant under I(M) for any positive number a.
The assertion of the proposition is now a direct consequence of Theorem 2.3 and the
following

(3.2) Lemma. — Let M be any complete, simply connected Riemannian manifold with
sectional curvature K ̂  0. Suppose there exist a positive constant a* and a point x eM(oo) that
satisfy the conditions (•). Then either M is flat orMp(oo) is a nonempty, proper subset ofM[ao)
for some p with 0 < (B ^ TO.

Proof of the lemma. — Let (3 = sup{ a : Ma(oo) is nonempty}. Note that (B ^ p
since M (oo) is nonempty, and it follows from the definition of(B that Mp(oo) is nonempty.
We shall show that ifMJoo) = M(oo), then 'M. is flat./̂ / f" /̂ /̂ /

Suppose that Mp(oo) == M(oo). Let a* > 0 and x eM(oo) be chosen to satisfy
conditions (•). Since x eM^oo) we may chooser eM(oo) so that L^x.y) = p for all
points^ e M. Fix a point j&o £ M and let y(^) == Tpoi/W- I f P ^ ^ ? the fact that t\-> /^^{x^y)
is a constant function implies by (1.8) that y bounds a flat half plane F* such that
Yp^[0, oo) c F*. Let e^ == y'(0) and let ^ e Tp^M be the unit vector that is orthogonal
to ^ and tangent to F*. If v[t) == {cost) e^ + (sin t) e^ then u{t) is tangent to F* for
all t e [0, TTJ, and a{t) == Yv«)(00) ls a minimizing Tits geodesic on [0, n] by the flat
Euclidean geometry of F* and the discussion in the proof of (1.9). Note thatj^ == (r(0)
and x = CT((B).

We prove that p == TT. Since Mo(oo) == M(oo) by hypothesis it will then follow/^/
from (1.10) that M is flat, completing the proof of the proposition. We suppose that (3 < n
and choose s > 0 so that p + e < n and s < a*, where a* is the positive number occurring
in the statement of the lemma. We define z = o-([B + s)? where a is the Tits geodesic

/v/ _

in M(oo) defined above. We shall prove that Lq{y, z) == T d{y, z) == (B + e f01' ^1
points q eM. This will show thatj/ eMp^.e(oo), contradicting the definition of (B and
proving that p == TT.
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Define z* == (7((3 — s). Let q be any point in M. By the definition of z and z* we
have T d{x, z) = T ^(A:, ^) == s < a* since A; = <r((B). Hence

/^, ̂ ) == T rf(^ ^) = 2s

by the properties ofx and a* as defined above in condition (*). By (1.7) it follows that q, z
and ^ determine a flat triangular sector A^ = A(y, 2;, z " ) , It follows from (1.9) that the
unit vectors V(y, at) are tangent to Ag for all t e [|3 — s, (3 + s] since z == o-((3 + s)
and -2:* = (y((3 — s).

By the choice of x and y we know that L^x.y) = T d[x,y) == (B, and hence q, x
andj^ span a flat triangular sector Ai == A(^, x,y) in M. The unit vectors V(y, <T^) are
tangent to A^ for ^ e [0, [B] by (1.9) since y = <r(0) and x = (7(p). The unit vectors V(^, <^)
are therefore tangent both to A^ and to A^ for ^ e [(B — s, [B], We conclude that the flat
triangular sectors Ai and Ag fit together to form a flat triangular sector A = Ai u A^
such that the unit vectors V(^r, at) are tangent to A for t e [0, (B + e]. Finally,
L^y, z) == ^((T(O), o((B + e)) = T d{a{0), CT((B + s)) = T rf(j/, ^) = (3 + s, where the
second equality follows from (1.7). Since y e K l was arbitrary it follows that

q ->L^y, z) == p + s and y eMp^(oo),

contradicting the definition of (3. D

4. Proof of the main result

We restate the main result from the introduction.

(4.1) Theorem. — Let M be a complete., simply connected Riemannian manifold of non-
positive sectional curvature such that rank(M) = k ̂  2, and I(M) satisfies the duality condition.
IfM is irreducible, then M is isometric to a symmetric space of noncompact type and rankvfe.

We need two lemmas.

(4.2) Lemma. — Let v e SM be a regular, I(M) -recurrent vector, and let x == y^(oo).
Let F(yJ denote the unique k-flat that contains y^. There exists a positive number a such that if z
is any point in M(oo) — F(yJ (oo), then T d{x, z) ^ a.

(4.3) Lemma. — Let v, x and a be as in Lemma 4.2. Let F be any k-flat such that
A;eF(oo). ThenF{oD) 3 B^) ={j /eM(oo) : T d{x, z) < a}.

Proof of the theorem. — For the moment we defer the proofs of the lemmas. Let x
and a be as in Lemma 4.2, and letp be any point ofjM.By Theorem 2.2 the geodesic y ^
is contained in some A-flat F of M. If ^, z^ are any two points of M(oo) such that
T d{x, z,) < a for i = 1, 2, then ^ e F(oo) for i = 1, 2 by Lemma 4.3. Hence
^(^i? z^ == ^(^n -2'2) by (1.7) since p e F, and it follows that the condition (•) of
Proposition 3.1 is satisfied by x and a. Theorem 4.1 now follows from Proposition 3.1. D

6
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We now prove the two lemmas.
For the proof of Lemma 4.2 we need the following

Sublemma. — Let y = Yt?(~ °°) • There exists a positive number a such that if F is any
k-flat with ^(TO, F) = 1, then

T^F(oo)) +T^(j ,F(oo))^ (T.

Proof of the sublemma. — If the lemma were not true, then by the semicontinuity
of Td expressed in (4) of (1.7) we could find a ^-flat F with d{nv, F) = 1 and
T^,F(oo)) + T^(j/,F(oo)) = 0. It would follow that x, y e F(oo), and hence from (1.7)
we would conclude that L^{x,y) = T d{x,y) = n for all points q in F since F is flat.
Hence F c F(vJ by (2.2) and equality would follow since both F and F(yJ are A-flats.
This would contradict the fact that d{nv, F) == 1. D

Proof of Lemma 4.2. — Let cr be the constant from the sublemma. Choose a positive
number 8 so that if u is any unit vector at p == n(v) with L{u, v) < 8, then u is a regular
vector. Let a be any positive number with a < min{ a, 8, n}. We show that a satisfies
the conditions of Lemma 4.2.

Let z be any point in M(oo) — F(y,,(oo)). It suffices to consider the case that
T d(x^ z) < min{ 8, n}. Let or* : [0, 1] ->M(oo) be the unique minimizing Tits geodesic
with CT^O) == x and ^(l) == z. Ifv{s) == VQ&, o* s), then v{s) is regular for all s e [0, 1] by
the choice of 8 since Ly{v{s), v) == L^ s, x) ^ T d{^ s, x) ̂  T rf(^, A;) < 8.

Observe that x ^ F(YyJ (oo). If this were not the case, then we would have
Y^, == Ypa; c F(Y^) and consequently the A-flat F(Ypg) would be contained in F(Yy).
It would follow that the ^-flats F(YyJ and F(y^) are equal, contradicting the hypothesis
that ^F(y,) (oo).^

Since y is I (M) -recurrent there exist sequences { t^} c ̂  and { 9^ } c I(M) such
that t^ -> + oo and (rfcp,, o ^(") (^) -» v as n-> oo. Note that rf(y^ ^, F(YpJ) -> oo as
t —^ oo since A: = Y-o(00) ^ F(y^) (oo). Thus we can choose a positive integer N
such that d{^^ ^, F(YpJ) ^ 1 for all % ^ N. For each positive integer n the function
f^s) == rf(Y,,^F(T^))) is continuous and satisfies /„(()) =0 and /„(!) ^ 1. Choose
^ e [0, 1] so that ^(Y, ̂ , F(y^)) -/J^) ^ 1 for every n, where ^ == y(^). Define F^
to be the ^-flat <?„ F(y^).

There exists a A-flat F in M such that
1) a subsequence of F^ converges to F, uniformly on compact subsets,
2) d{p, F) = 1, where p = n{v). and
3)^==Y.(- °o) eF(oo).

The existence ofF and assertions 1) and 2) follow from the facts that (y^ o y,,) (^) -> p
and d((^ o yj (^), FJ == ^(y.(^). F(Y^)) = 1 for every ^ ^ N. To prove 3) note that
the convex function 11-> rf(y,, ^3 F(y,,)) increases from 0 to 1 on [0, ^J since
p == n(v^) == n{v). If we define Y^(^) == "(9̂  o yj (^ + Q for all ^ e St, then ^ h-> d^^t), FJ
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increases from 0 to 1 on [— ^, 0]. By the definition o f { < p ^ } and { ^ } it follows that
Yn(°) -^Y^0) == y? and hence YnW -^Y^) for a11 1 ^ = 8 9 ' From 1) we conclude that
^(Yi? ^ F) ^ 1 on (~ 00? 0]? which proves 3).

If -?„ = ^y (oo) == cr'11^), then let 9^(^) converge to a point z* eM(oo) by passing
to a subsequence if necessary. From 1) above we see that z* e F(oo) since <p,»(-2'J e Fn(°°)
for every n. Note that y^(^) == Yn(°°) ~~" Y(°°) == ^ as w -̂  oo. We conclude that

a ^ CT ^ T </(A;, F(oo)) + T d{y, F(oo)) by 2) and the sublemma

= T d{x, F(oo)) by 3) above

^ T d{x, z*) since ^ e F(oo)

^ lim^mfT rf(cp^), <p,(^)) by (4) of (1.7)

== lim infT d ( x . z.,) == lim inf [s^, T rf(^. ^)1
n->ao ' n/ n-^oo - n \ ? ^-»

^ T rf(A:, -?) since ^ e [0, I], D

Proof of Lemma 4.3. — For any point r eM we let < p y : M(oo) -> SyM denote the
homeomorphism given by 9y(A*) = V(r, x) === y^(0). From Lemma 4.2 it follows
immediately that F(yJ (oo) contains BJ^) ={y e:M(oo) : T rf(A:,j/) < a}. Now let F
be any A-flat such that x e F(oo) and define A = B^(^) n F(oo). If p = 7c(y) and if ^ is
any point of F, then by (4) of (1.7) the maps <pp : F(yJ (oo) -> Sy F(y,,) and
9^ : F(oo) -> Sg F are isometrics with respect to the Tits metric on M(oo) and the usual
angle metrics in Sy F(^) and Sy F. The map <I> == 9^ o ̂ 1: 9g(A) -> ̂ y{'K^(x)) is an
isometric embedding with respect to the angle metrics since A c B^(^). Hence 0 is
the restriction of a linear isometry of Sq F onto Sp F(vJ since <pg(A) is an open subset
of Sg F. The sets <pg(A) and ^y(K^(x)) are open metric (k — l)-balls of radius a and
centers u* == V{q, x) and v == V(j&, x) respectively. It follows that 0 : 9g(A) -» 9y(Ba(A;))
is surjective since <E>(y*) == y, and this implies immediately that A == B^(A:), which is
the assertion of Lemma 4.3. D
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