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VOLUMES OF S-ARITHMETIC QUOTIENTS
OF SEMI-SIMPLE GROUPS

by GOPAL PRASAD*

With an appendix by Moshe Jarden and Gopal Prasad

Dedicated to the memory of Harish-Chandra.

Introduction

The purpose of this paper is twofold: The first is to give a computable formula
for the volumes of the S-arithmetic quotients ofGg:==n,,gg G(A,,), in terms of a natural
Haar measure on Gg, where G is an arbitrary absolutely quasi-simple, simply connected
algebraic group defined over a global field k (i.e. a number field or the function field
of a curve over a finite field) and S is a finite set of places of k containing all the archi-
medean ones; see § 3. The second is to use the results involved in the volume compu-
tation to provide a (< good " lower (and also upper) bound for the class number of G;
this is done in § 4 of the paper.

Besides the results of G. L. Siegel for certain special classical groups, the only
general results about the volumes of S-arithmetic quotients which were known until now
were concerned with Chevalley groups (i.e. groups which split over k); see Harder [12].
There is quite a bit of literature on the class number problem for classical groups. We
would like to mention here the work of C. L. Siegel, T. Tamagawa, M. Kneser and
his school. The bounds for general absolutely quasi-simple, simply connected groups
given in § 4 include the bounds for the special classical groups obtained by earlier
authors.

In this work we have made use of a considerable amount of Bruhat-Tits theory
of reductive groups over local fields. This theory is needed here even in the case S
consists only of archimedean places i.e. when Gg is a connected real semi-simple Lie
group.

* Supported by the National Science Foundation at the Mathematical Sciences Research Institute, Berkeley,
and at the Institute for Advanced Study, Princeton.
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In [4], the volume formula of Theorem 3.7 and Theorem 4.3 have been used to
prove the following finiteness assertions:

(1) Given a positive real number c, there are only finitely many triples (A, G, S) consisting
of a number field A, an absolutely quasi-simple group G defined over k and of absolute rank > 1,
and a finite set S of places ofk containing all the archimedean places, such that Gg(= II,, gg G(AJ)
contains an S-arithmetic subgroup of covolume < c.

(2) Given a positive integer n, there are only finitely many pairs (A, G) consisting of a
number field k and an absolutely quasi-simple, simply connected algebraic group G defined over k
such that Goo := n,,gv G(^) is compact and the class number of G (with respect to some
coherent collection of parahoric subgroups Py of G{k^)) is ̂  n\ here Voo is the set of all archimedean
places of k.

The first of the above results answers a question of Jacques Tits in the affirmative.
It is a pleasure to thank Armand Borel for several helpful conversations and for

his comments on the earlier drafts of this paper. I would also like to thank Pierre Deligne,
Giinter Harder and Robert Steinberg for useful conversations and encouragement.
Finally I thank Jacques Tits for raising his question which led me to the present work.

0. Notation, conventions and preliminaries

In this section, we fix a number of notation and conventions to be used later,
often without further reference.

0.0. As usual, Q ,̂ R and C will denote respectively, the fields of rational, real
and complex numbers. Z will denote the ring of rational integers.

For a finite set S, #S will denote its cardinality.
For a linear algebraic group H, Ry(H) will denote its unipotent radical, i.e. its

maximal connected normal unipotent subgroup.

0.1. In the sequel, k is a global field and A the A-algebra ofadeles of A endowed
with the usual locally compact topology. Let V be the set of places of A, and Voo (resp. Vy)
the subset of archimedean (resp. nonarchimedean) places. For v e V, ky denotes the
completion of k at v and | [„ the normalized absolute value on ky. The absolute value [ |,,
has a unique extension to any algebraic extension of ky, to be denoted in the same way.
For v eVy, Oy denotes the ring of integers of ky, v{x) the additive valuation of x e k ^ y
^ the (finite) residue field and ^ the order of f,,. We recall that for x e k^,

1 ^ L = lA : ̂ J-1 == q,^ if x e o,,

M^E^oJ^-^ if^o,.
For v e Voo, | x \y == | x \ if v is real, i.e. ky = R, and | x !„ = | x |2 if v is complex,
i.e. k, = C.

We have the product formula: For all x ekx, IIygy I x \v == 1-
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For v e V, k^ is assumed to carry the Haar measure with respect to which the
measure of s)y is 1 if v is nonarchimedean, the measure of the unit interval [0, 1] is 1
if v is real, and the measure of any square in ky{^ C), with sides of length 1, is 2 if v is
complex.

0.2. We shall denote by ^ an absolutely quasi-simple, simply connected algebraic
group defined and quasi-split over k. Let n = dim ^ and r be the absolute rank of ^.

If ^Sfk is not a triality form of type ̂ ^ let t be the smallest extension of k over
which ^ splits; then \l: k] ̂  3. If ^fk is a triality form of type 6D4, let^ be a fixed
extension of k of degree 3 contained in the Galois extension of A, of degree 6, over which
^ splits; there are three such extensions, all isomorphic to each other over k.

If A is a number field, let D^ (resp. D^) be the absolute value of the discriminant
ofA/Q^ (resp. ^/QJ. Let b(^/A) denote the relative discriminant of I over k; it is an ideal in
the ring of integers of k. It is well known that | N^(b(^)) 1-Djf^ = D^.

If k is the function field of a curve over a finite field, let q^ (resp. q^) be the cardi-
nality of the finite field of the constant functions in k (resp. I ) and g^ (resp. gf) be the
genus of k (resp. f). Let D^ = ^~2, D^ = ?^~2.

0.3. Let y be a nonarchimedean place of k such that ^ :==/®^ is a ramified
field extension of ^ of degree 2. Let

v,==inf{|^|J^e^,j/+J+ 1 -O},

where here, as well as in the sequel, for j /e^.J denotes its conjugate over ky. Then
v,, > 1 and v,, = 1 if and only if the characteristic of the residue field of ky is odd. For
later use, we fix a \ e ̂ , and a uniformizing element n^ of ̂  such that \, + \ + 1 == O?
| Xj, = ^ and \ TT,, + \ ̂  == 0 (cf. Tits [33: 1.15]). Then

I b(W 1. == I (^ - ̂ )2 L = I ̂ (i + \ V1)2 L = y.-1 ̂
where b(^/A,,) is the relative discriminant offjky.

0.4. Tfe m^r s(^). If ^ splits over k, let s(^) =0. Now assume ^ fl^j w^ split
over k. On the relative root system jf5> of ^, with respect to a maximal A-split torus "̂,
consider the ordering associated with a Borel A-subgroup containing "̂. The integer s(^)
is then defined as follows. If ^$ is reduced (which is the case if, and only if, ^ is not a
A-form of type ^y with r even), then s(^) is equal to the sum of the number of short
roots and of short simple roots. If ^ is a A-form of type ^y with r even, then ^0 is the
non-reduced root system BCy/g ^d s(^) = ^r(r + 3), which is equal to the number
of all roots in ^<D plus the number of simple roots.

Note that if ^ is a A-form of type ̂  (r odd), ̂  (r arbitrary) or ^e, then the
root system ^S> is the reduced root system of type C(y+i)/a, By_i, ?4 respectively and
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s(^) is ^ (r -~ 1) (r + 2), 2r — 1, 26 respectively. If ^ is a triality form of type ̂ 4 or ®D4,
then ^0 is of type Ga and $(^) = 7.

0.5. In this paper, we assume familiarity with the Bruhat-Tits theory [6] and
recall just some notation and facts. All we need is stated in [33], and in most cases,
proofs can be found in one of these references.

Let K be a nonarchimedean local field. In the sequel, K will always be a finite
extension of ky, for a nonarchimedean place v. Let G be an absolutely quasi-simple,
simply connected group defined over K. Let 88 = ^(G/K) be the associated Bruhat-
Tits building. It is a contractible simplicial complex on which G(K) acts by simplicial
automorphisms which are special (in particular, if g e G(K) leaves a simplex of8S stable,
then it fixes the simplex pointwise).

We recall that an Iwahori subgroup of G(K) can be defined as either the normalizer
of a maximal pro-p subgroup of G(K), where p is the characteristic of the residue field
of K, or as the subgroup of G(K) fixing a chamber (i.e. a maximal simplex) in 88. All
Iwahori subgroups are conjugate in G(K). Aparahoric subgroup P ofG(K) is the stabilizer
of a simplex of 88. Every parahoric subgroup is compact, open and contains an Iwahori
subgroup. The maximal ones are the maximal compact subgroups of G(K) and are
the stabilizers of the vertices of 88. A (maximal) parahoric subgroup P is special if it fixes
a special vertex of 88. A vertex x of 88 is special if the affine Weyl group W is a semidirect
product of the translation subgroup by the isotropy group Wg, of A: in W. If so, then
Wg; is canonically isomorphic to the Weyl group of the K-root system of G.

0.6. Let & be the maximal unramified extension of K and 8 be its ring of integers.
Let SS be the building of G(IC) and A C S be the apartment of a maximal it-split torus
of G which is defined over K and which contains a maximal K-split torus. There is
an action of the Galois group ofIC/K on ^ and A is stable under this action; the fixed
set in ^ may be identified with 88 and the fixed set in A with an apartment A of 88
[33: 1.10]. A vertex of^ lying in A which is special for ^8 is also special for 88 [33: 1.10.2].
If G splits over &, such a point, viewed as a vertex of 88 is called hyper special and its
isotropy group in G(K) is a hyper special parahoric subgroup. If G is quasi-split over K
and splits over an unramified extension of K, hyperspecial parahoric subgroups
exist [33: 1.10.2]$ these groups are the parahoric subgroups of G(K) of maximal
volume [33: 3.8.2].

0.7. To any parahoric subgroup P of G(K), the Bruhat-Tits theory associates
a smooth affine group scheme defined over the ring o of integers of K, whose generic
fiber is isomorphic to G/K and whose group of o-rational points is isomorphic to P
(see [6: II] or [33: 3.4]). The coordinate ring of this group scheme is the o-algebra
of those K-regular functions on G which on P take values in 8, where P is the parahoric
subgroup of G(fC) associated with P.
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1. Tamagawa forms on quasi-split groups

1.1. We fix a non-zero left-invariant exterior from o on ^ of maximal degree
and which is defined over k, such a form is unique up to multiplication by an
element of kx and is called a Tamagawa form on ^/A. As ^ is a semi-simple group, co is
bi-invariant.

1.2. For each v e V^ we fix, once and for all, a maximal parahoric subgroup ̂
of ^{ky) with the following properties.

(i) If ^ splits over an unramified extension of^, then ̂  is a hyperspecial parahoric
subgroup.

(ii) If ^ does not split over any unramified extension of ky (then ^ x j, ky is a residually
split group over /?„), ̂  is special. In case ^ is an outer form of type Ay, with r
even, we assume moreover that the gradient (i.e. the vector part) of the
affine simple root corresponding to this special parahoric subgroup is a divisible
root.

(iii) n^gy^ ^(AJ.n^gv/^ ls an ^^ subgroup of the adele group ^(A).

1.3. Let ^ be the smooth affine 0,,-group scheme associated with the parahoric
subgroup ̂ , whose generic fiber (= ̂  Xo^J is isomorphic to ^ x^ and whose
group of 0,,-rational points is isomorphic to ̂  (see 0.7).

Let Cy e k^ be such that Cy o> induces an invariant exterior form on the 0,,-group
scheme ^, of maximal degree, which is defined over Oy and whose reduction to
the group ^ Xo^f,, over the residue field fy is not zero. It is obvious that such a Cy
exists and is unique up to multiplication by a unit. In particular, ̂ : = | Cy \y is a well-
defined positive real number; it is equal to 1 for all but finitely many v's.

1.4. If k is a number field, for an archimedean place v of k, let Cy be the positive
real number such that with respect to the Haar measure determined by the form Cy <x>,
the volume of any maximal compact subgroup of R^(^) (C) is 1, and let Yv = | ^ !„•
We recall here that if v is real, then any maximal compact subgroup of R^/R^) (C)
is isomorphic to the unique (up to isomorphism) compact, simple, simply connected
real-analytic Lie group of the same type as ^ and if v is complex, then any maximal
compact subgroup of R^(^) (C) is the direct product of two copies of this
group.

1.5. Let r be the absolute rank of ^ and let m^ ..., m^ (m^ ̂  ... ^ m^) be the
exponents of the simple, simply connected, compact real-analytic Lie group of the same
type as <S. Note that dim ^ == r + 2S^i m,.
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We list below the exponents (see Bourbaki [5]).

Type Exponents

A, l ,2, . . . ,r .
B, 1,3,5, ...,2r-1.
C, l ,3,5, . . . ,2r-l .
D, 1,3,5, . . . ,2r-5,2r-3,r- 1 (r - 1 has

multiplicity 2 when r is even).
Ee 1,4,5,7,8,11.
E, 1,5,7,9,11,13,17.
Eg 1,7,11,13,17,19,23,29.
F< 1,5,7,11.
G, 1,5.

1.6. Theorem. — We have

n T. = (D/yD^)^ n n —— .
<»ev vev^ <=i (27^)wt+l „

Proof. — Let fi be any (not necessarily finite) Galois extension of k containing ^,
where / is as in 0.2. Then ^ splits over fi. Let L(^) be the Lie algebra of left-invariant
vector fields on ^Jk, and g == L(^) ®^ fl. Let ^ be a maximal A-split torus of ^ and ^
be its centralizer. Then S is defined over k and it is a torus since ^ is quasi-split over A;.
Moreover, it splits over fl since ^ does. Let 0 be the root system of ^ with respect to 3£^
and II(C 0) be the set of simple roots with respect to the ordering on 0 obtained by
fixing a Borel A-subgroup containing S. Let { H ^ | f l e I I } u { X ^ | 6 e O } b e a Chevalley
basis of g, where the H^'s constitute a basis of the Lie algebra L(^) 0^ fl of ^T/fi and
for each b eO, X^ is an element of the root space 3^. We fix an enumeration of this
Ghevalley basis, and for 1 ̂  i ̂  n (= dim ^), let X, be its i-th element. Let X1 be the
dual basis of the dual Q* and let co^ == 3£1 A ... A X"; o011 is a ^-invariant exterior
form on ^ of maximal degree. The form co^ is defined over fi and any other choice
of Chevalley basis or its enumeration gives only co011 or — (^ch,

Since the space of ^-invariant exterior forms on ^ of maximal degree is
1-dimensional, there is an a eJ^ such that co = oc~1 co011. As c>) is defined over k, for
every y e Gal(fl/^), y(^) = <o. Now since y^011) = ± ^ch, we conclude that y(a)2 = a2

for all Y e Gal(S/&) and hence a2 eA^.
If ^ is a number field, det« X,, X, », where < X,, X, > == Tr(ad 3£, ad X,) is

the inner product of X, with 3£, with respect to the Killing form on g, is an integer. Let m
be its absolute value. Then m is uniquely determined by the absolute root system of ^;
it does not depend on the choice of the Chevalley basis of 9.

We fix a A-basis X^, .... X^ of the Lie algebra L(^) so that if X1, ..., X" is the
dual basis, co = X1 A ... A X". If k is a number field, for every archimedean place v
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of A, we fix a basis Y^, ..., Y^ of L(^) ®jc^v suc^ ^at with respect to the Killing
form < 5 >„ on L(^) ®^^, Y^ is orthogonal to Y^ for all 1 ̂  i 4=^; ̂  72, and moreover,
if y is real, then | < Y^, Y? >„ ]„ == 1, whereas, if v is complex, then < Y^, Y^ >„ == 1
for all i ̂  n. Now let Y^, ..., Y^ be the dual basis and co^ = Y; A . . . A Y ; . Then
co^ is an invariant exterior form on ^S X^A,,, of maximal degree, defined over ky; it
determines a Haar measure on ^(ky) as well as on every maximal compact subgroup
of Rfc/R(^) (C). The volume of each of the latter subgroups is equal to

1 r (ZTt)^1

m2 II ———;— if v is real,

and Ltn^V^
\ <=i m,\ j

^ (27T)^+1

m^.
m^n

<==!
if y is complex;

see, for example, [25: § 3] or [20].
Let b=det«X,,X,», where < X,, X^ > = Tr(ad X, ad X,) is the inner

product of X^ with X, under the Killing form on L(^). Then it is obvious that if v is
a complex place, co^ ® co^ equals bco ® co, and if v is real, then co^ €) (*>^ equals either
b<o ® <o or — bco ® (x). Now as the volume of any maximal compact subgroup of
R^^(^) (C) with respect to the Haar measure determined by co^ is

Lint2^m^n
m^\<==!

we conclude that, for all archimedean v,
^!

Y.=|b| n̂
TT)^1!/

m

aco, we find that a4 m2 == b2, which implies thatBut since ^ch =
and hence for all archimedean »,

bm-i
1«9

Y^ ̂  I a<2,i OT,!

<?! {2^11.

Therefore,
ny.2

oev
n ^. n ^

v e Vy t 6 Va>

n Y:- n (i
oSVy »6V<o \

n Y:- n | a2
v 6 Vy » 6 Vy

n OT,'
11' ,-x (2.)--^ I.;

n n TK(!

t «ev«|<-l(2^)OT••+l|.

(by the product formula (0.1); recall that a2 6^)
m,!n dau-1^)- n ,.. /o.—iin

«'6V/ »eVa> I i-l (.^Tt) • |,

13
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Next we shall prove that

n (laU-^^D/WT^
vevf

This will establish the theorem.
Let ^ be the smooth affine 0,,-group scheme associated with the parahoric

subgroup 2P^ of ^(AJ (see 1.3). Let L(^) be the Lie algebra of ^$ it is an 0,,-Lie
algebra. Since the generic fiber ^ Xo ky of ^ is ^ Xjc^v^ lt: follows that

L(^)®^^sL(^)®,^.

We use this isomorphism to identify L(^) with an 0,,-subalgebra of the ky-Lie algebra
9,, := L(^) ®fc^. The ^"span of L(^) is clearly all of g,,. Let { Y^ } be an o^-basis
of L(^J (C gj, and let ^ e ̂ x be such that X^ A ... A X^ = ̂  Y? A ... A Y^. Then
it is obvious that a^ co induces an invariant exterior form on the o^-group scheme ^,,
which is defined over Oy and whose reduction to the group ^ Xo f,, is not zero.
Hence, | ^ ]„ == ̂  (see 1.3).

Now let v be a nonarchimedean place of k such that ^ splits over the maximal
unramified extension ky of ^. (Then t ®^ A,, is a direct sum of certain unramified exten-
sions of ky'y we note here, for future use, that for any unramified extension K of ky,
[ b(K/^) !„ = 1.) Let 6^ be the ring of integers of ky. Then it is clear that i f { Z ^ } is
any 0^-basis of L(^) ®o °v ^d ^(e ̂ x) is suc11 ^at X^ A . .. A X^ = &„ Z^ A ... A Z^,
then by a ' y 1 is a unit and hence, | by \y = | dy ]„ = Yv We observe now that since ^
is a hyperspecial parahoric subgroup of ^(^), and ̂  is the associated 0,,-group scheme,
^(6J is a hyperspecial parahoric subgroup of ^(ky) ([33: 2.6.1 and 3.4.1]). But
as ^ splits over ky, this implies that there is an 8,,-basis Z^, ..., Z^ of L(^) ®o 6,,
which is a Chevalley basis of the split Lie algebra Qy®j, ky ([33: 3.4.2 and 3.4.3]).
Now as <x)011 = aco, and, up to sign, co011 is independent of the choice of the Ghevalley
basis and its enumeration, we conclude from this that | a2 |^~1 y^ = 1 for every nonarchi-
medean place v such that ^S splits over the maximal unramified extension ky of ky.

Let now 3t be the set of all nonarchimedean places v of k such that ^ does not
split over any unramified extension of ky, or equivalently, ^®hky contains a nontrivial
ramified field extension ofky. Then 3t is finite. Let v e 3t\ then there are two possibilities:

1. / ®^ ky is a field, we shall denote it by^, it is a ramified extension and [̂  : ky] == \f : k].
2. t ®k ^v ls a direct sum of ky and a ramified field extension ^ of ky of degree 2. This

is the case if ^Sfk is a form of type ^4 of A-rank 2 and ^jky is a form of type ^4 of
A,,-rank 3. In this case, the ^-root system of ^ is of type Gg and s(^) = 6 + 1 === 7;
its ^-root system is of type 83 which has 6 short roots and one short simple root.

To compute | a2 |^~1 y^? we shall construct a suitable 0,,-basis of the Lie
algebra L(^). For this purpose, we fix a maximal ^,-split torus ̂  such that in the
Bruhat-Tits building of ^/^ the vertex fixed by ̂  lies on the apartment determined
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by ̂ . Let ̂  be the centralizer of ̂  in <S. Then as 9 is quasi-split over k (and so
also over ky), ̂  is a torus, and it is clearly defined over ky. Let ^(^) (resp. 0(^))
be the root system of ^ with respect to ̂  (resp. ^). We fix a Borel subgroup of ^
which contains ̂  and is defined over ky. This gives compatible orderings on O(^)
and O(^). Let O(^)4' (resp. O^)4') be the set of roots in O(^) (resp. 0(^))
positive with respect to this ordering and let II (^) (resp. II (^)) be the set of simple
roots.

We fix a minimal Galois extension L,, of ky containing ty and denote by F the
Galois group ofL^. Then ^, and so also the torus ̂ , splits over L,,. This implies
that r operates on the character group X*(^) of 3S^\ under this action of F, O^J,
O(^)4- and n(^,) are stable.

The restriction of roots in O(^) to ̂  gives a bijective correspondence between
the set of F-orbits in O(^) and the set O(^); under this correspondence, the orbits
in n(^) correspond to the roots in II (^\,), [32: 2.5]. Also, it is easy to see that the
restriction to ̂  of a root b in O(^) is a long root of the root system O(^) if and only
if b is F-invariant.

For b e0(^), let I\ be the isotropy group at b in F, and let ^ be the subfield
ofL,, fixed by I\. Then for all b e 0(^y), ̂  is a ramified extension of ky of degree ̂  3.

For every b e0(^), we fix a root b in ^(.S^) such that (1) the restriction of b
to ̂  is 6, (2) if b is short, ̂  = /„, and (3) the root associated with — b is the negative
of the root associated with b.

Let TTy be a uniformizing element of/,,. In case ^fky is an outer form of type Ay
with r even, we let \ be as in 0.3 and assume Uy so chosen that \ n^ + \ ̂ v = ^*
The ring of integers of^ equals the direct sum of the ^ o,,, 0 ̂  i < [/„ : AJ.

The Lie algebra Qy == L(^) ®^ ̂  splits over L^ and the action of the Galois
group F on L^ induces an action on Qy^jc L»-

The following assertion can be proved using the considerations in §§ 1, 2 and 7.1
of [28] (see also [6: II, §§ 4.3, 4.4]).

There exists a Ghevalley basis { XJ b eO(^)}u{H^ | a e n(^rj} of the Lie
algebra Qy®^ ^v suc!1 that:

(i) Y(X&) == Xy(^ for all Y e F and b e0(^) whose restriction to ^ is a non-
divisible root in O(^).

(ii) y(X^) = -— X^ for Y ^ r? T + ^ ^d any & e^)(^) whose restriction to ^
is a divisible root.

(iii) If ^{ky is no^ an o^r form of type Ay, with r even, then the union of the
following sets is an 0,,-basis of the Lie algebra L(^) (C Qy):

{HJ^(eII(r,))long}, { S T(7^ i)H^|fl(e^(rJ)sho^t,0^i<^:AJ},
Y 6 r/fa

{ X^ | A(6fl)(r.)) long}, {^S YW X^s, | 6(e<D(r.)) short, 0^i<[t.: ̂ ]}.
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(iv) If ^/^ is an outer form of type Ay with r even, let t) be the R-valued homo-
morphism of the character group X*(^) which takes the value + 1 at the unique
root in II (^) whose restriction to ̂  is a multipliable root and takes the value zero
at all the other elements of n (^J; note that D(b) == 0 or ± 2 if b is a root whose
restriction to ̂  is neither multipliable nor divisible. Then the union of the following
sets is an 0,,-basis of the Lie algebra L(^):

{TT;H, + ̂ :H, I a en(r,),z = 0, 1}, {\n, X,, V^X., | 6(e<D(r,)+) divisible},

{ TT: X, + ̂  X,; X,-1 TT: X_, + X,-1 ̂  X_, 1 ̂ e^r,)^ multipliable, i = 0, 1 },

{ X^ 74 X(, + X40^ ̂ X^\b e 0(rj, ^ nonmultipliable and nondivisible, i = 0, 1 };

where for b e0(^), b denotes its conjugate under the nontrivial element of the Galois
group of/J^.

Now using the above basis of L(^), and the fact that co011 == ao, it is not difficult
to see that | a2 |,-1 y2 == | WW^. Therefore,

n (| a21,-1 y,2) = n | b(/A) L-^ = (DM^T1^;
v e vy » e ̂

see the appendix at the end of this paper. (Recall that for v e Vy — ^, t ®^ ky is a direct
sum of certain unramified extensions ofA,,, and for any unramified extension K of ky,
| b(K/A,,)|,, = 1.) This proves the theorem.

2. Volumes of parahoric subgroups

We begin with the following general lemma.

2.0. Lemma. — Let F be an arbitrary field. G and G' be connected semi-simple F-groups.
Assume that G is an inner F-form ofG' and G' is quasi-split over F. Let F' be a separable extension
of F such that G is quasi-split over F\ Then G and G' are isomorphic over F\ Moreover, if F'
is a Galois extension of F, we can find an F'-isomorphism 9 : G -> G' such that for all y in the
Galois group of F'/F, (p-i.^p eInt(G).

Proof. — By assumption, there exists an isomorphism/: G -> G' defined over a
(fixed) separable closure F, ofF' such that for all y in the Galois group r(F,/F) ofF.fF,
we have ^ ̂ /-^yeln^G). Choose a Borel subgroup B of G (resp. B' of G') and
a maximal torus T (resp. T') ofB (resp. B'), all defined over F ' . Then we can arrange
that/maps B and T onto B' and T' respectively. Then so does yfor all y in the Galois
group r(F;/F') (C F(F;/F)) of F;/F'. Hence for y e F(F;/F'), ^ preserves B, T and so
it is of the form Int ̂  (^ e T).

Assume now that G is adjoint. Then ^ is uniquely determined and it follows that
Y h > ^ is a 1-cocycle on T{F^F'} with values in T. The Galois group F^'/F') acts
on X*(T) by permuting the simple roots. These form a basis ofX*(T) since G is adjoint.
Therefore V{F^F') acts as a permutation representation and this implies that T is a
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direct product of certain tori of the form RL/J.'(GL.I). Therefore it is cohomologically
trivial over F' and so (^) is a coboundary: there exists a t eT such that t = t^t~1.
Then for y e r(F;/F'), (/.Int ̂ -^(/•InU) = Int r^.Int^ == Id, hence the
isomorphism 9 :==/.InU is defined over F\

If G is not adjoint, let G -> Ad G be the canonical central isogeny. If ? is in the
inverse image of the previous t, then again <p :==/-Int ? is defined over F ' . Moreover,
since /-^ye Int(G) for all y e r(F;/F), it is obvious that if F ' is a Galois extension
ofF, then for all y in the Galois group of F'/F, (p-^^ e Int(G).

2.1. Let G be an absolutely quasi-simple, simply connected algebraic ^-group
which is an inner form of ^. It is known that for all but finitely many places v, G is
quasi-split over \ ([30: 4.9 (ii)]) and so it is isomorphic to ^ over ^ (Lemma 2.0).

We shall use the notation introduced in the previous section. Thus co is the
^-invariant exterior form on ^ of maximal degree (and defined over k) fixed in 1.1.

Let <p : G -> ̂  be an isomorphism defined over a (not necessarily finite) Galois
extension K of k such that for every y in the Galois group r(K/A) of K/yfe, (p-1.'^ is an
inner automorphism of G. Then co" :== (p*(co) is an invariant exterior form on G of
maximal degree; moreover it is defined over k (see [15: pp. 475-476]). If ^ : G -> ̂
is some other isomorphism defined over an extension of k, then as any commutative
quotient of Aut(^)/Int(^) is of order ^ 3, it is clear that ^*((o) = u{^) co*, where i^)
is a root of unity of order ^ 3.

For each y e V , co (resp. (o*), together with the normalized absolute value | !„
on \ (see 0.1), determines a Haar measure on ^(^) (resp. G(AJ) which we shall
denote by co,, (resp. o^). The Haar measure c^ on G(ky) is independent of the choice of
the isomorphism 9 : G -> ^.

2.2. A collection P = (PJ^v^ °f parahoric subgroups P^ of G(AJ is said to be
coherent if Hvev^ G(^) II^gvyP^ is an ^G11 subgroup of the adele group G(A).

Let a coherent collection P = (?„)„(= y/ °^ parahoric subgroups be given. For
v e Vy, let G,, be the smooth affine Oy-group scheme associated with the parahoric
subgroup P,, ofG(^) (0.7). Its generic fiber (= G^ X^k^) is isomorphic to G Xj,ky
and its group of integral points is isomorphic to P,,.

Let the parahoric subgroups ^ and the smooth affine 0,,-group scheme ^
associated with ̂  be as in 1.2 and 1.3 respectively. We shall denote by ^ (resp. GJ
the group ̂  x^ (resp. G,, XoJJ over the (finite) residue Afield f^ of^. It is known
(see [33: 3.5.2]) that since ^ and G are simply connected, the groups ̂  and Gy are
connected; also the c< reduction mod ?„ " homomorphisms ̂  = ^(oj -> ̂ (fj and
P,, = G^(oJ ->G^(f^) are surjective [33: 3.4.4]. Both ̂  and G^ admit a Levi decom-
position over f,, [33: 3.5]. Let ̂  (resp. MJ be a fixed maximal connected reductive
fy-subgroup such that

^ =^.R,(^) (resp. G, = M,.R,(GJ),
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where R^J (resp.J^(GJ) is the unipotent radical of ^ (resp. GJ. As f^ is a finite
field, both^,, and M,, are quasi-split over f,, (see, for example, [2: Proposition 16.6]).
We^fix a Borel ^-subgroup ̂  of.^,, B^ of M^ and a maximal f^-torus ^ of ^, T^
ofB,,. Let ̂  (resp. UJ be the unipotent radical of^ (resp. BJ.

Let J ,̂ (resp. IJ be the inverse image in ^ (resp. PJ of ^(^).R^(^) (fj
(resp. B,(f,).R,(G,) (f,)) under the reduction map ^ -^ ^(f,) (resp. P, ->G,(f,)).
Then ^ (resp. !„) is an Iwahori subgroup of ^(^) (resp. G(^)). Obviously,
[̂  : ̂ J = [^(fj : ̂ (fj] and [P,: IJ = [M,(fJ : B,(f,)].

For all but finitely many y, P,, is a hyperspecial parahoric subgroup of G(^) and
hence there exists an isomorphism of G(A^) onto ^(^) which carries P,, onto ̂  (see
[33: 2.5]); this isomorphism induces an isomorphism of the 0,,-group scheme G,, onto
the 0,,-group scheme ^. Therefore, for all but finitely many v. My is isomorphic to Jt^
over f,,.

2.3. Proposition. — For v eVp

co;(IJ == rr^ co,(^)
#^(f.) " "

and ^p^[M^):W]^j^
v r j/ ^ ^ • ̂  (^ M vfy~(^\ v' v )

L^(fJ •^(fj] #^(fJ

Proo/'. — According to the Bruhat-Tits theory, the Iwahori subgroup ̂  (resp. \)
determines a smooth affine 0,,-group scheme ̂  (resp. Gj) whose generic fiber is
^ X,A, (resp. G x,^) and ^(o,) ^ ̂  (resp/G^) ^ I,); see 0.7.

It is a well known consequence of a theorem ofSteinberg [31] that since the residue
field f,, of the maximal unramified extension ky of ky is algebraically closed, G is quasi-
split over k^. Now since ^ is a quasi-split inner ^-form of G, we conclude that G is
isomorphic to ^ over k^ and there is an isomorphism 9^ : G Xj,ky -> ̂  Xj, ky such
that 971-^ is an inner automorphism of G for all y eGal(JfeJ^)$ see Lemma 2.0.
The exterior form <p^(<o) is then defined over ky and the Haar measure on G(^) deter-
mined by it (and the absolute value | |,, on ky) is co; (2.1). Now let 8^ be the ring of
integers of ^. Then T,:=GJ8J (resp. ^ := ^(o^)) is an Iwahori subgroup
ofG(^) (resp. ^(^)) and in view of the conjugacy of Iwahori subgroups, we may (and
we will) assume that 9^(1,,) = ̂ . Then the isomorphism 9,, is induced from a unique
isomorphism

^Xo^^^X^

defined over 8^, which we denote again by 9^, by base change 8^<-^^; this is seen
at once using the description of the coordinate rings of the group schemes Gr and ̂
(given in 0.7).
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It is obvious that there is an ^(e^) such that the exterior form ^ o induces
an invariant exterior form on the group scheme ̂  , which is defined over o,, and whose
reduction to the group scheme ^^:= ̂  Xo f,, is not zero. Then as <?„ is an iso-
morphism defined over $„, the exterior form 9^(^ co) = dy (p^(co) on the 0,,-group
scheme G^ is defined over o,, and its reduction to Gj Xo f,,, and hence also to
G!, :== GI, XoJ^ is not zero. ^ ^

The inclusion !„ C P^ (resp. ^ C ̂ J induces a homomorphism Gj -> G,,
(resp. ̂  -^J^ where G^ (resp. 3^) is as in 2.2. Also, there is a (unique) maximal
f^-torus of G^ (resp. ^) which is mapped isomorphically onto T,, (resp. ^) under
this homomorphism. Since no confusion is likely, we denote this torus of Gj (resp. 3^r)
again by T, (resp. rj. Then G^ == T,.R,(G^) and ̂  = e-Ru(^).

Now as the Haar measure on ^(^) given by a^ co is | ̂  |,, co,,, we conclude
(cf. [24: I, 2.5]) that

I^L^W=ff^(f.)•^dim^
-ff^f)-^'1111^

Similarily, as the Haar measure on G(AJ given by ^{a^ (o) = ^ 9^(<o) is | ̂  [„ co^,
we have

l^^i^ffW.^--"^
Now note that

dim ̂  = A,,-rank ^ = ^-rank G == dim T,,,

and so we deduce from the above that

*/T \ •' V\\v) l /r \(0 (1 ) == ——^———•(x).,(^J.

ff^(U
Then <o;(P,) = [P, : IJ (o:(IJ

[P,:IJ <o;(I,)
'̂  . (̂  1 , . ( ^ \ v[- v }[^:^] ^W

[M,(fJ : B,(fJ] tfT,(fJ

[^(f,):^(fj] #^(fJ

This proves the proposition.

•^w.

2.4. Let A,, be the basis of the absolute affine root system of G at v (i.e. the affine
root system of G over the maximal unramified extension ky of ky) determined by the
Iwahori subgroup !„.

Let ©„ be the subset of A,, corresponding to the parahoric subgroup P,,. The
Galois group of k^jky operates on A,,, leaving ©„ stable. The Tits index [32] of the
reductive group M,,/fy is obtained from the Dynkin diagram of A,, together with the
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action of the Galois group ofkjk^ (i.e. <c the local index " of G/^) by deleting the vertices
corresponding to the roots in ©„ and all the edges containing such vertices (see [33:
3.5.2]). Note that there is a canonical identification of the Galois group of kjk^ with
the Galois group of fjf^, where fp is the residue field of A?,—it is an algebraic closure off .

2.5. Fixing a ^,-isomorphism of G onto ^, we identify the root system as well
as the affine root system of ^/^ with those of Gjk .

Let dy e \ be the affine simple root corresponding to the parahoric subgroup ̂ .
Then \ — { d ^ } can be identified with a basis of the absolute root system T,, of the
reductive group ̂ $ see [33: 3.5.2]. Since ̂  is a hyperspecial parahoric subgroup
if ^ splits over an unramified extension of k^, otherwise (^ is residually split over k
and) ̂  is a special parahoric subgroup, ̂  is " special " ([28: 7.1]). ̂  is then a reduced
and irreducible root system of rank r^ := A^-rank ^ == A,,-rank G. Hence the reductive
group ̂  is in fact absolutely quasi-simple and its absolute rank is r .

2.6. We note here, for future use, the following empirical fact about connected
semi-simple groups defined over a finite field: If H is a connected semi-simple group defined
over a finite field f of cardinality q, then #H(f) < ^imn. This assertion can be checked by
looking at the table of orders of finite groups of Lie type given in [25: Table 1]. Note
that connected isogeneous groups over a finite field have an equal number of rational
points [2: Proposition 16.8]; note also that it suffices to check the assertion for absolutely
simple groups since every nonabelian simple group over f is obtained by restriction
of scalars from an absolutely simple group defined over a finite extension of f.

The two lemmas that follow (2.7 and 2.8) are needed for the proof of Propo-
sition 2.10.

Let ©„ be as in 2.4 and /„ = #©^ — 1.

2.7. Lemma. — (i) dim^^ r^ + 2).
(ii) I/either G is not quasi-split over \, or P^ is not special, or G splits over ky but P^

is not hyperspecial, then

dim Jl^ — dim M,, ̂  2r^.

If, moreover, ty^ 1,

dim^ - dim M, ̂  2(r^ + ^ - 1).

Proof. — The absolute root system ofM,, is the root system 0^ with the basis A,, — ©„
(see [33: 3.5.2]). Hence, dimM, == ^ + ffO^.

Let </„ and Y^ be as in 2.5. Since Y^ is the absolute root system of J(^ (2.5),
dim^ = ^ + ff^. Now to prove assertion (i), we just need to note that among the
reduced and irreducible root systems of a given rank s, one with the smallest cardinality
is of type A,, which has s(s + 1) roots.
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We shall now prove (ii). We begin by observing that the root system Y,, can be
identified with the root system consisting of the non-divisible roots of the root system
of ^ I k y , and with this identification, the gradient of dy is the negative of the dominant
(i.e. the highest) root of the root system of ^/^, with respect to the basis determined
by A,, — { dy }, if ^ splits over ky, and is the negative of the dominant short root if ^
does not split over ky but its hy-root system is reduced ([28: 2.10]).

We now first take-up the case where the ky-root system of G is not reduced.
Gfky is then an outer form of type Ay, with r even, say r = 2n, which does not split
over ky. In this case G is quasi-split over kyy ^y is an absolutely quasi-simple group
of type Bn and M,, is isogeneous to a fy-group which is the direct product of a ̂ ,-dimensional
torus and a semi-simple group whose absolute Dynkin diagram is obtained from the
Dynkin diagram of A,, by deleting the vertices corresponding to the roots in ©„ and
all the edges containing such vertices (2.4). From this description of ĉ , and M,,,
(ii) follows at once. Note that since P,, is not special, if ©„ contains a special root, then
it contains at least two roots (so ty ^ 1).

We assume now that the ky-root system of G is reduced. If G is not quasi-split
over ̂ , then the Galois group ofkjky does not fix any special (affine) root ([28: 7.2]),
so if ©„ contains a special root, being stable under the Galois group, it contains at least
two special roots. It is easy to see that whenever ©„ contains two or more special roots,
<!>„ can be realized as an integrally closed proper subroot system of ^Fy. This is also the
case if G splits over ky and ©„ contains a non-special root. On the other hand, if G does
not split over ky, and ©„ contains a non-special root, then the dual root system 0^ can
be realized as an integrally closed proper subroot system of the dual Y^.

It is well-known that for any integrally closed proper subroot system 0 of an
irreducible and reduced root system T of rank s, tfY — ffO ^ 2s; see [3: Gorollaire
on p. 210 and Thtoreme 4]. From this we conclude that

dim.< - dim M, == (#Y, - #0,) ^ 2r,,

and if ^ ̂  1, then in fact #Y<, - #0^ ̂  2r, + 2(^ - 1).

2.8. Lemma. — Let f be a finite field with q elements and T an s-dimensional ^j-torus. Then
f f T ( f ) ^ ( y + i r .

Proof. — Let f be the smallest extension off over which T splits; f is necessarily
a finite cyclic extension of f. Then T is isogeneous to a direct product of tori T, such
that the canonical representation of the Galois group r(f7f) on X*(T,) ®^ Q, is irreducible.
Since connected isogeneous groups over a finite field have the same number of rational
elements ([2: Proposition 16.8]), this reduces us to the case where the representation
of r(f7f) on X*(T) ®z Q, is irreducible. Now let [f : f] = n. Then (s ==)dim T equals
the value of Euler's y-function at n. It is not difficult to see, using, for example, Mobius
inversion in the multiplicative form, that #T(f) = P^(^), where P«(A;) e Z[x] is the

14
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n-th cyclotomic polynomial. We recall that PJA:) is a monic polynomial of degree s
whose roots are precisely the primitive n-th roots of unity. From this it follows at once
that ffT(f) = P^(y) ^ {q + I)8.

2.9. Let y^ be as in 1.3. Then (cf. [24: I, 2.5])

T. ̂ W = WfJ-?^ = WU-?;-^;

where ̂  and ̂  are as in 2.2.

2.10. Proposition. — For v eV^,

(i) Y,O);(IJ= t fT:(fJ.
^(rp+dim^)/2

(ii) •• t?lu < f j 4- lV^J- r^ rf+3)/2
v / .(r,+dim^)/2 = ̂  r i ) ^

(iii) Y co*(P)- tfM^^J T. (O.̂ J - ̂ M^dim.^)/2-

(iv) For ̂  » e V^,

#M,(fJ
< 1.

^(dimMp+dim^)/2

Moreover if either G is not quasi-split over ky, or P^ is not special, or G splits over k^ but P,, is
not hyperspecial, then

*B•(f•) ,̂+i),.--.^(dimMp+dim^)/2

Proo/'. — (1) According to Proposition 2.3,

^IV)=^•WVW>^(fj
and hence,

,̂ :(U=»M).̂ W
Wf,) [^:^]

_«T,(f,) tf^(f,).^^^

#€(f«)' [-W: €(f.)]
^tfT,(f,) ,̂(f,)

f f^(U' ̂ '

(see 2.2 and 2.9)
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Now recall that <%, (resp. U,) is the unipotent radical of^, (resp. BJ. So

€(f.) = W •^(fj, B.(f.) = T.(f.) .U.(f.),

WQ^^', tfU.(f.)=^,

and dim^, = dim r, + 2 dim ̂ ,; dim M, = dim T. + 2 dim U..

Moreover, as we have observed before,

dim ̂  = r, = dim T,.

So ^^I^^I^.Wy
Wf.) ^-^

_ tfT,(f,) »T.(f,)
gTy+Om^, ^r,+01m^,)12

Since #T,(f,) ^ (^ 4- l)^ by 2.8, the second assertion of the proposition follows from
Lemma 2.7 (i).

(2) Y M}- ̂ (^W] *W
( ) Yfl ^"WfJTX^'i^'^"^ (by2>3)

^ [M,(f,):B,(fJ] JtT,(fJ tf^(f,)
[•^.(fJ:^(f,)] ffr.(f.) ^^ ^ •" '

^ tfM,(f,) tf^(f,) ffT,(f,)
e1'^ ' ffB.(f.)' #r.(f,)

_ ffM,(f,) ff^(V

?"' '»U.(f,)

ffM.(f,)
.y(dim Mp + dim ̂ )/2
3V

^ (3) Let Z^ be the connected component of the identity in the center of M and
[M^MJ be the derived group. Then the product map Z^ x [M,, MJ ->M/is an
isogeny defined over f, and, hence, #M,(f,) = #Z,(f,).#[M,, MJ (f,). So

_tfM^) _ ffZ,(fJ. #[M,, MJ (fj
^(dim Mp + dim ̂ )/2 dim Zp. ^dimEMp, My]. (dim ̂  - dim My)/2

< #Z (f ) ^(^^•^-(Imi^^-dim^

^ (y ^- ndimZy ^-(dim^-dimMy)/2-dimZo



108 GOPAL PRASAD

We have used here the facts that #[M^, MJ (fj < g/^Wv^ and #Z^(fJ ^ (^ + l)^\
which follow from the observation in 2.6 and Lemma 2.8. Finally we note that
dim Zy = #@y — 1 = ^. Lemma 2.7 (ii) now implies assertion (iv) of the proposition
if either G is not quasi-split over ^,, or ?„ is not special, or G splits over ̂  but P^ is not
hyperspecial. Note that if ty ^ 1,

(?. + I)'0 ̂ -^^^-^-^ ̂  (y, + 1) ^ ro - l-

Let us assume now that G is quasi-split over ky (hence is isomorphic to ^ over k ,
see Lemma 2.0). Then #M,(f,) ^-«"mM,+dim^)/2 ̂  ̂  ̂ pj) ^ maximal when P,
is isomorphic to ̂ , in which case it is equal to ft^<,(f^) q^^^, and, according to
the observation in 2.6, this number is less than 1; recall that^ is (absolutely) quasi-
simple (2.5).

2.11. Remark. — For particular groups, one can give bounds which are better
than those provided by Proposition 2.10 (ii), (iv). If, for example, G is an inner or outer
form of type A and v is such that G{ky) is isomorphic to SL^ (DJ, where 2), is a central
division algebra over ky of degree </„, then

^ l̂ = (^ - l)-1^0 - l)< r+ l^J^+3)/2
r.,+dim^,.)/2 w / ^v ' yv^(ry+dim^)/2

< (^-l)-1^4'1^1

and ———^(fJ _ < , _ ^-i (,2+2r-(r+l)2^l-l)/2
^dimMy+dim^)/2 "^ / ^

To establish the latter, it is sufficient to consider the case where P,, is a maximal parahoric
subgroup of G(A^); we assume now this to be the case. Let F,, be the unique extension
off,, of degree dy. Then the dimension ofM,, is dyT^ — 1 and M^(f^) is isomorphic to
the subgroup ofGL^(FJ consisting of matrices whose determinant is of norm 1 over f^,
so its order is less than (^-- l)"1^^; T^(fJ is isomorphic to the diagonal sub-
group^ of this group, its order is (^ — l)"1^0 — 1)"°. Now as d^n^ — 1 = r and
dim^y = r2 + 2r, the above bounds are obvious.

On the other hand, if r is odd, say r = 2n + 1, and G/^ is an outer form of
type Ay, of^-rank n, which does not split over ky, then, as can be seen,

Wfj _ ^ (g^ +1) n^(gr -1) ^ _^
m M-4-dim ̂ ..W2 /n4- lW«4-9» — 2V '(̂dim Mp + dim ̂ )/2 (n + 1) (n + 2)

3. Covolumes of the principal S-arithmetic subgroups

As in § 2, G is an inner k-form of ^ and y : G -> ̂  is an isomorphism defined
over some Galois extension K of k such that for every y in the Galois group of K/A,
(p"1-'^ is an inner automorphism of G.
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Let co be an invariant exterior form on ^ defined over k and of maximal degree.
Then co* = <p*(<o) is an invariant exterior form on G of maximal degree; it is defined
over k (2.1).

We shall use the notation introduced in the preceding sections. Thus, for v e Vy,
the parahoric subgroups P^s are as in 2.2.

3.1. The natural embedding ofk in the ^-algebra A ofadeles, gives an embedding
of G{k) in G(A); we identify G{k) with a subgroup of G(A) in terms of this embedding.
Then G(A) is a discrete subgroup of the locally compact group G(A), and it is well-
known ([I], [11]) that in the measure on G(A)/G(^) induced by any Haar measure
on G(A), the volume of G(A)/G(A) is finite.

3.2. (o* determines a Haar measure co^ on G(A), which coincides with the product
measure Tl^Va. ̂ -^EY/^ IP,) on the open subgroup II, gy^ G(^)-II^^P,;
note that since G is semi-simple, the product H y ^ y ^(Py) ls absolutely convergent
and hence the product measure II^y ^•n^v/-^ IP ) ls a Haar measure on
II^gv G(A,,)-II,,gv P,, (cf. [26: § 1] where this is proved over number fields; a similar
proof applies in the case of global function fields).

In the sequel, we shall let (o^ also denote the finite invariant measure on G(A)/G(A)
induced by the Haar measure (o^ on G(A).

3.3. Let D^ be as in 0.2. The Tamagawa number ^(G) of Gfk is by definition
the positive real number D^^1"10 co^(G(A)/G(A)); in view of the product formula
(see 0.1), it depends only on Gfk and not on the choice of the invariant exterior
k-form (o.

It was conjectured by Andr^ Weil that T^(G) = 1. He and T. Tamagawa proved
this for all inner forms of type A, and in case k is of characteristic different from two,
for all A-forms of type B, C and all forms of type D except the triality forms of type D^;
M. Demazure verified the conjecture for the forms of type Gg (see [34]). J. G. M. Mars
then proved the conjecture for outer forms of type A ([23]), all forms of type F^ and
certain inner forms of type Eg ([22]) over number fields. For split groups over number
fields, the conjecture was proved by R. P. Langlands ([19]). Using some of his ideas,
G. Harder ([13]) proved the conjecture for all split groups over global function fields,
and K. F. Lai proved it for quasi-split groups over number fields ([18]).

R. Kottwitz ([17]), following a proposal of Jacquet-Langlands [15], has recently
proved the conjecture for groups over number fields, without any case-by-case consi-
derations, modulo the Hasse principle for the Galois cohomology of simply connected
semi-simple groups ([16]). The Hasse principle has been known to hold for all groups
of type other than Eg. V. I. Ghernousov has just announced its verification also for the
groups of type Eg. Hence, the work of Kottwitz ([17]) implies that T^(G) =1 if k is
a number field.
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3.4. Let S be a finite set of places of k, containing all the archimedean places,
such that for some v e S, G(^) is noncompact, or, equivalently, G is isotropic over ky.
Let Gg = n,,gg G(^). Then the strong approximation property ([27], [21]) implies that

G,. n P,.G(^)=G(A).
v ^ S

Let A be the image of G{k) n (Gg.n^g P,,) under the natural projection

Gg. n p,->Gg.
v ^ S

Then A is a lattice in Gg i.e., it is a discrete subgroup of Gg of finite covolume; we will
say that it is the principal S-arithmetic subgroup determined by the parahoric subgroups P
{v i S). The object of this section is to compute the volume ^g(Gg/A) with respect to
a natural measure pig (see 3.6 below).

Let <o^ denote the measure on Gg/A induced by the product measure 11 g <o*
onGg(=II ,esG(^)) .As

G(A)=Gg. n P,-G(A),
vfS

G(A)/G(A) has a natural identification with Gg II^g P»/(G(A!) n Gg 11,̂  g P,), and
so there is a (principal) fibration G(A)/G(A;) -> Gg/A with fiber n^s1'.- Hence,

DJ^^G) = <(G(A)/G(A)) = (^(GS/A). n <o;(P.).
»^s

Therefore,

(O,(GJA) =DidimGT,(G) ( n co;(P.))-1.
«^s

3.5. Let v be an archimedean place of k. Let ^(e R") be as in 1.4 and y,, = | ^ | .
We recall that ^ is such that under the Haar measure induced by the invariant exterior
form ^ o), any maximal compact subgroup of R^/n(^) (C) has volume 1. We claim
that the volume of any maximal compact subgroup ofR^ ^(G) (C) in the Haar measure
induced by the invariant form ^ co* is also 1. To prove this, we fix a basis ^, ..., W
(resp. Y^,...^) of the Lie algebra L(^) ®^ (resp. L(G) ®^J such that with
respect to the Killing form < , \ on L(^) 0 ,̂ (resp. L(G) ®^J ^ is orthogonal
to ̂  (resp. Y^ is orthogonal to Y^.) for all 1 ̂  z + j ^ n, and moreover, if y is real,

I < ̂  > ̂  U = 1 = I < Y^, Y? \ |, for all z ^ n,

and if y is complex, then

< ̂ , ̂  \ == 1 = < Y?, Y? \ for all i ̂  n.

Let ^, .... ̂  (resp. Y^, . . ., Y;) be the dual basis and co^ = ̂  A ... A ̂
(resp. <o^ = Y^ A ... A Y;). Let 6^: G -> ^ be an isomorphism defined over the
algebraic closure k^ C) of^ such that for all y in the Galois group of kjk^, O^-1.^
is an inner automorphism ofG (2.0). Then O^co^) is defined over^ ([15: pp. 475-476]),
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6^ induces a Lie algebra isomorphism L(G) (^ ̂  -> L(^) ®^ k^ and as any isomorphism
of Lie algebras preserves the Killing form, it follows that 6^(co^) == ± co^o.
Now we note that since G is a form of ^, the maximal compact' subgroup of
^/nW (c) and R^/R(G) (C) are isomorphic and hence have equal volume (= | a L; where

i (2^)^'+1

a == wt II^i ———j—, m is as in the proof of Theorem 1.6 and m^ ̂  ... ^ m, are

the exponents (1.5)) with respect to the Haar measures determined by <o^ and <o^
respectively. Now since <o is a multiple of co^, and e;(co) = ^ co*, where ^ is a root
of unity (cf. 2.1), our claim is obvious.

3.6. For any archimedean place v of k, let ^ be the Haar measure on G{ky)
determined by the invariant exterior form ^ co* (^ as in 1.4), and for y nonarchimedean,
let ^ be the Tits measure on G(^), i.e., the Haar measure with respect to which every
Iwahori subgroup of G(^) has volume 1. Of course, ^ = ^(IJ~1 ̂  for all » e V ^ $
where I,, is an Iwahori subgroup of G(^). Let pig = H^g ̂  be the product measure
on Gg(== H^s G(^t,)); we shall denote the Gg-invariant induced measure on Gg/A
also by [jig.

Let t, Df and 5 (^) be as in 0.2 and 0.4 respectively.

3.7. Theorem. — We have the following

MG./A) -, Dt-»(D,/ir')t"" (̂ n_ ^ ̂  J,,(G) ̂

„( rp + dim ̂ y)f2 ^disa. Mp + dim ̂ )/2wA^ ^ = n yt? . n -__
^8/ #T,(fJ .^s #M,(fJ

ffnrf S^ = S n V,.

Proof. — Clearly

^(GS/A) == ( n | ^ u ( n <o;(ij)~1 ^s(Gg/A)
o e Voo « e sy

wr'D^^GKn <o;(p,))-1= ( n Y.) ( n ^(i^-Dt^^G) ( n <O;(P.))
o e Voo »e sy «^ s»$8

(cf. 3.4)

^piduno n y. ( n Y. ";(i.) n ^^(P.))-1^^
oev veQf v^s

-D*"«(D^-)f"(^n^n |̂J.,(G)^
(by Theorem 1.6);
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where, «? = ( n y, <o;(I.) • 11 y. <o:(P,))-1

<? G Sy v (̂  S

„( r^ + dim ^y)/2 ^(dim My + dim ^y)/2

== n Jf t—————• n -'——==———— (by Proposition 2.10).
^ #T,(fJ ^s #M,(fJ

This proves the theorem.

3.8. Remark. — If Voo =(= 0, i.e. if k is a number field, then

r yy, » / r w I \ tfc.-Qln n if = n t '
,ev, i=\{2n)^1, V^Tr)^1;

3.9. Remark. — The reductive groups ̂ , M,, and the tori T,,(CMJ can be
described in terms of the local index of ^ I k y , of G]ky and the subset ©„ of 2.4 (see [33:
3.5]). Thus, in principle, ^{G^A) can be computed, using the formula given by the
above theorem, when T^(G) is known, for example, if k is a number field (see 3.3).

J. Ty + dim ^u)f2 ^(dim Mp + dim ./^)/2

3.10. Remark. — The factors ^—=—— {v e S^) and ^—=———— (^ ^S), of
#T^(fJ flM,,(f^

the Euler product € in the statement of Theorem 3.7, are all greater than 1. Moreover

the former is at least (^ + l)"^ ^ro(ro+8). For y ^ S, if G is not quasi-split over ^,
then the later factor is at least (^ + I)"1 ̂ 0+1 (and if G is anisotropic over A,,, then
this factor is ^ (^ + l)"^ ^ru(ry+8); see Proposition 2.10 (ii), (iv). These observations
are crucial for the proof of the finiteness assertions in [4].

3.11. Remark. — Let k be a number field and G be such that for some archimedean
place v of k, G(^) is noncompact and for every nonarchimedean », G is quasi-split
over ky. We assume that for every nonarchimedean y, P,, is special and whenever G
splits over the maximal unramified extension of ^, it is hyperspecial. Then for all
nonarchimedean y, My is isomorphic to Jl^ over f,,, and hence,

.Jdim My + dim ̂ p)/2 d̂im My

»M,(f,) ^SW

Now let A^ be the projection of G(^) n (n,gvG(^)-n,gv/P«>) mto

Goo:=n.g^G(A,).
Then

/r' /A \ rti^1"10/"^ m^^^i^^' /n î1 V 1 i(^\ a.^oo(G»/A«) == D^ (D//Dfc )2 |n^ /g^m.-+il T^fc(G) 0;
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-ydimMy

where ̂  = ̂  and «? == n,gy g. Using the orders of finite groups of Lie
ff •"•'•» u»)

type, given, for example, in [25: Table I], we easily see that S is a product of the values
of the Dedekind zeta function of k and certain Dirichlet L-functions at the integers
^ + 1, i ̂  r. If, moreover, the absolute rank ofG^ equals that of any maximal compact
subgroup, then (k is totally real and) using the functional equations of the Dedekind
zeta function and Dirichlet L-functions, we get a very concise formula for the volume
ofG,/A,.

4. Class numbers of absolutely quasi-simple, simply connected groups

4.1. We shall assume in this section that G is anisotropic over k. If A; is a number
field, we assume moreover that II^g^ G(^) is compact k is then totally real.

As m 2.2, let P = (PJ,,gv^ be a coherent collection of parahoric subgroups.
It is known that the set (11,̂  G(^) •n,g^P,)\G(A)/G(A) of double cosets is finite
([1: Theorem 5.1], [11: 2.2.7 (iii)]); the cardinality of this set is called the class number
of G relative to P and will be denoted by c(P).

We shall denote the compact-open subgroup II, g^ G(^).n^v/P.. of G(A),
by G. We shall use the notation introduced in the proceeding sections.7 In particular,
(OA is the Haar measure on G(A) defined in 3.2.

4.2. We fix representatives ^(eG(A)), 1 ̂ i^ c(P), of the double cosets in
G\G(A)/G[k). Then

C(P)
G(A) = U Gg, G{k)

<==!
C(P) * /p\

and so <(G(A)/G(^)) == S (0^; („)
<=i ffr, v /

where F, = ̂ -1 Cg, n G{k) is a finite subgroup ofG(A) since G(k) is a discrete subgroup
of G(A) and C, and hence also g^~1 Cg,, is a compact subgroup. If there is a finite upper
bound for the orders of finite subgroups of G(k) (which is the case if k is a number
field—this follows, for example, from [29: LG, Chapter IV, Appendix 3, Theorem 1]),
^./^/(GW be the smallest integer such that the order of any finite subgroup ofG(A)
is at most/, otherwise let/== oo. Then as

(OI(G(A)/G(^)) = D^^G) (see 3.3),

we conclude from (*) that

c(P) <ol(G) ̂  DJ^^G) ̂ f-1 c(P) <(G).
So,

/D^^G) «(G))-1 ^ c(P) ̂  D^S^G) (o>l(G))-1.
15
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Now we shall determine (<ol(G))-1 using the results proved in §§ 1-3. Obviously,

(coKC))-1^ n O):(G(AJ). n <o:(pj)-1
o e Voo « e Vf

'.Pv^-'.Jlj-"^-"-.?,/-":'1'-""

-^"^"(.Jl.",^.)."/- '̂-
since according to Theorem 1.6,

n Y, = (DX")^' ( n n -m-
6V \»eV<» i-l (27T)"1'-»ev «ev„|^-l(27^)" l••+lU'

and it is clear from the definition of y, (see 3.5) that as G(^) is compact for all v e V^,
Y, (o : (G(^) )= l fo rVoeV, .

Let
!:(P)=( n T^:(PJ)-1

oevy
^dimMy+dim^,)/2

= I! ^——————— (by Proposition 2.10 (ii)).
-/-•tr- - u , - X > r / £ \ v ' •r \ / /»ev/ #M.(f,)

Then

^(cr^DX^'fn n-^m^
ye^\^\{2^1\»eVoo <°i (27r)OT• W-

Therefore, we conclude the following:

4.3. Theorem. — Let

C ( P ) = = # ( ( n G(^). n P,)\G(A)/G(^)).
» 6 Voo » e v/

Then

and

^^D^^/D^^^fn n-^\.ev„|«-l(27t)'».+l|.

^n, <^(27c)i»^i „C(P) ̂ /^(DX^)^' ( n n - ^
\»eVa, <-1 (2TC)"1'

^(G) ^(P),

^(G)^(P);

where
,-(dlmMc+<Dm^)/2^(P) = n "^—^——.

.6V/ #M.(f,)


