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POINTWISE ERGODIC THEOREMS FOR ARITHMETIC SETS
by JEAN BOURGAIN

With an appendix on return-time sequences
jointly with HARRY FURSTENBERG, YITZHAK KATZNELSON

and DONALD S. ORNSTEIN

1. Introduction

This paper is a development of the earlier work [BJ, [B^], [Bg] of the author
on extending BirkhofTs ergodic theorem to certain subsets of the integers. It was proved
in [BJ that given a dynamical system (DS, for short) (Q, OS, (A, T) and a polynominal/^A:)
with integer coefficients, then the ergodic means

(1.1) A^-- s ^t
IN l^n^N

converge almost surely for N -^oo, assuming/a function of class L^D, pi). Here and
in the sequel, one denotes by ^ a probability measure and by T a measure-preserving
automorphism. The natural problem of developing the L^-theory for p < 2 was studied
in py and a partial result was obtained. We continue this line of investigation here.

The approach used in [Bi], [Bj relies on a method which may be summarized
as follows:

a) Reduction of the general problem to statements about the shift S on Z, which are
of a " finite 59 and " quantitative " nature (in the sense of inequalities involving
finitely many iterates of the transformation).

b) Proof of certain maximal function inequalities, relative to the shift, by Fourier Ana-
lysis methods.

c ) Use of the <( major arc " description of the relevant exponential sums, similar to that
in the Hardy-Littlewood circle method.

As I observed in [BJ, this approach should be considered more general than the
solution to some isolated questions.
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The purpose of this paper is two-fold. First, as far as the L^theory is concerned,
we will develop appropriate harmonic analysis methods (maximal function estimates
for certain sequences of multipliers), which will make the argument less dependent on
special properties of the exponential sums (essentially exploited in [B^], [B^]). Using
this additional ingredient, further examples will be obtained, for instance sets of the
form

A={[^) ] ;^=1 ,2 , . . . }

where ?{x) is any polynomial with real coefficients and [x] stands for the integer part.
Secondly, a method will be described to cover the full L^-range, p> 1. In particular,
it is shown that the averages Ayf given by (1.1) converge almost surely for/a function
of class L^ii, (A), p > 1. The problem for L^-functions remains open at the present time.
The shift reduction mentioned above allows one to give a new and simple proof of
BirkhofPs ergodic theorem (cf. Py). Our proof of the pointwise and maximal ergodic
theorem is related to [K-W], but it is different and provides more quantitative infor-
mation. In particular, in order to illustrate ideas, it will be shown how to avoid the
invariance of the limit. When dealing with subsets of Z, this invariance is indeed not
available in general and the pointwise ergodic theorem is not a formal consequence of
the maximal ergodic theorem (except if the linear span of the eigenfunctions of T is
dense). The shift reduction applies equally well for positive isometrics. Already for the
sequence of squares A = { w2 }, the L^-result for all p > 1 is new, and in particular the
following corollary (for p = 2, see [BJ):

Let/be and L^-function on the circle TT = R/Z and a e R\Q^an irrational number.
Then the averages

(1.2) - S f(x+n^)
JN n=l

converge to the mean ( f{x) dx^ for almost all x.
It is tempting, especially forp == 2, to approach such a problem by straight forward

Fourier Analysis, considering the Fourier expansion of the function/(cf. [S]). However,
to make this method succeed, stronger information on the Fourier coefficients of/ seems
needed than just their square summability. The proof of the previous statement uses
indeed harmonic analysis methods, but only after reduction to a dynamical system
problem. Observe that in this case only the maximal inequality needs to be proven
(^>i)
(1.3) f1 (sup [- S f{x + rfl a)]') dx^ c f/^ dx

Jo \ N L1^ n^N J / Jo

for /> 0.
Next, we describe the organisation of the paper and state the main results.
In the next section, an approach to BirkhofTs theorem is presented along the lines

explained above and some less known features of this result are pointed out.
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In section 3, we considerer the variation spaces Vy, where [[ x \\y is defined as

(1-4) sup (S |̂  - ̂  l̂ , ^ = (^=1,2.....
<;^1<...<^

These spaces are well-adapted for a quantitative formulation of convergence properties.
In this context, we recall a result due to L^pingle on bounded martingales, which is of
importance later on in the paper.

Section 4 is devoted to the proof of a maximal inequality for certain sequences of
Fourier multipliers. These Fourier multipliers appear naturally in the " major arc "
description of exponential sums. The results of section 4 are purely L2.

In section 5, we recall some basic and well-known facts on the behaviour of expo-
nential sums of the form

(1.5) <^(a) == S <2"WB•a>

n==0

where

(1.6) ,̂a) == a^+ a^i^-1 + ... + a^ and a = (ai, ..., aj e[0, l̂ .

The information on these sums needed for our purpose is essentially the same as for solving
the Waring problem by the Hardy-Littlewood circle method.

Section 6 is a new presentation of the lAresult on polynomial ergodic averages
obtained in [BJ, based on the new ingredient obtained in section 4. In this proof, we no
longer need the a priori estimate of A. Weil for exponential sums with prime modulus.

Section 7 of this paper contains the corresponding (new) V-result for all r> 1.
Thus the following theorem is proved:

Theorem 1. — Let (Q, 38^ (JL, T) by a dynamical system and p(x) a polynomial with integer
coefficients. Then there is the maximal inequality

(1.7) |lsup|A^/|||^G||/||,
N

where A^jf is given by ( 1 .1 ) , i.e.,

A^=- 2 T"<»'/
JM l^n^N

andf e L^Q, (Ji), r > 1. The constant G in (1 .7) depends only on r > 1 and on the polynomial p{x).
Moreover, the averages ^/converge almost surely for N -> oo. If T is weakly mixing, the limit

if given by jfd[L.

The previous result remains valid for positive isometrics on L^Q, (Ji). Let us point
out that the proof of Theorem 1, in the case of a general polynomial/^ {x) with integer
coefficients, is essentially identical to the special case p{x) = x2. Essential use is made
of duality and interpolation methods.

In section 8, the results of section 4 and section 5 are used to prove the following
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Theorem 2. — Let (Q, ^?, (A, T) be a dynamical system and p(x) an arbitrary polynomial.
Then the averages

(1.8) ^y-- s T^V
N l ^ n ^ N

for fany bounded measurable function on Q, converge almost surely. Here [x] stands for the integer
part of x e R.

It is possible to obtain I/-results, r > 1, relative to the averages (1.8), at the price
of additional technicalities, based on the method of proof for Theorem 1. This further
development is not worked out in the paper.

Section 9 contains various comments and remarks on almost sure convergence in
general, related to [BJ.
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The paper has an Appendix on return time sequences, in joint work with H. Furstenberg, Y. Katznelson
and D. Ornstein, simplifying an earlier exposition ^4] (cf. also [Bg]).

2. BirkhoflPs Theorem Revisited

Let (0, 88^ pi, T) be a dynamical system. In this section, we consider the usual ergodic

averages A^/==:__ S T*/ appearing in BirkhofPs ergodic theorem. We discuss
•l-M l^n<N

their convergence properties, partly keeping in mind possible extensions to certain
subsets of Z.

A) Mean Convergence
1 N

The sequence of complex polynomials p^{z) = — S ^ pointwise converges on
JN n=l

the unit circle (to 0 except for z = 1). Consequently, by general spectral theory of unitary
operators, A^/converges in L2^) whenever/ e L^pi). The main point here is the existence
of a spectral measure. The Herglotz-Bochner theorem indeed ensures the existence of a
positive Radon measure v on the circle T, such that

(2.1) < TV,/> = ̂ (n) EE J^-2-0 v(^6)
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implying that the map L^II, v) ^L2^, p.) mapping the nth character ^ne on T"/
is an isometry. Thus the convergence ofA^/in L2^, p.) is equivalent to the convergence
ofp^) in L2(n,v).

This is clearly an lAtheory. In general, given a subset A of the positive integers,
the pointwise convergence on the unit circle of the sequence of polynomials

(2.2) ^(z) =——————— S ^n
v / ^ / |An[l,N]|i<n<N

neA

is equivalent with a mean ergodic theorem for the set A. In the case of" arithmetic sets "(

this test is particularly useful since the convergence of pyW given by (4) is
closely related to phenomena of uniform distribution. For instance, if A is the set of
squares { n2 | n = 1, 2, ... }, we have

A^2"^) -^ 0 if a is irrational

and AT^) -^ s^ d) = l 'S <?27tiar' for a = a (the Gauss-sums).
y r=o y

It is not surprising that the (stronger) almost-sure convergence properties result from a
finer analysis of these exponential sums and the class ofL^functions appears as the natural
function space in these problems. A sequence AC Z^_ is (< ergodic " provided py{2) -> 0
for z e T — { 1 }. The property implies mean convergence ofA^/to ) fd^ assuming T
ergodic (this is the case for A = Z^. but not i fA^^ 2 )^^ 1,2, ... } for instance).

B. Weiss [W] observed that sequences A obtained by taking suitable unions of
disjoint intervals are ergodic but may fail to satisfy th<e pointwise ergodic theorem, even
with respect to bounded measurable functions.

B) Maximal Ergodic Theorems

Let again
N

^-s.2^
and define the " maximal function "

/* == sup | AN/|.
N=1,2, ...

There are the L^-inequalities (1 < p^ oo)

(2.3) II/'HL^O..) <C(^) ll/ll^o..)

and the weak-type inequality

(2.4) \\r\\^^G\\f\\^
where [| g ||ii,oo == sup \\s.\\ g \ > \] and G, C{p) are absolute constants.

x>o
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Let us give a simple proof (2.3), (2.4) by deriving them from the shift model (Z, S).
In the case of the shift, the weak-type property (2.4) easily follows from geometric covering
properties of integer-intervals, in the some way as for the Hardy-Littlewood maximal
function on the real line. Once (2.4) is obtained, the L^-inequalities follow from the
Marcinkiewicz interpolation theorem. Consider now the case of the general dynamical
system (Q, (A, T). Of course it suffices to prove inequalities (2.3), (2.4) (with fixed
constants) for a " restricted " maximal function
(2.5) /=== sup^/ (/<0)

l^N^N

where N is an arbitrarily chosen positive integer. Take an integer J > N and for fixed
x € Q, consider the orbit

^,T^T2^, ....T^ x.

For the function/, define the function <p on Z as follows

(2.6) W)=/(T^) if0^<j
( = 0 otherwise.

Thus AK<(»(J) =Ayf(^'ix) provided that 0<^'<J—N and hence, with the defi-
nition (2.5),
(2 • 7) T(j') =/Cr x) for 0 <£ j < J - N.
The inequality || y ||̂ , < || <p* \\^ < C(p) || 9 \\^ then immediately implies, by (2.6),
(2.7),

^ .S.II/^^I^C^ S |/(T^)|-.
0<^<J~N 0<»<J

Integrating (2.8) in x e Q with respect to the measure (A yields.<,S,-."TI/'"^<C^".«£<."T'/";
and since T is measure-preserving, one gets

1171L<c(^)j-^ 11/11 , ,
hence

11/*11,<C!WII /11, .
One can deal similarly with the weak-type inequality (2.4). Assume / e 1 (̂0, p.), \ > 0,
let 1̂  = [y^> X] and % be its indicator function. Given x e Q, let <p be defined as above
and let 111 stand for the cardinality of a (finite) subset I of Z. The shift inequality thus
gives

||9||/l«0(z,< C || <p (I/la,

and, by (2.7),
^l{0<y<J-N| / (T^)>X} |<C S .AT^),

0<^J
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hence

(2-9) S .xCT^x0 s /(T^).
0<^<J-N X 0<^J

Integrating again, we have

Wx)<C——^ 11/H,,

from which (2.4) easily follows.
At present, the covering argument leading to weak-type inequalities does not

seem to be available when dealing with particular subsets ofZ, such as the squares or the
primes. In these cases, we were unable so far to develop an I^-theory. The L2 and
L^inequalities {p > 1) are obtained by making essential use of Fourier-transform methods.
This is an approach similar to that in differentiation problems in real analysis involving
lower-dimensional manifolds,

C) Almost sure Convergence

By the maximal inequality and a standard truncation argument, the almost sure
convergence of Ayf for /in L^Q, (A) reduces to bounded functions. Denote by F the
L^limit of (Ay/) and, for given e > 0, let N. satisfy

l|F-A^/||,<e.

By the invariance of the limit (since the ergodic means relates to the full set of positive
integers) and the maximal inequality, we have

(2.10) || sup | F - A^(A^/) ||, < Ce.

Since

A^(A^/)-A^/|<2^||/|(,,

it follows from (2.10) that

|| lim | F - AN/[ |[, < Ge, hence Urn | F - A^/| = 0 almost surely.
N

This discussion completes the proof of BirkhofTs theorem. It is clear that the pre-
ceding argument does not apply when dealing with the more general averages

(2.11) A^/== 1 S TV
| A n [1,N]| neA.n^N

corresponding to a subset A of Z^..
If the eigenfunctions of T generate a dense subspace ofL2, the almost sure conver-
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gence of Ayf for /of class L^, p^ 2, is implied by the pointwise convergence of the
sequence py{z), \ z \ = 1, given by (2.2) and the maximal inequality

ILT 11^ G H/ll,; /^suplA^/1.

This is the case for instance for the model (Q, T) = (T, RJ, R^x == JT+ a.
In the remainder of this section, an alternative method is explained for the pur-

pose of proving the theorems stated in the introduction.
Take/in L°°(Q, pi), |/| ̂  1. For s > 0, consider the subset

(2.12) ^-{[(l+O"]!^!^.. .}

of Z^.. Clearly, for each N eZ_^, there is N' e Z^ such that
|A^/-A^/|<28.

Thus to prove the almost sure convergence of (A^/), it suffices to show that there is no
e> 0 and no sequence of positive integers N,, N,_^> 2N^, such that
(2.13) ||^/||2>s where ̂ ,/= sup |A^/-A^/|.

N,<N^Ny+i 3

NGZg

In fact, a more quantitative statement is shown, namely
(2.14) S |j^,-/|l^o(J)H/(J2 , ,

1 ̂  J ̂  J

forj large (depending on e appearing in the definition of .̂ ,). Since (2.14) only involves
finitely many iterates of T, the general case reduces again to the shifs (Z, S). For the
sets {p(n) [ n = 1, 2, ... } (resp. {[p{n)]; n = 1, 2, .;. }) considered in Theorem 1 (resp.
Theorem 2), the inequality (2.14) follows easily from the proof of the L^maximal ine-
quality. In the context of theorem 1, this argument was carried out in [BJ. The method
will be repeated in section 6 of this paper, for the sake of completeness.

3. Variation Spaces and Variational Inequalities

We start by recalling the definition of the variation norm v, (1 < s < oo) for scalar
sequences x = (^)^=i 2

(3.1) [I ̂  = sup{(^ | ̂ . ~ ̂  \8)118 |J = 1, 2, . . . and n,< n,< . . . < n, }.

The sequence space v, then consists of those sequences x for which [| x ||^ < oo. We will
also use the notation || [[^ for continuously indexed systems x = (A?()(>O, where now

(3.2) | |^ | |^==sup{(2;J^.-^J a) l^[J=l,2, . . . and ^ < ^ < . . . < ^ } .

These spaces Vy are frequently used in probability theory when studying questions about
convergence. In this context, some known inequalities about martingales are needed for
our purpose. More precisely, we will use the following result due to L^pingle [L6]
(cf. also [P-X]).
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Lemma 3.3.—Let E^ (n = 1, 2, ...) ^ the sequence of expectation operators with respect
to an increasing sequence of a-algebras on a probability space and f^ === E^/ an associated scalar
martingale. Then, for s > 2, we have the inequality

(3.4) IK/^lli^^-s)-1!!/^
where L^ r^r^ to ̂  Vy-valued V-space.

This result may be seen as the quantitative form of the martingale convergence
theorem. The inequality (3.4) fails for s == 2 (this is a well-known feature of the Brownian
martingale, related to the law of the iterated logarithm). In fact, the dependence in s
stated in (3.4) will be of relevance later on and we include a fast proof here.

Proof of (3.4). — For X> 0, denote by N^(co) the number of 7^-jumps in the
sequence {/„((*))}? where /„ is defined as above. One has the following inequality for
1 < r < oo:
(3.5) I I X(N^21|^||/||, foral lXX).

This is a form ofDoob's oscillation lemma for martingales (see [Nev]) and is obtained
by methods of stopping times and square functions. We use interpolation to derive (3.4)
from (3.5). First we prove (L^ denoting the Lorentz space):

(3.6) II {/n}!^^^-^-^!!/!!^ for|^^<|, s>2.

Let thus/= /^ and AC D be a measurable set of measure (JL (A) = e, hence ||/||p,i == s .̂
Estimate pointwise, for N^ defined as above from the function/, yields

(3.7) || {/,((o) JL, < [S 2-^ N^W.
k — 0

Hence, since p < s,

[ 00 /» -»l/p

(3.8) ||{/»}lk^2 ^-^ (N^)""</J ^^-^-^•"ll./ll;]1/1'
s k=0 JQ J

applying (3.5) with r = 2pls (which implies 6/5 ̂  r < 2 in view of the hypotheses made
on p , s } and ^ == 2~~k. Since [ |/[[;== e, (3.6) is immediate from (3.8). Writing L2 as
interpolation space between I/'1 and V2, (3.6) is easily seen to imply (3.4).

We will now derive a real analysis version of (3.4) from Lemma 3.3. For a
1 /x\

function/on R, set f^x) ==-/(-( . Denote also byt \t /

(3.9) ^/(X) s/(X) ==F f{x)e-^dx
J — 00

the Fourier transform of/. Thus

(3.10) /M ==/(^).



H JEAN BOURGAIN

Lemma 3.11. — Let ^ = ̂  ^ A^ ̂  indicator function of the interval [0, 1]. TA^, /or
/eL^R) and s> 2, one has

(3-12) ||{/* x< I ̂ > 0}||^n)^ - 2)-1 ||/||,,

wA^ v, stands/or ,̂(R+) w^A ̂  norm given by (3.2).

As usual, /* g denotes the convolution of/ and g.
Denote by (P()(>O the Poisson semi-group on R. Thus if P,/=/» P(, one has

P((X) == ^<m. Considering the Brownian martingale associated to the harmonic function
u(x, t) == (/» P() (A:) on the upper half-plane or, alternatively, invoking Rota's dilation
theorem, inequality (3.4) relative to martingales implies
(3.13) || { P,/| t> 0}||^< .(. - 2)-111/11,.

Proof of Lemma 3.11. — By (3.13), (3.12) will be a consequence of the following
inequality
(3.14) I I { /*KJ^>0}i |^< . 11/11,,

where K stands for the function ^ — Pi, hence satisfies the Fourier transform estimates
(3.15) | \ |.|(&)' (X)| < c and | ̂ (\) | < c min(|X|, | X |~1).

We clearly have the pointwise estimate

(3.16) 1 |{/*KJ^>0}| |^(S I/^K^I2)172

A6Z +{^\\{f*^\y^t^2k+l}\^)l{2.
By ParsevaTs identity, the L^norm of the first term in (3.16) is bounded by

[ r°° ^ i1/2 r r i(3.17) s l/mî x)!^ <<:. |/(x)|^x =^||/||,,
f cezJ -oo J LJ J

invoking also (3.5).
Next, we estimate the contribution of the second term

(3.18) { S ||{/•KJ2^^2fc+l}||^r.
Jfc £ Z '

Let 0 < T) < 1 be a function supported by ., 2 u — 2, -- ^ , | 73' [ < C, such that
S ^TO == 1.aez

Defining K, by IC,(X) == £(X) ll(2a X), one has that K = SK,, and (3.18) may
be estimated by the triangle inequality as "

(3.19) S { S ||{/* (KJ, | 2*< « 2t+l}||^ r.
01 £ Z fcG Z '

From (3.15),

(3.20) |X | [ (^ ) ' (X) |<^ and | ^(X)| < c2-^.
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Fix a e Z. For k e Z, consider a net 2^ = ̂  < Mg < ... < Uy == 2t+l of N == N, equi-
distributed points. The number N^ will be specified later. Estimate
(3.21) IK/^KJ,^^^1}!!,^

[ N -11/2

^1/*(KJ«J2] +
L/-I

N r<'»/+i -12U/2

S IW*(K.),]|<ft
> /"I U«^ J /

majorizing ^([^ ̂ J) by ^([^, a^J).
Again by ParsevaPs identity, the L^norm of (3.21) is bounded by

(3.22) (sfr'IW*^),]!^2}1
\ /"I UK/ J /

r N /•oo -11/2 r /. -,1/2

(3.23) S |/(X)p|^(^X)|^x ^€N^2-^1 f I/WI2^]
L/-lJ-oo J UjX|-2-<«-^ J

by the definition of Ky, and (3.20). Here | \ \ ̂  p stands for ^ p < [ X | < 4p. Similarly, the
L^norm of (3.22) is bounded by

N . r^+i rr00 . . „ i 11/2[ rt(/+l r r00 i il/2
(3.24) S (»/+, - «/) |/W|a | X |« [(&,)' ((X)12A A <

(==1 J^ U—oo J J

[ N /c\k\ 2 / /• \ -| 1/20 ̂ ) ̂ (L^-J^]
-^"[L.^j^i^]1/2

UjX(-2-*-a

Substitution of estimates (3.23), (3.24) in (3.19) finally gives the bound

LSz^4"'" +1^ CL-.-.-.î i8'")]""c "/"•- ""/n"
chosing N, = 210'1.

Summation of (3.17), (3.18) yields (3.14), which proves Lemma 3.11.
Let us point out one application of Lemma 3.11 to the convergence of the averages

A^/=- S T"/
•N K«<N

in Birkhoff's theorem.

Corollary 3.25.— Let (Q, K, ̂  T) beaDS andfeL^). Then,fors> 2,

(3>26) {N^J^^-1'2—) ||̂  ^11^11-
The last result does not seem to appear in the literature. It refines the results

discussed in the previous section (related to almost sure convergence). The proof of
(3.26) reduces to the particular case of the shift model (Z, S), following the procedure
described in section 2 of this paper. In the context of the shift, (3.26) is just a discrete
version of (3.12).
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Writing

(3.27) 9 = - F^^^t) tdt, ^ = 1^,
Jo l

for a smooth function 9 on [0, oo], vanishing at oo, the following lemma is a consequence
of (3.12) and the convexity.

Lemma 3.28. — Let 9 be a dijferentiable function on R, vanishing at oo. Then, for s > 2,

(3.29) ||{/* 9, 1 1 > 0}|L^ ..(. - 2)-1 (J^ | 9'W| | ̂  | dx) ||/||,.

We conclude this section with a corollary of (3.28) which will be of importance in
the proof of certain Fourier-multiplier maximal inequalities considered in the next section.

Let H be a Hilbert space. If A is a subset of H, denote by M^(A) the X-entropy
number of A, X > 0. By X-entropy number, we mean the minimal number (^ oo) of balls
(with respect to the H-norm) of radius X, needed to cover A. We set M^ = 0 if diam A < X.
The following result relates to H-valued functions on R.

Lemma 3:30. — Let <p be as in (3.28) , s > 2 and H a Hilbert space. Then, f or f e L^(R),
(3.31) || sup(XM^)||^^~2)-1 11/H,,

X>0

where one defines point-wise M^{x) = M^({(/* 9,) {x) \ t> 0 }) and Cy = f| <p'(;c) | | x | dx.

Proof. — Observe first the pointwise inequality
(3.32) ^(^/^{S || (/* ̂  {x} - (/* ̂ .J (x) Hn}^ ||{(/» y,) (^)}||^,

where t == (ty) is defined by putting
t, = min{^> t,_, | || (/* 9,) {x) - (/* 9^) {x) \^> X}.

(Since we are concerned with a priori inequalities, we may take the sequence t = (ty)
of bounded length.)

Writing f == S/oc^oo fv. == ^fs ev. )) where {e^} is an orthonormal basis for H,
it follows from (3.32), (3.29) and the convexity (s>2), that

|| sup(XM^) ||,< [S HO * 9< Jll^]172^ ̂  - 2)-1 (S ||/, ||i)1/2.
X>0 a ^ a

This proves (3.31).

Lemma 3.33. — Z^ 9 be as in (3.28) and H be a Hilbert space. Then, with the notation
of (3.30) andforfeL^R) and K> 0, one has

(3.34) I] JJmi^K, M^))^2 rfX ||^ < <(log K)21|/||,.

Proof. — With the notation of the proof of Lemma 3.30, set

/a*==SUp|/,*9j; /a=</^a>
00
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SO that

(3.35) ||/:||2^JI/a||2

by the Hardy-Littlewood maximal inequality. Define
(3.36) F = [S(/;)2]172

and, for .? > 2, write

f°° min(K, M^x))112 d\ ̂  F(x) + (mx) K2'18 M.fx)118 d\
JO v / JK-^'Fta;) A v /

< FM + K^^log K) sup ̂ .M^)17'.
3l>0

Now, (3.34) follows from (3.35), (3.36) and (3.31), letting . — l = (logK)-1.
A •?

4. Maximal Inequalities for Certain Sequences of Fourier Multipliers

Proving the L^-maximal inequality in Theorems 1 and 2 in the context of the shift
(Z, S) by harmonic analysis methods leads to Fourier multipliers given by exponential
sums (the properties of which will be recalled in the next section). In this section a rather
general estimate is obtained, especially motivated by the major arc description of these
exponential sums.

The dual group ofZ is the circle group II == R/Z, which will be identified with [0, 1]
(identifying 0 and 1).

The main result of this section is contained in

Lemma 4.1. — Assume \< ... < ̂  e 11 and, forj e Z^, define the neighborhoods

(4.2) R , = = { X e n [ min Ix-XJ^-^}.? <. « i^j^K • '- ' '
Then

(4.3) \\^\^fWe^d\ \\^ C(logK)21|/||^

for functions f on Z.

Remark. — It is an interesting question whether there needs to be a dependence on
the number K of base points in (4.3). The logarithmic dependence will suffice for our
purpose.

In order to simplify notation, we denote by ^ (resp. ^~1) the Fourier transform
(resp. inverse Fourier transform) for functions on either R or Z.

For the sake of completeness, we include the following known argument to derive
the corresponding inequality for Z from the R case. Indeed, it is often more appealing
to prove the result on R because of the .presence of the dilation structure.
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Lemma 4.4. — Let O be a set of multipliers on [0, 1] satisfying

(4.5) || sup | y-\^n | ||̂  ̂  B 11/lj^).
q?eo

Then

(4.6) |1 sup | ̂ -l[y^/] | ||̂ , < CB ||/||/̂ ,
<peo

where C ̂  ̂  absolute constant.

Proof. — Denote by Bi the best constant satisfying (4.6). Writing, for x eZ and
" e [O? P] (P < 1 to be specified later),

'̂"'[y^T'] W == ̂ -'[y^/] (^ + u) + y\(\ - e2^) ̂ f] {x)
and averaging in u gives

|| sup | y-\^f\ | ||̂

(4-7) ' P-l/21|sup|^-l[9^/]||!^H)+
<p

(4.8) sup 1 1 sup | 3P-l [(1 - <•2"«x») y^/] | 11^.
0<«<p <p

By (4.5), (4.7) is clearly bounded by

(4.9) p-^B || ̂ /|L^i] = P-^B ||/||̂ .

By definition of B^, (4.8) is bounded by

(4.10) B, ||/* y-\\ ̂  e^] ||̂  = B, || ̂ /. [1 - ̂ ] ||̂ ^

^ CpBJ|^/||^^

-GpB, ||/||̂ .

Hence, from (4.9), (4.10), B^ p-^B + CpBi, thus Bi< C'B by choosing p small
enough.

By Lemma 4.4, Lemma 4.1 may be restated as

Lemma 4.11. — Let X^, ..., ̂  e R and let Rj stand for the 2~~j -neighborhood of the set
A=={^, . . . .X^h/orjeZ. Then

(4.12) lls^pl^-1^,^/]! ||̂  G(logK)21|/|[,.

The proof is mainly based on Lemma 3.33 of the previous section and will be
presented in several steps.

Lemma 4.13.— Let \, ..., ̂  eR satisfy | \ — ^ [ > T > 0 fork + A?'.£^0< <p< 1
^ a smooth function such that supp $ C [— 1, 1]. Then

(4.14) ll^upj^^^^/^V,)! !i2< ^log^^^JI/Jl^v2.
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Proof. — Observe first that

(4.15) 1 1 2 ^ e^ 11^^ < CT-^( S | a, |2)1/2

k^TS. jfc=l

for all scalar sequences a = (^)i^^K. This is an easy consequence of the separation
hypothesis of the \^s and we leave the verification to the reader.

Since supp 9^ C [— T, r] for ^> T"1, there is no restriction in assuming that
(4.16) supp/, C [- T, T] for 1 < k ̂  K.

For u e R, denote by ̂  the translation operator; thus ̂ f(x) =f{x + u). It follows from
(4.16) and ParsevaPs identity that

(4.17) ll/.-^/Jl2<jll/J|. forlMl<l^^ l•

Denoting by B the best constant fulfilling (4.14) (CK172 will certainly do), one gets

from (4.17) for 0^ u^ -j^T-1 that

(4.18)
|| sup | ̂ ^(/.^ll^

OT-I A;=l

|| sup | i^^^/^^llla
(>T-1 ^==1

+iB(S||/J|^/2.

[ ^.-1-j

Integrating (4.18) in u on 0, -,„ allows to replace (4.18) by1UUJ

(4.19) G || ̂  | 1 ^p | ̂  .-2^- ̂ -(/, * „) M | 1L^ ,̂,, ||̂ ,

Therefore, it will suffice to bound (4.19) by G^ogK)2.^ ||̂  ||̂ 2 in order to prove
Lemma 4.13.

Fixing x e R, consider the set
(4.20) A = A, ={((/i * ̂ ) (x), ..., (A * <P<) W) | t > 0 }

as a subset of the K-dimensional Hilbert space/I;. For ^ > 0, denote again by M^ = M^(x)
the entropy numbers of A. There exists a sequence B, (s e Z) of finite subsets of the dif-
ference set A' — A such that
(4.21) | ~b | ^2 .2 s f o r A e B ,
(4.22) #B^M^

and each element a e A has a representation
(4.23) a = = S ^ with A.eB,

<ez K
(# stands for <c cardinality " and [ a | refers to ( S | ^ I2)172). In writing (4.23), we make

the implicit assumption that A == A^ is bounded, which is clearly no restriction.
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Estimate

sup | S <?-27ta^ e^^f^ « ̂ ) (^) | ̂  S max | S e-2^^ ̂ ix^ A j
< > o & = i » e Z b e B , & = i

and replace the L^O, T~1], du)-norm by

(4.24) S || max | S ,-^»^^ | |[ ^.
a G Z b G B^ fc = 1

For given s, consider the following bounds

max | ... | ̂  min{ 28+l K172, [ S | S ^-^^"^ix^ ̂  «2ji/2^
bGB, be'Bs k=s^

They imply, invoking (4.15), that (4.24) is bounded by
(4.25) S min^-172 28+l K172, Gr-172 28+1(#B,)1/2}

86Z /.oo
— Cr-172 J min(K, M^x))112 d\

using (4.21), (4.22).
Taking the L^rf^-norm of (4.25), the required bound on (4.19) is obtained from

(3.34). This proves (4.14).

Lemma 4.26. — Assume that 7^, ..., X^ e R satisfy \ \ — \, \ > 2~3 for k + k\
Then, with previous notation,

(4.27) || sup | ^-l[x^^/]| ||̂  C(logK)2 11/11,.
3^8 J

Proof. — The inequality (4.27) is derived from (4.14) by a standard square func-

tion argument. Take 9 as in Lemma 4.13 satisfying 9 = 1 on — - , _ . Estimate

supl^-1^,^/]!^
j ^ B K

(4.28) sup | S e^^f^e-2^^) ^ ,̂] |
3^8 k=l

(4.29) + { ^^ | ̂ -l[( .̂ - ̂  W - \)) W |2 ̂ 2.

By the hypothesis on <p, g * 9 -̂ = {g * <py_i) * 9 '̂ for J> •y- Hence, applying (4.13)
with/^ = {f.e-2^^) + <p^_^ (4.14) gives the following bound on (4.28)

/ C K U/2
(4.30) COog^^J^SJ/^+X^pl^y^^l^A} < G(logK)211/H,

invoking the separation hypothesis of the '̂s and the fact that supp ^C [— 1, 1].
By ParsevaPs identity, (4.29) is bounded by

( r K ^/2

(4.31) S |/(X)|2[^(X)- S9(2^-^))P</X <
^»J •' fc=l J

sup [ S I x^.W - S 9(^(X - ̂ ))|].||/|l2.
XEB i>« •' »=i
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Ks
&=1

Since ^ByW — S 9(2^(X — \)) is bounded, and vanishes if either dist(^, A) < ci~3~l

or dist(X,A) > 2~3, the first factor in (4.31) is clearly bounded.
Now, (4.27) is implied by (4.30), (4.31).

Remark. — In a later application, A = = { X i , ...,^} w1!1 be typically a set of
rational numbers afq, (a, q) = 1, with q^ Qand the neighborhoods (major-arcs) consi-
dered < Q72. Thus the more restrictive Lemma 4.26 actually already suffices for our
purpose. The statement of Lemma 4.11 is simpler, however, and the result may be of
independent interest.

In the remainder of this section, we complete the proof of (4.12).

Lemma 4.32. — Let again
R , = = { X e R | min l^-xj^-^} forjeZ.

1 ̂  fc^ K
Then
(4.33) llsupl^-^^/Jlll^aoglSDII/lla

i6S J

for S a finite subset of Z.

Proof. — The argument is inspired by the Burkholder-Davis-Gundy-Stein (cf. [Ga])
dual version ofDoob's maximal inequality. The only difference here is that the operators
are not positive. We only use the fact that the R/s are decreasing. Assume thus, rede-
fining R^., that

R,^.i C R,, 1 ̂  j ̂  2s where s ̂  log | S |.

Denote by B the best constant satisfying the inequality
I I sup | ̂ -^W I MB ||/||,
i^-^ J

or equivalently (by dualization)

(4.34) IIJ^-^^II^BIIJJ^IH,.

Identify S and { 1, 2, ..., 2'} and let (S^j,^, be a diadic partitioning of S

iSo=S

So,o So.i Si,o Si.i
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Set .̂ = ̂ '-l[ .̂̂ ,-]; clearly

(4.35) <^,&>=<^-,&> forj^k.

Using this fact and Holder's inequality, one gets, from the definition of B,

1 1 S^=S||i; Hj+2 S <^,&>
^68 ^<fc

<S||^+2 S |< S ^, S & > 1
M<» »6s^o *es<;,i

<S||^l| j+2B S 1 | 2 |^||U| S I^IH,
M<a ^es^o JeSci

^(l+2B.) | |S |^ | | j ,2 .

Consequently, B2^ 1 + 2Ks implies B< cs, proving (4.33).

Proof of (4.12). — Define

S^jeZIK-^-^ \\-^\.\<K2-j for some l ^ k ^ k ^ K } .
Obviously
(4.36) | S [ ^ K3.

Define further
Zy = { j e Z\S | R .̂ has r components }

for 1 ̂  r < K. Hence
(4.37) Z^Z,^... <Z^

where Z^, Z^ are half-lines and Zy is a finite segment for 1 < r< K. For r> 1, let
7,. = min Zy. By construction, there is a set A^C { \} satisfying
(4.38) | X ~ V | > 2-^ for X + X' in A,

(4.39) U ^-2-\\+2-}]CR,C U [X - 2-^1, X + Z-^^ forjeZ,.
A € -AT ^ G Ay

To prove (4.12) we proceed again by duality and estimate the best B fulfilling
||Si,||̂  B||S \g,\ ||, for i, =jr-i(^^i.

Using (4.32) and (4.36) and setting G, = S ^, and G, = 2 y. we have
sez, sezr 3

lisi;.n^ii si,ii,+i|S( s ^)i^(iogK)i|si^iii.+nseji,.
3 3 fc" r 3 e 2^ c

Since Zy ^< Zy, for r < r\ we have, forj e Zy,y e Zy,,
/ /^/ /^/ v , /V/ .

<^^i' > = <g^gr >•
Hence

<G,,G, ,>=<G, ,G^>
and ||SGJli=S||GJ|J+2 S < G, G, >.

r<^y
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The same argument as in (4.32) than shows that
(4.40) B2 < (log K)2 + B2 + B(log K)

where B^ has to satisfy
(4.41) || supl^bc ̂ f-\\ ||̂  Bi H/ll,.

3 e Zr J

In order to estimate Bi, apply (4.26) with A = A,, s =j^ taking into account (4.38)
^ d j ^ J r f o r j e Z y . Invoking then (4.39) and a square function argument such as
in (4.31), it follows that B^ < G(log K)2. Substitution in (4.40) yields that B < G(log K)2.
This proves (4.12), hence Lemma's 4.11 and 4.1.

5. Behaviour of Exponential Sums

In analyzing the Fourier multipliers appearing in proving Theorems 1 and 2,
information is needed on the exponential sums (1.5), i.e.,

(5.1) ^)=- S ^ip(nla)

iN »==!

where

(5.2) ^,a) =a^+ ... +a,^ and a = (a^ ...,a,) e [0, l]^

In this section, some well-known results and procedures are summarized. The
estimates required are mainly provided by H. WeyPs basic lemma

Lemma 5.3. — Let f{x) == ai x + ocg x2 + ... + o^ ̂  and | ^ — [afq) \ < \fq\
where (fl, q) = 1. Then for all s > 0,

(5.4) | S ^</(TO) | < C^14-6^-1 + n-1 + qn-^ where p == ——,
w= i 2,

(cf. [Vaug] or [Vin] for a proof).

Denote by Q, the set of rational numbers. For
8 = S{d) > 0 and 61, ..., 6^ e [0, 1] n Q,

with common denominator q < N8, define the " major box " in the rf-dimensional torus as
(5.5) ^(6i, .. .,6,) ={a == (ai, .. ., a,) eIP | | a, - 6, | < N-^8 (1 <j< d)}.

The following fact may be found in [Vin] (ch. IV, Th. 3) and can be proved by iterated
applications of Lemma 5.3 combined with Dirichlet's principle.

Lemma 5.6. — If a does not belong to some major box as defined above, then

(5.7) |^(a)|<GN-8'.

Here ^(a) is defined by (5.1) and C, 8' > 0 depend on d.
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One may describe the shape of 9^(00) on^(Q^ ..., 6J. Let 6, = a^q, a, = 6, + (B,
and [ (BJ < N-J+8. Writing » == y? + r, where 0 ̂  s < N/? and r = 0, 1, ..., q — 1,
one has, for j = 1, ..., d,
(5.8) a, ̂  = (6, + (B,) (^ + r)^ e Z + 6, r3 + (B, ̂  s3 + ̂ N-^28)

since ^ < N8. Hence, clearly

( 1 fl—l \ / /, N/ff \
(5.9) 9^(a) == - S ^(r6i+...+r</e,) ? ^ ^i^a<+...+P^^U_ ^N-172).

? r==0 j IN a»o j

For (^, ..., ̂ , q) == 1 and 6, = a^q, define

(5.10) S(y, a^ . . . , ^) == 1 fls^2"i(rel+•••+rrfe'/).
? r=0

Set
(5.11) V^(P) = 1 ^N^i(plv+32l/2+...+p^)^

NJo

Then, (5.9) and the estimates | P, | < N""^8 easily yield the following lemma, replacing
the second factor in (5.9) by its continuous substitute:

Lemma 5.12. — For a e^(6), a = 6 + (B, one has
(5.13) (p^(a) = S(y, ̂ , ..., ̂ ) V^p) + 0(N-^2),
wA^r^ 6 .̂ = a^q.

Recall also

Lemma 5.14. — If (y, ̂ , ..., a^) = 1, ^w
(5.15) |S(y,^,...,^)|<^-8 '
w^^ 8' = 8(rf) > 0.

This is clearly a consequence of (5.3).
In this work, we will not need finer information on the S(y, a^ ..., fl^), such as

the multiplicativity properties and A. Well's estimate for q a prime number.
Finally, we give some estimates on the function

(5.16) V^(P) = F^Pi^+^^^+.-.+prfN^)^

Lemma 5.17.

(5.18) | l -V^p)|<GSJP,|N^

(5.19) | V^(p) | < C[l + SJ p, | N3]-^

wA^ G = c(rf).

The first estimate (5.18) is obvious and the second (5.19) follows from van der
Gorput's estimate on oscillatory integrals.
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6. Ergodic Theorems in L2

In this section, we prove Theorem 1 for functions of class L2. This result appears
in [BJ. The argument presented here uses less structure. According to the discussion
in section 1, the maximal inequality and convergence problem for the averages

(6.1) A^/=^^T^/

(6.2) p{x) =^A :+&2^+ • • • +^ ^eZand^>0,

where reduced to proving certain inequalities for the shift model (Z,S). In the case
of the shift, one has

(6.3) A^ y ==/» K^ where K^ = ̂  j|/(.(n)}

and 8^ stands for the Dirac measure at x e Z. Hence, introducing the Fourier transform,
(6.4) A^/=^-WK^].^[/]],

where, for a e II ^ [0, I],

(6.5) ^[K^] (a) = ̂  J|^-^(n).a ̂  ^(_ ̂  . ̂  _ b, a) = <^(- aJ).

For ^ ̂  0, define an exhaustion of the rationals in T

(6.6) ^ -{eeQ.n^ r i i e^ /y , (a,q) = 1 and 28^q<28+l}

which is considered as subset of II. Thus Sl^ == { 0 == 1 }.

Denote by ^ a smooth function on R with ^ = 1 on f — -,, —1 and ^ = 0 outside
f 1 11 L 10 10J

— -, , . (The smoothness of ^ will be irrelevant for the lAtheory but has importance

when considering L'-estimates for r < 2 in the next section.)
Define

(6.7) ^(a) = S S(6) ^(a - 6) ^(lO^a ~ 6))
6 £ Sif

where, with the notation (5.10), (5.11) of section 5,
(6.8) S(6)=S(^,...,a,)

where — Q.b, = a;/^(mod 1) and {a[, ..., a'a, q ' ) = 1,
(6.9) w^) == V^(- (3^, ..., - ̂ ,).

Thus it follows from Lemma 5.12 that, if 6 = afq, q < N8,
(6.10) ^-[Ki,] (a) = S(6) a^(a - 6) + 0(N-1/2) if | a - 6 | < N-^8.

Also, since / > q\b^ if 6 = a/y, (a, ^) == 1, one has by (5.15) with notation (6.8)
(6.11) | S(6) | < C2-'6' for 6 e ̂ ..

4
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From (6.9) and (5.17)
(6.12) l l -a^^Glf i l .N' 1 ,
(6.13) \«>^)\<C[l+\^\^-1"1.

Observe also that the summands in (6.7) are disjointly supported, by definition of 3S,
and ^.

Lemma 6.14. — There exists &i> 0 such that the uniform estimate
(6.15) | ^-[K^] (a) - S <^(a) [ < CN-8*

8^0

holds.

This lemma allows the replacement of ^[K^] in (6.4) by more explicit multi-
pliers which will be taken care of by Lemma 4.1.

Proof of (6.14). — Redefine major arcs in II by letting
(6.16) ^(6) = = { a e n [ [ a -O^N-^ 8 }

for 6 a rational afq, 1 ̂  a < q, (a, q) = 1 with q < N8.

Case 1. — a belongs to an arc ^(60).
Assume 60 e^, thus 289 < N8. Let ^ be a positive integer (depending on N),

to be specified later. Estimate, using (6.10), (6.11),
(6.17) | ^[K^] (a) - S ̂ (a) | < | 1 - ̂ (lO^a - 60)) |

+ S sup [ ̂ (a - 6) | + C2-^ + GN-172,
»^<i

where the sup is extended over all 6 e 3t^ different from 60.
Since 10'° < N48 and | a - 60 | < N-^8 < N-1, the first term in (6.17) vanishes.

Letting 291 ̂  N8 and writing

[ a - 6 | ^ | 6 -60 | ~ |a-6o l , | 6 - 60 | > l q-1 2-'i > ^ N-28

for 6 e^,,

s ^ S i , 6 4= 60 and | a - 60 | < N-1, it follows that | a - 6 | > | [ 6 - 60 |. Thus the

second term of (6.17) is bounded by (log N) .N-1^28^, invoking (6.13). Hence (6.15)
holds.

Case 2. — a does not belong to a major arc.
Clearly, from the definition (5.5) and (5.7), we have | ^"[KJ (a) [ < CN-8',

by (6.5). For Z'̂  ^N8, 2<1^N8, write

(6.18) |S^(a)|< S sup|^(a-6)|+C2-^.
a^<l Qe^s
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By definition of ̂ (6), it follows from the hypothesis on a that [ a — 6 | > N-^ 8 whenever
6 e ̂ ., s < Ji. Hence | z^(a - 6) | < CN-8^ by (6.13) and (6.18) implies again (6.15).

This proves Lemma (6.14).

It is clear that, when proving the maximal inequality
(6.19) l|sup|/*K^|||^^C||/||^,

N

the function / may be taken positive and hence the supremum taken over the set
Zi = { 2* | k = 1, 2, ... }. Setting
(6.20) ^=2^,

estimate by (6.15) and Parseval
(6.21) I ) sup |/* KJ ||a< || sup | y-\^yn\ (I,

Nezi »ezi
+ ( S I I ^-[K^]-^ II^II/H,

»ezi
< J|j| sup I ̂ -1[^^/-]| I), + C 1 1 / 1 1 , .

To estimate the contribution of the first terms, define
(6.22) ^(a) = ̂  S(6) 7(^(0 - 6)) !:(10'(a - 6))

with x = Xt-i.m considered as function on R. It easily follows from (6.11), (6.12),
(6.13) that there is a uniform estimate
(6.23) ^J4^-?,,Nl<C2-8'.

Therefore, again by a square function argument
(6.24) || sup | ̂ -l[4^ yU | ||a < 1 1 sup | ̂ -l[^ ̂ /•] | \\, + C2-'s' \\ /||,.

z! Zl

For N e Z^ write ̂ d == 2^ and let R, be the 2"" ̂ neighborhood of R,C n. Thus, setting
(6.25) ^kj==^[/] S S(6) !:(10'(a - 6))

ee^
(6.26) ^.N^/=^kJ.X^
it follows from inequality (4.3) in Lemma 4.1 that

(6.27) || sup [ ̂ -1[?^.^/]| ||̂  || sup | ̂ --W^] XiJI il2
NGZi ^GZ+ J

<G(log|^|)2H^|| , .

By definition, | 9t^\ < 4s, and it follows from (6.11) and Parseval that
I I ^ Ik^CZ-^ 11/11,.

Substitution in (6.24) yields the bound
(6.28) || sup | y^^^n I ||̂  0^2-^11/11,

Zi
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and hence, substituting in (6.21),

(6.29) || sup |/*K^| ||̂  C( S ̂ -^ H / 1 1 2 < C 1 1 / 1 ) ,
NGZi <==o

which proves the maximal inequality
(6.30) l|supiA^/|||^G||/||,.

N

Next, we verify the almost sure convergence using the method described in section 2 of
this paper. Thus we prove an inequality (2.14) in (Z, S)

(6.31) SJI-^/lh^CJ) ||/||2

setting
(6.32) ^,/= sup | / * ( K ^ - K ) |

Ny<N<Ny+i 3

NEZe

where Z^ = {[(1 + s)"]; n = 1,2, ... } for e > 0 fixed, and N, is any rapidly increasing
sequence (N,+i>2N,).

We again apply the Fourier transform method. With previous definitions, it again
follows from (6.15) that /• (K^ - K .̂) may be replaced by ^-'[(^ - +N-) ̂ /]
when defining c^,/. Fixing ^, it follows from the previous inequality (6.28) that then

(6.33) ||^/||2^ S |1 SUp | ̂ [(^N - ̂ N,) ̂ /]| ||2
s^ao N,<N<N,+i ' ;

Neze +Ce-12-8"<o||/||„
where the second term in (6.33) will be o(||/||2) for appropriate SQ. Thus it suffices to
verify (6.31), defining now
(6.34) ^,/= sup \y-l[{w^^w^^f]\,

Ny<N<Ny^ 3

NeZg 7

where Wy is given by (6.9). The reader will indeed verify that summing up the first
terms of (6.33) over j = 1, .. ,,J will only introduce an additional factor (depending
on So).

L^ X=Xco,u ^d

(6.35) ^,/== sup |/*(/^-x^)|,
Ny<N<Ny+i ;

where /< = - X[o. d • Since the following inequality clearly holds pointwise (with »g as

in section 3),

(6.36) {^ (^,/)2 }"2 < J*/« || {/» ̂  | N = 1, 2, ... } ||^,

is follows from (6.36) and (3.26) that

sj|J',/i|^cj1/2 ii/iij
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hence

(6.37) Sj|^/||^ C^ ll^-1^^-^-^))^/'!^^1/2)!/)!2,.

This first term in (6.37) is bounded by
(6.38) sup[ S l^^-^N^mi/II^C.II/ll2

a N G Zg

using the fact that, by (6.12), (6.13),
(6.39) | ^(a) - ̂ (N4 a)| < C min(| a | N^ (| a | N^)-^).

Hence, for J t ^ f defined by (6.34), one has, by (6.37) and (6.38),
(6.40) S || ̂ /||^G,J^ 11/H,

independently of the choice of the sequence N^ < Ng <^ . . . < Nj. The proof of (6.31)
is now completed, and so is the proof of Theorem 1 for LMunctions.

Observe finally that if T is weakly mixing, then Ayf-> j fd[s . in L2 (hence a.s.).

Indeed T has no point spectrum as unitary operator and — S ^p(ra) N^-? 0 for
•IM n^N

z e C ^ = = { z e C \ \ z \ = = l } ,

except on a countable set.

7. Ergodic Theorems in L^ p > 1

The purpose of this section is to extend the lAtheory to L^, p> 1. Of course,
only the maximal inequality
(7.1) ||sup|A^|||,<c||/||,

N

needs to be shown. Once (7.1) is obtained, the a.s. convergence for functions / of class
L^^ji) reduces to bounded functions and hence is taken care of by the L2 result, obtained
in the previous section.

The partial result was obtained in [Bg] \p^> ————).

Considering again the shift model (Z, S), (7.1) becomes

(7.2) || sup |/* K^ | \\^ G 11/11,; K^ = ̂  Jt/(p(n))-

The proof of (7.2) by Fourier Analysis methods is more delicate than in the lAcase
because the Fourier multipliers involved in the argument need to have goods bounds
on I9.

We use the notation of the previous section. Thus in particular

(7.3) S(6) = 1//S ^-2^(r)e for 6 = ajq and ^(P) = f ^-2"ip(Nl')0 dy.
r==0 Jo
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Denote again by ^ a smooth function on R, 0 ̂  ̂  1, supp ^C [— 1/2, 1/2] and ^ = 1
on [- 1/4, 1/4].

The following lemma will be useful when comparing L^R) and ^(Z)-norms.

Lemma 7.4. — For ! < y < e D , s = = o(l), <w<? to?

(7.5) || jF(p) ̂  W) rfp ||̂  - || JF(R) ̂  W) rfp |[^.

Proq/'. — Observe that, by Bernstein's inequality and the hypothesis,

(7.6) || J F(R) [̂  - 1] e^W) rfp ^ Cs [ I J F(R) ̂  !:(Dp) rfp [|̂

for 0^ u^ 1.
We first prove the inequality || ||^z)^ p |[ ||̂ a) in (7.5), for some bounded p.

Let 0 < u < 1 and write

(7.7) [| jF(p) .̂ ^ W) ̂  |[^ < || jF(p) ^^-KO !:(Dp) rfp ||̂  +

+ || JF(P) [1 - e^] e^ W) rfp ||^.

Integrating the pth power of the first term in (7.7) in u, the L^R^norm is obtained.
Let p be an a priori constant satisfying the above inequality; the second term in (7.7) may
be estimated for fixed u

p [[ JF(P) [1 ~ e^] e^ W) rf(3 [|̂

<Gsp|[jF(p)^^!:(Dp)rfp[|^,

invoking (7.6). Thus it follows that p^ 1 + Cep, hence the boundedness of p.
To prove the converse inequality in (7.5), write

(7.8) || |L^ ^ || ||̂  + ( J; || jF(p) e^[l - e^] !:(Dp) rfp |[;̂  du }119

and apply the inequality || \\fp < p [[ ||̂  and (7.6) to estimate

(7.9) [ I JF(P) e^\\ - e^] !;(Dp) rfp |[^< Csp 1| F(p) e^ !;(Dp) rfp |̂

for 0< u^ 1. Since Gsp < 1/2 for s small enough, substitution of (7.9) in (7.8) yields
the converse inequality, proving (7.5).

Lemma 7.10. — For S(6) defined by (7.3), the fi^-norm of the Fourier transform of the
function on H

(7.11) S S^Wa-0)o^a^c \qJ \ ql
is bounded by
(7.12) q S sup |^F(^+^)|.

yez o<a?<a
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Proof. — By definition of S(6), the Fourier transform of (7.11) at the point x e Z
equals

S S (a} e2^9^ ̂ T(^) =(#{0<r<^- p(r) e ̂ Z }) ^T(^).
:0<fl \?70<o<fl

fl-1

Thus the ^(Z^norm is bounded by S S | ^S^jq + p{r)) [, hence by (7.12)r = o ^ez

Z^wwa 7.13. — Z^ 1 < q< D. T^w, with the notation (7.3),

(7.14) S S
0^a<a

^f^L-^^D^a-^L-^all <G.
\ql J \ qi \ \ q l f ||/i(Z)

Proof. — Apply (7.10) with F(p) = a^(P) ^(Dp). It follows from (7.3) that a^(P)
is the Fourier transform of the image measure v^ under the mapping p(Ny) : [0, 1] -»-R.
Hence ^T = v^ * (^"^^DD and (7.12) is bounded by

fx+jq-p{-Ny)}
J1
•'0

?; ^ ^P(7.15) y-\^ dy.
D ^ez oss»<<i Jo D

Since | ̂ '-1K] (<) | < 0(1 + f2)-1, one has
/^ +^S sup ^-^^ D < C - + 1 .

W /Se^ 0<a!<<l

Substituting in (7.15), (7.14) follows.
One has the following real Analysis maximal inequality:

Lemma 7.16. — For p> 1 andf e L^R)
(7.17) || sup | y-\w^ ^H | |l̂ n, < G ||/||^B>.

Proof. — As observed earlier, w-^ is the Fourier transform of the measure v^, image
of the measure ^y/N under the mapping p : [0, N] -> R. Thus we have to estimate

|| sup |y* v^ [ ||y. For t sufficiently large, one has that —s-
N d5 = W(/r1^)) which

»=<
is of the order (1/N) t~l+(w in size. Thus the problem reduces to show that
(7.18) |1 sup |/» [(1/N) r1^1/'"^,^)]! ||,< C 11/11,.

N

Defining A(f) = t-1^ ̂ , (1/N) r^'1/"' ^,,^(f) = k^, where A.W = ]- k ( t }
s>0. The fact that "
(7.19) 1 1 sup 1/^.| ||, < C l j /11,

*>0

follows from the Hardy-Littlewood maximal function boundedness on R. This proves
the lemma.

Next, we prove a discrete maximal inequality:
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Lemma 7.20. — Let l< q<sD, s= o(l). Then, for p> 1,

(7.21) sup S f^^^/^+^^DP)^^^)^
N 0^a<aJ \? / i/»(Z)

^ 11/lkz)-

Proof. — The main ingredient will be (7.16) and the problem is to pass from R
to Z. Writing x eZ as x =yq + ^5 ^ = 0, 1, .. .5 q — 1, the left member of (7.21)
equals

( I I I r ||p u/p
(7.22) S sup ^((B) F,((3) ?:(D(3) ̂ w ̂

0^2<<z || N [ J \\£P(dy) )

with

(7.23) F,((B) = S ^y(?+ P) ̂ 2 ̂ + p).
0^a<ff \? /

As in the proof of (7.4), denote by p the a priori best constant in the inequality

(7.24) sup f^(p)F(p)!:(Dp)^pwrfp < p fF(p) W)^^ rf(B .
N J fP J t?

For 0^ M < 1, write

(7.25) sup | f^((3) F(p) !:(DP) e^ ̂  <
N | J

sup f^((B) F(p) !:(Dp) ^P.(v+u) ^p
N JN

+ sup !w^) F(p) t:(Dp) [e2^ - 1] ̂ ^rfp
N J

Integrating the^th power of the first term of (7.25) in u e [0, 1] gives, by (7.16) and (7.4)
(7.26) q-^ || sup | ̂ -l[^ F^D.)] | ||^<

G^1/1)||^-1[F!:(D.)]||^=

G fF(p) ?:(Dp) ̂ pw rf(3
J •L^dy)

fF^^Dp)^1'^!! .
J \Vhdy)

By definition ofp, the^-norm of the second term in (7.25) is, for fixed u e [0, I], bounded
by

(7.27) p | fF(p) [̂ ito - 1] C(Dp) ̂ i0w ^(B .
| J (P

Apply consecutively (7.5), (7.6, (7.5) to estimate (7.27) by

(7.28) Gep fF([B) ^(D[3) ̂ ipw </p .
J (P

From (7.26), (7.27), (7.28), it follows that p ^ G + Gep implies p < C, assuming e
small enough. This yields (7.24).
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Applying (7.24) with F = F, and substitution of (7.23) yields

sup | f^(p) F,((i) ^(Dp) ̂ » rf(B | [| <
N I'' I ll̂ «i»)

G ̂  ^ ̂ a/9) [S^ft"- + P) !:(D(B) ̂ 'w+»' rfpl

G S ^-^WfDf.-^L^+^ll
0<o« L \ \ ?//J "-' r / ||/̂ ,

and summation over z = 0, ..., q — 1 gives the following estimate on (7.22)

,/*^-lf s ^Df.-0))"!!! <G||/||/,.
Lo<a<« \ \ qjf\ \\{P I I J ulp

This completes the proof of Lemma 7.20.

Lemma 7.29. — Under the hypothesis of Lemma (7.20), for p > 1,

33

1/^Mlrt

(7.30)
^ o^ (^J^ ̂  + P) W)^0) ̂  <GJI/11^.

Proo/'. — Apply (7.21) to the function g given by

(7.31) ^(a)=[ S spW^a-^l^a).
Lo^o<t \?/ \4 \ q / / ] J' '

Observe that ^-^ ?) !;(Dp) = !;(Dp) and that the first factor in (7.31) is the Fourier-

transform of an /^-function, by taking Wy = 1 in (7.14). Inequality (7.30) now
follows.

The following lemma in an important new ingredient in proving (7.1).

Lemma 7.32. — One has the/allowing restricted maximal inequality:
(7.33) || sup J/*K^|||^C,(loglogNo)||/l|^ f o r ^ > L

NO < N < NO

This is a problem about positive functions and hence N may be taken of the form
N = 2^ Ao^ k^ 2^o- Instead of considering the ^(Z)-inequality, we will rather deal
with functions/taken on a finite cyclic group G == Zj = Z/JZ, where J is taken large
enough (depending on No). The measure on G is the normalized counting measure and

/* K^ is the convolution on G of/and - Z; 8^)). The inequality (7.33) is equi-
N l^n^Nvalent to

(7.34) I I sup |/*K^|l|^,<G,(log^)||/||^,.
ko^k^2Jco

The reason for this set-up is to invoke Stein's extrapolation theorem [St] according to
which the inequalities (7.34) for p> 1 follow from the weaker inequalities
(7.35) || sup |/*K^|||^^G,(log^)||/||^.

ko^k^2ko
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Since (7.35) weakens for increasing/», one may assume that q == p ' ==pl{p — 1) is an
integer. We replace (7.35) by its dual version

(7.36) || 5 (&*K^)|l,<G,(log^o)
k==Jco

whenever

(7.37) &5.0, S&<1.

Let M (to be specified later) satisfy

(7.38) M—logAo

and put L^ = K^uk for simplicity. By splitting in sub-sums, (7.36) will clearly follow from

(7.39) || S (&*L,)||,<G,
*0<Jfc<2Jfco

whenever { g ^ } fulfils (7.37). Denote by p the smallest constant G^ satisfying (7.39).
In the sequel, let G stand for a constant depending on q.
Expanding the q\h power of a sum and integrating, we have

I S (^*L,)||^
kQ<k<2ko

(̂̂ )||̂

^ \<^<^L^^-^^

(7.41) + c f [ S (g^W-1,
Ja to<&<2»t

where (7.41) is bounded by p*"1.
Choosing M appropriately, we will achieve the estimate

(7.42) || [̂  * L^) ... (^ * L^)] * (L^ - LJ ||̂ , < ^-'

whenever k^ < k^ < k^ < ... < ky < 2^o-
Once (7.42) is obtained, write

[^(&^L^)(^*L^). . . (^»L^)

~^(&,*LJ(&^L^) ...(^*L^) <^

and estimate (7.40) by

(7.43) G + S f [ ( S &)*LJ (^*L^) . . . (&*L , ) .
&0<fc2<.. .<^<2&oJG &o<fc<2Jfco " - q q

Since the first factor in the integrand is 1-bounded, by (7.37), (7.43) turns out to be
bounded by (7.41), thus by Cp^"1. Consequently, one gets ^k < G + Cp*"1, hence
p< G, proving (7.39), thus (7.36) and (7.33). It remains to obtain (7.42).
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Proof of (7.42). — This is an L^-problem and we use the Fourier transform method.
Denote g^ by g^ and let N,. = 2 .̂

We keep the notation ^ for the Fourier transform on Z and identify G with the
integer interval [0,J] endowed with normalized counting measure.

For each r, let Sy be increasing integers to be specified later. With the notation
of the previous section and D to be specified, define

(7.44) Q, == S S S(6) ̂  (a - 6) ^(lO^a - 6)) C(D-1 N^(a - 6)).
s^Sy QG^s

It follows from (6.15), (6.11), (6.13) that, for some 8 > 0,
(7.45) | ^[L^ (a) - Q,(a) | < G(N;T8 +2-8rs+ D-^).

Since, from the definition (6.6) of ^,, one clearly has
(7.46) ||^-1(^)||^^G4^

there is a uniform estimate
(7.47) |^-1[^.^(^)]|<G4\

It also follows from (7.45) that
(7.48) || (^ * L^) - ̂ -l[^ ̂ )] ||̂  < C(N78 + 2—8 + D-^).

Observe that the Fourier transform of the function y"\Q.^ ^{gz{\ • • • ^r~l[^fl ^C?a)]
vanishes outside a DN^^ neighborhood F of {{alb) e n n Q^| i < 2^}.

Estimate the left member of (7.42) as

II (g2 * 1^) - ̂ -W^) "2] lk.<G, +

II .̂ -W )̂ "2] |1» II (g3 * 4,) - •^-W&>) "8] IlLtG, + • • . +

(7.49) || ̂ --W^) ̂  ||oo • . • II ̂ -lW^.-l) ",_,] iL || (̂  » ̂ )

-^--W^QJIIiAa)

(7.50) + || { ̂ -l[̂ -(^) Oa] ... .̂ -W )̂ ".] } * (4, - LJ ||i.<a>.

By (7.47) and (7.48), (7.49) is bounded by

(7.51) C S 4'«+•••+^-l(N7s + Z-^8 + D-17").
r=2

Making the appropriate choice of the numbers s^ ~ log ky then allows the estimation

(7.52) (7.49) < -̂ o"' + ^.(Na-8 + D-"").

By the remark on the support of the Fourier transform made above, (7.50) is clearly
bounded by
(7.53) || ̂ -Wg,) 4,] ... y-Wg,) QJ lliAe). sup | ^-(L^ - 1̂ ,) («) |.

aer



36 JEAN BOURGAIN

Again from (7.49), the first factor in (7.53) is bounded by C482+•••+^ < k^. By
definition of F, (6.10) and (6.12), one easily verifies that the second factor in (7.53)
is at most

(7.54) CD^+GN,-1/2

provided that
(7.55) D2^<No8',

which is obviously satisfied for D < 28fco.
By definition of Ny and since k^ < k^

(7.56) (7.53X^^2-^+2-*^].

Collecting estimates (7.52) and (7.56), the left number of (7.42) is bounded by

^ k^ + ̂ [D-^ + D2-Md + 2-^] < k,9

for a suitable choice of D, logD^log^o and M^/log^o (cf. (7.38)). This completes
the proof of (7.42) and hence of Lemma 7.32.

The proof of (7.2) is mainly based on lAestimates, (7.29), (7.32) and interpolation.

Proofof (7.2). — Denote by [| [|, ther(Z)-norm in what follows. For s = 1, 2, ...,
define
(7.57) Q,=28!

(7.58) Jf, = { k 6 Z | 4s ̂  k < 48 4-1}

and with previous notation, let

(n w\ n v c / ^ \ / a \ y lr\2 ( a \\t7-^) ^.,'= S s -- \w^ {^-^- ^ Q2,' ̂ -rr
0<a<Qs» \y.a7 \ U«7 V \ U<7/

for ^'^ s, k eJT,.
It follows from (6.15), (6.11), (6.13) that for j^ j, k eJT,

(7.60) |^[K^](a)-^(a)|<2-8^

and by (7.13)

(7.61) II^-^JII^C.

Fix 1 <po<p< 2. It follows from (7.30) that

(7.62) || sup | ̂ -l[^, JF/]| ||̂  G |1/|^.

For k eJf,, write

/* K^ = ̂ -l[̂ .l ̂ 7] + ̂ "-m.2 - ̂ .1] ̂ y] +.. .
+ ̂ m.. - ̂ .,-1) ̂ /] + [(/* K,,) - ̂ -l[^^/]],
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so that

(7.63) sup I/* K,, I < 2 ̂  I ̂ -^(Q,,, - Q,,,_,) ̂ /] |

+ S sup | (/* K,,) - ̂ -1[Q»,, ̂ /] |.
< A; £ •^^

By (7.62)

(7.64) || ^sup | ̂ -m,,. - ̂ ,..-1) W| IL < C 11/H,,

while by (7.33) and (7.62) also

(7.65) || sup |(/*E^) -^-1[^,,^/]|||,^ C..||/|^.
fc G «%j

Our purpose is to interpolate (7.64), (7.65) with better /^-estimates. Using (6.15),
estimate

II sup K/*^)-^-1^^^/]!!!^
k^ 4^

^•^ c.^2'"81 +11^ LA..^"1^.2*-^3 - ̂ ~l^,.•••^]l 1 1 2 +
S llsupi^-1^^.^-/]!!!,,

r> a' fc

where ^r,N ls given by (6.7).
By (6.28), the last term of (7.66) is bounded by 0.2-^ \\f\^.
Write

4^ — S ^y^A =
r^s'

C^) 2 2; S(9) ̂ (a - 6) [^(a - 6)) - ̂ (lO^a - 6))]
r ̂  s' 0 G ̂ r

(7.68) + S S S(^ (0-^(^(0-')).
fliQ,' i ^ a ^ < z \qJ \ q ) \^8 \ q ) )

fl^2^+ l (o , f l )==l

There is a uniform estimate on (7.67) for ^^ 48' by

(7.69) G.48'. sup |^(|B)|<C2-fe/2

IPI>Q?2

in view of (6.13) and (7.57). Thus (7.67) contributes to the maximal function for at
most C2~Bf.

As was done in section 6 to prove (6.28), (6.29), one estimates the maximal function
contribution of (7.68) (in /2) by G.2~"8^.

Collecting estimates yields the bound G. 2~ 8'8f on (7.66). Hence also, by subtraction

(7-70) 1 1 ̂  i ̂ -m.,- - "^-i) wi^ c.2-8^ 1 1 / 1 1 ,
while

(7.7i) || sup K/*^)-^-1^..^/]!!)^^-6''!!./^.
Je €? «5cf
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Interpolating (7.64), (7.70) at po<p< 2 yields the corresponding /^-inequality with
constant C.2~8^. Similarly when interpolating (7.65), (7.71), and ^-estimate G.2~8^
is found. Here Sy > 0 depends on p > 1. Substitution of these bounds in (7.63) yields

|| sup |/* K,, | ||̂  C S 2-8P8f + C S 2-8?8 < C,
k s' s

completing the proof of (7.2).

8. Integer Parts of Polynomial Sequences

Consider a polynomial with real coefficients {d^ 1)

(8.1) p{x) =b^+b^x+ ... +b,^ b,>0

and for a given DS(0, ^?, (JL, T) the averages

(8.2) ^f-- s T^V
IN n==i

where [y] stands for the integer part oty. Here we let/be of class L°°(i2, p.). In proving
the a.s. convergence of (8.2), one may assume at least one of the coefficients b^ ..., ̂
irrational. Otherwise, if bj == (a,/^) ( l ^ j ^ y ) , write 71 = wy + r ( 0 < r < y ) and

A^f==1 S ——. S T^^T^'V)
y o < r < a N^-1 m<N<ri

where ̂ i(w) = j&(w^ + r) — j&(r) has integer coefficients. The a.s. convergence of the Ayf
is thus implied by Theorem 1 of this paper.

Assuming that b^ ..., b^ are not all rational, the sequence

{^)-^)] |^=1,2,. . .}

is uniformly distributed in [0, 1]. Fix s < 0 and consider the function T = Tg on R

0 € 1-6 I

Set

(8.3) 1 S ^
N n-l rn^Z

A^/=_, S S ^PW-m)^/.
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Clearly, invoking the uniform distribution property, there is the pointwise inequality

(8.4) | A^/- A^/| < 11̂  t f { 1 < n^ N | dist^(n), Z) < e K 3c ||/||,

for N large enough.
Thus, it suffices to show the a.s. convergence of (8.3) for a fixed s > 0, assuming

/eL2^) (the hypothesis / e L°° is only of relevance when replacing Ayf by X^/).
The proof of this uses the same method as in section 6. The relevant exponential

sums are given by

(8.5) ^-[K ]̂ (a) = - 2 S T(^(n) - m) e-^
IN n^N w G Z

= S ^-a)(1 S ^<(fc-«)p(n)1
&ez I JN n^N I

where

(8.6) K^==- ^ s ^(n)-m)^^.
JN n^N w G Z

Let 9^(0) be given by (5.1)

<p^(a) =- S ^<(a,n+a,n24.,.+^n^

Then

(8.7) ^[K^] (a) = S ?^ - a) ^(fc-a)&o ̂ b,(k - a), .... 6,̂  - a)).
fcez

Observe also the decay property

c.8) î Kn^,-
For A e Z, define

^-j 9 ^ [0,1] | ̂ -6) ^^(modi )

(8.9) where (^ ^1, . . . , ^) = 1 and V ^ ? < 28+l^

and for 6 e^^, let, with the notation (5.10),
(8.10) S(6)=S(^,...,^).

Define also, with the notation (5.11),
(8.11) z^((3) =^(-^(3,...,-^(3).

Set further

(8.12) ^W= S S(6)^(a-e)^:(10a^(a-e))
ee^,A

(8.13) ^(a) = S ?^ - a) ,^-«)^o ̂ ,^(a).
*ez



40 JEAN BOURGAIN

Notice that different elements of 9t^ are at least 4~~ s~ l &J'^separated and the sum-
mands in (8.12) are thus supported by disjoint arcs in II (not necessarily centered around
rational points).

Using (8.8), one then has the analogue of (6.14)

(8.14) |^[K^]- S ^|<C.N-8!.
8^0

We leave the verification to the reader.
Proceeding as in the proof of (6.28) in section 6, one gets

(8.15) || sup l^'-U^N^/llll^caogl^i)^-8''!!/!!,-^^-8'*!!/)!,.
N6Zi

Hence, by (8.8)

|| SUp I^-^S 4'.. N) W I 1 1 2
N6Zi 8^0 1

<c.2..2.^T7i?''2-"'"/ll2<cll/N•
yielding the maximal inequality
(8.16) ||sup|A^/|||,<G.||/||,.

With this information, the proof of a maximal variational inequality (6.31) is essentially
identical to the argument given in section 6 and will therefore not be elaborated here.

This completes the proof of Theorem 2 (for L°°-functions).

Remark, — The main additional item in proving the I/- version, r> 1, of the
previous result for sets A = {[^(^)]} is a more detailed analysis of the approximation/^/
ofA^yby A^y, based on rational approximation of the coefficients b^y . . . ,^of^(^) .

9. Further Comments and Remarks on Almost Sure Convergence

(1) In [Bg], the author considered the sequence A of prime numbers and proved
that the averages

(9.1) A^f=——— S T»/; A^{primes<N}
| A^ | % G A N

converge a.s. for f a function of class L2. Setting

(9.2) K^=- S {logp)S^,
IN p^N

p prime

it is well known that

(9.3) ^[K^] (a) = ̂  ̂  (Jl̂ -i)) + O^^)

for | a — {alq) \ < (log N)6 N~1, 1 < a ̂  q, [a, q) = 1 and q < (log N)0. Here (JL denotes
the Moebius function and ^{q) the number of Dirichlet characters to the modulus q.
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Prior to this work, it has been shown in [Wl] that Ayf given by (9.1) converges a.s.
for a function of class I/, whenever r> 1. The argument is based on special properties
of the expression in the right member of (9.3) and does not seem adaptable to the set
of the squares for instance. The reader will easily check that the method described in
section 7 of this paper applies equally well to the primes.

(2) Both Theorems 1 and 2 of this paper generalize to positive (not necessarily
invertible) isometrics on I/, r > 1. It was indeed pointed out in section 2 that this situation
reduces also to the shift. Thus in particular, one has the following generalization of the
Riesz-Raikov result (cf. [Ra], [Ri]), where p {x) == x:

Let p(n) be a polynomial mapping positive integers to positive integers and/a
function on the circle 11 of class I/, r> 1. Then (1/N) S flZ^x) converges a.s.

. l^n^N
to J /. Recall in this context Marstrand's counterexample to the Khinchine conjec-
ture [Ma], according to which there are bounded measurable functions/on Ft such
that (1/N) S f(nx) does not converge a.s.

1^ n^N

(3) Let T^ {n = 1, 2, . . . ) be a sequence of commuting positive isometrics on L2^)
and define A^/= (1/N) S T^/. It follows from the results of [BJ that the following

w^ N

property is a necessary condition for a.s. convergence of A^/ N -> oo, even restricting
to functions / e L°° ((A) :

For each 8 > 0, there is a bound G(8) < oo on the 8-metrical entropy number (in
the sense of section 3)
(9.4) M s ( { A ^ / | N = l , 2 , . . . } ) < G ( 8 )

of the subset { A^/} of L2^). This bound (9.4) has to be uniform when/ranges in
the unit ball of L2^).

As pointed out through several applications (including Marstrand's example men-
tioned above) in [BJ, the previous criterion if often effective in disproving the a.s. conver-
gence of such averages.


