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APPENDIX

by J. Bourgain, H. Furstenberg, Y. Katznelson, D. S. Ornstein

Return Times of Dynamical Systems

Let (X, S8^ (A, T) be an ergodic system and let A e SS be of positive measure (A (A) > 0.
For x e X, consider the return time sequence A^ = { n e Z^. [ T" x e A }. By Birkhoff's
pointwise ergodic theorem, the sequence A^ has positive density for p-almost all x e X.
This fact refines the classical Poincar^ recurrence principle (cf. [Fu]). An even stronger
statement is given by the Wiener-Wintner theorem: there is a set X' of X of full measure
such that the sums

1 S ^(T" x) ^
N l ^ n < N ' /

converge for all z in the unit circle Ci == { -8' e C | [ ^ | == 1 } and x e X'. Thus from
general theory of unitary operators, this fact may be reinterpreted by saying that almost
all sequences Ap satisfy the L2, hence the mean ergodic theorem. Our purpose here is
to prove the following fact, answering a question open for some time.

Theorem. — With the notation above, A^ satisfies almost surely the pointwise ergodic theorem,
i.e., the averages

- s s"g
JM l^n^N

»eA^

converge almost surely for any measure preserving system (Y, ̂ , v, S) and g eL^Y).

The argument given next actually yields a more precise condition on the point x.
Let/eI/^X) be obtained by projecting /^ on the orthogonal complement of the

eigenfunctions of T. It clearly suffices to prove that for almost all x e X, {V^T" x)} is a
<( summing sequence ", i.e.,

(*) - S A^nx)g{Sn^-^0 a.e.^eY
FN l^n^N

for any measure preserving system (Y, ̂ , v, S) and ^eI/^Y). (The contribution of
the eigenfunctions is taken care of by Birkhoff's theorem.)

Observe the equivalence of the following statements:
(i) yhas continuous spectral measure,
(ii) < T^fff^ = ^.r^)? a a continuous measure,

(iii) (1/N) S/^ ̂ /(T" S) ^ 0 a.e. in {x, ^) as N -> oo.
i



POINTWISE ERGODIC THEOREMS FOR ARITHMETIC SETS 43

N

Proof of (ii) => (iii). — Write F = lim (1/N) S/(T1 ̂ )/(T1 ^), a limit which exists
N

by the ergodic theorem, and || F ||2 = lim (1/N2) S (8/» - m))2 = 0.
w, n == 1

Proposition. — Assume x generic for f and (1/N) S/^T" ̂ /(T" ^) -> 0, a.e. in ^ ( ! ) .
Then {/(T" x)} is a summing sequence.

Proof. — I) Assume that for some (Y, 2, v, S) and g e L°°(Y) there is a set B^ of
positive measure for which the limsup of (*) is positive. Then there exists a > 0, EC B*,
v(B) > 0 and a sequence of intervals R, == (L,, M,.) (called <c ranges ") such that for
every y eB and every j there exists n, eR, (n, == n,(j/)) such that

(**) £ ATnx)g{Sn^>an,.
n==l

II) Given 8 > 0, there exists K == K(N, 8) such that
K

^US^B^ 1 ~8.
i

K
III) Write 9 for the indicator function of U S^ B. If MQ is large enough, and if

n

we denote by G the set G = {y : | (1/w) S <p(S^) - 1 | < 2 8 for all n > Mo }, then
v(G) > 1 - 8. '

IV) For notational convenience we assume that/has finite range, and we denote
by B^ the set of all n-blocks for/, i.e., the set of words w^ == (/(T^ x), ... ̂ (T^ n x));
w^ appears with density P^w^).

Given 8 > 0 (8 can be chosen once and for all as a function of a and v(B) in I))
let N5 be such that for each set AgC X, ^(Ag) > 1 - 8, |(1/N) S/(T1 x) /(T1 ^)| < 8
for all S eA^ and N> Ng (cf. assumption (!)).

Given a range (L, M) with L> N5, set N = N(M) so that in any interval on
the integers of length ^ N the statistics of the n-blocks (for/) with n^ M is correct.
Denote by B; the ^-blocks that have the form (/(T^), .. ../(T* ^)) with $ eAg (we
are interested in n e (L, M)). For L < n < M the total probability (= density) of the
blocks in B^ exceeds 1 — 8 (in any interval of length ^ N(M)). Notice also that heads
of M-blocks which are in B^ are in the appropriate B^.

V) A sequence of ranges {(L,, M,)} is properly spaced if L,+i > N(M,.). (We also
assume 1̂  > N5. Another assumption on L^ is that it is > MQ (recall the definition
of G in III) and assume that K (II)) is < Li.) Going back to I), we select a properly
spaced sequence of ranges {(L,, M,)}^i (J depending on a) and N large enough so
that N ^> N(Mj).

Recall B from I) and G from III).
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For anyj/ e B n G we define a sequence { ^,(j0}?=i which is a sum ofj sequences
(layers) { c^{y}} having the following properties:
(a) For allj, n andj/, c^{y) is in the range of/ (in particular uniformly bounded)

(P) Forj\^j,, |(1/N) 2 ^00^(j)|<8
w = l

(Y) (1/N) S ^(jQ ^(S"j) > a - 8, j = 1, .. . ,J
W = l

(a) and ((B) together imply [(1/N) 2(^(jQ)T2 = 0 (VJ + 8j), and (y) implies

(1/N) S c^y) g(Sny) > J{a - 8). Contradiction.

We construct { c^} in reverse order onj. The number ^(j^) is defined as follows:
^i(j) is the first index k > 0 such that S^y e B; on the interval (^i(jQ, ̂ {y} + ^(S^^))
we set

^(j0 -/(T1-^),

^(j/) is the index of the first point in the S-orbit ofy after /i(jQ + Tij^S^y) which is in B,
and on the interval (f^y),^{y) + n^S^y) we copy again {/(T^)}^^ etc. The
intervals on which we copy those starting rij blocks fill most of [1, N], We refer to these
as the basic intervals of the J-layer. Outside of these, set c^y} arbitrarily.

We now define ^~"1(J^) in a similar manner within every basic interval of the
J-layer, with the additional restriction on the starting place of the new basic blocks that
(in addition to the fact that the corresponding point in the orbit ofy is in B) the matching
piece of the basic J-layer block in is B*, i.e., more or less orthogonal to the <c new " basic
block; see IV). Since the " orthogonal " blocks have density > 1 — 8, the new basic
blocks cover more than 1 — 3 8 of [1, N], We continue with ^["^jO, . . ., ^(j»), working
each time within the basic blocks of the previous level and introducing blocks which are
" orthogonal" to all previous levels.

Remarks.
N

(i) The condition that (1/N) ^/(T" x)/^ ^) -> 0 a.e. in S(!) is a special case of (*)

and hence necessary. One can construct examples showing that it is not a consequence
of the genericity of x.

(ii) One may construct a sequence A == { k^ }, k^ == o(n)y and a weakly mixing system
N

(Y, S) such that (1/N) 2^(8^) does not converge a.e., for some ^eL°°(Y). (This

question was considered in [Fu], p. 96.)
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