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1. Introduction

A fundamental question in topology is to determine whether there exists a map of
nonzero degree between given manifolds of the same dimension. In a lecture given
in 1978, M. Gromov suggested looking at the existence of such mappings as defining
an ordering on the set of homeomorphism classes of compact oriented manifolds of a
given dimension, and formulated a number of stimulating conjectures as to which classes
are or are not comparable in this ordering. This fascinating ordering is defined as
follows: say that M ̂  N, equivalently, that M dominates N, if there exists a continuous
mapping from M to N of non-zero degree. Intuitively, M ̂  N means that M is more
complicated than N. Thus, if M ̂  N, then the Betti numbers of M are at least as large
as those of N, since a map of non-zero degree is surjective in rational homology. For
Riemann surfaces the ordering agrees with that given by the Betti numbers, i.e., by the
genus: M^ N if and only if genus (M) ^ genus (N). In general, however, the relation of
domination is much more subtle. It is not reducible to an inequality of Betti numbers,
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and little more is known about it, with the exception of the case of locally symmetric
spaces, which we review in part below. Note, however, that the sphere is an absolutely
minimal element: M ̂  S" for all ^-dimensional manifolds M. The question of whether
there is an easily described class of maximal elements, namely, a collection ^ of manifolds
such that given any N there exists an M e V so that M ̂  N, is open, except for the case
of surfaces. For these the class of hyperbolic manifolds is maximal.

We mention here only one of Gromov's original conjectures: M ̂  N is impos-
sible ifM is complex hyperbolic (i.e., has a Kahler metric of constant negative holomor-
phic sectional curvature) and N is real hyperbolic (i.e., has a metric of constant negative
sectional curvature). This can now be seen in several ways, one of which is to apply a
recent theorem of Sampson [27], which asserts that if M is Kahler and N is real hyper-
bolic, then any continuous map from M to N is trivial in homology of dimension larger
than two. From this it follows that M ̂  N is impossible if dim N > 2. Sampson's theo-
rem on maps to real hyperbolic space was later independently deduced from Siu's
rigidity theorem by Gromov.

The preceding conjecture and its solution via harmonic mappings form the
principal motivation for the present paper, the goal of which is to find general pro-
perties of an extended Gromov ordering. For manifolds of possibly unequal dimension
define M > N to mean the existence of a continuous map^: M -> N which is surjective
in homology. Now take M to be a compact Kahler manifold and N to be a compact
locally symmetric space of non-compact type, i.e., a space of the form F\G/K, where G
is semisimple Lie group without compact factors, where K is a maximal compact sub-
group, and where F is a cocompact discrete subgroup. The main result (Theorem 3.1)
then implies (via Corollary 3.3) that M > N is impossible unless N is already Kahler in
an obvious way, i.e., is locally Hermitian symmetric. Thus, a compact Kahler manifold
cannot dominate a compact locally symmetric space of noncompact and non-Hermitian
type.

If N has non-positive curvature, a natural tool for deciding whether M ̂  N for a
given manifold M is the theory of harmonic mappings. A smooth mapping from M to N
is called harmonic if it is an extreme value for the energy functional

E(/)=^JI^/

This integral makes sense if M and N are Riemannian manifolds, M is compact, and
f is continuously differentiable. If in addition N is compact and has nonpositive
Riemannian sectional curvatures, then the fundamental existence theorem of Eells
and Sampson [12] asserts that each homotopy class of maps from M to N contains a
harmonic representative. Thus M ̂  N is equivalent to the existence of a harmonic map
from M to N which is surjective in rational homology.

Harmonic mappings became an effective tool for the study of geometric questions of
this kind through the fundamental work of Siu [28]. In his generalization of Mostow's



HARMONIC MAPPINGS OF KAHLER MANIFOLDS TO LOCALLY SYMMETRIC SPACES 175

rigidity theorem for Hermitian symmetric spaces, Siu proved that a harmonic map
of sufficiently high maximum rank of a compact Kahler manifold to a quotient of an
irreducible bounded symmetric domain (other than the hyperbolic plane) must be
holomorphic or anti-holomorphic. It follows that if a compact Kahler manifold dominates
a compact quotient of such a domain, then the dominating map is homotopic to a
holomorphic or anti-holomorphic map. Thus, if the original mapping is a homotopy
equivalence, then it is homotopic to a biholomorphic or anti-biholomorphic map.
Although this last statement is known as Sin's rigidity theorem, the actual statement
on harmonic mappings is much stronger: the two manifolds need not be homotopy equi-
valent, in fact not even of the same dimension, and the map need not have any particular
topological properties, but just sufficiently high rank at one point. The precise measure
of < c sufficiently high " is a function of the symmetric domain, given explicitly in [30].
Since appropriate homological conditions on a map force lower bounds on its rank,
these methods are ideally suited to the domination question.

Technically, Siu's main accomplishment was a) the discovery of a Bochner-type
identity for harmonic mappings which does not involve the Ricci tensor of the domain
(this is where Kahlerianity of the domain enters), and b) the algebraic study of the resul-
ting vanishing theorem for targets which are symmetric domains. The vanishing theorem
implies also that the harmonic mapping in question must satisfy further differential
equations which, under the assumption of sufficiently high rank, can be satisfied only
by holomorphic maps.

Sampson extended Siu's vanishing technique to treat harmonic mappings of
compact Kahler manifolds to a class of real manifolds which includes the quotients of
symmetric spaces of non-compact type [27]. His theorem is the following. Assume
that M is compact Kahler and N == F\G/K is a non-positively curved locally symmetric
space. Let Q == f © p be a Gartan decomposition for the Lie algebra of G, and note
that the real tangent space of N at any point can be identified (non-canonically) with p.
Thus, if/: M ̂  N, then ^(T1'0) can be identified with a subspace W of p°. Sampson's
theorem asserts that (under any such identification) the subspace W is abelian in the
sense that [X, Y] == 0 for all X and Y in W. Furthermore, the harmonic map must
satisfy further differential equations, to be discussed later.

Because of the relation rank (df)^2 dim^ W, with equality when W has no real
points, the purely algebraic conclusion of Sampson's theorem has strong geometric
consequences. Indeed, it reduces the problem of estimating the maximum rank of a
harmonic mapping to a problem in Lie algebra theory. The most elementary result of
this kind is a matrix calculation which shows that when G = S0(l, ^), dimW^ 1,
from which it follows that harmonic maps from a Kahler manifold to a compact quotient
of hyperbolic yz-space have real rank at most 2 [27]. Gromov has observed that this
statement follows from Siu's rigidity theorem for mappings into the complex ball by
considering the composition of the mapping with the inclusion of the real hyperbolic
manifold into its complexification, which is a complex hyperbolic manifold.
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Below we shall explore further the consequences of Sampson's theorem. Because
the abelian spaces under consideration are not necessarily defined over R, they are not
necessarily semisimple; consequently there is no obvious bound in terms of the rank of
the group or of the symmetric space. However, the main result (Theorem 3.1) asserts

that dim W ̂  - dim p°, with equality possible only if (g, f) is a Hermitian-symmetric

pair with W = p1'0 or W = p°'1. Here p1'0 is the holomorphic tangent space of a
G-invariant complex structure on G/K. Therefore rank (df) < dim N for f harmonic
and N non-Hermitian (Corollary 3.2). IfNis Hermitian and f has maximal rank at some
point, then f is either holomorphic or antiholomorphic (Siu's rigidity theorem).

In the non-Hermitian case the bound on the rank, combined with the Eells-
Sampson homotopy theorem, yields strong topological restrictions: the fundamental
class of N is not in the image of the homology of a compact Kahler manifold under an
arbitrary continuous map (Corollary 3.3). Consequently the fundamental class is not
(rationally) representable by a homology class (fundamental or otherwise) on a compact
Kahler manifold, and so M ^ N, as asserted above. The preceding obstruction to repre-
sentability is quite different from those arising classically from cobordism theory. The
latter are of finite order and measure representability of a homology class by a stably
almost-complex manifold, while the ones presented here are of infinite order and measure
representability by the smaller class of Kahler manifolds.

If both M and N are locally symmetric there is a good deal of information on the
possible mappings from M to N, thanks to the rigidity theorems of Mostow and Margulis
[21, 24], and Zimmer's use [32] ofKazhdan's property T [18]. For instance, if M has
rank greater than 1, it follows from the theorem of Margulis that M^ N if and only
if M and N have isometric universal covers and M is a covering space of N. Further
information is given by a theorem of Zimmer [32, Cor. 20] which implies that if the
fundamental group of M satisfies Kazhdan's property (M not necessarily locally sym-
metric), and if N is either real of complex hyperbolic (so that the group of isometries
of the universal cover is not Kazhdan), then any mapping from M to N is homotopic
to a constant. In particular M ̂  N is impossible. If M is covered by quaternionic hyper-
bolic space, then 7Ti(M) is Kazhdan. Thus, ifN is complex hyperbolic, then by Zimmer's
theorem M ̂  N is impossible. By the main theorem N ^ M is also impossible, and so
these two classes of manifolds are not comparable.

The main result also gives topological restrictions on maps of a compact quotient M
of the unit ball in C" to a locally symmetric space N of non-Hermitian type which do
not follow from the theories mentioned above. For example, ifN is compact and of the
same dimension as M, our results imply that there is no continuous mapping of M
to N of non-zero degree, whereas Mostow's result gives only that there is no homotopy
equivalence. The theorems of Margulis and Zimmer do not apply here.

The rank estimate of the main theorem is far from best possible, but we restrict
ourselves to it (for the most part) because of its simplicity and generality. For specific
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symmetric spaces, special arguments lead to sharper inequalities, generally of the form

rai\k{df) ^.dimN. Below (Corollary 3.7) we show that for maps to quaternionic

hyperbolic space, rsmk^df) ^ ^ dim N. Combining this result with the rank restriction of

Sampson for real hyperbolic space and the rigidity theorem of Siu for complex hyperbolic
space, one sees the complete picture of rank estimates for mappings into the hyperbolic
spaces over the various fields (Theorem 3.5 and Corollary 3.7). A future paper, based
on somewhat different algebraic methods, will treat the cases of SL(^, R)/SO(») and
SOQ&, q)ISO{p) x S0(y). In the case of SL^, for example, one has

dimW^
\n2 + 2n

8

unless n = 3, in which case one has dim W ̂  2.
The consequences of Sampson's theorem go beyond rank estimates. Study of the

abelian subspaces for quaternionic hyperbolic space, for example, leads to the following
result (Theorem 6.2). Suppose that N is covered by a quaternionic hyperbolic space.
Then there is a naturally associated complex manifold N which fibers over N with
projective lines as fibers and with a natural holomorphic horizontal distribution. If
f: M ->-N is a harmonic map which has rank larger than two at some point, thenjf
has a natural prolongation to a horizontal holomorphic map F : M ->N. The universal
cover of N is a special Griffiths period domain [13], and F satisfies the axioms of an
abstract variation of Hodge structure. Thus a harmonic map of sufficiently high rank
is the projection of a variation of Hodge structure. We believe that this is a fairly general
fact about harmonic maps of sufficiently high rank of compact Kahler manifolds to
non-Hermitian locally symmetric spaces, and that this constitutes the natural generaliza-
tion of Siu's rigidity theorem to non-Hermitian targets. We note that the projection of
a variation of Hodge structure to the canonically associated locally symmetric space is
necessarily harmonic, a fact which follows easily from Theorem (2.3) below.

The connection with Hodge theory is not a fortuitous one. For both harmonic and
period mappings the image W = df(T^°) defines an abelian subspace (of pc and of a
suitable horizontal distribution, denoted Q"1'1, respectively). Indeed, it was this analogy
at the algebraic level which led us to the rank restrictions of Corollary (3.2). In Hodge
theory the non-integrability of the horizontal distribution implies that the dimension ofW

is strictly less than that of the horizontal distribution. By analogy, dim W < ^ dim p0

in the non-Hermitian case. For similar reasons one expects rank(^) ;$ . dim p° for

harmonic maps because of the inequality rank(<y) ;$^dim9~~1 '1 for variations of

Hodge structure with values in a non-Hermitian period domain of weight two [5, 6].
A byproduct of our study is an emergent structure theory for harmonic maps of

23
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compact Kahler manifolds into compact locally symmetric spaces. We expect there
to be a fairly complete classification of these in terms of special mappings, and hence,
by the Eells-Sampson theorem, a structure theory for homotopy classes of mappings
between such manifolds. To illustrate what we have in mind, we classify mappings into
the hyperbolic spaces over the three fields. Using a theorem of Sampson [26], a straight-
forward application of a technique used byjost and Yau [16], Mok [22] and Siu [31],
and our results, one obtains the following. If/: M -^ N is harmonic and N is real hyper-
bolic, then either ̂ J/maps to a closed geodesic or b) /factors as a product of a holomorphic
map to a Riemann surface and a harmonic map of this surface into N. If N is complex
hyperbolic, then/is either as in a) or b) above, or else c)fis either holomorphic or anti-
holomorphic. Finally, i fN is quaternionic hyperbolic, then/is as in a) or b) above or
else c ) f is the composition of a horizontal holomorphic map F : M -> N and the pro-
jection n: N ->• N, where N is the complex manifold mentioned above and defined in
section 6. J. Jost informs us that he and Yau have also obtained a factorization theorem
similar to part b) above [17].

We close with two easy but remarkable applications of the theory sketched above.
First, in Theorem (8.1) we show that a cocompact discrete subgroup rcSO(l ,w)
cannot be the fundamental group of a compact Kahler manifold, provided that n > 2.
We conjecture that the same holds for cocompact discrete subgroups of any semi-simple
Lie group G without compact factors such that its symmetric space G/K is not Hermitian
symmetric. Second, we show in Theorem (8.2) that a compact quotient of a Griffiths
period domain of even weight and non-Hermitian type is not of the homotopy type of
a compact Kahler manifold.

We are grateful to H. I. Choi for having brought Sampson's work to our attention,
and to Herb Glemens, Steve Gersten, Mikhael Gromov, Henryk Hecht, Peter Li, Bob
MacPherson, Dragan Milicic, Hugo Rossi, and Peter Trombi for several helpful
conversations.

2. Harmonic mappings and Sampson's theorem

Sampson's result, that df{T^°) can be identified with an abelian subspace W of p°,
is based on a Bochner-type formula obtained by integrating over M an iterated divergence
of the symmetric (2, 0)-tensor

9(X,Y)=<</(X),rf'/(Y)>.

We shall sketch the proof of this result, beginning with a few comments on the definition
of 9. In the definition above the inner product is the complex linear extension of the
Riemannian metric of N to the complexified tangent bundle T0 N, and d ' f is the
restriction of the complexification of df to the holomorphic tangent bundle T^M.
Since N is not assumed to have a complex structure, the map d ' f is not the one usual to
complex manifold theory. Indeed, even if M were a complex manifold, ^'/(T^M)
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would not in general be contained in T1'0 N, since fif'/(T1'0 M ) C T1'0 N is the Cauchy-
Riemann equation, asserting the holomorphicity off.

Consider next the Euler-Lagrange equation for the energy, which asserts that df
is a harmonic/* TN-valued one-form on M, [12]. If the z"- denote local holomorphic
coordinates on M and they denote local C°° coordinates on N, then d ' f is locally repre-
sented by the matrix (j^), where subscripts denote differentiation with respect to the
coordinate with the indicated index. The Euler-Lagrange equation then takes the form

(*) Allj^O.

Here the^^ are the components of the tensor D" d'f, defined as the (0, 1) part of the
covariant differential of d ' f in the natural connection on Hom(T1'0 M,y* T^N), i.e., that
determined by the Riemannian connections on TM and f* TN. In local coordinates
one has

(**) ya,p=X3+r^^.
Here Greek indices label all tensors on M, Latin indices label all tensors on N, and
thej/^ denote the ordinary mixed second partial derivatives ofy rather than the compo-
nents of a covariant derivative. It is a special feature ofKahler metrics that the covariant
derivative on M does not enter explicitly in the formula for the Laplacian of a function.

Now construct a (1, 0)-form from 9 by the divergence formula

Sa=<?^9a0,^

and take the divergence a second time to obtain

^ = 1 1 D" <f/n2 - R^yp^jU^.?^
where 8 is the codifferential. This formula is remarkable in that it does not involve the
curvature tensor of the domain, thus giving stronger restrictions on harmonic mappings
than the original Bochner-type formula ofEells and Sampson [12]. The first relation of
this kind was found by Siu [28] and was the basis of his proof of the complex analyticity
of harmonic mappings.

Integrating this formula over the compact manifold M Sampson obtains the
following theorem [27, Thm 1]:

Theorem (2.1). — Let M be a compact Kdhler manifold, let f\ M —>-N he a harmonic
mapping, and suppose that

< R ( X , Y ) X , Y > < 0 for all X, Y e^N.

Then D" d'f= 0 and for all x e M, < R(X, Y) X, Y > == 0 for all X, Y e dJ{T110 M).

Note that harmonicity, defined by the vanishing of a trace of the covariant dif-
ferentia] D" d ' f (see (*)), implies something stronger, namely, the vanishing ofD" d ' f
itself. Because the Kahler metric on M does not appear explicitly in the expression (•*)
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for D" d' f, harmonicity of/ is independent of the metric on the source manifold. In
addition, one observes that the restriction of a harmonic mapping to a complex sub-
manifold is again harmonic. Thus, under the curvature assumption on N, harmonic
mappings of a Kahler manifold into N are canonical objects.

When the target manifold is locally symmetric the vanishing of the curvature term
in the preceding theorem also has strong consequences. Suppose, therefore, that N is a
manifold of this kind with universal cover G/K, where G is noncompact and with
associated Cartan decomposition 9 = I @ p of the Lie algebra. For each point of N
identify the complex tangent space to N with p0. This is unique up to the right action
of K and the left action of F. Since these actions preserve all relevant structures, we may
regard ^(T110 M) as a subspace of p0. Since

< R ( X , Y ) X , Y > = -<[X,Y], [X,Y]>^0 for all X, Y in p°,

the hypothesis of the theorem is satisfied and we obtain the main theorem that we need
[27, Thm 3]:

Theorem (2.2). — If M. is a compact Kahler manifold, N is a locally symmetric space of
noncompact type, andf: M -^N is harmonic, then D" d'f= 0 and for each point of M, df
maps T^M onto an abelian subspace W of pc.

Theorem (2.2) has the following equivalent formulation, one that will be useful
to us in section 7. Let V denote the connection ony^N obtained by complexifying
the pull-back of the Levi-Civita connection on T° N. The operator

V : r(/'" T° N) -. r(T* M ®/* T° N),

where F denotes C00 sections, decomposes as V = V + V", where

V : F(/* T° N) -^ r(T110 M ®/* T° N),

V" : r(/* T0 N) -> r(T0'1 M ®/* T° N).

Theorem (2.3). — Let M and N be as in Theorem (2.2), and letf: M ->• N be a smooth
map. Then f is harmonic if and only if^J" is the ^-operator of a holomorphic structure on f* T° N
and d'f is a holomorphic section of the bundle Hom(T1'0 M,/* T°N).

Proof. — It is clear that V" is the ^-operator of holomorphic structure on/* T°N if
and only if it satisfies the integrability condition (V")2 = 0, [9, Prop. 19.1]. But

(V")2(X,Y)=R(rf/(X),rf/(Y)),

where R is the complex-multilinear extension of the curvature tensor of N and
X, Y e T°*1 M. Since R(X, Y) Z == - [[X, Y], Z], we see that (V")2 = 0 is equivalent to

[rf/(X), dfW\ == 0 for all X, Y e T°*1 M.
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Since if and the Lie bracket are real operators, this is in turn equivalent to

[^(X), rf/(Y)] = 0 for all X, Y e T110 M.

If/is harmonic the last assertion holds by Theorem (2.2), so that/* T° N is a holomorphic
bundle as asserted. The operator D" appearing in the explicit form of the harmonic equa-
tion above as the (0, 1) part of the canonical connection on Hom(T1'0 M,/* T° N)
becomes the ^-operator on this holomorphic bundle. Therefore the equation D" d'f== 0
is equivalent to the condition that rf'/be a holomorphic section of this bundle, establishing
one of the implications in Theorem (2.3). The converse implication is clear from the
above interpretation of D".

3. The main theorems

Henceforth M will denote a compact Kahler manifold, N a locally symmetric
space of noncompact type, and W the image under d^f of T^'° M for some x e M,
where/: M ->N is a fixed harmonic mapping. The image under d^f of the real tan-
gent space T^ M is the subspace of real points of the space W 4- W, so that
diniR ^/(T^ M) == dim.c(W + W) ^ 2 dime W. (In what follows we shall generally
omit the subscript to dim: dim V shall mean dimja V for real vector spaces and dim^ V
for complex vector spaces. The same convention applies to the rank.) Combining the
preceding inequality with Theorem (2.2), we obtain the following estimate:

rank(fly) < 2 max { dim W | W C p^ [W, W] == 0 }.

Abelian subspaces of p® which consist of semisimple elements lie in the noncompact
part of a Cartan subalgebra, and so are bounded in dimension by the split rank, i.e., by
the rank of G/K. At the opposite extreme are abelian subspaces which consist entirely
of nilpotent elements. For an example, consider a Hermitian symmetric space G/K with
invariant complex structure J : p -> p. (The number of such structures is 2n, where n
is the number of irreducible components of G/K.) Let p1'0 = p^. denote the + z-eigenspace
ofj, given explicitly by { X — zJX | X e p }. Then p1'0 is an abelian subspace of p°,
since the relation [p1'0, p1'0] = 0 is the integrability condition for the almost complex
structure J. The dimension of this abelian space is one-half that of p°. Our main theorem
asserts that the spaces p110 are the largest possible:

Theorem (3.1). — Let G/K be a symmetric space of non-compact type, let Q == l©p
be the Carton decomposition, and let W C p0 be an abelian subspace: [W, W] = 0. Then

dim W ̂  . dim p0. Moreover, in the case of equality the pair (g, () must be Hermitian symmetric

and the following holds: Let Q^ f,, p^ be the irreducible components of the pair (9,1) and let
W, == W n p^. Then W == © W, and for each i such that Q^ is not isomorphic to sl(2, R),
W^ = p,1'0 for one of the two invariant complex structures on GJK,.
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As immediate consequences of this theorem one has the two results below:

Corollary (3.2). — Letf: M -> N be as above, and suppose that N is not locally Hermitian
symmetric. Then for every x e M, the rank of d^f is strictly smaller than the dimension ofN.

Proof. — Use Theorem (3.1) and the rank estimate above.

Corollary (3.3). — Let M and N be as in Corollary (3.2) and suppose that N is compact.
Let 9 : M -> N be a continuous mapping. Then 9 is homotopic to a continuous mapping ^ : M -^ N
whose image lies in a proper subskeleton of some cell subdivision of N. In particular, 9 is not sur-
jective in homology,

Proof. — Since M and N are compact and N has non-positive sectional curvature,
the existence theorem of Eells and Sampson [12] implies that <p is homotopic to a har-
monic mapping f: M -> N. By Corollary (3.2) f is not surjective, hence by standard
topology, can be deformed to a map ^ whose image lies in a proper subskeleton of some
cell subdivision of N.

The above corollaries use only the case of strict inequality in Theorem (3.1).
We have treated the case of equality in such detail in order to obtain the following part
of Siu's rigidity theorem [28, 29, 30], which we now state:

Corollary (3.4). — Let f: M ->N be as above. Suppose that N is locally Hermitian
symmetric, that its universal cover does not contain the hyperbolic plane as a factor, and that for
some x e M the rank of d^f equals the dimension of N. Then f is holomorphic with respect to an
invariant complex structure on N.

Proof. — Since df(T110 M) is an abelian subspace of half the dimension, it must
be p1'0 for an invariant complex structure on N. Thus dy^f maps T^°M into p1'0,
so that d^f is complex linear. By Theorem (2.3) d ' f is a holomorphic section of
Hom(T1'0 M,/*^^, so that the rank of df must equal the dimension of N in the
complement of some proper analytic subvariety of M. Consequently dfis complex linear
on this dense open set, hence is complex linear everywhere, i.e., f is holomorphic.

For each symmetric space G/K let a(G/K) denote the maximum complex dimen-
sion of an abelian subspace of p0. Theorem (3.1) states that if G/K is not Hermitian

symmetric then a(G/K) < _ dim(G/K). For the hyperbolic spaces over the various

fields, the following theorem gives more precise information on a:

Theorem (3.5). — Let H^ denote the hyperbolic space of H-dimension n over the field K,
where K = R or C or the quaternions H. Let W be an abelian subspace of p° where g = I ® p
is the Carton decomposition of the group of isometrics ofH^. Then:

a) If K = R, dim(W) ^ 1.
b) IfK=C, and dim(W) > 1, then W C p110 for one of the two invariant complex structures

on Hg.
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c) IfK. = H, and dim(W) > 1, then there is a totally geodesic embedding of H^ in H^ (k ̂  n)
such that W is the (1, 0) -space of the image of this embedding.

Corollary (3.6). — Let a(G/K) be as defined above. Then a(HS) = 1, a(Hg) == n,
and a(Hg) = n.

The cases K = R or C of Theorem (3.5) were already known. For R this is a
theorem of Sampson [27], and for C this is a reformulation of Siu's rigidity theorem for
quotients of the unit ball [28]. The same remark applies to the following assertion.

Corollary (3.7). — Let M be a compact Kdhler manifold andf: M -> N be a harmonic
mapping, where N is a quotient ofti^, Then:

a) If K = R, f has rank at most two.
b) IfK = C and the rank of/exceeds two at some point x e M, then f is holomorphic with respect

to one of the two invariant complex structures on N.

c) If K == H, / has rank at most 2^ =- dim N.

Proof. — The cases K = R or H are an immediate application of the rank estimate
above. The case K == C is derived from Theorem (3.5) just as Corollary (3.4) was
derived from Theorem (3.1).

Observe that the real dimension ofHg is 4^, while a(Hg) = n. In this case a(G/K)
is about one-quarter of the real dimension of G/K, so that the rank of a harmonic map-
ping is at most about one-half that value. As stated in the introduction, we believe that
this is the typical situation. Observe also that for the hyperbolic spaces the complex
abelian subspaces are totally classified by Theorem (3.5): they are either one-dimensional
or subspaces of the p1'0 space of a totally geodesic Hermitian symmetric subspace. For
symmetric spaces of higher rank this will no longer be the case, and many examples
can be deduced from the examples in Hodge theory presented in [5, 6]. We believe,
however, that in many cases the abelian subspaces of sufficiently high dimension are
contained in the complexification of the tangent space of a totally geodesic Hermitian
subspace.

4. Proof of the main inequality

The proof of the main inequality given by Theorem (3.1) comes in two parts.
First, we show that if W contains a semisimple element then strict inequality holds:

dim W < - dim p0. Second, we show that if W contains no semisimple elements then
1 . .

it must be isotropic for the Killing form, so that dim W < - dim p®. If equality holds,

then in addition p0 === W ® W, and in this case we show (using the isotropy condition)
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that W == p1'0 for an invariant complex structure on G/K. We turn now to the first
part of the argument:

Proposition (4.1). — Let Q be a real semisimple Lie algebra with no factors isomorphic
to sl^, let g = i © p be a Carton decomposition^ and let W he an abelian subspace of p° with a
nonzero semisimple element. Then

dim W < . dim p°.

To begin the proof, consider a maximal abelian subspace W of p0, let X be an
element of W, and let X = X, 4- X^ be its Jordan decomposition. By [19, Prop. 3],
the semisimple and nilpotent parts of an element of p0 again lie in p°. Since X, and X^
are polynomials in X, they commute with any element which commutes with X. This
establishes the first part of

Lemma (4.2). — Let W be a maximal abelian subspace of p°. Then

w=w,ew^,
where the two summands consist entirely of semisimple and nilpotent elements^ respectively. Moreover,
any such decomposition is K^-conjugate to one which is defined over R.

To complete the proof of the preceding lemma, consider a subspace a' of p°
containing Wg which is abelian, consists entirely of semisimple elements, and is maximal
with respect to these last two properties. By [19, Theorem 1] a' is K^-conjugate to a
space defined over R. Replacing a' and W by suitable conjugates, we may assume that a'
is defined over R, hence is of the form a' = a° with a C p abelian. Then 9 decomposes
under the adjoint action of a into restricted root spaces: there is a finite set A of linear
forms a on a (the restricted roots [15, p. 285]), and vectors X^ e p, Y^ e ( so that for
all H e a,

[H, XJ = a(H) Y,,
[H,YJ ==a(H)X,.

Let pa == RX^, la = ^Ya and let Qa == f^ ̂  Pa* Then there is a direct sum decomposition

(4.3) 9 = 9 o ® 2 9a,
aeA-*-

where go denotes the centralizer of a in g, and where the sum is interpreted to run over
positive roots with appropriate multiplicity. We have similar direct sum decompositions

(4.4)
p = a ® S p^,

aeA-'-

i =(o® s i,,ae^

where fo denotes the centralizer of a in 1. Define a subset of A by
A(W) == { a e A | a(W,) = 0 }
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and a subspace of a° by

W = f1 ker(a),
8 aeAtW)-^ v /

where clearly W,C Wg. Since the roots a are defined over R, so is W,. Consider now
an element X of W, which we may decompose as

X = X o + S ^X,,
a E A(W)4'

with Xo e go and X^ e g^- 1̂  Y is an element of W,, then

[Y,X]= S ^a(Y)X,==0,
a £ A(W)"'"

so that Y commutes with W. By the assumed maximality, Y lies in W, so that W,C W,.
Therefore W, = W,, and so W, is defined over R, as required.

By the preceding lemma we may assume that W is normalized so that W, is
defined over R. To complete the proof of proposition (4.1), consider the centralizer I
of (W,)g in 9, a reductive Lie algebra which splits as

(4.5) 1=3®!'.

Here 3 is the center of I and Y = [I, I] is the semisimple part. By construction, W, C 3°.
Consider now an element X ofW^, which we may decompose as X = Xi + Xa, with
Xi e 3° and Xg e f0. Let ad denote the adjoint representation of g. Then ad X is
nilpotent, so that there is an n such that (adX)"* = 0. Therefore (adX^)" = 0 which,
combined with the semisimplicity of Xi, yields Xi = 0. Therefore W^CF, and so
the decompositions (4.3) and (4.5) are compatible.

Next, observe that the given Cartan involution acts on I, 3, and I', so that Y == V @ p',
where I' = V n V and p' = p n I'. In particular, W^C p'0. If W^ had nonzero real
points, then these, as elements of p, would be semisimple, a contradiction. There-
fore W^ ® W^ C p'0, and so

(4.6) dimW^ ^ dim p70.

Because of this last inequality, the main step remaining in the proof of (4.1) is a bound
on the dimension of W, in terms of the codimension of p'0. Such a bound is given by
the following result, whose proof (as well as the argument in the next section) was moti-
vated by the study of centralizers in symmetric spaces by Bott and Samelson [4]:

Lemma (4.7). — Let g be a semisimple Lie algebra as above, and let Q == I © p a Cartan
decomposition. Then

dim W, < - codim p'0,

with strict inequality unless Q contains sig as a factor.
24
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Here the codimension refers to the codimension in p0. Given the Lemma, we find that
dim W = dim W, + dim W^

< . codim p'0 + ^ dim p'°

^dimp0,

which yields Proposition (4.1), as required.
For the proof of Lemma (4.7), let m = dim W,. Since the adjoint representation

is faithful there are m positive roots o^, ..., a^ which are linearly independent on W .
Since these m roots do not vanish on W,, we see from the description (4.3) of p that the
m spaces p^. are complementary to p' in p. Since the w-dimensional space W^Cg 0

is also complementary to p'0 in p0, codim p'° ̂  2dimW,, as required. Suppose'now
that equality holds. Then the o^ are the only positive roots which do not vanish on W .
Therefore if a is any positive root, a, + a is not a root. Since the Jacobi identity gives

[9a>9p]c9a+3 ( £ )9±(a-pp

where the sign in the second summand is determined so that it gives a positive root when
non-zero, the Q^ must commute with each other and with I'. From this it follows easily
that each 5, = [g^., g .̂] ® g^. is a Lie algebra isomorphic to s^ and that

9= 25,®r.

This relation establishes the Proposition and somewhat more: if equality holds in
Lemma (4.7), the number of factors of type sig equals the dimension ofW,, and all
the semisimple elements lie in the direct sum of the sl^ factors.

We turn now to the second part of the proof, namely the case in which W is maximal
abelian and has no semisimple elements. Spaces of this kind consist entirely of nilpotent
elements, and so are isotropic for the Killing form. Since the Killing form is nondege-

nerate on p0, this forces dim W ̂  ^ dim p°. In addition W has no real points, since an

element X e W n^W would be semisimple, contrary to hypothesis. Thus, if equality
holds, p0 == W© W. It remains to show that W = p1'0 for an invariant complex 3truc-
ture on G/K. This is immediate from the lemma below:

Lemma (4.8). — Let p° == WCW, where W is abelian and isotropic for the Killing
form. Then W = p1' ° for an invariant complex structure on G/K.

Proof. — Because the Killing form is invariant and W is abelian,
<[[W, W], W], W > == <[W, W], [W, W] > == 0,

so that [[W, W], W] 1 W. Because W is a maximal isotropic subspace, W1 = W, so
that [[W, W], W] C W. But [W, W] == ̂  so that [(, W] C W. By [15, p. 373], this
implies that W = P1'0 for an invariant complex structure on G/K, as required.
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5. Hyperbolic manifolds

We turn now to the proof of Theorem (3.5), which gives detailed information on
the nature of harmonic maps with values in a hyperbolic space (real, complex, or quater-
nionic). These spaces, together with quotients of the Gayley plane, exhaust the class
of rank one locally symmetric spaces of non-compact type. We begin with the lemma
below, which asserts that the K°-orbit of an element of X e W tends to be small if
the abelian subspace W C p° is large. By orbit we mean that defined by the adjoint
action, so that [1°, X] is its tangent space at X. Godimension refers to codimension in p°,
the ambient space of the orbit:

Lemma (5.1). — Let G/K be a symmetric space, and let W be an abelian subspace of p0.
Then

codim[l°, X] ^ dim W

for all X in W.

Proof. — Let px and p^y denote the centralizers of X and W, respectively, in p°,
and note that pw ̂  Px if X e W. Take orthogonal complements in p° relative to the
Killing form to obtain
(5.2) p^Cp^.

Apply the invariance relation <[X, Y],Z > = <Y, [Z,X]> for arbitrary Yep 0 ,
Z e (c, to get < [X, Y], 1° > = < Y, [1°, X] >, which yields
(5.3) [y.x^pi.
Combining this with the preceding relation, we obtain [1°, X] C p^y, which yields the
required assertion.

To gain information on the size of the orbits, we show first that when W is st large "
it consists entirely of isotropic vectors:

Proposition (5.4). — Let G/K be a rank one symmetric space, and let W be an abelian
subspace o/*p°. 7jfdimW> 1, then W consists entirely of nilpotent elements, and so is isotropic
for the Killing form.

Proof. — Let W be an abelian subspace of p°. We must show that if W has nonzero
semisimple part, then it has dimension one. Without loss of generality we may assume
that W is maximal abelian in p°, so that by Lemma (4.2) there is a decomposition
W = W,0 W^, with W, =(= 0. Moreover, conjugating W by an element of K°, we may
assume that W, is defined over R. Let X be a real element of W,, and let px denote its
centralizer in p. Referring to the decomposition (4.4), we find that

P x = a ® S pa.
a(X) "= 0



188 JAMES A. CARLSON AND DOMINGO TOLEDO

Because G/K is of rank one, a is the line generated by X, so that a restricted root vanishing
on X is zero, which is absurd. Therefore px = d is of dimension one. But WC p^,
so W also has dimension one, as required.

The foregoing is already enough to prove the part of Theorem (3.5) which concerns
real hyperbolic space. Suppose that dimW> 1, and let X be any nonzero element
of W. Identifying p with R", we identify the K° action on p° with that of S0(^, C)
on C". By the proposition just proved, X is isotropic, and so lies on the homogeneous
quadric

(^{XeC'^KX.X)^}.

This set decomposes under the action ofK° into two orbits, the origin and the complement
of the origin. Since X lies on the unique open orbit, codim^0, X] = 1. But Lemma (5.1),
together with the hypothesis dim W > 1 implies that codimff0, X] > 1, a contradiction.
One can also give a completely elementary proof of the assertion dim W ̂  1 for real
hyperbolic space by computing the commutator [A, B] for two elements of p°: identifying
these matrices with row vectors, the condition [A, B] == 0 becomes A A B = 0. This is
the proof of [27].

A more detailed analysis of the orbit structure of Q gives a complete picture of
the abelian subspaces for the two remaining hyperbolic spaces. To give a uniform treat-
ment, let K denote R, C, or H, where the latter symbol stands for the quaternions,
and note that p can be identified with the right K-vector space K". Under this
identification the Killing form corresponds to the usual real inner product, which
we shall still be denote by < , >. Thus, if X = (^i, ..., x^) and Y = (ji, .. .,j\,),
and if X.Y = x^.y^ + . . . + x^.y^ is the dot product, then < X, Y > = Re(X.Y),
where the conjugation is that defined by the conjugation of C or H. The action of the
isotropy group K corresponds to the usual action of S0(w) if K = R, to that of U(n)
i f K = = C and to an action of Sp{n) X S^(l) i f K = = H , namely, that for which the pair
(A, a) applied to X e H" yields AXa. We say that X, Y e p are 'K-independent if, under
the above identification of p with K", X and Y are right linearly independent. In the
complexified space p° == (K")0 we shall always write the action of the complex scalars
on the left and the induced action of the K-scalars on the right. We then have the
following:

Lemma (5.5). — If X, Y e p are K-independent and Z = X + I'Y is isotropic, then
codimp^Z] === 1.

Proof. — Let T denote the tangent space to Q at the point Z = X + ^Y under
consideration, and let T' denote the tangent space at Z of the K-orbit of Z. Since T
carries a complex structure, the smallest complex subspace T" C T containing the real
subspace T' is defined. Since the tangent space of the K°-orbit of Z is a complex subspace
ofT containing T', it contains T". We must therefore show that T" = T. To this end we
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shall find the equations ( 1 — 4 below) satisfied by a general element U + z'V eT',
where U, V e p. There are three cases a), b) and c ) , according to which of the equa-
tions (4) is applicable :
1) < X , U > ~ < Y , V > = = 0 ,
2) < X , V > + < Y , U > = 0 ,
3) < X , U > + < Y , V > _ = 0 ,
4a) if K = C then Im(U.Y + X.V) = 0,
4b) if K = H and X.Y =»= 0 then X.Y 1 Im(U.Y + X.V),
4c) if K = H and X.Y = 0 then Im(U.Y + X.V) = 0.

To prove these relations, let Z{t) = X(^) + t'Y(^) be a curve in the K-orbit of Z with
Z(0) = Z and Z'(0) == U + ^V. The first two equations come from differentiating the
relation < Z(^), Z(^)> = 0, while the third comes from differentiating < Z(^), Z(^)> = cons'
tant. To establish 4a), let Z{t) == A{t) Z(0), where A{t) is a curve in V{n) with A(0) = 1.
The result follows from differentiation of the relation

X{t) .Y(<) == A{t) X.A{t) Y = X.Y = constant.

For the remaining two assertions, let Z{t) = A{t) Za{t) where A{t) is a curve in Sp{n)
with A(0) = 1 and where a{t) is a curve in the unit quaternions with a(0) = 1. Diffe-
rentiate the relation

X{t) .Y(^) = A{t)Xa{t).A{t) Va{t) = a{t) X.Yfl(^)
to obtain

U.Y + X.V = fl'(O) X.Y - X.Ya'(O).

Because Z{t) is isotropic, X(^).Y(^) is pure imaginary. Therefore the left-hand side (and
so also the right-hand side) of the preceding relation is pure imaginary. Because a(t)
has unit length, a'(0) is also pure imaginary, one obtains that the preceding relation
can be rewritten as

U .Y+X.V==2f l ' ( 0 ) (X.Y).

Identifying purely imaginary quaternions with vectors in R3 and quaternion multi-
plication with the cross product, this becomes

U.Y + X.V == 2af{0) x (X.Y).

The relations 4b) and 4c) are now clear (the <( Im " is in fact superfluous).
It is easy to check that these equations actually define T', since in each case the

solution space ^ has the same dimension as that of the K-orbit:
a) dim r = 4n - 4 == dim K.Z = dim U(^)/U(% - 2).
b) dim r = Qn - 4 = dim K.Z = dim Sp{n) xSp{l)ISp[n - 2) X S1.
c) dim r == 871 — 6 == dim K.Z = dim Sp{n) x Sp{l)ISp(n — 2) X Sp(l).

We can now prove the equality T == T". To this end let S be the subspace of T
spanned by T' and X + iY. Since X + iY is isotropic, Y — iX satisfies all the defining



190 JAMES A. CARLSON AND DOMINGO TOLEDO

equations of T'. Therefore i(Y - tX) = X + '̂Y e T", and so S C T". In cases a) and b)
S has real codimension one in T, so that T" = T. In case c ) S has real codimension 3
in T. However, the three-dimensional space of vectors Xy + iYq, where q is a purely
imaginary quaternion, satisfy all the equations of T, so that the corresponding vectors
^(^ + i^q) span a complement to S in T. Therefore T" == T in this case also. This
concludes the proof of the lemma.

We can now conclude the proof of Theorem (3.5), beginning with the case of
K == C. Let W be an abelian subspace of dimension greater than one. By Lemma (5.1),
codimp0, Z] > 1 for any nonzero element ofZofW. Write Z = X + t'Y with X, Y e p
and apply Lemma (5.5) to conclude that X and Y are C-dependent, i.e.,

(*) Y==flX+yx
for some real a and b. By Proposition (5.4), Z is isotropic for the Killing form, or, equi-
valently, X and Y are perpendicular vectors of equal length. From these last two facts
we conclude that in (*) the coefficients satisfy a = 0 and b == ± 1. Since b is a continuous
function of Z e W, just one of the signs appears. Therefore W is in either the + i or
the — i eigenspace ofj, as required by the theorem: W lies in p1'0 for one of the two
invariant complex structures.

For the case K = H we must consider an abelian subspace W C p° of dimension
greater than one and a general element X + fY e W, with X, Y e p. By Lemma (5.5)
the vectors X and Y must be right H-dependent: there is a quaternion g such that
Y = Xy. We show first that q does not vary as X + iY varies in W. To this end consider
an element X' + iY' e W which is (left C-) independent from X + iY. Then Y' == X' q
for some q' e H, and we must show that q = q ' . If X and X' are H-dependent, then
the four vectors X, Y, X', Y' lie on the same right H-line. This line is the tangent space
of a totally geodesic H^ in H£, so that the subspace of W spanned by X + iY and
X' + t'Y' is a two-dimensional abelian subspace of the complexification of the tangent
space of a quatemionic hyperbolic line; since the latter is the same as real hyperbolic
4-space, this contradicts the first part of Theorem (3.5). We conclude that X and X'
are H-independent. Now consider the vector (X + X') + z(Y + Y'). There is a qua-
ternion q" such that Y + Y' == (X + X') /', so that

Xq + X' q' = (X + X') ?".

By the H-independence of X and X', this implies q = / = q", as required.
To complete the proof of (3.5) we take a basis X^ + iX^ q for which the Xj^ form

an orthonormal set. Then W is of the form

W == { X + iXq | X eV, VC p, V totally real, q eH, q2 = - 1,q + q = 0},

where the restriction on q follows from the isotropy of W, and V totally real
means that V is equivalent under the action of K to a space of the form
{(-^i? • • •5^0, ..., 0) eH" [ A:i, .. . ,^eR} for some k^ n, namely k = dimc(W). The
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space V © \q C p is the real tangent space of a totally geodesic embedding of H^ in Hg,
as described in [2, Thm. 3.25], and W is the (1, 0)-tangent space of the complex structure
on V <9 V q given by right multiplication by — q. Thus W has the required form.

6. Connections "with Hodge theory

The purpose of this section is to reformulate the last part of the proof of
Theorem (3.5) in a more invariant way, and to show that this reformulation leads directly
to an equivalence between harmonic mappings to quotients of quaternionic hyper-
bolic space and horizontal holomorphic mappings to an associated space. This space
can be viewed either as a Griffiths period domain or as a twistor space. The latter point
of view has been used by Eells and Salamon to study harmonic mappings from Riemann
surfaces to quaternionic manifolds [11, 25]. We will use the first point of view because
the main tool that we will need is a removable singularities theorem proved by
Griffiths in [13].

We present this equivalence as a test case for a general conjecture that harmonic
mappings of sufficiently high rank from a Kahler manifold to a locally symmetric space
of non-compact type are in one-to-one correspondence with horizontal holomorphic
mappings to an associated period domain. The converse, that the composition of
a period mapping F with the canonical projection to the associated locally symmetric
space is harmonic, is easily established using Theorem (2.3) and the fact that rfF(T^'°)
is abelian. More details on this general principle will be presented in a future article.

To begin, we consider the quaternionic hyperbolic space D = H^ studied in
the previous section. Thus, if V == H"+1 is a right-quaternionic vector space endowed
with the inner product

&(X, Y) = Re(- x^ - ... - x^y^ + ̂ +1^+1),

then D is the open subset of HP" consisting of all right-quaternionic lines L on which
the Hermitian form

A(X,Y)=A(X,Y)

is positive-definite. Note that the real tangent space to D at L is the vector
space Hom^L, L1) consisting of right-quaternionic-linear maps of L to L"1.

Let D' be the set of all pairs (L, J) with L in D, where J is an orthogonal complex
structure on L. By this we mean that

J2 = - 1,
J(Xy)=J(X)y f o r a l l ^ e H ,

and ^(JX,JY) == 6(X, Y) for all X, Y e L.

Such structures are given by left multiplication by a purely imaginary unit quaternion;
consequently the set of possible J's constitutes an S2. There is an obvious projection
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n : D'-> D, and this map is equivariant with respect to the natural group actions relative
to which the source and target are homogeneous. Thus,

D == Sp{n, l)ISp{n) x S^(l),

D' = Sp^ l)ISp{n) x U(l),

and the fiber o f7r i sS j&( l ) /U( l )^ CP1 ̂  S2, as noted above.
The manifold D' admits both a natural complex structure and a natural " horizontal

bundle 3?. To describe the first, let L1'0 and L°'1 be the + i and — i eigenspaces of j
on L°. Because J satisfies the identity

^(J^)+^Jb)=o,
these spaces are &-isotropic. Thus, to the datum (L,J) one may associate the datum L1'0,
where this latter is 1) stable under right multiplication by quaternions, 2) ^-isotropic,
and 3) A-positive. Conversely, the second datum yields the first. Now the first two
conditions define a complex submanifold £)' of the Grassmannian of complex 2-planes
in V0, and the third condition defines D' as an open subset of £)'. This gives the required
complex structure.

The real tangent space to x == L1'0 in D' is

T" == cHomH(L110, V0/!/'0) ^ cHomnCL1'0, L10®^011)

viewed as a real vector space. The subscripts signal the fact that the homomorphisms
are linear with respect to the right action of quaternions and the left action of complex
numbers. Clearly one has a splitting into horizontal and vertical subspaces defined by

T^^cHom^L^.L10)

T^cHom^L^L0*1),

with the latter tangent to the fibers of TT. A map with values in D' is called horizontal if
it is tangent to the bundle T^ formed by the T^.

Given a discrete group rCSj&(n, 1), the holomorphic structure and horizontal
bundle pass to the quotient N' = r\D', and the projection passes to a map n: N' -> N,
where N = r\D. We can now state the main result:

Theorem (6.1). — Let M be a compact Kdhler manifold and let N and N' be as above.
Letf\ M -> N he a harmonic mapping such thatyfor some x e M, the rank of dy^fis larger than two.
Then there exists a horizontal holomorphic mapping F : M ^-N' that lifts f, i.e., f== r c o F .

Before taking up the proof, we note the connection with Hodge theory. First, the
decomposition

V° == L1 '0®!10®!^1 = V^eV^QV0 '2
def
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defines a A-polarized Hodge structure of weight two on the real vector space V with Hodge
numbers A2'0 = dimV2*0 = 2 and A1'1 = dimV1'1 == 2n. As such it defines a point
in the Griffiths period domain

D" ̂  S0(4,4»)/U(2) X S0{4n).

In fact, D' sits in D" as a homogeneous complex submanifold, namely that consisting
of all Hodge structures stable under right multiplication by quaternions. Moreover, the
horizontal bundle as defined above coincides with that that induced by the usual Hodge-
theoretic horizontal bundle on D".

To begin the proof, let m be the maximum rank of df, let U be the open
subset of M where the rank ofdfis m, and note that m > 2. Because of Theorem (3.5 c)
W == df'fT^0 M) can be identified with the image of the (1, 0)-tangent space at f{x)
of a geodesically imbedded copy of complex hyperbolic space. Therefore m == 2k is
even, and the map df: T^ M -> T^ H^ is complex-linear.

The totally geodesic embeddings of H^ in D are given as follows. Let E' be a
right H-subspace of V of H-dimension k + 1 such that b \ E' has signature (4A, 4) and
let J: E' -> E' be a i-orthogonal and right H-linear complex structure. Then the set
of all right H-lines in E' on which b is positive definite and which are invariant under J
forms a totally geodesic submanifold ofD isomorphic to H^. Moreover, all such sub-
manifolds are obtained in this way for suitable E' andj. The real tangent space of such a
submanifold at a line L is jHom^L, E), where E = E' n L1 and jHom^L, E) denotes
the left-J-linear homomorphisms which are right-H-linear. This is the invariant descrip-
tion of the space denoted by V ® Vq at the end of the proof of Theorem (3.5), described
now as a subspace of Hom^L, L1) == T^ D without reference to a particular basis.

Consider now a point x in the open set U introduced above, and let L, be an H-line
whose r-orbit isf{x). According to the preceding discussion, there is a space E^ containing
L, and a complex structure J, on E^ such that d^f: T^ M -> Hom^(L,, EJ C T^ D is
a complex-linear map with respect to the complex structure given by precomposing
with JJ L,. But then F{x) = (L,, JJ mod F defines a lifting of/from N to N\

It remains to show that F is holomorphic and horizontal. We shall treat horizon-
tality first, beginning with the following result, which asserts that the lift is horizontal if
and only if the tensor J is parallel.

Lemma (6.2). — A smooth map F : M -> D' is horizontal if and only if VJ == 0, where ]
is the complex structure on F* n* L induced from the tautological complex structure on n* L and V is
the connection induced by F* TC* from the canonical connection on L.

Proof. — By the definition of T^ D', F is horizontal on an open set U' if the
following condition holds: let s be a V^valued function on U' with s{p) eL^10; then
^x S{P) e H'° @ L^° for any real tangent vector X at p e U'. Functions s of the required
form are given by s{p) = (1 — ijy) t{p), where t{p) eLp. Let V denote the connection

25
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operator on L, defined by the relation Vt = dt — dt1, where orthogonal complement is
taken relative to L. Then

W - 0) t\= (i - 0) Vx t + { 4[(i ~ (j) t]}1 + i(v^j) t.
The first two terms on the right-hand side lie in L1'0 © L10. The third term is a purely
imaginary vector in L®, hence is zero if and only if its component in L0'1 is zero. There-
fore d^s lies in the required subspace for all t if and only ifV^J vanishes. The proof is
therefore complete.

We must now show thatj is indeed parallel. To this end we show (Lemma (6.3)),
that for all X, Y eT^M, df(X) (VyJ) = df{\) (V^J), where T^ is the real tangent
space, df(X.) e Hom(/* L,/* L1), and J e End(/* L). Moreover, we observe that a) if
flgf(X) 4= 0, then df{X) is injective, and b) if df(X) and df(V) are independent, then
df(X) L n df(Y) L = 0. Both assertions follow from the fact that df(X) is a right-
quatemionic-linear map whose domain is a quaternionic line. If rank df> 1, we are there-
fore in the situation of the Lemma (6.4) below, with A(X) = df(X) and B(Y) = VyJ.
Applying the lemma, we conclude that VJ = 0, as required.

Lemma (6.3). — The tensor dfCY) (V^J) is symmetric in X and Y.

Proof. — Let p(X, Y) = (V^ df) (Y). The three assertions below imply the required
symmetry condition:
a) p(X,JY) - p(X, Y ) J = dfW (V^J),
b) (B(X, Y) is symmetric in X and Y,
c ) (3(X,JY) is symmetric in X and Y.

Here we view df{Y) in/* T°N, so that V^ df(Y) ̂  V^x) ^(Y) makes sense.
To begin, we note that the harmonic equation implies V" d ' f = 0, or, equi-

valently, that (V^)1'1 = 0, so that
W P(JX,JY)==-(B(X,Y).

The symmetry of p(X,JY) then follows from the symmetry of (3(X, Y):
p(X,JY) = - (3(JX,.pY) = p(jx, Y) = P(Y,JX).

The symmetry of (3 itself is an immediate consequence of the fact that the connections
on N and M are torsion-free. It therefore remains to establish a), which we do by noting
the validity of the following sequence of identities:

P(X,JY) = (V^/) (JY)
- V^/(JY)) - rf/(V^(JY))
=V^/(Y)J)-rf/(J(V^Y))
= V^/(Y)) J + <//(Y) V^J - df[^ Y) J
-[(VX^HY^J+OTV^J
=P(X,Y)J+rf/(Y)V^J.

We have used the fact that df is J-linear and that J is parallel on M.
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Lemma (6.4). — Let A : V -> Hom(E, F), B : V -> End(E) be linear maps such that
a) if A(X) + 0 then A(X) is infective,
b) if A(X) and A(Y) ^ independent, then A(X) E n A(Y) E = 0,
c) A(X) B(Y) = A(Y) B(X) for all X, Y e V.
d) dimA(V)> 1.

Then B == 0.

Proof. — Suppose first that A(X) =(= 0, A(Y) = 0. The commutation relation c )
gives A(X) B(Y) E = A(Y) B(X) E == 0. Since A(X) is injective, B(Y) = 0, so that B
factors through the kernel of A. It therefore suffices to prove the lemma in the case
that A is injective. To this end, observe that d) is now equivalent to the condition
dim V > 1. Consequently for any X =4= 0 there is a Y e V independent ofX. Since A(X)
and A(Y) are independent, A(X) E n A(Y) E == 0. The commutation relation
A(X) B(Y) E = A(Y) B(X) E then implies that A(Y) B(X) E = 0, and the injectivity
of A(Y) yields B(X) == 0. Since X e V was arbitrary, the proof is complete.

To prove that F is holomorphic on U we must show that rfFp is complex-linear
as a map from the real tangent space of M at p to the real tangent space at N' at FQ&).
Now the map dfy takes values in the real tangent space of N at /(^), namely
Homg(L, L1). According to the discussion above, its values lie in the real tangent space to
a geodesically imbedded complex hyperbolic space, given explicitly by jHom.g(L, E).
Moreover, dfp is complex linear as map from T^ M to jHomg(L, E). Now dfy is given
explicitly as

df,{X)t=={d^t}\

while dFy is given by
rfF,(X) [(i - ij) t] == {4[(i - ij) t]}L+{ ^[(i - ij) qy>.1.

However, for horizontal maps J is parallel, so the previous formula reduces to
rfF,(X) [(1 - ij) t] = {4[(1 - tj) t]}\

i.e., to
dF^X)s={d^s}1

for all sections s of L110. But now the complex-linearity of dFy follows from that of dfy.
Returning to the global situation, we have constructed a horizontal holomorphic

lift F : U ->N' of/. Since d'fis holomorphic by Theorem (2.3), M — U is a complex
analytic subvariety of M. But the removable singularities theorem for horizontal holo-
morphic mappings defined on ^d x A*, where A is a disk in C, [13, Prop. 9.10] (applied,
say, to the period domain SO (4, 4yi)/U(2) X S0(4») which contains D' as a complex
submanifold), immediately implies that a horizontal holomorphic mapping defined in
the complement of a proper analytic subvariety must extend holomorphically across
this subvariety. Thus F extends to a horizontal holomorphic mapping F: M -> N',
thereby concluding the proof of the theorem.
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7. Maps of low rank

The purpose of this section is to prove the following structure theorem for harmonic
mapsy*: M ~> N of rank at most two, where (throughout) M is a compact Kahler mani-
fold and N is a hyperbolic space form, i.e., N = r\H^«

Theorem (7.1). — Let M and N be as above and letf: M -^ N be a non-constant har-
monic map such that rank dg^f^ 2 for all x e M. Then either

a) /(M) is a closed geodesic in N, or
b) There exists a compact Riemann surface S, a holomorphic map <p : M -> S, and a harmonic

map ^ : S -> N so that f == ip<p.

Combining this result with the classification of harmonic maps of rank larger
than two described in the last two sections, we obtain at once the following complete
structure theorem for harmonic mappings into the hyperbolic space forms over the
three fields:

Theorem (7.2). — Let M and N he as above and letf: M -> N be a non-constant har-
monic map. Then

a) If K = R, then f is as in Theorem (7.1).
b) ffK. == C, then/is either as in Theorem (7.1) or f is holomorphic or anti-holomorphic.
c) yK==H, then f is either as in Theorem (7.1) or f lifts to a variation of Hodge structure as

in Theorem (6.1).

We now proceed to the proof of Theorem (7.1). Observe that if rank d^f^. 1 for
all x e M, then by a theorem of Sampson [26] f{M) is a closed geodesic in N, which is
part a) of the theorem. Thus we need only consider mapsy:M->N satisfying
rank dy^f^ 2 for all A: e M with equality for some x e M.

Observe next that rank<4/< 2 is equivalent to dim ^/(T^0 M) ^ 1, since, by
the discussion in section 5, dim dy,f(T110 M) ^ 2 implies rank d^f^ 4, the latter possible
only if K = C or H. Moreover, rank^/= 2 is equivalent to dim<4/(T1'0 M) = 1
with no real vectors in ^/(T1*0 M). Thus, to prove Theorem (7.1), we only need consider
maps y :M~-^N satisfying
(i) dim dJ(T110 M) ^ 1 for all x e M, and

(ii) for some x e M this space is one-dimensional and contains no real vectors.

In [31, § 3, 4] Siu studies the same situation as in Theorem (7.1) with the further
assumptions that N is a Riemann surface (where (i) is automatic) and that (ii) holds,
and he obtains conclusion b) in the theorem. To complete the proof of Theorem (7.1)
one merely has to check that Siu's method (which is motivated by [16] and [22]) extends
to the present situation, which we proceed to do; cf. also [17].
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The mapping/is real analytic; thus it is known that/(M) is a two dimensional
polyhedron K in N. Letj/o e K be a regular value of/regarded as a map from M to K,
and let U be a small contractible neighborhood ofj/o in K such that rank d^f== 2 for all
x e/'^U). Since /1/-^U) is a proper map, it follows that/'-^U) is diffeomorphic, as a
fibration over U, to U X/'^j/o)- Let C^ be a connected component of/"1^), let V
denote the component of/'^U) containing Cy^, and let Gy == V n/'^j), which is
a connected component of/"^).

Lemma (7.3). — For eachy e U, Cy ^ a complex analytic submanifold of M of complex
codimension one, and for each x e Cy, T^°Gy = ker^'/. Moreover V has a unique complex
structure so that f \ V ^ holomorphic.

Proof. — Let A: e Gy. Since ^/(T^M) contains no real vectors, it contains no
purely imaginary vectors. Thus <4/(X) = 0 holds if and only if ^/(X — (JX) == 0.
It follows that Ta; Gy = ker dy;f is invariant under J, hence that Cy is a complex sub-
manifold, and that the corresponding space of (1,0) tangent vectors is as asserted in
the lemma. Finally, for each x e Cy let L{x) = ^/(T1'0 M). Then 'L(x) is a complex
line in the two dimensional complex vector space T^ U which varies holomorphically
with x and contains no real vectors. Since the collection of such lines is parametrized
by the complement of the equator in the Riemann sphere, it follows from the connected-
ness and compactness of Cy that L(;c) is constant, say L. Give U the complex structure
determined by T^' ° U = L. This is clearly the unique complex structure on U that
makes/) V holomorphic.

Theorem (7.1) is proved by showing that/] V has an analytic continuation to a
holomorphic mapping <p : M -> S, where S is some compact Riemann surface, and that
the original map/is constant on the fibres of 9, hence factors through S. First we give
the general statement on analytic continuation.

Lemma (7.4). — Let M. be a compact Kahler manifold, let U and V be open sets in C
and M respectively, and let/: V -> U be a holomorphic map with compact connected fibres. Then
there exists a compact Riemann surface S containing U and a holomorphic map 9 : M -> S such that
<P|V=/

Proof. — The proof uses the Chow scheme C(M) constructed by Barlet in [I],
the compactness of its components, as proved by Liebermann in [20] as a consequence
of a theorem of Bishop [3], and the assumption that M is Kahler. All the information we
need concerning G(M) is contained in the first section of [20]. We only mention that the
points of C(M) are in one to one correspondence with the analytic cycles in M, that
holomorphic families of cycles are suitably induced by universal families, and we refer
the reader to [1, 20] for the unexplained details.

The cycles /^(jO, y e U, form a holomorphic family of cycles in M parame-
trized by U. Let S be the irreducible component of G(M) containing this family.
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Then S is compact, may be assumed reduced and normal, and there is a subvariety
Z C S X M (the universal cycle) so that Z, C M, defined by { s } x Z , = Z n { j } x M,
is the cycle in M corresponding to s e S. Let p : Z ->• S and q : Z -> M denote the res-
trictions to Z of the projections of S X M to S and M respectively. Then y(Z) = M,
since it contains the open set V; since the cycles Z, are disjoint for s e U, S has complex
dimension one, hence is a compact Riemann surface.

The cycles Z, belong to a single homology class in M, and since Z, n Z( = 0
for s, t e U, s 4= f, this class has zero self-intersection. Since M is Kahler, it follows that
i f ^ . ^ e S and s + t, then Zg n Z^ is either empty or Zg and Z^ are both reducible and
their intersection consists of a union of common components. Since Zg is reducible for
only finitely many values of s, it follows that q : Z -> M is finite-to-one. Since q is gene-
rically one-to-one and M is a manifold, q is one-to-one, hence bijective, hence biholo-
morphic. Since Z maps to S byj&, we get the desired extension ofyby defining <p = pq~1,
and the proof is complete.

Returning to the proof of the theorem, we apply the lemma to /) V to
obtain the desired holomorphic map <p, so that it remains only to show that/is constant
on the fibres of <p. This would follow if we knew that for each non-singular
point x of ^~l{s) == Zg, d ' f vanishes on T^'0 Zg, for then df would vanish on a dense
subset of the connected variety Z,. To this end let W be the open subset of Z
defined by W == {{s, x) e Z | x is a non-singular point of Zg}. If z == (.?, x) e W, let
Eg = T^° n ker dp. Then Eg is canonically isomorphic to T^°Z^, and the spaces Eg,
being of constant dimension, form a holomorphic vector bundle E over W. Now
let 0 : T^^S X M) -> (y/^TN0 be the holomorphic bundle map obtained by com-
posing d * q and d' f. Tracing through the definitions, one sees that <I> | Eg == 0 if and only
if^/Cr^Op'"1^)) = 0. Since the latter condition holds for all s e U, we see that 0 | E
vanishes over a non empty open subset of W, hence vanishes identically on W, hence
the desired conclusion.

From the foregoing we see that there is a continuous map ^ •' S -> N such that
y== ^q>; it remains only to show that ^ is harmonic. But, as in [31], this follows imme-
diately from existence and uniqueness theorems for harmonic mappings. First, ^ is
homotopic to a harmonic mapping ^: If N is compact this follows from the existence
theorem of Eells and Sampson. If N is not compact, it is an easy consequence of Cor-
lette's criterion [8] that a harmonic map exists if and only if the Zariski closure of the
image of the fundamental group of the domain is a reductive subgroup of the group G
of isometrics of the universal cover of N. An easy application of Theorem (2.3) shows
that y <p is harmonic: since it is homotopic to f and harmonic mappings of rank larger
than one into manifolds of strictly negative curvature are unique in their homotopy
class, one must have ^ === ^'. The proof of the theorem is complete.
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8. Applications

We close with two applications:

Theorem (8.1). — Let F be a cocompact discrete subgroup o/'SO(l, n) with n > 2. Then F
is not the fundamental group of a compact Kdhler manifold.

Proof. — By passing to a subgroup of finite index, we may assume that F is tor-
sionfree. An Eilenberg-MacLane space K(F, 1) can be constructed as F\D, where
D = S0(l, n)/SO(n) is hyperbolic n-space. Let M be a compact Kahler manifold,
assume 7ri(M) ^ F. This isomorphism is induced byamapy: M -> F\D which classifies
the universal cover of M. By the theorem of Eells and Sampson, we may assume that^
is harmonic. By Theorem (7.1) above, f factors as ^<p, where <p : M -> S and S is either
a circle or a compact Riemann surface. Now f^: 7Ti(M) -> F is an isomorphism, so
< p » : 7Ti(M) -> 7Ti(S) is injective. Therefore, F, identified as a subgroup of 7Ti(S) acts
freely on a contractible complex of dimension at most 2, namely, the universal cover ofS.
Consequently the cohomological dimension ofF is at most 2. However, the cohomological
dimension of F is in fact ?i, since F\D is a K(F, 1). If n > 2, we are in the presence of
a contradiction.

Our last theorem concerns the locally homogeneous complex manifolds studied
in [14]. Let D = G/V be a manifold of the following form: G is a semisimple Lie group
without compact factors with maximal compact subgroup K such that there is a Gartan
subgroup ofG contained in K (equivalently, G and K have the same rank), and VC K
is the centralizer of a torus in K. Then D = G/V has a finite number of homogeneous
complex structures (called duals of Kahler G-spaces in [14]). Fix one of these complex
structures on G/V. If F C G is a torsion-free co-compact subgroup, then M = F\D is
a locally homogeneous complex manifold which fibres over the locally symmetric space
r\G/K with fibres compact homogeneous Kahler manifolds. Moreover, by [14, 4.23,
p. 2 7 7], M has a pseudo-Kahler form which is positive on the fibres and negative in the
directions orthogonal to the fibres.

Theorem (8.2). — Let D = G/V and FCG be as above. Suppose that the associated
symmetric space G/K is not Hermitian symmetric. Then the complex manifold M = F\D is not
of the homotopy type of a compact Kahler manifold.

Proof. — Let n : D —> X = G/K be the canonical map to the associated symmetric
space, and let TT : M -> N be the associated map of discrete quotients, where N = F\X.
Assume M to be Kahler, and apply Corollary (3.3) to conclude that the fundamental
class of N is not in the image of TT, . Next, let K be the curvature form of the canonical
bundle of M. According to [14, 4.23, p. 277], K is positive on the fibers of TT. Now let 0.
be a volume form for N, and note (by Fubini's theorem) that TC* Q. A ̂  has nonzero
integral on M, where r is the dimension of the fibers of TT. Therefore the cohomology
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class of n*Q. is nonzero. By Poincar^ duality there is a cycle c on M such that
TC*(Q) (c) + 0. But then 0(^(<:)) + 0. Therefore the fundamental class of N is in the
image of TT^ , and we are once again in the presence of a contradiction.

A special case of the manifolds considered in Theorem (8.2) are the compact
quotients of the Griffiths period domains D of even weight, defined in [13] 5 for which D
is not already a Hermitian symmetric space. The simplest examples are the (non-
Hermitian) period domains of weight two, namely D = S0(2p, ?)/UQ&) X S0(y),
p 4= 1 and q + 2.

We note that the groups of Theorem (8.1) and the manifolds of Theorem (8.2)
resist the relevant non-Kahlerianity tests of rational homotopy theory [10, 23]. The
Betti numbers ofM behave in a similarly refractory manner: for M a quotient of a Grif-
fiths period domain it is known that in BoreRs stable range the rational cohomology
ring is a polynomial algebra on generators of even degree [7], and outside this range
the Betti numbers are difficult to compute.
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