
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S.

J. B. WAGONER
Markov partitions and K2

Publications mathématiques de l’I.H.É.S., tome 65 (1987), p. 91-129
<http://www.numdam.org/item?id=PMIHES_1987__65__91_0>

© Publications mathématiques de l’I.H.É.S., 1987, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PMIHES_1987__65__91_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


MARKOV PARTITIONS AND K,
by J. B. WAGONER*
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1. Introduction

Let y be a finite or a countably infinite collection of (< states", and let
A : y X y ->{0, 1} be a zero-one matrix with the corresponding subshift a^: X^ -> X^.
See [Wi], [PW], [F], or [W2] for example. Let Aut(o-J denote the discrete group of
uniformly continuous homomorphisms a : X^ -> X^ which commute with a^ and which
have a~1 uniformly continuous also. This is the group of uniform equivalences or symmetries
of (T^. A central problem or theme in symbolic dynamics is to examine the algebraic
structure and homological properties ofAut(cr^). The aim of this paper is to introduce
a method for studying Aut(oJ by making it act on a contractible simplicial complex ̂
constructed in a very natural way from the set of uniform Markov partitions for a^ on X^.

The first paper giving a systematic account of Aut(<r^) for the Bernoulli 2-shift
CTg : Xg ->Xa was written by Hedlund [H]. It was proved there that Aut^) contains
every finite group as well as elements of infinite order not of the form a^ for some k e Z.
These extra infinite order elements were obtained by taking products of non-commuting
elements of finite order. More recent results can be found in [BK] and [BLR]. Despite
notable progress in the last several years, there is an old and central problem which
still remains wide open. This is the finite order generation conjecture (dubbed FOG
by D. Lind) which states that Aut((Tp) for the full Bernoulli ^-shift with p prime is

* Partially supported by National Science Foundation grant DMS85-02351.
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generated by (jy together with elements of finite order. This problem arose from the
early work by Hedlund and coworkers such as Arnold, Curtis, Lyndon, Rhodes, and
Welch. In more recent papers, all exotic elements of infinite order have been of this
form. For example, Boyle-Lind [BLR] have shown Aut(o-g) contains the free non-abelian
group on two generators, each of which is constructed as a product of elements of finite
order. Concrete computations of gyration numbers by Boyle-Krieger [BK] lend credence
to the possibility raised by Rhodes that Aut((Tg) is generated by erg and by involutions.
This would imply that the first Eilenberg-MacLane homology group H^Aut^g)) is the
direct sum ofZ and a vector space over Z/2 which, by [BK], would be infinite dimen-
sional. Conversely, information about H^ could bear on Rhodes5 question or on FOG.

A general open problem is to obtain information about the higher Eilenberg-
MacLane homology groups H,(Aut(oJ), and the action ofAut(<rJ on 8ft\ is a natural
setting for this type of question. Gromov asked whether ̂  had certain combinatorial
properties similar to a space with non-positive curvature. For example, he asked whether
every loop with L edges in ̂  could be spanned by a disc with at most cL2 triangles
for some universal constant c. This turns out to be the case for c = 40. We hope that
more detailed analysis of ̂  will prove useful for FOG.

The present paper concentrates on H^ and uses the action of Aut((T^) on ̂  to
construct homomorphisms of Aut(cJ into various other simpler groups such as the
group of automorphisms of the dimension group or the algebraic K-theory group Kg.
These are obtained via a canonical homomorphism

^:Aut(oJ^7r,(S(^,A)

into the fundamental group of the space of all shift equivalences in the category €
of non-negative integral matrices. When A is finite, we show

^(S(^), A) ^ Aut(G(A), G(A)^, ,J

where the right-hand side is the group of automorphisms of the dimension group G(A)
considered as an ordered group as in [E] and a Z[t, t~ ̂ -module via the action of the
automorphism s^ of G(A) coming from A.

The first example of the general theory developed here was a commutative diagram

^^^ Ka(F(<))

Aut((rJ^^^ j s

"^©rly y

where A is assumed to be finite, F(^) is the field of rational functions over a field F, and
Q is the tame symbol [Ml], Another typical example comes from random walk on a
discrete group G. See § 4.

Here is why one might expect a connection between Aut((jj and Kg in the first
place. Let/: M -> M be a Smale diffeomorphism [F] of a compact manifold M. In [F]
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it is shown that ̂ {t) == ^y(<) mod 2 where ̂ {t) is the " homology " zeta function obtained
by counting the periodic points of/ algebraically using the Lefschetz numbers of/"
and ^{t) is the " symbolic " zeta function obtained by counting periodic points in the
non-wandering set of/. Knowing the contribution to ^{t) from each basic set enables
one in principle to compute the entropy of/. On the other hand, let My denote the
mapping torus of/ This is just M X I modulo the identification of {x, 0) with (/(A:), 1).
From algebraic K-theory and simple homotopy theory there is a rational function r(My)
called the Reidemeister torsion of My which is an invariant of the manifold My. This
is a special case of a Whitehead torsion invariant which arises in connection with the
algebraic K-theory group K^. See [M2], [M3]. It is well known [F], [M2] that
^(f) == T(My). So in a loose sense we say (< entropy is a Krtype invariant". Now in
differential topology it is an old story that just as K^ provides useful invariants for
manifolds, the algebraic K-theory group K^ gives invariants for diffeomorphisms of a
manifold. See [HW], [Wl], Consider the group of symmetries Aut(/) of our original
Smale diffeomorphism/: M ->M. By definition, this consists of all homeomorphisms
g : M -> M satisfying gf=fg on M. Each such g induces a homeomorphism of My by
the formula G{x, t) == (g{x),t). In this setting, it is then possible to define a homo-
morphism K^ from Aut(/) into K^F^)). It was consequently natural to ask whether
there was a homomorphism such as K^, and this was the starting place for our paper.
Incidentally, in his thesis [Z] Zizza shows for a fitted Smale diffeomorphism / and the
field F = Z/2 that K^ is an alternating product of the various " symbolic " K^S coming
from the basic sets in the non-wandering set of/. The argument makes use of^«

In summary, the idea is that if K^ is related to the dynamical system (X^, crj,
then Kg should be (and is) related to its symmetry group Aut(<y^). To carry over the
analogy from differential topology to symbolic dynamics, the space of G°° functions
on a manifold is replaced by the space 8^\. Put differently, a given Markov partition
for a^ on X^ is like a particular triangulation of a finite complex.

In view of the embedding of Aut(<r^) into the automorphisms Aut(^^) of the
Guntz-Krieger type Cr-algebra ̂ fi\ discussed in [W2], it is reasonable to expect a " non-
commutative " version of the theory for automorphisms of operator algebras. In [W2]
a Kg invariant for Aut(cr^) was constructed using the definition of the dimension
group G(A) in terms of unstable manifolds of or^ on X^. In case A is aperiodic, this
leads to a homomorphism ^ : Aut(<r^) —>• R" .̂ which turns out to be the inverse ofConnes9

module homomorphism m^: Aut(«/^) -> K\.. The map m^ comes from seeing how an
automorphism multiplies the line of semi-finite traces on ^f(\. See [G]. In [CS] Connes-
Stormer define the entropy of an automorphism 6 of a type II^ von Neumann algebra
preserving a faithful normal trace T. Can one define a homomorphism Aut(6) ->R*
using " non-commutative ?? partitions? Or other methods? The module homomorphism
is of course trivial on Aut(6) because the trace is normalized to satisfy r(l) == 1.

In § 2 we define the simplicial structure on 8^\ and develop some of its basic
properties. The main theorem (2.12) is that ̂  is contractible. ffl\ is locally finite when
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A is a finite matrix. In § 3 we prove the new algebraic Triangle Identities (3.3) coming
from the analysis of geometric triangles in 8^\. This is basic to the remainder of the
paper.

The first theme of§ 4 is invariants ofAut(cr^) that come from " inverting functors ",
of which the dimension group is the prime example when A is finite. Let S be the
category of non-negative integral matrices and, for simplicity, let Q be an abelian category
such as modules and module homomorphisms over a commutative ring A. Consider a
new category in which the objects are endomorphisms (square matrices) A of € and
where a morphism from A to B is a non-negative integral matrix X such that AX == XB.
A functor F on this new category assigns an object F(A) in Q) to each endomorphism A
and a morphism/(X) : F(B) -> F(A) in Q to each morphism X. In particular, we have
/(A) : F(A) ->F(A). We say F is inverting provided each/(A) is an isomorphism. In
addition to the dimension group, there are a number of other inverting functors arising
in dynamical systems and C'-algebras. See [BF], [CK], [Cul], [Cu2], [E], [F], [K]
and [W2]. The principal result of this section constructs a homomorphism

^:Aut((rJ^Aut(/(A))

into the automorphisms ofF(A) commuting with/(A) and a commutative diagram

<{^^^(S(^),A)

Aut((Tj ^F.A

<is?^̂  ^
Aut(/(A))

When A is finite, this implies (4.19) that ^p ^ factors through Aut(G(A), G(A)+,jj.
Some examples are given, including the relation of Aut((j^) to Kg.

To finish § 4, we briefly discuss one way to further explore the implications of
the Triangle Identities by constructing the space SS(<^) of strong shift equivalences for
the set S of zero-one matrices. Like S(<^), the space SS(<?) is built independently of
any dynamical system. Its simplices are formed using the algebraic identities (3.3).
The homomorphism <j^ factors through a canonical homomorphism from 7Ti(SS(<?), A)
to 7^(S(<^),A). An open problem is to obtain more information about 7Ci(SS(<?), A).
It is a new but hard to compute invariant of strong shift equivalence. Whether it is
also an invariant of shift equivalence is far from clear at the present time.

The material in this paper can be extended in several ways. For example, stochastic
shift equivalence and strong shift equivalence for finite irreducible matrices was developed
by Parry-Williams in [PW]; see also [PT], [T], Their theory goes through in the
infinite case. Also, if (JL is a Markov measure invariant under CT^, basically all the results
on ffi\ and Aut((rJ can be carried over to the contractible simplicial complex 8P^ of
(Ji-Markov partitions and the subgroup Aut^((yj of p-preserving symmetries of cr^. In
another direction, the classical " marker method " produces many ways of embedding
any finite group G into Aut(aJ when A is aperiodic [BLR], The G-fixed point sets
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of 8ft\ are contractible and can be used to give a criterion for conjugacy classes of G
in Aut(<7^) in terms of G-equivariant strong shift equivalence.

To finish this introduction, we would like to thank M. Boyle, D. Lind, W. Krieger,
and F. Zizza for useful discussions and comments over the last few years while this paper
underwent several revisions. We would also like to thank IMPA (Rio de Janeiro), the
University of Geneva (Switzerland), and IHES (Paris) for their hospitality during
Spring 1986.

2. Markov partitions

In this section we develop the basic properties of the simplicial complex ̂ \ of
Markov partitions. In particular we show in (2.12) that ^\ is contractible and is
locally compact when A is finite.

Let y be a countable set of " states " and let A : y X y ->{ 0, 1 } be a zero-one
matrix such that each row and each column has a non-zero entry. We let X^ denote
the space of sequences x = (^), — oo < i< oo, such that A(^, ^+i) = 1. The metric
on X^ is defined to be d{x^y) =0 if x =y and for x ^ y

^ -d-r
where k is the least non-negative integer such that x^ 4=^ or x_^ 4=^-^. The space X^
is complete. It is locally compact if and only if A is locally finite and compact if and
only if A is finite. See [W2]. The shift a^: X^ ->- X^ is to the left; i.e. 0^)1 = ^+i.
Both CTA 1 and a^ are uniformly continuous. A homeomorphism a : X^ -> Xg between
two shift spaces satisfying ao^ = cr^ a will be called a uniform equivalence or an isomorphism
provided both a and a~1 are uniformly continuous. We let Isom((r^, Og) denote the
set of all isomorphisms from a^ to 03. When A == B, we often write Aut((rJ for
Isom((T^, <TjJ and will call a eAut((rJ a symmetry of <r^.

There are generally two definitions of a Markov partition in the literature. We
start with the approach of [PT] and later in this section will discuss the definition used
in [F, p. 100].

If U == { UJ and V = { V,} are coverings of X^, we let

U n V = { U, n V, where U, n V, + 0 }.

We say V refines U, written U < V, provided each V, is a subset of some U^. If m, n e Z
and m ̂  n, let U(w, n) = ̂ (U) n ... n (^(U) where a^(V) = {crt(U,)} for k e Z.
Let UA = { U^ } where for each s e y we define U^ = { x e X^ | XQ = s}. This will be
a standard example of a Markov partition for cr^ on X^. Observe that the sets in
U^— n, n) are all disjoint, closed, open, and form a basis for the topology of X^ as
n runs over the non-negative integers.
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Definition 2.1. — A topological Markov partition for a^ on X^ is a covering U = { U, }
of X^ such that
( a ) the U, are disjoint and open (and therefore closed);

00

( b ) any intersection H ^"(U^n)) consists of at most one point;
— 00

00

( c ) if U.,,, n (̂ (U.̂ ,) + 0 for « e Z, then ft ^-(U^,) + 0.
— 00

Moreover, we say U is uniform provided
( d ) there are m, n ̂  0 such that U^ < U(— m, m) and U < VA{— n, n).

We let ̂ \ denote the set of all uniform topological Markov partitions for a^.

Remark 2.2. — Any two coverings U and V satisfying ( d ) with respect to U^ have
mutual refinements in the sense that there are m, n ̂  0 so that U < V(— m, m) and
V < U(— n, n). If A is finite, then any two coverings satisfying ( a ) , ( b ) , ( c ) also satisfy
this mutual refinement condition. So as in [PT] the condition ( d ) is not needed in the
definition when A is finite.

If a : X^ -^XB is a homeomorphism and U ={U,} is a covering of X^, let
a(U) = { a(U^) }. Observe also that uniform continuity can be expressed as follows:
Given a refinement U^— n, n) there is a refinement U^— w, m) such that

VB{-n,n)< aQLJ^-^w)).

It is not hard to verify that if a elsom(o^, Og) and U e^5 ^en a(U) £^3- Thus
we have a bijection
(2.3) ^ ̂  ^B

given by the correspondence U —»-a(U).
For future reference we observe

Lemma 2.4. — If\J e^, then U n ^'(U) and <^(U) n U are in ̂ . If U e^
a^rf V === { V,} ̂  fl ^z^r o/' X^ 6^ disjoint^ open sets such that U < V < U n <7l(U) where
g = = 4 - l or e = — 1, then V e^\ ato.

The proof of this is straightforward.

Remark. — It is not true in general that U, V e 8^'\ implies U n V e ̂ . However,
this property does hold for Markov partitions as defined in [F, p. 100]; see (2.17) below.

If U = { U(} is in 8ft^, let the matrix M = M(U) associated to U be the function
M : U X U ->{ 0, 1 } defined as usual by

f l , U n ^ ^ U ^ + O
(2.5) M(H,U,)= l

[ 0, otherwise.

The definition of M as a function from U X U to { 0, 1 } is independent of the choice
of a bijection U ^ I between the sets of U and some countable indexing set I which is
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tacitly assumed when we write U = { U<} for ie I. However, such an identification
does give a matrix M : I x I - ^ { 0 , l } where M(i,j) == M(U^ U^). In particular,
there is a canonical bijection y ^ V^ under which M(UA) = A. Just as in the case
when A is finite we have

Lemma 2.6. — Let U e^ an^ ^ ==: M(U). Then there is a uniform equivalence

(^^A) ^ (^^B)-

Proof. — Let U = { TJ( } where t runs through the countable indexing set T.
Define a: X^ -> Xg by the condition that a(^), = t if and only if a\(x) e LT(. Thus
a is continuous by (a) of (2.1), injective by ( b ) of (2.1), and surjective by ( c ) of (2.1).
Uniform continuity of a follows from U < VA(— », n) and uniform continuity of a"1

follows from V^ < U(— m, m).
We now define the simplicial structure on 8ft ̂ . If U, V e^^? we ̂

(2.7) U——>V
v / (-m,n)

mean that U < V < U(— m, n). The special cases U ——> V and U ——> V will be
v (0,1) (-1.0)

denoted respectively by
(2.8) U — > V and U —^ V.

If U < V, then from (2.2) we have V < U(— w, n) for some m, n ̂  0. Let
(2.9) ^(U,V) = = m i n { m + 7 i | V < U(-m,»)}.

Then /'(U, V) is like a length function, but it is only defined when U < V and it is not
symmetric. If U < V < W, then /'(U, W) ^ ^(U, V) + ^(V, W).

Definition 2.10. — If U,Ve^, then we write U ~^V if and only if
» U n V <— V.U —> U n V <— V.
Observe by (2.4) that this condition implies U nV e^.

Definition 2.11. — The simplicial complex ̂  has as n-simplices those (n + 1)-
tuples < Vo, . . . , ¥„> where each V, e ̂  ^d V, -> V,. for i < j.

It is clear that the bijection 8ft\ ̂  ^g of (2.3) produces an isomorphism of sim-
plicial complexes.

Proposition 2.12. — 8ft\ is contractible and is locally compact if A is finite.

Proof. — First we verify the easy part that 3ft\ is locally compact when A is finite.
Under this hypothesis there are, for a given U 6^, only finitely many V e^ such
that U< V< U n cr^^U). Consequently there are only finitely many V such that
either V -> U or U -> V. In particular, a given vertex U can belong to only finitely
many simplices. This implies that 8P^ is locally compact.

13
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Now we prove that ̂  is contractible in three stages:
Step I: Sft^ is connected;
Step II: TTi(^) - 0;
Step III: H^J == 0 for n ̂  2.

Gontractibility then follows from the Whitehead theorem [Sp],

Step I. — Connectivity of ̂  was essentially proved by Williams in [Wi] where
he introduced the notion of strong shift equivalence. Another exposition of this is found
in [PW], For completeness, we give the argument here.

Let U and V be vertices in ̂ . We show that there is a path from U to V in ̂
having edges of the form < Uo, Ui> where Uo —> U^ for s = ± 1. By ( d ) of (2.1) we
know that U < U^— n^ n) > V for some n ̂  0; so we may as well assume U < V.
The proof then proceeds by induction on /'(U,V). By (2.2) we know U————>V
for some m, n ̂  0. If n ̂  1, then <-"»,n)

U ~———> U(~ m, n) <———— V n (^(U) <———— V.(-w»,n) ' ' / (—^CT_ I ) A \ / ^^

Similarly, if m ̂  1, then
U ————> U(- w, n) <———— a^V) n V <———— V.

(-w,n) ' ( — m + l , n ) Av / (-1,0)

Finally, we have
U ̂  U(0,1) -^ ... —> U(0, n) —> U(- 1,^) — > . . . — > U(- m, n).

Observe that by (2.4) each of the partitions V n oI^U), ^(U) n V, and U (—/»,?)
are still in 8^\.

Step IL — Simple connectivity of 3P^ can be proved in two forms, (2.13) and
(2.14). As mentioned in the introduction, it was Gromov who asked whether such
properties held for ̂ , and he remarked that they might indicate ̂  is something
like a space with non-positive curvature.

By a path in 8^\ we always mean a simplicial path, and by a homotopy between
paths with the same endpoints we mean a sequence of intermediate paths having the
same endpoints such that one path differs from the next one by replacing a single edge
by the two opposite edges of a triangle or vice versa.

Proposition 2.13. — A path in ffi\ having L edges can he spanned by a (possibly singular)
triangulated 2'disc in 3ft'\ with at most 40L2 — SQL triangles.

Remark 3.14. — An argument similar to the one for (2.13) shows that any two
paths of length at most L are homotopic through intermediate paths of length at most
6L + 2. The specific constants in these propositions do not seem all that important,
and they can very likely be improved.
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Proof of ^^ 13. — Step 1: Consider a segment of a loop a such as

x u v w

99

The diagram

shows how to deform a to a loop (3 which is alternating in the sense that the natural
direction (2.10) of each edge switches as one moves around the loop. Equivalently,
the two edges containing any vertex either point both toward that vertex or both point
away from it. If a has at most L edges, then [B has at most 2L edges and the number of
simplices used to deform a to p is at most L.

Step 2: Assume (B is an alternating loop with 2L edges and successive vertices Vg,
VD .. .3 V^_i, VQ, and consider the diagram

yi-i v< V.<+1 V,i+a

V,_,nV, V,,nV,<+i V,nV^.

In Step 3 we will show how to triangulate each square, but for the moment observe
that the bottom horizontal loop y is alternating with 2L edges having successive ver-
tices V^^i n V^, VQ n Vg, V^ n V3, ..., V^_^ n Vg. Repeating this construction a
total of L — 1 times produces an alternating loop of length 2L with only two distinct
vertices V^ n ... o V^-i and Vy n ... n V^_2. Observe that the number of squares
involved is 2L(L - 1) == 2L2 -- 2L.

Step 3: Consider a loop with 2L edges having just two alternating vertices U and V
as in the diagram

U
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for L = 3. The loop has two identical sides of length L emanating from U, say, and
ending in a common vertex which is either U or V. These sides may be identified to
fill in the 2-disc. No extra triangles are added at this stage.

Step 4: A square of the type
V. . —————————————.———————————— . V,

can be filled in by a triangulation with 20 triangles as follows:

V,

We finally see that the total number of triangles required to fill in the loop using
Steps 1 through 4 is at most

L + 2L(L - 1) 20 == 40L2 - 39L.

This completes the proof of (2.13).

Step I I I . — To prove H^(^J = 0 for n ̂  2 it suffices to show for any finite complex
KC^ that the homomorphism H^(K) ->H^(^J is zero.
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Step 1: Subdivision. — Let K be any finite simplicial complex such that each
simplex is equipped with an ordering of the vertices which is compatible with the face
maps. For example, K could be any finite complex of^^. We construct a subdivision K'
of K as follows:

The vertices of K' are pairs v^ = (y^ v^) where ^ and Vj are vertices occurring
in a simplex < VQ, ..., y,, .. .3 Vj, . . . , » „ > of K and ^ comes before Vj in the ordering;
that is, i ̂  j. More generally, an n-simplex of K' is an (n + 1)-tuple < v^ ̂ , v^ ̂  ..., v^ ̂  >
satisfying

(i) all v^ = (»,, Vj) come from vertices lying in a simplex < VQ, ̂ , ..., Vy > of K,
(u) ̂  ^+i^a^Ja+i>
(in) ^+1 - ̂  +Ja+l -Ja = 1-

For example, if K = < VQ, v^ v^ >, then K' is

Note that neither < z^o, v^ > nor < y^^, v^ > is a simplex of K' in this example.
A homeomorphism 6: K' -> K is defined by taking a point in a simplex

< ^ j , ..., v. ^ > represented in terms of barycentric coordinates as the linear
combination

^O^K

with Sa X^ = 1 and \ ̂  0 to the point

s;-o(^+^J
inside < VQ, ..., Oy >.

Now let K C ̂  be a subcomplex. Each simplex ofK is of the form < Vo, ..., Vy >
where each V, e^^* ^e ^et L d^01^ ^e isomorphic simplicial complex with a sim-
plex <z\), . . . , » y > corresponding to each simplex <VQ, . . . , V y > of K and we let
T] : L -> K C ̂  be the simplicial map where T](^) == V,. Let T : L' ->^ be defined
on < z^, ..., y^ > by the formula

^,)=V,nV,.

That this is a simplicial map follows from the observation that if U->V, then
U -> U n V -> V; and if U — X and V —> Y, then U n V ~> X n Y.

Let K C^\ be the subcomplex of^ consisting of all possible simplices having
vertices of the form Vo n Vi n ... n Vy e^ where the V^ are vertices of K. The
vertices V, need not all belong to the same simplex and not every such intersection
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is in y^. But certainly some do, and K consists of the simplices which can be formed
in this way. Let 9 :1/ -> L be the homeomorphism as above.

Claim: rfi and T are homotopic as maps from L' into K C 3ft\.
To see this define p : L' -> K C ̂ ^ by sending a simplex < v. j , ..., ^ , > of L'

to the simplex < V^ , ..., V^ > of K C ̂ ^, Then T and p are homotopic as follows:
L' X I is triangulated by simplices of the form

< (^, 0), ..., (^, 0), (^, 1), ..., (^, 1) >

where < ^ ^ , ..., ^ ^ > and < yy ^ , ..., Vy y > are sub-simplices of the same simplex
in L' and t y< ?Q, jy< ^o. The homotopy from p to T takes this simplex to

/V V V nV V nV ^
\ ^o5 • • - 9 ^r5 v »0 <?05 • * " 5 ^ ^ /'

Now observe that the two continuous maps p : L' -> K C S^\ and rfi : L' -> K C ̂ ^ have
the property that if S is a simplex of L', then p(S) and ffi(S) lie in the same simplex
ofK. Hence, the one parameter family (1 — t) p + ^9, 0 ̂  ̂  1, is a homotopy from p
tO 7)6.

This step can now be summarized in the following way: Suppose we have a chain

a=S/,S,, /,eZ

representing an ^-dimensional homology class in H^(K) where each S == Sp is a non-
degenerate 72-simplex of the form S = < VQ, ..., V^ >. Let a also denote the corres-
ponding chain in the isomorphic simplicial complex L. Let

a'=2/,S;

be the chain on L' where Sp is the subdivision of Sy as above. Let 6^ : H^(L') -> H^(K)
be the induced map on homology. Then 6^(a') = a in H^(K) and, moreover,

T^(a') = a

as homology classes in H^(K) where T^ : H^(L') ->H^(K) is the map induced on
homology by T : L' -> K.

Step 2: Shrinking. — This is the main inductive step. Let a = Sp/p Sp be an
yi-cycle representing an ^-dimensional homology class in H^(^). We may assume that
each of the w-simplices Sp is non-degenerate. Let K C 8ft\ be the finite subcomplex
obtained by taking all faces of the simplices Sy. From Step 1 we know that a in H^(K)
is represented by the cycle r^(a'). We will show that r^(a') eH^(K) is represented by
an n-cycle ^(a) where a is an w-cycle having only non-degenerate n-simplices S on a
complex M' which is simplically isomorphic to L' and ^ : M' -> K is a simplicial map
with the property that whenever ^(S) is a non-degenerate simplex of K its vertices are
of the form

Vn n ... n V,
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where at least two of the vertices V^ e K are distinct. Since K is finite and K == K,
we can continue this process to eventually represent a eH^(K) in the form ^(a) where
i;: M -> K is a simplicial map from some high order subdivision M of K which takes
each ^-simplex of M into a simplex of lower dimension in K. This says that a = ^(a)
must be zero in H^(K).

Let E denote the set of vertices v of I/ which correspond to the vertices V of K
in 8ft ̂  under the homeomorphism 7]6. Let F denote the remaining vertices of L'. These
are all of the form v^ = {v^ v^) for v,, Vy e E. Under T^ each v e E goes to V e^\
and each v^ e F goes to V, n Vj e 8ft\.

For each vertex v e E, let €„ denote the set of all simplices in L' containing ». Let

C=U,eEC,.

Let D denote the subcomplex of L' consisting of those simplices with vertices in F. Then

L ' = = G u D

and G n D lies in the (n — l)-skeleton of L\ Observe that any {n — l)-simplex of Cy
having v as a vertex does not belong to G,, for u 4= v. Let ̂  be the part of a' supported
in G,,, let (B = S^E Pi»? anc^ ^et Y ^e ̂  P^ 0^^ supported in D. We have a' ==== (B + y.

Now fix a vertex y on E. We will construct a complex

M'==DuC,u[U^,CJ

simplicially isomorphic to L' where 6, is isomorphic to G,, but with a different ordering
of the vertices. We will also construct a complex P' containing M' and L' as deformation
retracts and will produce an n-cycle a on M' which agrees with a' on M' n L' and is
homologous to it in P'. In fact, P' will have exactly one more vertex z than L'. Finally,
we will produce a simplicial map S : P' -> K which agrees with T^ on L' and takes the
vertex z to a vertex in K of the form Vo n ... n V,. where at least two of the V, are
distinct. Continuing this for each vertex v e E gives a simplicial map ^ : M' -> K taking
each vertex to a higher order intersection Vo n ... n V,. and a cycle a on M' such that
S(a) = rja) in HJK).

So once again fix a vertex v e E. A typical simplex R in Cy looks like

<;Vi, ...,^,y,j^, ...,J^>

with fl + b = TZ, ^ e F, and y ^ e F. Under T^ this goes vertex by vertex to a simplex

< X , , . . . , X , , V , Y i , . . . , Y , >

where each X, and Y, is of the form U n V for vertices U and V in K, where V -> X,,
and V-^Y,. We allow for the possibility that there are no x^s or j//s and therefore

no X,'s or Y/s.
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Case 1: There are no A-/S appearing in any simplex of G,,.
Define P' to be I/ together with all faces of < v,y^ ... ,y^ z > where < v,y^, ... ,j^ >

is a simplex in €„. Define M' to be D u 6, u [U^, CJ where C, consists of all faces
of the <^i, .. .,j^, z >. The construction in dimension one is illustrated by the diagram

First we define the cycle a on M\ The chain (B,, is a sum of terms AR where h e Z
and R == < y,j\, .. .,j^ >. Let

s-C-irOi,...^^
and define ̂  by replacing each term AR of ^ by AS. Let

a=p,+S,^P,+Y.

Next we show a is homologous to a' in P'. This implies in particular that a is a
cycle. Corresponding to an ^-simplex R of G,,, let

T^-l)^1^,^...,^).

Let 8 denote the sum of all the terms AT as AR runs over the terms of ?„. We claim that

8(8) =a'-a.

To see this, first recall that the formula for the boundary of a term AR of ?„ is

a ( A R ) = = A < ^ . . . ^ > + ^ S ( - - l ) ^ < ^ ^ . . . , ^ . . . , ^ > .

Since 9yf = 0, the disjointness property of the (n — l)-simplices in the various ̂  implies
that summing up all the factors like (— ^Yh(v,y^ .. .3^,, .. .,j^ > for l ^ j ^ n
over all the terms AR in all the simplices of (3,, gives zero. Now compute the boundary
of AT:

8(AT) === (- l)^ A 0,, .. .,j^ z > + A < v^ .. .,j, >

+ ̂  (- \Y^ (- \Y h < ̂ , .. .^, .. .,^, . >.

Summing up the terms

(_ l )n+l (^ l )^<^ , . . . , ^ , . . . ^ , .>

for l ^ j ^ n over all terms AT will produce a coefficient equal to (— I)"4'1 times the
coefficient obtained by summing the terms (— 1)^' A < v,y^ .. .,J?p .. .,j^ > in 3(AR).
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Hence this coefficient is zero, and we therefore conclude that summing the terms 8 (AT)
is the same as summing terms

(^l)n+lA<^, ...,^,-0 +A<^, ...^>.

Namely, 8{8) = a' — a.
It remains to define ^ : P' ->K. Recall as above that if U ->V in ̂ , then

U -^ U n V <- V. In particular, U -> U n V -^ V. Also if U -^ X and V -> Y, then
U n V -> X n Y. The simplex < v,y^ .. .,j^ > of C, goes to < V, Y^, ..., Y^ > where
V -> Y,. Let Z denote the intersection of all these Y/s appearing for all the w-simplices
in C^. By (2.4) we know Z e^, and it is easy to verify that V-> Z and Y, ~> Z.
Extend T^ : L' -> K to the desired map ^ : P' -> K by sending

<^i>--..A^> to <V,Yi, . . . ,Y^,Z>

vertex by vertex.

Case 2: There is at least one vertex Xj appearing in some simplex
R == <A- i , ...,^,^, .. . , j^>

ofG,.
Define P" to be L' together with a face

T = < z,x^ ...,^,»,j^ • • • ^b>

corresponding to each R where possibly there is no ^ and a = 0. Define M' to be
D^u[U,^GJ

where C^ consists of all faces of the < z, x^ ..., A^,J^, .. .,j^ >.
To obtain a, let

S = (- 1)°< z,x^ ...,^,^, ...,^>

correspond to the simplex R of G,,. Let (B,, be the sum of terms AS as AR runs over the
terms in (B,,. As in Case 1, let

a=p,+S^,p,+Y.

To show a and a' are homologous, let 8 be the sum of the terms AT as ARruns through (3,,.
Again, we must show

8(8) = a' - a.

Consider the formula

a (R)=(~ i ) °<^ . . . , ^ , ^ . . . , ^>
0

+ S (— l)*-1^, ...,^, ...,^a»^l» • • •^6>
»='!

6

+ S (- l)04-^^, ...,^^1» •••^J» • • • / ^ > -

14
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As one sums over the terms 8(AR) in 3(a'), the last two sums in the above formula add
up to zero as in Case 1. Now consider

TO == <^i, . . ., ̂  ̂ 1» • • -^b> + (~ l)0^ ̂ i, . . .^a^l» • • -^>
a

+^(- l)1^,^, ...,.?„ . . . ,^>^l> • • •^>

+ ̂  (~ l)0^-^ < ^ ̂ , . . ., ̂ , ̂ , . . .,J,, . . .,J^ >.

There is a one-to-one correspondence between the terms in the last two sums in this
formula and the similar terms in 8R. The corresponding coefficients all differ by a factor
of — 1. Hence, upon summing the terms 3(AT), we see that 3(8) is the sum of the various
expressions

A < ^ i , ...,^,y,j^, .. . ,J^> -A(- l)^ z,x^ ...,^,ji, ...,^>.

In other words, 3(8) = a' — a.
Finally, we define ^: P' -> K. Let Z denote the intersection of all X, of all the

simplices R of €!„. Observe that V -> X^ and therefore V -> Z and X^ -> Z for all X^.
Since X^ V ->• Y, for all X, and Y^ regardless of whether X, and Y^ belong to the
same simplex in ̂ , it is easy to verify that X, -> X^ n Y^<- Y^. See (2.24) below.
Therefore X, ->Y^. In particular Z ->Y^ for all Y^ as well. Extend T^ : L' ->K to
S : P' -> K by sending

<2:,^, ...,^^^i» • • • ^&> to <Z,Xi, ...,X^V,Yi, .. . ,Y^>
vertex by vertex. This completes the proof of the inductive step.

We are now finished proving 8ft\ is contractible.
Next we discuss certain boundedness properties of the matrices M == M(U) where

U e^A- Recall that a non-negative matrix M = { M(^, t) } is row finite (resp. column
finite) provided each row (resp. column) has at most finitely many non-zero entries.
A matrix is locally finite provided it is both row and column finite. Let

||M||«=sup(S.M(M)),
11 M||i = sup(2. M(^f)),

|| M|) =max{|lM|U|M|| ,}.

Proposition 2.15. — Let M = M(U) for U e^- V A is finite, then M is finite. If A
is locally finite, then so is M and moreover |) A [| < oo implies || M || < oo.

If A is finite, then X^ is compact and therefore any cover by open and closed
disjoint sets must be finite. Hence M is finite. So now assume A is locally finite. The
proof that 8ft\ is connected shows that it is sufficient to consider the special cases
(I) U < V and /(U, V) < 1

(II) V < U and/(V,U)< 1
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where we assume (2.15) has already been proved for U e^ and must show it then
holds for V e^. The proof of these two cases is straightforward.

Next we consider Markov partitions from the viewpoint expounded in [F, p. 100]
which uses canonical coordinates. Let x e X^ and n e Z. Let

W'M ={j^=^t^n}

w"M==o^==^z^}.
If x,y e X^ satisfy XQ ==^o? ^en W^, 0) n W'(^, 0) consists of the single point z where
^ = x^ for i< 0 and ^ ==j^ for i ̂  0. Define [A:,^] = 2;. A set R C X^ is a rectangle
provided it is open and closed and x,y 6 R implies XQ ==jo and [x,jy] e R. If R is a rec-
tangle, let W8^ R) === WOc, 0) n R and W^, R) = W^A:, 0) n R. Then for any
A? e R we have W{x, R) X W^, R) ^ R via the correspondence (a, b) -> [i, o],

Definition 2.16. — .4 topological Markov partition of rectangles for CT^ on X^ is a covering
U == { U^} by disjoint rectangles such that if A? e U, and a^x) e U^, then

^(W^U^DW^W.U,)

^(W^.U^CW^W.U,).

Moreover U is said to be uniform provided U < U^— n, n) for some n ̂  0. Note that
U^ < U automatically because each U, is a rectangle.

We let S9^ denote the set of all topological Markov partitions by rectangles for <r^.
Clearly V^ e 3t^. The following proposition extends to 9t^ several properties which are
well known when A is finite.

Proposition 2.17. If U and V belong to 9i^ then so do U n V, U n (^(V), and
U n ̂ (V). Moreover, if V e SS^ then U e^.

The proof is similar to the case when A is finite. Note also that 3S^ is closed under
intersection while ^^ is not.

Remark 2.18. — The subcomplex 9t^ °f^A turned by only considering simplices
with vertices in 89^ is also contractible. The proof is the same as for 3ft ̂ . However,
St^ is closed under intersection; so we automatically know, for example, that the vertex Z
in Step III of (2.12) lies in 89^. It is not necessary to invoke something like (2.4).

The set of uniform equivalences Isom(<T^, a^) does not act on all of 3t^ but only
on "small" elements of^- For example, V^ e^ but (rl1^) ^A even though
(TA^U^ e^\. However, ^1(VA(— 1,0)) e^- Here is the precise Statement.

Lemma 2.19. — Let a^, ..., a^ be a finite collection of uniform equivalences from X^
to Xg. Let m ̂  0. Then there is an integer n ̂  0 such that for each j = 1, ..., k if V e St^
refines U^— n, n), then a^(V) e ̂  awrf a,(V) r /̂m^y U^-— w, w).
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Definition 2.20. — Any partition V as in (2.19) will be called (a, w, n)-small, or,
for brevity, just v-small.

Proof of 2.19. — This is well known [F] for finite matrices. For completeness we
give the argument in the general case.

Let y and ^ be the state spaces for A and B respectively. Recall from [H, W2]
that a uniformly continuous a : X^ -> Xg can be written in the form a = CT^ h^ = h^ <r^
where h^ is a {p + 1)-block map determined by h: y^~1 ->^. Here ^+1 consists
of those {p + l)-tuples [XQ, ...,^] with A(^,^) =1 for 0^ i ^ p — 1, and A
satisfies B(A(^> • • • > ^p). A(j/o, .. .,jy)) == 1 whenever ^ ==^_i for 1 < i^ p.

Consider the special case of a single a : X^ -> Xg of the form a = Aoo. Suppose
U^O,^) < V and R is a rectangle of V with x e R. We will show

oc(R) is a rectangle,

^W^R^W^aM^R)),

^W^R^W^aM.o^R)).

Property (2.16) for a(V) is an immediate consequence of this. For brevity of notation,
let W^) = W"(^, k) and W^) = W3^, K).

( a ) a(R) is a rectangle.
Let x,y e R. Then [a(A:), a(j/)] = a[A;,j»] e a(R) because x, ==jy, for 0 < i < j&.
( b ) a(W^,R))==W8(aM,a(R)).
Clearly the left-hand side o^W8^)) n a(R) is contained in the right-hand side

W^(a(A;)) n a(R) because a(W^(,v)) C W^(a(A:)). To see the other way around, suppose
that z = v.(u) for some u e R and that ^ = a(^), for i ̂  0. Let y = [u, x] e W^(^).
Then v e R and a(») == z because ^ === ^ for 0 ̂  i ̂  p.

( c ) a(W"(^ R)) == W"(aM, a(R)).

The assumption on R implies that W^A:) n R = W^(^) n R. Since

a(W",M) C WS(aW),

we see that the left-hand side a(W^(A:) n R) = a(W^(A:)) n a(R) is contained in the
right-hand side. Conversely, suppose z satisfies z == v.(u) for u e R and ^ = a(^ for
i < 0. Let y == [̂ , M] e W^(A:). Then v e R and a(») == ,? because ^ = ^ for 0 < i ̂  p.

It remains to see that a(V) is a uniform Markov partition. Suppose V < U^— k, K).
By uniform continuity of a~1 there is an I ^ 0 so that U^— A, k) < a'^U^— ̂ )).
Then a(V) < aQJ^-M)) < UB(-^,/).

It is now clear that given any m ̂  0 and a finite collection of block maps written
in the form c^h^, it is possible to choose n so large that the conclusion (2.19) holds.
This completes the proof.

We now discuss the action (2.3) ofAut^) on ̂ . If G is any subgroup, let ̂
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denote the subcomplex of all simplices which are pointwise fixed by G. Assume, moreover,
that A is finite.

Proposition 2.21. — (A). ̂  is non-empty if and only if G is finite, in which case ̂  is
contractible. (B) The action of Aut(<rJ on 8^^ is properly discontinuous.

Proof of (A). — Assume [ G [ < oo and let U e 9t^ be small. Since St^ is closed
under intersections the partition n^gQa(U) is again in 3t^ and is fixed by G. Thus
^ is non-empty. The proof that ̂  is contractible carries over directly to ̂  using
the fact that if U and V are partitions fixed by G, then so is U n V. As in the proof
of (2.12) these intersections are only to be taken under circumstances where they will
still be Markov.

Conversely, we now show that if U e^^? then the isotropy group H(U) of U
in Aut(oJ is finite. Let B = M(U) as in (2.5) and let 6 : X^ -> Xg be as in (2.6).
Observe 6(U) = U®. Therefore, if a(U) = U, then p == 6a6-1 eAut(^) fixes LP and
determines a permutation matrix (JL((B) of the states corresponding to the sets in U such
that (J(.(|B)B == B(Ji((3). Conversely, any such permutation gives a one-block automorphism
of erg and hence an automorphism of a^. This procedure defines an isomorphism
between H(U) and the finite group of such permutations.

Proof of (B). — We show that if K is a finite subcomplex of 8^ ̂  and H is the set
of symmetries a satisfying K n a(K) =t= 0? then H is finite. For each pair of vertices (U, V)
o f K x K , let H(U, V) denote the set of those a for which a(U) == V. A given H(U, V)
may be empty, but H is the union of the finite collection of the H(U, V). Moreover,
H(U, V) is a coset of the isotropy subgroup H(U) which is finite by (A).

Finally, in this section we present some facts about Markov partitions which will
be used in § 4.

Lemma 2.22. — Let U, V e^. If U -> V and U -^ V, then U == V.

Proof. — Let U =={U,} for i el and let B = M(U). According to (2.6) there
is an isomorphism a: X^ -^Xg between o^ 3Ln^- ^B under which a(U,) = U®, the
standard cylinder set for i el. Thus a(U) == U3. Moreover, a(V) e^g and we have
U® -> a(V) and U® -> a(V). So it really suffices to consider the special case U = U^.
Let V^ e V. Since U < V < U(— 1, 0), we can write

V.=U^^A(U,)nU,

where V^C Vy. Thus all q e y for which A(j, q) •== 1 can occur as q == x^ for some
x=={x^}eV^. On the other hand, write

V^U^U.nol1^)
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using the hypothesis U < V< U u ^^(V). From above all q with A(j, q) == 1 can
occur. Thus

V^U.U^n^U^U,
where A(j, y) = 1.

ZCTima 2.23. — If V, W, X e ̂  w^ fAc condition V -^ X ̂  W, fAw X = V n W.

Proo/. — Check that VnW-^X-^VnWand apply (2.22):

X < V n CTA^V) < (W n CTI^W)) n (V n (r^V))

I
(V n W) n (^(V n W)

X < W n ̂ (W) < (V n a^(V)) n (W n ̂ (W))

(V n W) n <T^(V n W)

Lemma 2.24. — Z<f U, V, W €^ ^"ĵ  V -^ U -^ W. TAw V -^ V n W •̂ - W.

Proof. — We have U < V, (̂ (U) < (^(V), and W < U n CTJ^U) < V n a^\V).
Hence V n W< V n (V n (TI^V)) = V n (TA^V). On the other hand, we have
U < W, ^(U) < <TA(W), and V < <^(U) n U < <^(W) n W. Therefore

V n W < (<IA(W) n W) n W = ̂ (W) n W.

3. The triangle identities

The main goal of this section is to prove the algebraic identities (3.3) arising
from triangles in y^.

Let U ={U,} and V =={V,J be any two vertices of ^- As m [pw] define
R = R(U, V) and S = S(V, U) to be

1, if U, n V» + 0R(z, K) =
[ 0, otherwise

(3.1)
S ( k i ) - l 1 ' if vt n CTA1(U() + 0
^{^ ^ —— \

{0, otherwise.

Let P == M(U) and Q,= M(V) be as in (2.5).

Proposition 3.2. — If U -> V, then P == RS and Q^== SR.

Remark, — We have not made any assumptions about finiteness of the matrices.
So part of (3.2) asserts that R(f, k) S{k,j) = 1 for at most finitely many k. Similarly
for S{k, i) R(i,t). In fact, a step in the proof is to show RS and SR are indeed zero-one
matrices.
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Proofof3.2.

Step I: RS = P. Fix a pair of indices (i,j). We must show
P(t,j)=S,R(^)S(A,j).

First assume the right-hand side (RHS) is not zero. We will verify that the
left-hand side (LHS) is non-zero and, moreover, only one term on the RHS
is non-zero. Since U < U n V < (^(V) n V we can write U, as the disjoint
union U, = U (^(^0) n ̂ b °^ certain <r^(VJ n V^ 4= 0. Similarly we write
U^ == U o^^c) ^ Vd where (TA^) n V^ + 0. Suppose k is an index where
R(t, k) S(kJ) = 1. Then U, n V^ + 0 and V^ n (^(U^) =(= 0, and therefore some
b == A and some c = k. In particular,

U, n ̂ (U,) 3 < (̂V,) n V» n ̂ (V,) + 0

for some pair of indices (a, d) where the triple intersection is non-empty by ( c ) of (2.1).
In particular P(i,j) + 0. Recall that V < U n V < U n (^(U). Therefore, if a pair
of indices (?,j) is given with U, n ^A1^,) =t= 0? then there is only one V^ such that
\t 3U, n CTA^U^). Therefore, if R(i, A) S(^,j) = 1 we have

V, 3 U, n ̂ (U,) 3 ̂ (VJ n V, n al̂ V,) + 0

and k is determined by the pair (i, j). That is, there is only one k with R(i, K) S{k, j) = 1.
Conversely, suppose P(i, j) = 1. We show there is a A satisfying R(t, k) S(A, j) == 1.

Let Vfc be the unique k such that V^ DU, n cr^U,) + 0. Then U, n V^ + 0 and
Vfc n ^(U,) + 0. Hence R(i, k) S{k,j) = 1.

Step II: SR = Q. Fix a pair of indices (A,^). We must show
Q^)==S,S(^,t)R(^).

Assume RHS is non-zero. We must show Q,(^, f) + 0 and that there is exactly one i
such that S(yfe, i) R(i,^) = 1. Write V^ = U U^ n ^(U,) and V^ = U U, n (TA^UJ
using the condition V < U n V < U n (T^^U). Let i satisfy S(ft, i) R(i,^) = 1. Then
some b == t and some <? == i. Hence

V, n olTO D U, n al̂ U,) n ̂ (U,) + 0

for some pair of indices (fl, d), where the triple intersection is non-empty by ( c ) of (2.1).
As in Step I, we use the condition U < U n V < (s^{V) n V to show that i is determined
by k and I . Conversely, suppose QJ^k^l) = 1. Let i be the unique index such that
U, 3 (lA(Vfc) n Vf + 0. Then S(^, i) R(i,/) == 1. This completes the proof of (3.2).

Now consider a triangle
rV^
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in^, where U={U,} , V = { V ^ } , W = = { W ^ } , and let

M = M(U),

R^=R(U,V) , S^==S(V,U)
Ra==R(V,W) , S2==S(W,V)

R 3 = R ( U , W ) , S3==S(W,U).

Proposition 3.3. — Triangle identities:

R^ Rg == R3

S^ -SaM.

Step I: The triangle identity/or the ^-matrices.
The argument proceeds by several special cases. Consider the triangle

where e, == ± 1 for i = 1, 2, 3. If all e, == + 1, then it follows easily from (3.1) that

(3.4) R(U, W) == R(U, V) R(V, W).

If all e, = — 1, we similarly have

(3.5) R(W,U) =R(W,V)R(V,U).

Lemma 3.6. — If one e, == 1 and another s, == — 1, then either U == V or V = W.

Proof. — By (2.22) it suffices to show that either U -> V or V -> W. There are
four cases to consider. For example, suppose Si === 1, eg = — 1, and £3 == 1. Then
W < U n (TA^U) < V n (TA^V) so that V -> W. Hence V -> W. The other cases are
similar.

Lemma 3.7. — For any U, V e^? we ^ave

R(U, V) == R(U, U n V) R(U n V, V),

proof. — Easy from (3.1).

Lemma 3.8. — If V ̂  U -> W, then

R(V, W) = R(V, U)R(U, W).
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Proof. — Let R^ === R(V, W), R^ = R(V, U) and R3 == R(U, W). Let U ={ U,},
V == { V^ } and W == { W^}. We must show R,. = R^ Rg. First observe that R^ R^ is
a zero-one matrix. To see this, fix a pair of indices {k, I ) and write

V, ==U,^(UJnU,
W^U^nolTO. -

Suppose a term R^A, j) R^U^ ^) == 1 in the sum 5^ Rg^, j) R3(y, /'). Then V^ n U,. =t= 0
and U^ n W^ 4= 0. This implies j == b == c. Thus j is determined by {k, 1} and there
is at most one non-zero term. Moreover, V^ ^W^3o^(UJ ^U^no^^U^) which is
non-empty by ( c ) of (2.1). Thus, R^{k^) == 1. Conversely, if Ri(M) = 1? ̂ hen {or

some pair of indices (a, rf)

^ ( U J n U ^ n U ^ n o l ^ U J

must be non-empty. Thus b = c and the term R^j) Ra^,^) = = l f o r j = = A = ^ .
Now observe that the triangle < U, V, W > gives rise to the following commutative

diagram of Markov partitions:

^ V <

From (2.22) we see that U n W = = U n V n W . Hence

^ V v

(3.9)

Note in particular that V < U n W. The required R-identity is now a consequence of
several applications of (3.4), (3.5), (3.7) and (3.8).

15
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Step II: The triangle identity/or the ^-matrices.

The diagram (3.9) yields the commutative diagram

(3.10) U _ v /

^^ U n W ̂ ^M

Let TI = S(U n W, U) and Tg = S(W, U n W). We now verify the identity
(3.11) S,S,==T,T,.

Fix a pair of indices {p, i) and consider the two expressions
(LHS) S,S,(AA)S^i)
and
(RHS) S^ T,(̂  (y, j ) ) T^q, j ) , i).

In general, these sums will be non-negative integers and not just zero or one. We prove that
LHS = RHS by showing that for each pair (y, j) for which T^p, (y, j)) T\((y, j), i) == 1
there is exactly one corresponding index k such that SgC^ k) S^{k, i) = 1 and vice versa.
Let a = CT^.

Let ( ^ J ) be an i^dex pair such that T^p, {q,j)) Ti((y,j), i) = 1. Let V^ be the
unique element of V such that V^ 3 Wg n U^ 4= 0. Then

W^ n (T-^V^) D W^ n o-^W, n U )̂ + 0,
V, n ̂ (U,) 3 W, n U, n o-^U,) + 0,

so that Sa(^,A) S^A, i) == !• Now suppose (q\f) is another pair such that
T2(A(?',^))T,((yV),t)=l

and let A' satisfy V^, D W,, n U^ + 0. If we can show that the condition {qj) + {q^j'}
implies k =t= A', then we will know that RHS < LHS. From (3.9) we can write

W^U^^no-^
W^U^V^na^V,)
U, =U^o(V,)nV,

U, ==U^o(V,)nV,. ,

Then we can write Wp n ^(Wg n U^) + 0 more explicitly as

Uo,M,d.e./(^ ^ <rTO) n (o-1^) n o-^V,)) n (V, n ̂ (V,)).

Since V < W n U and V < a(W) n W, we have ^(V) < W n o-^W) n o-^U).
The above expression then simplifies to

U,̂ (V, n o-TO) n (a-^V,) n a-W) n (V, n a~TO).
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Since CT'^U) < W n or'^W) we must have

W^ n CT-^W,) n (T-1^) = W^ n o-^W,) C a-1^)

and can therefore conclude

(3.12) every a for which V^ n o'^VJ + 0 in the expression for Wp must
occur as some e for which o(VJ n V^ =t= 0 in the expression for U^.

Next write Wg n U^ n (T^CU^) + 0 more explicitly as the union

U,,,, .,/,,,»(V. n cr-TO) n (a(V,) n V/) n (V, n a-^V,)).

Since V < W n U a n d V < U n o-^U), we have V < W n U n (T-^U). The above
expression simplifies to

U,,,,,(V, n a-W) n (o(V,) n V,) n (V, n <r-TO).

Since W < U n o-^U), we see that W, n U, n (T-^U,) = U, n CT-^U,) C W, and
therefore have
(3.13) every h for which <r(V,;) n V^ + 0 in the expression for U, must occur

as some d for which V^ 0 ^"^(V^) + 0 in the expression for W,.

Suppose now that k = k ' . It then follows from (3.12) and (3.13) that
(W, n U,) n (W., n U,,) + 0,

contrary to the assumption that (y,j) + (?'»,/')• Hence k + k' and the correspondence
{q,j) ->k sends no two ,(y,j") to the same k.

It remains to show that LHS < RHS. Choose an index k such that S^(p, k)S^(k, i) = 1.
This means W, n CT-^V^) + 0 and V^ n c-^U,) + 0. Use (3.9) to write

W^U^V^na-TO,
U. -U^o^nV,.

Then
W,n<r-TO=U,V,n<T-TO,
V, na-W) =U,V,na-l(V,).

Hence the Markov property (2.1) implies
W^ n cr-TO n o-̂ U,) + 0.

Now write
V.=LL.,W.,nU.,'k — ^x^ " ' x ' • -v

and then
W, n (T-TO = U,,, W^ n a-^WJ n (T-̂ U,)
V, n d-̂ U,) == U.,, W, n U, n a-̂ U,).
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We see that there must be some Wg n Uj in the expression for V^ such that

W^ n o-^W,) n (T-^U,) n (T-^U,) + 0.

In particular,
W^ n o-^W, n U^) + 0
(W, n U,) n (T^U,) + 0

so that TgQ^, (y,^*)) T^((y,y), i) == 1. We demonstrated above that for a given V^
satisfying SgQ^ ^) Si(^, i) == 1, there is exactly one pair (y,j) satisfying the above con-
dition. Hence the correspondence k->{q,j) is well defined. It is clearly injective;
because if k -> (y,j) and k' -> (^,7), then V^ n V^ 3W^ n Uj. =t= 0 which is contrary
to the basic assumption that the V^ are disjoint. This completes the proof of (3.11).

The proof of the triangle identity for the S-matrices occurring for the triangle
< U, V, W > now follows from two applications of (3.10): the first for (3.10) as is, and
the second for (3.10) with U == V because in this case 83. == S(V, U) == M and
Sg==S(W,U) =83.

This completes the proof of (3.3).

4. Invariants for Aut(<7^)

We first construct a homomorphism from Aut(o-^) to the fundamental group
TCi(S(<^), A) of the space S(^) of shift equivalences.

Throughout this section we let S denote the set of y by ^ zero-one matrices M
on products y X ^ of various finite or countable state spaces y and ^ such that each
row and each column has at least one non-zero entry. We will moreover assume that
the matrices in S belong to one of the four following classes:

(a) M is finite
( b ) M is infinite but locally finite

(4.1)
( c ) M is infinite and [ [ M 11 < oo
( d ) M is infinite.

In case ( d ) there is the tacit assumption that a product RS of matrices is written only
when it is well defined. Thus the equation P == RS assumes that even though we may
have R(t, k) > 0 and S(^,j) > 0 for infinitely many k and /, there are only finitely
many k such that R(i, k) > 0 and S(A, j )>0 simultaneously for a given pair of indices i
andy. It is not hard to verify along the lines of (2.15) that ifU -> V in 8^ ̂  and A is in <?,
then the matrices R and S of (3.1) also belong to S. We let € be the category of matrices
formed by taking the <( closure " of €\ namely, all products of matrices in S. A standard
state splitting argument as in [K] shows that € consists of all non-negative integral
matrices satisfying the corresponding condition in (4.1) as do the matrices in €.
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Let A be an y x y matrix and B be a ^ X ^ matrix in /. Recall from, say,
[E] that a shift equivalence R : A }-> B in / is an y X ^ matrix R in € such that there
exists a J x V matrix S in € and an integer n> 0 satisfying

, , . AR = RB, SA == BS
(4.2)

RS ^A^ SR ==3^

Observe that if P : A h-> B and Q: B h> G then PQ: A h> C.

Definition 4.3. — The space S{/) of shift equivalences in € is the realization of the
simplicial set where an n-simplex consists of
a) an (n + 1)-tuple < Ao, ..., A^ > of square matrices A, in <f, and
b) a shift equivalence R,: A^_i \-> A^ in ^ for 1 ̂  i ̂  w.

The face operators come from composition and the degeneracy operators insert the
identity. See [S] or [Sp] for background on simplicial sets and simplicial complexes.
It is immediate from the definitions that the set of path components TCo(S(<?)) of S(<^)
are just the shift equivalence classes of matrices in €.

Take note of the following conventions. Composition will be read from left to
right in S and €. In the category of sets and functions or of spaces and continuous maps,
composition will be read from right to left. Thus ify: X -> Y and g : Y -> Z are functions,
then the composition is gf: X -> Z. Also, in the category of right modules and module
homomorphisms composition will be read from right to left. Iff: I ->J is a bijection
of sets, let f also denote the J X I permutation matrix which is 1 in the (j, i) entry if
and only if j ==f(i). If f: I ->J and g :J -> K are bijections then the K X I matrix
associated to gf is the product of the K X J matrix for g followed on the right by the
J X I matrix for f.

Let a : X^ -> Xg be a uniform equivalence from a^ to cr^. Let U == { U,}
be in ^ with P = M(U) and let U ' = = { U ; } be in ^ with P' = M(IT).
Assume a(U) == { a(U,) } == { U; } = U'. Then U^ n CT;1(U^+ 0 if and only if
a(U,) n ^^(U,)) =(= 0. Considering a as a bijection between the indexing sets I for U
and K for U', we have the matrix identity
(4.4) P' == aPoT1.

Hence
a-^P^P' and a : P'h> P.

Suppose now that U ->V in ̂ - Let Q= M(V) and let R and S be as in (3.1). Let
V' = a(V) e^g. Then U' -^V in ^g and we have the corresponding matrices R'
and S'. These matrices satisfy the matrix equations

Q: == aQpr1
R' = aRa-1

S' ==aSa-1
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which translates into the following diagram
p ,————-———^a

(4.5)
a-1

of triangles in S(<?).
Now let A and B be endomorphisms in € which lie in the same path component

of S(<?). We let

^(SW;A,B)

denote the set of homotopy classes of paths starting at A and ending at B. Concatenation
of paths gives a pairing

7r,(S(<?); A, B) x 7r,(S(^); B, C) -> 7T,(S(^); A, G)

denoted by <( * ". When A == B we just get the fundamental group TT^S^), A). If
Y e T^(S (<sf); A, B), then y~1 denotes the path in TCi(S(^);B,A) which is the reverse
of Y going back from B to A. If R : A \-> B in /, let y(R) e ^i(S(<^); A, B) be the homotopy
class of the corresponding edge from A to B in S(<f).

Lemma 4.6. — ( a ) Y(a)-1 = Y(a~1).
( b ) If Y 6 ̂ {S(/); A, B), then y(A) * y == y * Y(B).

Proof. The proof of (a) is left as an exercise. To verify ( b ) y observe that since y
is a product of paths Y(R)::1:1, it suffices to consider the case y = vW- The formula then
follows from the diagram

A

(4.7)

Let Isom(o-A, a^) denote the set of all uniform equivalences from (X^, o^)
to (XB,^).

Proposition 4.8. — There is a map ^ == ip(A, B) from Isom(o^, Gg) to ^i(S(J); A, B)
such that if a e Isom((y^, o^) fl^rf (3 e Isom(G-B, (T^), ^w

+(pa) == +(a) * +(?).

Considering a^ e Isom(<j^, (T^) we have

<K<rJ == y(A).
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From this we get a homomorphism

^:Aut(oJ^^(S(<?),A)

by taking A = B and letting ^(^ == ^K00""1)*
The proof of (4.8) is based on the following more technical result.

Proposition 4.9. — Let U and V be in ̂  ̂  P ==M(U) and Q^== M(V). Then
there is a well defined path F(U, V) in T^(S(<?); P, QJ such that

F(U, u) = i
F(U, w) = F(U, V) * F(V, w).

Moreover, if a e Isom^, c^)? ^n

r(a(U), a(V)) == y(a) » F(U, V) * y(a)-1.

Consider the special case U -^ V in ̂ . Then define F(U, V) == y(R). In general,
choose a path from U to V in ̂  which is a concatenation of edges < U(i — 1), U(i) ^^
for i = 1, ..., n where e(i) = ± 1, U(0) == U, U(n) = V, and U(i - 1) -^U(i).
Then define

(4.io) F(U,V) = ^(u,u(l))c( l )*^(U(l),u(2)) t (2)•... * r{V{n -1)^^))^.
It must be shown that r(U, V) is independent of the particular path chosen in ̂  from U
to V. Before completing (4.9) we show how to derive (4.8) from it.

Proof of Proposition 4.8. — Let a e Isom(cr^ o^)- As in (4.4), we have
a-1: MOT ̂  M^aOT). Define

(4.11) 4/(a) = Y(a-1) * ̂ (U^, U3).

Now let a e Isom(c^, 0^) and p e Isom(GTB, (T^). Then

+(pa) == y(a~1 r1) * ^(pa(UA), U°)

== Y(a-1) * Y(r1) * r((3a(U^ p(UB)) » ^(p(UB), U0).

From (4.6) and (4.9) we see that

r^a^), ̂ u8)) == y(p) * ^(a(uA), u8) * v(r1).
Substituting and then simplifying gives

Y(pa) == Y(a-1) * ^(a(UA), U3) • y(r1) * FCP^), U0)
==^(a )*^(p) .
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To compute ^^A^ ^et ^A = { U^ } be the standard partition and let a == (T^» Observe
that ^(U^ -> t^ because ^(U^ -> ^(U^ n L^ <^ UA. Then we have the triangle

MMU^))

in S(<^) which shows

+(^) = Y(^-1) * WU^, U^) = y(A).

Proof of Proposition 4.9. — From the definition (4.10) we have F(U, U) = v(l) = 1.
We also see that F(U, V) • F(V, W) == F(U, W) provided F is independent of the
path chosen from U to V in 3ft\. But this follows immediately from the Triangle Iden-
tities (3.3) and simple connectivity of^. The property

F(a(U), a(V)) == y(a) * F(U, V) • y(a)-1

is a consequence of (4.5) and (4.6). This completes the proof.
In dynamical systems and operator algebras inverting functors provide a way to

obtain invariants for the shift dynamical system (X^, <yj. Here is a framework for
making these constructions natural enough to get invariants for Aut((rJ. When A is
finite it turns out that the dimension group is ubiquitous.

As usual let € be one of the four classes (4.1). Let Q be a category where compo-
sition reads from right to left. Assume that iff and g are morphisms and both fg and gf
are isomorphisms, then so are f and g. For example, Q could be an abelian category.
An inverting functor F on S first of all assigns to each endomorphism A of<? an object F(A)
of Q. Next suppose A and B are endomorphisms of € and X is a morphism of S such
that AX = XB. We are then given a morphism /(X) : F(B) -> F(A) which must satisfy
the composition rule V(XY) =jf(X)y(Y). Finally, observe this produces a morphism

y*(A) : F(A) -> F(A) for each endomorphism A in S. We say F is inverting provided
/(A) is an isomorphism. A wholesale method for manufacturing such F is to take
F(A) = coker(I — Ay (A)) or F(A) = ker(I — Ay (A)) where q is a polynomial over a
commutative ring A and Q is the category of right A-modules and A-homomorphisms.
A shift equivalence R : A \-> B induces ./(R) via the A-homomorphism

R:A[T]->A[S].

Some familiar examples are

(i) F(A) == coker(I — tA), A = Z[t, r1]. This is the dimension group. See [BF],
[Gul], [GK], [K], [E], [W2].

(ii) F(A) == coker(I - A), A == Z.
(iii) F(A) = ker(I - A), A == Z.
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(iv) F(A) == coker^ ^ A ^^ A == Z. See [BF], [Gul], [Cu2], [F].

(v) F(A) = I bounded solutions of I — - A == 0} where A is infinite. See [KV] and
I n )

(4.25) below.

Observe that if F is an inverting functor, then F(A) is an invariant of shift equi-
valence. This is because/(R)/(S) ==/(RS) =f(P)n and/(S)/(R) =/(SR) =/(Q,)\

Let A, B be endomorphisms in /. Isom(/(A),/(B)) will denote all the
isomorphisms g : F(A) -> F(B) in Q such that /(B) g == gf{A). When A = B, we let
Aut(/(A))=Isom(/(A),/(A)).

Proposition 4.12. — Let A, B be endomorphisms in <?. There is a map ^y = ̂ p(A, B)
from Isom(o^, erg) to Isom(/(B),/(A)) such that if a e Isom ,̂ c^) an^ P e Isom((TB? ^c)?
then

^(Pa) == ^(a) ^((3).

If A = B, ^n

^p(^) =/(A).

From this we obtain a homomorphism

(4.13) ^^:Aut(oJ^Aut(/(A))

by taking A == B and letting ^^(^ == ^v^1)9

The homomorphism 4'p A was ^lrst developed in connection with the algebraic
K-theory group K^. See (4.21) below. D. Lind observed that the method goes through
for F(A) = coker(I — Ay (A)) with basically no changes. This led to (4.12). There are
entirely similar versions of (4.12) and (4.13) depending on whether F is covariant or
contravariant and on whether composition in Q is read from right to left or vice versa.
The general character of (4.12) suggested that there should be a " universal version ".
This turns out to be the case and involves the dimension group.

Proposition 4.14. — Let F : € -> Q he an inverting functor and let A, B he endomorphisms
in €. Then there is a map

^ = ̂ (A, B) : ̂ (S(^); A, B) -> Isom(/(B),/(A))

such that

(i) if Y e ̂ (S(<?); A, B) and 8 e n^S{/); B, C), then ^(y * 8) = ̂ (y) ^(8).
(ii) 7)p takes y(A) e 7Ci(S((f); A) to /(A) in Aut(/(A)).

The required map of (4.12) is then clearly just

(4.15) ^=^)p+.
16
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The proof of (4.14) is really<( general nonsense ". See [QJ. But for the convenience
of readers who find [QJ overly abstract, we give a more concrete formula for ^p in the
spirit of (4.10) and (4.11).

Assume U ->V in .̂ Let P = M(U), Q,= M(V) and R = R(U,V). Then
define

/(U,V) =/(R) eIsom(F(QJ,F(P)).

In general, for any U, V e ̂ , choose a path from U to V in ̂  which is a conca-
tenation of edges < U(i — 1), U(t') ̂  for i == 1, . . . , n where e(t) == ± 1, U(0) = U,
U(») = V, and U(i - 1) -^ U(i). Let

(4.16) /(U, V) = n/(U(» - 1), U^-))8'".

Remember we are reading composition from right to left in Q. If a e Isom(<r^, ffg), then
(4.17) ^(^/(a-^aCLJ^U3).

Now we discuss the unique role played by the dimension group G(A).
Let € be as in (a), ( b ) or ( c ) of (4.1). Let A e / and define

G(A) == lim Z[y] -^ Z[y]
^ coker(I — tA)

as in [E], [W2], G(A) will be considered as a right Z[t, r-1] -module. Let G(A)^.
denote the set of positive elements and let s^ == ^(A). The homomorphism
•^Q : 7Ti(S(<?); A) -> A~[it(g{A)) is constructed by sending a path in S(^) corresponding
to R : P h> Q, to the isomorphism g{R) : G(QJ -> G(P) which takes G(QJ^_ to G(P)+.
In particular, for each loop y e7^l(S(^), A), the isomorphism ^(y) preserves the order
structure of G (A). Let Aut(G(A), G(A)^., s^) denote all those automorphisms of G(A)
which preserve the order structure and commute with s^.

Proposition 4.18. — If A G € is finite, then

^:^(S(^),A) ^Aut(G(A),G(A)^J

is an isomorphism.

Corollary 4.19. — If A e S is finite, then ̂  ̂ : Aut(a^) -> Aut(/(A)) factors through
Aut(G(A),G(A)^).

Proof of 4.18.

Surjectivity of T] == Y]Q: This is another way of interpreting Krieger's argument
proving that two finite non-negative integral matrices are shift equivalent if and only
if the triples (G(P), G(P)+, Sy) and (G(QJ, G(QJ+, s^) are isomorphic. See [K, 4.2]
or [E, 6.4]. In fact, the argument shows that any element in Aut(G(A), G(A)^., s^)
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is the image under ̂  of a path of the form y(R) * Y^)" where R : A \-> A is a morphism
in S(<?) and n e Z.

Injectivity of T] = T]̂ : Let R : P }-> Q, be a path in S(<f) and choose S : Q^\-> P as
in (4.2) so that RS == A^. Then y(R) * y.(S) = Y(A)fc and hence y(R)-1 == y(S) * vCA)-*.
Any loop y in ^(8(^)5 A) is a product of paths yW6 for e == ± 1. Hence it is a product
of paths y(R) * Y(p)fc tor A eZ and various P. Since y(P) * y = Y * Y(QJ> the Y(p)fc

can be pushed to the end of the product. The relation y(Ri. Rg) == y(^i) * Y(^2) can

then be used to deform the loop to one of the form y^)" * y(R) for some n e Z. Since
all matrices are assumed to be finite, it is a consequence of the definition ofG(A) as a direct
limit that shift equivalences P : A \-> A and Q^: A h> A induce the same automorphisms
of G(A) if and only if there is a non-negative integer k such that Afc P == A^ Q. We
want to apply this under the assumption that ^(y) == !•

Case 1: Y = Y^)" * yW^ n ̂  0. Then y == Y(A" R). Since we assume A" R induces
the identity on G(A), there is a k ^ 1 such that A f c =A f c A n R. Hence, we have
Y(A)fc = Y(Afc) = Y(Afc A" R) = yCA^ * Y(A" R") and ^{A" R) == 1.

Case 2: Y == T^)"" * Y(^)? n ̂  0- Then R and A" induce the same automorphism
of G(A) and A^ R = A^ A" for some k ̂  1. We then have

Y(A)fc * y(R) = YCA^ R) = yCA^ A**) = Y(Afc) * Y(A").

Hence y(^) = Y(A)"? which gives y = 1.

Product Formula

Let F : <^ -> Q be an inverting covariant functor into a category Q of right modules
over a commutative right with identity 1. We say F is compatible with tensor products provided
there is an isomorphism F(A®^B) ^ F(A) ®z F(B) of A-modules whenever A and B
are endomorphisms in § such that if R : A^ \-> Ag, then there is a commutative diagram

F(A^B) £ F(Aa)®zF(B)

/(K®1) /(B)®1
t t

F(Ai®,B) s F(Ai)®zF(B)

The prime example is the dimension group G(A), which is compatible because the
tensor product commutes with direct limits.

Let (XA, a^) and (Xg, (Tg) have standard partitions V^ = { U^ } and U® = { Uf }
respectively. Let G = A ® B. Then

C((^Ji). (1*2^2)) = A(t\, t-a) B(^,^)

and consequently there is an isomorphism

(^A®B? ^A^a) ^ (XA X Xg, G^ X (Tfi)

under which U0 == UA X U® =={1^ X U®}. In particular a^ X 1 eAut(<yA0B)-
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Proposition 4.20. — If F is compatible with tensor products, then

kA®B(^A X 1) =+F,A^A)®1-

Proof. — Direct computation using (4.17) similar to the proof that ^(0'^) == Y(A)
in (4.8).

Relation to Kg
Let F be a field and for each prime ideal ^C F[^, t~1], let 7y denote the field

F[>, r1]!^. Let Kg be the algebraic K-theory group of [Ml],

Proposition 4.21. — Assume A is finite. Then there is a commutative diagram

K,(F(<))

Aut(<rJ

e^
wA^ 0 î  the tame symbol. The image of K^ is contained in the sum of those F̂ i where 3ft divides
det(I - tA).

The first step is to define K^ and K^. Suppose A is an m x m matrix. Let
G(A; F) == G(A) ® F == lim F"1 -> F"1 ̂  coker(I — tA) where I — tA is now viewed
as an m X m matrix over F[^ r1]. Since G(A; F) ^ Image(Afc : F"1 -> F"1) for k large
enough, it is finite dimensional over F. If a eAut(cr^), then ^(cn) ls a vector space
automorphism and both ^o(a) and I — /A are commuting automorphisms of
G(A; F) ®p F(^) as a vector space over F(^). We let
(4.22) K^(a) == ^(a) * (I - tA)

where the " * " product is defined in [Ml, § 8].
Since G(A$ F) is finite dimensional over F, it is certainly a finitely generated torsion

module over F[^ t~1]. Let G(A; F)y denote the /^-primary part of G(A; F), i.e., those
elements killed by some power 8ftr. Then G(A; F) decomposes naturally as a direct sum

G(A;F)^©G(A;F)^.
y

Each G(A; F) is filtered as
G(A; F)^ 3 ̂ G(A; F)^ 3 ̂  G(A; F)^ 3 ... 3 ̂ r-1 G(A; F)^ 3 0

so that Gy = ̂  G(A; F)^/^914"1 G(A; F)^, is a vector space over F^i. Any automorphism a
ofG(A$ F) as an F[^, t~1] -module takes each G (A; ¥)y to itself and respects the fibration.
Let

A^(a) = II{ det of a on Gy } e Ty

and A(a) == © A^(a) e © F^,.y y
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From (4.13) we have a homomorphism

^A^Ut^) -^Aut(^)

where j^ == ^o A^A) ls multiplication by t~1 on G(A;F). We define

(4.23) KA(OC) = A(^(a))

for a eAut((yj.

Proof of 4.21. — By naturality of the exact sequence involving the tame symbol
as boundary map [Ml] it suffices to consider the case where F is algebraically closed.
Choose a basis for G(A; F) over F for which ^o(a) and A are diagonal. Using the
identities in [Ml, § 9] one shows that K^(a) can be computed just using the diagonal
parts of ^(a) and of A. Also, K^(oc) can be computed from the diagonals. Lemma 8.3
of [Ml] reduces the computation to symbols { X, 1 —- ^} where it follows directly from
the definition of the tame symbol [Ml, § 11]. Gramer's Rule, as expressed by Propo-
sition 6.6 of [B; IX, § 6] shows that the prime factors of G(A; F) can only be those
involving prime polynomials which divide det(I — tA). So K^ only brings in those primes
as well.

The Dual Dimension Group

Let A be an endomorphism in € with [[ A || finite. Define the /w dual dimension
group to be the inverse limit

G°°(A) == limr°(^) <-^°°(^).

This is an inverting functor into the category of Banach spaces, so we obtain a homo-
morphism

(4.24) Aut((rJ-^Aut(^)

where s^ == ^(A) is induced on G°°(A) by the standard shift to the left by one step.

Random Walk on an Infinite Group

For general background about a random walk on a countably infinite discrete
group G see [KV], Here we consider the very special case of a measure .̂ on G with
finite support and satisfying the condition that [L{g) === I/TZ whenever ^{g) + 0 where
n is the number of those g for which (Ji(^) =t= 0. Let ^C/'°°(G) denote the space of
(A-harmonic functions on G. Namely, those bounded functions K : G -> G satisfying

K^) == (PK) (5) = 2, P(̂ , h) K(A) == S, (^-1 k) K(k) = S, K(gh) (X(A)

where P == -A and
n

A(g, h) = 1 if and only if y.(g~1 h) 4= 0.
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Then ̂  is given as the inverting functor

Jf = J^(A) = ker (l ~ IA") on r°(G)
\ n /

and we can apply the preceding machinery to obtain a homomorphism

(4.25) h: Aut(<rJ -> Isomorphisms of^f(A).

There is a version of this for a general Markov measure p. and pi-preserving symmetries
of (T^.

Finally, we discuss strong shift equivalence. Let € be one of the classes of zero-one
matrices in (4.1). First there is the generalization of Williams' strong shift equivalence
criterion for topological conjugacy as given in, say, [Wi] or [PT].

Proposition 4.26. — Let A e € and let B be a zero-one matrix. If there is an isomorphism
(X^, <rJ ^ (Xg, (Tg), then Be<s?. Moreover, if A, B e S there exists an isomorphism
(X^, (rj ^ (XB, 0 )̂ if and only if A and B ̂  ̂ ro^ shift equivalent in S.

The proof is basically the same as in [Wi], [PT], [PW] with the key ingredient
being the connectedness of^^.

Now let A and B be two endomorphisms (square matrices) in €. As in [Wi], [PT],
[PW] we say a pair (R, S) of matrices in § is a strong shift equivalence in ^ from A to B
provided

(4.27) R S = A and SR = B.

We denote this by (R, S) : A —> B or A ̂  B.

Definition 4.28. — The space SS(^) of strong shift equivalences in S is the realization
of the simplicial set where an w-simplex consists of the following data:

(a) an (n + 1)-tuple < Ao, A^, ..., A^ > of endomorphisms A, e <f, and
( b ) for each i <j a strong shift equivalence (R,p S^) from A, to A, such that whenever

i <j < A, the triangle identities hold; that is,

^ ̂ jk == ^ik9 ^kj ^ji == Sjfci A<*

As with S(<^), it follows directly from the definition that the set of path components
of SS(<?) is just the set of strong shift equivalence classes in S.

If (R, S) : A -> B in S, then R : A i-> B. The correspondence (R, S) -^ R induces
a map of simplicial sets and a continuous map

(4.29) SS(<?)-^S(^).
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In fact, there is a commutative diagram

^^^^^(SS(^),A)

(4.30) Aut(oJ [

"̂ î(S(<?),A)

The homomorphism Y^ is obtained by proving (4.8) and (4.9) with S(<^) replaced
by SS(<s?). The proofs are similar and the key observations are as follows. The equa-
tion (4.4) shows that

(4.31) (a-i, aP) : P -> P' and (a, PoT1) : P' -̂  P

and the analogue for (4.5) is the diagram

(or1, op) (o-SotQ)

Next, let y(R, S) be the path from A to B in 7Ti(SS(<s?); A, B).

Lemma 4.32. — (a) y(a-1, aP) == y(a, Pa-1)-1.

( Z » Y ( I , A ) = L
( c ) IfY e 7Ti(SS(<?); A, B), then y(A, 1) « y = y « y(B, 1).
( d ) Y ( R , S ) Y ( S , R ) = = Y ( A , I ) .

Verification of Lemma 4.32 uses the diagram above and the diagram
A——————————————I.A

(K,S) (E.8)

The formulas (4.10) and (4.11) are virtually the same with y(R) replaced by Y(R, S)
and Y(a-l) by Y(a~13 aP). That F is well defined uses the Triangle Identities plus the
fact that y^ is simply connected.

Williams' problem of <( strong shift equivalence vs. shift equivalence" [Wi], [E]
for the category € of non-negative integral matrices can be rephrased as asking whether

7ro(SS(<?))->7ro(S(<?))

is a bijection. This mere reformulation is heuristic and does not help in solving the
problem. But we do note that if A and B are strong shift equivalent, then

7r,(SS(<r),A)^7ri(SS(^),B)
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because A and B lie in the same path component of SS(<^). The groups ^{S(/), A)

are clearly invariants of shift equivalence. However, it is not known and, at any rate
certainly not obvious, that ^(SS^.A) is an invariant of shift equivalence. An open
problem is to obtain more information about ^(SS(<?),A) or, for that matter about
TC,(SS(<?),A) for i> 2.
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