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MONODROMY OF HYPERGEOMETRIC FUNCTIONS
AND NON-LATTICE INTEGRAL MONODROMY

by P. DELIGNE and G. D. MOSTOW (*)

i. Introduction

The hypergeometric series

(x) ^c^^^^^^ M<r
n==o {c, n) n\

n-l

where (a, n) = JI (a + t), defined for ^ not an integer <_ o, was first introduced by

Euler in 1778 as a solution of the hypergeometric differential equation

(2) x{i - x)y + (c — {a + b + i) x) y — aby = o.

F(fl, b; c; x) represents the unique solution of (2) which is holomorphic at x = o and
takes the value i at x = o. If neither b nor c — b is an integer <_ o, Euler knew
the integral representation

(3) ^w^——&)F(a,&;.;.)=fl^(I-^-^(I-^-^
L\c) • /O

Replacing z by u~1, (3) also has the form

(3') f°° ̂ -c {u - i)6-6-1^ - x)-a du.
Ji

If we integrate instead from g to h with g and h in { o, i, oo, x} we get other solutions
of (2), a fact discovered independently by Hermite [9], Pochhammer [17], andSchafli [19].
Even when the integral diverges, it yields solutions of (2) when taken as its Hadamard
<( finite part ", provided that the integrand does not have a pole of integral order at g or A.

The hypergeometric equation (2) is the unique second order linear differential
equation with regular singularities, singular only at o, i, oo with exponents (o, i — c),
(o, c — a — b)^ (a, b) respectively. " Exponents (a, a') at a singularity p " means that
suitable linearly independent linear combinations of the branches of a solution have the

(*) Supported in part by NSF Grant N108-8203604.
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form {x —p^f^x), {x —pYf^{x) with f^ holomorphic around p\ if a — a' eZ an
additional logarithmic term is allowed. In 1857, Riemann proved that the solutions
of (2) are the only multivalued functions with exactly two linearly independent branches,
branching only at o, i, oo with exponents as above (cf. [18]). Riemann's proof assumed
that none of the exponent differences at a singularity was an integer and proceeded
by first computing global monodromy. The above characterization of the hypergeo-
metric equation is the basis of Fuchs5 proof of Riemann's theorem (cf. [8]).

In his seminal paper [20], which seeks to determine the values a, A, c for which
the hypergeometric function is an algebraic function of x, Schwarz considered the
map x'\-> w^{x)/w^{x) where w^ and w^ form a base of W, the two dimensional linear
space of all solutions of (2). Let Q, denote the universal covering space of
Q:= P^C) - {o, i, oo}. The map

(4) w: x\->w^x)lw^x)

is a multivalued map from Q^to the projective space P(W*) of lines in the dual space W*
of W, i.e. w may be construed as a single-valued map

(4') w: a-^w-).
The fundamental group T^(QJ acts on P(W*) ( (< monodromy action 55) and the map w
is 7c^(M)-equivariant. Let F denote the image of 7T^(QJ via the monodromy action.
For Schwarz's original problem, the question reduces to " when is F finite? 5? Schwarz
also solved the problem: when can (4) be inverted to provide a univalued map from
an open domain to Q? When this happens F has a fundamental domain for its action
on either (i) P(W'<t), (ii) P(W'1') minus a point, or (iii) a disc in P(W*), and is conse-
quently discrete in PGL^C).

It is case (iii) of this latter question which Picard generalized in [16 b] to a two
variable analogue of the hypergeometric function. In the more general d variable
case, this function is best defined by its integral representation

/•oo d+1
(3") F(^, ...,^,) == u-^u- i)-^ n {u-x,)-^du.

Jl 2

Let (loo be the order of the pole of the integrand at oo. When the sum is extended over
all the pi's, one has S(JL, =2. In this introduction, we assume that none of the ^ is
an integer.

The function G obtained from F by holding fixed all variables but one was inves-
tigated by Pochhammer [17]. He formed the {d + i)-order linear differential equation
satisfied by G and characterized its solutions as the multivalued functions with exactly
d + i linearly independent branches and ramification of a prescribed type. At each
finite ramification point, d branches of G are holomorphic, and at oo the same holds
true after multiplying G by a suitable power of the variable.
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The function F defined by (3") has a power series expansion
d+l

r(2 - ̂  - fa) n ̂  »*) • <1 - ̂  > ̂  <_i ̂
{ ' r(i - ̂ ) r(i - ̂ ) "J (2 - ̂  - ̂ , s«.) 2 »,!•

For d == 2, this series has been investigated by Appell [i b] who showed that
it satisfies a system of linear partial differential equations expressing each second deri-
vative ofF in terms of its first derivatives. In [i6fl] Picard characterized the solutions
of this system as the multivalued functions of two variables x,jy with exactly three linearly
independent branches and with ramification of a prescribed type along the seven lines x
or y = o, i, oo, x ==j\ The function F is the only solution holomorphic at (o, o).

For d arbitrary, the series (i') has been investigated by Lauricella [12], and
Terada [22] obtained results parallel to those of Picard [i6a],

The existence of differential or partial differential equations of Fuchsian type as
above is to be expected if one considers (3") as a period integral. The equations are
satisfied not only by F but also by any integral of the same integrand taken from g to h
where g and h are in {oo, o, i, x^, ..., A^}. There are d + i linearly independent
such integrals, and, following Schwarz, it is natural to take them as the projective
coordinates of a point in projective the fif-space P .̂ This yields a map

(4') w: Ci^Pd

where Q^is the universal covering of the space Q^C (P1)^ defined as

d= {(^) | x, 4= o, i, oo and x, 4= Xj for i +j}.

The action of TT^QJ on P^ is called the monodromy action. The map (4') is ^(Q)
equivariant. Let F denote the image ofTr^QJ in PGL(rf + i, C). In [16 a] and [16 b]
Picard gives a criterion for the multivalued map w : Q^ -> P^ {d = 2) defined by (4')
to invert as a univalued map from a ball in P^ to a partial compactification of Q^. When
this happens, F is discrete in a PU(i, d) subgroup of PGL(rf + i, C).

As pointed out in [14 a] the proof of discreteness of F that Picard sketches in [16 a]
leads to an obstacle and is inadequate. Our first objective in this paper is to give a
correct proof for d = 2 and also for general d. In order to carry this out in modern
concepts, we need only deal with rational ^ and multivalued integrands on P1 which
are single valued on a finite ramified covering of P1. However, in order to provide
a framework for dealing with arbitrary parameters p., we have introduced local systems
on P1 —{oo , o, i, x^ ..., ^+1}. This necessitates an ab ovo development of holo-
morphic cohomology in order to validate the corresponding Hodge decomposition.
In the end, this viewpoint does have the advantage of directness.

The two main theorems of this paper are Theorems (11.4) and (12.11). The
first says in effect: If o < ^ < i for all i (o < i <_ d + i or i = oo) and
(i — pi,— ^•)~1 is an integer for all i ^rj such that (JL, + ̂ < i, then the mono-



8 P. D E L I G N E A N D G. D. M O S T O W

dromy group of the hypergeometric function (3") is a lattice in the projective unitary
group PU(i,rf), i.e. is discrete and of finite covolume.

Theorem (12.11) combined with (12.9) says in effect: For each non-arithmetic
lattice arising in Theorem (11.4), there is an algebraic family defined over Q^ of algebraic
curves X whose monodromy group is a subgroup ofAut H^XQ, Z) which is not of finite
covolume in its Zariski-closure.

The example 15 of § (14.3) corresponds for instance to the family of curves,
depending on the parameters x, y^ with equation

v12 == u\u - i)5 (u - x)5 (u -yY

(a cyclic covering of order 12 of P1).
The integrality condition that (i — ^ — (A,)"1 be an integer ensures that the

key map of this paper is etale in codimension one. A model situation in which inte-
grality is used in such a way is the following. Let D be the unit disc, D* := D — {o},
and a == r/j a rational number > o, written as a reduced fraction. Let D*" be the
finite covering ofD* on which the multivalued function z \-> z^ is defined. We complete
it to the ramified covering D" = D*~ u {0} of D. The multivalued function z113

on D* <( is " a uniformizing parameter for D~ at o. The map z h-> ^ from D" to C
is etale at o (i.e. etale in codimension i) if and only if a~1 is an integer. Indeed
z^ == (2'l/s)r. For a description of how this enters the proof, we refer to the comments
after (3.11).

The lists in Section 14 provide examples of non-arithmetic lattices in PU(i,a?)
for d = 2, 3—both cocompact and non-cocompact for d = 2. For rf> 5, Theo-
rem (11.4) yields no lattice at all, by (14.2).

The case d == i is treated in (12.5.5) and (12.6.3). The lattices arising from
Theorem (11.4) in this case are the triangle groups [p, y, r] generated by rotations
through double the angles with centers the vertex of a geodesic triangle in the Poincar^
disc, with angles TC/^, 7r/y, 7r/r when ^, y, r are positive integers (or oo) satisfying

- + - + - ̂  i • These lattices are described in Fricke-Klein [6] and are infinite inp q r
number.

However, the number of arithmetic lattices arising is finite. An explicit list can
be deduced from results ofTakeuchi on arithmetic triangle groups [21].

In the final Section 15, we make some comments about the list of 102 solutions
of R. Levavasseur in [13] to Picard's integrality conditions for discreteness in the case
r f = 2 .

In the paper c< Generalized Picard lattices arising from half-integral conditions ",
printed after this one, the second named author is able to relax the integrality condition
on (i — (A,— ^•)~1 and obtains lattices for d <_ 9 [146].
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2. Cohomology of a rank one local system on a punctured projective line

(2.1) Let us start with the following data:

P : a complex projective line;
N : an integer > o;
S : a set of N points of P;
a == (ajggg : a family of complex numbers indexed by S, satisfying the condition

ria, = i.
We will be mainly interested in the case when N >_ 3 and none of the (Xg is i.

If a base point o e P — S is given, the functor " fibre at o" is an equivalence
of the category of complex local systems (== flat vector bundles) on P — S with that
of complex vector spaces provided with an action of 7r i(P—S, o). In particular,
rank one local systems correspond to homomorphisms Hi(P — S) = TT^(P — S, o)^ -> C*.
The group H^ is generated by small positive loops Ya around each s e S, with the
relation Sy, == o as the only relation. Up to isomorphism, there is hence a unique
one dimensional complex local system L on P — S such that the monodromy of L
around each s eS is multiplication by 0^5 or, as we will say, of monodromy a. By
definition, if/o is in the fibre of L at a point x near s e S, and if we let x turn counter
clockwise once around s, and push IQ horizontally along the path of x, then when coming
back, IQ becomes o^./o. In other words, in term of a local coordinate z centered at s,
and of a multivalued section e(z) of L defined in a neighborhood of s, one has

e{exp{2niu). z) == o^. e{exp{2niu). z)
u==l u^O

The complex local system L has automorphisms: Aut(L) == C*, with v e C*
corresponding to multiplication by the scalar v. Because of them, even though the
isomorphism class of L is uniquely determined by the a,, L is not determined up to
unique isomorphism.

Let us fix one L. In (2.2)-(2. io), we will review some of the descriptions of
the cohomology of P — S with coefficients in L.

(2.2) Combinatorial description. — Let us fix a triangulation ^ of P — S. One
can then identify I-T(P — S, L) with the cohomology of the complex of L-valued
cochains of ̂ : cochains c for which the value of c on an oriented simplex a is a horizontal
section ofLono (thus c{a) e H°((y, L)). To make sense of the formula [dc) (cr) == c{ba),
one uses that a horizontal section of L on a face of <r extends uniquely as a horizontal
section on a. This complex is the dual of the complex of chains of ^ with coefficients
in the dual local system L^ chains C which are finite sums S^. or with Cy e H^or, L^
and o- an oriented simplex of ̂ . The sign rule <<fc, C > == <^, b G > is however unusual
for duality of complexes. We write H,(P — S, IV) for the corresponding homology.

10



MONODROMY OF HYPERGEOMETRIC FUNCTIONS n

The cohomology with compact support H^(P — S, L) is the cohomology of the
complex of compactly supported L-valued cochains of .̂ The dual complex is the
complex of locally finite chains with coefficient in L^: chains G which are possibly
infinite " sums " S^.o. We write H^(P — S, L^) for the corresponding homology.

Let X be obtained from P by deleting a small open disc around each s e S.
(< Small " means " small enough ". What matters here is that the closure of the discs
be disjoint. A homotopy argument shows that (X° denoting X — 3X)

H*(P - S, L) ̂  H'(X, L) ^ H'(X°, L)

and that H*(X mod BX, L) = H:(X°, L) ̂  H:(P - S, L).

To compute cohomology, one can hence use a triangulation of X, instead of one of
P — S. As X is compact, the triangulation is finite, and this combinatorial description
makes clear that the Euler-Poincar^ characteristic

^(P - S, L) := S(- i^dimH^P - S, L)
(resp. x.(P - S, L) := S(- i)1 dim H:(P - S, L))

is independent of L. Each H1 (resp. H^) is indeed expressed as the t-th cohomology
group of a finite dimensional chain complex K, and dim K1 is independent of L. In
the case of cohomology with compact support, the additivity of /^ (deduced from the
long exact sequence ... -> H^(P — S, C) -> H^P, C) -> ?(8, C) -> . . . ) gives

(2.2.1) x.(P - S, L) = Xc(P - S, C) == x,(P) - x,(S) = 2 - N.

For an algebraic variety Y, one always has %c(Y) = x(^0- I11 tlle case at hand
(Y = P — S); this can be deduced from Poincar^ duality. One gets

(2.2.2) ^(P-S,L) = 2 - N .

(2.3) De Rham (G00) description. — H*(P — S, L) is the cohomology of the de
Rham complex of L-valued G00 differential forms on P — S, and H^(P — S, L) that
of the subcomplex of compactly supported forms. If the triangulation ^ of (2.2) is
smooth, integration: co \-> c^(a) === f co is defined. It is a map of complexes from

J 0

the de Rham complex to the cochain complex (both with or without support condition),
inducing an isomorphism on cohomology.

The Poincar^ duality pairing obtained by integration on P — S : a, (B l-^ ( O C A J B
induces a perfect pairing

H^P - S, L) ® H^-^P - S, 1̂ ) ̂  C,

the composite of cup product with value in H^(P — S, C), and of the trace, or
integration, map : H^(P — S, C) ̂  C.

If at least one of the ocg is not i, there can be no global horizontal section:
H°(P — S, L) = o, and a fortiori none with compact support: H^(P — S, L) = o

11
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(for this, S + 0 suffices). The same applies to the dual ̂  of L, with monodromy a-1,
and Poincard duality gives vanishing for IF and H^. The Euler-Poincard characteristic
being known ((2.2.1) and (2.2.2)) , we get

Proposition (2.3.1). — If a, + i for at least one s e S, then H^P - S, L) and
H (̂P — S, L) vanish for i =t= i, W

dim H^P - S, L) == dim H^(P - S, L) = N - 2.

Currents (2.4). — Instead of using the G00 de Rham complex, consisting of forms
written in local coordinates as S f^dx^ A ... ^ dx^.e, with <? an horizontal section

of L and ̂  a C°°-function, one can as well use the complex of currents, where /i is
allowed to be a generalized function (distribution). This complex can be used to
express Poincard duality as a cap-product isomorphism between homology and cohomo-
logy: for G a L^-valued chain, there is a unique current (G) such that f <o = f (C) A co,
one has d{C) = (— i)^0 6C, and the map C h> (G) provides isomorphisms
H,(P - S, L) ̂  H^P - S, L) and Hf(P - S, L) ^> H2-^? - S, L).

It is often more convenient to use currents than the chains of a fixed triangulation.
If (B is a rectifiable proper map from an open, semi-open or closed interval I to P — S,
and for e eH(I, (3*1^), we let (<?.(B) be the L^-valued current for which

JO?.[B)ACO=J^,(B*O)>.

If P : [o, i] -> P maps o and i to S, and ]o, i [ to P — S, then for e e H°(]o, i [, (B* 1 )̂,
^.P is a cycle and as such defines an homology class in Hf(P — S, 1 )̂. We will
use such cycles to construct convenient bases of H^(P — S, 1 )̂.

(2.5) Assume the following is given:
a) a partition of S into two subsets S^ and Sg;
b) trees T^ and Tg (a tree is a contractible GW complex of dimension <_ i), and an

embedding (B : T^ II T^ ̂  P, mapping the set of vertices of T^ (resp. Tg) onto Si
(resp. Sg);

^ for each (open) edge a of T^ or Tg, an orientation of a, and ^(fl) eH°(<z, (B*!^).

For each edge <z, {{a) .(3 | fl is then a locally finite cycle on P — S, with coeffi-
cient in L.

Proposition (2.5.1). — If II a, + i, the elements ^(a).(B | a, for a an edge of T,
sG Si

or Ta, form a basis of H^P — S, V).

Proof. — Let T.' be the disjoint union of the (open) edges of T,. We have
(P - S) - (3(T^ II T^) = P - P(Ti U T,), hence a long exact sequence

... -> Hf/(T, U T,, p* L7) -I Hf(P - S, L)

-^H^P-p^UT,),^)-^

7,3



MONODROMY OF HYPERGEOMETRIC FUNCTIONS 13

The group H^T^ U Tg, (3* L^) has as basis the ^(fl).fl. It remains to be proved
that H^(P - (3(Ti U T^), L) = o.

The space P — (B(TJ — (3(Tg) is the complement of two disjoint trees in S2.
It is essentially an annulus. The monodromy of (< turning around T^" is the product
of the a, {s e SJ. In P — S, a loop around T^ can indeed be homotoped to a product
of loops around each s e S^ :

•x

The group Hf(P - (B(Ti u T^), Lv) is dual to H:(P - (3(Ti u T^), L), which
is the Poincar^ dual of H2-^? - (B(Ti u T^), Lv). One can homotope P - p(T^ u Tg)
to S1, and the group becomes H2-^1,L^, for L^ a non trivial local system on S1. It
remains to use the

Lemma (2.5.2). — Ifli is a non trivial rank one local system on S1, then H'̂ S1, L) = o.

The H° is o by non triviality, and /(S1, L) = ^(S1) == o.

Remark, — As T^ U Tg has N — 2 edges, (2.5.2) reproves that
dimH^P-S.L) == N ~ 2

when the a, are not all i.

(2.6) Sheaf cohomology. — We will always identify a local system L with its sheaf
of locally constant sections. Let j denote the inclusion of P — S in P. Then,
H^(P — S, L) is the cohomology of P with coefficients inj\ L, the extension of L by o.
It is the hypercohomology on P of any complex of sheaves K with Jf°(K) =j\ L and
^(K) = o for i 4= o. On the other hand, if L* is any resolution ofL whose components
are acyclic forj\ (RJ^ L^ = o for q > o), then H*(P — S, L) is the hypercohomology
on P ofj\ L*. To prove it, one reduces to the case where L* (and hence ̂  L") is soft,
one has F(P - S, L*) == r(PJ, L*), and

H-(P - S, L) :== H- F(P - S, I/) = H- r(PJ, V) =: IP(PJ, L*).

Proposition (2.6.1). — If all OL, are different from i, then
H;(P-S,L)^H*(P-S,L).

Proof. — Let L* be a soft resolution of L, for instance the L-valued G00 de Rham
complex of sheaves. It suffices to check that j\ L* is a resolution ofj, L, and this results
from the local fact that for D any small disc around s e S, one has

H* r(D - s, U) = H*(D - s, L) = o.

To check this vanishing, one can replace D — s by a homotopic S1 and apply (2.5.2).

81
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From the point of view ofhomology, this implies that a locally finite i-cycle with
coefficient in 1̂  is homologous to a compactly supported one. Here is a drawing of
how it can be done

This is reminiscent of the arguments used in Whittaker and Watson (12.22) (HankeRs
expression of T(z) as a contour integral) or (12.43) [24].

(a. 7) The de Rham (holomorphic) description. — The holomorphic L-valued
de Rham complex i2*(L) : ̂ (L) -> ̂ (L) is a resolution ofLon P — S. One can hence
interpret H*(P — S, L) as the hypercohomology on P — S of Q*(L). As S =f= 0,
P — S is Stein, hence H^P — S, ^(L)) == o for q> o, and this gives
(a.7.1) H*(P - S, L) == IP F(P ~ S, n*(L)).

Similarly, R^j, Q^L) == o for q > o hence
H-(P - S, L) = IP(PJ, Q-(L))

(hypercohomology of P, with coefficients in the complex j, ̂ (L); see (2.6)).
After the preliminaries (2.8), (2.9), we will show how to replace j\ i2*(L) by

smaller complexes of sheaves.

(2.8) We will often describe a section of <P(L) on a connected open set U as the
product of a multivalued function with a multivalued section of L. This has the
following meaning: U should be provided with a base point o, and a multivalued section
of a sheaf y (^, or L, . . .) is a section of the pull back of y on the universal cove-
rings (U, o) of (U, o). Products are taken on U. A multivalued section, which is the
pull-back of a section on U, is then identified with that section. The role of the base
point can be played by a contractible subset of F of U. A section of L at o extends
uniquely to a multivalued section and will be denoted by the same symbol. A multi-
valued section of 0 is determined by its germ at o, and will be denoted by the same
symbol. As multivalued sections of (P, we will mainly use products Tig^. When g
is not real and negative, the principal determination of g^ is exp(27ri(Jilog^), with
| Im log g | < ni. As a rule, g^ will denote the multivalued function whose germ at
the base contractible set F is the principal determination when ^ is not real and negative
on F. When the determination used is irrelevant, we will not take the trouble of
specifying which one we mean.

(2.9) Fix s eS and let z be a local coordinate, which we take to be an iso-
morphism, carrying s to o, of a small neighborhood D of s with a disc in C centered
at o. If [L e C is such that oCg = exp (27^)3 the monodromy of z~v' around s is the
inverse of that of a horizontal section of L. Any section u of^(L) (resp. ^(L)) on D*
can hence be written u == z~^.e.f (resp. u == z~{l'.e.f.dz) with e a non zero multi-

14
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valued section ofL and^a holomorphic function on D*. We define u to be meromorphic
sit s if f is, and we define its valuation by

^) = ^(/) - ̂

These definitions are independent of the choices of local coordinate and of (JL.

(2.10) The de Rham (meromorphic at S ) description. — Let us write ^^(L) for
the subcomplex of n*(L) of meromorphic forms. A local computation around each
s e S shows that the inclusion ofj^ D*(L) in j\ ̂ (L) induces an isomorphism on the
cohomology sheaves. This implies that
(2.10.1) H^PJWL)) ̂  IT(PJ, ̂ (L)) = H*(P - S, L).

It follows from (2.11) below that^Q^L) is an inductive limit of line bundles
whose degrees tends to oo. From this one concludes first that H^P.j^Q^L)) === o
for q> o, and then that H^PJ^^L)) is simply H* nPJ^^L)), the cohomology
of the complex of L-valued forms holomorphic on P — S and meromorphic at each
seS:
(2.10.2) H-(P - S, L) == IT r(P,jr^(L)).

(2.11) Let (^),gs be a family of complex numbers, such that exp(2mp,,) == o^.
We define the line bundle ^(Sp., s) (L) as the subsheaf of j^ ^(L) whose local holo-
morphic sections are the local sections u of j^ ^(L) such that for s e S, the integer
v,(u) + ̂  is ^ o (in short: v,{u) > — (JL,). With the local coordinate notation (2.9),
z~v's.e determines an invertible section of ^(S(JL, s) (L) near s e S. The degree of a
meromorphic section u of a line bundle JSf at a point A? is the order of the zero (or minus
the order of the pole) of u at x; for z a local coordinate centered at x, it is the supremum
of the integers n such that ^-n u is a holomorphic section of oSf at ^. The rf^gr^ of -Sf
is the sum of the degrees at all points of any non zero meromorphic section of JSf. If
u is a meromorphic section of ^(S^ig s) (L) and x e S, one has

^SxW == ^(^) + P^-
If one defines ^ = o for A: e P — S, the same holds at any x e P.

Proposition ( 2 . 1 1 . 1 ) . — The line bundle (P{^,s) (L) ij of degree S^.

pyoo^ — We may assume P == P1 and oo ^ S. Let e be a multivalued horizontal
section of L. The product

u= n (^-^-^^
ses

is an invertible section of ^(S^.^)(L) on the affine line. At oo, u is meromorphic,
of valuation S^,. The degree of ^(S(A,J)(L), equal to the sum at all A: e P of the
degree of any non zero meromorphic section, is hence Sptg.

15
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We define ^(^.^(L) :== ^(S^.^) (L) ® Q1. It results from (2.11) that
(2.11.1) deg^S^KL) = - 2 +S^.

In particular, if S(^ == 2, the line bundle ^(S^.j) (L) is of degree o, hence
isomorphic to (P, the trivial line bundle.

Corollary (a. 12). — If S^ = 2, ^r^ î  M^ to a constant/actor one and only one non
zero form co e r^P.j^Q^L)) wA<w valuation at s e S ^ ̂  — (JL,. 0^ Aaj ^(<*>) == — ^s
and (o î  invertible on P — S.

For P = P1, oo ^ S, and e a multivalued horizontal section of L, one has (up
to a factor) G) = II (^ — s^^.e.dz. If oo e S, one has o = 11 {z — s^^.e.dz,

se s s g s — oo

Proposition (2.13). — Assume that S^ =2, N^3, flnrf ^A^ no^ of the a, ^ i
(i.e. that none of the ^ is an integer). Then the cohomology class of the form co of (2 .12) is
not zero.

Proof. — One has Sz^(co) ==S — ^== — 2^ i — N. The proposition hence
results from the

Proposition (2.14). — Assume that none of the a, is i. If a non zero form co is such that
S^(co) ̂  i — N, z'̂ y cohomology class is not zero.

Proof. — By (2.10.2), it suffices to verify that the equation <x) == du has no
solution MeI^PJ^L)).

For any local section u of j^ ^(L) near s, one has

y,W ̂  VsW - ̂
with equality if Uy(u) is not o, or if Vy(du) is not a positive (meaning ̂  o) integer. The
integer case being excluded, a solution u would be a section of (P(— S(^(co) + I) •y) (L)?
a line bundle of degree — S(y,(o)) + i) <^ — i, a contradiction.

(2.15) Here is how (2.13)3 (2.14) has to be modified for integral ^'s. As the
result will not be needed, except for some historical comments in § 15, we will be sketchy.

(2.15.1) When some a, are i, (2.6.1) is not true, one has to distinguish between H^
and H1, and even to introduce some intermediate groups: for S' C S, the family O(S')
of subsets of P — S closed in P — S' is a family of supports, and H^g^(P — S, L)
is defined. Forj' the inclusion of P — S into P — S', it is H*(P — ^\j[ L). For
T C S, define T(i) :== {s e T | a, == i}. The proof of (2.6. i) shows that

^(SW^P — S, L) -> H^(g^(P — S, L).

These groups are also the hypercohomology groups, on P, of the subcomplex
ofj^ Q*(L) consisting of the u inj^L) and of the co in j^ Q^L) such that ^(co) >: o

16
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and v,(u) > o for s e (S — S') (i). If the ^ are such that a, === exp(27ripi,), and
that S'(i) is the set of s for which p., is integral > o, the groups H^g,)(P — S, L) are
also the hypercohomology groups of the sub-complex ^(2 ((A, — i) s) (L) -> ^(Sp,,,?) (L)
of^^L).

(2.15.2) If (o eI^Pj^^L)), and if all s with a, == i and ^(co) < o are
in S', then (o defines a cohomology class in H^(P — S, L). If in addition S' contains
none of the s for which simultaneously a, = i and y,(co) ̂  o, and if further
^((x)) ̂  i — N (which amounts to co having at most N — 3 zeros, counted with
multiplicities, on P — S), the proof of (2.14) still shows that the class of <o in
HO(S')(^ ~~ S, L) is not zero. This applies to the form <o of (2.12), with S' == S,
provided N ̂  3 and (JL, > o whenever ^ e Z.

Remark (2. i6). — Let us assume that none of the a, is i. If co is an holomorphic
section of Q^L) on P - S, by (2.6.1), the class [o] of co in H^P - S, L) is the
image of a unique class, again denoted [co], in H^(P — S, L). For any locally finite
cycle or current G with coefficient in L^, <[CJ, [<o]> is defined: H^(P — S, L^) is
indeed paired with H^(P •— S, L). We want to prove that

<rC],[o)]>==J^<o.

This is not completely obvious, especially since the integral may be divergent. The
problem is rather to understand which value the cohomological formalism attaches to
the integral.

ist answer: One replaces G by a finite homologous cycle G', as pictured in (2.6),
and <[C],H>==j^co.

2nd answer. If D, is a small open disk around s e S, one has H*(D — j, L) == o
(cf. (2.6)). On D^ := D — s, G) is hence of the form du^ for a unique section Uy of ^(L)
on D^. Let 9, be a compactly supported C°° function on D,, equal to i in a neighborhood
ofs. The C00 i-form <x> — S rf(<p, u^) is cohomologous to co and is compactly supported.
One has hence

<[G], [<o]> =J^-Srf(<p^).

It is sometimes more convenient to take for 9 the (discontinuous) characteristic function
ofDg. The current co — S d{y^ Uy) is again compactly supported and cohomologous
to o.

These formulae can also be used to define the integral of co on a locally finite chain
or current, which is a cycle only near each s e S. Given for instance a path (B : [o, i] -> P,

17
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with (S([o,i[) in P-S and ( 3 ( i ) = j e S , and given e e H°([o, i[, (S* 1 )̂, the
formula for the " finite part " f co — rf(y, u,) can be rewritten

^L^= JT6^ ̂  ̂  - <^T -£)' ̂  ̂ J - ̂
For a meromorphic co, this agrees with Hadamard's " finite part " of a divergent integral.

Example (2.17). — We take P = PI, S ={o, i, 00} and we assume that none
of the ^ is an integer, and that S^ = 2. For X, == i - ̂ , this means S\ = i.
We normalize L by fixing a section e of it on ]o, i[, and we let e^ be the dual base ofl^
on ]o, i[. Take co =. z^~\i — z^-^edz, the <( principal " determination of ^°-1

and of (1-^)^-1 on ]o, i[ is used (cf. (2.8)). By (2.5.1), the homology
H^(P — S, 1̂ ) is one-dimensional, generated by the current ^.]o, i[. The content
of (2.13) here is that

(2 .17.1) P/J^-^i - ̂ -l^+o.

The generalization (2.15) of (2.13) can be used to extend this to the case when
\ and ^, if integers, are > o, and X^ == i — \ — \, if an integer, is <_ o.

Of course, (2.17. i) is easy to deduce from the formula for the B-function in terms
of r-functions.

(2.18) We now assume that each a, is of absolute value i, and not equal to i.
There is then a horizontal positive Hermitian structure ( , ) on L. Let us choose one.
One can view ( , ) as a perfect pairing between L and the complex conjugate local
system L. As such, it induces a perfect pairing

^: Hi(P-S.L) XcH^P-S.L) ->H^(P-S,C) == C

((2.3)5 (2.6.i)). The vector space H^P — S, L) is the complex conjugate of
^(P — S, L), and ^{u, u) defines a non degenerate skew-Hermitian form ^ on
H^(P — S, L). Anticommutativity of the cup product shows that

^o(^)~ == — ^o(^), i.e.

(2.18.1) ^{u,v)~ == -^u).

Writing (u, v) := —^ ^(u, v) = ——r ^o(^ v), we have a Hermitian form

(2.18.2) {u,v)~ == {v,u).

A section <o ofj^ ^(L) is said to be of the first kind if o,(co) > — i for each s e S.
Those are the forms for which the integral f _ <o A <o is convergent. The integrand
is defined as follows: if, locally, G), == ^.P, (i = i, 2, ^ a i-form, e, a section of L),
then G>iA(02 is the (i, i)-form 0?i,^) Pi A Pa-

18
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We define H^P -- S, L) as the vector space of forms of the first kind in
I^P.^^L)), and H^P-S.L) as the complex conjugate of H^P--S,L).
It can be viewed as the space of antiholomorphic L-valued forms, whose complex
conjugate is of the first kind. Such forms also define cohomology classes.

Proposition (2.19). — If ^ and (^ are each either in H^P — S, L) or in
H^P — S, L), one has, for the corresponding cohomology classes [oj and [o ]̂,

<K[̂ iL [^2]) = Sy_Q^i^ ̂

Let us assume, for definiteness, that <^ is in H^^P — S, L). Choose D,, (^),gg>
as in (2.12), and let <^ be the characteristic function of D^. It follows from (2.12)
that the class of <0i in H^(P — S, L) is also the class of the compactly supported
current G)i—Srf(<p^). Hence (2.3)

?1]. E<1) - ̂ ([̂ iL [^2]) = Jp_g («>i - S ^(<p, u,)) A coa

^P-UD^^+^L/^

When we let the D, shrink, the first term converges to f coiAcog. We want
j s~'— s

to show that all others tend to o. When the radius r ofD, tends to zero, the size of u, ̂
on 3D, is O^^^)). One has v,{u,) = v^) + i. The forms ^ and ^
being of the first kind, the size is 0^), with (B > — i. On the other hand, the length
of 9Ds is 0(r); the boundary term is hence C^r0'1"1) and tends to zero.

Proposition (2.20). — Under the assumption (2.18) that |aJ == i, a, 4= i for s e S>
the natural map

ff'^P - S, L) C H^P - S, L) ^ H^P ~ S, L) = Hi(P - S, L)

is an isomorphism. The Hermitianform ( , ) is positive definite on H110, negative definite on H^^
and the decomposition is orthogonal.

If o is in H^P-S.L) (resp. H^P - S, L)), the integrand ^-4 G) A G>
27Tt

is ̂  o (resp. < o), and vanishes only for <o = o. If ^ and (02 are one m H1'0 and

the other in H011, the integrand —.(O-.A (Og vanishes. This implies that H110®!!011

27CI

injects into IT(P — S, L). It remains only to prove the surjectivity of H1'0 ® H°'1 -> H1.
We will check surjectivity by counting dimensions. Let ^ be the number

between o and i such that o^ == exp(27ri^). From the definition, it follows that
H^P-S.I^ nP.^S^KL)). By (2.8), deg Q^S^..)^) = - 2 + S^.
It is an integer > -- 2 and hence

(2.20. i) dim H^P - S, L) == deg ̂ (S^) (L) + i = - i + 2^.

J^
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Let us apply this to L. One has to replace a, by a^ = a^1 and ^ by i — (Ag.
One gets
(a.20.2) dimH^P - S, L) == - i + S(i - (X,).

The sum of the dimensions is — 2 + Si = N — 2, as required (2.3.1).

Corollary (2.21). — Notation being as above (a, == exp(27n(JiJ w^A o< (J^< i),
the signature of the Hermitian form ( , ) on H^P — S, L) is (S^ — i? S(i — (A,) — i).

Remark (2.22). — (2.20) is a special case of Hodge theory for the cohomology
of a curve with values in a polarized variation of Hodge structures: a local system,
provided with an horizontal positive Hermitian structure, can be viewed as a polarized
variation of type (o, o). The artificial counting argument above enabled us to shortcut
the general theory, for which the reader may consult S. Zucker [25].

(2.23) In our applications, the Og will be roots of unity. When this is the case,
(2.20) can also be deduced from the Hodge theory of suitable coverings of P. Let X
be an irreducible abelian covering of P, with covering group G, ramified only at S.
If, for definiteness, we take P = P1 and oo e S, this means that the function field C(X)
of X is a subextension of the extension C(P1) ((z — ^)^s-{oo}) of G^) == GC?1)?
for suitable d.

Let TC denote the projection of X onto P. The Galois group G = Aut(X/P)
acts (by transport of structure) on TT, C (by abuse of notation, we also denote by C the
constant sheaf with fiber C), and at a point z ^ S, the representation of G on
(7T* C)z == H^"1^)) C) is a regular representation of G. For each character / of G,
let L^ be the subsheaf of TT^ C on which G acts by .̂ One has

7T, C = © L.
X "

and, outside of S, L^ is a rank one local system.
Let gy e G be the natural generator of the inertial (= decomposition) group

at s: if x(t) (o <^ t <^ i) is a path in X, such that nx{t) in P stays near s in P — S,
and turn once around s, then x{i) == gg x{o). Let dy be the order of g y . If t is a local
coordinate centered at s, near s, X is a sum of copies of the Riemann surface of t^5.

If jj^gs) == i, L^ is a local system at s. If ^{gs) 4= i? the fibre of L^ at s is zero,
and the monodromy of L^ around s is the rfg-th root of unity ^(^g).

If we take X to be the largest covering such that G is killed by d, G is the abelian
group generated by the g y , with the only relations

g1 = i and Tig, == i : G = (Z/^^Z/rf).

If P == P1 and oo e S, X corresponds to the extension C^P1)^ — ^)^s-{oo}) ofC(P1).
This shows that any system of roots of unity (aj, with IIa^ = i, is of the form (x(^i)Les
for suitable X and %.

20



MONODROMY OF HYPERGEOMETRIC FUNCTIONS 21

Let H*(X, C)^ be the subspace of H*(X, C) on which G acts (by transport of
structure) as /. The isomorphism

IT(X; C) = IP(P, 7r, C)

is compatible with the action of G, hence induces isomorphisms
(2.23.1) H^X.C^IWL,).

On P — S, the sheaf fl^(L^) is the direct factor (TC, Q\ ofn^ 0 consisting of the holo-
morphic functions on X such that f(g-1 x) == x(^)/W. Similarly, ^(L^) == (7r, Q1)^.
Letj' be the inclusion of X — TC'^S) in X. On P, one has again
(2.23.2) (̂L,) = OrJ:̂ ), and

(2.23.3) ^(^-(T^Q1),.

Let us assume ^(^) + i for s e S, so that H*(P, L^ == H^(P - S, L). Diffe-
rential forms of the first kind on P — S correspond then, by (2.23.3), to the differential
forms of the first kind on X, on which G acts by 7:

H^P - S, L,) = F(X, £1\ = HP^X)^

and (2.20) is the trace on H^P — S, L^) = H^X, C)^ of the Hodge decomposition
of H^X, C).

3. Reformulation of PicarcTs theorem

(3.1) We now let the punctures s move, while the monodromy remains the same.
The starting data will be:

P : a complex protective line;
N : an integer, >_ 3;
S : a set with N elements, for instance [ i ,N]CN;
a == (as)8es : a family of complex numbers indexed by S, satisfying IIa, = i, and

such that none of the o^ is i.
We will be mainly interested in the case |ocJ = i.

For any space X mapping to P85, we will write P^ for the pull back on X of the
universal punctured line

Pps={^ ,m) ePxP^^S)}.

and TT for the projection Px -> X. Suppose a group H acts freely on X, with quotient Y,
and that a lifting of the action to Px is given. We will then write Py for Px/H and TT
for the projection Py -^ Y. The H-equivariant fiber space Px over X is then the pull
back of Py over Y.

Let M C P8 be the space of injective maps m: S -> P. Then,

^-{(A^) ePxM|^w(S)}

21
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is a topologically locally trivial fiber space above M. On each fiber P^ == P — w(S),
there is a rank one local system with monodromy a, i.e. with monodromy a, around m(s),
for s e S. However, this local system not being unique up to unique isomorphism,
one cannot conclude that on P^ there is a unique rank one local system L such that

(3.1.1) For m in M, the local system L^ induced by L on P^ has monodromy a.
If L satisfies (3. i. i), all local systems satisfying (3.1.1) are of the form L ® TT* T,

for T a rank one local system M. We will see in (3.12), (3.13) that there is an L satis-
fying (3.1.1). If N were 2, the analogous existence assertion would be false for a, =(= ± i.

(3.2) Suppose L satisfies (3.1.1). The projection TC being topologically locally
trivial, the H^, LJ (= H^P^, LJ by (2.6.1)) organize themselves into a local
system R1 TT, L (= R1 TC( L) on M.

We will be interested mainly in the corresponding flat projective space bundle
^(^M := PR^L, the fiber space with fiber at meM the projective space
PH^P^, LJ :== (H^P^, LJ - {o})/e, and with flat structure, that deduced
from R17r, L. For any vector space V and non-zero element v e V, we will denote
by PV the projective space of one-dimensional subspaces of V and by Pv the image
of v in PV.

If L' == L®n*T is another local system satisfying (3.1.1),
R^L' == (R^L^T,

and PR1 TC, L' is canonically isomorphic to PR1 TC, L, i.e. the flat projective bundle B(a)j.r
depends only on a. Another explanation of the same fact: the automorphisms of a
local system L^ on P^ with monodromy a act trivially on PH^P^, LJ. Hence,
although L^ is unique up to only a non unique isomorphism, PH^P^, LJ is defined
up to unique isomorphism.

(3.3) Locally on M, the existence of L satisfying (3.1.1) poses no problem: if
U is a contractible neighborhood of m e M, a local system L^ on P^ with monodromy a
extends uniquely to a local system Ly on TT'^U) and this extension has, fiber by fiber,
monodromy a. The flat projective space bundle PR1 TT, Ly on U is independent (up
to unique isomorphism) of the choice of Ly; hence for variable U, they glue into a flat
projective space bundle on the whole of M. This enables us to define B(a)^ without
having to assume the existence of a global L.

For o e M, the flat structure ofB(a)^ defines an action of 7ri(M, o) by projective
transformations on the fibre B(a)o. A choice of L enables one to lift this projective
representation of 7Ci(M, o) on PH^P^, L^) to a linear representation on H^P^LJ.

(3.4) Fix a system of complex numbers (^),gg such that a, = exp(2m^),
and that 2^ = 2. For each m e M, there is then up to a factor a unique non-zero
section co of ^(LJ on P^, meromorphic on P, and such that ^(o) >. — [iy {s e S)
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(2.12). Its cohomology class is not trivial (2.13). This construction hence defines
a section w^(m) of the projection B(a)^ -> M.

The flat structure of the projective space bundle B(a) induces a structure of holo-
morphic projective space bundle. With respect to it, we have:

Lemma (3.5). — The section w^ is holomorphic.

Proof. — The question is local on M. Fix x e M, and choose on the fibre P^
a system of cycles G, with coefficient in 1̂  giving rise to a basis of H^P^, L^). They
have support in some compact K and, for U a contractible neighborhood of m, small
enough so that K x U C Py, L | K x U is isomorphic to the pull back of L | K by
a unique isomorphism which is the identity above m. This enables us, for m' e U,
to consider G, as a cycle with coefficients in l^ on P^,; and each linear form f on

J C(
the H^P^.L^) (w' eU) is a horizontal linear form on R1 ̂  L. This provides a
horizontal system of projective coordinates on PR1 n^ L.

Fix a coordinate z : P -> P1, such that, for m' in a possibly smaller neighborhood U
ofm, ^(oo) eP^, and let us trivialize L along ^(oo) by a section e. We can take
(Cf. (2.12))

co == Tl{z - z{m\s)))-^.dz.e,

and the projective coordinates of co^(w') are the

J^n^-^M))-^.^...
This is clearly holomorphic in m'.

Remark (3.6). — A more general method to get horizontal linear forms on R1 ̂  L
is to start with a C^-trivialization of (PU,L) giving 9^:?^^?^, L^^^L^,
and with I^-valued cycle or current C on P^, and to take f . For instance, if

•^m'*^)
G is a path from m{s) to m(t), together with a section e ofL^ on it, one deforms it with w'
so that G(w') remains a path from m'(s) to m'(t).

(3.7) The group G of automorphisms of P is isomorphic to PGL(2). Its action
on P induces an action on M C P8, on the space P^, and on the flat projective
bundle B(a)^ on M. The section co^ is preserved. The action on M is free. Let
Q^= M/G. The fiber bundle P^, the flat bundle B(a)^ and w^ being equivariant,
they descend to a fiber bundle PQ, a flat projective space bundle B(a)q and a section w^
of B(a)Q^Q.

For P = P1, and for a, b, c distinct in S, let Mo C M be the space of m such that
m{a) = o, m{b) = i, m{c) == oo. One has PGL(2) X Mo^>M. The quotient map
hence induces an isomorphism M^^Q, and via this isomorphism, B(a)o and w^
can be identified with the restriction of B(a)^ and w to M().
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(3.8) Fix a base point o e Q^. The section w^ can then be viewed as a multi-
valued map from Qto B(a)o. More precisely, let C[be the covering of (^corresponding
to the kernel of the monodromy action p of7Ti(Q^, o) on B(a)o, i.e. let C[be the quotient
by Ker(p) of the universal covering of (Q,, o). The pull back of B(a)Q on C[ is
Q.X KC^O? and- ^ix becomes a TT^Q, o)-equivariant map Sî  from d to B(a)o.

Proposition (3.9). — S^:C[-^B(a)o ^ A^.

Proo/. — We may take P = P1 and replace Qby My, as in (3.7). The problem
is local. Take m e My, let e be a trivialization of L—near m—on R^ near oo. We
may take

co == II {z-m{s))-^.dz.e
w(»)+oo v ' / /

(cf. (2.8)). Choose cycles G, as in (3.5.4). Differentiating in m, one has

^AL, (0 = ^M (0)^JG, JG, ^0 5

., , v ^dm{s)
with ^Mo(0 == s ———— .^.

^) , 4=0, 6, c 2; — w(^)

The spaces Q,and B(a)o have the same dimension N — 3. The map w is hence
^tale at m if and only if rf(S^) is injective, i.e. if and only if for no tangent vector v =)= o
at m is the family (^J <*>). proportional to the family of integrals (f (0)., i.e. if
and only if for no v the cohomology class of ^ co is proportional to that of co. This
means that the cohomology class of any non-trivial linear combination

by co
7] = fl(0 -}- S

s+a,6,c Z — W(J)

should be non-trivial. If b, + o, T] is of valuation exactly ^(<o) — i at s, and hence
7) 4= o. If by = o, the valuation is >_ Vy. This shows that T] 4= o and that

^s^ ^ Js^ - (N - 3) == - 2 - (N - 3) = i - N,

so that the non vanishing of the class of T) results from (2.14).

(3.io) We will now assume that |aJ == i and that the numbers ^ defined
by Q(., == exp(2m^), o < (A < i, satisfy S^ == 2.

Locally on M, L admits a horizontal positive definite Hermitian form ( , ), unique
up to a positive real factor (2.18, 3.3). It induces on R1 ̂  L a horizontal Hermitian

form ( , ) = ——r ^ (2.18), of signature (i, N — 3) (2.21). The vectors on which

( , ) is positive define a horizontal family of complex balls B^a^C B(a)^, and the
section w^ is in B^a)^ (2.20) (for the meaning of the term " complex ball5?, see § 5).
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The family B^a)^ is equivariant, hence descends to B-^Q C B(a)Q. The Aale
map of (3.9) is a map

(3.10.1) Q-^B^a),,

equivariant with respect to the action of7Ti(Q, o) on B-^a)^ This action is a morphism

(3.10.2) ^(Q,o) -.PU^P,, LJ,^^.

Notation being as above, our main result is the

Theorem (3.11). — Assume that
(INT) The numbers ^ defined by o^ = exp(2TC, ̂ ), o < ^ < i, ^̂  S^, = 2 and,
for all s 4= t in S J^A ̂  ̂  + ^< i, (i — ^ — ^)~1 ^ ̂  ̂ ?̂r.

Then, the image T of (3.10.2) is a lattice in the protective unitary group

PU IH^ LJ, —4^ PU(i, N - 3).
V 27n /

The theorem will be proved in section n, where it is restated as theorem (11.4).
The strategy of the proof is presented in the next paragraphs.

In § 4, we define a partial compactification Q^ of Q. We also define a compac-
tification Q^. with Q^sst D Q.st D Q. and Q^ - Q.st finite. In § 8, we recall
a construction of R. H. Fox to define the completion CLt (resp. CLj of C[ over Q^
(resp. Q^gt)- When the condition (INT) is satisfied, one can show that each point y
of Q,st admits open neighborhoods U such that the inverse image of U in C[ is a disjoint
sum of finite coverings of U n Q. The completion CLt is then a normal analytic
space; it is the normal ramified covering of Q^ extending Q^.

The results of§6 allow us, in § 8, to extend w^ to a map from CLt to ^(^o- We
will again write w^ for the extended map. In § 9, we show that the condition INT
is tantamount to requiring this extended map to be <ftale in codimension one. Since
the projection Q^ -> Q^ is locally (on C[j finite to one, and CL^ is a normal
analytic space, it follows from § 6 that the extended map w^: Q^ -^B^a^ is locally
finite to one. By the purity of the branch locus theorem, if S^ is ^tale in codimension
one, it is then (Stale everywhere. Actually, we give two proofs of this fact in § 10, the
second proof not requiring the theorem on purity of branch locus. Additional work,
relying on the compactness of Q^, shows that S^ : C[^ -> B^a),, is a topological
covering map. The ball being simply connected, it is an isomorphism. In other
words, the inverse of the multivalued map w^ is a single valued map w^1: B^a)^ -> Q^.

The homeomorphism S^ transforms the fibers of the projection CLt-^Q-st
into the orbits of F. Those orbits are hence discrete, and F is a discrete subgroup of
the Lie group PU(i, N — 3) of isometrics of B+(a),. When Q^ = Q^, the
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quotient B'^a^/r ^ Q^ is compact, and F is cocompact. In the general case, a
local analysis near the cusps ^ eQ,sst ~ Q.st shows that it has finite covolume.

For N = 3, the group PU(i, o) is trivial and the statement (3.11) uninteresting.
For N ^ 4 , it is not at once clear that (i — p.,— ^)~1 must be an integer for all
i +j under condition INT (cf. (14.2. i)). It is easy to see however that condition INT
implies that all ̂  are rational. We show this, even though it is not used in our proof.

Lemma (3.12). -— Assume that card S ̂  4. If positive real numbers (ys)se^ sum u?
to 2 and if/or each of the pairs of elements s + t of S for which v, + v< ̂  i, Vg + v< is
rationale then all v^ are rational.

We may and shall assume that S is the set of integer from i to N, N ̂  4, and
that v^< ... ^ v^.

Case j. — ^ + v^^ i. For any distinct i,j< N one can find k < N distinct
from i and j. One has v/c + ^N ^ v! + ^N ^ I? hence

V, + V^ 2 - (V/, + VN) ^ I

is rational. If three numbers a, 6, c, are such that a + 6, b + c and c + a are rational,
they are rational. Applying this to the v, {i< N), we find that they are rational.
So is v^, because S^ = 2.

Case 2. — YI + ^N ^ I- I11 ^is case, for any i =f= i, v^ + ^^ ^i + ^N ^ J ls

rational. Summing, one concludes that (N —- 2) ̂  + Sv, == (N — 2) v^ + 2 is
rational: v^ is rational, and so are the \ (i 4= i).

(3.13) Next, we explain how local systems L with the prescribed monodromy a
in the fiber direction can be constructed globally above M on P^. Fix three distinct
elements fl, 6, c e S. For each m in M, there is then a unique isomorphism P -> P1

mapping m{d), m(b), m{c) respectively to o, i, oo. Let z : P^ -> P1 be the resulting
map. When no ambiguity results, we will write z{x) for z{x,m). Let A: M -^R4'
be a large enough continuous function. What is needed is that [A(w), oo[ be disjoint
from z{m{S)). For any U C M, let Iy denote the locus of {x, m) eTC~' l(U) such that
z{x, m) e [A(w), oo[. If U C M is contractible, then Iy C P^ is too. For U C M
contractible, if L is a local system on TT'^U) with the prescribed monodromy a (cf. (3.3)),
then Lu admits an horizontal section e^ =t= o on ly. The pair (Ly, e^) is unique
up to unique isomorphism, hence there is no problem in glueing. One gets a global
local system L on P^, provided with an horizontal section e on 1 .̂

Let Mo === {m e M | m{a) == o, m(b) = i, m{c) ==00} as in (3.7). The product
decomposition PGL(2) X MQ ^> M induces an isomorphism PGL(2) X PM.^ PM; anc!
if one takes A(m) constant on the PGL(2) orbits, so that 1̂  is the pullback of 1̂  , the
system (L^, e) is the pull back of its restriction to Pj^.
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(3.14) We give two other descriptions of the same L. Fix numbers ^ such
that a, == exp(2m^). Let L^ be the subsheafoffl^ (cf. § 2) consisting of those functions
which are constant multiples of II (z — z^m^s)))^. This function is multivalued

8 + C

but the ratio of two determinations is a constant, so that the definition of L makes
sense. If ^ is another choice of (JL, with o^ == exp(27^), the multiplication by the
univalued function II [z — 2'(w(J)))^~^ is an isomorphism of L with L ,.

s + c

The principal determination of the multivalued function [z — z(m{s))Y5 on 1̂
is defined as exp(^log(;? — z{m{s)))) with |arglog(<? — z{m{s)))\ < ni for z real and
large enough. This provides a section of L^ on 1 .̂ One easily checks that L^ has
the monodromy a on each fibre.

An identical but more algebraic description of L^ is: the local system of horizontal
sections of Oy provided with the connection V^ for which

f-iy f=^_ V ^dz ~~ ̂ (J)))
7 (AJ / \tc z-z{m{s)) •

(3.15) We close section 3 with some remarks about liftings of the projective
representation

9: 7r,(Q,.)^Pu(Hi(P,,L,),^^

to a linear representation.
As in (3.7) and (3.13), fix three elements a, b, c in S and denote by M() the subset

ofM with m{d) = o, m{b) = i and m{c) = oo. Let M.(c) denote the subset of m e M
with m{c) = oo, and let B denote the stabilizer ofoo in PGL(2). One has MQ ^> Q and

B x Me ̂  M(^), PGL(2) x Mo ̂  M.

As is well known,

7r,(PGL(2)) = ^(PU(2)) = ^(SU(2)/± i) = Z/2

and 7Ti(B) == 7ri(C x C*) == Z,

so that

(3 .15.1) T^(M) «T^(QJ xZ/2,

(3.15.2) 7Ti(M(,)) »7Ti(Q)xZ.

Both those isomorphisms depend on the choices of a, b, c.
For X any of Q, M{c) or M, each choice of a local system L on Px with fiberwise

monodromy a leads to a lifting

6': 7ri(X,.)^GL(Hi(P,,LJ)
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of 6. If L carries a unitary structure, 6' has values in U JH^P^, LJ, ——r ^) . For
\ 2nt I

instance, the L of (3.12) carries a unique unitary structure for which e is of length one,

and its restriction to MQ ^> Q^ provides a lifting 6' : ̂ (Q, d) -> U (H^P^, L(,), ——r ^1 •
\ 27rl /

The local system L itself provides a lifting 6': TT^M, o) -> U (H^P^, LJ, ——r| which
\ 2nt)

is trivial on the second factor of the decomposition (3.15.1).
Let L(^) denote the local system on P^) which is given by the subsheaf of (9

consisting of those functions which are constant multiples of

II {z - m(s)^.
s + c

Here, z is a fixed coordinate on P composed with P X M(c) -> P and not as in (3.12) and

(3.13). The local system L(c) provides a lifting 6' : ̂ (M{c)) -> U (H^P,, L,), ̂ -^ ^}
of 6. ^ 2m '

Inasmuch as M.(c) is the space of distinct (N — i)-uples of points in the plane
(N == card S), ^(M^c)) is by definition the colored braid group on (N — i) strands.
For any s, t e S — c, let Ys< ln ^(^(c)) be a path in which t comes near s, makes a
positive turn around s and comes back to its original position. The colored braid group
is generated by such elements. The lifting 6' provided by L(^) has the virtue that
each 6'(Ys <) ls a pseudo-reflection (i.e. 6'(Yg /) — i is of rank one)—cf. (9.1)? (12.3).

4. The compactified quotient space Qgst

(4.0) As in section 3, we fix a complex projective line P, an integer N ^ 3 and
a finite set S with N elements. We further fix a family ^ == (^s)sgs °^ rea^ numbers
with o < ^ < i and

S^ == 2.

The complex numbers a, :== exp{2ni^) satisfy |aJ = i, a^ =)= i and IIa, == i.
As in section 3, M C P8 is the space of injective maps y : M —^ P. We denote

by PGL(2) the group of automorphisms of P.
These conventions will hold throughout this section as well as in sections 6 to 12.

In this section, from (4.2) on, P will be the standard projective line P:=P1 = C u{oo}
and M the space of S-uples of distinct points of the Riemann sphere. This is no loss
of generality.

(4.1) The group PGL(2) operates diagonally on P8. We shall define a compacti-
fication of the quotient space Q,:= PGL(2)\M. The definition is taken from D. Mum-
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ford's theory of quotient varieties of reductive groups (cf. (4.6)). The account here
is self-contained.

A point y e P8 is called ^'stable (resp. semi-stable) if and only if for all z e P,

( 4 . 1 . 1 ) S ^< i (resp. <_ i).
y{s)=z

The set of all (A-stable points (resp. (i-semi-stable points) is denoted
M^ (resp. M,J

and we set M^,p = M^ — M^.
For each partition {S^, Sg} of S with S ^3 == i (i = i, 2), the points y in P8

ses,
for which j^(Si) nj^Sg) == 0 and j? constant on 83 or Sg are in M^gp. All points
in Mgygp are obtained in this way, each from a unique partition.

On Mggt we define a relation 31 via
^ == y\3K} if and only if either

a) y ^ y ' e Mg^ and y ' e PGL(2)j/ or
b) y ^ y ' e M^gp and the partitions of S corresponding to y and y ' coincide.

It is clear that 31 is an equivalence relation. Set
^ = M,J^ Q^ = MJ^ Q^p = M,,,p/̂

each with its quotient topology. The elements of Qcusp are uniquely determined by
their partitions. Thus Q^cusp ls a fi11116 set.

Example (4.2). — The cross-ratio c{z^^ z^ ^3, ^4) == -1——3 : -1——^ of four
^3 — ^ ^4 — •2'2

points in P := P1 is defined and is a continuous map into P1 as long as no three of z^
-^ ^ ^ are e(lual• When two of the ^ are equal, the cross-ratio takes one of the
values o, i, oo, the value depending only on the partition of { i , 2, 3,4} consisting of
the subset {i,j} with ^ == ^ and its complement. Suppose S = = { i , 2 , 3 , 4 } and

^ == - for all s e S. One can show that the cross-ratio map Mgg^ ->' P1 descends

to Q^gst and yields a homeomorphism onto the projective line.

(4.3) Let M' be the space of y eP8 such that j(S) has at least three distinct
points, and let Q '̂ == PGL(2)\M' be the corresponding quotient orbit space. Fix
a, 6, c in S, let U be the set of all y e M' taking distinct values on a^ A, c, and let Uo
be the subset of all y e M for which y[a} == o, y{V} = i, y(c) == oo. Then U is in M,
stable under the action of PGL(2), and PGL(2) X Uo ̂  U. Hence

Uo^PGL(2)\U^Q:.

As one varies a, b, c, the images of Uo in Q^ cover QJ. Consequently Q,' is a manifold.
However, this manifold is not Hausdorff if card S > 3. For card S == 4 (cf. (4.2))
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one gets the projecdve line with o, i and oo doubled. One infers from (4.1.1) that
M^ C M'. The quotient Q^ being open in Q; is a manifold. The following Lemma
implies that it is Hausdorff.

Lemma (4,3). — Q^ ls Hausdorff.

Proof. — Let F denote the set of injective maps of { i , 2, 3,4} into S. For any
/eF, let Mf denote the set of all y e M^ such that card^/)-^) _< 2 for all
z eP and additionally, if y e M^p, card/-^,) = 2 for i == i, 2 where {Si, SJ
is the partition of S corresponding to y. The additional condition guarantees that
Mf n M^gp as well as My n M^ is ^-saturated.

For any / in F, define Cf: My -> P via the cross-ratio:

^) ==^fW^fW^f{3)^fW);

the function ^ is constant on ^-equivalence classes of the ^-saturated set My. Inasmuch
as ^ is continuous on My, it descends to a continuous function on MJ^t. To prove
the lemma, it suffices to prove:

(4 •3- x) F01' any j^ s(=y mod ̂ , there is an f e F such thatj^ and y ' are in M/,
and c^y) =)= ^(V).

One is free to replace j/ andy byj^ and^ with j =^(^), y ==y(^).
To eachj/ in Mg^ we attach a partition of S as follows: for y e M^gp, attach

the partition defined in (4.1); for j /eM^, attach the partition T === {Gi, ..., G,.}
such that y{s) -==y(t) if and only if s and t lie in the same coset of T. If y =s y^SS),
the same partition is attached \.o y andj^. In the proof of (4.3.1), we may and shall
assume that ifjy or y is in M^gp, then it is constant on the cosets of its partition.

We first treat the case that y and y are in M^gp. Let {S^, 83} and {S[, 82} be
their corresponding partitions of S. Since y sjs y ' mod St, S, n SJ is not empty for
ij e{ i, 2}; otherwise, if say S^ n 83 == 0, we would have S^ C S[, S^ 4= S[ and

S [i, =o
s e s'i - Si

contradicting o< ^ for each ^ e S. Choose / so that card/'^S, n Ŝ .) = i for
each choice of i,j e { i , 2}. Then for suitable choice of/ we have

yfW.yfW.yf{3)^fW = ^ ̂  b, b,
y/(i),y/(2),y/(3),y/(4) == ̂  v, a\ v,

with fl =1= b, a' =)= 6'. Hence

^/(j0 == i. <-/(y) == o.
Suppose next that y e M^gp and yeMgf Let T = = { G } be the partition

of S corresponding toy by (4.2). Each coset in the partition of S corresponding toy
must meet at least two distinct cosets of T. We can thus choose an / e F so that
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^(i)^/(2)^/(3),Ji/(4) = ̂  ̂  ̂  b,

y/(i),y/(2),y/(3),y/(4) = ̂  ̂  c, d,
with a 4= b, a' =(= 6', and c + d. It follows at once thatj/ andy are in Mp ^(^) == i
^/(V) + i.

It remains only to consider the case where y andy are in M^$ let T and T be
the corresponding partitions of S. If T == T', then for any / e F, y e M^ if and
only if y eMf. Replacing y by an element in its PGL(2)-orbit, we can assume that
there are three distinct cosets G^, Gg, €3 of T with jy{s) =V{s) for s e Ci u G^ u €3.
If ^V) ^^(y) for all/with j^eMp then clearly y =y. One is thus reduced
to the case where T 4= T'. Then there is a G^ e T and C[ e T' such that C^ n C[
is not empty and C^ =t= G^.

Either C^ — G^ or Gi — G^ is not empty—say C[ — C^ + 0. Choose Cg e T
so that G i n G 2 + 0 . Choose Gg e T with €3 + C^. Next choose C,eT so that
Gg n G^ + 0. Then Gi u G, + S; otherwise, since y ' and j/ are in Mg^

2^ S (JL,+ S ^< I + I.
s e Ci a e c,

Ghoose /: { i, 2, 3, 4} -^ S with

/(i) e G^ n G,, /(2) e G, n C^, /(s) 6 C, n G,, ^(4) ^ G, u G,.

Any such / is injective, and

yfW^fW^AS^yfW = ̂  b, c, d, with a ^ b, c ^ d

y/(i),y/(2),y/(3),Y/(4) = a\ a\ b\ c ' with a' + V, a; + .'.

Hence ^(y) = i, ^(j/) 4= i. This completes the proof.

Lemma (4.4.1). — Fix a Riemannian metric on P. Let ^ be the set of all subsets T
of S with S [Lg > i. For y e P8, <fe/m^

8GT

^V =^diamj/(T)

and a[y) == sup rf(^).
g e PGL(2)

TA^ ^r^ is a> o such that a[y)>_ a for all y e Mg^«

Proof. — The validity of the lemma is independent of the chosen metric. We
will use the Fubini metric (for which P is isometric to the sphere of radius i) and prove
the lemma with a == 7T/4.

If y e M^p corresponds to the partition {S^, 83} of S, with y constant on Sj,
let us take g to fixj/(Si) and the antipodal point u of P and to carry the complement
of the s-neighborhood of^(Si) into the s-neighborhood of u. Taking e -> o, one gets
dU) == 7T.
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For any e, there is a compact K C PGL(2) such that for g ^ K, ^ maps the
complement of the s-neighborhood of some point u into the e-neighborhood of some
point v. If y e Mg^ and if e is small enough, then, for all u, {s e S [ dist(j/(^), u) > e}
is in .̂ This implies d{gy) -> o for ^ -> oo in PGL(2). The sup defining a(y) is
hence attained. Fix y e M.^ with aQ) == d(y). We have to prove d(y) ^_ a == TC/4.

Suppose to the contrary that d[y) < a. Fix T^ e ^" with diamj^(Ti) < a and
t e Ti. For any T^, Tg in r, T^ n Tg =(= 0. If S' is the union of all T e r with
diamjy(T) < a, J^(S') is hence contained in a half-sphere of radius r < 2fl = Tc/2 with
center j^). In particular, j^(S') is contained in an open halfsphere. Identify P with
the Riemann sphere a u oo, with the unit disc the halfsphere, in such a way thatj(S')
lies in D == {-2' || ^| < 6}, 6 < i. Take for g the multiplication by i + e, e > o.
For e small enough (relative to b), distances in D are increased by g. For any T e ̂
with diam^(T) < a, one hence has diam^(T) > diam^(T). For T e ̂  with
diam^(T) ,> a, diamj/(T) can decrease, but not much for e small, so that d{gy) > d[y).
This contradicts the choice of jy.

Lemma (4.4.2). — Q^ is compact.

Fix a > o as in (4.4.1), and define M'C P8 to be the set of y such that
dianv(T)^<? for each T C S with S p.,> i. The subset M' of P8 is closed,

sGT

hence compact. It is contained in Mgg^ and, by (4.4.1), it maps onto Q^gsf Compact-
ness follows.

(4.5) By contrast with Q^ which is a manifold, the points of Q,cusp rswf be
singular.

Let ^ denote the natural projection of Mgg^ onto Q^ggf Let {S^, S[} be the
partition corresponding to a point ^ e Mgygp. We shall describe a neighborhood
of ^(j^) in Q^ggf We can assume that j^(J) = o for all s e S^ and y^{s) = oo for
all s e S[. Fix elements a e S^ and b e S[, and define V as the set of all y e Mgg^
such that y{d) == o, y{b) == oo and

sup bCy)|< inf |ĵ )|.
s e Si s e Si

Then, ^(V) is an open neighborhood of 40*) ln Q.sst anc^ ls t^:le quotient of V by the
equivalence relation on V induced by S9. The punctured neighborhood ^(V) — 40*)
is the quotient of V — ^-1 40*) by the stabilizer in PGL(s) of the points o and oo:
w-^) ^ (v-r^a))/^

Set Sg === Si — {a}, Sg = Si — {6}, m == card(Sg), w' == card (82) and consider
the composite map

p: v -> c^ x 0s2 == c^ x c^ -> c '̂
^^> ((^MLes.. (^"^^es.) ̂  (j^-jWLes^es.-
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The map (B descends to an embedding of ^(V) inro C '̂, whose image is the inter-
section of the cone over the Veronese embedding of p"1-1 x pw'-i ^ pmw'-i ̂ ^
the polydisc of radius i (|^ J < i).

If w == i or w' == i, the Veronese embedding is an isomorphism with p^'-1.
As a consequence

(4.5.1) If card(S^) == 2 or card(S^) = 2, the cusp point with partition {S^, S[}
is non singular.

One can define an algebraic structure on Q^ by using as a chart at a point
PGL(2)j/ of Q^ the orbit space

PGL(2)\{y e M,, |y(i) +y(^) if^(z) +^(^)}

and at a cusp point with partition {S^, S^} the Zariski-open subset of the Veronese cone
of P"1-1 x P^'-1 in C '̂ given by

xst =As)ly(t) + i, for all s e S^, ^ e S^.

Example i. — S == { i , 2, 3, 4, 5}, (Ji ,=2 for all s e S.
o

Here there are no cusp points: Q ,̂ = Q^ = PGL(2)\M,,. Each pair j, ^
in S defines the diagonal line L,, :jy{s) ==jy{t) in M^ and under the projection to Q^»
one gets 10 lines. The map of M^ to (P1)2 given by

(^1^2^3^4^5) ̂  (00, 0, I, ̂ (^i^2^3^4)~1, C^^^^)-1)

(where c denotes cross-ratio) descends to a map p of Q^ which is biregular except at
^ = P"^ o)? LOI == P"^1? i)? Li2 == P"^00. o°). Here, Q^^ a blowup of P1 x P1.
Each of the curves p-^o, o), p-^i, i), p-^oo, oo) are exceptional, that is, each has self-
intersection — i . Inasmuch as the set of lines {Ly, i ^=j\ i,j e S} are permuted
transitively by permutation of coordinates in M^, their images in Q^ are also permuted
transitively and thus each of the 10 lines is exceptional. The 10 lines of Q^ consist
of p-^o, o), p-^i, i), p-^oo, oo), and the p-lifts of the seven lines on P1 x P1:

o o
x == i , y == i , x ==jy

00 00

where x = c[y^y^y^y^)-\ y = c^y^y^y^.

E^pl.,.-S»{,,,,3,4,,},,=(^,^,j).

Here there are four points in Q^gp corresponding to the partitions { S,, S,'} where
^ = { ^ 5 } ? l<.i<.4:f CLst is a non-singular manifold by (4.5.3). This Q^
can be obtained from the Q^ of Example i by blowing down the four lines L,g
(i <^ i <_ 4). It can be obtained from P1 x P1 by blowing up the point (oo, oo) and
then blowing down the lines x == oo and y == oo. The resulting space is Pg.
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(4.6) We conclude this section by relating our Q^ to Mumford's when all
the ^ are rational.

Let 0{n) be the line bundle on P of degree n, and let Qp be the canonical line
bundle on P; i.e. 0^ ^ (P(— 2). For any line bundle oSf we write S for the dual
line bundle and ^n == (J^)0^ for n < o.

Let D be the common denominator for { ̂ , s e S}. On P® define the line bundle

^ == CE3 Q{2 D^) = ® ̂ ((W^).
ses ses

It admits a PGL(2)-action coming from the action on the tangent bundle Qy ^ ^(2)*
The stable and semi-stable points ofPS defined in (4.1) are the same as those defined
in Mumford's " Geometric Invariant Theory " for the action of PGL(2) on the linear
space of holomorphic sections of ,S ;̂ Q^ is the underlying topological space of
Mumford's "quotient variety" for PGL(2)\P8 [15].

5. The complex ball

(5.1) Let V be a complex vector space, and ( , ) be a Hermitian form on V, of
signature (i, dim V — i). The complex ball B"^ in P(V) : == { i -dimensional subspaces ofV}
corresponding to ( 5 ) is the set of lines in V which are spanned by a vector v with [v, v) > o.
The form ( 5 ) is determined, up to a positive real factor, by B4'. The closure B4' ofB4'
in P(V) is the set of lines spanned by a non zero vector v such that (^, v) ^>_ o.

(5.2) The hyperbolic angle 6eR4" between lines /^^B^", spanned by vectors^, ̂ ,
is defined by
(5.2.1) l^^^l-cos^e)^,^1/2^,^1/2.
It remains unchanged when ( , ) is replaced by a positive multiple.

The angle 6(^5/2) is a Riemannian distance on B4'. It is invariant by the action
of the unitary group U(V) on B'1" and renders B4' a Hermitian symmetric space.

By continuity we extend the function 6(/i, —) to a function 6(/i, —) from B4' to
R4- u{oo}:6(^) = oo fo r / e^B 4 - .

(5.3) Fix t e ^B4'. For v non zero in /', we define a c< distance from t " function
on B4' by
( 5 -3 -1 ) W = | (y, ^)]/(^, y,)1/2 for ^ E B^ any v, + o in ^;

(5.3.2) d^) = o, ^(r) == oo for r e BB4-, r ̂ t.

The function d,, is continuous and > o on B4' — { £ } . One has ^(^i) = |X | fi?y(^),
and the family of functions dy (v et — {o}) is stable by the stabilizer of/ in U(V).

(5.4) On B4', we will use the coarsest topology for which the functions dy and 6(/i, )
are continuous. A fundamental system of neighborhoods of / e B4' (resp. of / e SB4'—on
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which we choose v + o) consists of the Vg (s > o) defined by Vg == {(^ e B^ | 6(^, ̂ ) < s}
(resp. V, == {^ 11^ == /' or ^ e B4- and ^(^) < e}).

This topology is finer than the one induced by the topology ofP(V). It induces the
usual topology on B4", and the discrete one on c®4". It is respected by U(V).

Proposition (5.5). — Fix I e ^B4" and let A be a discrete subgroup ofthe protective unitary
group PU(V) stabilizing t and respecting a <( distance to t ^function d^. If I has a neighborhood V
[in the topology 5.4) such that V/A is compact, the volume of (V n B^/A is finite.

The subgroup ofPU(V) respecting I and ̂  is the isomorphic image of the stabilizer H
ofv in U(V). It is an extension of the unitary group U^1/^) by the unipotent subgroup N
of H consisting of the n e U(V) respecting the filtration V 3 v10 Cv 3 o and acting
trivially on the successive quotients. The extension is split: H and N act transitively on
each horocycle d^(t^) = C and the stabilizer of^ is a lifting of U^1/^.

Fix an isotropic vector -0' such that (^ v ' ) = i, and let ^ = v + 2^'. The
line /'i spanned by ^ is in B4' on the horocycle dy == i. Let V be spanned by v and ?/,
and let V" be the orthogonal complement (w vL|v). Any h eH fixing ^ fixes each
point of V; hence the stabilizer of^ in H is U(V") C U(V). Let A C U(V') C U(V)
be the group of unitary transformations a[\) : v \-> \~1 y, v ' (-> \v' (\ e R4') and fixing
each point of V". It normalizes H: one has ^ o a(X) = d^-^ = \d^. Let
A11 == {a{\) | X ̂  R}. The map ^ h-^/i maps isomorphically A11 H/U(V") == A^ N
onto {^2 e B4' | d^(l^ ^ R}. The horocycles are closed in B4' (for the topology 5.4).
The compactness assumption implies that for R small enough, {/g [ ^(/g) == R}/A is
compact. One has

A\<z(R) H/U(V") ^{^ [ d^,) = R}/A

and A is hence cocompact in H. It remains to evaluate the volume of
A\A11 H/U(V") ̂  e B | d^,) ̂  R}/A

for a volume element on A11!-!/!!̂ ") which is AH-invariant, hence a multiple of the
image of da. dh on A8 H. It is

f da.dh^{ ^ f dh,
JA^H JX^R ^ JA\O(X)H

and f ( fA=f < /A= f dW1 ha{\))
JA\O(X)H Ja^r^aWVl JA\H /<

= Idet^nt^-SLieH)!
J i

dh.
A\H

This leads us to evaluate det(Int a(\)~1, Lie H). One checks that the character
JX^R

det(Int <2(X)~1, Lie H) of X eR4'* tends to zero for X -> o, and the integral is hence
finite.

The computation above is of course exactly the one used to prove that Siegel
domains have finite volume ([2 b], Lemma 1.9).
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6. Stable points

(6.1) Notation and assumptions (4.0) are in force in this section as well as the
assumption N ^ 4. Our aim is to investigate the asymptotic behaviour of the section co^
of B(a)^, for y e M converging to a stable point m e M^.

Fix m e M.^. To make a local study of co^ near m, it will be convenient to iden-
tify P with P1, in such a way that oo ^ w(S). Let U be an open neighborhood of m
in Mg^, such that oo 0(S) for y e U. On the inverse image Py of U in Pps (3.1)5
there is a rank one local system, trivialized at oo by a section e over { oo } X U, and with
monodromy a on Py for y e U n M. A model of it is: the local system of constant
multiples of II [z —y{s)Y^ the (JL, summing up to an integer, there is no ramification

s G S
at oo. A trivialisation for large positive real z is provided by the principal determination
of II (^ —J^))^ lt extends by continuity to a trivialisation e at oo. We normalize

ses
the Hermitian form ( , ) on L so that (e, e) == i.

For a general y e U, the monodromy of Ly on Py around p e^(S) is
II <Xg = exp(27n S ^). The stability of y ensures that o< S ^< i, so that

y(s)==p y{8}ssp y{s)^p
this local monodromy is never trivial.

Fiber by fiber, we take as section co of ^(S^.j) (L)

Q),= n ( z - y { s ) ) - ^ . e . d z .
s e o

On U n M, it depends holomorphically onj. The assumption of stability ofy amounts
to saying that this form is of the first kind.

(6.2) The sheaf R^Ly, for TT the projection Py-> U, is no longer a local
system if m ^ M. Its fiber at m is H^(P^, LJ (^ H^P^, LJ by (2.6. i)). For each
h eH^(P^, L^), there is hence a unique germ h^ of a section of R1 TT; Ly inducing h
on P^. The vector space H^(P^, L^) being finite dimensional, this provides us on U
suitably small, with a map

(6.2.1) (constant sheaf H^(P^, LJ) -> R1 TT, Ly.

This map is compatible with the non degenerate Hermitian form ( , ), and hence
injective. Compatibility can be checked on the description given below. In parti-
cular, each AeH^(P^,LJ defines a horizontal section If? of R1 TT, Ly on U n M.
We describe A^, for h the class of a L^-valued compactly supported C00 form 73, whose
support is contained in a connected compact K. containing oo, and for U connected and
small enough for K to be disjoint fromj/(S) for y e U. On K X U C Py, L is uniquely
isomorphic to pr^(LJ, by an isomorphism which is the identity above m. It hence make
sense, in each fibre P , to take the same form 73; it defines h^.
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(6.3) If we apply this to G)^, we get an horizontal section cl^^ of R1 TT; Ly
on U n M. As (co^, coj > o (2.20), the same positivity holds for cl^)^ and,
projecting from R1 TT, Ly to B(a)^, we get a section Pcl^J17 ofB(a)^. We will compare
it with the holomorphic section w^y using fiber by fiber the metric (5.2).

Proposition (6.4). — 6(^, PcUcoJ17) tends to o for y eM f̂e'̂  ^ w.

Proo/'. — This will result at once from the two statements

(6.4.1) (o)y, o)y) -> (co^, coj forj/->m;

(6.4.2) ((0^ cUcoJ^-. (co^, oj forj/-^m.

If it made sense, we would like to say that o -> co^ in the lAnorm, for y -> m,
but (Oy and co^ do not live in the same space, having different ramification. Let KR be
the complement in P1 of discs of radius R around each point ofm(S). One assumes R
small enough for these discs to be disjoint; on a connected neighborhood U ofj/, small
enough forjy(S) to stay disjoint from KR, one can compare <x)y |K^ and Q)^| KR : on
KR x U, L ̂  pr^ L^. There, one has a G°°-convergence of <x)y to co^. To prove (6.4.1),
it hence suffices to obtain a bound e(R), uniform my, close to m, for the L^norm of the
restriction of ̂  to a disk DR of radius R around p e m{s), for any s e S, this bound
being such that s(R) -> o for R -> o.

We may assume R and U small enough so that jy{s) ^ D^ if m{s) =t= p. This
ensures

II | z —jy{s) |-^ < constant. II | z — y ( s ) \~^
m(s)=p

and the required estimate follows from the following lemma.

Lemma (6.5). —LetD be a disc ofradius R, (^)»gi be a family of points ofD and{^)^^
a family of real numbers, such that o< (JL,< i and S(JL,< i. Then, writing z == x + ly,
one has

r _ r 27^R2(l-slJt*)

n\z-a,\-^dxdy<} \z\-^idxdy==-—————.
-/D •' —J I^KR ' 1 " 2(1 — Spi,)

Proof, — We may and shall assume D centered at o. If the real numbers p^ are

such that i > — > ^ and S — = i, Holder's inequality gives
Pi Pi

One has

r r r il/pi
T l \ z - a i \ - 2 ^ d x d y < T l \ } \ z - - a,\-2^ dx dy\ .

JD LJD J

ft ft /.R T?2-2(1, pi

\z-a,\-2^dxdy<\ \z\-^dxdy = 2n \ rl-2(A*^^= 2n—————;
JD JD Jo 2—2[L,pi
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that the integral of | z — flj-2^' dx dy is bigger when taken on the disc D^) of
radius R and center a, than when taken on D^o) results from the fact that | z — a, l"2^ pi

is bigger on D^) - D^o) than on D^o) - DR^,) : one has | z - a,\ <_ R on
DR(^) - DR(O), and [ z - a,\ ̂  R on D^o) - D^,).

Using that Si/j^ == i, we have

r r R2-2^* i1/^'
n^-^l-^'^^II 27r.—————— ^STr.R^-^ G-1

JD ~ [ 2 - 2^J

with C= 2.11(i - ^ p ^ / P i , Taking the p, such that the ^ are all equal,
i.e. p^ == pi^S^., one gets the result.

(6.6) Proo/y(6.4.2).—Foreach p e m { S ) , let Dp be a disc of radius R around^,
Up the solution on D^ == Dp — p of <o^ == du and cpp the characteristic function of D .
The current with compact support u^—d^u? can be used to compute cUcoJ17.
One gets

((0 CI(COJ^) = — — f c^AC^-S-^ f <<0,,^>.
27TZ JKB v P 27TZ JeD. '

For y -> m, and R -> o in such a way that the disc of radius 2R around p contains
allj/(.?) for m(s) = p, the first integral converges to (co^, coj, while the others each
are C^R215), B = i — S ^. This concludes the proof.

m{s)=p

(6.7) In the neighborhood of a stable point ^eQ^ the projection of M^
to Q^ has a section. Taking a pull-back by such a section, we get the following:

Corollary (6.8). — For y e Q^, there exists a neighborhood V ofy in Q^ and a horizontal
section by o/B(a) on Qn V J^A that Q{by{y), w^(y)) -> o for y ' ->y (y e QJ.

For ĵ  e Q,, the corollary just tells once more that the section w is continuous atj\

(6.9) A partition T of S is stable if for each C e T, ^.(T)c : == 2 ^ is < i.
sec

Define a(T)c = exp(27r^(T)c) = H a,. For T stable, let M^C M^ be the space
s e G

ofmapsj/ from S to P, such that jy{s) ==y{t) if and only i f j and t are in the same coset
of T. It is the inverse image in M^ of a subspace Q^p of Q^- The MT (resp. 0^)
for T stable form a partition of M^ (resp. dj and each MT (resp. Q^) can be identified
with the analogue M(T) of M (resp. Q^(T) of Q) for T, pi(T), and its closure with the
analogue M^(T) (resp. Q^(T)) of M^ (resp. Q,J.

Fix m, U, L as in (6. i), with m e M^. On M^ n U, the H^Py, Ly) form a
local system. By (6.2. i), this local system, which is trivial as U is small enough, extends
as a trivial sublocal system ofR^Lu. The coy {y e My n U) define a non-zero
holomorphic section of this local system on Mrp n U. The corresponding ray can be
identified with the section w^ of B(a(T)) on M(T).
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On Q^, this gives us in a neighborhood V of y e Q^,:

flj A horizontal sub-ball-bundle ofB(a), which extends as a constant horizontal
bundle on V. Its restriction to Q ,̂ can be identified with B(a(T)) on Q/T).

&J Via this identification, the horizontal section by of (6.8) is the horizontal section
through w^)(j).

Proposition (6.10). — If p. satisfies condition INT of (3. n): o < [L,< i, S^ == 2
and/or all s^ t in S such that [L, + ̂ < i, (i - ̂  — ^)-1 ^ a^ n r̂, ̂  any

subset G C S /or wAi^A S ^ < i A^J at most three elements, and for any such subset with at leasts e c
two elements, (i — S (JiJ"1 ^ an integer.

sec

The condition INT implies that ^ + ^ is always ̂  1/2 for j + t. Averaging
over the pairs in C C S, we get that for card (C) ̂  2, the mean of the ^ (j e C)
is >: 1/4. From S ^< i there results card (C) < 4.

sec
The case card (G) == 2 is trivial by INT. Suppose G == {a, b, c}. The

, . i i irelations i — ^ — ^ = —, i — ^ -- ^ == —, i — ^ — ^ == _ sum up to
^06 ^fic ^ac

I / I I I \ , I I I1 - ^a— ^ — ^ = - — + — + — — i , hence — + — + — > i .2 V^ ^60 ^ca ) n^ n^ n^
We now use the elementary fact that a triple of integers whose reciprocals have

their sum strictly greater than i must be one of
(2,2,72) (2,3,3) (2,3,4) (2,3,5).

The excesses of the sums over i are respectively
i fn, 1/6, i/i2, i/30.

It follows at once that (i — ^ — ^ — ^)~1 is an integer.

Corollary (6. n). — If (A satisfies INT and T is a stable partition of S (cf. (6.9)), the
family (JI(T) defined by

(x(T)c=^^ (GET)

again satisfies INT.

7. Semi-stable points

(7.1) The notation and assumptions (4.0) are in force in this section; we assume
also N ^ 4 . Let (S(i), S(2)) be a partition of S, such that S a, = i. We want

ses(i) l o

to investigate the asymptotic behavior on Q,of co^, fory converging to a point in Q,
oftype(S(i),S(2)).
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Fix a eS( i ) and b eS(2), identify P with P == P1, and let W be the space
of y e P8 such that y{a} = o, y(b) == oo, and

sup{|^)||.eS(i)}<inf{|^)||.eS(2)}

(as in section 4 where we wrote V instead of W). We put A(j) == sup {|j/(j) [ ] s e S(i)},
B(j^) = inf{ \y{s) \\se 8(2)}, G(jQ == A(j/)/B(j). The quotient map TT : W -> Q^
sends a pointy with C(^) = o to the semistable point J of type (S(i), 8(2)) and iden-
tifies (W — '^~1{J))|G^ with a punctured neighborhood ofj. One has convergence
of 7c(j») to J if and only if C(jy) converges to o.

On P^, there is, up to a unique isomorphism, a unique rank one local system L,
trivialized on the annulus A(j/) < ] z\ < B(j/) by a section e, and which for y e M,
has fiberwise monodromy a (hence trivial monodromy around the annulus, as
II o^ = i). A model of it is the local system of constant multiples of

i £ S(i)sew

n (.-j(^. n (i-^-Vn (^-^))^. n i - ^ ,
sesw ' •" / y ses(2) ^ j y { s ) jew •" / y ses(2) ^ y[s)]

We normalize the Hermitian form ( , ) on L by (e, e) = i.
For any y e W, fix R such that A ( j ) < R < B ( j y ) , and let coj be the L-valued

homology class represented by the cycle |-2:| = R in Py, positively oriented and pro-
vided with e, the trivializing section of L. It can also be viewed as a class in H^(Py, Ly).
For y ==j, defined by j(S(i)) = o, 7(8(2)) = oo, it is a generator of this H^. The coj
provide a horizontal section of R1 TT, L. Since ((Oj, coj) = o, the line (coj) spanned
by (x)j is in the boundary of the ball B^a), and the functions d^ of (5.3) provide a hori-
zontal family of " distance to Po)j " functions. We will use them to compare Pcoj with
the holomorphic section w^ of B(a)4'.

Proposition (7.2). — For y variable in W, ifC(y) tends to o, the d^{w^) tend to o.

Proof. — Fiber by fiber w^ is the line spanned by the cohomology class of

s- n (^-j^))-^. n (i--^ S 9 d z ' e -
568(1) v • 7 V / / seS{2)\ y(s))

The form coy, as a function of y, is invariant by the action of G^ on (W, L). It hence
suffices to treat the case where A(j^) -> o, B(j^) -^ oo. In that case, the numerator of

^(^)=|(^,<o,)|/(^S)l/2

clearly tends to i: it is the absolute value of

-L^ n (.-^M)-^. n ( i - ' r^ .^^-L^^i .
27TZ J|,i=i ses(i) v - ' v / / ,es(2) ^ y [ s ) ] 2 n i j z
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We have to prove that (<0y, coy) -^ oo. Indeed,

i r 2 -21AJ
(co ( o ) > — - n k—v(.y) i - 2 ^. n i — — i ^ A r f z i
v y v/~~2nJ2A(y)<\z\<^B(v}S(l)} - 7 V / 1 8(2) j/(J) -P^^l

^B(y) ^

2 . — — — 2 [log COO [.
•/2A(y) ^

On Q, the proposition (7.2) has the following corollary:

Corollary (7.3). — For each semi-stable pointy of Q^usp? there is on a neighborhood V
of y a horizontal family of functions d on the balls B(a)y, (y e V n QJ—^A a " distance to
a point of ^B(a)y, "function—such that d(w^{y')) -> o for y ' -^y.

8. Extending S^ by continuity

Let X, Y be complex algebraic varieties which are separated as algebraic varieties,
i.e. which are Hausdorff in their complex topology.

(8.1) One knows that any quasi-finite map /: X ->Y—i.e. a map whose fibers

are finite—admits a factorization X <^ X -^ Y, with j an open embedding, and / a
finite map (== quasi-finite and proper). If X and Y are connected and normal, of the
same dimension, there is an unique such factorization for which X is normal. One calls
this X the normalization of Y in X.

For more general spaces, and for some maps with totally disconnected but possibly
infinite fibers, a simple topological generalization of this construction has been given
by R. H. Fox [7].

The spaces X and Y are taken to be Hausdorff and locally connected. A conti-
nuous map /: X ->Y is called a spread if, for any x in X, one obtains a fundamental
system of neighborhoods ofx by taking, for each neighborhood V of f{x), the connected
component of/'^V) containing x. A spread/is called complete if, for any y e Y,

/-^^projiim^/-1^)),

the projective limit being taken on the neighborhoods V ofj\
^ Fox proves that each spread /: X ->Y can be embedded in a complete spread

/: X -> Y with the following universal property: any commutative diagram of solid
arrows

X -----^ X'\-^
(8.1.1) f I r

Y ———-Y'

41
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withy a complete spread, can be completed as shown. For any y eY, one has
/-^^projiim^/-1^)),

the projective limit being taken on the neighborhoods V ofy. It is clear from the uni-
versal property that X is unique up to unique isomorphism, and functorial. We will
call it the completion of X over Y. It contains X as a dense subspace, and the topology
of X is induced by that of X. The space X is locally connected.

(8.2) We define a space X to be connected if it is non-empty and has no proper open
and closed subset.

A map y :X->Y is called a covering map if each y e Y has a neighborhood V for
which there exists a discrete set D (possibly empty), and a commutative diagram

<p-i(V) ^^ V x D

\ /-
V

If Y is connected and X non-empty, such a map is onto.
A map y :X->Y is called a local homeomorphism at x e X if A: has a neighborhood U

which maps homeomorphically onto a neighborhood off{x). The map y is called a
local homeomorphism if this holds at all points x e X.

Assume that X is a connected covering space of a connected locally simply connected
open subset U of Y. The composed map X -> U <->- Y is then a spread. Assume
further that eachj» in Y has a fundamental system i^y of open neighborhoods such that
(8.2.1) for V in Vy, V n U is connected;

(8.2.2) for V'CV" in ^, ^(V n U) ̂  ̂ (V" n U).

As^is a local homeomorphism, X is open in X. As X is a covering ofU, one has
further X^J-^U).

Fix a base point o e U. One knows that the functor {g: U -> U) i-^"1^)
is an equivalence of the category of coverings of U with that of discrete sets on which
7Ti(U, o) acts. In particular, the connected components of U correspond to the orbits
of7Ti(U, o) on ,§^~l(o). For W open in U, connected and containing o, the same applies
to W and the restriction functor {g : U —> U) H- QT^W) -> W) from coverings of U to
coverings of W corresponds to the functor: restriction of the action of 71:1 (U, o) to 7ri(W, o).
In particular, ifU corresponds to 7Ci(U, o)/K, ̂ Q^W) is 7ri(W, o)\7Ti(U, o)/K.

This applies to X. If a lifting 7ofo is chosen in X, the map 7Ci(U, o)—^/''"1^) :(5\->a.^
identifies y"'1^) with a suitable homogeneous space 7ri(U, o)/K of7Ti(U, o).

Fix j^eY, and a neighborhood V e Vy. Let us assume at first that o e V.
The decomposition group Dy is then defined as the image of TT^V n U, o) in 7ri(U, o) and
one has

^(/-'(V n U)) = D,WU, .)/K.
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For V 'CV in V^, (8.2.1) and (8.2.2) imply that ^(/-'(V'n U))-^ ̂ (/-'(V n U))
hence

(8.2.3) /-^^WU^/K.

For G e TCi(U, o)/K, cs.V is a lifting of o in the connected component /"^(V) 3 of
/"^(V) corresponding to the double coset Dy crK. If we use it as a base point, the fibre at
o of the covering/-^V)^ of V n U is identified with Dy aK/K == Dy/Dy n aKa-1. To
the component/" ̂ V)^ there corresponds a point J in/"1^). The /"^(V)^ O/'^V),
for V a neighborhood ofj/, are the trace on X of a fundamental system of neighborhood
of y in X.

For o not necessarily in V, one chooses o' in V e U and a path p from o to o' in U.
This path lifts as a path from 7 to some lifting y et o'. It defines an isomorphism
of 7Ti(U, o) with 7Ti(U, o') via which the above constructions, which make sense for o',
can be pushed back into ^(U, o). For instance, the decomposition group Dy C T^(U, o)
is defined as the image of the decomposition group Dy C 7^(U, o ' ) . It depends on the
path p. One still has (8.2.3).

(8.2.4) A covering map /: X —" U is normal if the ^(U, o) homogeneous space
y^o) is isomorphic to a homogeneous spaces 7Ti(U, o)/K, with K a normal subgroup.
If /: X -> U is a normal covering map, the group ^(U, o) acts on X by deck-trans-
formations, and this action extends to X by functoriality. We leave to the reader to
check that, under the conditions (8.2.1), (8.2.2), one has
1) ^(U,.)\X^Y;
2) for each y e Y, the stabilizer in T^(U, o) of a point 3^ in y"1^) is the conjugate of the

decomposition groiip Dy determined by a path in U corresponding to y.

Remark. — Let K denote the kernel of the action of7i;i(U, o) on X. Then T^(U, o)/K
acts properly discontinuously on X but not necessarily on X.

(8.3) Let w be a continuous function from X to a topological space B. We
assume B regular, i.e. that any neighborhood of any point contains a closed neighborhood.
The function w then extends as a continuous function on X if and only if, for any ^ e X,
w{x) has a limit for x -> x in X (convergence ofw on the filter of traces on X of neighbor-
hoods of x in X).

In the situation (8.2) (with o e V for simplicity), one can treat w as a multivalued
function on U. Ifxinf'1^) corresponds to the connected component/"1 (V)^ of/""!^),
the restriction of w ^/"^(V^ is a multivalued function Wy on V n U. That w{x) has
a limit for x -> x means that there is b in B, and for each neighborhood W of b a neigh-
borhood V ofy, sach that all determinations of Wy{u), for u e V n U, are in W.

Example (8.4). — If we take for Y the unit disk D C C, for U the punctured unit
disk D* and for X the universal covering of D*, the completion of X over D is deduced
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from X by adding one point above o : X = X u {o}. For X real > o, the function ^
has a limit for z -> o in X, but it has no limit for non real \ with 8S\ > o. Similarly
z . log z has no limit.

(8.5) With the assumptions (8.2.1) and (8.2.2) on (Y, U), let 3S be the flat
fiber space on U defined by an action 6 of 7i:i(U, o) on a regular topological space B,
and let (X, o) be the smallest covering of (U, o) on which 3S becomes trivial: one has
/-^o) = ^(U, o)/Ker(6). A continuous section w of 88 defines by pull-back to X an
equivariant continuous map from X to B (and conversely). We write w for this map.
When does it extend to X? Unravelling (8.3)3 we find that w has a limit for x ->y
above y if and only if there is a horizontal section h of 88 over the trace on U of a neigh-
borhood V e V^ ofjy, toward which w converges for y1 ->y (y e U), in the following
sense. For y^ e V n U and Wi a neighborhood of b{y^ in the fibre 88^ of 38 at y^,
there is a neighborhood V ofy such that for any y^ e V n U, and for Wg a neighborhood
ofb{y^) in the fiber of. 88 at j^? obtained by horizontal transport ofW^ along any path
in V n U fromj^ toj/a, one has w{y^) e W2. This holds if b has a system of horizontal
neighborhoods W which are fiber arbitrarily small, such that w(j^) is in W for y^ close
enough to y. Of course, b defines the limit of w.

In the rest of section 8, the notation and assumptions (4.0) as well as the assumption N ̂  4
are in force.

(8.6) As in (3.8), fix a base point o e Q^, and let p : (C[, o) -> (Q, o) be the
smallest covering of (Q, o) on which the flat projective space bundle B(a)o becomes
trivial. For QC Y C Q^ and Y open in Q^, the composed map Cl-^Y is a
spread. We will write Y for the completion of Q^over Y. The assumptions (8.2.1)
and (8.2.2) are satisfied by (Y, QJ.

It follows from (8.2.4) that

(8.6.1) ^i(Q,,o) acts on CLsu

(8.6.2) ^l(Q^)\^sst = Qsst.

Proposition (8.7). — The map S^ of (3.8) extends as a continuous map from C[^ to

the closed ball B(a)^, provided with the topology (5.4). The inverse image ofB{(x.)^ consists of
the stable points,

Proof. — We are in the situation envisioned in (8.5), if we take for 88 the flat
fiber space with fiber B(a)^, completing B(a)^. That the extendability criterion of (8.6)
applies is (6.8) forjy stable and (7.3) forjy semi-stable. Further, the limit occuring in
criterion (8.5) lies in ^B(a)^ if and only \fy is in Q^usp-

The extended map C[^ -> B(a),4- is also denoted S^. It is TT^Q, o)-equivariant.
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(8.8) For T a stable partition ofS (cf. (6.9)), the system of the Q^ , for T' finer
than T, is topologically constant along Q^, and the inverse image C^T of Q,T in CLt
is hence a covering of Q,T(- d(T)). By (6.9), on each connected component ̂
of^T?th^ Sat ball bundle B(a(T))+ trivializes, and can be identified with a flat sub-ball
bundle of the constant bundle B(a)o4', in such a way that

(8.8.1) ^D^JO^

From (3.9), we hence get:

Proposition (8.9). — For any component Q^ off^y, w^ \ ̂  is an etale map from ̂
to a sub-ball o/B(a)^.

9. Codimension i etaleness

In this section, the notation and assumptions (4.0) as well as the assumption
N ^ 4 are continued.

Let T be a stable partition of S (cf. (6.9)), with card T = card S — i; one
coset ofT has two elements and all others only one. Our aim in this section is to describe
the flat bundle B(a)o over Q,(cf. (3.7)) and the holomorphic section w^ in the neighbor-
hood of a point in Q^p C Q^ (cf (6.9)).

(9.1) The subspace QT of Q^, defined in (6.9), is a locally closed purely one
codimensional complex submanifold of the complex manifold Q^ and Q u Q^ is
open in Q^. The monodromy around Q^ is the following conjugacy class in ^(QJ.

Let 9 : D -> Q,u Q^ be an embedding of the unit disc with <p(D) transversal
to Q^p and (p^O/p) == {o}$ 9 induces an embedding of D* :== D — {0} in Q. The
fundamental group 7Ti(D*) is canonically isomorphic to Z, generated by the loop
[o, i] -»• D*: t \-> ^.exp(27rz<). The decomposition group at <p(o) is the image of TT^D*)
m ^1(0,) and the monodromy around Q^ is defined as the image of the positive generator
of ^(D*). Both are well defined up to conjugacy and independent of 9. Let us fix a
base point o in d. The fundamental group 7Ti(Q, o) acts on B(a)^. We will compute
the action of the monodromy around Q^r.

Let {^, s^} be the two element coset ofT and choose additional elements ^3, ̂  e S.
We assume that P is the standard projective line P1, and we choose in it two distinct
points b, c =1= o. Let MQ be the space of injective maps y : S -> P with jy(^) = o,
J^s) = ^ ^(^4) = c. Let MOT be the space of maps S ->P with y{s} ==y(f) if and
only i f j and t are in the same coset ofT, and j^i) =y{s^) = o, j^) = b, j/(^) == c.
The quotient map M^ -> ̂  induces isomorphisms MQ ̂  Q,, M^ ̂  Qy and
Mo uMoT-^duQ^. We will work on M^uM^, rather than on Q,uQ^.
The monodromy around Q^y is represented by the following loop in MQ: it starts from a
pointy with, for some r,j/o(^) in the disc D,. of radius r around o and the^o(^) (i + i, 2)
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outside of this disc; it is given by the map from [o, i] to Mg, 11-^, withj^) constant
for i + 2 , and ^(Jg) ==^0(^2) .exp(27^).

Above this loop, one can construct on P^ a local system L with fiberwise mono-
dromy a as follows: we fix a base point d on P, outside ofj/o(S) and ofDy, and take for L
the local system trivialized on the constant section d and with the required monodromy.
The action of monodromy on B(a) = PH^P , L) is deduced from the action of
monodromy on H^P^, L).

Proposition (9.2). — In a suitable basis ofV^^Py^ L), the above action of the monodromy
around Q^ is given by a diagonal matrix diag(ai ocg, i, ..., i).

Proof. — Set 83 = {^, .$2} and 83 == S — Sr Let T\, Tg be trees as in (2.5)
with the vertices of T, in S^ {i == i, 2) and let (3 : T^ u Tg -> P be an embedding
with j3 [ S ==j/o. We may and shall assume that P | T\ is the straight line segment from
j^(^) == o to ^0(^2) an(! ̂ ^ ^(^2) ls outside of the disc D^. For each (open) edge a
of TI or Tg, we choose one of its orientations, and a non zero section t{a) of (3* L above
it. As in (2.4), (2.5), each edge then defines a closed L-valued current l{a) (3(a), and
the cohomology classes of those currents form a basis of I-P(P^, L). It is the basis we
will use.

To transport our basis elements around the loop J ( ( o < ^ < ^ i ) horizontally, it
suffices to deform P with (Bj S ==J^ dragging along the I {a). We will keep P( | Tg
fixed and take for (B( [ T^ the family of straight line segments from j^(^) = o to
^(jg) ==j^(.$g) .exp(27r^). Outside of DyCP, the fibers Py and L remain constant,
and the ^(fl).(3( | a for ^ an edge of Tg are, as currents, independent of t. It follows
that the monodromy is trivial on the l [d ) . (B | a for a an edge ofTg. Let a be the unique
edge ofTi. When ^{a) (o^ t^ i) has made a complete turn around o, £{a) is mul-
tiplied by oci a^. Indeed, if pt{x) : [o, i] -^ P is a path from the base point d on P
to a point (/< on P((^), and if this path deforms with t so as to always avoid (3<(S), one
can take £{a) to be obtained at ^ by transporting along p^ the trivialising section e of L
at rf. As the following picture shows, p^ can be chosen to differ from RQ by a loop around

J^o^i) ^d^oG^)' Around this loop, L has monodromy a^ag, and the claim follows.

Yo (s^ Yo ^2; d
t==o: ——) i -——— i————•••"•

Ytf^f

t small:
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^ = = = 1 :

Remark (9.3). — In the computation (9.2), we have made use of the assumption
V-i + ^2 < T only in the weaker form o^ o^ 4= i. In the case ^ + ̂  > i, the mono-
dromy when s^ turns around s-^ would be given by the same formula, but the basis e in
which it holds would have (<?i, ^) > o instead of (^, ^) < o: it would be a pseudo-
reflection with respect to a hyperplane not meeting the ball B(a)+.

More precisely, one checks that if the section I {a) of L, for a the only edge of T^,
is chosen of length one: (f{a),f{d)) == i, then

(e e\ - ~~ I 1 ^al+ T 4- a2+ I}[e! 3 ^lJ — ——r • - * ———— + ———— •2?n 2 \ai — i ocg — ij

We will not need this formula.

Remark (9.4). — For later computations, it will be more convenient to work with
the basis of the dual space H?(P -^(s). Lv) to H\P -j/o(S), L) given by a choice of
non zero sections t\d} of (3* L/ above the edges of T\ or Tg. The same arguments as
in (9.2), show that on such a basis of the dual space, monodromy around Q^ acts by
diag^ag)-1, i, .... i).

(9.5) Fix y e Q^. We will describe the section w^ of B(a)o near y. A neigh-
borhood of>» in Q u Q^ and local coordinates are chosen as follows. First, one replaces
Qu Qrp by MQ U MOT, as in (9.1). It is convenient to choose b and c, in the defi-
nition ofMo, so that oo ^(S) and that the discs of radius i around the points in^(S)
are disjoint. We do so. The chosen neighborhood U is then identified with the space
of m e M o U M o T such that \m{s) —jy{s)\< i. The chosen coordinates are the
^M —J^M (J + ^15 ^3? ̂  I{ S' :== S — {^, jg, .$3, .$4}, this system of coordinates
identifies U with D x D8', and U n Mo with D* x D8'.

We choose L as in (9.1), using a base point d on P at distance > i fromj^(S)—for
instance d a large positive real number. In U n Mo, we choose a base point m^—for

instance with m^ = ^ and m^s) =jy{s) for s + ^. We view ̂  as a multivalued

map from U n Mo to B(a)^ = PH^P - ̂ o(S), L), and on H^P - ̂ (S), L) we
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use the coordinates provided by a basis (9.4) of the dual space. The multivalued map w
then lifts to the multivalued map with values in C^~3 having as coordinates (up to
multiplicative constants)

j^z-^z - m{s,))-^^Jl ^ {z - m(s))--^dz

as first coordinate and as the other coordinates the integrals

fTl(z-m{s))-^dz

taken along a path remaining outside the disc | z \ < i from one m{s) to another
(s 4= ^i,^)- When m{s^) turns once around w(^), the first coordinate gets multiplied by
(ai^)"1 = exp(27ri(i — p.i — ^2)) while the others regain their value (9.4). This
allows us to write the first coordinate as {m(s^) — w^))1"^-1^]:^ ^h I(w) an
ordinary function on U n Mo. When m tends to m^ E Mor, I(w) tends to the limit

II (- m{s))-^. f1 z-^{z - i)-^ dz,
8 + S^, S^ •'0

which is non zero (2.17.1), hence I {m) extends as a holomorphic function on U, invertible
on U n MOT. The other coordinates extend as holomorphic functions on U, having
as restriction to U n Mor integrals

\z-^-^. n ^-m{s))-^.dz.
J 8 + Si, 83

By (3-9) applied to (AT, these functions on U n MQ^ are the projective coordinates of an
etale map from U n M^ to the projective [(N — i) — 3]-space (cf. (8.9)).

(9.6) In suitable local coordinates, the multivalued map w^ from U n MQ
to B(a) has the form

(^o, z) ̂  (^-^21(^)U(^z);

here, (ZQ, z) are local coordinates on U coming from the product decomposition above,
U - D x D^ U n Mo - D* X D^ the local coordinates on the image ofU in B(a)^ are
selected on an open set V with V ̂  D x D" and {0} x D" lying in a hyperplane; and
finally, I: D x D" -> C and J : D X D" -> D" are holomorphic maps, with I(o, z) 4= o
and J(o, z) : D" -> Dn etale.

At a point of {0} x W C D x D^ the holomorphic functions yl(^ z)17^-^-^
and J(^o, z), ( i < . z < ^ ) form a system of coordinates. In those coordinates, the
multivalued map w^ is

(^0^1, •••^J -^"^" l̂, ...^n)-

Suppose 1 — ^ 3 — ^ 2 is rational, set i — ^ — ^ == tfk, in reduced terms.
If D is another copy of the disc, with coordinate u, mapping to D by u [-> ^fc,

48



MONODROMY OF HYPERGEOMETRIC FUNCTIONS 49

the pull back to D x D" of the multivalued map above is the holomorphic map
(u, ̂ , ..., ^) \-> ((/, z^ ..., ^). This map is etale in a neighborhood of

{ o J x D ^ C D xDn

if and only if i == i, i.e. if and only if (i — ^ — ^)~1 is an integer.

(9.7) Let Y be a complex analytic manifold, ̂  a family of disjoint closed complex
analytic submanifolds purely of complex codimension i, Z = = I I { H $ H e ^ " } , and
K : ̂  -^ N a positive integer valued function.

A continuous map ^ : R -> Y is called a branched cover with branch locus Z of order K
if and only if:

1. ^ induces a covering map from ^"^Y — Z) to Y — Z.
2. For any Her, if we put k :== K(H), any y eH admits a neighborhood V

in Y such that the restriction of ^ to any connected component of^'^V) is topologically
equivalent to the map

D^D-:^,...,^^,^...,^).

A branched cover ^ '' R -^ Y has a unique complex analytic manifold structure such
that ^ is holomorphic.

(9.7.1) Let ^ : R ->Y be a branched cover with branch locus Z. It follows
from the definitions that ^ is the completion of ^(Y — Z) -> Y over Y. Moreover,
given any commutative diagram

^ _^ ^-i(Y - Z)
p! A

Y - Z

with p and ^ spreads, then there is a diagram

Y —> R

4 ^
Y

with p and ^ the completions of the spreads above, which is also commutative by the
universal property of completions (8.1.1).

(9.8) Let Qbe an open set in a locally connected space Y. Let p : C[-> Q be
a spread and denote by p also the completion ? -> Y of p. Then for any open set U
in Y, the restriction of p to a connected component ^1(V)€ ofp'^U) is the completion
of the spread p'^U)6 n p'^U n QJ -> U n Q.
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(9.9) We now assume that the ^ are rational (cf. (2. i2)). Let ^i denote the
family of stable partitions T of S such that card T = card S — i. For T in ^i> and {.?, t}
the coset of T with two elements, let k^ be the denominator of i — ^ — (JL(. Set

a,=Qu^ft,,^
Qi == completion of Q over Q^,

K(Q^) == ^T for each T e ̂ .

Proposition (9. xo). — TA^ wfl^ Q.I -> Q,i ls a branched cover with branch locus U Q,r
^ order K.

By (9.8), the problem is local around each ^eQ,T* The claim then
results from (9.2) and the fact that the order in the projective unitary group of
diag((Xg <X(, i, ..., i) is the denominator of i — ^ — (JL(.

Proposition (9.11). — The map Z^: CL —^B^a),, is holomorphic.
For w^ is holomorphic on ^and is continuous on CL by Proposition (8.7). Since

Q^ — Q has C-codimension i, the assertion follows from the theorem on removable
singularities.

Proposition (9.12). — Assume that

INT o<(J i3< i ,S^=2 and for all s, t e S distinct and with [Ly + ̂  <^ I?
(i — p., — P1^"1 zj> flw integer.

Then, w^ : Q^^ -> B+(a)o u ̂ a .̂

This follows from the local description (9.6).

xo. Proof of discreteness

In this section, the notation and assumptions (4.0) as well as the assumption
N ^ 4 are continued.

(10.1) We will give two proofs that when condition INT is satisfied, the image F
of 7^(0^, o) in PU(i, N — 2) is discrete.

The first is shorter, but relies on a detailed local analysis of analytic varieties and
holds only when Q^ == Q^gf The second is longer but more elementary—and
eventually more powerful.

(10.2) First proof. We follow the strategy explained in (2.13). The key point in
proving that the projection Q^ -> Q^ ^ locally (on Q^) finite-to-one is the following
lemma.
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Lemma (10.3). — Let D^, Dg and Dg be three distinct lines in C2 passing through o, and

n^ n^ n^ integers > i such that — 4- — 4- — > i. Fix a base point b e C2 — (Di U Da u Dg),
»i ^2 ^3

and consider the coverings of (C2 — (Di u Dg u D3), b), with ramification index along D
dividing n^ (i == i, 2, 3): ^ monodromy permutation of the sheets^ when turning around D,,
is of order dividing n^ Then the universal such covering is a finite covering.

Proof. — There exists a spherical triangle A with angles —, — and —. Let W be
n^ n^ Wg

the Coxeter group generated by the reflections along its edges. The w A (we W)
form a tessellation of the sphere, and hence

| W | == area(S2)/area(A) ==^^1-+-S-+J--I\ \
\n^ n^ n^ ]

Let W4' be the subgroup of index two in W consisting of the orientation preserving
elements. If we identify the sphere with the Riemann sphere metrized by its Fubini
metric, W 'v becomes a finite subgroup of PU(2), of order

/i i i \-1

d==2 -+-+-- i .
V2! ^2 ^3 /

The quotient P^W^" is of genus o and hence is a projective line. Fix an isomor-
phism PVW4- - P1 and let /: P1 -> P^V^ - P1 be the quotient map. The pull-back
byVofthe line bundle ffl{— i) on P1 is of degree the negative of d = deg(V) = |W"1" |.
Fix an isomorphism ( P ( — I ) 0 d ̂ f* ( P ( — i ) . The group W4' acts naturally on
(PV*^(— i))-^?1,^— i)^). Let H be the group of all automorphisms (A, e)
of (P1, S{— i)) with (A, s0^ e W4'. It is a central extension ofW^" by ^, the group of
roots of unity of order dividing d. As a space, the line bundle (!){— i), minus the o section,
is C2—^}, the bundle map being the natural projection C2—^}-^?1. The
action ofHon C2 — {0} is induced by a linear action on C2: the contragredient of its
action on H°(P1, ^(i)). The quotient map of the space (P1, ^(— i)) to its ^ orbits
may be identified with a </-th power map of (P1, ^(— i)) to (P1, G{— i)0^, and the
quotient map g : C2 — o to its H orbits is the composite of the rf-th power map to the
total space off*(P(— i) minus its zero section, followed by the quotient map to W4"
orbits. Thus the quotient maps by H and W4' give rise to a commutative diagram

C2 <—) C2-^} —> P1

g 9 f

C2 <—) C2-^} —> V1
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The stability groups in W+ of the vertices p ^ p ^ p ^ , of the original spherical triangle
are cyclic of order n^n^n^ and the points in the orbits of j^, j^, ̂ 3 are the only points
with a non trivial stabilizer (this results from the fact that the stabilizer in W of any
point of A is generated by the reflections along the edges passing through the point
([4] V (3 • 3) P^P.1) ? or simply from the fact that A is a fundamental domain for W ([20])).
Let d, =/Cft) and D, C C2 be the corresponding line. One easily checks that g ramifies
only along Di, Dg, D3 and that at each point above a point of D, — {o}, the ramification
index is exactly w,. If X is a covering of C2 — (D^ u Dg u Da) as in (10.3), its pull-
back by g can hence be extended to unbranched covering of C2 — {o}. As C2 — {0}
is simply connected, each connected component of this covering of C2 — {0} is trivial.
This implies that the universal covering of type (10.3) is

g-^C2 - (DI u D^ u Da)) -> C2 - (Di u Dg u Da).

It is finite.

Remark (10.4). — (i) The proof showed that the universal covering (10.3) is of
, [ /i i i \-1 ]2

order 2 — + — + — - — i . It is a Galois covering, with group a central exten-
L V^i ^2 ^3 / J

sion of W4' by a cyclic group of order |W4' |.

(ii) If (AI + ̂  = i — — , (ig 4- p.3 == i — — and ^3 + ̂  = i — — , one has
^3 ^1 ^2

i — F4 -— ^2 — P-3 == - — + — + ~ ~~ 11 • ^ne condition — + — + — > i amounts2 \n^ n^ n^ ) n^ n^ n^
to [AI + (Jig + ^3 < i, and when it holds (i — ^ — ̂  — ^)~1 == | W4-1 is an integer,
as observed in (6.10).

(iii) The fundamental group of C2 — (D^ u Dg u D3) is generated by three
elements y^, Y2? Y3 (Ti conjugate to a small positive loop around D,) with relations those
expressing that yi Y2 Y3 (conjugate to a small loop around o, on a general line D through o)
is central. To get H, one imposes the additional relations y^' = i.

(iv) In the commutative diagram

^-^-(D.uD.uDs)) <-> C2

C2 - (DI U D^ u Da) c——^ C2

C2, at the upper right corner, is the completion of ^"^C2 — (D^ u Dg u D3))
over C^at points of C 2 —^} by (9.7.1) and at o by direct verification. Such a
fact is generally true for a finite morphism g of normal analytic spaces. The completion
of ^"^(C2 — (DI u D^ u Da)) over C2 thus acquires a structure of a normal analytic
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space—indeed of a non-singular analytic manifold; this structure is in fact the unique one
for which the projection to C2 is analytic.

Remark (10.5). — Let J = J'u J" u J'" be a finite index set. For j ej',

let n^j), n^j), n^j) satisfy —— + —— + ——> i; for j ej", let n(j) be any
integer^ i. We define nlu) n2u) n3u)

XU) = C2 - D, - D, - D3C C2 forj ej',
C - { 0 } CC2 forjej",
C for^ej'".

The product X of the X(j) is the complement of a divisor in Y := (C2)^ X C3'1113111.
The covering X of X, with ramification index along pn^D,) dividing n^j), {j ej'),
with ramification index along pr^^o}) dividing n{j) {j ej"), and universal with
respect to those properties, is the product of the corresponding coverings of each X(j).
Hence X is a finite covering ofX. The completion ^ofX over Y is similarly a product.
By (10.4) (iv), Y has a unique structure of a normal (in fact non-singular) analytic space
for which the map to Y is analytic. IfX^ is a covering space ofX and a quotient ofX,
then Xi = X/G with G a finite group, and the completion ̂  of Xi over Y is Y/G. It
inherits the structure of a normal analytic space from ?.

Similar remarks apply with X replaced by the trace on X of a ball around o in
(cy xc^"^.

Lemma (10.6). —I/condition (INT) is satisfied, Q^ admits a structure of normal analytic
space, such that each y^ e Q^ has an open neighborhood U whose inverse image in Q^ is a dis-
joint sum of finite ramified coverings of U.

It suffices to show that each J^o e Q.st has an open neighborhood U whose inverse
image in Q^ is a disjoint sum of finite (topological) coverings of U n Q which, in
suitable local coordinates atj/o, are of the type considered in (10.5). This we proceed
to show, using the control over ramification in codimension i provided by § 9.

Fix VQ e Q,st, and let T be the corresponding stable partition of S. Fix a, by c in
distinct cosets. One can identify a neighborhood ofj^o in Q^ wlt^ a subspace in P8

whose elements take prescribed values on a, b, c. We arrange these values so that
00 Oo(S). Nearj/o, we then have the following system of local coordinates, depending
on the choice of a representative d{G) in each coset G:
a) the jy{d{C)) —^o(^(C)), for C not the coset of a, b or c\
b) for each coset G, the y[e) -j^(G)) with e e C - {^(C)}.

In terms of these coordinates, the condition forjy nearj^ to be in Qis: a) for C a
coset with three elements, [y{e) —jK^O^eec-w)} e c2 is not on a^ of the lines

z! == °? ^2 = °5 ^i = ^2? b) for G a coset with two elements, y ( e ) —y{d{C)) =f= o
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{e e C, e + d(C)). We recall that G has at most three elements (6.10.1), and that if G
has three elements x, y, z, the sum of the reciprocal of the integers (i — ^— (JL )~1,
( I - h/ - ̂ )~S (i - ̂  - ̂ )~1 is > i (6. lo).

For U a suitable open neighborhood ofy in Q ,̂ we can hence apply (10.5) to
the covering of U n Q induced by C[. We find that this covering breaks up into a
disjoint sum of finite covering of the type required.

Lemma (10.7). — I/condition INT is satisfied, the map w^: (^^ -^B-^a^ is etale.

The map w^ is holomorphic on C[ by (3.5) and continuous on C[st ̂  (8 • ?)• It is
hence holomorphic on Q^. By (6.9), it has an injective differential on the strata of a
suitable analytic stratification. The fibers of w^ hence have no component of dimen-
sion > o and 2^ is locally finite-to-one.

We know from § 9 that w^ is etale outside of a closed analytic subset of CLt of
complex codimension > 2. By the purity of the branch locus theorem (the fact that the
branch locus is always purely of codimension one), it follows that S^ is etale everywhere.

(10.8) Let us now assume, in addition to INT, that Q,^ = Cisst? ^- that for
no S( i )C S is S ^ = i. Choose a metric on Q^- We provide CLt with ihe

s€ S(l)
metric for which d{x,y) is the infimum of the lengths of paths from x toy, the length being
measured by its projection into Q^- What we need is a metric invariant by the action
of7Ti(Q,, o); any such metric will do. The space Cist ls locally compact, and the pro-
jection to CLt is open. Since Q^ is assumed to be compact, there is a compact K C CLt
mapping onto Q^- Since S^ is etale, there are numbers r, R > o such that for A e K,
the restriction of ̂  to the ball B^(^) of radius r around k in CLt is an embedding, and
(10.8 .1) ^(B^))DB^a^)).

The ^(Q,, o) translates ofK cover CLt- The map S^ being equivariant, and the
action on the ball B-^a^ being via isometries, (10.8.1) holds for any k eCLf The

map S^ is hence a covering map. The ball being simply connected

S^O^B^a),

is an isomorphism. This concludes the proof of (3.11) in the cocompact case
(Q.st == Q^sst)? following the strategy outlined there.

(10.9) Our second proof will bypass lemma (10.6). The purity of the branch
locus theorem can be deduced from the fact that, if Y is a complex submanifold of a
complex manifold X of complex codimension >: 2, and B a small ball around y e Y,
then B — Y is simply connected. It is the latter fact which we will use directly to
prove (10.7).

The reader who merely wants to get the idea of how we complete the proof when
Q,st + Q.sst can ^P lo Proposition (10.18.1).
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(lo. 10) Our second proof of (10. i. i) comes after proving that S^ is etale on CLst?
that in turn is proved in stages.

Set N == card S. For i between o and N — 3, set

Q.-UQ.T
where T runs through all stable partitions of cardinality ^ card S — i. Then Q^ = Q,
Q.N-3 == Q,sf Set Q.N-2 == Q,ssf Let CL denote the completion of d-^Q.
over Q^ (i == i, . .., N — 2). We shall prove inductively that w^ is etale on Q^.

Proposition (10.17) below will be used repeatedly to show at each stage that as one
adds on a submanifold, the extended map w^ remains etale. We lead up to it via some
general topological remarks, especially Proposition (10.15.1) and Corollary (10.15.4).

Proposition ( 10 .11 ) . — Let 9 : X ->Y be a continuous map with Y locally connected
and X Hausdorjf. Assume that each y e Y admits a neighborhood V such that each x e (p'^V)
has an open neighborhood U with <p(U) 3 V such that 9 induces a homeomorphismfrom U to 9(U).
Then 9 is a covering map.

We first prove the

Lemma (10.11.1). — Let 9 : X ->Y be a continuous map with Y connected and X
Hausdorjf. Let X^ and Xg be open in X and such that 9 induces homeomorphisms from X, to Y,
i == i, 2. TA^n X^ = X^ or X^ n X^ = 0.

Let ^ : Y -> X be the inverse of 9 | X,. The set of y e Y with ^(j) = s^{y)
is closed. It is also open, being the image of X^ n Xg by 9 : X^ ̂  Y. It is hence the
whole of Y or empty; i.e. X^ == X^ or X^ n X^ = 0.

Proof of (10.11). — For V C Y, let 9y be the map induced by 9 from 9-1(V)
to V. We have to show that each y e Y has a neighborhood V such that

(P-^V), 9v) ^ (V X D, pr^)

with D discrete. Take V as in (i o. 11), open and connected. Replacing the U of (i o. 11)
by U n 9~1(V), we find that each x e 9~1 V is contained in an open set U such that 9
induces a homeomorphism from U to V. By (10.11. i) applied to 9-1(V) -> V, they
form a partition of 9~1(V) and the claim follows.

Proposition (lo.ia). — Let 9 : (X, o) -> (Y,j&) be a continuous map of metric spaces,
with Y —{?} locally connected. We write d for the metric on both X and Y. Assume that
there exists a neighborhood V of o such that for each neighborhood V of o, one has

a) there exists e> o such that for all x e U -- V, the open ball B^x) maps homeo-
morphically onto an open set ofY;

b) for all e > o there is T] > o such that for each x e U — V, ^{x) 3 B^ 9^).

Then, there exist open neighborhoods X' ofo and Y' of? such that 9 : X' -- 9~1^) -> Y' — p
is a covering map.
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Roughly speaking, a) b) mean that on U — {o}, 9 is a local homeomorphism
with some uniformity. The uniformity is allowed to get worse for x -> o. It is not
assumed that o is isolated in ^~l{p). Under additional assumptions, this will be a conse-
quence; see (10.13).

Proof. — Choose U as in (10.12). Select a neighborhood V of o and s(i) > o
such that B^(V) :== {x eX\3v eV d{x, v) < s(i)} is contained in U. If B^(o) C U,
one can take s(i) == s and V === Bg(o). By a) b) there is s and Y] such that

(*) for all x e U — V, 9 induces a homeomorphism of Bg(^) with an open set of Y
containing B^((p(A:)).

Set Y' == B^p) and take X' to be the set of all x with 9 {x) e Y' such that either

(i) A - e V ; or
(ii) there is x^ e U — V with d(x, x-^) < s, and 9(^1) e Y'.

In case (ii), x eBg(^) n (p'^Y') C X' and 9 induces a homeomorphism of
Be(^i) r^-^Y') with Y\ This results from (*).

Fix y e Y' — p and let W be a neighborhood of y in Y' — {?}, disjoint from a
neighborhood of p. Then 9"'1W is disjoint from a neighborhood of o and by a) b)
for 2(2) small enough there is y)(2) such that

(^S) for all x e U with 9 (A:) e W, 9 induces a homeomorphism from Bg^(.v) to an
open subset ofY containing B^(9(A?)).

We may and shall assume that 2(2) < e(i) and that B^(j/)CW. Propo-
sition (10.12) now follows from (10.11) applied to X ' — 9 ~ 1 ( ^ ) - > Y — { p } and
from the

Lemma (10.12.1). — Each x in X' n 9~1(B^2)(^)) has an open neighborhood B'
in X' which maps homeomorphically onto an open subset of Y containing B /^(j?).

As x eX', one of the conditions (i) (ii) holds. In the first case {x eV), one
has B^)(A:)CU, and we claim that B^(^) n 9-1(Y') C X'. For if x ' eB^(^)
and 9(,y') e Y', then either x ' e X, by virtue of (i) or x ' e U — V and x ' e X' by
virtue of (i) with x^ = x\ In the first case, B' == ~B^{x) n 9'~1(Y') and one uses (^).
In the second case, take B' = Bg(^i) n ^~l(yf) and use (*).

The assumptions of (10.12) remain valid if we replace X and Y by open neighbor-
hoods of o and p. The X' and Y' of (10.12) can hence be chosen arbitrarily small.
From this, we will deduce the

Corollary (10.12.2). — The point o has a fundamental system of open neighborhoods X'
such that f or "V a suitable open neighborhood of p, X' — 9-l(^) is open and closed in 9~1(Y/ —{p})
and is a covering of Y' — {j&}.
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First take X^, YQ as in (10.12), and W a neighborhood of o such that W~C XQ.
If X', Y' are as in (10.12), with X' C W, Y' C Yo and if X^:== Xo n <p-1 Y', then
both X[ — 9-1^) and X' - <p~1^) (C X[ - 9~1^)) are coverings of Y' - {p}\
hence X' - 9-1^) is open and closed in X[ - 9-1^). As (X' - y"1^))" C W- C X^
X' — (?~~l{p) is also open and closed in (p'^Y' — {?})•

Corollary (10.12.3). — If o is not isolated in X, and if p has a fundamental system of
neighborhoods V such that V — p is connected (in particular, non empty), then 9 is open at o.

Ifo is not isolated, X' cannot be contained in ^~l(p); for applying (10.12) a) to x
in X' near o would contradict <p(X') C {p}. It follows that y(X' — ^{p)) = Y' — {p}
and hence that <p(X') = Y'. Openness follows.

Proposition (10.13). — In addition to the hypothesis of (10 .12) , assume that Y — {?}
is locally simply connected and that

c ) p has a fundamental system of open neighborhoods i^, such that each V — {?} (V in i^)
is connected and that for V C V, both in V, n^V - {p}) ^> n^V — {p}).

d) o has a fundamental system of open neighborhoods N with N — {0} connected {non-
empty).

Then, one can find X' and Y' as in ( 10 .12 ) such that 9' : X' -^Y' has the following
additional properties: Y' is in V^, 9'-l(^) =={o}, X' — {0} is connected, andX' is the completion
of X'-{o} above Y'.

Proof, of (10.13). — Shrinking X and Y, we may and do assume that Y is in i^,
that 9 : X — p"^) -> Y — {p} is a covering map, and that 9 is a local homeomorphism
at each point x =t= o. Let N be an open neighborhood ofo such that N — { o} is connected.

Lemma (10.13.1). — N — 9-l(^) is connected.

Let ACN—cp" 1 ^ ) be open and closed. Each x e ̂ ~l(p) — {0} has a
neighborhood W C N with W — {x}^ 9(W) — {p} connected. For such a W,
W — {x} == W — (P~l{p) lies either in A or in its complement. It follows that the closure
of A in N — {0} is again open and closed and, by hypothesis, is empty or the whole of
N — {o}. If it is empty (resp. the whole of N — { o } ) , A is empty (resp. the whole
of N-9-1^)).

Since Y — {p} is locally connected, so is the covering space X — ^~l{p). Each
connected component of X — ^~l{p) is open and closed in X — (?~l{p) anc!- is a
covering of Y — {p}. Let N^ be the component of N containing N — (p"1^).

Lemma (10.13.2). — N\ n ^~l{p) =={o}.
Any x =t= o in ^~l{p) has an open neighborhood W such that 9 induces a homeo-

morphism ofW with an open neighborhood ofp in Y. Take V in i^ with VC 9(W)
and define W := W n 9-1(V). One has 9 : W ̂  V.
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The assumption 7ri(V — {?}) ̂  ^i(Y — {?}) implies that for any covering map
^ : Z - > Y — { ^ } , one has ^(^'"^(V — {p})) ̂  ^o(Z). In particular, as N1 is con-
nected, so is NI n (p^V). Both N3 n 9'~1(V) and W — {x} are connected coverings
of V — { p } , contained in the covering ^""^V — {?} ) ' They are not equal: x is the
only point of 9~l(^) in W"~, while o eNj[". They are hence disjoint and ^ ^ N ^ .
Lemma (10.13.2) is proved.

We take Y' == Y and X' = Nj". It follows from (10.13.2) that X' is open and
closed in X and that ^~l{p) =={o}. By construction, X' — 9~1^) == X' — { 0 } is
connected. For each V in Y^, 7Ci(V—{^}) '^ 7 ^ l (Y'—{?}) implies as above that
<p-i(V--{^}) is connected. It then follows from (10.12.2) that the cp'^V) n X'
(V e Y^) form a fundamental system of neighborhoods of o in X'. Consequently X'
is the completion of X' — { 0 } over Y'.

Corollary (10.13.3). — If, in addition to the assumptions of (10 .12 ) and (10.13) . the
V — {p} for V in V are simply connected^ then 9 is a local homeomorphism at o.

Indeed, with the notation of (10.13)5 Y ' — { p } is simply connected; hence
9 : X' — {o} -> Y' — {p} is a homeomorphism as well as 9': X' -> Y'.

(10.14) We shall require a simpler variant of (10.12) in our extension of the
map 3^ to cusp points. In that situation, we shall be dealing with a continuous map
9 : (X, o) -> (Y,j&). Metrics are given only on X — {0} and Y — {p}, and we assume

a) The 9-1(V), for V a neighborhood ofp in Y, form a fundamental system of
neighborhoods of o. In particular, 9~l(^) is {o}.

b) There is a neighborhood U of o such that for any neighborhood V C U, the
conditions a), b) of (10.12) are satisfied.

Fix a neighborhood V\ ofp such that 9~l(Vl) C U. For any neighborhood Vg
of p and x e Vi — Vg, the map 9^ : 9-l(Vl — V^) -> V\ — V^ induces a homeo-
morphism of Bg(^) with an open set containing K^{^{x)) for suitable e and T). The
map 91 is hence a covering map. As this holds for any V^, 9 : 9~ ̂ V^ — {p}) -> V^ — {?)
is also a covering map.

If in addition
c ) p has a fundamental system of neighborhoods V such that V — {?} is connected

and simply connected,
d) o has a fundamental system of neighborhoods N such that N — {0} is connected,

then an easy argument shows that 9 is a local homeomorphism at o.

(10.15) Actually, we require (10.13.3) for the more general case where o and^
are replaced by strata. The analogue of (10.12) is:

Proposition (10.15.1) .—Let 9: (X,Xi,o) ->(Y,Y^,^) be a continuous map of metric
spaces, with Y — Y^ locally connected. Assume that there exists a neighborhood U of o such that
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for each neighborhood V o/'X^, the conditions a) b) of (10 .12 ) hold. Assume further that X^
is locally compact and that the map <pi: Xj^ -> Y^ induced by 9 is a local homeomorphism at o.
Then there are open neighborhoods X' of o and Y' ofp such that y : X' — (y~l(Y-^>) —> Y' — Y^
is a covering map.

Proof. — Fix U as above, open and small enough so that for some open set R
disjoint from U, K :== X^ — R is compact and so that 9 is injective on K. Note that
if we take R = X - U-, then K = X3 n U-.

The subset <p(K — U) of Y^C Y is compact and does not contain^. Let W be
an open neighborhood of <p(K — U) whose closure does not contain p. Then, ^~1W
is an open neighborhood of K — U, and y'^W") does not contain o.

Select a neighborhood VofX^ , and s(i) > o such that
^((Vn^-^W-^CU;

this can be done as follows. Since K — (p~1 W is compact and in U, we choose e(i) > o
so that B^(K - <p-1 W) C U. One takes V == B^(K - <p-1 W) u <p-1 W u R.
Then (V n U) - <p-1 WC B^(K - cp-1 W) and B^((V n U) - ̂ -'(W-)) C U by
choice of s(i)

U"^^\

By a), b), there are e and T] such that
(*) for all x e U — V, 9 induces a homeomorphism of Bg(^) with an open set of Y

containing Bg^y^)).

We may and do choose T) small enough so that B^Q&) is disjoint from W~". Set
Y' = \(p) and take X' to be the set of all x with 9^) eY' (hence x ^(p-^W-))
such that either x e U n V, or there is x^ e U — V with d{x, Xy,) < e and <p(A:i) e Y'.

Any y e Y — Y^ has a neighborhood Wy disjoint from a neighborhood of Y^;
hence, as in (10.12), for e(2) small enough there is 73(2) such that
(**) for all x eU with 9 {x) eWy, 9 induces a homeomorphism from B^^) to an

open set of Y containing B^^cp^)).

One can assume that 2(2) < s(i) and B^jQ C W, and one completes the proof
just as in (10.12), using that y(^) eY' implies ^^T^W".

(10.15.2) As in (10.12.2), X' can be taken as small as we please. If o is not an
interior point ofX^, and if p has a fundamental system of neighborhoods V with V — Y^
connected, 9 is open at o. The proof is as in (10.12.3).
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Proposition (10.15.3). — Assume that Y — Y^ is locally simply connected and that
c ) p has an open neighborhood VQ with VQ — Y^ connected^ and each p' e Yi c/oj^

enough to p has a fundamental system of neighborhoods VC Vo with V — Yj connected and

^(V-Yi)^(Vo-Yi).

^ Each o' e X^ ^fo^ enough to o has a fundamental system of neighborhoods N with
N — X^ connected.

Then one can find X' aW Y' as in ( 1 0 . 1 5 . 1 ) such that 9' : X' -> Y' Aaj the following
additional properties: c ) holds with Vo = Y' for all p' eY^ n VQ, X' — X^ z'j connected^
X^ := X^ n X' zj ̂  inverse image of Y[ := Y^ n Y', 9' induces a homeomorphism from X^
^0 Y^, ^zrf X' zj ̂  completion of X' — X^ fl&oz^ Y'.

Proo/'. — Shrinking X and Y, we may and do assume that c ) holds for Vo = Y
and for all p ' eY^ n VQ, that <pi: X^ ->Yi is a homeomorphism, that d ) holds for
all o ' eX^, that 9 : X — P^Yi) -> Yi is a covering map, and that 9 is a local
homeomorphism at each point x f X^. Let N be an open neighborhood ofo with N - - X^
connected. As in (10.13. i), one checks that N — cp~1 Y^ is connected. Let N, be the
connected component of X—9"^! containing N—^~ l y-^ . It is a covering of Y—Yi.

If we shrink Y again without changing the T^(Y — Y^), and replace X, N, N^
by their traces on the pull-back of the new Y, we get N — X^ C N\ with N^ connected
and NDXi .

As in (10.13.2), one sees that Nf n <p~1 Y^ = Xi. One takes Y' == Y, X' = N^"
and 9' : X' -> Y' induced by 9. The set X' is open and closed in the (shrunken) X
and ^f~l(Y[) == X^. All the listed properties of 9' are clear from the construc-
tion except for X" being the completion of X ' — X ^ over Y". For p eY^,
p ' == 9'(o'), and V an open neighborhood of p ' with n^V - YQ -^ ^(Y - Y^),
one has 71:0(9' - \ V - YQ) ̂  7i;o(X' - X^), i.e. 9'-1(V-YO is connected. The
(p^^V) for such V form a fundamental system of neighborhoods of o' and the assertion
about completion follows.

In particular,

Corollary (10.15.4). — In addition to the hypothesis of ( 1 0 . 1 5 . 1 ) assume that Y — Yi
is locally simple connected and that

c ' ) Each p' e Y^ close to p has a fundamental system of neighborhood V with V — Y^
connected and simply connected.

d) Each o' e X^ close to o has a fundamental system of neighborhood V with V — X^
connected.

Then 9 is a local homeomorphism at o.

(10.16) We will apply (10.15.4) iteratively to some stratified spaces. In the
next proposition, " stratified space " means a Haussdorf topological space U, provided
with a partition S into locally closed subsets, the strata, where
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a) each stratum is a manifold; b) the closure of any stratum S is the union of
strata; (U, S) is conical in the following sense and locally constant along each stratum:
each point x of any stratum S has a neighborhood V isomorphic (with the induced
partition) to the product of V n S with the cone over (S, S(S)), where S is a topo-
logical space 2, provided with a partition S(S). For simplicity, we assume in addition
the existence of a metric d for which d{x,jy) is the greatest lower bound of lengths of
paths from x to y. The case we will need is U = Q^st? ^ === t^le partition of Q^
by the Q^ for T varying over the stable partitions.

Proposition (10.16.1). — Consider a diagram

Uo c-^ Ui —> U -^ Y

Un <—> U, c_^ u^o —^ ^i

where

a) U zj locally compact stratified space; Uo ^ a connected open and dense stratum, and U^ — Uo
is a union of strata', each point has a fundamental system of neighborhoods whose traces on Uo
are connected.

b) Uo is a covering space of Uo, and U^ (resp. LJ) is the completion of Uo over U^ (resp. U).
c ) The covering Uo of Uo is Galois, with group F.
d) Y is a manifold, provided with a metric and an action of F by isometrics. The map 9 is

equivariant.
e ) 9 I U\ is a local homeomorphism.
f) For any stratum S, S := p'^S) is a covering space of S because Uo is a stratum. We

assume that for S C U — Ui, each point of S has a neighborhood W in S such that 9 | W
is a tame embedding, with y(W) a sub variety of codimension ^ 3 in Y.

Then, 9 is a local homeomorphism and the {local) decomposition groups of U/U are
finite, i.e. p is locally finite to one.

Proof. — Let d be a F-invariant metric on U; for instance take d{x,y) == the
greatest lower bound of the lengths, computed in U, of paths in U from x to y.

Let S be an open stratum of U — U^. We first prove that 9 is a local homeo-
morphism at any point o e ^~1{S). For this, replacing U by a suitable open neigh-
borhood V of p(o), U by the connected component of p'^V) containing o and F by
the stabilizer of o, we may and shall assume that U — Ui e S, that p induces an iso-^/ /^
morphism S -> S and that 9 embeds S in Y. Replacing Y by a F-stable open
neighborhood of 9(0), and U by its inverse image, one may further assume that
YI:== 9(8) is a tame closed submanifold of Y. Its codimension is > 3. We will
apply (10.15.4) with X = U, X^ = S and o, Y, Y^, p as above. Local connectedness
and simple connectedness of Y — Y^ results from Y being a manifold. Condition c ' )
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of (i o. 15.4) results from Y^ being a tame submanifold ofcodimension ^ 3. Condition d )
of (10.15.4) results from assumption^. By e ) 9 | ( X — X ^ ) is a local homeomorphism,
and it remains to check the uniformity conditions of (10.12). As neighborhood of Oy
we choose the pull back p'^K) of a compact neighborhood K of p(o) eU. By definition
of the topology of U, any neighborhood of X^ = S ^> S contains p^V), for V an
open neighborhood of S. The required uniformities will follow from the compactness
of K — V. The function from X — X^ to R^ : x h> the greatest lower bound of
the s such that 9 is an embedding on Bg(.y), is > o, lower semi-continuous, and F-invariant;
hence it is of the form rp with r continuous. On K — V, r stays away from o, and
this gives (10.12 a ) ) . If s is such that for any x e ^~1(K. — V), 9 | Bgg^) is an embed-
ding, the function from p^K — V) to R4' : x\-> the greatest lower bound of the T)
such that cp(Bg(^)) 3 B^(<p(^)) is > o, lower semi-continuous and r-invariant, hence of
the form rp and staying away from o. This gives ( i o . i 2 & ^ ) .

We now prove that <p : U -> Y is a local homeomorphism. We have just shown
that 9 is a local homeomorphism on p^U^), for V[ the union of U^ and of the open
strata of U — U^. The assumptions of the Proposition hence hold with U^ (resp. U^)
replaced by V[ (resp. p~"1 U^), and one concludes it proof by induction on dim(U — Ui).

It remains to show that for any x e U, the stabilizer A C F of x is finite. Fix
a neighborhood V of A: such that 9 | V is an open embedding, fix a A-stable compact
neighborhood K of 9(^) in 9(V), and define V^ == V n 9-1K. It is a A-invariant
compact neighborhood of A:. For y e Vji n Uo, Fy is closed and discrete. Therefore A^,
which is in Ty n V^, is discrete and compact, and hence finite. Thus A is finite.

We will use (10.16.1) to give an alternate proof of lemma (10.7)3 by passing the
purity of the branch locus theorem (which was derived in the special case Q^ == Q.sst)»

Lemma (10.17). — If condition (INT) is satisfied, the map w^ : Q^ -^B^o^o is
a local homeomorphism.

Proof. — We apply (10.16. i) with U = Q^ stratified by the Q^rp for T varying
over the stable partitions, Uo == Q, Ui == the union of Q and of the (complex) codi-
mension one strata, Uo == Cb hence U == Qg^ an^ 9 == ̂ r Conditions a) to d )
are clear, e) is (9.12) and f) follows from (6.9) and (3.9).

(lo. 18). — As shown in (8.7)5 the map w^ extends to a continuous map from Q^
to B^ :== B^o^o, where B4' has the topology (5.4). Fix J e CLusp ^d o e Qsst
above J. Define p :== S^(o).

Let V be an open connected neighborhood ofj, and V be the connected component
containing o of its inverse image in CLsf ^or ̂  small enough, one has: o is the only
point ofV above J; the stabilizer A C F ofo acts on V, and V == \^/A; \ff is a distance
to p function (5.3) on B4', (w^ descends to a continuous function/on V, vanishing only
at J. As V is locally compact, it follows, for V small enough, that the open sets
{v \f{v) < s} form a fundamental system of neighborhood of J. As a consequence,
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the Si^^A), for A a neighborhood of p, form a fundamental system of neighborhood ofo.
We now apply (10.14) to prove

Lemma (10.18.1). — If condition (INT) is satisfied^ the map S^:CLg^->B4' is
a local homeomorphism.

Proof. — It remains to prove it at a point o as above. We apply (10.14) to
S^ : (V, o) -> (B1, p). Condition a) has been proved. Condition c ) and d ) are clear.
The map is a local homeomorphism outside of o. The required uniformity (10.14 b))
follows as before from the local compactness of V and A-equivariance.

Theorem (10.18.2). — Assume condition (INT). Then the map Z^: Q^ -> B4"
restricts to a homeomorphism of Q^ onto B4' and maps Q^ homeomorphically onto an open
subset of^ in the (5.4) topology.

Proof. — By Proposition (10.18.1), w^ is an etale map of Q^sst mto ^+' Let <p
denote the restriction ofS^ to Q,af It suffices to prove that 9 is an covering map ofQ^
onto B^

For any x e Qgf, set
f^x) == sup{r | cp maps a neighborhood of A: homeomorphically onto By(9(A?))}.

Then as in the proof of Lemma (io. i6. i) ,yis continuous, f{x) > o for x e Q^ an(!
f(^x) =f{x) for all Y e7I;l(Q,50)5 ^at is, f descends to a positive-valued continuous
function on Qgf

Since S^ is etale at each point of Cisst 2in(^ Q.cusp consists only of finitely many
points, one can deduce from the (5.4) topology of B4' the existence of an open neighbor-
hood W of Q^cusp ^d an "^i ̂  ° such that f{x) ̂  T^ for all x e p^W). By § 4,
Q^ggt is compact. From the compactness of Q^ — W one deduces that^ has a non-
zero lower bound on Q^ — P'^W). Consequently, f has a non-zero lower bound T]
onCLf From this it follows that B^(<p(C).st)) = ^(^st)) and therefore, 9(^3^) == B4'.
By (10.11), 9 is a covering map. Inasmuch as B+ is simply connected, 9 is a homeo-
morphism.

From the fact that each point y e Q^cugp has a base of neighborhoods {V} with
V — Y connected, and the fact that S?̂  is a homeomorphism on Qg^, it follows that w^
is injective on Q^ssi ̂ d hence a homeomorphism onto its image, in the topology of (5.4).

(10.19) Let S be a finite set with at least 3 elements, N = card S, (A = (^ggg
with o < [Ly < i and S^g == 2. Set ocg = exp 271; \/—i [Lg for each s e S, P the
projective line over C, G == Aut P, M the subset of injective elements in P8, Q = M/G,
o e Q,, and 6: ̂ (Q,, o) -> Aut B^a)^ == PU(i, N — 2) the homomorphism of ^(Q,, o)
into the isometry group of the ball B^oc)^ defined in (3.10.2). Set F == 6(^(0^, o)),
B^B^a),.
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Theorem (10.19). — If^ satisfies condition (INT), then T is a discrete subgroup of Ant B^
and discontinuous on B4'.

Proo/1 — By Theorem (10.17. i), the action of F on B4' is equivalent to the action
of r on Q^- The latter action is discontinuous on Q, since F is the covering group of
the covering map Q, -> Q.. It follows at once that F is discontinuous on a dense open
subset of B4'. Since F acts on B4' via isometrics, it follows that F is discrete in Aut B^,
the isometry group of B4'. Since Aut B4^ operates transitively on B4' with a compact
isotropy group, F operates discontinously on B4'.

Corollary (10.19. i). — For any y e C[^ ^ stabilizer Fy ofy in F zj a ̂ m^ ^ro^.

Proof. — Set j& = S^(j0. Then LyW Fp == F n (Aut B-^p. Since F is discrete
in Aut B4', and (Aut B"^ is compact, Fp is finite.

Corollary (10.19.2). — C[ is the normal covering of Q universal with respect to the pro-
perty [R]: for each stable partition T of S with card T = card S — i, z/ ̂  z'j defined as
m (9-9)9 ̂  ramification index along Q^ divides ky.

Proof. — Let Q" denote the universal covering with the property above. Then
the map Q* -> C[ extends to a covering map of C[r By Theorem (10.18.2), C[i is
homeomorphic to the complement in the ball B4' of a closed subset of complex codi-
mension 2 and is simply connected. Consequently, Q* ^ Q^.

Corollary (10.19.3). — Above a suitably small neighborhood U of a point x eQ^,
each connected component of Q^n p^U ^ the universal covering of Qn U w^ r^^ ^0
^ ramification property [R].

The proof is the same as the preceding one, with the ball replaced by the trace
of a neighborhood of a point in B4" (in the topology of (5.4)).

Corollary (10.19.4). — The stabilizer in T of a point x in the ball is generated by
C-reflections.

Proof. — Choose U as in Corollary (10.19.3). Then U n Q i is simply connected.
Hence ^(Q^n U) is generated by loops around the ramification locus. These gene-
rators yield C-reflections by (9.2), generating F, if x e B4^.

ii. Finite measure

In this section, the notation and assumptions (4.0) as well as the assumption
N ̂  4 are continued. We assume moreover that the p.' s are rational.
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(n.i) Let J eQ^—ds t be a semi-stable point of type (8 (i), 8(2)) .where
sfs(i^8 == I- Let a E S( I) and & e 8(2). Let W be the neighborhood ofj in Q^
lying below the set of all y e P8 such that y{d) == o, j/(&) == oo and such that

sup {\y{s) |; s e S(i)} < inf{ |j^) |; s e 8(2)}.
Let P '- CLt -> Qsst and let ^ e p-^J). By (8.2.4), ^(Q, o) operates on CLst. and

^(CL o)p ^ Dj == image of TT^W n QJ in ^(Q, o);

here, TC ,̂ o)^ denotes the stabilizer of p and Dj the decomposition group of J.
Ky (4-5). W — {J} is a simply connected manifold if card 8^5 ; hence 7Ci(W n QJ
is generated by circuits around the codimension i subspaces Q^ for all stable par-
titions T finer than {8(1), 8(2)} with cardT == card 8 - i if N ^ 5. By (9.2) the
monodromy of such generators are complex reflections which have finite order if ^ is
rational for all s e 8. Thus

(i 1.1.1) If card 8^ 5, the quotient TT^Q, o)y/Ker 6 is generated by elements
of finite order; here 6 denotes the monodromy action (3.10.2).

(n.a) Assume that condition (INT) is satisfied. 8et V == H^P^,, LJ, let PU(V)
denote the projective unitary group on V with respect to the hermitian form of (3.10.2).
Let B^ == B(a)^, i.e. the set of all v e V with {v, v) > o modulo C*. Let w^: Q^ -> B4-
be the map of Proposition (8.7). 8et

^=^), r = = e(^(Q^)).
By Theorem (i o. 8. i), w^ is a homeomorphism onto an open subset of B+. Consequently

9(^(0. o),) = r,
the stabilizer off in F. By (11.1.1) and (10.19.3), we get

(n.a.i) T( is generated by C-reflections of finite order if dim B^ > i and by
a unipotent element if dimB^" == i (cf. (12.3.2)).

(n.3) Let v el, let PU(V)^ (resp. PU(V),) denote the stabilizer in PU(V) of I
(resp. d, (5.3)), and let N denote the unipotent radical ofPU(V)^. As pointed out in
the proof of Proposition (5.5)5

PU(V),/N = U(V")

which is compact, and PU(V)^/N = R x U(V"). Hence PU(V),/N contains all
compact subgroups of PU(V)^/N. Therefore, as is well-known, PU(V), contains all
compact subgroups ofPU(V)^ (because PU(V), contains a maximal reductive subgroup
and all maximal reductive subgroups of PU(V)^ are conjugate by an element of N).

From (11.2.1), one infers
(n.3.i) r^cpu(V),.
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Remark. — A more direct proof of (i i .3.1) results from (7.3)—more precisely from
the fact that on W, we have a horizontal family of functions d. It follows at once that F
preserves a "distance to ^"function (5.3).

Theorem (11.4). — Let S be a finite set, o < ^ < i, a, = exp 271 v^^T^, S^ == 2
{all s e S ) . Let 6: ̂ (Q, o) ->PU(V) be the monodromy action defined in (3.10.2).
Assume
(INT) For all s + t in S such that ^ + ̂ < i, (i — ̂  — (Ji<)~1 is an integer.

Then F, the image of 6, ?j a lattice in PU(V).

Proof. — By Theorem (10.19), F is discrete in PU(V), and by Theorem (10.18.2)

r\^(Q.sst) = Qssu
where S^(Q,sst) ls an ^G11 subset ofB4' with respect to the topology of (5.4). Hence
r\S^(Q^ggt) is the union of a compact quotient of a subset of B4' and a finite set of
neighborhoods Wj (in the topology of (5.4)) of points / j e ^B4', where Ij e^v.{9~lJ))
P ^ CLst -^Q,sst» and J varies over Q.CUSP- By § 4, Q^ is compact. Any compact
subset of B4' has finite measure. By (n .3. i) and Proposition (5.5), the image in I^B4^
of Wj — ^ j has finite measure. It follows that ^\K+ has finite measure. Thus F is
a lattice in PU(V).

Lemma (11.5) . The subgroup I\ is Zariski-dense in PU(V).

The proof will be by induction on card S. By (3.10.2), we can lift I\ C PU(V)
to a group r^ C U(V) which is generated by pseudo-reflections (cf. (9.2), (12.3.2));
recall the definition: y is a pseudo-reflection if and only if y — i has rank i. Hence
r^ is irreducible on the linear span L of the one dimensional subspaces of V corre-
sponding to its pseudo-reflections.

It is easy to verify that L = V. Thus F^ stabilizes no proper vector subspace ofV.
We start the induction at N = 4. Here I\ operates on the complex i-ball as a

triangle group, rotating through twice the angle at each vertex of a geodesic triangle.
Since o < (JL, < i and S ^g == 2, the sum of the angles of the geodesic triangle is

ses _ __ '
less than TT and the orbit of each point in B4' under I\ is infinite. Let 1 ,̂ I\ denote
the Zariski closure of 1 ,̂ I\ in U(V) and PU(V) respectively. The group 1̂  can
have no connected normal solvable subgroup non-trivial modulo the center of U(V),
otherwise, some F^ orbits in B4' would be finite. Consulting the short well known
list of closed complex analytic subgroups in PU(i, i) (« PGL(2, R), one sees that
I\ == PU(V) if card S == 4. Suppose now card S > 4.

By (6.21) and two induction hypothesis, I\ 3 PU(V) where T is a stable par-
tition of S with card T === card S — i and Vrp is the corresponding subspace of V.
Since 1̂  is irreducible on V, we infer I\ == PU(V).
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12. AHthmeticity and Integral Monodromy

(12.1) Assume that for each s e S, pi, is a rational number and let d denote the
least common denominator of {(JiJjeS}. Set F == Q^(^T), 0 the ring of integers
in F, and V == H^P,, Lo) where P, = P — o(S) as in (3.1). Then the vector
space V can be defined over the ring O. To see this, let L(F) (resp. L(^)) denote a
local subsystem ofL on P^ (suitably chosen using a base point on Po) with fiber the sub-
field F (resp. subring 0) of C. The pairing of L with its complex conjugate induces an
^P-valued pairing on L^). Then one can define cohomology combinatorially as in (2.2)
with coefficients in L(^); one can also define the skew-hermitian cup product

^: ir(P,, LW OOH^P,, LW ->H^, 0) w (9

combinatorially; set
V(^)==Hi(P^LTO, V(F)==HI(P,,L(F),).

Define
( 1 2 . 1 . 1 ) M^v) ==j<p(M,y),

where j = b — ~b for some b e 0 — 0 n R. This ̂  is a hermitian form on V defined
over 0 and may be identified with the form defined in (2.i8), up to a real scalar factor.

We lift the map 6 : 7Ti(%, o) -> PU(V) of (3. lo. 2) via a local system L on M{c)
to 6': ̂ (M^), o) -^ U(V) by (3.14). The image of 6' is in U(V) {0). Set
(12.1.2) I \=Ime, r ^ = = I m 6 '

where a =={exp 2mpiJ s e S}. Then
(12.1.3) r^ stabilizes V(^).

(12.2) We collect here some remarks and definitions pertaining to arithmeticity of
lattices.

Let r be a Zariski-dense subgroup ofG(^), for G an adjoint connected semi-simple
algebraic group G over k, a field of characteristic o. Set E = %[TrAd F], the field
spanned over % by {Tr Ad y | Y e r}.

Proposition (12 .2 .1 )

(i) The group G has a faithful matrix representation p such that p(F) C GÎ (E) {and
hence G has E as a field of definition).

(ii) E remains unchanged when F is replaced by a commensurable subgroup of G.

Proof. — Let T denote the function g }-> Tr Ad g on G, and let W denote the C-linear
span of the left G-translates of T (we define (xj) {y) ==/(jw) for any function/: G->C,
x andj? in G). Inasmuch as T is a sum of matrix coefficients, W is finite dimensional.
Since F is Zariski dense in G, there is a finite set of elements x^ . . . , ̂  in F such that
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(B == {^.T, ..., yT} is a base of W. Let p^ : G -> Aut W be the representation
given by x \-> x .f for x e G, / e W. It is well known that the representation p^ is
faithful ([ioj, Theorem (2. i), p. 123). Let p(^) denote the matrix ofp^(^) with respect
to the base (B. Then p(A:) has all its entries in the field E for all x e F.

To prove (ii) it clearly suffices to consider the case that 1̂  is a subgroup of F of
finite index. Replacing F^ by d xFx~1^ we can suppose moreover that 1̂  is normal

in P. Then Fg is also Zariski-dense in G. Set Eo == Q,[Tr Ad FJ and select the base
(B =={^ .T , . . . , A^.T} with Xi e FQ {i == i, ..., n). Let a : E -> C be a mono"
morphism which is the identity on Eo. To prove (ii), it suffices to prove that a leaves
each element of E fixed. For any y e F and x e FQ, we have yxy~1 e FQ. Hence,
by (12.2.1),

PCW)-1 = °P(W1) == °P(jO W °P(^-1,

that is pOOpWpOO-1^0?^)?^)0?^)--1 . Hence for all y e FQ, p(j0-10 p(j0
centralizes p(ro) and therefore p(G) since Fg is Zariski-dense in G. The center of p(G)
is i and consequently °p(^) = p(j^) for all y e G. Therefore a fixes each element ofE.

(12.2.2) Take p as in (12.2.1). The Zariski closure of p(F) in GL^(E) is an
algebraic group over E. Because taking Zariski closure commutes with field extensions
it is a form of G over E. This provides the group G with an E-structure, called the
natural E-structure of G. If p' is another faithful matrix representation of G with
p'(r) C GL^(E), it leads to the same E-structure. To check this, one compares p to p'
via p <9 p'.

If F is a subfield ofk and Gp an F-structure on G for which FC Gp(F), the field
of traces E is contained in F and, by the above construction applied to Gp over F, the
given F-structure on G is deduced from the natural E-structure.

(12.2.3) Let A be a semi-simple algebraic linear group defined over the field Q,
of rational numbers, let V be a finite dimensional vector space defined over Q, and
p : A -> GL(V) a faithful rational representation defined over Q,. By a theorem of
Borel-Harish-Chandra [3], the subgroup F == p'^GL^z)) is a lattice in A(R) for any
lattice Vz in VQ; that is, F is a discrete subgroup ofA(R) and A(R)/F has finite measure.

(12.2.4) Let G be an adjoint connected semi-simple real Lie group. It is the
topological connected component G(R)° ofG(R), for G an adjoint connected semi-simple
algebraic group over R. By definition, a subgroup F of G is arithmetic in G if and only
if there exists an algebraic group A over %, a compact group K and an analytic iso-
morphism 6 ofA(R)° onto G X K such that 8(A(Z) n A(R)°) has its projection into G
commensurable to F. The group A is necessarily reductive. It can be assumed
connected adjoint semi-simple; namely, replace A by A°/center (A°). The group A is
then a product of Q^-simple groups A» (cf. [23], p. 46 (3. i .2)). If G is a simple non-
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compact Lie group, it follows from the definition that all A, but one, A^, are such that
A^(R) is compact. Replacing A by A^, one can then assume that A is Q^-simple, i.e. of
the form (cf. [23], p. 46 (3.1.2))

A == Restrp/Q B

for B an absolutely simple group over a finite extension F of Q^. One has F ® R == II F,,
v

(product of the completions of Fat the infinite places v) and A(R) == B(F®R) == nB(FJ.
v

The existence of 6 as in (12.2.4) amounts to saying that for all v but one, ^, B(FJ is
compact (hence if v 4= Vi the place v is a real place) and that B(F^,)° ^ G, the isomor-
phism carrying B(<5) to a subgroup of G commensurable to F. If G is an absolutely
simple Lie group, the place v^ is a real place, F is totally real, and B is an F-form of G,
F being identified with a subfield of R via ^.

(12.2.5) Assume that G is absolutely simple non compact. In our application,
it is PU(i, N — 3). By the Borel density theorem, any arithmetic T in G is Zariski
dense. If A == Restrp/Q B is as above, with F C R, B an F-form of G, and F a sub-
group commensurable to B(^p), then by (12.2. i), (12.2.2) F D E and the F-form B is
deduced from the natural E-structure of G defined by F. For all the real places v of F
above the identity embedding of E, the G(FJ are isomorphic, hence non compact.
There can hence be only one such v. Hence F = E. We conclude:

(12.2.6) Assume G is an adjoint connected absolutely simple non compact Lie
group. Then a subgroup F C G is arithmetic if and only if

a) the field of traces E is totally real;
b) for each embedding < r o f E i n R distinct from the identity embedding (°G) (R)

is a compact group (i.e. the real group G ®^ o ®- deduced from the natural E-structure
ofG is compact). G being as in (12.2.4);

c ) r is commensurable with G(^g).

(12.2.7) Let G be an adjoint connected absolutely simple non compact Lie group,
and let F be a lattice in G. Assume a totally real number field F C R, and a form Gp
of G over F are given, such that a subgroup of finite index of F is contained in G(^p).
Then the field E == (^[TrAd F] is contained in F by (12.2.1).

Corollary (12.2.8). — A lattice FC G is arithmetic in G if and only if ̂ for each embed-
ding a ofF in R, not inducing the identity embedding of E in R, the real group Gp ®p g R is
compact [i.e. °G(R) is a compact group).

Proof. — Since E C F, a) of (12.2.6) is implied by the assumption that F is totally
real. By (12.2.2), the given F-structure ofG is deduced from the natural E-structure
and rcG(E). The condition in (12.2.8) amounts to b) of (12.2.6). Assume it
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holds. Then, G(^) is an arithmetic lattice in G(R). A subgroup of finite index in F
lies in G(E) n G(^p) and hence G(^) contains a subgroup F of finite index in I\
Both F and G(^), being lattices in G(R), have finite covolume; hence the index of F'
in G{0^) is finite. Condition c ) of (12.2.6) follows.

The criterion (12.2.8) will be applied to test the arithmeticity of I\ in PU(V, ^)-

(12.3) We shall need more explicit information about monodromy than given
in (9.2) in order to compute %[Trr^ where 1̂  is as in (12. i .2). The result
needed is (12.5. i). Actually, by consulting the explicit lists in § 14, one can obtain the
required information in a case-by-case inspection except in three of the cases.

For the remainder of § 12, we assume o < ^ < i and ^ e % for all s e S.
Let S == Si u 82 with card 82 == i, let T^, Tg be trees as in (2.5) with the

vertices ofT, in S, (i = i, 2), and let (3 : Ti u Tg -> P be an embedding with (3 | S == o,
the base point of M.

Without loss of generality, we can assume that Ti is homeomorphic to the interval
o <_ x < i.

Fix an orientation on T^, let ^i, . . ., JN-I denote the vertices of T^ taken in order,
and let a, denote the oriented edge from s, to ̂  (i <_ i <^ N — 2). Let T denote the
cone over T^ u T^ with apex A and denote by (B also an extension of (B to an embedding
of T in P. Since T — {s^, ..., s^} is simply connected, the pull-back p" L may be
identified with the constant system C on it, and we can choose /^) e H°(a,, (3* L) for
each i so that

(12.3.1) f{a,)^\a,w - i.(B[^.+ i.(3|^, i^<N-2

where ?, is the arc from A to s, and w denotes homology. Let w, denote the element
in H?(P,, L(fl?)) determined by ^).(B | ^; then as in (2.5) {^, . . ., w^_^} is a basis.
Let ̂  denote the monodromy effected on H^P,, L) by moving o(^.) along a path
close to (B(Ti) disjoint from (B(t) u D, except at its initial point, where D, is a small
disc centered at o(j,), then making one positive turn around 8 D,, and then retracing the
path to o{s.).

Lemma (12.3.2). — Set ^ = yi,2 ̂  and w^ == y, 3 ̂ ,^ = i, ..., N - 2.
TA^z

^=^002^,

^ ==^2(1 —ai) Wi + ^2,
^= ̂  ^> 2,

^̂  Z l̂ == 003 Wi + 02(03 — i) W^

^2 == a2 03(001 - i) ̂  + (003 a^ - 003 + i) w^
^3 = «2 003(1 — aj Wi + 003(1 — a^) ^2+^3, if N — 3 > i,
w^ == w^ k >, 3.
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Proof. — Let c denote the unique element in the Sg. Introduce the local system 'L{c)
of (3.15) on P^). Without loss of generality, we can assume that our base point
o eM(^) i.e. o{c) == oo.

Set d == (3 (A). Without loss of generality we can choose the embedding a of T so
that inf | d — o{s) | > 3 diam o(S^) (here we are identifying P with P via a coordinate z
as in (3.15)).

The effect of horizontal transport of{z</i, • • •5^-2} ̂ md^ variation ofembeddings
o f S i n P is given by an isotopy ofP (cf. (3.6)). In particular, Y».j arises from an iso-
topy {"y]^j; o < ^ ^ i } o f P which twists o(^) one positive turn around o(s^ along the
path described above; here T) .̂ === identity and T)^ | o(S) === identity. The isotopy^
can be performed so that the only points which move lie in a disc containing o(Sj) of
diameter less than 2 diam o(Si). Since under the isotopy no point ofo(Si). turns around d,
one sees by inspection of the definition of L(c) that the restriction of the dual local
system lL{c) to the subset {{d X ̂ j o(S^)); o < ^ <^ 1} ofP^ has a trivializing non-
zero section ?, i <^ i,j' <^_ N — i. Consequently, for each t , j^N — i, e ' ( d ) returns
to its initial value after horizontal transport via T]^-, o <^ ̂  i.

Set ^ = ?.(3 | ?^ and ^ == r^^(v^, i <_ z,j, k <^ N — i. In view of (12.3. i),
w^w — ^ + ^+i when the section ? is taken to have the same value on d as the section
denoted / in (12.3.1); we choose ? in this way. The argument above shows that the
initial segment of the L valued singular chain ^ is unchanged by the map T]^.,
i < z J , A ^ N - i .

^
0(83) ois^)

b )
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The effect of the isotopy T) corresponding to y^ 3 is pictured in diagrams a) and ^.
Let " ̂  9' denote (< homotopic in Po". Then

V[ ̂  V^ + QL2{1 — ^3) ^2 — ^2 ̂  ̂ 3 ^1

cf

^S- ^2

^3 ̂  ^3 — a;^ - ^3 — a3 ^2 — a^ 03 w^ + ai a^ 03 w^ + ag a^ 04 03 ̂

^ ̂  Vjc for A ̂  4.

Consequently
W[^ — V[ + ̂  W 03 Wi + 02(03 —- l) W^,

w^ —v^+v^ —v^+v^+^ 003(0^ — i) w^ + (ai 003 — 03) Wg
» 002003(001 — i) ̂  + (i — 03 + 0^03) w^,

^3 " — ^3 + ^4 ̂  — ^3 + ^4 + ag 003(1 — a^ Wi + (003 — 04 003) M/a
w 003003(1 — ai) w^ + 003(1 — ai) w^ + !X/3.

The second part of (12.3.2) follows at once. The proof for y^ 2 ls similar.

(12.4) For N == 4, calculations as above yield for matrices with respect to the
basis [w^ w^}

/04002 ^(l -00)̂\ / I 0 \
p T2.3= - - - p/ \i — 03 cog a3/

i o
Yl.2=== I - - - - » , Y2.3= I - _ „

\ o I / \i — 03 ag 03

( »3 ^^l^1)}

W^— i) 001003— 003 + I ]
Yl,3===

and we easily verify that

(I2.4.I) Yl,2-T2,3-Tl3= ala2a3•

This shows that our lift 6': ^(M(^), o) -> U(V) of 6 : TCi(%, o) -> PU(V) cannot be
factored through TCi(M, o) -> U(V) if ^4+1/2, since the center of TCi(M) is
^(PGL(2)) == Z,.

^
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Lemma (12.5). — As in ( 1 2 . 1 ) , set F == Q^T) and 1^ = Im 6'. Then
(".5.1) %[Trr,]==F
(12.5.2) QJTr Ad r^] == F n R if card S > 4.

Proof of (13.5.1). — By (12.1.2), %[Tr F,] C F. By (9.2) %[Tr P,] con-
tains a, a,,, for each distinct pair s, s ' e S. It follows that %(Tr F^) D Q,(^/T) where n
is the least common denominator of {^ + ̂  | j, j' e S, s = s ' } . For any 3 distinct
elements ^,^3, ̂  of S, we have

^ - ̂ , = (^ + .̂) - (^. + ^.).

Hence for any distinct j, j' in S, QJTr 1̂ ] contains a,, a^^
We choose a basis {^, ..., w^_^} in H?(P,, L) as in (12.3). Then Yi.3-Ti,2 has

as matrix with respect to this basis the upper 2 X 2 diagonal of

( 03 ^^(oci — i) ai 003(1 — ai)\ /agOCi a^i — a^) o\

^ ( ^ — i ) ^ a i — 0 0 3 + 1 003(1— ai) ) ( 0 i o|.
0 o i / \ o o i/

The diagonal terms of the product are

0030201, . . . — (ai — l)(a3 — i) + 003001 — 0 0 3 + 1 , 1 , . . .,

therefore, for any s ^ y S ^ . s ^ e S ^ we get

^Yi.sYi^ = ̂ ^2^ + a! + N — 4 == 001(002003 + i) modQ^.

Hence ai e %[Tr ry, provided that 02 03 + — i for some s ^ , s ^ e S ^ — {j,}. This
proviso fails only if ^ == 1/4 for all j in Si; in this case, replace Si by a partition T^
with card TI == card S^ (cf. (6.2.1)), and in the corresponding subgroup of 1 ,̂ the
proviso holds. It follows that a, e %[Tr 1̂ ] for all s e S. This proves (12.5.1).

Proof of (12.5.2). —Set E = QJTr Ad r;] and ^ = C[Int r^]: the C-linear
span of the automorphisms Int y : ̂  -^ y^T"1 with y e F^, where m eHom^V, V)
and V is as in (12. i). Let GeGal(F/E). Inasmuch as Tr Int^ = i + Tr Adg
for any g e GL(V), it follows by definition of E that for any y e r'a

("s.S-S) Tr(Int°Y) = °Tr(IntY) - Tr(Inty).

It follows from this that

(12.5.4) Inty -^Inty extends to a C-linear map 9 ofj^.

For S^ Y = o with ^ e C, y ^ Int F^ implies that for any {^} with ^ e C,
Tr(2^ °y) (2^ °y) = Tr 2^ ̂  ̂ Yy')

=Tr^^(YY')
- (T r2^y) (2^Y)=o .

73
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The group Int 1̂  is Zariski-dense in Int GL(V). Consequently ^ coincides with
the C-linear span of Int GL(V); thus ̂  is an associative algebra acting irreducibly on the
subspace y of trace o elements in Homc(V, V) and stabilizing the line C.I. Since a
field automorphism preserves Zariski-density, the C-linear span of °Int 1̂  is also ^.
Therefore

; Tr((S^°y).m) = o for all m e ̂ .

Since Tr is non-degenerate on ^ it follows that 2^°y = °- This implies (12.5.4).
Clearly 9 preserves products and is an algebra isomorphism. Since

^ w Hornet, y}, ^ is a simple associative algebra. The map 9 is an algebra iso-
morphism and therefore 9 maps IntGL(V) isomorphically onto the Zariski closure
of Int °r^ which is also Int GL(V) That is, 9 stabilizes Int GL(V). Consequently,
there is an S e GL(V) such that for all g e GL(V) either

(i) ^(Intg) =IntS-lgS, or

(ii) 9(Int^) == IntS-1^-^.

For any ^eGL(V), Intgwg®^-1, where w denotes equivalence of repre-
sentations, and for any g e U(V, ^), the unitary group of some hermitian form ^ in V,

^-1^.

Consequently, for any y e ̂  ^d a e Gal(F/E),

^®°(Y) = °(Y®T) - y(IntY) » ( In tY := T0Y9

[ Int Y = Y ® Y-
It follows at once that

o ^ ^ ( T ) T in Case (i)
[X(Y) Y m Case (ii)

for all Y e fa where X(y) e C. Composing a with complex conjugation, one can
assume that we are in Case (i). Then there is an element S e GL(V) such that for
all yeF, ,

^-S-^Y.^S.

From °(Yi ̂ ) = ^1.^2 = S-1 yi Y2 ^(Yi) ^(Y2) S, we infer that X : F^ C is a
multiplicative homomorphism. For any y such that y — ! has rank i, °y has
the same property and therefore X(y) == i if dimV> 2. Since I\ is generated by
pseudo-reflections ((10.19.4), (11.2.1)), X(r^) == i and °Tr y = Tr y for all yel^,
i.e. a == i. This proves (12.5.2).

We close this section with a description of the field E = %[Tr Ad 1̂ ] in the case
N==4, with a satisfying o < ^ < i for all s e S, S(JL, == 2, and condition (INT).
In this case, set A, = (i — p., — ^.)-1, i <; z '4=J^ 3. Assume k^> o (cf. § 14.3).
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Proposition (12.5.5).

T? rfc 2 7r 9 n o n n 7r ^ 1L == Q l cos2 —, cos2 —, cos2 —, cos — cos .—cos — .
L ^IZ ^23 ^31 ^12 ^23 ^31 J

Proof. — We have r ,CPU(i , i ) . Thas Ad F, = Ad I\C S0(2, i,R). Let
A == A(^ ^23? ^3i) denote the group generated by reflections in the sides of the geodesic
triangle in the real hyperbolic 2-space Rh2 whose vertices are fixed by the monodromy
transformations y^ Y235 Y3i (cf. (12.3) and (12.4. i)), and let \ denote the subgroup of
orientation preserving elements in A. Then Ad I\CAo, card(A/Ao) == 2, and Ad I\
is of finite index in A.

Let <M, y> denote the Killing form on the Lie algebra JSf of PGL^C), and let
e, be an element in ^ with <<?„ <?,> == i such that (in the projective model ofRA2)

e{ contains a side of the above geodesic triangle {i == i, 2, 3), and <^., <?,> == — cos -7T

kij
if f + j . Let ^ denote the element of the dual space of ^ such that e^{v) == <y, ^,>
for all v e £C {i = i, 2, 3). Then the three generating reflections of A have the form
s, == i — 2^ ® ̂  (i == z, 2, 3) and

^...^n^-^^)=^(-^ n^ ,̂
J1<J'2.--<^

Tr^...^=.^(-2)^n^^ ^.^

where ^= -cos^ ^^^S,
T ? '̂ ==y.

From this it is clear that %[Tr A] is the field E' on the right side of (12.5.5). Suppose
now (T : E' -> C is a monomorphism fixing each element ofE. By the argument used in
(12.2.1) (ii) for any y e A and A:eAdI\ , y-10^ is in the centralizer of S0(2, i, R).
Hence y~1 °y == ± i and °y = ±y. It follows that °detj^ = ± detj^. But y e 0(2, i)
has determinant db i and this value is fixed by CT. Therefore °y -== y and °Try = Try
i.e. or fixes each element of E. Consequently, E == E'.

(12.6) Assume card S > 4. Let {\L,\ s e S} be a family of numbers o < ^ < i
satisfying condition (INT). By Lemma (3.12), ^ is a rational number for each / By
Theorem (11.4)3 the group I\ is a discrete subgroup of finite covolume in PU(V, ipo)
where V == H^P,, L,). Set E=%[TrAdrj , F = Q(^T) as in (12.1).

Proposition (12 .6 .1 ) . — I\ is arithmetic in PU(V) if and only if for each a e Gal F
whose restriction on E is not the identity, °^ is a definite Hermitian form on °V.

Proof. — Let G == PU(V, ^). Inasmuch as the complexification ofG is the simple
group PGL(V), (12.6. i) is essentially a restatement of the arithmeticity criterion (12.2.3).
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Proposition (12.6.2). — Assume card S > 4. Then I\ is arithmetic in PU(V) if and
only if for each a e Gal F with a =t= identity or complex conjugation, °^o is a definite Hermitian
form on °V.

Proof. — This follows at once from (12.6.1) and (12.5.2).

Proposition (12.6.3). — Assume card S == 4 and ^ satisfies condition (INT). Set

( i ^12 ^i\
8 == det«^, ^.» = det c^ i c^ [

1̂1 c^ i /^Sl ^S

wA^ c- == —cos-^- , i <^,7<3. 7^ I\ ^ non-arithmetic in PU(V) if and only if
3 k^

°8 < o for some a e Gal E with a 4= i on E.

Proof. — We have 8 == i — ^3 — 4$ ~ ^ji — 1̂2 ^23 c^ and thus 8 e E.
Moreover, °8> o implies that the matrix °<^, e^ is positive definite since all its prin-
cipal minors are positive. From this (12.6.3) follows.

Criterion (12.6.3) applies to the index 2 orientation preserving subgroup of a
group generated by reflections in the sides of a geodesic triangle in the real hyperbolic
2-space, a so-called cc triangle group ", cf. § 14.3. One can deduce from (12.6.3) that
at most a finite number of triangle groups are arithmetic. A complete list of these
groups was given by K. Takeuchi in [21].

Proposition (12.7). — For any b e Q, let < b > denote the fractional part ofb i.e. o <_ < b > < i
and b — <A > e Z. Let ^ == {(JiJ s e S} satisfy condition (INT) of ( 3 . 1 1 ) and let d denote
the least common denominator of [L. Then I\ is an arithmetic lattice in PU(V) if and only if

(12.7.1) for each integer A relatively prime to d with i < A < d — i,

S <A^> == i or card S — i.
5

proof. — Let A be an integer relatively prime to d and let e be a primitive root
of unity of F = Q^(^T). Then c^ : s -> ^A is an automorphism of F which is non-
trivial on F n R if and only if A =(= ± i (mod rf). The automorphism o^ sends the
local system with monodromy a to the local system {exp 2ni <A^> | s e S}. By
Corollary (2.21), the hermitian form ^o has signature

(S<A^>-i,S(i-<A^»-i) .
5 8

The proposition now follows from (12.6.2) and (12.5.2).
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(12.8) Let r be a subgroup of GL(TZ, Z) and let G denote the Zariski closure
of r in GL(7z). Then G is an algebraic group defined over Q^with the property

(12.8.1) Any (^-character ^ of the connected component G0 of i in G is trivial.

(For ^(F n G°) is Zariski-dense in the connected subgroup ^(G^C) of C*, and it is
finite because it has bounded denominators; hence /(G6) = (i).)

By a well-known theorem of Borel-Harish Chandra, G(R)/G(R) n GL{n, Z) has
finite Haar volume [3]. Consequently F is an arithmetic subgroup in G(R) if and only
if r is commensurable with G(R) n GL(%, Z) or, equivalently, F is of finite covolume
in G(R).

(12.9) We consider now an algebraic family X defined over Q^ of curves of the
type described in (2.23). We describe an example.

Let [s., a, M be as above, let ^ == -J with d the least common denominator for
d

{^ | s e S}. Fix a, b, c e S. Then for each m e M, there is a unique isomorphism
P ->P1 mapping m(a), m(b), m{c) respectively to o, i, oo. Let u: P x M x P1 be the
resulting map. Define

(12 .9 .1 ) X=={{v,u,m) e P x P x M \ v - d = IT {u - m[s))^}.
s+ c

Let 7^2, 7^3 denote the projections of X onto the second and third factors respec-
tively. Set X^ = TT^^w) and denote by TT^ the restriction ofn^ to X^ for any m e M.

More generally, let n: X —^ M be a fiber bundle over M (i.e., a topological
product over small open sets of M) satisfying

(12.9.2) For each m e M, Tr"1^) is an irreducible abelian cover of P, with
covering group G, ramified only at m(S) of orders dividing d.

Set X^ = TT'^w) for any m e M. Then {H^X^, Z) | m e M} is a local system on M
corresponding to a homomorphism S '' ^(M, o) -^AutH^Xp, Z).

Set r == ^(^(M, o)); we call F the H^monodromy group of the fibration. Moreover
the Galois group ^ acts fiber by fiber on X and commutes with horizontal transport
ofH^X^.Z). Consequently, ^ commutes elementwise with F. We thus obtain a
direct sum decomposition

(12.9.3) Hi(Xo, C) = © Hi(X,, C),

where ^ ranges over ^, the set of characters of ^. The group ^ is a quotient of
(Z/rf)^/^). In the case of (12.9.1), ^ = Z/rf.

Let g s ^ ^ be the natural generator of the inertia (== decomposition) group
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at s (cf. (2.23)). Then there is a unique ^ e ̂  with ^ (^) = o^ for each s eS and
by (2.23.1)

H^X^, C)^ == H^P^, 1̂ ) for each w e M.

The vector space H^P^, L^) is defined over the field Q^y^i) and even over its ring
of integers by (12.1.3).

(ia.9.4) Set F = %(v^ V = HI(P,, L,), W = V ̂  F = C °V where .,
o G Gal F

is a primitive idempotent in G ®Q F, °V == ̂ W, and (i 0 r) €y == ̂  for all (T, T e Gal F.
The space W is defined over Q^ and we have

w^)w ̂ p111^' ̂ ^^
(12.9.5) Set W(Z) = © H^Po, L^ (fl?)) where (9 denotes the ring of integers

oGGalF x

ofF. The monodromy group F of the fibration stabilizes H^Pp, L^(^)) for each cha-
racter % 6 ̂  and in particular stabilizes W(Z).

Lemma (12.10). —Let n: X -> M 6^ an algebraic fiber bundle satisfying (12.9.2)
and with non-trivial ramification for each s e S. Let F denote the ly-monodromy group of the
fibering, let G be the ^ariski-closure of F in Aut H^Xo, C). If F is of finite covolume in G(R),
then in the euclidean topology 1^, the projection ofT on Aut V is dense in U(V, ̂ ^, where ^ and V
are as in (12.9.4), ̂  is as in (i 2 . 1 . i), provided there is a a e Gal Q^(^T) w^A °^ indefinite
and CT ={= db i.

Proo/. — Suppose that G(R)/F has finite Haar volume. Then defining the integral
structure on H^X,,, C) as H^X^, Z), we infer that F is commensurable with
G(Z) == G n AutHl(Xo, Z) by (12.8). Inasmuch as W is a F-stable subspace defined
over Q^, it is also G-stable and the restriction of G(Z) to W is an arithmetic subgroup.
Consequently F^, the restriction of F to W, is arithmetic.

By (12. i .3)3 I\ C U(V, ̂ ), and indeed the Zariski-closure of 1̂  contains U(V)
and even SL(V)—this last fact can be verified by computing the Lie algebras of the
Zariski-closures of {y^ neZ,} where y ranges over the pseudo-reflections of 1 .̂

Set F = Q^(^T). We can regard U(V, ̂ ) as the group of R-rational
points of an algebraic group U defined over F n R; namely as the subgroup
{ (x, x) [ x e U(V, ^o)} of Restr^jR GL(V). The subgroup 1̂  then becomes a subgroup
of Aut H^Po, L^(fl?)) X Aut H^P^, LCT^)) and is thus commensurable with V{(P n R).
By hypothesis, the group U^V, °^) = °U(R) is not compact because the hermitian
form a^ff is indefinite. It remains to explain why U(^ n R) is topologically dense
in U(R) if i =f= or e Gal(F n R/QJ. This assertion is an immediate consequence of the
weak approximation theorem for algebraic groups over an algebraic number field,
which applies here since °U(R) is not compact (cf. [n], p. 192).
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Theorem (12.11). — Let X be the algebraic family (12.9. i) and let T be the H^mono-
dromy group of the fibering. Assume that ^ satisfies condition (INT) of (3 .11 ) . If F is of finite
covolume in its ^ariski-closure G(R) in Aut H^XQ , R), then I\ is an arithmetic lattice in U(V, ̂ ).

Proof. — By Theorem (10.9.1), I\ is discrete in U(V, ^)- It follows at once
from the Lemma (12.10) that for all <r e Gal(Q^T)/%) with o + ± i , °U(V, ̂ ) is
compact. It follows from (12.2) that I\ is arithmetic in U(V, ^o).

(12.12) The foregoing results show that I\ is arithmetic in U(V, ̂ ) if and only
if I\v is of finite covolume in its Zariski-closure in Aut W(R).

13. Elliptic and Euclidean Cases

The investigation of the map w^\ C[^ ->B(a)o can be generalized to obtain a
class of elliptic and euclidean groups which generalize the stabilizers in I\ of points
in B(a)o4' and on its boundary. We shall merely sketch the method.

(13.1) Elliptic Case.

Let ^ == (pj,^ satisfy

a) ^ > o,

b) S ^<i.
seSi

Augment Si by adjoining an additional element c and set S === S iu{ f} . Set
^ == 2 —^g ^5 ^ == (^ses- Fix a local system L on P — S with monodromy a
(a == exp 27r^. By (2.21) (in which ^ must be replaced by ^ — i) the intersection
form ( , ) is negative definite. Fix a e Si, take as moduli space M the set of injective
y e P8 with j(a) == o, y{c) == oo and set

M,t = {j^ e P8 j^M = a), ̂ (^) == o, ̂ (Si) C P - oo}.

On the family of punctured lines P^ we extend L trivially on each ̂  near oo and
by monodromy a along each Py ,^eM^. Fix o e M. Let M denote the covering of M
corresponding to the monodromy ofH^P,, LJ, and let M^ denote completion of the
spread ]M -> M over M^. The section

y - > W y = = Ft ( ^ — — — — — — j ( ^ ) ) - ^ ^ . ( ?

gives a map

%,:M^Hi(P^).

This map is homogeneous of degree i — S ^ relative to the action of the multiplicative
s+c ^

g1'011? ̂  (^ ̂  ̂ ) on Mgf By (3.9) the projectivized map is etale on M. Hence w^ is
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itself etale. Apply the reasoning of sections 8, g and 10 replacing the compactness ofQ^
by the compactness of Mg^-(zero map of S^/G^ together with the homogeneity. We
then get

Theorem ( 1 3 . 1 . 1 ) . — i) 2^ extends to a map M^ -^H^P^, L^).
2) If p4 satisfies (INT): for all s + t in S^, (i — ̂  — pL<)~1 e Z, ^w the extension

of w^ is an isomorphism.

Corollary (13.1.2). — If ̂  satisfies (INT), then the monodromy group I\ is a finite
subgroup of U(N — 2), N == card Si and H^P,, L,)/I\ w M^.

Remark. — The fact that H^P,, L,)/I\ « C1^-2 comes from the fact that I\ is
generated by pseudo-reflections (cf. [4] (V.5.3) th^oreme 3).

(13.2) Euclidean Case.

Let ^= (^a),es, satisfy
a) ^ > o,

^ ,?,,•'•='-
Augment Si as above, setting S == S^ u {<:}, ^ == 2 — S ^==1 , and fix

a E Sr Define
M,, = {j/ e P8 |^M == a), j/(a) = o, ^(S,) C P - a), ^(S^) + {o}}.

^et Q.st = ^st/^w^ lt ls compact. We define L on P^ and define Wy as above. The
local system L has no monodromy at oo. Accordingly, we set S' = {c} and work
with H^g.)(Po, L^), cohomology of P — o(S) with support in the family 9(8') of subsets
of P — o(S) closed in P — {°o}). By (2.15.2), Wy represents a non-zero cohomology
class in H^g^Po, LJ. For all y eP^, one has Res^(z^) == i, the unit element of
the local system L which is trivial near oo. Inasmuch as

< cycle around oo, Wy^ = i

for all y e P^, the image of the map S^: M ->H^g^(Po, LJ lies on an affine hyper-
plane H. This hyperplane H on which Wy lives is parallel to the homogeneous one given
by < cycle around oo, > = o. This vector subspace of H^g,)(Po, L^,) can be iden-
tified with H^(P — o(Si), LJ where L^ is the local system on P — o(Si) with mono-
dromy (AI (or equivalently with H^P — o(Si), L^) by (2.6)). The intersection form
on H^P — o(Si), Li) is negative definite by (2.21).

The map y \-> Wy is homogeneous of degree o for the G^ action and therefore defines
a map w^: % -> H.

Theorem (13.2.1). — i) w^ extends to a map w^ of Q^ ->H.
2) If (AI satisfies (INT), then the extended w^ is an isomorphism.
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Corollary (13.2.2). — If ̂  satisfies (INT), then the monodromy group I\ contains a
subgroup of finite index T of translations of the afjine space H, H/T is an abelian variety, and

?N-2 = Q.st ^ H/I\ = (abelian variety)/(F/T),
where N == card S.

i4« Lists of [L associated to discrete groups

(14.1) Elliptic and Euclidean lists.

Set card Sg == N, assume ^ > o for all s e Sg and S ^ ̂  i. For any
. 5 £ S^

^ 4= t m Sg, set

^,< == (T — P-< — ^)~1?

"'c-.?./-'"-
We assume (INT): each kg ^ eZ u oo. By a <( miracle of small numbers 5? it will be
seen that D is an integer or oo (cf. (6.10) and (10.4) (i)).

Summing the N(N — i)/2 equalities

(i) ^ + ^ = i - ,-
^sf

gives

(,) (N-.tS^.^'^t^'^l-S-.
2 ,̂(

Hence

o ^^"^-^-"(--^'""T"^^-
Since ^ ̂  2, (3) implies

z-^.D- 4

Hence N <_ 4 and N == 4 only if D = oo, k,, = 2 for all s, t and (x» = - for all
seS,. If N = 3 , (3) yields ' 4

(4) T.——k-1--1)D 2 \ ^>( /

and solving the system (i) yields

^((-^KH^))
(I4.I.I) ^==^(1-S^+2^1 ) = — - _ .

2 Rfu U
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(14.1.2) The number D satisfying (4)3 must be an even integer or oo.
For if a sum of three integer reciprocals exceeds i, the excess is an integer reciprocal

(cf. (6.10)).
We list all the possibilities:

k^ D n, = ̂  D

N = 3
Elliptic 2, 2 ,^ M n- i, n- i, i

^3,3 i2 5, 3, 3
2,3,4 24 ii, 7, 5
2? 3? 5 6o 29, IQ? I][

Euclidean 2 , 3 , 6 oo ^= i/^
2, 4, 4 oo
3 , 3 . 3 oo

N = 4
Euclidean 2, 2, 2, 2 oo ^ = 1/4

(14.2) Let N = cardS and assume that N^5. The foregoing results permit
one to infer limitations on the possible (A = (pj^g satisfying
1) ^8 ̂  ° fof each s e S,
2) ^==2,

3) ^ == (i - ̂  ~ ^<)~1 e Z if ^ + ^ < i.

Case A: for some ^ 4= t in S, ^ + ^ > i. By (14. i), applied to the complement
of {j, t} in S, we have N = 5. Set S == {j, ^, a, 6, <:}. We define D by

^ + ^ = I + jy

Then ^ + ̂  + ̂  = i -- ̂  and by (14. i. i) ^, ̂ , ̂  < I — _ . Choosing ^ ̂  ^

we find ^ + ^< i for u e{a, b, c}.

(14.2.1) D is an even integer (by (14.1.2)).

Case B: for some j, t e S, ^ + ^ == i. The remaining (JL' j make up a euclidean ̂

so that N = = 5 or 6. If N = 5 , S = {s, t, a, b, c} with ^<-!- and ^ + ^ < i

for ^ e { a , A ^ } if (x^^. If N = 6 , (x = (^, ̂ ,1, 1, 1,1).
\ 4 4 4 47

^
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Case C: neither A nor B hold. Here we see the N(N — i)/2 equalities

^ + V-i = i — i- yields
".<

(N-DI^^-1).!.
r> /»2 2

Hence N ̂  8 and N == 8 implies ̂  = 2 for all ^ e S i.e. y., = I for all j e S.
In particular 4

(14.2.2) If ((A.).gs satisfies i), 2), 3), then card S <_ 8.
We explain in section 15 how the list for N = 5 can be gleaned from the thesis of

Le Vavasseur. For N > 5, the lists are easily obtainable in Case C. Arrange pi in
descending under ^ ̂  ̂  ̂  ... ̂  ̂ . Then (cf. (6.10. i)) (^ + ^), ̂ , ..., ̂
must be on the list for N — i with (^ + ̂ ) ̂  a^s. Iteration of this criterion leads
to the compact quotients PU(i, N - 3)/I\ for N^5. As for the non-compact quo-

— A JL

tients with N > 5, by Case B these are ((^, (^, i, I, i, l); only three solutions satisfy
\ 4 4 4 4/

condition (INT): (jjii, y.^) 'L L} 3 t\ 7 5
l2'2;' U'4^' ^ 1 2 ' 7 2 ;

('I-3) The case N = 4. Let ((A,) i^,^4 be a 4-tuple of real numbers which satisfy
o < (A,< i, 2(x, == 2. If the (A'S are arranged with y-i <, y.z <. y-s <. V-t, one has
^i + (^ ̂  ^2 + (^4 = 2 — (^ + [Ag)) hence (Xi + t^s ̂  i. A fortiori, ^ + [jig <_ i.
If (Ag 4- (AS < (AI + p-4? then (A, + ^ ̂  i for ?' ̂  j among { i , 2, 3}. If not,
i ^ i + ^ ^ i tor t '==2,3,4, hence ( A , + ^ ^ I for y + ^ among {2,3,4}. One
goes back and forth between those two cases by the transformation u.' = i — u,.

followed by the relabelling i t-> 5 — i. In the first case, if we put ^ + (A^ = i — I

1 , 1 p>

V-i + V-s = I — -, V-2 + (^ = i — -, we get

i / i i , i\
^l-^-^)'

i / i i i\
^-ii1-^,-^'

(^•S-i) i / , i i i\
^3=2( I+^--,-7^

-^(^^-^^
these formulas provide a solution of (INT) for each triple of positive integers [p, q, r]

satisfying ^ +-^ + ̂  i^ i < p <^q <ir <_oo. The ^ = i - ^ are given by the

same formula, with i / p , ifq and i/r replaced by their negatives (see (14.3.2)). All
solutions of (INT) are obtained in this way.
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If L is a rank one local system on P1 minus four points with monodromy
a = exp(27r^), the dual local system has monodromy a-1 = exp(27nV), with
^ = 1 — ^- The vector spaces H^L) and H^L) are in duality. As they are of
dimension 2, this duality provides a canonical isomorphism between PH^L) and PH^L):
to a line in H^L), one associates its orthogonal in H^L). On Q, this gives a canonical
isomorphism between the flat projective line bundles defined by (JL and [L\ Via this
isomorphism, the holomorphic sections w^ and w^, are identified; for both w^ and w^
are of the first kind, and <^, w^>, given by the integral of the exterior product of two
holomorphic differentials is o; cf. (2.18) and the computations in (2.19). In view of
this identification, we will limit ourselves to the second case, with (JL'S given in descending
order by

^(•^-,-^
^(•^-^).

(M-S-a) 1 / i i i\
^3 = - I — . + - + - ,2 \ p q r )

i / i i i\
-1=.( I-^-,-7)•

with l<P<.9<.r<_^, J-+1-+1•<I.
p q r

For such a system of ^s, Q^ can be identified with the space of ^ : { i, 2, 3, 4} -> P1

with jy{i) = o, y{2) == i, jy^) = oo, i.e. (using x : =j/(4) as coordinate) with P1.
The multivalued map w admits as projective coordinates the integrals (dropping the
primes from p.')

J z-^{z- i) -^{z-x) -^dz.

In his cited paper [20], Schwarz proved that the multivalued map w induces a
bijection from the upper half plane Im(A:) > o to a geodesic triangle in the hyperbolic
ball B(a)4' with angles TT/^, rc/y, nfr. It is of interest to deduce this classical result from
the theorems proved in this paper.

To begin with, w is Aale (Prop. (3.9)) and has the local behaviour described
in § 9.6 near o, i, and oo.

Next we show that w maps each of the segments T^ == ]— oo, o[, ^ =] o, i[,
and T3 = ]i, oo[ to circular arcs in B(a)4'. It suffices to prove this for ]— oo, o[, since
the segments are permuted by o h> i }-> oo (-> o.

Take x near ]— oo, o[ and as homogeneous coordinates for w(x) the integrals f1

poo . Jo
and J^ with the principal determination of the integral. In these coordinates,
w(x) == w{x)~. Independently of coordinates, we get w{x) = aw{x) for a an anti-
holomorphic involution of P1 i.e. a Schwarz reflection. It follows that w{] — oo, o[)
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lies on the fixed point set of a, a circular arc. Consequently, w induces an injective
map of the real axis to the boundary of a triangle in P1 with circular arcs which lie in B(a)+,
and the map w has a holomorphic extension to the upper half plane. From the fact that
the map w is ^tale and has image in B(a)+3 it follows by a maximum modulus argument
that the w-image of the closed upper half plane is the closed triangle A lying in B(a)+

with the given circular arc boundary. That w is a bijection follows from
Theorem (10.18.2) (whose proof simplifies vastly for N = 4).

We show finally that the circular arcs are geodesic lines in B(a)+. Regarded as
a single valued map of Q^gst, w is a ^(Q^ o)-equivariant map. Set ^ = 2^(^)5 using
the determination ofw described above, and let ̂  denote the reflection in ^ (z == i, 2, 3).
Then or^ a^ is a holomorphic self-map of P1 with cr^ o^ w an analytic continuation of w
regarded as a multivalued holomorphic function on Q^. Indeed if i^j, c^a. is the
monodromy in 1̂  corresponding to one turn of x around ^ n SCj. Consequently
{°i °j5 I ^ z ̂  J ^3} generates 1 ,̂ B(a)+ = r^(A u ̂  A), and the group generated
by {(y,; i == i, 2, 3} is 1̂  u o^ 1̂ . It follows at once that o-i^a)4' = B(a)4'. Hence a^
is an isometry ofB(a)4'. Consequently c^ is a geodesic line. Since our arguments persist
under permutation of indices, all the sides of A are geodesies.

To sum up,

(^•S-S) T^he 4-tuples ^ < ̂  < ̂ 3 < ̂  satisfying o < (JL,< i and S ̂  = 2
correspond pairwise to triangle groups [j&, y, r] with i ^ ^ ^ ^ ^ y ^ o o ? the pairs
being related by p.5_^ = i — ^, i = i, 2, 3, 4. (JL and pi' coincide only if r == oo.

(14.3.4) For any N.>4, the monodromy representations of ^(Q^, o) corres-
ponding to the pair ([JL, p.') are contragredient, but for N == 4 these two representations
are equivalent via the canonical isomorphism of PH^L) to PH^L).

(14.3.5) Complex conjugation maps L to L and induces a semi-linear isomor-
phism K ofH^L) to H^L) which maps H^^L) to H1'0^). Identifying PH^L) to PH^L)
via the canonical map, the map K induces the anti-holomorphic reflection of P1 in the
boundary of the ball B(a)4'. It is only for N = 4 that the complement of the closed
ball in PN-3 is again a ball.

(14.4) We list below all solutions for (JL satisfying condition (INT) where o < ^ < i
for all j, Spig = 2, and card S > 4. Set
N = card S,
d == lowest common denominator of p. === (^s)sgs?
ris = ̂
NA = non-arithmetic (cf. (12.7.1) for criterion),
oo means that PU(i, N — 3)/I\ is not compact.

No entry in the last (resp. next to the last) column indicates compact quotient
(resp. arithmetic lattice).
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I

2

3
4
5
6
7
8
9

10
U
12

13
14
i5
i6
i7
i8
i9
20

21

22

23
24

25
26

27

I

2

3
4
5
6
7

3
4
4
5
6
6
6
6
8
8
8
9

10

12

12
12

12
12
12
12
12
12
12

15
i8
20

24

3
4
4
6
8

12
12

4

4

Tiy Arithm oo

N = 5
2 I I I I 00

2 2 2 I I oo
3 2 I I I
2 2 2 2 2 00

3 3 2 2 2 00

3 3 3 2 1 00

4 3 2 2 1 oo
5 2 2 2 1

4 3 3 3 3
5 5 2. 2 2

6 3 3 3 1
4 4 4 4 2
7
5
6
6

7
7
7
8
8
8

10

8
ii
14
14

4 4 4 I

5 5 5 4
5 5 4 4
5 5 5 3
5 4 4 4
6 5 3 3
7 4 4 2
5 5 3 3
5 5 5 1
7 3 3 3
5 3 3 3
6 6 6 4
8 8 8 i

" 5 5 5
9 9 9 7

N==6

NA

NA
NA oo

00

NA

NA

NA
NA

1 I I I I I 00
2 2 I I I I 00
3 i i i i i oo
3 2 2 2 2 1 00
3 3 3 3 3 1
5 5 5 3 3 3
7 5 3 3 3 3 NA oo

N=7
2 I I I I I I 00

N=8
I I I I I I I I 00
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15, LeVavasseur's list

In his 1885 paper [16^], Picard gave as sufficient condition for the monodromy
group r of the multivalued function

F(^jQ = J^0"1 {u - i)^-1 (u - x)^-1 (u -y^-^du

(o< \< i all z),

to be discrete the set of 10 integrality conditions

(15.1) ( \+^ . - i^eZ+Uoo, (s-Sx^eZ^ o < t + j < 3 .

In his 1887 note [16 c] Picard asserts without proof that the above 10 integers need not
be > o but may be negative as well and still F is discrete. R. Le Vavasseur, in his 1893
dissertation written under Picard's direction found all solutions of

[L] (X^+^- i^eZuoo, (S-SX^GZ, o^i+j-^3.

3

Setting (JL, == i — X, (o <^ i <^ 3) and ^4 === 2 — S ̂  we can rewrite these 10 condi-
tions as

[L] f^ - 2 -

(^ + .̂j —i)~1 eZ u oo i f o < _ i ^ j < _ 4 .

In [13], Le Vavasseur lists 102 solutions of [L]. If in addition one imposes the
inequalities o < ^ < i for o <_ i < 4, the resulting 5-tuple solutions, ignoring order,
reduce to 27. These are the 27 listed in (14.3) under N == 5; that is to say, condi-
tion [L']:

[L'] o<^< i (o<i<4),

4

S^==2,

(i - ̂  - ̂ .)-1 e Z U oo if i +j,

is equivalent to condition (INT) of (3.11). The reason for this striking coincidence is
explained by (14.2), Case A. Thus the apparently stronger integrality conditions imposed
by Picard in [16 b] and [16^] are equivalent to our condition (INT).

To complete the historical record we note that Le Vavasseur's condition [L]

admits 10 solutions not satisfying L', one of which, (0 ,03031 — -, i + -h consists
\ n nj
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of an infinite number. The image of the map 2^ is not a ball for these 10 solutions. We
illustrate briefly the case of two solutions

( 2 2 2 2 2\
(A== "s 'Ps 's ' s /

/ I I I I \
and ^ t - 2 ' 2 ' 2 ' 2 ' 1 ) -

( 2 2 2 2 2\
(i) Set S =={0,1,2,3,4}, (Ji== ——'-^-^)- By (2.21) the signature of the

3 3 3 3 3/ __
hermitian form is (2, i) rather than the usual (1,2), and \w A w > o as usual. Conse-
quently S^ : Qst -> PU(V) maps Q^ to the complement of the ball B(a)o'. The
subset Ctoi °^ CLt corresponding to the two points XQ and A:i coming together maps to
the fixed point set of the monodromy Yoi of x^ around XQ—which is unipotent since
^o + (Jl! ls integral (cf. (12.3.2)). Hence Q^i maps to a line tangent to the boundary
of the ball at the point fixed by Yor It is easy to verify that the monodromy group I\
is a matrix group with coefficients in Z(^T) and is therefore discrete in U(2, i). How-
ever, lattice subgroups of PU(V) do not operate discontinuously on the complement of
the ball, so that the strategy of Section 10 cannot be implemented in this case.

(ii) M. == | — - , - , - , - , i 1. Set S' == {4}. Here the intersection form is not
\ 2 2 2 2 /

defined on all ofH^s')(Po? Lo) but rather on H' = H^(P — {xo, x^, x^, ̂ 3}, I/) and L'

has monodromy corresponding to ( - , - , - , - ) . By (2.21), the intersection form has
signature (i, i).

As in the euclidean case (13.2), the image of w^: Q,->V == H^g^Po, L,o) lies
on a two-dimensional affine hyperplane H which is parallel to H', H w P2 — /', where t is
the line in the projective 2-space, which is defined by the vector subspace H' ofV. As in
the preceding case, S^(C[oi) ^les m tlle lme of fixed points of the pseudo-reflection ̂
for i <_ i<^ 3. By contrast, ^(Q,y) is the point on the line t fixed by the pseudo-
reflection Yij f01* I ^^J^^- The monodromy group F^ is a matrix group with
coefficients Gaussian integers and is therefore discrete.
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