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SPHERICAL ISOTROPY REPRESENTATIONS
by TED PETRIE and JOHN RANDALL

i. History and discussion of ideas

An old question of P. A. Smith asks [Sm]: If a finite group acts smoothly on a
closed homotopy sphere S with fixed set S° consisting of two points p and q, are the
isotropy representations Ty S and Tg2ofGat /» and q equal? Put another way: Describe
the representations (V, W) of G which occur as (Tp S, T^ 2) for S a sphere with smooth
action of G and S0 == p u q. Under these conditions we say that V and W are Smith
equivalent [P] and write V ^ W. Prior to the results of this paper all evidence suggested
a positive answer to Smith's question. We show here that the answer to Smith's question
is no. Specifically suppose G is an odd order abelian group with at least 4 non cyclic
Sylow subgroups. Then (Theorem A') there is a nontrivial subgroup (1.7) rI'(G) of
the real representation ring RO(G) such that each z erI'(G) occurs as a difference
of two Smith equivalent representations. Even more generally there is an action of G
on a homotopy sphere S such that S° consists of an arbitrary number of points and
the pairwise differences of the isotropy representations realize given elements of rI'(G)
(Theorem A). This paper presents proofs and elaboration of the results announced
in [PJ and [P^].

The question of Smith was undoubtedly motivated by the observation that if
S == S(V) is the unit sphere of a representation V, then T2 , the G tangent bundle

s0

of S restricted to S°, is S0 x V. Here V is V/V0. In particular this means that
the isotropy representations T^ S for x in S6 are independent of x. One might then
wonder about the case where S is an arbitrary homotopy sphere with G action such
that S° is a homotopy sphere. Smith's question deals with the case in which S° is
the o dimensional sphere. For interesting results for the positive dimensional case see
Schultz [ScJ and Ewing [E].

The problem of characterizing Smith equivalent representations has a rich history
which we mention to motivate the material here. The first major breakthroughs on
this topic are due to Atiyah-Bott [AB] and Milnor [M] and rest on the Atiyah-Bott
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fixed point theorem. The set ofisotropy groups {GJ A" e X} o faG space X is denoted
by Iso(X).

Theorem 1.1. (Atiyah-Bott [AB]). — Let V be a representation of a finite group G
such that Iso(V — o) == {i}. If W is a representation of G with V - W, then V == W.

One important consequence of their proof is this:

Lemma i. a. — If G has odd order and V and W are Smith equivalent representations of G,
then V-WeKer(RO(G)) -fl^ II RO(P)). {Here y(G) denotes the set of SylowPG^(G) l/ -'
subgroups of G and a ij <z product homomorphism each of whose components is restriction to P.)

For even order groups there is a weaker result:

Theorem i. 3 (Bredon [BJ). — If G is cyclic of 2 power order and V - W, then W — V
is contained in 2^ RO(G) where f(V) is an explicit power of 2 which increases as dimension
of V increases.

Corollary 1.4. — Same hypothesis. If dim V is large compared with the order | G | of G,
then V - W implies V == W.

This corollary indicates some of the complexity of Smith equivalence. For
example V - W does not imply V ® S - W ® S. The next result when compared
with the main results here shows the subtlety of the notion of Smith equivalence.

Theorem i. 5 (Sanchez [S]). — If | G | is odd and V and W are Smith equivalent represen-
tations realized as Tp S and Ty S/or an action of G on a homotopy sphere S such that S11 is either
connected or p u q for all H C G, then V = W.

In order to state the main results here which deal with Smith equivalence we
fix some notation. In this paper

1.6. — G is an odd order abelian group.

Let R(G) (resp. RO(G)) denote the complex (resp. real) representation ring
of G. If H is a subgroup of G, resg : R(G) ->• R(H) is the restriction homomorphism
and fixg: R(G) -> R(G/H) is the homomorphism defined by sending a represen-
tation V to V11 its H fixed set. Realification defines a homomorphism r: R(G) -> RO(G).
Let y denote the set of groups of prime power order.
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SPHERICAL ISOTROPY REPRESENTATIONS 7

Define subgroups

(1.7) I(G) =Ker(R(G)^j[^R(P))

I'(G) = Ker(R(G) -^ ( n R(P) X n R(G/H)))
PG^(G) G/HG^

where a is the product of resp for P e <^(G) and p is the product of resp for P e <9"(G)
and fixn for G/H e^. The corresponding subgroups ofRO(G) are denoted by 10 (G)
and 10'(G). One of the main results here about Smith equivalence is:

Theorem A'. — Let G be an odd order abelian group having at least 4 non cyclic Sylow
subgroups. Then every element ofrV{G) occurs as the difference of Smith equivalent representations.
{Compare with 1.2.)

This theorem is a consequence of Theorem A and Lemma 2.6. In 2.5 we define
a set St of complex representations of G.

Theorem A. — Lei K be any non empty finite set. Suppose for each u, v e K that R^e^S
and R^ — R,, e I(G). Then there is a closed homotopy sphere S with smooth action of G such
that S°=K and {T^S | u e K} = {rRJ u e K}.

Theorem A' gives a sufficient condition to realize an element of RO(G) as a
difference of two Smith equivalent representations. This condition involves the sub-
group rP(G) of 10'(G). The latter is naturally related to necessary conditions (2.7
and subsequent remarks). For a large family y of representations of G, Theorem A'
together with Lemmas 2.7 and 2.8 lead to a necessary and sufficient condition,
Theorem B', for representations in y to be stably Smith equivalent. (By definition,
representations V and W are stably Smith equivalent if there is a representation S such
that V © S and W®S are Smith equivalent.) Define y as follows: A represen-
tation VofGisin^ if and only if dim V11 == o for each subgroup H for which G/H e 3P.

Theorem B'f. — A necessary and sufficient condition that two representations V, W e y
he stably Smith equivalent is that V — W e 10'(G).

Theorem B. — Let K be any non empty finite set. Suppose for each u e K, R^ is a
representation in y. Then there exists a representation S of G and a smooth G action on a closed
homotopy sphere S such that 2° = K and {T^ S | u e K} = {R^® S | u e K} if
R^ - R, e IO'(G) for all u, v e K.

Using Theorems A' and B' it is easy to exhibit non isomorphic Smith equivalent
representations. Here is a representative example: Let L be the cyclic group of order pq
where p and q are distinct odd primes. View L as the group of pq-th roots of unity
in C and let f denote the complex one dimensional representation of L defined by
asserting that g e L acts on v e f' by complex multiplication by g\ The represen-
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tations V = ^ (p+l ) (3+l )®^ and W == ^(P+^e^-^ of L where {a,pq) == i are
not stably Smith equivalent as representations of L; however, if G is a group satisfying
the conditions of Theorem A' and 9 : G -> L is a surjective homomorphism, then
r<p* V and r<p* W are stably Smith equivalent representations of G. This follows imme-
diately from Theorem A' because <p*(V - W) e I'(G) $ so r<p*(V - W) e IO'(G).

There is an interesting problem associated with Smith's questions which is not
treated here: namely, to relate the differential structure of S and the isotropy represen-
tations T^ S for x e S° when S is a homotopy sphere. As noted by Schultz and others
the results of this paper can be achieved on the standard sphere. See section 5.

In the long period since the discovery of Theorem A (see [Pa]) and the publication
of its proof together with the other results here, there have been a number of interesting
papers published on the topic of Smith equivalence. Treating the case of cyclic groups
of even order are papers of Gappell-Shaneson, Petrie, Dovermann and Siegel: see [CS],
[Py], [Dov] and [Si], For noncyclic groups of even order, there are papers of Suh
and Gho. See [Suh] and [C], A forthcoming paper of Dovermann-Petrie [DPg]
treats the case of cyclic groups of odd order using many of the geometric methods of
this paper as well as methods particular to cyclic groups of odd order. A good deal
of [PR] is devoted to Smith equivalence.

There are three general ingredients to the proof of Theorem A. These are: the
one fixed point actions of G on homotopy spheres of [P^, the Completion Theorem
of Atiyah [AJ and the Induction Theorem in equivariant surgery given in section four.
The main result of ^4] produces for each R e 3i a smooth action of G on a homotopy
sphere X with exactly one fixed point u such that T^ X = R and the equivariant
tangent bundle TX is stably isomorphic to X x R. Lemma 1.2 ties together with
another result of Atiyah [AJ which asserts that I(G) is the kernel of the completion
homomorphism R(G) -> R(G) from R(G) to the completed representation ring R(G).
This may be interpreted geometrically. Let E be an acyclic space on which G acts
freely. Then any representation R of G gives a G vector bundle E X R over E. The
above result of Atiyah geometrically interpreted means that if R — R' eI(G), then
E X R and E X R' are stably isomorphic G vector bundles over E.

As an approximation to the G homotopy sphere S of Theorem A consider the
manifold

w = u w^
ueK'

described as follows: Add a point o to K to give the set K/. Select any point z e K
and set T == R,. For u e K, W^ is a G manifold X^ with X^ == u, T^ X^ = R^
and TXy = X^ X R^ as a stable G vector bundle. For u == o, W^ is a G manifold
with W^ = 0, TW^ == W^ X T as a stable G vector bundle and the Euler charac-
teristics of fixed sets W^ for H C G are arranged so that condition 4.18 (i) of the Induc-
tion Theorem 4.19 is satisfied. Let R be the real line with trivial action of G and let
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SPHERICAL ISOTROPY REPRESENTATIONS 9

Z = S(T C R) be the unit sphere of T ® R. There is an equivariant map F : W -> Z
which collapses the complement of an invariant disk about z G W to a point. It has
degree i. Since R,, — R^ e I(G) for u, v e K', Atiyah's result gives a stable G vector
bundle isomorphism

(B^ : E x TW -^> E x (W x T)

of G vector bundles over E X W. Then IT == (W, F, p^) is roughly what is needed
to produce the sphere S in Theorem A. Observe that W° = K and Ty W == Ry
for u e K. If F were a homotopy equivalence, Theorem A would be established. The
goal is to convert W to a G homotopy sphere S using H^ and without destroying these
side conditions.

The obvious tool for converting F to a homotopy equivalence is equivariant
surgery. The setting for this is a triple H^ == (W, F, (3) where F : W -> Z is an
equivariant map of degree i and (3 : TW —^ F* ^ is a " bundle " isomorphism for some
equivariant vector bundle ^ over Z. The triple /)^ is called a G normal map. Equi-
variant surgery is a process designed to produce a G normal cobordism between H^
and H ^ ' = (W, F', (B') where F' : W -> Z is a homotopy equivalence. This is not
always possible as there are obstructions. One powerful tool which guarantees success
is an Induction Theorem which asserts that if for each hyperelementary subgroup H
of G resji^ is the boundary of some H normal map ^(H), then ̂  is G normally
cobordant to H ^ ' == (W, F', (B') with (B' a homotopy equivalence.

The first such Induction Theorem, due to Dress, applies to free actions. Its chief
geometric application was the construction of free actions on homotopy spheres [D],
Induction Theorems for non free actions were established in [DPJ and [Pg] and were
employed in the construction of one fixed point actions on homotopy spheres [Pg] [P^\.
These induction theorems deal with G normal maps and depend therefore on the
definition of " bundle " isomorphism occurring in the definition of G normal map. In
the free case there is little ambiguity. " Bundle isomorphism " means a stable G vector
bundle isomorphism. In the case of non free actions the role of the " bundle " iso-
morphism is far more substantial and the definition depends on the contemplated
application. (The idea of a flexible notion of " bundle " equivalence is dealt with
in [PR, pp. 91-95].) In the cases cited above TW is stably G isomorphic to F*(^) for
some G vector bundle ^ over Z. This definition must be altered to treat Theorem A
as the following result shows.

Lemma C. — Let S be given by Theorem A. Let z e K and F : S -^ S(R © R) = Z,
(R = T^ S), be any G map. If there is a G vector bundle ^ over Z such that TS = F* ^ as
a stable G vector bundle, then Ty S = T,, 2 for u,ve 2°.

Proof. — Since R e ̂ , dim R11 > o for each cyclic subgroup H of G by 2.3
and 2.5. This means that Z11 is connected; so if^ is any G vector bundle over Z, then

/irt /•225
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the representation of H on Sa, (the fiber at x) is independent of x e Z11. If TS = F* S;,
then for u,v e K = S0 res^T,, S - T, S) == res '̂ — ^) == o, where u' = F(^) and
v ' = F(y). Since this holds for each cyclic subgroup of G, T^S = T,, S.

To apply these considerations then to prove Theorem A, we need a definition
of <( bundle isomorphism " for (3 : TW -> F* i; which is weaker than those previously
used in equivariant surgery. One notion which works is called a Smith framing. It
incorporates the isomorphism (B^ constructed from Atiyah's Theorem and the P vector
bundle isomorphisms (3p : TW -> W X R for P e e^(G) arising from the isomorphism
resp Ry = resp R. The definition and formal properties of Smith framings are treated
in section 3.

The proof of the Induction Theorem 4.19 separates into an algebraic part and
a geometric part. The geometric part consists in establishing two fundamental lemmas
(4.11 and 4.12) from equivariant surgery (see [PR, Ch. 3, § io]). They assert that
equivariant surgery is possible (with respect to the definition of G normal map using
Smith framing). These two results are useful in their own right as they are the key
geometric steps in producing actions on disks with isolated fixed points and distinct
isotropy representations—the first such [Pg], The algebraic part of the proof of the
Induction Theorem 3.19 and [DP^, 2.6] are identical; so we appeal to [DPi, 2.6]
to complete the proof.

In section 2 we treat some algebraic preliminaries concerning the representation
ring and the Burnside ring. In section 3 we develop the notion of Smith framing. In
section 4 we treat the Induction Theorem. In section 5 we prove the main results
by constructing a G normal map from the input from Theorem A. This normal map
satisfies the requirements of the Induction Theorem which is applied to prove Theorem A.
Theorems B and B' are also proved in section 5. Theorem A and Lemma 2.8 lead
to Theorem B, while Theorem B' follows from Theorem B and Lemma 2.7.

2. The representation ring and the Bumside ring

If H is a subgroup of G, resg denotes restriction of G data to H data. E.g. if X
is a G space resg X means that X is viewed as an H space. The set of hyperelementary

^%/
subgroups of G groups is denoted by 8^. Since G is abelian, these are the groups which
are a product of a cyclic group and a j&-group of relatively prime order. The Burnside
ring of G, t2(G), is the ring of equivalence classes of smooth G manifolds with X equi-
valent to Y if the Euler characteristics 5c(X11) and ^(Y11) are equal for all H C G. The
equivalence class of a manifold X is written [X], Additively Q(G) is the free abelian
group generated by [G/H] as H runs over conjugacy classes of subgroups of G. When
Jf is a family of subgroups of G, Q(G, Jf) denotes the subgroup generated by
{[G/H] | H e JT}.
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Let A(G) C ^(G) be the ideal defined in [0, p. 339]. By [0, Prop. 2]

A(G) == n^ Ker(resH : Q(G) -> Q(H))
HE^

because G is abelian.
If E eQ(G), its character ^ is the integral valued function defined on the set

of conjugacy classes of subgroups defined by

XE(H)=x(E11).

The definition of the equivalence relation in ti(G) means A(G) = { E | % E ( P ) = °
for P C G and Pe^}. Set
(2.1) J ^ = { H C G | G/H ̂ } and QQ = a(G,J^).

Lemma 2.9. — Suppose G is an abelian group with at least four non-cyclic Sylow subgroups.
Then the unit i of t2(G) lies in the subgroup A(G) + Q.Q.

Proof. — For each Sylow subgroup S of G, let E = E(S) e 0(G/S) be a virtual
finite G set with ^g(P) = i for each P C G/S which is hyperelementary and
/^(G/S) == o. Since G/S has at least 3 non-cyclic Sylow subgroups, the existence of E
is provided in [T^]. Since Q.(G) is contravariant in G, we may regard E(S) as being
in Q(G). Set

X==IlE(S)eQ(G).
s

Then %x(G) = o and /x(P) :== I whenever P is a hyperelementary subgroup of G
i.e. P e^. Thus X = i - U with U eA(G).

Let X = Sa^G/H] and set Iso(X) = {H | ̂  =t= o}. Observe that if A and B
are G sets, the isotropy groups of A x B are intersections of isotropy groups of each
factor. Viewing E(S) as an element of Q(G), Iso(E(S)) = { S X H(S) | H(S) is a
proper subgroup of G/S}. This uses the fact that ^(G/S) == o. From the above
comment, H eIso(X) implies H = fl (S X H(S)), where S runs through the set of

s
all Sylow subgroups ofH. Then the index ofH(S) in G/S divides [H : G], the index
of H in G, for every Sylow subgroup S. Since there are at least four distinct Sylow
subgroups, [H : G] is divisible by at least 2 distinct primes so G/H ^ ̂ , i.e. H e ̂ .
This shows that X e O.Q .

The following easy lemma is left to the reader.

Lemma 2.3. — Let G be as in Theorem A'. Then G ^JT and ^3^3^.

Let I'(G) be the subgroup defined in 1.7.

Lemma 2.4. — z e I'(G) if and only if there are representations V and W of G such
that V11 = W11 = o whenever G/He^, V - W e I(G) and z == V - W.
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Proof. — Let % be an irreducible representation of G whose kernel K has index R(
for some prime p. If < ̂ , V > denotes the multiplicity of 7 in V and V — W == ^ e I' (G),
then <x, V> == <^ V^ = </, W^ === <^, W>. The middle inequality uses the
assumption V1^ = W1^ in G/K. Removing all irreducible representations with kernel
of prime power index from V and W gives V and W with V — W = z. Observe
that V'^W'^o whenever G/He^.

If R is a complex (real) representation of G and ^ is a complex (real) irreducible
representation of G, then ^(R) (w^(R)) is the multiplicity of / in R. Define a set Si
of complex representations ofG by asserting a representation RofGis in^? if and only if

2.5. — (i) Iso(R — o) = Jf, dime R11 >_ 2 for He Jf, dime R33 ̂  3 P e ̂ ,

dime RK< - dime R11 whenever K contains H and H e ̂ f, and

(ii) dime R11 < w^(R) whenever H C G and ^ is a non trivial irreducible
representation of H with ^(R) + o.

Lemma a. 6. — For each zeV(G) there are representations RQ and R^ in St with
R, - R, = z.

Proof. — By 2.4 there exists V and W with V -- W == z and V11 = W11 == o
whenever G/H e^. This means Iso(A — o) CJf for A = V, W$ so we can apply
[^43 l ' 3 ] to see that there is a representation S of G such that VOS and W ® S
satisfies 2.5 (i). It is an elementary exercise using Frobenius Reciprocity to see that
that proof also shows that 2.5 (ii) is also satisfied (see [PR, § 9]); so that V®S and
W © S are in ^. Their difference is again z.

It seems appropriate to motivate the appearance of the groups I'(G) and 10'(G)
in the study of Smith equivalence of representations. The motivation comes from the
following necessary condition for Smith equivalence:

Lemma 2.7. — Necessary conditions that two representations V and W of G be Smith
equivalence are: a) resp V ^ reSp W for all subgroups P of G in 8^. b) Whenever H is a
subgroup of G such that G/H is cyclic and in ^, either (i) res^ V ^ resn W or
(ii) V^W^o.

Remarks. — Note that the condition that V11 = o whenever G/H is cyclic and
in 8^ is equivalent the condition that V e y (section i) i.e. V11 = o whenever G/H
is in y. This uses the fact that G is abelian. The real analog of 2.4 describes 10'(G)
as the subgroup { V — W | V , W e ^ and reSp(V — W) = o whenever P e^}.
This is the subgroup of RO(G) defined by 2.7 a) and b) (ii).

Proof'of'2.7. — The proof is based on a theorem ofAtiyah-Bott. This theorem [AB]
asserts that a cyclic group G of odd prime power order cannot act smoothly on an
oriented manifold M of positive dimension in such a way that M° is exactly one point.
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SPHERICAL ISOTROPY REPRESENTATIONS 13

We apply this theorem to this situation: Let H be a subgroup of G such that G/H == C
is cyclic of odd prime power order. Suppose that G acts smoothly on a homotopy
sphere 2, S0 consists of two points x and y and T, S = V, Ty 2 == W. If resn V
is not isomorphic to reSg W, then x andj/ are not in the same component of211; so the
connected component of 211 which contains A: is a closed manifold M supporting an action
of the cyclic group G such that M0 is one point x. Thus dim M == o = dim V11 == o
and similarly dim W11 = o or equivalently V11 == W11 = o. This verifies condition b).
The necessity of condition a) has been noted in Lemma 1.2.

The next lemma enters into the proof (§ 5) of Theorems B and B'. For the proof
of this lemma, we collect some facts and notation from representation theory. Let ^
be a primitive k"th root of unity and Z[y the subring of C additively generated by
powers of ^. If g e G is an element of order k and x e R(G) is viewed as a complex-
valued function, its value x{g) at g lies in ZR]. This leads to a ring homomorphism
evg: R(G) -^Z[S] with eVg{x) = x{g). For each cyclic subgroup G of G, ^ denotes
a primitive |C|-th root of unity and g{C) a generator of C. Set R(G) == riZ[Sc]
where the product ranges over the cyclic subgroups of G. Then there is a homo-
morphism ev : R(G) -> R(G) whose C-th coordinate is ev^ == ev^. A similar
situation applies for real representations. In this case Z[^c] is replaced by Z[^ ® Ic]
(where - denotes complex conjugate) and RO(G) is the product of these rings as C
varies again over the cyclic subgroups of G. Comparing the real and complex setting
leads to a commutative diagram:

R(G) -'-. R(G)

RO(G) -^> RO(G)

where r is realification and r{x) == x + x . Recall that I(G) is the ideal in R(G) defined
by I(G) =={xeR{G) | reSpM =o for all Pe^} and IO(G) C RO(G) is similarly
defined.

Lemma 2.8. — The realification homomorphism r:I(G) ->IO(G) is surjective.

Proof. — First observe that coker r is annihilated by 2 because complexification
followed by realification is multiplication by 2. We assert that coker r is annihilated
by an odd integer too; so coker r = o. The assertion follows from a diagram chase
in the above diagram and uses these facts:

(i) Ker r = {x — x | x e R(G)}. (Here ~" denotes the involution in R(G) induced by
the automorphism of G sending g to g~1.) Kerr == {x — x\ x e R(G)}. Here
~~ denotes complex conjugation in each factor of R(G).)
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(ii) [G| is odd.
(iii) If x e R(G) or RO(G), then resp(^) = o for all P e^ if and only if evc(^) == o

whenever G e^ is cyclic.
(iv) |G|.R(G)Cev(R(G)).

The last statement has an easy proof due to R. Lyons. It suffices to exhibit for
each cyclic subgroup G an element f^ e R(G) such that ev(/c) has C coordinate [G|
and all other coordinates o. View R(G) as a ring of complex functions on G. Note
that the function f^ which sends g e G to | G | if g generates G and to o otherwise is
in R(G). To see that^ is in R(G) note that its inner product with an irreducible
character is an algebraic integer (in Z[^c]) which is Galois invariant; so it is in Z. This
ends the proof of the lemma.

In order to apply the results of this paper, one needs to produce elements in I'(G)
or 10'(G). Here are two relevant points about this (which lie behind the example
in section i): (i) If 9 : G -^ L is a surjective homomorphism, then 9*: F(L) -> F(G)
where F is I' or 10'. An especially good choice for L is a cyclic group which is not
a^-group. (ii) The Adams operations ^k can be used to construct elements in I'(G).
For each j^-Sylow subgroup P of G choose an integer dp prime to the order of G and
congruent to i mod the order of P. Then for any representation R in SH,

n(p- i )Re l ' (G) .

Just note (^-i) ReSpR= o in R(P) and (^a — i) R11 == [^a — i) R]11 == o
in R(G/H).

3. Framings and equivariant cell attachment

Background

We begin with a few words of motivation and notation. Recall that G is abelian.
For any group F, E(r) is a contractible space with free F action and E = E(G). If
H C G and R is a representation of G, res^ R is its restriction to H and | H | is the order
of H. We denote by I(G) the ideal in R(G) consisting of those elements which are
in the kernel of resp for each Sylow subgroup P of G. Suppose W is a sphere or disk
with a smooth action of G. Then Smith theory implies:

(i) W11 is a mod? sphere or disk if H C G, |H| == ^n, p prime. In particular
7r,(W11) ® Zp == o if k < dim W11.

Smith theory or the Atiyah-Singer Index Theorem implies:
(ii) If R,R' e^Wj^eW 0 }, then resp R ^ respR' for each Sylow subgroup P

of G. (If W is a sphere, p must be odd.)

The Atiyah Completion Theorem implies:
(iii) IfR' and R are complex representations whose difference is in I(G), then E X R'

and E X R are stably isomorphic G vector bundles over E.
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SPHERICAL ISOTROPY REPRESENTATIONS 15

Equivariant surgery is a process for reducing the homotopy groups of W11, H C G,
where W is a smooth G manifold. In one setting it may be described like this: Given
is a representation R of G and some sort of bundle isomorphism (framing)
& : T W - > W x R and an element a e image (^(8W11) -^^(W11)). There are two
steps to surgery using this data:

(iv) Using a and the framing 6, an equivariant handle is attached to W giving W 3 W
and a is killed in ^(W711).

(v) The framing is extended over TW.

If the definition of framing is too strong (e.g. if b is a stable G vector bundle
isomorphism), then T^pW is isomorphic to R as a representation of G for all x e W°.
If the definition is too weak, it may not be possible to achieve (iv) or (v).

It is natural to use surgery to convert a manifold W with framing into a sphere
or disk by achieving (i) for all primes p. Since we do not want T^ W = R for all
x e W°, we must avoid too strong of a definition of framing. Point (ii) gives
some guidance. Since we must have isomorphisms gy: resp R' ^ resp R for each
^-Sylow subgroup P of G, we might postulate stable P vector bundle isomorphisms
by : resp TW -> res? W X R for each prime p as part of the definition of framing. This
is sufficient to achieve (iv) but not (v). For that we introduce the notion of an
R-P framing and insist that by be an R-P framing. This means b is a compromise
between a stable G vector bundle isomorphism and a stable P vector bundle isomorphism.
With the collection {by} we can achieve (iv) and (v) for all H =(= i. We treat the
group H == i using a stable G vector bundle isomorphism Aoo : E X T) ^ E x W X R
manufactured from (iii). The collection [by, by,} provides the needed data for a
"framing". This is called a Smith framing and its precise definition occurs in 3.24.
We should emphasize the role of the assumption that G be abelian. For these groups
complex representations are represented by diagonal matrices; so ifR and R' are complex
representations of G whose restrictions to P C G are isomorphic, there is a P isomor-
phism £p between them such that 6(ep) e Ap(R)—a torus. For a general group this
would only be an element of Ap(R) which is not a torus. See the discussion after 3.33.

In this section we treat the part of surgery dealing with framings of equivariant
bundles. This does not require restriction to manifolds or their tangent bundles. The
main results are 3.12 and 3.13. We use these in the next section to treat the manifold
case which needs some added input concerning framings and embeddings.

Smith framing—desired formal properties

One of the basic constructions in homotopy theory is to attach a cell D^4'1 to a
topological space W via a map i : S^ -> W representing an element a e TT^(W). This
data produces a new space 0 = W U^D^^ in which a is null homotopic. Surgery
can be viewed as an elaboration of this process in the smooth category. There the
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initial data includes also a vector bundle T] over W (which in practice is the tangent
bundle TW) and a stable vector bundle isomorphism (framing)

(3.1) b : T] -> W x R where R == R^

This gives rise to a stable vector bundle isomorphism

(3.2) l(b): S^XR-^T) S' =1^
s'

and if k < n a vector bundle isomorphism

(3.3) r (&) : S^XR-^T]
whose stabilization is f(b). Using this we obtain a vector bundle F == I^T], <z, 6) over 0
defined by

(3.4) r ^ u D ^ x R

and a framing b ' : F -^ 0 X R extending &. Here S^ X R is identified with i* Y)
via r(A).

Now we discuss an equivariant analog of this construction. We have noted there
is ambiguity as to what the definition of framing should be; however, that is usually
dictated by application. We develop one notion of framing called Smith framing, which
reflects Smith theory and the Atiyah Completion Theorem mentioned earlier. First,
let us specify what a Smith framing should provide. For this we need some notation:
W is a G space, T) is a G vector bundle over W, R is a representation of G and a e ̂ (W11)
for a given subgroup H of G. Let

(3.5) n + i = dim R11, S = S^ x D"-^ and D - D^1 x D"-^

View S and D as H spaces with trivial H action. Let

(3.6) t:S-^W11 be a map such that i represents a. Briefly we say
that i represents a.

Let X be an H space. Set ind^ X = G XH X. This is a G space. If X' is a G space
and y:X->X' is an H map, ind^y: ind^ X -> X' is the G map induced by/
i.e. indg/k, x] = gf{x) for [̂ , x] e G XH X. Set

(3.7) 0 = W u, indg D (/ == indg i : indg S ̂  W11).

Then 0 is a G space in which a is null homotopic. When R is a representation of G,
we let R denote the G vector bundle over W whose total space is W X R. Since the
base space W of R does not explicitly appear in the notation, it must be determined
from the context. Let A == {p \ p is prime and p divides | G |} and P be the ^-Sylow
subgroup of G. Henceforth G space (resp. G subspace) means G c.w. complex (resp.
G subcomplex).
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A Smith framing of T] is defined relative to a »S7m7A decomposition W of W—the base
space of T). By definition W == {Wp, z? | p £ A} where Wp is a G subspace of W such
that the isotropy group G^ at x satisfies

(3.8) | GJ = p^ with n{x) > o for A: e Wp.

The inclusion of Wp in W is ip. If we delete the requirement that W be a subspace
of W, we call W a generalized Smith decomposition of W. We write W = {Wp \p eA}
when each iy is an inclusion.

Here are two important examples of Smith decompositions:

(3.9) W is a smooth G manifold. Let N be an open G regular neighborhood
of { .yeW|G^^} defined with respect to a G G1 triangulation
ofW. See [IJ, [R], [ST]. For p e A, let
W p = { ; c e W - N | |GJ ==p^\ n{x)>o}.

In this case ip is an inclusion. Then W == {Wp, ip \p eA}.

(3.10) W is a point XQ. Let ^p = E(G/P) and let ^:^p->A:o be the
unique map. Then XQ = {xQp, iy \p eA} is a generalized Smith
decomposition of XQ.

Throughout this section H shall be a subgroup of G whose order is p^ for some
prime p e A. We distinguish two cases referred to as Gase I and Gase II. These
are respectively m> o and m == o (so H = i). In either case H is a subgroup
of P—the j&-Sylow subgroup of G.

Now suppose W is a G space with Smith decomposition W and a e T^(W^) in
Gase I or a e TT^(W) in Gase II. In either case the G space 0 in (3.7) is defined.
It has a natural Smith decomposition 0 defined in terms of W and a. The spaces 0^
for q e A are in the two cases:

Case I: Op == Wp u^ ind^ D, 0, = W, q 4= A if/= indg i.
Case II: Oy == W^ for all q.

Theorem 3.12 provides one of the important tools in the main geometric cons-
truction in equivariant surgery. There it is applied with T) the tangent bundle of W.
In 3.12 we use these notations and hypotheses:

(3.11) (i) a) is the H vector bundle over D defined by <o = D X R (3.5).
(ii) W is a G space with this property: each component of W11 contains

a point whose isotropy group is H.
(iii) W is a Smith decomposition of W.
(iv) T] is a stable vector bundle over W (3.34).
(v) a e ̂ (W^) in Gase I or a e T^(W) in Case II and k < dim R11.
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Theorem 3.12. — Assume (3.11). Let (B : T] -> R be a Smith framing ofr^ rel W (3.23).
Then there is an H vector bundle isomorphism /"((3) : <*) -^ ̂ (^ | ) wAt'cA defines the G zw^r

s |s'
A(W^ r == r(Y],fl,(B) ==T] u^indjo) ozw 0, (/== indgr((B)). TA^ y fl 5'w^A
framing ^': F -> H r^ 0 extending p.

Smith decompositions and Smith framings restrict to subgroups and subspaces.
Here is a discussion: First we show how to restrict a Smith decomposition W of a
G space W to a subgroup H of G and to a G subspace X of W. For the latter the
notation is W . This is the Smith decomposition of X with X — X n Wp for each

x
prime? which divides |G|. The H Smith decomposition res^W ofreSgW is defined
as follows: resH W == {W; \p \ \ H |} where W; = {x e Wp | | G, n H | == p^, n{x) > o}.
Now we discuss restriction for Smith framings. Let (B be a Smith framing rel W (3.23)
where W is a G space. Let H be a subgroup of G and X a G subspace of W. Res-
tricting G data to H data gives a Smith framing resg (B rel resji W and restricting G data
to X gives a Smith framing (B rel W . Smith framings are related to the ideal I(G).

x x

Theorem 3.13. — Let R and R' be complex representations of G such that R' — R e I(G).
Let W be any G space and W a generalized Smith decomposition of W. Then there is a Smith
framing (B^(R', R) : R' -^RrelW which is natural with respect to restriction to subgroups
and subspaces.

Smith framings—definitions

We proceed with the definition of Smith framing and the proofs of 3.12 and 3.13
by first providing some definitions and conventions. If M is a representation of G
and 7) is a G vector bundle over W, then s^(r^) == T] <9 M and s{f\) denotes s^{f\) for
some M. Similarly for the representation R, s^{R) == R <9 M and ^(R) = ^(R)
for some M. If T]' is another G vector bundle over W and b: T) -> r\ is a G vector
bundle isomorphism, then s^{b) : b ® 15 : ̂ (73) -^s^^) is a G vector bundle iso-
morphism. A stable G vector bundle isomorphism b : T] -> T]' is by definition a
G vector bundle isomorphism b : Sy(r^) -> ̂ (7)') ^or some M. Sometimes we write
b: J(7)) -> s^) to mean that b is a stable G vector bundle isomorphism and if & is a
G vector bundle isomorphism, s{b) : s{r^) -> s ^ ' ) means s{b) == s^{b) for some M.

There is one point where we need to use s^ where M is allowed to be a countable
direct sum of finite dimensional representations. This is to apply the Atiyah Completion
Theorem. In this case s^{r^) is only used when G acts freely on the base space W.
Then G vector bundles over W are equivalent to vector bundles over W/G and a G vector
bundle isomorphism b : s^{r^)-> s-^(^) means an isomorphism S]£.W)IG-^ ^W)IG
of UOQ vector bundles over W/G. Here Uoo is the infinite unitary group or infinite
orthogonal group depending on whether T] is a complex or real vector bundle.
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We associate certain G spaces to a representation RofG and a^-Sylow subgroup P
ofG:

U(R) — This is the space of n X n unitary matrices when R is a complex represen-
tation of dimension n. When R is a real n dimensional representation, this
is the group 0^.

M(R) — This is the maximal torus in U(R).
Ap(R) — This is the space of maps of G/P to M(R) which carry the identity coset

I e G/P to the identity matrix i eM(R). Denote by i eAp(R) the map
which carries G/P to i eM(R). We make Ap(R) a G space via

(gf)W=Ahg)Ag)~^
Here g e G, g is its coset in G/P, h e G/P and fe Ap(R). Note that P C G
acts trivially on Ap(R). It is a torus.

Ap(P) — This is the space of maps of G/P to U(R) which carry I to i eU(R), so
Ap(R) is a subspace of Ap(R).

If T) is a G vector bundle over W and b : T] -> R is a P vector bundle isomorphism,
define 6(6) : W -> Ap(R) by
(3.i4) ^==Q{b)(x){g)gb^g-1

for g e G, x e W. Here b^: ̂  -> £3; is the map on the fiber over x. The proof
of the next lemma is immediate from definitions. Compare [Bg, 11. i] in the case P = i.

Lemma 3.15. — If b : T] -^ R is a P vector bundle isomorphism and if

6(6) {x) e Ap(R) C Ap(R) for all x e W,

then 6(6) is a G map from W to Ap(R).

There is an obvious inclusion s : Ap(R) -> Ap(^R) and if b : T) -> R is a P vector
bundle isomorphism, sQ{b) == 6(j6).

By definition an R framing of T] is a stable G vector bundle isomorphism
b : s(-^) -> J(R) and b is called the R framing. We usually write b : T) -> R deleting s.
If b is only equivariant with respect to P C G, we say b is a res? R framing of •Y], For
such a resp R framing we define
(3.16) 6(6): W^Ap(^R)

using (3.14). Of course Q{b) maps W to i if b is an R framing.
The cone c(W) on W is a G space and the cone point XQ e c(W) is fixed by G.

The restriction of a map /: ̂ (W) ->W to WC c(W) is denoted by/o-

Definition 3.17. — An R-P framing b of T] is (i) a reSpR framing b such that
Q(A) : W -> Ap(A) together with (ii) a G map 6(6) : c(W) -> Ap(jR) such that
Q^b) == Q{b) and 6(6) {x^) == i. It is worth noting that Ap(R)° = Hom(G/P, M(R))
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is discrete; so if b is an R-P framing of 73, Y}^ is isomorphic to R as a representation of G
for all x e W°. This is the reason for excluding the G fixed points of W in Wp (3.8);
so R-P framings of f\ impose no condition on T]^ for x e W0.

w?
We observe that U(R) is a G space with

(3.18) gu ̂  R{g) uR{g)-1 for g eG and u e U(R).

Here R(^) is the matrix in U(R) given by the representation R. We abbreviate the
right side of this equality by gug~1. When R and P are fixed, we abbreviate Ap(R)
and U(R) by A and U. The next definition requires a G map 6 : W -> A.

Definition 3.19. — A G* map f: W ->V is a map which satisfies

(3.20) f{gx) = gf(x) g-^QW {g)-1 for x e W, g E G.

Here dot denotes multiplication in U. Sometimes to emphasize the role of 6 we say
that/is a G* map (wrt 6). Note that when 6 = i (the map which sends W to i e A),
/is a G map with respect to the G action on U defined in (3.18).

The notion of a G* map is utilized as follows: Let b be an R framing of T] and let b
be an R-P framing of T], Then for each A: e W, we have b^ = Q(b, b) {x) b^ for some
Q(b, b) {x) e U(A). This defines a map 6(^ b) : W -> U(^R) and

(3.21) y==6(M)^.

One easily verifies that 6(6, b) is a G* map {wrtQ{b)).

Definition 3.22. — An R framing b of T} compatible with the R-P framing b of T]
is (i) an R framing H together with (ii) a G* map {wrtQ{b)) Q(b, b) : <:(W) -^U(^R)
such that 6o(^ b) = Q{b, b) and 6(^ b) (^o) = i.

Recall that E = E(G). Let W be a G space and W = E X W. This is a
G space. If /: W -» W' is a G map, then /: W -> W is the map IE X/.

Given a (generalized) Smith decomposition W of W and a G vector bundle T]
over W, define

(3-23) ^-^ (rf- (3-9))-

Definition 3.24. — A Smith framing (B : 73 -^ R rel W is a collection {bp,b^\peA}==^
where by is an R-P framing of f\y and b^ is an R framing of 73 such that
b^y == ^ b^ : Tjp -> R is compatible with by.

Remarks. — An implicit part of the data of a Smith framing is the collection of
maps {9(ZL), 6(6 5 6 ) |^ eA} involved with the R-P framing by and the compatibility
of b and ? . Note that by === i^ X by is P equivariant! It is an R-P framing where
Q(by) is the composition <;(Wp) ->^(Wy) -^Ap(jR). The last map is Q{bp).
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Proofs of 3.12 ̂  3.13

Since the techniques of the proof of 3.13 are used in the proof of 3.12, we treat
3.13 first. In addition to the Atiyah Completion Theorem, it rests on these two
elementary lemmas.

Lemma 3.25. — If^isaG vector bundle over W, G/P acts freely on W/P, H^W, Z) = o
and b is a resp ̂ framing off\ such that Q{b) has values in Ap(jR), then b defines an R-P framing
°f 7]-

Lemma 3. a6. — Suppose W is a G space such that G acts freely on W and suppose
K^W/G) ==o. If b is an R-P framing ofr^ and T ) i s an ̂ framing of'T], then T ) i s compatible
with b.

What 3.25 asserts is the existence of Q{b) : c(W) -> Ap(^R) satisfying 3.17 and
3.26 asserts the existence of Q(b, b) : ̂ (W) ->U(^R) satisfying 3.22. We begin pre-
paration for 3.25 and 3.26.

The space of G* maps (3.19) from W to U = U(R) is denoted by (W, U)°*.
This space is closely related to the space (W, W X U)° of G maps from W to W x U
where W x U is made into a G space via

g{x, u) = (̂ , gug-1 Q{x) C?)-1), x e W, g E G.

Lemma 3.27. — There are maps

^: (W, U)^-> (W, W x U)0 and X : (W, W x V^ -> (W, U)0*

such that ^X is the identity.

Proof. — Define ^(/) {x) = {x,f{x)) and define X(A) = nh where n : W X U -> U
is projection.

There is a G* homotopy extension theorem which goes like this. Let W be a
G space, I the unit interval with trivial action, S ' = = W x I , S = A x I u W x o
where A is a closed G invariant subspace of W and 6 : S' -> A == Ap(R).

Lemma 3.28. — Given any G* map f: S -> U, there is a G* extension F : S' -> U.

Proof. — Let H : S' -> S' X U be a G map which extends ^(/). This exists
by the G homotopy extension theorem. Define F == X(H). Then F is a G* map by
Lemma 3.27 which extends f because X^ = i.

Decompose the cone cW as W' u W" where W' = {{x, t) \ x e W, o < t < 1/2}
and W' n W" = W X 1/2. Gall a G map 6 : c\N -> A special if 6 maps W" to i.
Given any G map 9 of<:(W) to A, such that 6(^0) == i, there is a special map 6' such
that 6' = 6 on W = W X o. Just take any G map T : cW -> cW such that T is

w
the identity and TW" = XQ. Then 6 o T = 6' is special. Let [W, W']0 denote the
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set of G homotopy classes of maps from W to W. Let U == U(R) be the G space
with action defined by (3.18). Write [W, U]0 == o if this set contains only the map
of W to i e U.

Theorem 3.29. — If [W, U]° = o and 6 : c(W) -> A is special, then any G* map
{wrt 6 ) /: W ->• U extends to a G* map F : cW -> U such that F(^) == i e U.

w

Proof. — By the G* homotopy extension lemma 3.28 with A = 0, there
is a G* extension F' of / to W. Since 6 is special, 6(W X 1/2) = i; so
f •==. F e [W, U]°. (See 3.19.) Since this set is zero by hypotheses, /' extends

Wxl/2
to a G map F" : W" -> U such that F"(A:o) == i. Then F' u F" = F is the desired
G* extension of f.

Let C°° denote the countable direct sum of copies of C with trivial action of G.
Then the inclusion of U(C°°) into U(C°°®R) which sends u to i^@u is a G map
which is a homotopy equivalence for any complex representation R of G; so
[W, l^C00)]0 -> [W, U(C°° + R)]° is bijective if G acts freely on W.

Corollary 3.30.—If G acts freely on W, K^W/G) == [W, U^R)? for any R.

Proof. — The left side is [W/G, U(C°°)] = [W, l^C00):^ by definition. The
right side is [W, U(C°° + R)]° for sR == C°° + R.

Theorem 3.31 [AJ. — If^' is a contractible space with free G action^ K^E'/G) = o.

Lemma 3.32. — IfWisaG space such that H^W, Z) = o and G/P acts freely on W/P,
then any G map 6 : W -> A extends to a (special) G map Q: c(W) -> A with Q(xo) == i.

Proof. — As P acts trivially on A, 6 factors through W/P. Now, G/P acts freely
on W/P and A is a torus; so TT,(A) = o for i > i, and G/P homotopy classes of maps
of W/P are in i — i correspondence with I-P(W/G, ^(A)) == o. To see this, note
that G maps of W to A are in i — i correspondence with sections of the fibration
A -» W XQ A -> W/G [BJ., Since the fiber A is a torus, the statement follows. Thus 6
is G homotopic to the map which takes W to i. A homotopy between them produces 6.
By the discussion preceeding 3.31, we may suppose that 6 is special.

Proof of 3.25. — Lemma 3.32 provides an extension 6 : c(W) ->-A of Q(b). Set
Q(b) == Q. Then b and 6(6) define an R-P framing of T].

Proof of 3.26. — We have [W, U(jR)]° == K^W/G) = o (3.30). Apply 3.29
to 6 = Q{b) : c(W) -^ Ap(jR) and /= Q(b, b) : W -> U(^-R). This produces an exten-
sion 6(6,6) : ̂ (W) -> U(jR) such that 6(6, 6) (^o) = i; so b is compatible with b.
(To use 3.29 we have implicitly assumed 6(6) to be special. As noted, this does not
restrict generality.)
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The next lemma needs the notion of a map f: W -> W between generalized
Smith decompositions of W and W. By definition this means

{={f,J^\peA}

where fy: Wp -> W; and /„ : W -> W are G maps such that /„ ip == i^ for j& e A.
Lemma 3.33 shows that XQ (3.10) is universal in the sense that any generalized Smith
decomposition maps to it.

Lemma 3.33. — IfW is any G space and W is a generalized Smith decomposition o/W,
then there is a map f: W -^Xo.

Proof. — Let f^ : W -> XQ be the unique map. Since G/P acts freely on W /P,
there is a G/P map fp : Wp/P -> x^ which classifies this free action. Let fy be the
composition of this with projection of Wp on Wp/P. Then f = {fp,f^ \p eA}.

Let R and R' be two complex representations of G of the same dimension. Since
G is abelian, we may suppose the matrices R{g) and R'(^) for g e G representing G
via R and R' are diagonal. This means R(^) and R'(^) lie in M(R) = M(R'). The
normalizer ofM(R) in U(R) is the group of matrices permuting the complex coordinates
of R. This means that if R and R' are isomorphic as representations of P, there is a
P isomorphism £p : R' -> R such that e? normalizes M(R). Then for all g e G

W {g) - ̂  R'te) ep-1 RQ?)-1 e M(R)

by 3.14; so

6(e,)eAp(R).

If R' — R eI(G), then the P isomorphisms £p are defined for all p eA.

Proof of 3. i3. — First we treat the case in which W = XQ is a point and W is
Xp (3.10) and produce a Smith framing p^: S/ ->Rrelxo. Of course in this case
R' and R are just R' and R viewed as G vector bundles over Xy. To fit previous
notation, set T] = R'. Let by == i; s? : ̂  -> £. Here ^ = i; 73. This is a G vector
bundle over E(G/P) which is contractible. In addition Q{bp) {x) = 6(ep) e Ap(^R)
for all A:eE(G/P); so 3.25 implies that by defines an R-P framing of T]?. Since
R' -- R eI(G), the Atiyah Completion Theorem implies that there is an R framing
^ : 7 j = E x R ' - > E x R = = R . Note that 7]p is a G vector bundle over E x E(G/P)
on which G acts freely and K^E X E(G/P)/G) == o by 3.31. Then 3.26 implies
that b^=i*pb^ is compatible with by. Taken together these facts imply that
PUR'? R) = = { ^ 5 ^oo \P eA} is a Smith framing. This completes the case when
W = XQ. Now let W be a G space and W a generalized Smith decomposition. Then
there is a map f : W - ^ X o (3.33). Set (Bw(R', R) = f* (BJR', R).
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Now we begin the treatment of 3.12. Let W be a G space and T) be a stable
G vector bundle over W. This means

(3-34) For each x eW and each irreducible representation % of G^ either
the multiplicity m^{^) of ^ in the Gj^ representation ^ is o or
dim 7)^ <^ d^m^{^). Here d^ is i, 2 or 4 (5.5) depending on ^.
See [PR,~Gh. 3, § 9] or ^3, 3.6].

As before H C P. We shall use one of the framings
(3.35) (i) b is an R-P framing of T] or

(ii) b is an R framing of T],

and an element a e ̂ (W") with k < dim R11 to define an H vector bundle isomorphism

(3.36) -̂ •̂r(A) : co ), <o = D x R == R

and the G vector bundle F = F(7], a, i) over 0

(3.37) r=7]U^indg(o, /=ind^'(&)

extending T], As before z : S -> W11 represents a and S' = i'S. We also view i as a
map of S to W with image S' as follows: Let z e F be any point. Then S' is identified
with - ? x S ' C E x W = = W and i is the composition S -> S' C W. Then TJ

and in either case in 3.35 we have that i*[b\ ) : i* s{^ ) ->• z*jR == ^(co ).
|s' s' s

The definition of/"(6) depends on the choice of b in 3.35 which in turn depends
on whether H falls in Case I (| H | == p^ m > o) or Case II (H = i). The convention
is to take 3.35 (i) in Case I or 3.35 (ii) in Case II. In either case define

(3.38) \-i •f{b)==^b : ^co t J7)

This is a stable H vector bundle isomorphism. Since Y] is stable and k < dim R11 and
W satisfies 3.11 (ii), there is an H vector bundle isomorphism

(3.39) r{b) : <o •^

such that s £ ' ( b ) =={{b) up to regular H homotopy. See [PR, Ch. 3, § 9] or [?3, 3.8].
By definition two H vector bundle isomorphisms are regularly H homotopic if there

is a homotopy of H vector bundle isomorphisms connecting them.

Lemma 3.40. — Case I: Any R-Pframing ofr\ extends to an R-P framing b'ofY. Case H:
Any R framing of TJ extends to a R framing V of Y.

Proof. — Since s t ' ( b } ==t{b) up to regular H homotopy, F' == JY] u^ induce,
{f== ind^/'(&)), is G isomorphic to jF; so we must produce a P vector bundle iso-
morphism b ' : r" -> sSL together with 6(&') : c{0) -> Ap(jR) in Case I and in Case II
a G vector bundle isomorphism b ' : f" -> sR.
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First case. — By the G homotopy extension theorem, there is a G map
6':c(0) -»Ap(^R) which extends 6(&). Define V on ^ to be b. On (indgjco)^
define b^ == %(x) {g) for x e D and g e G. If y e (<o )^ observe that ̂  in indg ̂

s
is identified with gb-^v) by definition of f{b), md^(b) and F'. Then

b(gb-\v)) = Q{b) {x){g)gv

by definition of Q(b). Since this is b\gv), b' is well-defined. It is a P vector bundle
isomorphism. Define 6(^) to be 6'. Then 6', 6(A') defines an R-P framing V of F
extending b.

Second case. — Note that {{b) = ?(6[ )-1 = i up to regular H homotopy. This

follows from the fact that E is contractible and {b \ ) = {b ) . This means that
-, ^ . ^ Is' s' s'
F =JTJ U^md^jco, (/==ind^), up to G vector bundle isomorphism; so we need
an extensum b ' : f -> j£ of b. Set 6' = 6 on s^. Let &' be the identity on
md§ ^co = jR. This is a well-defined G vector bundle isomorphism which extends b.

Lemma 3.41. — Let Y] be a stable G vector bundle over W. Suppose b is an R-P framing
ofr^andb is an R framing of^ compatible with b. Let a e 7^(W11) where | H | == ̂ m, w > o.
^^<? W r̂î  3 . 1 1 (ii) W ^<dimR11. Then there is an R-P framing b' of
r = r(^ a, A) extending b and an R framing of f extending H1 which is compatible with b'.

Proof. — The first statement is Case I of 3.40; so we treat the second claim. Use the
G" homotopy extension lemma (3.28) to produce a G* map (wrtQ(b')) 6': c(0) -> U(jR)
which extends 9(^ b). Define^' to be ^b' on F. Then T ) ' is an R framing which
extends "b, is compatible with V and Q(b\ b ' ) == 6'.

Proof of Theorem 3 .12 . — Case I (|H| =^m m> o). Let t : S — Wp11 be a
map which represents a, and set S' = ?S. Note that T] = (T]J by definition

s' s'
of7)p as ?; 73. Let p == {^, 6^ | y e A} be the given Smith framing of T]. Define /"((B) by

^'(P)-^)^ ^^] ) (cf. 3.39).
s s'

This is the H vector bundle isomorphism which defines r(7], a, (3) == F as a G vector
bundle over 0 extending T]. By definition Fp = F . This is F(7] , a, b ) by ins-

°^
pection; moreover, Fy == ̂  for y + ^ . By Lemma 3.41 there is an R-P framing
bp : Ty -^ R extending ^ ^and a G framing b^ : fp -> £ extending ^ = y"; ̂
which is compatible with by. Since ^ == 7] n ̂  and F = T] u Fy, we can define
b^ : f -> R by ^ -= ̂  on ^ and ^^ == b^ on Fp. Finally set by == b^ for q ^ p.
Then j3' == [b^ b'^ \ q e A} is a Smith framing of F which extends p.

^7
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Case II (H == i). — Define
/'(P)=/'(^):(. -̂ *(.)| ) (cf. 3.39).

s |s'

This is an H == i vector bundle isomorphism. Again r(7), a, (B) is a G vector bundle
over 0. The Smith decomposition 0 =={0p\p eA} has Op = Wy for all j& eA$
so •y]p == Fp for all p e A; hence to define (B' we need only define b^ : P -> R exten-
ding b^. This is provided by 3.40.

4. An Induction Theorem

In this section we prove the Induction Theorem 4.19. It is analogous in statement
to the Induction Theorem 2.6 of [DPJ. There is an essential geometric difference
which appears in the definition of a normal map. See 4.9 and [DPi, 2.4]. The
proof of the Induction Theorem [DP^, 2.6] is algebraic but appeals to two geometric
results about normal maps pDP^, 3.12 and 3.13] which give condition for doing surgery
to kill a homotopy class. Their analogs here 4.11 and 4.12 are much deeper with
the definition 4.9. Once they are established, the proofs of the two induction theorems
are identical. The main bulk of this section is devoted to treating 4.11 and 4.12.
These are the main geometric steps in any equivariant surgery procedure. See e.g.
[W], [DP^L [PR].

A manifold triad (W; Wo, Wi) is a triple of manifolds such that BW == Wo u W^
and Wo 0 Wi == 8Wo == ^W^. A G manifold triad is a manifold triad such that G acts
on W and respects the triad structure. A G map of triads is a G map which respects
the triad structure. Let W be a G manifold triad. Set X = Wo and assume the
following gap hypotheses:
(4.1) For each subgroup K of G in 8ft and each subgroup L > K, every

component of W1' has dimension less than one half the dimension of
the corresponding component of W1^.

If X is not empty, then 4. i holds for X in place of W and this implies each component
of X1^ has a point whose isotropy group is K provided XK 4= 0 and K e 8ft.

In the preceding section we treated Smith framings rel W where W was a quite
general Smith decomposition. We shall need more structure for its role in the process
of equivariant surgery on a G manifold W. In this case W = W^) is defined in
terms of a set y {Smith set) of submanifolds of W which are untouched in the surgery process.

Let W be a G manifold with boundary X and y == «9^(W) be a set of invariant
submanifolds, called a Smith set for W, with these properties:
(4.2) (i) If Mey and BM + 0 then 8M = M n X and if M C W"

where H is a non trivial p group for some prime j&, then
jr- iArH _ — - i -r— ~\ r ^ 'v ^dim M < - dim W11 and dim M n X < - dim X11.

2 2
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(ii) If L^, W^^.
(iii) W has an equivariant G1 triangulation ([IJ) such that each

M e y is a subcomplex.

The Smith set <^(W) for W, determines the Smith sets

^(W)[ ={MnX|Me<^(W)}

and resH ^(W) == {resn M | M e <^(W)}

for X = aW and resn W.
Let N(^) be an open G regular neighborhood [St] with respect to the C1 trian-

gulation in (iii) of the union Wy of the A's in e$^(W). For example take interior of
the second derived neighborhood ofWy in W [St, p. 44]. Then N(^) n X == N(<$^[ )

|x
is an open regular neighborhood in X of X^ where X^ is the union of the manifolds
in y . With respect to this data define the Smith decomposition of W:

x
W(^)={W^||G|}

where Wp == {x e W - N(^) | | GJ == p^ and n{x) > o}.

The Smith decomposition W(^) is determined by y alone by the uniqueness of G
regular neighborhoods [R], Since we shall work with a fixed G regular neighbor-
hood N(<9") of W^, the full strength of this is not needed.

Whenever a Smith set V === c^(W) is given explicitly for W, we shall use the
Smith decomposition W(<^) ofW implicitly and abbreviate the phrase Smith framing rel W(<^7)
by Smith framing. This abbreviation works smoothly with respect to resg and restriction
to boundary because of these two identities:

resH W(^) = W(resn ^) and W(^) == 8W(^ ).
8W 9W

Let S stand for either W or X from above and let H be a subgroup of G. Set
S^^eS-N^ ) |G,=H}.

s

Lemma 4.3. — If H e^, W satisfies 4. i and k < - dim S11, ^% ^yy/ map of Sfc

ZTZ^O S11 is homotopic to one into S^.

Proof. — Let Q^be the union of the M in y . By 4.2 (i) and general position,
s

any map of S^ into S11 can be assumed to miss Q11. Since there exist G regular neigh-
borhoods of Q in S in any open neighborhood of Q^ and since G regular neighborhoods
are G isotopy invariant, we may suppose ^ misses N(<97 )11. Similarly using 4.1

s
we may suppose S^ misses S1' whenever L > H. Then S^ lies in S^.
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Now let Z be a G manifold triad, F : W -> Z be a G map of triads and let
X = Wo, Y == ZQ and /==F :X->Y. In what follows we suppose that

y == <^(W) is a Smith set (4.2) for W, W == W(^) and X = W .
x

Let H be a subgroup of G. If Cyn is the mapping cylinder of/11, then by defi-
nition ^k+^f^) == Trfe+i^/H, X11). An element ^e^^/11) ls represented by a
homotopy class of diagrams

Sk X11

(4.4) ^ : u /H

jy+i K > ^ Y11

Set a = B(JI e 7^(X11). Let TZ = dim X" and let
i X11

^

yH

D ^D^1 xD"-^
S == S^ x D"-^(4.5) (X :

^ == ^pt' represents a in the sense of 3.6
D

be a diagram which gives (JL by restriction to (D^"^1, S^) C (D, S). We remark that
by property 4.2, we may suppose iS C X" C X^; so in particular pi is actually repre-
sented by a class in ^+i{f^)9 Set D' == ind^D where H acts trivially on D. As
in 3.7 define
(4.6) 0 == W u^, D' where ind == indg

and extend F to F" : 0 -> Z by setting F" = indg h.
D'

Fix this notation:

(4.7) P : TW -> R is a Smith framing rel W; H e^; n = dim R11 == dim W11;
Q is the H representation R/R11; A < dim R11, (JL e Tr^^/11);
D = D^ X D^ and S = S^ X D^^ viewed as H manifolds with
trivial H action; D = ind^ D(R) and Do = indj S X D(t2) C D.

Definition 4.8. — An extension ^ of (A e^+i(/11) is a commutative diagram
of G maps

XDO

+
D

^:

Y
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such that the restriction to (D^ +1, S^) C (D, Do) is pi. If i in 4.8 is an embedding, then

W = W u,D

is a smooth G manifold. There is a G map F': W -> Z extending F with
F' == K. Let y == ^(W) = <^(W). Then y satisfies 4.2 for W and we take

D
N(^(W')) =N(^(W)). Then W'(^) = = { W ; | ^ e A } is defined. Observe that 0
is a G deformation retract ofW. In fact there is a G retraction r which carries each Wp
to Op (defined in § 3) for each p e A.

The aim is to give conditions for which there is an extension % with & an embedding.
This requires some added structure which we now discuss. A normal map
ifr = (W, F, p) consists of

(4.9) (i) A G map F: (W, BW) -> (Z, 8Z) of degree i between smooth
G manifolds of the same dimension. It is required that W satisfies
the gap hypotheses 4.1, Iso(A) contains ̂  for A == Z, W, and
Iso(BA) contains ^ if BA 4= 0. In addition TW must be a stable
G vector bundle.

(ii) A Smith framing p : TW -> R rel W (3.24) for some represen-
tation R of G. (Here R == W X R and W = W(^) for a
given Smith set y for W (4.2).)

Remarks 4.9'. — When we need to keep track of the group acting, we call this
a G normal map. This definition of a normal map is a variation of those in [W], [DPJ
[DPJ and [Pa]. For theorems 4.11 and 4.12 the degree i assumption is irrelevant
(it is needed in 4.21). The Smith set ^(W) for W and the G regular neighborhood N(<$^)
of Wy are an implicit part of the structure of the normal map ̂ . These are used in
defining W(^) and the Smith framing p.

A normal map of triads is a normal map which is also a map of G manifold triads.
Observe that if R is a representation of G, W is a smooth G manifold with boundary X
and (B : TW -> R © R is a Smith framing, then (B : TX ©ft^S.©& is a Smith

x
framing. Because of the definition of Smith framing, we may express this as
P : TX -> R. This means that a normal map of triads H^ == (W, F, p) defines two

x
additional normal maps ^ = (W^, F^, (y for i == o, i as follows:

^(W,) = <^(W) == {M n WJ M e e$^(W)},
w,

(3 ,==P and F, = F :W,^Z,.
w, w,

Suppose i^ == (W, F, (B) and ^/ == (W, F', p') are normal maps of triads
with F : W -> Z and F' : W' -> Z. We say that IT9 extends IT if W C W, F'
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extends F and |B': TW -> R extends (3 : TW -> R. Denote ^o = (^ ̂  Po)
by (X,y, (3o) and let H be a j& subgroup of G for some p e A.

Definition 4.10. — We say that ̂ ' arises from H^ by surgery on (x e^ +i(/11) if
'^/ extends ̂  and there is an extension ^ of (JL (4.5) such that i is an embedding,
W == W u, D and F' === K. (In particular (B' : TW -» K is a Smith framing rel W.
Here R == W x R.) D

If there exists an H ^ ' which arises from i^ surgery on (JL, we say that surgery on \L
is possible.

The input for 4.11 and 4.12 consists of a normal map H^ == (W, F, p) as above
with i^Q == (X,/, (Bo) and (A e Tr^^/11). Choose any map i: S == S^ X D"-^ -^ X11

representing 9[L (3.6 and 4.4). Then^ and p define a stable vector bundle isomorphism
/'(B^rTS-^TX" (4.14).

Two equivariant bundle isomorphisms are called (stably) regularly homotopic if
there is an equivariant homotopy of (stable) bundle isomorphisms connecting them.
See [PR, pp. 92-93] for elaboration if needed.

We state 4.11 now and prove it later. Compare [DPi, 3.12] and [PR, 10.2,
p. 141].

Theorem 4 .11 . — Suppose IT is a normal map of triads with 9iF =^ u^ and
^ == (X,/, po). Let H be a subgroup ofG ofp power order, p e A, pi e T^.^/11), k < w/2,
n == dim X11^ 5. Then surgery on (A is possible if there is an embedding i' : S -> X11

representing S[L such that ind§ i' (i' = i == ^pi) is an embedding and the differential di'
s*

{defined below) is stably regularly homotopic to /"(B)11.

Corollary 4. i2. — Surgery on [L e n^ + i(y11) is possible if k< - n and n = dim X11 >: 5.

Proof. — This is an immediate consequence of 4.11 and 4.16 below. Take
i' == L in 4. i6.

s
Let S and X be two manifolds of the same dimension and let t : S -> X be an

immersion. Its differential d^: TS -> TX induces an isomorphism between TS and
i* TX also denoted by

A : TS -> i* TX

and also called the differential of t. Suppose S' and X' are two manifolds of the same
dimension having S resp. X as submanifolds. Suppose L : (S^ S) —> (X', X) is an
immersion of pairs. The composition

v(S, S') — TS' -̂ > TX' -> v(X, X')
s x
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induces an isomorphism

^(Os: v(S,S')^i v(X,X')
s*

called the normal differential of i at S.
Here is a mild generalization of a lemma ofHirsch [H] which produces embeddings

(immersions) from vector bundle isomorphisms. It is proved in [DPJ, [Pg], [PR,
10.4, p. 142].

Lemma 4.13. — Suppose G acts freely on the smooth manifold X of dimension ^^5.
Let S == S^ X D""^ k<_nf2 and let i: S -> X be a map. Any stable vector bundle
isomorphism I : TS -> i* TX determines a G immersion of ind^ S in X, G homotopic to ind^ 1,
whose differential is stably regularly G homotopic to ind^ I. If k < ^/2 ^ immersion may
be taken to be an embedding.

Theorem 4.11 is the smooth analog of 3.12 and is partially reduced to that
theorem. This we now explain. Let IT == (W, F, (3) be a normal map with Smith
framing (3 : TW -> K rel W. The H vector bundle <o over D defined in 3.11 (i) is TD

by inspection (see 4.7). Equally clear are the equalities (i) TD| ==TD(J ®R

and (ii) TW =TX
^ I M '"

) R. Here R denotes the space of real numbers and

S' == iS has trivial action. Then the H vector bundle isomorphism

r((B): co i*TW

in 3.12 becomes an isomorphism

r((3) : TD| ^t*TW

Let ^ be an H vector bundle over an H space S. We suppose E; is given an
H invariant inner product on fibers. Define an H vector bundle ^g over S11 via

s"
=^ H <^^g, i.e. $H is the orthogonal complement of ^H in ^ . If b : S -> ̂

is an H vector bundle isomorphism, then Schur's Lemma implies b =.b^@b^
s°

where b^:^-^^ and ^^H-^SH- Apply this to TD| , TW and A = = r ( ( B )

noting (i) and (ii) and S11 == S. This gives H vector bundle isomorphisms:

(4.14) /'(P)11: TS®R -^(TX11®]^)
s'

r((B)H: v(S,Do)^^•*v(XHX)
s'

because (TD(J )11 == TS and (TD(J )n == v(S, Do).
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Lemma 4.15. — Let % be an extension of [L with i an embedding. If

rf(i )Cin: TSCR-^TX^R {i = i )
s s

zj regularly homotopic to ^((B)11 W I/ n(t)g =r((B)H, then F = F(TW, a, (3) == TW
(Jyi?r̂  0 is defined by ^—the restriction of % to (D, S). See 4.5-4.7.)

Proof. — Both TW and r are obtained from TW by gluing on ind^(TD| ).

The gluing isomorphism in the first case is ind^(fl?(i) © i^) and in the second it is
s

ind^'(p). Since rf(i) © IR = d{\. )@ I R ® ^ ( O S ^^'(P) u? to regular H homotopy,
s s

these G vector bundles are isomorphic.

Lemma 4. i6. — Let i^ === (W, F, (3) be a normal map of triads^ H a p-sub group of G
and y-^'^k+i{f11) with k <^ w/2, ^^5 (^ + i = dim W11) be given. Then there is
an extension W of(A such that i is an immersion {embedding tfind^ L' (i' == i ) is an embedding^

^
in particular if k < yz/2). The differential of L is stably regularly homotopic to ^'((B)11 and

s
the normal differential n(i)g of i: (S, Do) -> (X11, X) is f^)^

Proof. — Let ^ be the diagram 4.5 which gives (JL by restriction to (D^S S^.
We may suppose that iS C X? = {^ e X^ | G^ == H} by 4. i and 4.3. Since G/H
acts freely on X", Lemma 4.13 applied to i and the group G/H gives a G immersion
of ind^E S into X;" whose differential is stably regularly G homotopic to ^'((B)11. Note

that ind^8 is the same as ind^ S as a G manifold. (If k < - dim X11, the immersion

may be taken to be a G embedding. Note 4.9 (i).) Thus we may suppose that ind§ i
is an immersion. The G Tubular Neighborhood Theorem [BJ provides a G immersion i
of Do == ind^ S X D(t2) into X extending ind^ i such that the normal differential %(t)g
of i : (Do, S) -^ (X, X11) is/"((B)H. Since (D, Do) retracts equivariantly into ind^(D, S),
there is an extension of h: D -> Y to K : D -> Y giving the diagram % as in 4.8.

Proof of 4.11. — The existence of the extension ^ of ^ is a consequence of the
preceding lemma. The embedding i given there satisfies the hypothesis of 4.15$ so

By 3.12 there is a Smith framing (3" : rF(TW, (A, (B) == TW' -> R. Let r : W -> 0

be a G retraction, i.e. r == {r^,r^\p e A} and r^ and /p are G retractions for p eA.
Since Smith framings are functorial with respect to such maps, there is a Smith framing
r^ P" *̂o> r -> R. Since ^ is a deformation retraction, TW' == r^(TW ) = r^ F.

o
This identification gives the required Smith framing p': TW' -> R. Moreover,
F = F" ̂  : W' -> Z extends F (see 4.6) and -5T' = (W, F', p') is the effect of surgery
on (A.
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A normal cobordism between two normal maps ̂  = (W^, F^, (3,), i = o, i, with
^ : W, -^ Y consists of a normal map of triads IT == (W, F, j3), F : W -> Z with
these properties: Z is the triad (Y x I, Y x o, Y x i) with I == [o, i]; ^ ==^\
There is a G embedding j : (No X I, No X o, No X i) -> (W, Wo, W^) whose image
is (N, No, N1) where N == N(^), N, == N(^), ^ = ^(W) and e^ = ^(W,).
Finally require y == {j\A x I) | A e <$^} and note that the condition ^ =^ then
implies that <9^ and <$^ are canonically isomorphic because <9^ = <97 emphasize
that surgeries of the kind in 4.11 produce normal cobordisms. w.

Remark 4.17. — If ^i = (W,, F^, (3J, z == o, i, are G normally cobordant and
G ^^, then W^ and WJ8 are canonically isomorphic; so we write W^ = W^. In
addition T^Wo==T^Wi as representations of G for xeW^=W^. For if
IT == (W, F, (B) is a normal cobordism between ̂  and '5T1 then V^ ^ Vf^ X I for
any K ^ ̂ , in particular for K = G. For by 4.2 (ii) W1^ € ^(W) and Wo1^ e ^(Wo);
so W^ =J(Woc X I) where j is the G embedding given in the definition of normal
cobordism above.

Let W be a G manifold with boundary X, R a representation of G and
(3 : TW -> £ C R be a Smith framing rel W. If IT == (W, F, (3) is a normal map
with F : W — Z, then 8iT == (X, F , (3 ) is a new normal map with Smith

x x
set <$^(X) == ^(W) , F : X -> Y = BZ and Smith framing (B : TX ® R -. K. © R.

X X X

I f^ i saG normal map and H is a subgroup of G, then resg^ is the H normal map
(reSnW, resn F, res^).

Before treating the Induction Theorem we need to discuss some related points
from [DPJ. There we used a variant of the notion of a normal map called a prenormal
map. This is a triple H^ = (W, F, (B) like the normal map in 4.9. The essential
difference appears in the vector bundle isomorphisms occurring in these definitions.
This is 4.9 (ii) here and 2.4 (iv) there (where ^ == R for some representation R of G).
Briefly 2.4 (iv) requires a stable G vector bundle isomorphism b : sTW -> jR together
with a collection c == {c(H.) : TWg -> Rjj | H C G} of G vector bundle isomorphisms.
Let us denote (&, c) by (3, write (B : TW -> R and call this a bundle isomorphism. This
is stronger than a Smith framing ofTW; so the condition that TW be a stable G vector
bundle (3.34) is not required for a prenormal map.

Let H^ = (W, F, (3), F : W -^ Z be a normal map (3.9) which satisfies these
conditions:

(4.18) (i) [Z] - [W] e A(G) + 2Q(G, ̂ ),
(ii) 3 Z = a W = 0 ,

(iii) dim Z is even, Z11 is simply connected, dim Z11 == dim W11 and
exceeds 5 for H effl.
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Induction Theorem 4.i9« — Let IT be a normal map which satisfies 4.18. If for each
H e^ there is an H normal map 1T(H) such that 8iT(H) = resn^, ̂  ̂  is normally
cobordant to ̂  == (W, F', p') wA^ F': W -^ Z ij a homotopy equivalence.

Proof. — Since Z11 is connected for H e ̂  and since each component of W11

contains a point whose isotropy group is H (4. i), we may alter IT by a normal cobordism
without destroying 4.18 and achieve also that W11 is connected. This is a simple standard
construction. See e.g. [DPg, 9.1]. We therefore add to the hypothesis 4.18 (iii)
the condition that W11 is connected for all H e 8P. With this change the conditions
of this theorem imply those of [DP^, 2.6] with K there taken to be { K C G J K ^ ^ } .
There is one essential difference namely the induction theorem there involved a pre-
normal map and here deals with a normal map. (In the presence of the assumptions 4.18,
the only difference is 4.9 (ii) vs. [DP^, 2.4 (iv)].) The proof of the Induction
Theorem 2.6 of [DPJ is entirely algebraic but appeals to two geometric results [DP^,
3.12 and 3.13] about surgery on a prenormal map. We have established their analogs
here (4.11 and 4.12) for surgery on a normal map. There is one minor difference
between [DPi, 3.12 and 3.13] and 4.11 and 4.12. The former deals with arbitrary
subgroups H while the latter with subgroups H e^. The only use of [DP^, 3.12
and 3.13] for H^ occurs in [DP^ 3.15] to achieve [Z] — [W] eA(G). The
assumption that [Z] — [W] e A(G) + 20(G, ̂ ) (4.18 (i)) means this can be achieved
via [DP^ 3.15] using 4.11 and 4.12. This means the proof of the Induction Theorem
of [DPJ for prenormal maps applies to prove the Induction Theorem here for normal
maps.

Remark 4.20« — We should emphasize one aspect of the equality <W(H) = res^^
in 4.19 which might otherwise go unnoticed. Let iT(H) = (U, Fy, (3(U)) be an
H normal map and let IT = (W, F^, (B(W)) be a G normal map. Then from the
definitions involved, resg^ == c^(H) means in particular that resji ^(W) ==- <^(U) .

w
For later application we give examples of Smith sets <$^(W) = ^(W, G) and
^(U) = ^(U, H, G) defined when reSnW = 8V for which resn <^(W) == ^(U)'
By definition

<^(W, G) = {W1 -1 L C G, L ̂ }
and (̂U, H, G) = ̂ (W, G) u { U1-1 L C H, L ̂  ̂ }.

To verify 4.2 (i)-(iii), note that 4.1 implies 4.2 (i) and 4.2 (ii) is clear. Here are
some remarks about 4.2 (iii). The G equivariant triangulation theorem of Illman [IJ
gives a triangulation ofW for which 4.2 (iii) is satisfied for <$^(W, G). Take an Illman
H triangulation of the closure U' of the complement of an H collar neighborhood C
ofWin U. Take an Illman H triangulation ofG which agrees on C n W and C n U'
with the given triangulations there. One uses [1 ,̂ Theorem 4.3] for the last triangu-
lation. Together, these triangulate U and (iii) is satisfied for ^(U, H, G).
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5. Proof of theorems A, B and B'

The proof of Theorem A combines 3.13, the Induction Theorem 4.19 and the
one fixed point manifolds constructed in [P^].

Suppose 7) is a G vector bundle over W and R and R' are complex representations
of G whose difference lies in I(G). Then by 3.13 there is a Smith framing

(5.1) Pw(R ' ,R)^ R ' -^RrelW

for any Smith decomposition W of W. If b: .?(•/]) ->• s^) is any stable G
vector bundle isomorphism (R' framing) then there is an obvious Smith framing
(3 = Pw(^'? R) o ^ : T] ̂  5. obtained by composing b and the Smith framing Pw(^'? R)«
This is used in the proof of Theorem A.

We begin with preparation for the proof of Theorem A by recalling material
from [P4], Remember R is the one dimensional trivial real representation of G.
Henceforth G is as in Theorem A' (section i).

Results from [P^]: For each representation R e SS, there is a G manifold X == X(R)
with these properties:

(5.2) (i) X° is one point u.
(ii) There is a stable G vector bundle isomorphism

b(X) : ^(TXCR) ->J(RCR).

(iii) 2 — [X] lies in the subgroup F == A(G) + 20(G, ̂ ) of Q(G).
(iv) For each H e ̂ , there is an H manifold U(H, R) whose boundary

is reSiiX(R) and there is a stable H vector bundle isomorphism
&(U(H, R)) : J(TU(H, R)) -> resH s(fi C R) such that

resH^(X(R))=&(U(H,R)) .
X(R)

(v) dim X is even; dim X11 == R11 and exceeds 5 (resp. 3) for H e^
(resp. HeJ^)$ X satisfies 4.1 and HeIso(X).

(vi) TX is a stable G vector bundle and TU(H, R) is a stable H vector
bundle for H e^.

Remarks. — Condition (vi) is not explicit in [PJ, but is verified at the end of the
section. Actually the main result of [PJ is that X = X(R) may be taken to be a
homotopy sphere with the properties in 5.2. We do not require the additional depth
of that condition but note that it implies 5.2 (iii) because then 2 — [X] GA(G). To
see this, note from section 2 that that condition is equivalent to the condition that the
Euler characteristic ^c(X11) is 2 whenever H e 8ft. To verify this use the fact that H,
being in ^, has a subgroup P of prime power order for some prime p such that H/P
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is cyclic. Note that X1' is an even dimensional mod? homology sphere because |P|
is odd and dim S is even. The odd order cyclic group H/P acts on X1' with X11 as
fixed set. Apply the Lefschetz Fixed Point Theorem to this situation to see that /(X11)
is 2. Finally we remark that the existence of b(X) in 5.2 (ii) implies T^X(R) is iso-
morphic to R.

We emphasize that the main conceptual conditions involved in the proof of
Theorem A below are 5.2 (i)-(iv). The others in 5.2 are necessary but technical.

The next lemma and its corollary are needed to construct a G manifold W which
among other properties satisfies the condition that 2 — [W] eA(G). See section 2
for definition of A(G).

Lemma 5.3. — For e == o, i, any R e S9 and any H e Jf, there is an R © R framed
G manifoldV^ whose boundary Z^ has no fixed points and [Zy = (2 — 6e) [G/H] in t2(G, JT).

Proof. — For each subgroup H in Jf, we construct H manifolds Z^H) and V^H),
s = o, i, with these properties: (i) V^H) has a res^ROR) framing; (ii) Z^H) is
the boundary of V^H); (iii) the class [Z^H)] in Q(H) is 2 (resp. -4) for s == o
(resp. i). We shall then define V^GXnV^H), Z^ == G X n Z^H). Begin
with an oriented surface S with trivial H action and ^(S) == — 2. Since dim R11 :̂ 2
by (2.5 (i)), resH R == A © R2 for some representation A of H. Set Z°(H) == S(R © R),
Z^H) == S x S(A © R), V°(H) == D(R © R) and V^H) == S x D(A © R), where
D(- ) denotes unit disk. Condition (iii) is a consequence of the fact that
^(Z^H)1^) == 2 (resp. — 4) for all K. C H for e == o (resp. i). Conditions (i) and (ii)
are nearly obvious. Their verification is left to the reader. From properties (i)-(iii),
one may verify: (i') VH = G XH V^H) has an R © R framing; (ii') Z^ == G XH Z^H)
is the G boundary ofV^; (iii') the class [Z^] in i2(G, Jf) is (2 - 6s) [G/H]; (iv') the
G fixed set of Z^ is empty (since G ^J^).

Remark. — 2.Q(G,Jf) is freely generated by {2. [G/H] | H eJT}.

Corollary 5.4. — Let K be a finite set and {R, R^ [ u e K} be a set of representations
in 3i. Then there is a G manifold V with these properties:
(i) There is a stable G vector bundle isomorphism 6(V) : ^(TV) -^(R©R).
(ii) The boundary of V has no fixed points and 2 - [X(K)] - [BV] e A(G) for

X(K)= U X(RJ.
u G •"•

proof. — Assertion: 2 — [X(K)] e F. For this, note from 2 .2 that

i eA(G) +^(G,^).

This implies 2 e F. In addition 2 — [X(RJ] e F for each u eK by (5.2 (iii));
so [X(RJ] (u e K) and 2 are in F. This implies the assertion. It means that
2 — [X(K)] == X + 20) for some X e A(G) and 2<o e 2t2(G, Jf7). By Lemma 5.3,
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and the subsequent remark, there is some choice of nonnegative integers flg, e = o, i,
H ejf; so that [VJ = 2<o for Vo = UK.ZH. Let V = U^.V^. Then Vo = 3V
and conditions (i) and (ii) of this corollary hold.

Proof of Theorem A (§ i). — Let K be the finite set given in the statement of
Theorem A. For each u e K, we are given a representation R^ e ̂ . Fix a point z
in K and set T == Rg. Add an additional point o to K to give a new set K' and set
RO = T; so R^ is defined for all u e K'. Let Z = S(T®R) and D = D(TCR)
be the unit sphere resp. unit disk in TOR. These are G manifolds. We shall
construct a G normal map IT == (W, F, (B(W)), F : W -> Z and for each H e^ an
H normal map ^T(H) = (U(H), F(H), (3(U(H))), F (H) :U(H)^D such that
res^ = a^(H).

First we construct W and U(H) for H e^. For u e K, let W^ = X(RJ (5.2)
and for each H e^, let UJH) == U(H, RJ (5.2 (iv)). Corollary 5.4 provides
a G manifold V such that (BV)0 = 0, 2 — [X(K)] — [BV] e A(G) and V has a
T©R framing 6(V) of its tangent bundle. Set Wo = BV, Uo(H) = V and
W = = U W,; so W^K and T ,W=R, for u e K. Set U(H) = U UJH)

M G K ' ^ ^K'
whenever H e ̂ .

Then by 5.2 and the construction of V and Z we find

(i) reSnW = BU(H) for each H e^,
(ii) 2 - [W] eA(G).

The degree one G map F : W -> Z is obtained by collapsing the complement
of an invariant open disk centered at z e W (and identified with T) to (o, i) eZ0

and maps the disk homeomorphically onto Z — (o, i). Let F(H) : U(H) -^ D be
any H map which extends res^F; so it too has degree i.

Next we construct Smith framings

(B(W) : TW © R -> T ® R and (B(U(H)) : TU(H) -^ T © R;

so that reSnp(W) == (B(U(H)) . Recall that the definition of a normal map (4.9)
w

requires that these Smith framings are defined rel W and U(H) where W == W(<$^)
and U(H) = U(H)(^') for Smith sets y and y for W and U(H). The equation
resH (B(W) = (B(U(H)) requires resn ^ = ^ by 4.20. We take y = ^(W, G)

w w
and y = ̂ (U(H), H, G); so by 4.20 the preceding equality is satisfied. Having
said this, set

P(W)= U ^(R,®R,R©R)o&(WJ
M£K'

(3(U(H)) = U pu«(H)(resHR«®R,reSHR®R)o&(UJH)).
u £ K'
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See 5.1, 5.2 and 5.4 for notation here. Then
(iii) resH (3(W) = (B(U(H)) for each H e^f.

w
This follows from the naturality of (3 ( • , •) with respect to restriction to subgroups and
to subspaces (3.13). By construction
(iv) resHF=F(H)( .

w

We assert that H^ and each ^(H) for H e^ are normal maps (4.9). The
conceptual elements of a normal map—an equivariant degree i map and Smith framing
of tangent bundle—have been defined for^ and^(H). The added technical require-
ments of 4.9 which must be verified for H^ and ̂ (H) follow from conditions 5.2 and
are left to the reader. In order to apply 4.19,^ must satisfy 4.18 and resg ̂  == S^(H)/^/
for each H e8^. Concerning 4.18, only 4.18 (i) is not obvious and that has been
achieved in (ii) above. The equations res^^ = <W^(H) for He^ have been
verified in (i), (iii) and (iv) above. As a consequence of 4.19, ̂  is normally cobordant
to ^ == (W, F', p') where F': W -> Z is a homotopy equivalence. Then W is
a homotopy sphere with W70 == W° = K and T^W == T^W == R^ for u e K by
Remark 4.17. This completes the proof of Theorem A.

As promised earlier we verify 5.2 (vi) which requires that TW is a stable G vector
bundle and TU(H) is a stable H vector bundle for H e 8P. These conditions are
required as part (4.9 (i)) of the definition of that H^ and ^(H) be normal maps. It
suffices to show that TW^ and TUJH) for u e K' and H e ̂  are stable G resp.
H vector bundles. By 5.2 (ii) and 5.2 (iv), TWy and R^ are stably isomorphic G vector
bundles and TUy(H) and R^ ® R are stably isomorphic H vector bundles for H e ̂ .
In particular the G^ representations Ty^ Wy and R,, are isomorphic for all x e Wy and
similarly for T^ UJH) with A:eUJH). From this stability (3.34) both for TW^
and TUy(H) follows from:
(i) dim R^ < d^ w^(RJ whenever H is a subgroup of G and ^ is an irreducible

representation of H such that ^(^) =^ ° (p^vided ^ 4= R).
(ii) ^(R,CR)=^(RJ if x + R .

We must justify (i). By definition

(5-5) ^==dimaD^

where D^ is the division algebra of real linear H equivariant endomorphisms of %. In
our case G and hence H is odd order abelian; so d^ = 2 whenever % is a non-trivial
irreducible representation. By hypothesis R^ eS9\ so if / is a non-trivial irreducible
complex representation of H it remains irreducible as a real representation and 2.5 (ii)
gives

dim R^ === 2 dime R^ < 2^(RJ <_ 2w^(RJ

which is (i) because d^ is 2.
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Proof of Theorem B (§ i). — Let {Ry | u e K) be the representations in y given
in the statement of Theorem B. Since each R^ lies in «$ ,̂ R^ == o whenever G/H e 8ft.
This implies that Iso(Ry — 0) C J?7; so by [PR, 9.163 p. 139], there is a representation S
ofG such that each R,, @ S is the realification of a complex representation R^e SS (2.5).

Now modify the proof of Theorem A. Use the representations { R ^ j ^ e K }
to replace the representations {R^ | u eK} there. We do not know (and in general
it is false) that R^ — R^ e I'(G) for each u, v! e K; however, r : I(G) -> IO(G)
is surjective and r(R^ — RJ = R^ — R^ e IO'(G) C IO(G). At the point in the
proof of Theorem A where Theorem 3.13 is applied, use the fact that r(Ry — R^) == r{z)
for some z e I(G). With this modification the proof of Theorem A yields the proof
of Theorem B.

Proof of Theorem B\ — This is an immediate consequence of Theorem B and
Lemma 2.7.

We end this paper with the referee's comments showing that the homotopy sphere S
in Theorem A can be taken to be the standard sphere. The key point to note is the
manifold W = II Wy constructed in the proof of Theorem A is a framed boundary
and the modification of W to W' = S using 4.19 is by framed surgeries; so S is a
framed boundary. Since dim S is even, the famous work of Kervaire-Milnor implies S
is the standard sphere. To see that W is a framed boundary note Wo is by construction.
The manifolds Wy for u eK come from [Pg] (see especially 1.7 and 2.10 there) and
referring to this one notes the Wy are framed boundaries for u e K. This means W is
a framed boundary too.
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