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NON-COMMUTATIVE DIFFERENTIAL GEOMETRY
by ALAIN GONNES

Introduction

This is the introduction to a series of papers in which we shall extend the calculus
of differential forms and the de Rham homology of currents beyond their customary
framework of manifolds, in order to deal with spaces of a more elaborate nature, such as,

a) the space of leaves of a foliation,
b) the dual space of a finitely generated non-abelian discrete group (or Lie group),
c ) the orbit space of the action of a discrete group (or Lie group) on a manifold.

What such spaces have in common is to be, in general, badly behaved as point
sets, so that the usual tools of measure theory, topology and differential geometry lose
their pertinence. These spaces are much better understood by means of a canonically
associated algebra which is the group convolution algebra in case b). When the
space V is an ordinary manifold, the associated algebra is commutative. It is an algebra
of complex-valued functions on V, endowed with the pointwise operations of sum and
product.

A smooth manifold V can be considered from different points of view such as

a) Measure theory (i.e. V appears as a measure space with a fixed measure class),
P) Topology (i.e. V appears as a locally compact space),
y) Differential geometry (i.e. V appears as a smooth manifold).

Each of these structures on V is fully specified by the corresponding algebra of
functions, namely:

a) The commutative von Neumann algebra L°°(V) of classes of essentially bounded
measurable functions on V,

(3) The G*-algebra Co(V) of continuous functions on V which vanish at infinity,
y) The algebra C^(V) of smooth functions with compact support.
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42 A L A I N G O N N E S

It has long been known to operator algebraists that measure theory and topology
extend far beyond their usual framework to
A) The theory of weights and von Neumann algebras,

B) C*-algebraS) H-theory and index theory.

Let us briefly discuss these two fields,

A) The theory of weights and von Neumann algebras

To an ordinary measure space (X, (A) correspond the von Neumann
algebra L°°(X, p.) and the weight 9:

<?(/) = Jx/^ V/6L°°(X,i.)+.

Any pair (M, <p) of a commutative von Neumann algebra M and weight 9 is obtained
in this way from a measure space (X, (A). Thus the place of ordinary measure theory
in the theory of weights on von Neumann algebras is similar to that of commutative
algebras among arbitrary ones. This is why A) is often called non-commutative measure
theory.

Non-commutative measure theory has many features which are trivial in the
commutative case. For instance to each weight 9 on a von Neumann algebra M
corresponds canonically a one-parameter group a] e Aut M of automorphisms of M,
its modular automorphism group. When M is commutative, one has a]{x) == x, V t e R,
V x e M, and for any weight 9 on M. We refer to [i 7] for a survey of non-commutative
measure theory.

B) C*-algebras, VL-theory and index theory

GePfand's theorem implies that the category of commutative G*-algebras and
»-homomorphisms is dual to the category of locally compact spaces and proper conti-
nuous maps.

Non-commutative G^-algebras have first been used as a tool to construct von
Neumann algebras and weights, exactly as in ordinary measure theory, where the Riesz
representation theorem [60], Theorem 2.14, enables to construct a measure from a
positive linear form on continuous functions. In this use of C*-algebras the main tool
is positivity. The fine topological features of the " space " under consideration do
not show up. These fine features came into play thanks to Atiyah's topological
K-theory [2]. First the proof of the periodicity theorem ofR. Bott shows that its natural
set up is non-commutative Banach algebras (cf. [71]). Two functors Kg, K^ (with
values in the category of abelian groups) are defined and any short exact sequence of
Banach algebras gives rise to an hexagonal exact sequence ofK-groups. For A = Co(X),
the commutative G*-algebra associated to a locally compact space X, K^(A) is (in a
natural manner) isomorphic to K^(X), the K-theory with compact supports of X.
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NON-COMMUTATIVE DIFFERENTIAL GEOMETRY 43

Since (cf. [65]) for a commutative Banach algebra B, K^.(B) depends only on the GePfand
spectrum of B, it is really the G^-algebra case which is most relevant.

Secondly, Brown, Douglas and Fillmore have classified (cf. [n]) short exact
sequences of G^-algebras of the form

o -> jf -̂  A -> C(X) -> o

where Jf is the G^-algebra of compact operators in Hilbert space, and X is a compact
space. They have shown how to construct a group from such extensions. When
X is a finite dimensional compact metric space, this group is naturally isomorphic
to Ki(X), the Steenrod K-homology of X, cf. [24] [38].

Since the original classification problem of extensions did arise as an internal
question in operator and C*-algebra theory, the work of Brown, Douglas and Fillmore
made it clear that K-theory is an indispensable tool even for studying C*-algebras per se.
This fact was further emphasized by the role of K-theory in the classification of C^-algebras
which are inductive limits of finite dimensional ones (cf. [10] [26] [27]) and in the work
of Guntz and Krieger on G*-algebras associated to topological Markov chains ([22]).

Finally the work of the Russian school, of Misscenko and Kasparov in particular,
([50] [42] [43] [44])? on t^le Novikov conjecture, has shown that the K-theory of non-
commutative G*-algebras plays a crucial role in the solution of classical problems in
the theory of non-simply-connected manifolds. For such a space X, a basic homotopy
invariant is the F-equivariant signature a of its universal covering X, where F = TT^(X)
is the fundamental group of X. This invariant a lies in the K-group, Ko(C*(F)), of
the group G* algebra G^F).

The K-theory of G*-algebras, the extension theory of Brown, Douglas and Fillmore
and the Ell theory of Atiyah ([3]) are all special cases of Kasparov's bivariant
functor KK(A, B). Given two Z/2 graded G^-algebras A and B, KK(A, B) is an abelian
group whose elements are homotopy classes of Kasparov A-B bimodules (cf. [42] [43]).
For the convenience of the reader we have gathered in appendix 2 of part I the defi-
nitions of [42] which are relevant for our discussion.

After this quick overview of measure theory and topology in the non-commutative
framework, let us be more specific about the algebras associated to the (< spaces "
occurring in a), b ) , c ) above.

a) Let V be a smooth manifold, F a smooth foliation of V. The measure theory
of the leaf space <( V/F " is described by the von Neumann algebra WfV, F) of the
foliation (cf. [14] [15] [i6]). The topology of the leaf space is described by the
G'-algebra G*(V, F) of the foliation (cf. [14] [15] [66]).

b) Let F be a discrete group. The measure theory of the (reduced) dual space F
is described by the von Neumann algebra X(F) of operators in the Hilbert space l\T)
which are invariant under right translations. This von Neumann algebra is the weak
closure of the group ring CF acting in ^(F) by left translations. The topology of the
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44 A L A I N G O N N E S

(reduced) dual space F is described by the G*-algebra C!^(F), the norm closure of CF
in the algebra of bounded operators in ^(F).

V ) For a Lie group G the discussion is the same, with C^°(G) instead of CF.
c ) Let r be a discrete group acting on a manifold W. The measure theory of

the <( orbit space " W/F is described by the von Neumann algebra crossed product
L°°(W) XI r (cf. [51]). Its topology is described by the G*-algebra crossed product
Go(V) ̂  r (cf. [51]).

The situation is summarized in the following table:

Space V V/F F G W/F
Measure theory L°°(V) W'(V, F) X(F) X(G) L°°(W) X] F
Topology Go(V) G-(V,F) G:(F) G:(G) Go(W) ^ F

It is a general principle (cf. [5] [i8] [7]) that for families of elliptic operators (Dy)ygy
parametrized by a (c space " Y such as those occurring above, the index of the family
is an element of K.o(A), the K-group of the C^-algebra associated to Y. For instance
the F-equivariant signature of the universal covering X of a compact oriented manifold
is the F-equivariant index of the elliptic signature operator on X. We are in case b)
and <r e Ko(C^(F)). The obvious problem then is to compute K^(A) for the G*-algebras
of the above spaces, and then the index of families of elliptic operators.

After the breakthrough of Pimsner and Voiculescu ([54]) in the computation
of K-groups of crossed products, and under the influence of the Kasparov bivariant
theory, the general program of computation of the K-groups of the above spaces (i.e. of
the associated G^-algebras) has undergone rapid progress in the last years ([16] [66]
[52] [53] [68] [69]).

So far, each new result confirms the validity of the general conjecture formulated
in [7]. In order to state it briefly, we shall deal only with case c ) above (1). By a fami-
liar construction of algebraic topology a space such as W/F, the orbit space of a discrete
group action, can be modeled as a simplicial complex, up to homotopy. One lets F act
freely and properly on a contractible space EF and forms the homotopy quotient W Xp EF
which is a meaningful space even when the quotient topological space W/F is patho-
logical. In case b) (F acting on W = {pt}) this yields the classifying space BF. In
case a), see [16] for the analogous construction. In [7] (using [16] and [18]) a map pi is
defined from the twisted K-homology K, ^(W Xp EF) to the K. group of the G*"algebra
Co(W) XI F:

pi : K^(W Xr EF) ^ K,(Co(W) ^ F).

The conjecture is that this map pi is always an isomorphism.
At this point it would be tempting to advocate that the space W Xr EF gives

a sufficiently good description of the topology of W/F and that we can dispense with

(1) And we assume that T is discrete and torsion free, cf. [7] for the general case.
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NON-COMMUTATIVE DIFFERENTIAL GEOMETRY 45

Cr-algebras. However, it is already clear in the simplest examples that the C^-algebra
A == Co(W) XI F is a finer description of the " topological space " of orbits. For
instance, with W == S1 and F = Z, the actions given by two irrational rotations Rg ,
Re^ yield isomorphic C*-algebras if and only if Q^ == ± 62 ([54] [55]), and Morita
equivalent G^-algebras if and only if 61 and 6^ belong to the same orbit of the action
of PSL(2, Z) on Pi.(R) [58]. On the contrary, the homotopy quotient is independent
of 6 (and is homotopic to the 2-torus).

Moreover, as we already mentioned, an important role of a (( space " such as
Y == W/r is to parametrize a family of elliptic operators, (D ) gy- Such a family
has both a topological index Ind,(D), which belongs to the twisted K-homology group
^^(WXrEr), and an analytic index Ind^(D) = (Ji(Ind<(D)), which belongs to
K,(Co(W) XI F) (cf. [7] [20]). But it is a priori only through Ind^D) that the analytic
properties of the family (Dy)^y are reflected. For instance, if each Dy is the Dirac
operator on a Spin Riemannian manifold My of strictly positive scalar curvature, one
has Ind^(D) = o (cf. [59] [20]), but the equality Ind((D) == o follows only if one
knows that the map p. is injective (cf. [7] [59] [20]). The problem of injectivity of ^
is an important reason for developing the analogue of de Rham homology for the above
(< spaces ". Any closed de Rham current G on a manifold V yields a map 9^ f^om
K*(V) to C

<pcW=<C,ch,> V,eE-(V)

where ch : K^V) -> H*(V, R) is the usual Ghern character.
Now, any <( closed de Rham current " C on the orbit space W/F should yield

a map 9^ fro111 ^(^(W) XI F) to C. The rational injectivity of [L would then follow
from the existence, for each co eH^W Xp EF), of a " closed current " G(co) making
the following diagram commutative,

K^(WXrEr) -^-> K,((Go(W) ^ F)

ch* <PC(O)

H,(W Xr EF, R) ————> C

Here we assume that W is r-equivariantly oriented so that the dual Ghern character
ch^: K^ -^H^ is well defined (see [20]). Also, we view o> eH^W Xr EF, C) as
a linear map from H^(W Xr EF, R) to C.

This leads us to the subject of this series of papers which is
1. The construction of de Rham homology for the above spaces;
2. Its applications to J^-theory and index theory.

The construction of the theory of currents, closed currents, and of the maps <pc
for the above " spaces " requires two quite different steps.
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46 A L A I N C O N N E S

The first is purely algebraic:

One starts with an algebra ^ over C, which plays the role of G°°(V), and one
develops the analogue of de Rham homology, the pairing with the algebraic
K-groups Ko(j^), K^(J^), and algebraic tools to perform the computations. This
step yields a contravariant functor H^ from non commutative algebras to graded modules
over the polynomial ring C(<r) with a generator CT of degree 2. In the definition of
this functor the finite cyclic groups play a crucial role, and this is why H^ is called cyclic
cohomology. Note that it is a contravariant functor for algebras and hence a covariant
one for (( spaces ". It is the subject of part II under the title,

De Rham homology and non-commutative algebra

The second step involves analysis'.

The non-commutative algebra ^ is now a dense subalgebra of a G*-algebra A
and the problem is, given a closed current G on ^ as above satisfying a suitable conti-
nuity condition relative to A, to extend <pc : Ko(^) -> C! to a map from K()(A) to C.
In the simplest situation, which will be the only one treated in parts I and II, the
algebra ^ C A is stable under holomorphic functional calculus (cf. Appendix 3 of
part I) and the above problem is trivial to handle since the inclusion ^ C A induces
an isomorphism K.o(J^) w K-o(A). However, even to treat the fundamental class
of W/r, where F is a discrete group acting by orientation preserving diffeomorphisms
on W, a more elaborate method is required and will be discussed in part V (cf. [20]).
In the context of actions of discrete groups we shall construct C((o) and <pc^ for any
cohomology class <o e H^W Xp EF, C) in the subring R generated by the following
classes:
a) Chern classes of F-equivariant (non unitary) bundles on W,
b) r-invariant differential forms on W,
c ) GelTand Fuchs classes.

As applications of our construction we get (in the above context):
a) If x e K^ ^(W Xr EF) and <ch^ x, <x)> =f= o for some co in the above ring R then ^(x) =(= o.

In fact we shall further improve this result by varying W; it will then apply also
to the case W == {pt}, i.e. to the usual Novikov conjecture. All this will be discussed
in part V, but see [20] for a preview.
(3) For any o eR and any family (Dy)ygy of elliptic operators parametrized by Y == W/F,

one has the index theorem:

<pc(Ind,(D)) = <ch,Ind,(D), co>.

When Y is an ordinary manifold, this is the cohomological form of the Atiyah-Singer
index theorem for families ([5]).

262



NON-COMMUTATIVE DIFFERENTIAL GEOMETRY 47

It is important to note that, in all cases, the right hand side is computable by a
standard recipe of algebraic topology from the symbol of D. The left hand side carries
the analytic information such as vanishing, homotopy invariance...

All these results will be extended to the case of foliations (i.e. when Y is the leaf
space of a foliation) in part VI.

As a third application of our analogue of de Rham homology for the above
<( spaces " we shall obtain index formulae for transversally elliptic operators, that is,
elliptic operators on those (< spaces " Y. In part IV we shall work out the pseudo-
differential calculus for crossed products of a G*-algebra by a Lie group (cf. [19]), thus
yielding many non-trivial examples of elliptic operators on spaces of the above type,
Let A be the C* algebra associated to Y, any such elliptic operator on Y yields a finitely
summable Fredholm module over the dense subalgebra ^ of smooth elements of A.
In part I we show how to construct canonically from such a Fredholm module a closed
current on the dense subalgebra <a/. The title of part I, the Chern character in Y^-homology
is motivated by the specialization of the above construction to the case when Y is an
ordinary manifold. Then the K. homology K,(V) is entirely described by elliptic
operators on V ([9] [18]) and the association of a closed current provides us with a map,

K,(V) ~> H,(V, C)

which is exactly the dual Ghern character ch^.
The explicit computation of this map ch, will be treated in part III as an intro-

duction to the asymptotic methods of computations of cyclic cocycles which will be
used again in part IV. As a corollary we shall, in part IV, give completely explicit
formulae for indices of finite difference, differential operators on the real line.

IfD is an elliptic operator on a " space " Y and G is the closed current G == ch, D
(constructed in part I), the map <pc : K^(A) -> C makes sense and one has

<pc(E) = < E, [D] > = Index D^ V E e K,(A)

where the right hand side means the index of D with coefficients in E, or equivalently
the value of the pairing between K-homology and K-cohomology. The integrality of
this value, Index Dg e Z, is a basic result which will be already used in a very efficient
way in part I, to control K,(A).

The aim of part I is to show that the construction of the Ghern character ch,
in K homology dictates the basic definitions and operations—such as the suspension
map S—in cyclic cohomology. It is motivated by the previous work of Helton and
Howe [30], Garey and Pincus [12] and Douglas and Voiculescu [25].

There is another, equally important, natural route to cyclic cohomology. It was
taken by Loday and Quillen ([46]) and by Tsigan ([67]). Since the latter's work is
independent from ours, cyclic cohomology was discovered from two quite different
points of view.

263



48 A L A I N C O N N E S

There is also a strong relation with the work of I. Segal [61] [62] on quantized
differential forms, which will be discussed in part IV and with the work of M. Karoubi
on secondary characteristic classes [39], which is discussed in part II, Theorem 33.

Our results and in particular the spectral sequence of part II were announced
in the conference on operator algebras held in Oberwolfach in September 1981 ([2i]).

This general introduction, required by the referee, is essentially identical to the
survey lecture given in Bonn for the 25th anniversary of the Arbeitstagung.

This set of papers will contain,
I. The Ghern character in K-homology.

II. De Rham homology and non commutative algebra.
III. Smooth manifolds, Alexander-Spanier cohomology and index theory.
IV. Pseudodifferential calculus for G* dynamical systems, index theorem for crossed

products and the pseudo torus.
V. Discrete groups and actions on smooth manifolds.

VI. Foliations and transversally elliptic operators.
VII. Lie groups.

Parts I and II follow immediately the present introduction.
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I. — THE GHERN CHARACTER IN K-HOMOLOGY

The basic theme of this first part is to " quantize " the usual calculus of differential
forms. Letting ^ be an algebra over C we introduce the following operator theoretic
definitions for a) the differential df of any f e j^, b) the graded algebra 0, == @ ̂
of differential forms, c ) the integration co -> ( co e C of forms <o e CT,

df = i[F,/] = i(F/-/F) V/e <
^ -{S/0^...^,/^^},

j ( o = = Trace (e<o) V co e ty1.

The data required for these definitions to have a meaning is an n-summable Fredholm
module (H, F) over j^.

Definition 1. — Let ^/ be a (not necessarily commutative) Z/2 graded algebra over C.
An n-summable Fredholm module over ^ is a pair (H, F), where,

1 ) H == H4" €> H~ is a Z/2 graded Hilbert space with grading operator e,
^ == (- i)^^ for all ^ eH±,

2) H is a Z/2 graded left ^/-module, i.e. one has a graded homomorphism n of ̂ / in the
algebra °S?(H) of bounded operators in H,

3) F e -Sf(H), F2 == i, Fs == — eF and for any a e ̂  one has

Fa- (- I)degaflFeJSfn(H)

where (̂H) is the Schatten ideal (cf. Appendix 1).

When ^ is the algebra G^V) of smooth functions on a manifold V the basic
examples of Fredholm module over ^/ come from elliptic operators on V (cf. [3]).
These modules are ^-summable for any p > dim V. We shall explain in section 6,
theorem 5 how the usual calculus of differential forms, suitably modified by the use
of the Pontrjagin classes, appears as the classical limit of the above quantized calculus
based on the Dirac operator on V.

The above idea is directly in the line of the earlier works ofHelton and Howe [30],
Garey and Pincus [12], and Douglas and Voiculescu [25]. The notion of w-summable
Fredholm module is a refinement of the notion of Fredholm module. The latter is
due to Atiyah [3] in the even case and to Brown, Douglas and Fillmore [n] and Kas-
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50 A L A I N G O N N E S

parov [42] in the odd case. The point of our construction is that w-summable Fredholm
modules exist in many situations where the basic algebra ^ is no longer commutative,
cf. sections 8 and 9. Moreover, even when ^ is commutative it improves on the
previous works by determining all the lower dimensional homology classes of an extension
and not only the top dimensional " fundamental trace form ". This point is explained
in section 7.

Let then ^ be a not necessarily commutative algebra over C and (H, F) an
w-summable Fredholm module over j^. We assume for simplicity that ^ is trivially
Z/2 graded. For any a ej^, one has da == i[F, a] eJSf^H). For each q eN, let
Q3 be the linear span in JSf^H) of the operators

(^o ̂  ^ i) ^i ̂ 2 ^ ^ ^ ̂  ̂  c.

Since -S?̂  X JS^32 C ^n/(ql + q2) (cf. Appendix i) one checks that the composition of
n

operators, 0,^ x W2 -> ^?1+?2 endows Q. = © £13 with a structure of a gradedj = = o
algebra. The differential d, rfo = i[F, o] is such that

rf2 = o, rf(coi 0)2) = (Aoi) 0)2 + (— I)deg<ol ̂ i ̂  V o)^ 0)2 e ̂ .

Thus (t2, rf) is a graded differential algebra, with d2 = o. Moreover the linear func-
tional J: ty -> C, defined by

fo)== Trace (so) V o e ti"

has the same properties as the integration of the trace of ordinary matrix valued diffe-
rential forms on an oriented manifold, namely,

J A O = O Vo)6ty1-1, Jo)20)i=(- l)^0!^^^^

for any o)y e Q% j = i, 2, ^i + ?2 == w-
Thus our construction associates to any w-summable Fredholm module (H, F)

over s/ an n-dimensional cycle over ^ in the following sense.
n

Definition 2. — a) A cycle of dimension n is a triple (^2, d, |) where Sl = © il3 is

a graded algebra over C, d is a graded derivation of degree i such that d2 == o, and j : Q" -> C
is a closed graded trace on Q.

b) Let s/ be an algebra over C. Then a cycle over ^ is given by a cycle (Q, rf, ( ) and
a homomorphism p : ̂  -> 0°.

As we shall see in part II (cf. theorem 32) a cycle of dimension n over ^ is essentially
determined by its character^ the (n + i)-linear function T,

T(a°, ..., a") - jp(a°) rf(p(a1)) W}} ... rf(p(a")) V a' e^.
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NON-COMMUTATIVE DIFFERENTIAL GEOMETRY 51

Moreover (cf. part II, proposition i), an n + i linear function T on ^ is the character
of a cycle of dimension n over ^ if and only if it satisfies the following two simple
conditions,

a) r(a1, a\ ..., a\ a°) == (- i)" ̂ {a°, . .., a-) V ̂  e ĵ ,
n

(B) 2(-l)^T(fl°, ...^•a^1, ....fl^1) +(-l)^l^n+l^ ^n) ̂

There is a trivial manner to construct functionals T satisfying conditions a) and 6).
Indeed let G^(J^) be the space of {p + i)-linear functionals on ^ such that,

<p(^ ..., a\ a°) = (- I)P <p(fl0, ..., flP) V '̂ e ĉ .

Then the equality,

&<p(a°, ..., ̂ +1) = S (- i)^ <p(^ ..., ̂ +1, ..., ^P+I)

+(^I)P+1^4-1^^^^

defines a linear map 6 from C^(^) to C^4-^^) (cf. part II, corollary 4). Obviously
conditions a) and (B) mean that T e G^ and AT == o. As b2 == o, any i<p, 9 e C^'^j^),
satisfies a) and (B). The relevant group is then the cyclic cohomology group

H^(^) = (T G C^), AT = o}/{&9, 9 e Cr1^)}.

The above construction yields a map

ch*: {yz summable Fredholm modules over ^ / } -> H^(^).

Since j^ is trivially Z/2 graded, the character T e C^(^) of any n summable Fredholm
module over ^ turns out to be equal to o for n odd. Let us now restrict to even y^s.
The inclusion JS?P(H) C oS^(H) for p ^ q (cf. Appendix i) shows that an n summable
Fredholm module (H, F) is also n + 2k summable for any k = 1,2, ... We shall
prove (cf. section 4) that the (n + 2k) -dimensional character ^+2k of (H, F) is deter-
mined uniquely as an element ofH^4'2^^) by the n-dimensional character T^ of (H, F). More
precisely, there exists a linear map S : H^(J^) -> H^2^) such that

^^-S^inH^^^).

The operation S : H^(^) --> H^^e^) is easy to describe at the level of cycles. Let
S be the 2-dimensional cycle over the algebra B = C with character (T, 0(1, i, i) == 2in.
Then given a cycle over ^ with character T, ST is the character of the tensor product
of the original cycle by S. The reason for the normalization constant 2in appears
clearly from the computation of an example (cf. section 2). It corresponds to the
following normalization for | co, co e tP, n = 2W,

J o = w^nr)"1 Trace (so).
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52 A L A I N C O N N E S

00

Let now H^(e^) == (D H^(J^). The operation S turns H^(J^) into a module
w == 0

over the polynomial ring €!(<?), S being the multiplication by (T. Let,
H-(^) == Lim(H^), S) = H^(0 ®^ C

where C(a) acts on C by P(<r) ;? = P(i) -2' for 2: e C. The above results yield a map
ch*: {finitely summable Fredholm modules over ^ / } -> H*(J^).

We shall show (section 5) that two finitely summable Fredholm modules over ^ which
are homotopic (among such modules) yield the same element of H*(J^).

When ^ == G^V), where V is a smooth compact manifold, one has
H^(^) == H,(V, C) where H^m means that the (n + i)-linear functionals <p e C^(e^)
are assumed to be continuous, and H,(V, C) is the ordinary homology of V with complex
coefficients. We can now explain what our construction has to do with the Chern
character in K-homology. The latter is (cf. [9]) a natural map,

ch,: K,(V)-> H,(V, C)

where the left side is the K-homology of V ([9]). By [24] the left side is isomorphic
to the Kasparov group KK(C(V), C) of homotopy classes of *Fredholm modules over
the G*-algebra C(V) (1). The link between our construction and the ordinary dual
Ghem character ch^ is contained in the commutativity of the following diagram:

f homotopy classes of finitely summable] ch*
{ } —> H^-^C^fV))
^Fredholm modules over G^V) j ,

^ . ^KK(G(V), C) ——————^——————> H,(V, C)

For an arbitrary algebra ^ over C, let Ko(J2/) be the algebraic K-theory of ^
(cf. [40]). One has (cf. part II, proposition 14) a natural pairing < , > between Ko(J2^)
and the even part o{H*{^). Moreover the following simple index formula holds for
any finitely summable Fredholm module (H, F) over ^/:

< [<?], ch*(H, F)> = Index F,+ V e e Proj M^).

Here e is an arbitrary idempotent in the algebra of k X k matrices over ,̂ \e\ is the
corresponding element ofKo(j^), and F^ is the Fredholm operator from ^(H4'®^)
to ^(H~ ® C?) given by e(F ® i) e. This formula is a direct generalisation of [20], [34].
It follows that any element T ofH*(e^) which is the Ghern character of a finitely sum-
mable Fredholm module has the following integrality property,

<Ko(^) ,T>CZ.

(1) A Fredholm module over a *algebra ^ is a *Fredholm module if and only if ^ 0$, '»])>= ^ S, a* T\ )> for
a G s/, ^ 7) e H.
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To illustrate the power of this result we shall use it to reprove a remarkable result
of M. Pimsner and D. Voiculescu: the reduced G^-algebra of the free group on 2 gene-
rators does not contain any non trivial idempotent. Letting T be the canonical trace
on G^(r), and e 6 Proj(C^(r)), one knows that r(^) e [o, i]. Using a suitable
Fredholm module (cf. [56], [23], [37]) with character T we shall get r(^) eZ and
hence r(^) e{o, i}, i.e. e == o or e == i.

Part I is organized as follows:
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i. The character of a i-summable Fredholm module

Let ^ be an algebra over C, with the trivial Z/2 grading. Let (H, F) be a
i-summable Fredholm module over ^/.

Lemma 1. — a) The equality r(fl) = - Trace (eF[F, a]), V a e ̂ /, defines a trace on ̂ .

b) The index map, Ko(<^) -> Z, is given by the trace T:

Index F,4- == (r ® Trace) {e) V e e Proj M^jaQ.

Proof. — a) Since ^ is trivially Z/2 graded, one has ea = az for all a e j^.
As sF = -- Fe one has sF[F, a} == eF2 a — eFoF = eF2 a + FasF == sa + FasF since
F2 = i. Thus,

eF[F, a] = [F, a] sF.

Then r(^) == J- Trace(eF[F, ab}) == 1- Trace(eF[F, a] b + eFfl[F, b])

== 1- Trace([F, a] iFb + [F, b] eFa),

which is symmetric in a and b. Thus ^u(ab) == ^(bd) for <z, b e ̂ /,
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b) Replacing ^ by M^(j^), and (H, F) by (H® C3, F® i) we may assume

that q = i. Let F = [° 1̂ so that PQ,== IH-, QP = IH- With H^ == eH^,

H^ = eHr we let P' (resp. Q,') be the operator from H^ to Hg (resp. H^ to H^) which
is the restriction of eP (resp. <?QJ to H^ (resp. Ha). Since [F, e] e ̂ (H) one has
P' Q; — IH^ e ̂ (Hg), Q; P' - in, e ̂ (H^). Thus (proposition 6 of Appendix i)
one has

Index P' = Tracer - Q: P') - Tracer — P' Q:)
== Traceg+(^ — eQePe) — Trace^-^ — ePeQe)
== Tracer—<?F<?F<?)).

But Trace(e(<? — e?e¥e)) == Tracer — Vefe) e) == Trace(eF(F<? — eF) e)

== 1- Trace(eF<?[F, e] + sF[F, e] e) == -1- Trace(eF[F, e]) = T(^). D

Definition 2. — Let (H, F) be a i-summable Fredholm module over eS/. Then its character
is the trace r on ^ given by lemma i a).

Corollary 3. — Let T be the character of a i-summable Fredholm module over ^/. Then
<Ko(^),T>CZ.

Now let A be a G*-algebra with unit and T a trace on A such that
1) T is positive^ i.e. ^{x* x) ^ o for x e A,
2) T is faithful, i.e. x + o => r(A:* x) > o (cf. [55]).

Corollary 4. — Let A be a G*-algebra with unit and T a faithful positive trace on A such
that r(i) = i. Let (H, F) be a Fredholm module over A (cf. Appendix 2) such that

a) ^ = {a e A, [F, a] e ̂ (H)} is dense in A,
b) T/J^ is the character of (H, F).

Then A contains no non trivial idempotent.

Proof. — By proposition 3, Appendix 3, the subalgebra ^ of A is stable under
holomorphic functional calculus. Hence (Appendix 3) the injection ^ -> A yields
an isomorphism, K()(J^) ->K.o(A). Thus the image of Ko(A) by T is equal to the
image ofKo(j^) by the restriction o f r to^ so that, by corollary 3, it is contained in Z.
If e is a selfadjoint idempotent one has r(^) e [o, i] n Z == {o, i} and hence, since T
is faithful, one has e == o or e == i. It follows that A contains no non trivial idem-
potent/, p^f. D

Before we give an application of this corollary, let us point out that its proof is
exactly in the spirit of differential topology. The result is purely topological\ it is a state-
ment on a G*-algebra, which, for A commutative, means that the spectrum of A is
connected. But to prove it one uses an auxiliary c< smooth structure 9? given here by the
subalgebra ^ = {a e A, [F, a] e ̂ (H)}.
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As an application we shall give a new proof of the beautiful result of M. Pimsner
and D. Voiculescu that the reduced C*-algebra of the free group on two generators
does not contain any non trivial idempotent [56]. This solved a long standing conjecture
of R. V. Kadison. We shall use a specific Fredholm module (H, F) over the reduced
C*-algebra of the free group which already appears in [56] and in the work ofj. Cuntz [23],
and whose geometric meaning in terms of trees was clarified by P. Julg and A. Valette
i11 [37]-

Definition 5. — Let F be a discrete group. Then the reduced C*-algebra A = C^F)
of r is the norm closure of the group ring CF in the algebra ^(/^(F)) of operators in the left
regular representation of F (cf. [51]).

Now let r be an arbitrary free group, and T a tree on which F acts freely and
transitively. By definition T is a i-dimensional simplicial complex which is connected
and simply connected. For j == o, i let T3 be the set ofj-simplices in T. Let p e T°
and 9 : T°\{j&} ->• T1 be the bijection which associates to any q e T°, q ^ p, the only
i-simplex containing q and belonging to the interval |j&, q]. One readily checks that
the bijection 9 is almost equivariant in the following sense: for all g e F one has (f>(gq) = g^[y)
except for finitely many q's (cf. [23], [37]). Next, let H-^/^T0), H- == ^(T1) ® C.
The action of F on T° and T1 yields a C^F) -module structure on ^(T^), j == o, i,
and hence on H^ if we put

a^ X) = ( ,̂ o) V ^ e^(T1), X e C, a e C;(F).

Let P be the unitary operator P : H4" -> H~ given by
P^== (0,1), P£,==£^) V y + ^

(where for any set X, (sj^gx ls ^e natural basis of^(X)). The almost equivariance
of 9 shows that

Lemma 6. — The pair (H, F), where H == H4- C H-, F == [° 1 is a Fredholm

module over A and ^ = {a, [F, a] e oS^H)} is a dense sub algebra of A.

Proof. — For any g e F the operator gP — Pg is of finite rank, hence the group
ring OF is contained in ^ == {a e C^F), [F, a] e o§^(H)}. As CF is dense in G;(r)
the conclusion follows. D

Let us compute the character of (H, F).
Let a e J3 ,̂ then a — P-1 aP e JS^H4') and

1 Trace(sF[F, a]) = Tracer - P-1 aP).

Let T be the unique positive trace on A such that ^(Zagg) == a^ where i e F is the
unit, for any element a == ^Ogg of CF. Then for any a eA == G^F), a — T(<?) i
belongs to the norm closure of the linear span of the elements g e F, g 4= i.
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Since the action of F on T3 is free, it follows that the diagonal entries in the matrix
of a — r(fl) i in ^(T3) are all equal to o. This shows that for any a e ̂  one has,

Tracer - P-1 aP) = r(fl) Trace(i - P-1 iP) = r(a).

Thus the character of (H, F) is the restriction ofrtoj^ and since T is faithful and positive
(cf. [51]), corollary 4 shows that

Corollary 7. — (Gf. [56]). Let T be the free group on 2 generators. Then the reduced
G*-algebra C^F) contains no non trivial idempotent.

2.. Higher characters for a p-summable Fredholm module

Let ^ be a trivially Z/2 graded algebra over C. Let (H, F) be a ^-summable
Fredholm module over ^/. As explained in the introduction we shall associate to (H, F)
an w-dimensional cycle over ja^, where n is an arbitrary even integer such that n ̂  p.
In fact we shall improve this construction so that we only have to assume that n ̂  p — i,
i.e. that (H, F) is (n + i)-summable.

/>/
Let ^ be obtained from ^ by adjoining a unit which acts by the identity operator

in H. For any T e o^(H) let dT = t[F, T] where the commutator is a graded
commutator. For each j e N we let O.3 be the linear span in oSf(H) of the operators
of the form

a° da1 ... da3, a16 e ̂ .

Lemma 1. — a) d2 T = o V T e ̂ (H).
b) d(T, T,) = (<H\) T, + (- i)871 Ti dT, V T^, T^ e ̂ (H).
c) ^C^1.
d) £13 x 0^ C ^+/<;; ^ particular each O.3 is a two-sided ^-module.
e) n^C ̂ -^(H).

Proo/. — aj If T is homogeneous, then
F(FT - (- i^TF) ~ (- I)aT4-l(FT - (- i^TF) F

= F2 T — TF2 = o.

b) The map T -> [F, T] is a graded derivation of o^(H).
c ) Follows from a), b).
d ) It is enough to show that for a°, .. ., a3, a e ̂  one has

(a° da1 ... da3) a e Q3.

This follows from the equality (da3) a == d{a3 a) — a3 da, by induction.
e ) Since (H, F) is n + i summable one has da eJ^'^H) for all a e^ and

e ) follows from the inclusion ^p x ̂  C ^r for I = I + ^ (cf. Appendix i). D
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n
Lemma i shows that the direct sum Q = © Q' of the vector spaces Q,' is naturally

endowed with a structure of graded differential algebra, with d2 == o.

Lemma 2. — For any T e ̂ f(H) such that [F, T] e ̂ (H) let

Tr.(T)=^Trace(eF([F,T])).

a) If T is homogeneous with odd degree, then Tr,(T) == o.
b) If Te^H) then Tr,(T) = Trace (eT).
c) One has [F, Q»] C .̂ (H) W ̂  restriction of Tr, to D» defines a closed graded

trace on the differential algebra Q,.

Proof. — a) Since F[F, T] is homogeneous with odd degree one has
sF[F, T] = - F[F, T] e

and Trace(eF[F, T]) = Trace(F[F, T] s) = - Trace(sF[F, T])
thus Trace(sF[F, T]) == o.

b ) ^ Trace(sF[F, T]) == ^ Trace e(T - FTF) for all T with 8T = o (mod 2).

If Te^i(H) then Trace (eFTF) == - Trace (FeTF) =- Trace (sT), so that

^ Trace(eF[F, T]) = Trace(eT).

c) One has [F^Q"] C a»+l C ̂ (H) by lemma i. Since d2 = o one has
Tr,(</to) = o V <o e O"-1. It remains to show that for M, e Q"1, cog e a"', n^ + n^ = n
one has

Tr,((0i (03) = (- i)"-"' Tr,{^ ̂ ),

or equivalently, that
Trace(sF d(w^ ^)) = (- i)»- Trace(sF d{^ ̂ )).

Since sF commutes with AO] and dw^, one has
Trace(eF rf((di 0)2)) == Trace (sF((/o>i) < )̂ + (- i)"' Trace (eF(̂  d^)

== Trace(sF<02 d^) + (— i)"' Trace((eF dw^ ̂ )
= (— i)"- Trace(eF d(^ ̂ )). a

We can now associate an ra-dimensional cycle over s/ to any n + i summable
Fredholm module (H, F).

Definition 3. — Let n = sm be an even integer, and (H, F) an (n + i)-summable Fredholm
module over ^/. Then the associated cycle over ^ is given by the graded differential algebra {Sl, d),
the integral

J (o = (aw)"* OT ! Tr,(<o) V to e a"

and the homomorphism TC : s/ -> Q" C ̂ (H) of definition i.
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The normalization constant ^in^ml is introduced to conform with the usual
integration of differential forms on a smooth manifold. To be more precise let us treat
the following simple example. We let F C C be a lattice, and V = C/F. Then V is a
smooth manifold and the 8 operator yields a natural Fredholm module over G^V). We
consider B as a bounded operator from the Sobolev space H4- == { ^ e L^V), ̂  e L^V)}
to H~ == L^V). The algebra G^V) acts in H^ by multiplication operators, and the

f o (B + s)"1]
operator F is given by _ , where e e C, is ^ F1 the orthogonal of

[S + £ o J
the lattice F (to ensure that 8 + e is invertible). We let (e^er-1- be the natural
orthonormal basis of L^V) = H-, Sg-(z) = [C/F1!-172 exp i<^, ^> for ^ e C/F, and
(s^-) be the corresponding basis ofH4-, ̂  == (B + s)-1 ̂  . Thus s^) - (^ + e)"1 e^)
for z e C/F, and we may as well assume that the e^ form an orthonormal basis
o{H+. For each g e F1, let U.eG^V) be given by U,^) = exp t<^>, then
^i+^2 == ̂ i ̂ 2 for ^i?^61'1 and the algebra G^V) is naturally isomor-
phic to the convolution algebra ^(F1) of sequences of rapid decay on F-1-,
COO(V) == {S^ U,, a e ̂ (F1)}. One has U, ̂  = ̂  and

U, c,- = V,{ik + c)-1 e,- - (.& + s)-1 s^ = t(g^^+g ̂ ,

for any ,̂ A e F1. We are now ready to prove

Lemma 4. — With the above notations, (H, F) is a ^-summable C^^-module and

Tr.(/° i[F,f1] i[F,f2]} = ̂  J/0 df1 A df2 V/0,/1,/2 e C^V),

wA^re V is oriented by its complex structure.

Proof. — For g e F1 one has

^FTT TT ^ + p ^'(g + K) + ̂  +(FU, - U, F) ^ = F ^ ^^ , J ̂  - e^,

_ /i(g + k) + e \ _ _ tg _
-^ ik+s 'j^^-tk^^^

and similarly (FU, - U, F) e,- = —tg- e^. Since '̂(r-1-) C ̂ (I^), it follows that
t/? "i" £

(H, F) is ^-summable for any p > 2.
To prove the equality of the lemma we may assume that f == U^. with

g o 9 § i ) g 2 6 r1. From the above computation we get
[F,UJ[F,UJ[F,UJ^

= f go "| ( -gi ^ / g2 \
^1 + ̂  + k - Z6; ̂  + k - h] \k - iej ̂ ^^k
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and [F,UJ[F,UJ[F,UJ.,-

== I ^gQ \ ( gl \ ( ^ g 2 } ̂
[gi + g2 + k - h] \g, + * ~ ̂  \k - iej ^-^+&-

Thus Tr,(U^zIF,UJz[F,UJ)=--^Trace(eF[F,Uj[F,Uj[F,UJ) is equal

to o if gQ + ̂  + g2 + ° ^d otherwise to:

s f go U gl \ 1 g2 V
fcer1 \ î + ,?2 + ̂  — ^/ ^2 + A — is] ^ — z£/ *

This sum can be computed as an Eisenstein series ([70]). More precisely let u, v be
generators of F1 with lm(vju) > o and E^(^) the function

N M

Ei(^) == lim S (Lim 2 {z + k)"1) where k = ^u + vy.
N->oo v = - N M-^oo {j i==-M

Then the above expression coincides with

^i(Ei(— ?e) ~ Ei(^ — ie)) — ,?2(Ei(^2 - ̂ ) - EI^I + .?2 - ̂ £))
== ^tTT^g Wj — W^ ^2)5

where g, = n,u + m,v (cf. [70], p. 17).
Let (a, (B) be the basis of C over R dual to {u, v). Then F == 27r(Za + Zp),

U^a +^P) = ̂  ̂ my tor all x, y e R, g == nu + mv e F1. For go + gt + g2 + o
one has f Vg d\Jg d\Jg == o and otherwise

^ ̂  dVg, dVg, == J7 ̂  {{in,) {im,) - {in,) {zm,)) dx dy
== {2in)2 X {n, m, — n, m,). D

A similar computation yields the factor {^in^ml for n == 2m.

Proposition 5. — Let n == 2m, (H, F) be an {n + i)-summable Fredholm module over ^/,
and T be the character of the cycle associated to (H, F),

T(a°, . . ., ̂ ) = {2in)mm\ Tr,{a° da1 . .. ^M).

T^ a) ^{a\ . . ., ̂  fl0) = T(a°, . . ., ̂  /or ^ e ̂ \

b) S(-1)^(0°, ...,^aj+l, ...,aw+l) +(-I)n+ lT(an+l^ ...,0") -o.
o

Proq/l — Follows from proposition i of part II. D
With the notation of part II, corollary 4, one has T e C^(^) by a) and br = o

by b), i.e. TEZ^Q.

Remark 6. — All the results of this section extend to the general case, whenj^ is
not trivially Z/2 graded. The following important points should be stressed,

a) Since a3 e ̂  can have non zero degree mod 2, it is not true in general that
f o == o for co e D", n odd.
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(B) Since the symbol d has degree i, the ^-dimensional character T^ of an (n + i)-
summable Fredholm module (H, F) over ^ is now given by the equality,

T,(a°, . . ., 0 = ̂ (- i)^a34-...+aa^i+... Tr^°^1 ... da-Y

Here ^ is a normalization constant such that ^+3 = 2inw-4-2 ̂ , we take

^ - (2^)- m!, ^_, = (2Z7T)- L - ̂  . . . ̂  ̂ .

y) In general, the conditions a), b) of proposition 5 become
at) ^ ...,̂ °) = (- in-1)^2^0,^ ...^ v^E<
^ S (-1)^(0°, ....fl^^1, ....fl^1)

+ (- ir^-1)^12^^^^ ̂ ..., ̂  = o.
The general rule (cf. [49]) is that, when two objects of Z/2 degrees a and (B are

permuted, the sign (— i)"3 is introduced.

3. Computation of the index map from any of the characters T^

Let ^ be an algebra over C, with trivial Z/2 grading. Let n == 2m be an even
integer, (H, F) an (n + i)-summable Fredholm module over j^, and T^ the n- dimensiona
character of (H,F).

Let (rj be the class of ^ in H^(^) = Z^)lbG^-1^). By part II, propo-
sition 14, the following defines a bilinear pairing < , > between Ko(^) and H;^):

<e, 9> = W^mi)-1^ # Tr) (,, ..., e)

for any idempotent e e M^) and any yeZ^j^). Here 9 # Tr e Z^M^aQ)
is defined by

(<p#Tr)(fl°®< ....^m") ==9(^0, .... ̂  Tracer0 ... m-)

for any ^ e j^, ^ e M^(C).
When the algebra ^ is not unital, one first extends 9 e Z^(^) to ^ eZ^(^),

where e^ is obtained from ^ by adjoining a unit,
?(fl° + ^° i, .. ., ̂  + ̂  i) = 9^°, ..., 0 V '̂ e < V e C.

Then one applies the above formula, for e e M^(^?).

TA^m 2. — {Compare with [25] ^rf [34]). Let n = 2m and (H, F) an {n + i)-
summable Fredholm module over ^. Then the index map Ko(^) ->7. is given by the pairing
of Ko(^) with the class in H^(^) of the n-dimensional character ̂  of (H, F):

Index F,+ = < [e], (rj > for e e Proj M,(^).
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Proof. — As in the proof of lemma i. i b) we may assume that k = i, that ^ is

unital and that its unit acts in H as the identity. Let F == \° 1, so that PO = i

QP = IH.. Let Hi = eH+, H^ = eH-, and P' (resp. Q:) be the operator from H^
to Hg (resp. Hg to H^ which is the restriction ofcP (resp. <-QJ to Hi (resp. Hg). Thus
^i — Q,' P' (resp. IH, — P' Q:) is the restriction to H^ (resp. Hg) of e — eTeFe
As e-eFeFe=-e[F,eYe, and [F,,] e ̂ "^(H), we get (Appendix i, propo^
sition 6) Index P' = Trace e(c — e¥eFe)m+l.

One has <<, T^> = ̂ L Trace(sF[F, e^+i). As [F, ,] = ,[F, e] + [F, ,] ,,
one has

Trace(eF( [F, c])2OT+l) = Trace(eF^[F, e] [F, ̂ ]2m) + Trace(eF[F, e] e[F, c]2"*).

Now eF == - Fe, F[F, e^ = - [F, <]2OT+1 F, so that

Trace(eF4F, ^]2OT+l) = - Trace(Fe<>[F, <•]2CT+1)

= - Trace(ee[F, ^]2OT+1 F) = Trace(e<F[F, ^]2m+l).
As <[F, e]2 = [F, epe we get

Trace(eF[F, ^]2OT+1) = 2 Trace(s^F[F, e] e[F, e]2"1)

= 2(— i)'" Trace e{e — <F^)'»+1. D

4. The operation S and the relation between higher characters

In part II, theorem 9, we show that the operation of tensor product of cycles yields
a homomorphism (y, ^) ̂  y # ^ of Z^(^) x 7^{S8) to Z^+'»(^®^), for any
algebras ,̂ ^ over C. Taking ^ = C and oeZ^C), a{\,\^) = ̂ \\\
yields the map S, S<p = <p # <i from Z^(^) to Z^2^® C) = Z^^^). By part II,
corollary 10, one has SB^) C B^W Now let n = am be even, (H, F) be an
(n + i)-summable Fredholm module over ̂ . As ^?n+l(H) C . '̂"-^(H), the Fredholm
module (H, F) is (n + 3)-summable, and hence has characters T,, T^+g of dimensions n
and n 4- 2.

rAcorm 2. — One has ^+2 == ST» »•» H^^^).

Proof. — By construction, T,, is the character of the cycle (o, d, f) associated
to (H, F) by definition 3. Thus (part II, corollary 10) ST,, is given by

»+i f
S (̂a°, ..., a"+2) = 2W S J (a° da1 ... da3-1) a3 a^^aa^2 ... a^+2)

n+l

= (2CT)'»+1 w! S Tr.((a°aa1 ... da3-1) a'a'+^da^2 ... aa»+2)).
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By definition, ^n+2 ls given by
^+2(a°, ..., a"^) = (aw)"'^ + i)! Tr.(a° da1 ... aa»+2).

We just have to find 90 e C^1^) such that 690 = ̂ n — ^+2- We shall construct
96G;+ i(^) such that

2 » + 1

^9(a°, ..., a*^2) = - S Tr,((a° da1 ... da1-1) a' a^^aa^2 ... aa^2))

-^±2)^r,(a9dal...dan^).
n+l

We take y = S (— i)3 <p3, where

^(a°, ..., a»+1) = T^ace(sFaj da^1 ... da'-1).

One has a3 da3^ ... da3-1 e^T+i C ̂ {H) so that the trace makes sense;
moreover by construction one has 9 eC^1^).

To end the proof we shall show that

b^{a\ ...,an+2) = (- I)J Tr.(a° da1 .. . rffl"+2)

+ 5 (- i)i Tr.((fl° da1 ... da3-1) a3 a^da^2 ... da^2)).

Using the equality d(ab) = {da) b + adb, with a, b e s/, we get
b^{a\ ..., fl"4-2) == Trace(eF(ai+1 da3^ ... </a»+2) a\da1 ... da3))

+ (— i)1-1 'Inu^eFa^+^aa14-2 ... aa0 ... aa1-1) a^)

+ 'InM^eFa^aa^1 .. . aa»+2) a°(aa1 ... da3-1)).

Let p = (aa^2 . .. aa"-^2) a°(Ba1 ... aa^-1) e n". Using the equality
Trace(ea ap) = Tr.(a ap) = Tr.(i[F, a] p) V a e ̂ ?(H), sa = — ae,

we get
(- i)'-1 'Inu^eFa^+V^2 ... aa0 ... da3-1) a3)

^r^lT^Fa^lB).
Thus,

b^(a°, .. .,an+2) = Trace(aaJ sFa^1 p) + Tr,(i[F, a3 Fa^1] p)
+ T^ace(sFaj aa^1 j3) = Tr,((Fa(a1 a^1) + i[F, a^'Fa^1]) (3).

One has F^'a^1) + t'[F, a^Fa^1] == — t(aa jaa j+ l — aa^ a^1) and the above
equality follows easily. D

This theorem leads one to introduce the group H"^) which is the inductive
limit of the groups H^"^) with the maps,

H^^) -i H2.'»+2(^).
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With the notation of part II, corollary 10, one has,
H-^^Hr^^^C

where C(<r) acts on C by P(o) -^ P(i) (cf. part II, definition 16).

Definition 2. — Let (H, F) be a finitely summable Fredholm module over ^/. We let
ch*(H, F) be the element o/H*(^) given by any of the characters Tg^, m large enough.

By part II, corollary 17, one has a canonical pairing < , > between H6^^) and
Ko(j^) and theorem 3. i implies the following corollary.

Corollary 3. — Let (H, F) be a finitely summable Fredholm module over ^. Then the
index map Ko(e^) -> Z is given by

Index F,4- == <ch,(<?), ch*(H, F) > V e e Proj M^).

For such a formula to be interesting one needs to solve two problems:
1) compute H*(J^);
2) compute ch*(H, F).

In part II we shall develop general tools to handle problem i.

5. Homotopy invariance of ch*(H, F)

Let ^/ be an algebra over C. In this section we shall show that the character
ch^H, F) eH®^^) of a finitely summable Fredholm module only depends upon the
homotopy class of (H, F). Let Ho be a Hilbert space and H the Z/2 graded Hilbert

space with H+ = Ho, H- = Ho. Let F e JS (̂H), F = [° l}.
LI oj

Lemma 1. — Let p == 2m be an even integer. For each t e [o, i] let 7^ be a graded
homomorphism of ̂  in o^(H) such that i) t -> [F, ̂ {a)] is a continuous map from [o, i]
to ^(W^for any a e ĵ , 2) t -> n^d) ̂  is a G1 map from [o, i] to Hfor any a e ̂ /, S e H.
Let (H(, F) be the corresponding p-summable Fredholm modules over ^/. Then the class in H^2^)
of the {p + 2)-dimensional character of (H(, F) is independent of t e [o, i].

<"s«'

Proof. — Replacing s/ by ^ we can assume that ^ is unital and that 7^(1) = i,
V t e [o, i]. By the Banach Steinhaus theorem, the derivative 8((a) of the map
t ->7T((fl) is a strongly continuous map from [o, i] to oSf(H). Moreover,

W) = 7r<(a) 8,(&) + W 7^(6) for a, b e < t e [o, i].

For t e [o, i] let <P( be the {p + 2)-linear functional on ^ given by
p+i

(p^0,...,^^ S (-i^-^race^^EF,^^1)]...
&==!

[F, 7r^-1)] W [F, ̂ +1)] . . . [F, 7^+1)]).
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Using the equality S^ab) = n^a) S^b) + S^a) 7^(6), V a, b e < one checks that 9,
is a Hochschild cocycle, i.e. b^^ = o, where

p+i
b^{a°, ...^+2) == S (- i)^(^ ...,^+l, ...,^+2)

g==0

+(-I) t '+ 2(p((a '>+2ao ,a l , ....a"^), V^'e^.

Let 9 be the {p + 2)-linear functional on s/ given by

<p(a°, ..., a"-") = {\^a°, ...,a^}dt.
Jo

(Since ||7t((a)|[ and ||8((a)|| are bounded, the integral makes sense.)
One has b<p == o and y(a°, ..., a"+1) = o if a3 = i for some j + o. One has

y(i, a°, a\ ..., a") = f dt 2 (- î Tnu^elT, 7t,(a0)] ...
JO k=0

[F, ̂ (a4-1)] 8,(^) [F, T^1)] . . . [F, 7r,(aP)]).
Let

T,(a°, ..., a") == Trace(s7t,(a°) [F, 7c,(a1)] ... [F, 7r,(a»')]).

One has

^(^.(a0,...,^)-^0,...,^))
•j

= Trace (e ' (7r.+,(a0) - 7t,(a°)) [F, 7t,+,(a1)] ... [F, 7r,+,(aP)])
x " /

+ Trace (e^0) [p, I (7r^,(a1) - ̂ (a1))] . .. [F, ̂ (a")]) + ...
\ L " J /

+ Trace (^(a°) [F, ^(a1)] ... [F,^ (7t^,(aP) - ̂ (a"))] ).

When s -> o one has, using i) and 2),

Trace (^(a0) [F, 7t,(a1)] . . . [F, ̂ (a^-1)] [p, -[ ^^,(0^) - 7t,(^))1 . . . [F, 7 ,̂(̂
x L J J /

^(-i^Trace^F,^0)]...

[F, ̂ (a^-1)] ^ (7t^,(^) - 7 )̂) [F, TT,^^)] ... [F, Tr,^)])

-> (- i)4 Trace(e[F, 7r,(a°)] ... [F, ^(a^-1)] 8,̂ ) [F, ̂ (a^1)] ... [F, TT^,^)]).

Thus <p(i , a0, . .., a") = | T; A == Ti(a°, .. ., a") - Tg(a°, . . ., a") and the result fol-
"o

lows from Part II, lemma 34, since by = o and Bg <p = T^ — T(). D
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Theorem 2. — Let s^ be an algebra over C, H a Z/2 graded Hilbert space. Let (H(, F()
be a family of Fredholm modules over s/ with the same underlying Z/2 graded Hilbert space H.

f° Q.<1Let p^ be the corresponding homomorphisms of ̂  in ^(H^) and F( == . Assume
that for some p < oo and any a e ĵ , L l J

1) t}-> p(+(fl) — Q^^9^{a) P( ts a continuous map from [o, i] to JSf^H),
2) t\-> ^{a) and t\-> O^p^O^) ^ ar€ pi^ewise strongly C1.

Then ch*(H,, F<) eHev(J^) is independent of t e [o, i].

f i o 1 fo i]
proof. — Let T, == , then T<F<T<-1 == and

[o Q.J [i oJ

-r ^ -r-i f^^ 0 1T^(<z)T< l = = _ .
L o Q.< P< (^ ^J

Then the result follows from lemma i and the invariance of the trace under similarity. D

Corollary 3. — Let (H, F() be a family of p-summable Fredholm modules over ^ with
the same underlying ^-module H and such that t ^-> F( is norm continuous. Then ch*{Hy F()
is independent of t e [o, i].

Proof. — Since the set of invertible operators in ^(H^, H~) is open, one can
replace the homotopy F( by one such that t h^ P( is piecewise linear and hence piecewise
norm differentiable. D

Let now A be a C*-algebra and ^ C A a dense *subalgebra which is stable under
holomorphic functional calculus (cf. Appendix 3). By theorem 2, the value ofch*(H, F)
only depends upon the homotopy class of (H, F). We thus get the following commu-
tative diagram,

(Homotopy classes of finitely summable) ^

[*Fredholm modules over ^ }
H6 )̂

\
KK(A,C) —> Hom(Ko(A),Z)CHom(Ko(A),C)

where

a) the left vertical arrow is given by proposition 4 of Appendix 3,
b) the right vertical arrow is given by the pairing of Ko(^) with IP^e^) of part II,

corollary 17 together with the isomorphism Ko(^) w K-o(A) (Appendix 3, pro-
position 2),

c ) the lower horizontal arrow is given by the pairing between KK(A, C) and
KK(C,A) =Ko(A).
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6. Fredholm modules and unbounded operators

Let ^ be an algebra over C. In this section we shall show how to construct
^-summable Fredholm modules over ̂  from unbounded operators D between ja^-modules.
We shall then apply the construction to the Dirac operator on a manifold. We let H
be a Z/2 graded Hilbert space which is an j^-module and D a densely defined closed
operator in H such that

1) eD == -De,
2) D is invertible with D-1 eJSf(H),
3) for any a e ^ / the closure of ^ — D - ^ D belongs to JS^(H) (where

P 6 [I? ̂ E is fixed).

Proposition 1. — a) Write D == ° 2 . Let H^ be the Z/2 graded ^'module
[DI o J

given by Hf == H4-, Hi- = The Hilbert space H+ with a^ == Di-1 a D ,̂ for ^ G DomDi
fo i1

a e ja .̂ Let F^ == . Then (H ,̂ F^) is a p-summable Fredholm module over ^.
LI oj

b) The following equality defines an element T eZ^(^), n == 2W, n>_p — i

T(fl°, . . . ,<!")= (2^)^ w! T^ace(D-l[D, a0] ... D-^D, <]), V ̂  e ̂ .

c) Let (H^, Fg) A^ constructed as in a) /row H- and Dg. TA^ T == T^ — T^ wA^r^
T, ^ ̂  character of (H .̂, F .̂).

Proo/'. — ^ For a e ̂ , let n{a) be the operator in H4' defined as the closure
of Df^D^. Since a — D-1 aD e oS ,̂ we see that n{a) — a is bounded and
belongs to oS^H4-). Since DiDr^i one has n(ab) = n{a) n(b) for a, b e ̂ .
Thus the module Hf is well defined and one has [Fi, a] e oS^(Hi), V a e s/.

b) Follows from c).

c) One has D-^D, a] = | 1 fl 1 ° g^ ̂ ^ ^^. ^j ^ ̂
[ o f l—Da-^DJ

T(fl0, ... ̂ n) = TraceH.((<Zo - D^1 ^o D,) . . . (^ - D,-1 ^n D,))
- TraceH-((^o - D2~1 % D^) ... (^ - D,-1 ̂  D^)).

Now the character T^ of (H^, F^) is given by

T,(a°, ..., ̂  = (27rzr m\ \ Trace ( [̂  ̂ ] F,[F,, a°] F,[F,, a1] ... F,[F,, ̂ ])

== (27^i)w w! TraceH.((fl° ~ Df1 ̂  Di) ... (^ - Di-1 ̂  Di)).

Similarly one has

^{a\ ..., a-) == (2m)w^! TraceH-((^o - IV ô D^) . . . (^ - D -̂1 ̂  D^)) D
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Let us now assume that ^ is a "algebra and H a "module (i.e. <^ ̂  ^> = <S, ^>,
V ^ 7] eH, a e ̂ ). For any 9 e G^), let 9* be defined by

<p^° . . ., a-) = cp(^, . . . ,^) V a, e ̂ .

One checks that 9' e C^ and that (69)* = (— i^ b^\

Corollary 2. — If D ^ self adjoint, then

T - ((am)-^!)-1^) + ((s^)-^!)-1^)*.

Proof. — One has D^ = D^, thus

TraceH-((flo -- IV ̂  Da) ... (^ - D -̂1 ̂  Dg))

= TraceH-((^o - DF1 ^o 1̂ ) . . . (^ - Dr1 ̂  D^))
= (TraceH-((a; - D, a: D,-1) . . . (^ - D, ̂  D,-1)))-
= (TraceH.((Dr1 < D, -<). . . (^ - D,-1 ̂  D,)))-
^-((sTrt)-^!)-1^^...,^). D

We shall define the character of a pair (H, D) satisfying i) 2) 3) as

r(fl0, ..., a^ == (smym! ^ Trace(s D-̂ D, a0] . . . D-^D, ̂ j).

When D == F with F2 = i we get the same formula as in section 2. Since
T = ^ (T! — ^) where T, is the character of a Fredholm module determined by (H, D),

the results of section 4 still hold for the character T, i.e. T^^ == S^ in H^2^^)
for any ^ == i, 2 . . . We let ch'(H, D) be the element of H6^) determined by any
of the T^.

Corollary 3. — Let ^ be a * algebra, H <z Z/2 ^raArf Hilbert space which is a * module
over ĵ , <W D a (possibly unbounded) self adjoint operator in H such that, a) e D = — D£,
(B) ̂  rfowflzw o/D is invariant by any a e ̂  and [D, a] ^ bounded, y) D~1 e J .̂ TA^
D satisfies conditions i) 2) 3) above and for any self adjoint idempotent e eM^(j^), the operator
D, = <?(D® i) e is self adjoint in <?(H®(?). Its kernel is finite dimensional and invariant
under s, with

Signature e/Ker D, == <[>], ch*(H, D) >.

Proof. — Since D-1 e ̂ , one has D-^, a] G ̂ ^ for all a e^, so that D
satisfies i) 2) 3). For the rest of the proof we may assume that k = i. By (3), D, is
densely defined in eH. It is selfadjoint by [57], since D — (e De + (i — e) D(i — e))
is a bounded operator. Let/be the closure ofD-^D, then/is a bounded operator
with /— e e ̂ p and /2 ==/ Let us show that the kernel offe in eH is the same as
the kernel of D,. Clearly ^eKerD, implies ^eKerfe. Conversely, let ^eKerfe.
Let us show that ^ e Dom <? D<?. Let ^ e Dom D, ^ ̂  ̂ . Let T^ ==/Sn = D~1 ̂  D^ .
One has /^ == o, hence ^ -> o. Thus ^-^eDomD, ^-^h>^ and
e D(Sn — ^n) ^ e D^ — ^ DSn = o. This shows that ^ e Dom ^ D and that e Be?, = o.
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Now, as /— e e ̂  fe defines a Fredholm operator from <?H to/H, and its kernel
is finite dimensional. The operator e commutes withfe and one has,

Signature (e/Ker DJ = dim Ker(/<?)^ - dim Ker(/<0^-.

Let us show that the codimension of the range offe in/H4' is equal to dim Ker(/<?)^-.
In fact both are equal to the codimension of the range of ^D^D^H- in eH~. Thus

Signature (s/Ker DJ = Index/<? : eH+ —fH+.

With the notation of proposition i the right side of the above equality is the index
of (Pi^e so that, by theorem 3.1, it is equal to

/ ! r J /te) ^T^"^)-
The conclusion follows from corollary 5 combined with the equality e = e\ D

In corollary 3 the condition (< D is invertible 9? is still unnatural, we shall now show
how to replace it by
Y') (i +D2)-le^/2.

Let H be a Z/2 graded Hilbert space which is a module over the algebra ^. Let D
be a (possibly unbounded) selfadjoint operator in H verifying a) and (B) of Corollary 3.
To make D invertible we shall form its cup product (cf. [6]) with the following simple
Fredholm module (H^, F(,) over the algebra C. We let H^ be the Z/2 graded Hilbert

space H^ = C, we let C act on the left in Hg by \ -> P °1 e J§f(Hc), and we let
ro n Lo oj

Fc= ° ^LI oj

Proposition 4. — a) Let H == H ® Hp be the graded tensor product of H by Hg viewed as
an ^ ® C •=- ^ left module. For any m + o, m e R, the operator D^ = D ® i + mi ® Fp
is an invertible selfadjoint operator in fi which satisfies a) (3) y) ifD satisfies a) (B) y').

b) Corollary 3 still holds under this weaker hypothesis.
c) ch*(H,DJ == [rj eH^j^) ^ independent of m (where T^ ij1 ^ character

./(H,DJ).

Proo/. — ^ One has D2, == (D2 + m2) ® i, so that D^ is invertible. Moreover
I Om11 == (D2 + m2)-1'2® i eJSf^. Since conditions a) (3) are obviously satisfied by D^
we get a).

b) Let ^ = | F »^(Hc). For any ^ == ^2 = ^ e ̂  one has

(^®^)D^®^) = = ^ D ^ ® ^ c ,
thus Signature (e/Ker e De)

== Signature (e ® £c/Ker(^ ® ̂ ) D^(^ ® ̂ )) = <M, ch*(H, DJ>
by corollary 3.

c) Follows from Corollary 2 and Lemma 5.1. D
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The above construction of the operator D^ from the operator D associates to
the Dirac operator in R3 the Dirac Hamiltonian with mass m.

Let now V be a compact even dimensional Spin manifold. Let g be a Riemannian
metric on V, S the bundle of complex spinors and D the Dirac operator in L^V, S) = H.
By construction H is a Z/2 graded Hilbert space, with H^ = L^V, 3d') and is a module
over s/ == G^V). One has:

a) sD = —D£;
(B) the domain of D is invariant under any f e ^/ and [D,y] is bounded;
Y') (i + D2)-1 e ̂ p/2 for any p > dim V.

Thus proposition 4 applies and combined with proposition i b) it yields for each
m eR, m + o an element T^ of Z^^C^V)), the character of (8, DJ.

Theorem 5. — a) With the above notation, T^(y°, .. .yf^ is convergent, when m ->oo,
for any f\ ..../n e ̂ (V).

b) 77^ Aw^ r(/°, .. ../n) is given by

T(/°, .. ./n) = J/° ̂  A ... A <r + (S2 S,) (/°, ...,/-)

+ (S4 %) (/°, • • •,/') + ... + S^2 S^)(/ °, .. •,/')

z^A^r^ S is the canonical operation Z^-^Z^2 (cf. Part 11)^ cOj ^ the differential
form Aj(^, .. .3^.) describing the component of degree 4j o/' ̂  A genus of V ITZ terms of the
curvature matrix of the metric g, and is considered as an element ofZ^^^s/) by the formula

S,(/V1, . . .^-^ = J^/° df1 A ... A ^n-^ A 0),.

Here the manifold V is oriented by its Spin structure.
This theorem will be proven in part III using the technique introduced by

E. Getzler in [28].

7. The odd dimensional case

For nuclear C*-algebras A, there are two equivalent descriptions of the
K-homology K^A). The first, due to Brown, Douglas and Fillmore ([11]) classifies
extensions of A by the algebra Jf of compact operators, i.e. exact sequences, of C*-algebras
and homomorphisms

o->^T-><?^A->o.

The second, due to Kasparov classifies Fredholm modules over the Z/2 graded G*-algebra
A 00 Gi where G^ is the following Z/2 graded Clifford algebra over C,

C^ == { X i , X e C}, i the unit of G^

G,- = { ^ a , X e C } , a2^ i.

285



70 A L A I N C O N N E S

In the work of Helton and Howe on operators with trace class commutators and in
the further work [23] [i2] [20], differential geometric invariants on V are assigned to
an exact sequence of the form,

o -^ J§ (̂H) -> € -> G^V) -> o.

In this section we shall clarify the link of these invariants with our Chern character.
We show that, given a trivially Z/2 graded algebra ^ over C,

1) a^-summable Fredholm module (H, F) over e^® G^ yields an exact sequence,
o ->^P/2 -><? ->j^ ->o;

2) the cohomology class [r] eH^1"1^), m eN, m>,pJ2 of the character of
the above Fredholm module only depends upon the associated exact sequence, and
can be defined directly (without (H,F));

3) when ^ == G^V), the fundamental trace form 9 of Helton and Howe ([31])
is obtained from the character T by complete antisymmetrisation: 9 == Ss(<r) T°. Hence,
using the results of part II (lemma 45 a) and theorem 46) we see that 9 is the image
of T under the canonical map

I : H^-^G00^/)) ^H^-^C^V^C^V)*).

Since the kernel of I is the direct sum of the de Rham homology groups
H^-3(V, C) CH^(V, C) C ... CH,(V, C),

we see that some information is lost in the process when the latter group is not trivial.
This fits with the results of [31] and [25] where the fundamental trace form is used
either in low dimensions or for spheres. Our formalism thus gives an explicit formula
for the lower homology classes of Helton and Howe ([31]). Let us begin with i). We
let H^ be the Z/2 graded Hilbert space H^~ == C, H^" == C. We let G^ act in H^ by,

X+^ah> | ^ GoSf(Hi).
[^ Xj

Lemma 1. — Let ^ be a trivially Z/2 graded algebra, (K, P) a pair, where K is a Hilbert
space in which ^ acts (by bounded operators), while P e -S^(K) satisfies the conditions

a) [P,6]e^(K), \ / b e ^ , b) P2 = i.
[ o PI

Then let H = K®Hi be the obvious ^®C^ module, and put F == i . Then

(H, F) is a p-summable Fredholm module over the Z/2 graded algebra J^®GI.

Proof. — By construction H is a Z/2 graded ^ ® C^ module. The operator F
satisfies eF == — Fs, F2 == i. Finally for any x = = a ® i + b ® o L e ^ / ® C ^ the
graded commutator [F, x] is given by

r^ [p b] - [p a]]
i[F,x-\ = L J e^(H). D

1 - I IM [P^]J
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Lemma 2. — Let T^ be the n-dimensional character of (H, F) for n ̂  p — i. TA î,

a) if n is even one has T,, = o;

b) ifn is odd, one has T^ = T^ ® y? wA^ y ̂  ̂  graded trace on G^, y(^ + (JLa) == (Jl

V ^ + (la e G^, flwrf wA^

T^ ..., a-) == (~ i)""2" ., Trace(P[P, a0] [P, a1] ... [P, a-]), V ̂  E ̂ ;

c) on^ A^y Ty» eZ^(j^).

Proof. — One has by definition (cf. remark 1.6)

T,(̂  ..., x^ == (- i)^,, Tr^° ̂  ... ̂ n), ^ = i[F, ̂ ],

for A;0, ..., x^ ecfl/® Gi, x^ homogeneous, y=Sdeg(^2&+l). Replacing j^ by s^
we may assume that ^ is unital and that its unit acts as the identity in K. We shorten
the notation and replace i ® a by a in j^®Ci. It acts in H by the matrix

1° Aa = . One has XOL == onx for x e ̂  ® Gi and (eF) a = a(eF); this shows
[i oj

that when n is even, any co e Q^ satisfies

aco == coa.

As sa == — as, this shows that for n even, n^>_p •— i, one has

Tr,(co) ==o V <o e Q".

Let n be odd. By remark 1.6, r^0, ..., A^) == o for ^< e js/® C^, A?1 homogeneous,
S W == o (mods).

Since Fa == — aF, one has dw. = o, and hence, for a3 e J2/, ê . e {o, i },
Sŝ . == i (mod 2),

T,(a° a ,̂ . . ., ̂  a6") = ̂ (aa°, <z1, .. ., fl^.

Now for a e j^, one has Az = i[F, a] = [P, a] ® , thus, with

co = aa° rfa1 . .. da^

^ F(F£(O - coFs) = -̂ iFae rffl0 . . . ̂ n

2 2

=^(-I)ro^(P[P,ao]...[P,^])®^ ^].

This shows that
T,(a° a ,̂ . . ., ̂  a6") = <(fl°, . .., ̂  Y(a6" a6! . . . a6").

Finally, the character T^ satisfies conditions a') b') of remark i. 6 y). It follows that

<6Z^(0. a
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To any pair (K, P) verifying the conditions a) b) of lemma i, we have thus associated,
for any odd n ^ p — i, the (n + i)-linear functional T^eZ^(^). We shall now
show that the class ofr^ in H^(ja^) only depends on the extension of ^ by oSf^2 associated
to (K, P) as follows,

i + PProposition 3. — Let ^f, K, P be as above and put Eo = ——— e oSf(K), E = Range
of Eo, p(&) == Eo 6Eo e JSf(E) /or ̂  b e ̂ . 2

a) 0^ AA? p(^) - p(a) p(&) 6 ̂ (E) /or <?// a, b e e .̂
b) Z^ ^== p(^)+^^(E)CJSf(E), W ^' ^ the quotient of ^ by the ideal

j^" =={a ej^, p(fl) eJSfp/2(E)}; ^TZ o^ A^ a natural exact sequence,

o -> JSf̂ E) -> £ -> ̂  -> o.

Proo/'. — a) Since P2 = i, one has E^ = E(). Hence
Eo abE, - Eo dEo 6Eo = - Eo[Eo, ^] [EQ, b] e ̂ (K).

6; By a), € is a subalgebra of ^(E). One has ^^(E) C ^ and p yields an
isomorphism p' of ^ ' with ^/oSf^2. D

Let J = ^p/2 C §. Then for any integer m >, pf2 we have J^ C ^f1, so that
the trace defines a linear functional T on J^* such that

r(fl&) == T(Afl) for a ej^, A ej^, k + q^ w.

Moreover p : ̂  -» ^ is multiplicative modulo J. We shall show in this generality
how to get an element ^m-i ofZ^"1^) and relate it to T^ in the above situation.

Proposition 4. — Let 2 be an algebra, J C S a two-sided ideal, m e N, awrf T a linear
functional on ^m such that

r(^) = T(&fl) for a ej\ b eJS k + q == m.

Let p : sf -> S ^ a /z'T^ar wa^ which is multiplicative modulo J.
a) Let 9 6^ ̂  2m-linear functional on ^ given by

9(fl°, . . ., fl2"1-1) == T(£o £3 . . . £^_a) -- T(£i £3 . . . Sgm-l).

where ê . = p(^ flJ+l) — p(^) p^'4'1), y = o, i, . . ., 2m — i.

n^ (peZ2^-1^).
b) Let p' : J^ -> S satisfy the same conditions as p, w^A p(<z) — p'(a) ej /or a e ̂ /;

then, with obvious notation, one has 9' — 9 eB^1"'^^).
c) Let (K, P) satisfy conditions a) b) of lemma i and T^ ^ ̂ "ZCT by lemma 2, for

n == 2m — i, m>^p. Let S = < ,̂ J = oSf^E), ^nrf ^ be as in proposition 3. T^TX
^ corresponding 9 eZ^1"1^) satisfies

9=-(2-(n+2)^- l)T;.

.2<^<$
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Proof. — a) One has, by construction,
<p(a1, .... a2"-1, a0) = - y(a°, ..., a^-i), y ̂  g ̂

With the notations of a), let ^+ = T(SO £3 ... ez^.g). One has

p^a^1^2) - p(a^+1) p(a^+2) - (p(a^+i aJ+2) _ ̂ ) pCa^a^2))
= p(^) p(a j+ la^+ 2) - p(a^+1) p(a^2) = p(^) e^ - s,p(^+2).

Using this equality, we get

^(a0, ..., a»+1) - y+(a"+1 a0, ai, ..., a")

- T(p(a°) e^ 63 . . .£„- eo ... £„_! p(a"+1)).
Similarly, with <p~ =: ip+ — (p, we have

&9-(a°, ..., a"+1) - <p-(a0 a1, a2, ..., a"+i)

= - T(p(a1) £3 £4 .. .en+i- £1 £3 ... e, p(a°)).

Thus (̂a°, ..., a»+l) = y+(an+l a0, ..., a") - ̂  ... ̂ _, p^))

- <p-(<z° a\ ..., a"^) + r(p(a1) ̂  ... ̂ ,) = T(A^ ... s^_J

where A = p(a"+1 a° a1) - p(a"+i a") p(ai) - p(a»+i) ^ _ (p(a"+i a» a1)

-p(a"+l)p(aoa l))+£„^.lp(a l)=o.
Therefore yeZ^(^').

b) Let L = p' — p; then L is a linear map from s/ to J. With p, = p + tL

it is enough to show that the cocycle <p, associated to p,, satisfies — <p, = A^, for a

continuous family ^, 6 C!;-1 )̂. Clearly it is enough to do it for t = o. Letting
, i d \ ,

<P = (-,. <P( I » we have
\<" /<-o

V'(ao,...,aB)=T(A-B),

where A = SQ ̂  ... s«_i + £o £2 £4 • • • £»-i + ... + £o £2 • • • <-i,

B = £1 £3 . . . £„ + £1 £3 • • • £n + ... + £1 £3 • • • £„

and e;. = L(a '̂ a^1) - p(^) L(^'+1) - L(ffQ p(ai+l).

Let W, ..., a"-1) = T(L(a°) s, £3 ... £„_,) and let
4»,(a°, ..., a"-1) == ^(a^ a^1, ..., a^--1).

Using the same equality as in a) we obtain

(̂a°, .... a") = T((p(a°) £1 £3 ... L(a2t+l) ... ^_,)
-(£o...^_2p(a ! t t)L(a2t+ l)...e„_,)

+(£o•.•£2t-2L(a2 fco2 ' t+ l)...s„_l)
-(£o...£2,-2L(a2t)p(a2t+l)...e„_l)

+ (£o • • • £2&-2 ^-(a21') ^+1 ... s,_2 p(a"))
- (p(a- a0 a1) - p(a" a°) p(a1)) ^ ... £2,_2 L(a2&) ̂ ... s^)).

2«9
10
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The last two terms cancel the first two in
^-i^0,...,^) =T((p(a»a°a1)

- p(a») p(a° a1)) ̂  ... ̂ -2 L )̂ ... e,,̂ )
- (p(a1) e, ... L^) ...£„)- (e, ... ^_3 4_i ...£„)

-(e,...!^-1)...^.^0)).

Thus we get, for k = i, 2, ..., OT — i,

^-i + fo) (a°, ..., a") = T((p(a°) ei ... e^_i L^1) ... e,,̂ )

- (p(a°) e, ... e^_3 L^-1) ... £„_,) + ̂  ... ̂ _, ̂  ... ̂ _,)

— (ei ... e^-aeafc-i • • • ej)-

As ^o(a°, ...,<»")== T((p(a°) L(a1) ̂  ... £„_,) - (p(a°) e, ... L(a»))

+ (eo £2 ... e^_i) — (si ... e,_2 <)),
one obtains

n — l
S A<k = y'.
,«o

c; Let p(a) = Eo aEo e .S?(E), where Eo = I + p. One has
2

p(^0 a1) - p(a°) p(^) = ~ Eo[Eo, a0] [Eo, a1] = - ' EJP, a0] [P, <z1].
4

Therefore, since EQ commutes with [P, a°] [P, a1],

^ (p(^ ̂ 4-1) - p(^) p(^4-1)) = (- 4)-w Eo n [P, ̂ .
Thus we obtain

<p(a°, ..., a^-1) = Tracer £2 ... £2^-2) - Tracer £3 ... £^_i)

= (- 4)-mTrace(Eo( 11 [P, ̂ ] ~ A [P, fl^1])).
J=0 j=0

Similarly, if we let E; = i - E^, E' = Range of Eo, p'(a) = EoflEo e J^(E') for
a e ̂ , we have, with obvious notation,

<p'(a°, ...,^-1) == (-4)-WTrace(Eo(^ [P, ̂  - 11 [P,^'4-1])).
j=o j==o

One has P == aEo — i = Eo — Eo, thus
y^=(^4)-(^l)n*-l(,J-l^.

Since EQ + Eo = i , one has

(? + ?') (^ ... ̂ n) = (- 4)-" Trace( 11 [P, ̂ ] ~ fl [P, ̂  +1]) = o.
j=o j=o

Thus y=-2-2w-l^-l<. D

-2^
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The construction of the character of an extension ofj^by oS^2 can be summarized
as follows:

Theorem 5. — a) Let E be a Hilbert space, p a linear map of ̂  in JS?(E) which is multi-
plicative modulo ^p/2; then the following functional T^, n = 2m — i, m>_pf2 belongs
to ZM:

T °̂, ..., 0 = - s^2., Tracer ̂  .. • ^n-i) - (si £3 ... ej),

wA^ ê . = p^'fl^1) - p(^) p^'4-1).
b) TA<? c/^ o/' T^ in H^(ĵ ) depends only on the quotient homomorphism

^-^^(EY^^E).
c) The class of T^ ̂  H^(J3/) u unaffected by a homotopy ^ such that

1) 1|P<(^) — Pf^) P<(^) ||p/2 is bounded on [o, i] for any a, b e j^;
2) /or a e e ,̂ S e E, the map t -> p,(a) ^ i.? G1.

d) TA^ index map K^j^) -> Z is given by

Index p^u) = <M,T^> V^eGL(^).

e) 0^ ̂  S[TJ = K^] m HrM.

Proof. — a) and &J follow from proposition 4.
c ) Follows from the proof of proposition 4.b).
d) Follows from the equality

Index pW = Trace(i - p^-1) ̂ {u)^ - Trace(i ~ p'(u) ^(u-1))^1

(cf. Appendix i) and the definition of the pairing between K^) and H^) (Part II,
proposition 15).

e ) Follows from the following algebraic lemma, whose proof is left as an exercise
to the reader.

Lemma 6. — With the notation of proposition 4 one has

[^ S) (<p )̂ = 4 [rn + ̂(^S)(<p^)=4(^+^92^i

We shall thus define the Ghern character of the given extension as the element of
H^^) == Im^H2^--1^), S) given by any of the characters T^, n odd.

Let us now clarify the relation between T^ and the fundamental trace form of
Helton and Howe ([31]). We assume now that ^ is commutative. The fundamental
trace form is defined, under the hypothesis of theorem 5, by the equality,

T(fl°, ..., aT) = Trace(Se((T) p(a0^) ... p^)))

where a runs through the group ©^i of all permutations of {o, i, . . . , % } and e((r)
denotes its signature.
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Proposition 7. — Let ^ be a commutative algebra^ p and. E be as in theorem 5,
p^^.^EVJS^E).

a) For p == i the fundamental trace form T(a°, a1) is equal to -1-. rJfl0, a1).
OTVt

b) For p > i, 07^ A^y

W • • - fln) = (^" Ir? + I) ^(o) T,(a°, ̂  ..., ̂ )).
2 "M

Proof. — a) One has, by definition,

Ti(a», a1) == (Trace(p(a° a1) - p(a«) p(a1))

-Tnu^a^o) - p(ai) p(a«))).

As a1 a° = a° a1 one gets the result.
b) For any n + i linear functional ^i on j^, let Q^> be given by

6+(a°, .. ., a") = S S(TT) ^(a^0), ..., a"'"').
"es,+i

Since T« satisfies ^(a\ ..., a", a°) = — T»(a°, ..., a"), one has
S s(a)T„(ao,ao(l),...,ao("')

oeSn
= »n .ei."" T•<'f<"• • • - rf<") = »-net-

Let us write T,, = T^ — T,,", where, with the notation of theorem 5 a),
T^(a°, ..., a") = - 2"+2 ̂  Trace(eo e, ... e»_i).

One has ^(a\ ..., a") = <(a\ ..., a°), and hence

^=0^-6^= 26<.

As in the proof of a) one has
P(^^+I) __ ̂  p^+i) _ (p(^+i^) _ p^+i) p^))

= ^(a2^1), p(a2fc)].

Let otgt be the transposition between 2k and 2^ + i; then

("n1 (i - oj) ̂  = (- i)" (- 2»+2 .„)
fc — 0

X Trace([p(a°), p(a1)] . .. [p(a»-1), p(a»)]).

Since 6(1 — o^) = 26, we get

9^ ==2-m6<^,

where ^(a°, ..., a") == (— i)»1 (— 2"-1-2 cj
X Trace([p(a°), p(a1)] ... [p(a"-1), p(a")]).

The result now follows easily. D
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8. Transversally elliptic operators for foliations

Let (V, F) be a compact manifold with a smooth foliation F, given as an integrable
subbundle F of TV. We shall show that any differential or pseudodifferential ope-
rator D on V, which is transversally elliptic with respect to F yields a finitely summable
Fredholm module over the convolution algebra ^ = G^°(Graph(V, F)) ([15], [i6]).
We deal here with the obvious notion of transversally elliptic operator; a more general
notion will be handled in Part VI.

Let E^ be complex vector bundles on V which are equivariant for the action of
Graph(V,F) on V. This means that for any y e Graph(V, F), ^(y) = x, r(y) ==j,
one is given a linear map ^ ->• yS of E^ to E^ with the obvious smoothness and compa-
tibility conditions.

Definition 1. — Let D be a pseudodijferential operator of order nfrom E4' to E~. Then D
is transversally elliptic with respect to F if and only if its principal symbol is a) invariant under
holonomy, and b) invertible for S 1 F, S 4= o.

More explicitly, a) means that for any y e Graph (V, F), y : x \->y, one has
^(W^ S) = Y^S) T'S v ^ e F^ ^here rfy is the differential of the holonomy, a linear
map from TJE, to Ty/Fy. Let E = E4- © E-, and let us show that each of the usual
Sobolev spaces W^V, E) of sections of E is a module over ^ == C;:°(Graph(V, F)).
Let G==Graph(V,F).

Lemma 2. — For any s e R, the equality

(W)W =J^(Y)/(A ^C^(G),/6WWE),j^(y),

defines a representation of C^°(G) in W^V, E).

Before we prove it, we have to explain the notation. Elements of C^°(G) are
not quite functions but sections of the line bundle s*(ft)y where s : G -> V is the source
map and D the line bundle (trivial on V) of i-densities in the leaf direction. This gives
a meaning to the integral f ^k(^)f{y) for scalar functions /. For sections of E one
has to replace f{y) e Ey by y/(j0 e ̂  ^d then the integral is performed in E.,.

When dealing with Sobolev spaces which are not spaces of functions (i.e. s < o)
the statement means that k * extends by continuity to W8.

Proof. — The definition of the Sobolev spaces W^V, E) is invariant under diffeo-
morphism. More precisely given open sets V^, Vg C V and functions <p,eG^(V)
with (support y,) C V,, any partial diffeomorphism Y : V^ -> Vg covered by a bundle
map defines by the formula T^ = 91 Y^g ^) a bounded operator in each of the W8.
Hence (as in [15]) to show that k * is bounded in W8 one may assume that
k e C^(Gw) C C^°(G) where W is a small open set in V (i.e. the foliation F restricted
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to W is trivial) and G^ is the graph of the restriction of F to W. Then one can write k *
as an integral of operators of translation along the plaques of W and the statement
follows (say by taking the local Sobolev norms to be translation invariant). D

Note that unless F^ = T^ for all x, the operators k * are not smoothing; they are
only smoothing in the leaf direction.

Lemma 3. — Let D be a transversally elliptic pseudo-differential operator from E4" to E"
(both bundles are holonomy equivariant and the transverse symbol of D is holonomy invariant).
Let Q^be any (1) pseudo-differential operator on Vfrom E~~ to E4' with order — q (with q = order D)
and transverse symbol a^1,

Let H4-== W^V, E4-), H- = W'-^V, E-) and F == [° ^1. Then (for any

s eR) the pair (H, F) is a pre-Fredholm module over ^ = G^°(G). It is p-summable for
any p > Godim F == dim V — dim F.

Proof. — Let us first show that A(F2 — i) and (F2 — i) k belong to ^(W8)
for any j, and p > n^ == Godim F. (We take n == dim V, n^ == dim F, Hg = Godim F),
Both DQ— i and QD —- i are pseudo-differential operators of order o on V with
vanishing transversal symbol, and we shall show that if S is such an operator, then kS
and Sk are in oSf^W8) for any k eG^(G). It is enough, as in the proof of lemma 2,
to prove it for k e C^(Gw), where W is a small open set in V. This shows that the
problem is local, and hence we may as well take for (V, F) the torus T" = T"1 x T"1

(T == R/Z) with the foliation whose leaves are the T"1 X {x}, x e T"'. Let o- be the
total symbol of S; then S is of the form

(S/) {x) = (^-J^ a{x, ̂ )f{x - .) xM ds d^

where s varies in R" (which acts by translations on T"), $ in Ry» = (R")*, and ^ e C^R")
is identically i near o.

One has G == T"1 x T"1 x T"' and k e C^°(G) acts on functions by

(kf) (x) == fk{x^y^ x^)f(y^ x^) dy^ where x == (^, ̂ ) e T".

To show that Sk e oS^W8), it is enough to show that, given j, the oS^-norm of
(i + ^^SA^i + A)"872, k^{x) = exp z27r< a, x >, does not grow faster than a poly-
nomial in a == (a^, (3^, pg) e Z"^^4'^. Also since any ky^ as an operator is the product
of a multiplication operator by a k^y a' of the form (— p, p, o), it is enough to estimate
||(i +A)8/2S^(I + A)"^2)!^, and as k^ commutes with A one is reduced to the
case s = o. Finally it is enough to estimate S || S^ ky. ||p, where S^ has total symbol a^
independent of x:

^=fei^x>a(x^)dx, aeZ-.

(1) For instance take Qwith symbol CT(S) = (i —x) CTD1(/>(S))^ where % £ C?(F) is equal to i on V C V1

and p : T* -> F is a linear projection.
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Now both S^ and k^. are diagonal in the basis ^, [e^,.{x) = exp t2TC<oc", A?>,
a" eZ"), The operator S^ multiplies ^ by (^ * x) (27ra"), where )G is the Fourier
transform of •/), and k^ (a' == (— (B, [B, o)) multiplies ^, by o if 04' 4= (B and by i
if 04' = p. Thus

(||S,^||,)^=S|(o,*x)(27r(p,a,'))|^
OCg'

This is finite for p > n^ since by hypothesis one has for or (and hence c^ * %) an inequality
\^ ^S2)1^C(I+ II^H) (I + II^H +||S2ir1.

Since the same inequality holds for the partial derivatives with respect to x, one gets
that the G^'s (for the a's) are of rapid decay in a, thus the conclusion follows.

Let us check that [F, k] e ̂ p, p > n^ for any k e C,°°(G). If P : W8 -> W8-^
is a pseudo-differential operator of order k and its principal symbol vanishes on F1,
we have kf and Pk in oSf^W8, W8""^ for any p> n^. This shows that to prove that
if the principal symbol of P is holonomy invariant one has [P, k] e oS ,̂ one can assume
that k eG^(G^), W a small open set. One is then back to the above case where
V = T^ X T^. Applying again the above result one can now assume that P is exactly
invariant under the action of the compact group T^.

Now the action of k e C^°(G) in W8 is of the form

^-L^W)^
where U< is the translation by t e T"1 and k^ is the multiplication by a smooth function
of x e V (and t e T^). Thus [P, k] = J [P, Aj U, dt = f P< U< dt where P< is
pseudodifferential with order — i. Using Fourier expansion one checks that any
k e G^G) is of the form k = ̂  • k^ thus [P, A] == [P, k^ k^ + ̂ [P, ̂ ] and both
terms are in -S^ by the above result. D

Remark 4. — In the special case when the foliation (V, F) comes from a locally
free action of a Lie group H (not necessarily compact)) the graph of (V, F) is equal to
V X H. The convolution algebra G^°(H) becomes a subalgebra ofG^(G) (by composing
/ e C^°(H) with the proper projection V x H -> H). Thus given a transversally elliptic
operator D for (V, F) one can restrict its ^-dimensional character (n >_ dim V — dim F)
to C^°(H). If both D and a parametrix Q^ are exactly H-invarianf, then one can compute
this restriction T^ from the distribution character ^ of D. The easy computation gives

^=Sm^ (n=2m).

The central distribution ^ is defined as in [2] by the equality
x(/) = Trace(action of/in KerD) — Trace(action of/in KerD^)

(cf. [2], Remark, p. 17).
In the simplest examples with H non compact, the distribution character % of D

is not invariant under homotopy. However, by the above results, its class in H*(C^°(H))
is stable.

295



80 A L A I N C O N N E S

9. Fredholm modules over the convolution algebra of a Lie group

Given a Lie group G, we let ^ == G^G) be the convolution algebra of smooth
functions with compact support.

The Miscenko extension ([50]) gives a natural construction of Fredholm modules
over ^ == G^°(G) parametrized by a representation TT of the maximal compact sub-
group K of G.

In this section we shall show in the two examples G = R2 and G = SL(2, R)
that the corresponding modules are j^-summable and go a good way in the computation
of their Chern characters. For SL(2, R) we shall find a precise link with the surface
of triangles in hyperbolic geometry which is a standard 2-cocycle in the group cohomology
with coefficients in C. This link appears very natural if one has the example of G = R2

in mind. The method that we use goes over to semi-simple real Lie groups of real
rank one. For such groups, in the corresponding symmetric spaces G/K the angle
under which one sees a given compact set B C G/K from a distance d tends to o as e~~cd

when d -^ oo. Thus the ^-summability follows as in lemma i below using Russo's
theorem ([63], p. 57). For groups of higher rank the problem of constructing natural
^-summable Fredholm modules is open.

The case G == R2

Let G == R2. We define a Fredholm module over the convolution algebra
^ == G,°°(G) as follows: H4- == L^R2), H- = L^R2) (with the action of ^ by left

fo D-1]
translation), and F == where the operator D : H+ -^H~ is the multipli-

[D o J
cation by the complex valued function

<p(^) === zl\ z \ V z e R2 = C, z + o.

The function 9 is not defined at z == o but this is unimportant since only its class
in L°°(R2) matters to define D.

Lemma 1. — The pair (H ,̂ F) is a Fredholm module over ^ = G^(R2). It is p-summable
for any p > 2.

Proof. — One has F2 == i by construction. For / e C^°(R2) and S e H4', one has

([D,/] S) M = ?M ffW ^ ~ t) dt - ff{t) 9(. - t) ̂  - t) dt

=SAs-sf)^s)^^sf))^)dsf.

Thus it is the integral operator with kernel k{s, s ' ) ==f(s — s ' ) (9^) — 9(^')). Since
f has compact support one has k(s, s ' ) = o if d{s, s ' ) > G for some G < oo, where
d is the Euclidean distance. Also for \s\ large and d{s, s ' ) <^ G, the term y(J) — (p(J')
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is of the order of i/|^|. This shows that for any p> 2, with q == —-—, one has
p — i

f^k^s^^dsy^ds^ oo (and similarly for the kernel ^==k{s\s)). So Russo's
theorem ([63], p. 57) gives the conclusion. D

We shall now compute the character Tg of (H, F). By a straightforward compu-
tation, as in section i, one gets

^2(/W2) = 2^J^^^,/0^)/1^1)/2^) C{S^ S\ .2) ^ds2

where the function c{s°, s1, s2), s1 e R2 is given by

°̂, s\ s2) = J(B(^, s) (3(^, s - s°) (B( ,̂ s - s^ - S1) ds

with ^{s°,s) = i — 9(^)~1 <?(.$• — s°). To get this, one just has to write the trace
of an integral operator as the integral (k{s, s) ds.

We shall compute <;(^°, j1, s2); we try to prove the next lemma in such a way that
the proof goes over to the case of hyperbolic geometry.

Lemma 2. — One has c{s°, s1, s2) === 2in(s1 A s2).

Proof. — Let us first simplify the integrand (B(.y°, s) ^{s\ s — s°) (3(J2, s — s° — s1).
For that we consider the Euclidean triangle with vertices o, j°, s° + s1 (remember that
s° + s1 +s2 == o). Then (p(.?)-1 <?(.$• — s°) = e^ where a = ̂ f. (o, s, s°) is the angle (between
— n and 7r) obtained by looking at the edge (o, s°) from s. Thus (B(.y°, s) = i — e^.
Similarly (B(.y1, s - s°) = i - ̂ 'p where (3 = ̂  (o, s - s°, s1) == ̂  (j°, s, s° + s1) and
^s-s^s^^i -^ where y - ̂  (o, ^ - s° - s\ - s° - s1) == ̂  (s° + s\ s; o).
Since a + P + Y ^ 0 we get

(i - ̂ a) (i - e^) (i - ̂ Y) = - ̂  - ̂  - ̂  + e-^ + e-^ + e-^

== — 2z(sin a + sin p + sin y).

Define

S(A, B, G) = J (sin ̂  AjB + sin ̂  BsC + sin -<^ CsA) ds.

Then c{s°, s\ s2) == - 2?S(A, B, G),

where A = o, B = s°, G == s° + s1 form the triangle A, B, G. The integrand is
o(|j|~3) for large s so that the integral is well defined.

To prove that S(A, B, G) is proportional to the Euclidean area of the
triangle (A, B, G), the main point is to show that S is additive for triangles T^, Tg such
that TI u T^ is again a triangle. Let us prove this. Let cr be the symmetry around
the straight line which contains three vertices, say B^, G^ == B^ and G^ and let A^ == Ag
be the only vertex outside this line. Writing the integral defining S as a limit of integrals
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over (T-invariant subsets eliminates the terms of the form sin^E^Ci, sin^Bg.yGg
and sin ̂  B^ sG^. Moreover one has sin ̂ . Gi sA^ == — sin <^ A^ ̂ 2. The equality
S(Ti u Tg) = S(Ti) + S(Tg) is now clear.

The next point is that S(A, B, G) ̂  o if the triangle ABC is positively oriented
(i.e. if the orientation ABC fits with the natural orientation of R2 = C). To see that,
consider the disk D^ with center A and radius R. Then DR is invariant under the
symmetries around both sides AC and AB so that the integral expressing S reduces
to J sin ̂  BjG. Let cr be the symmetry around BC, then the complement of the line BC
in DR has (for R large) two components D' and D" such that a(D') C D". As on
D'^^D') one has sin-4 BjG ̂  o, one gets the answer.
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Now we can define the functional S on all subsets C of R2 which are finite unions
of closed triangles. The collection ^ of such subsets is a compact class in the sense
of probability theory and thus we see that S defines a translation invariant Radon
measure on R2. Thus S is proportional to the area, and the constant of proportionality
is easy to check.

Corollary 3. — The ^-dimensional character Tg of (H, F) is

^(/VV^-J/0^^^

where f°J\f2 e C,°°(R2) have Fourier transforms/i.

The case G == SL(2, R)

Let G = SL(2, R). In fact we shall use the realization ofG as SU(i, i) i.e. 2 by 2
|a Pi

complex matrices ^ = _ , M2 -— | (B | 2 == i. As maximal compact subgroup K,
LP ^

fl^0 o 1 }
we choose K = ^ _^ , 6 e R/27TZ , and we identify G/K with the unit disk U

[ I- ° e J j a^ + p
in the complex plane C, on which G acts by gz = ———= for z e U, g e G. To the

/[•^ o 1\ . ^ + a

character ̂  ofK given by ^ _ = e^ corresponds an induced line bundle E.
\L° e ] /

on U whose sections correspond canonically to functions S on G such that
S(^) = XnW"1 SC?) tor k e K , g e G. The tangent bundle of U considered as a
complex curve corresponds to /g where /g(^) = ^i2e which is the isotropy representation
ofK. At each point p e U, p 4= o, there is a unit tangent vector <pQ&) e T (U), i.e. the
one-dimensional complex tangent space T = Eg, such that o belongs to the half-line
starting at p in the direction of <p(/0. (We use the unique G-invariant metric of cur-
vature — i: 2(1 — | z |2)"1 \dz\ as a Riemannian metric on U.)
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Being a section of Eg (on U/{o}), 9 can be considered as a function on G; given
fa P]

gf^G, g==\ - , ,?^K. one gets
LP ^

l̂̂ l

It has a simple interpretation in terms of the KA4' K decomposition. One has
([cht shH }

^{kak') = x-2(^), where A = , ^ e R , and A, k' e K, a e A4-.
[[sh ^ ch ^J J

For each n e Z we let D^ be the operator of multiplication by 9 from L^U, EJ
toL^E^) 0).

Lemma 4. — a) For each n e Z, the pair (Hn, F,,) y a Fredholm module over s/ = G^°(G),
w^ H^^L^U.EJ, H,7 = L^U, E^,),

F f ° l̂^k o j -
b) TA^ direct sum (®H^,®FJ ^ fl/jo a Fredholm module and is p-summable for any

p > i, ^y well as all (H^, FJ.

Proof. — The algebra J2^ acts by left convolution in H^. One has by construction
F^ = i, F2 == i (where F==©FJ . It is clearly enough to prove b). Now
H4' =®H^" = L2(G) where ja^ acts by the left regular representation; also H~ == L2(G),
and the operator D == ® D^ is given simply by the multiplication by the function <p(^).
As in the case of R2 we get

(PV] S) {g) == 9(5) JW) S(^) ̂ ' - JW) 9(5') S(5') ̂ '
-J^^^)^)^'

where k{g, g ' ) == (9^) - <p(^))W).

We want to show that (H, F) is 2-summable, i.e. that

Jl^^l2^'^.

Sinceyhas compact support, it is enough to show (with d a left invariant metric on G) that

JkQr1)-^'-1)!2^^
where d{g, g ' ) < G < oo

(1) In this special case G == SL(2, R) we rely on the natural conformal structure of U = G/K, but the
true nature of the construction is to take the Clifford multiplication by cp (cf. [50]) for which one just needs an
invariant spin0 structure on G/K.
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(more precisely JM{g)2 dg < oo where M{g) == sup {| 9(5-1) - 9(^-1)!, rf(^ g ' ) ̂  0}].
But by construction, if we let p •== gK, p ' = g ' K e U, then | <p(^~1) — ^{gl~l)\ is of
the order of the angle ^fipOp'. The basic formula in hyperbolic geometry

ch c == ch a ch b — sh fl sh b cos <^ C

implies that | ̂ [g)~1 - ̂ g'~1) \ is of the order of exp(- d{o,p)). Since the area of
the disk of center o and radius d == d(o, p) is of the order of exp d, one easily gets
fM(g)2dg<aD. D

As in the case ofR2 we shall now compute the 2-dimensional character T^ of (H, F).
(The computation ofr^ (for (H^, FJ) and its relation with characters of discrete series
is postponed until part VII.) Note that obviously Tg = ST^. By a straightforward
computation we get

^(/w2) = ̂ J^^fWfWfw c(g^g\g2) dg^g2

where the function c{g\g\g2), g' e G, g^^2 = i, is given by

^g°,g\g2) = ̂ {g\g) ̂ g\ {g0)-^) P(^ ̂ gVg) dg

with P^^i-^)-1?^0)-1^).
We now relate c(g°, g\ g2) to the 2-cocycle A{g1, g2) which is given by the (oriented)

area of the hyperbolic triangle (in the Poincar^ disk U) with vertices o, (^^'^o), ̂ (o).
Note the relations

A(^, g2) == A(^ k, kg2) = A{g\ g^ k) = A{g\ g^) V k e K

and A(^0, g1) == A{g\ g^) = A(^, ̂ o) for ^ gi ̂  _ ,.

Lemma 5. — One has c^g0, g\ g2) == ^inA^g1, g2) {where g0 g1 g2 = i).

Proof. — Let A = o, B = ̂ (o), G == gogl{o), and let us consider the hyperbolic
triangle T == (A, B, C) in the Poincare disk U. For g e SL(2, R) let p == g{o) e U.
The value of ^(g)~1 <?{{g°)~1 g) only depends on the three points A, p, B. Since
^C?0)'"1^)? considered as a function of g, is the section of the tangent bundle T(U)
which to p e U assigns the unit tangent vector at p looking at g°{o) = B, we get
?(5)~1 P^0)"1 g) == exp i ̂  ApB. Thus [B(^°, g) = i - exp i ̂  A^B. Also

^(^r^-i-exp^
where P = ̂  (o, {g°)-1 ̂ (o), ^(o)) = ̂  (^(o), 5(0), 50 ̂ (o)) = ̂  Bj&C,

and similarly one has

P(^ (^° 51)-15) = i - exp ZY, Y = ̂  CM.

As in the Euclidean case one has a + p + y = o so that the same computation as
in lemma 9.2 gives c^g0, g\ g2) == — 2z'S(A, B, G), where

S(A, B, G) = J^ (sin <4: A^B + sin ̂  BpC + sin ̂  Cj^A) ̂ .
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Now the proof of lemma 9.2 is written in such a way that it goes over without
changes to the hyperbolic case. For instance it is still true that the disk D^ with center A
is invariant under the symmetries around AC and AB while the complement of the
line BG in D^ has two components D', D" with <TBC(D') ^ D"- Thus as in lemma 9.2
one gets a G-invariant Radon measure on U so that S is proportional to the hyper-
bolic area.

Appendix i: Schatten classes

In this appendix we have gathered for the convenience of the reader the properties
of the Schatten classes -S^ needed in the text. Let H be a separable Hilbert space,
o§^(H) the algebra of bounded operators in H and ^^(H) the ideal of compact operators.
For T e ̂ (H) we let ^(T) be the n-\h singular value of T, i.e. the n-th eigenvalue
of | T | == (T6 T)172 (cf. [63]). By definition, the Schatten class ̂ (H) is, for p e [i, oo[,

JS^(H) = { T EJS?(H), S^(iy< oo}.

Proposition 1. — a) (̂H) is a two sided ideal in o5?(H).
b) oSf̂ H) is a Banach space for the norm

\\T\\^^{W^
c) (̂H) C ̂ (H) for p ̂  q.

d) Let p,f,re [i, oo] with 1 == -1- + I. For any S e ̂ "(H), T e ̂ (H), one

has STe.^(H) and ||ST||^ ||S||J|T||,.

Proof. — See [63].
One could equivalently define jy(Ii) starting from the trace on ^?(H), which

we consider as a weight, i.e. a map: ^?(H)'1' -»- [o, oo] defined by

Trace(T)=S<T^,^>

for any orthonormal basis (^J of H and any T e.S^H)'1'. (See [51] theorem 2.14.)

Proposition 2. — a) .§?P(H) = {T e ̂ (H), Trace | T I" < oo}.

b) For Te^H) one has ||T||p = (Trace ITÎ .
c) Trace (A* A) = Trace (AA*) for all A e.S?(H).
d) The trace extends by linearity to a linear functional on jSf̂ H) and

Trace(T) = S < T^, ̂  > for T e ̂ (H)

and any orthonormal basis (^) of H.
e) |Trace(T)|^||T|[i/or Te^(H).
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Proof. — See [51] and [63].
The next theorem, due to Lidskii, expresses Trace T from the eigenvalues of T.

Since »Sf1 C JSf°° the eigenvalues of T e ̂  form a sequence (Xj, with \ ->o when
n ->oo (see [63]).

Theorem 3. — Let T e -^(H), then S ]VT) | < oo W Trace T == S\,(T).

Corollary 4. — Let A, B e ̂ f(H) be such that AB ̂  BA belong to .^(H). 7^
Trace(AB) = Trace(BA) (cf. [63], p. 50).

We shall now prove two results needed in part I. They are an easy modification
of lemma 3.2, p. 158 in [30].

Proposition 5. — Let p e [i, oo[, S, T e ,Sf(H) and assume that [S, T] e JS (̂H).
Then:

a) if f u an analytic function in a neighborhood of the spectrum of S, one has
[/(S),T]e^(H);

(3) if S is selfadjoint and if f is a G00 function on the spectrum of S, one has
[/(S),T]e^(H).

Proof. — a) Let y be a simple closed curve containing the spectrum of S, with
f analytic on y« Then,

/(^^(i/a^^/M^-S)-1^

and hence, [/(S), T] = (i /zw) ̂  f{\) [(^ - S) - \ T] d\.

Now [(•>. - S)-1, T] = {\ - S)-1 [S, T] (X - S)-1, which implies that the map
^ ̂ /W [(^ — S)~1, T] is a continuous function from y to .^(H). Thus the integral
converges in ^?P(H) and [/(S), T] e ̂ "(H).

P) Let us show that 11 [e1"3, T] | |p is 0(|f|) when < -> oo. For any Ue^(H),
with [U, T] e £'" one has,

ll[U»,T]||^nl|[U,T]||j|U||»-1 V » e N .

This shows that H^*'8, T]||p is bounded on any bounded interval. Since, with
U = e^3, one gets,

|| [^T] ||p ̂ n || [^T] ||p VneN,

it follows that l l iy^Tl l lp^G^ + |<|) for all t. Then take / to be compactly
supported, so that f=g with (i + \t\) g eL^R). This yields,

\\u^^<-\\^m\^^m^t<_G\\g^\{^^\t\}it<^ a
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Proposition 6. (Cf. [34].) — Let p e [i, oo] and P,Qe»S?(H) be such that
i - PQ,e JS^(H), i -- QP e <^P(H). T/CT P is a Fredholm operator and for any integer
n >: p, one has,

Index P = Trace(i - QP)" - Trace(i - PQ)^

Proo/'. — Since i — QP and i — PQ are compact operators, P is a Fredholm
operator. Moreover i is an isolated point in

K = {1} u Spectrum(i — PQJ u Spectrum(i — QP).

Let Y be the boundary of a small closed disk D with center i such that D n K == {i} . Set
^ i F d\ i f d\

e ~ 2m j^ \ — (i — QP)5 J ~ 2w J^ — (i -- PQJ'

Then e == e2, f==f2; E^ = Range of^, F^ == Range ofy are finite dimensional, and
admit respectively Eg = Ker ^, Fg = Ker^ as supplements in H. For any (JL e C
one has,

QQx - PQ) = (pi - QP) Q,

Thus, for any X ^ K, one has
(X - (i - QP))-1 €1= Q.(X - (i - PQJ)-1.

This shows that Q,/= cQ, and similarly that PC ==/P. Thus,
P(Ei)CFi, P(E,)CF,, Q(F^)CEi, Q(F,)CE,.

Let P, (resp. Q^) be the restriction of P (resp. QJ to E -̂ (resp. Fj), j = 1,2. By cons-
truction the restrictions of QP to Eg and of PQ to Fg are invertible operators, and hence,

a) Index P == dim E^ — dim Fi,
&J Trace(i^ - Q.2 ̂  = Trace(ip. - Pa Q^ V ^ >_ p.

The spectrum of i^ — Qi PI and of ip, — PI Q,i contains only { i} , thus,
c ) Tracer - Qi Pi)' - Trace(i^ - PI QJ" = dim E, - dim F^.

Combining a^), b), c ) , one gets the conclusion. D

Appendix 2: Fredholm modules

The notion of Fredholm module is due to Atiyah [3] in the even case, and to
Brown, Douglas, Fillmore [n] and Kasparov [42] in the odd case. Their definitions
are slightly different from the definition below and our aim is to clarify this point.

Let X be a compact space and A = G(X). An element of Atiyah's Ell(X) is
given by two representations,

o4- : A -> ̂ (H4-), a- : A -> JSf(H-)
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of A in Hilbert spaces H4', H~ and a Fredholm operator P : H4' -> H~ with para-
metrix Q,, which intertwines cr4' and a~ modulo compact operators,

P^^) Q,-- (5~{a) ejT V a e A .

The typical example is obtained when X = V is a smooth compact manifold,
H^" = L2^) are Hilbert spaces of square integrable sections of bundles ^± over V,
o^ are the obvious actions of C(V) by multiplication, and P is an elliptic operator of
order o from ^+ to S~. With (^ a parametrix of P, let F e JSf(H4' ® H~) be given by

|"o 01
F= ^ .

[P o J
One has,
a) H is a Z/2 graded * module over A == G(X),
P) [F.fl] ejT V a eA,
Y) F2- i eJT.

Note that in general F2 =t= i since P is not invertible.

Definition 1. — Let ^ he a Z/2 graded algebra over C. Then a pre-Fredholm module
over ^ (resp. Fredholm module over ^/) is a pair (H, F) where

1) H is a Z/2 graded Hilbert space and a graded left ^/-module^
2) F e jy(H), Fs == — eF, [F, a] eJT V a e ̂ ,
3 ) a ( F 2 — i ) e j r V a e ^ (r̂ . F2 == i).

We shall now show how to associate canonically to each pre-Fredholm module
a Fredholm module.

Let He be the Z/2 graded Hilbert space H^ = C and let fi == H ® He be
the graded tensor product of H by Hp. One has H4- == H-^ C H-, ft- = H- ® H^
We turn H into a graded left ^-module by

a(^ ® 73) == flS ® €f\ V a e ̂ /, S ^ H, T] e Hp,

f i o1 fo Q,1
where ^ e "^(Hc), ^ = . Next, with F == e ̂ (H) we define

o o P o

Fe^(H), F = [ ^ ^] by

p ^ r P i -PQ 1 Q ^ 2 - ^ ) ^ ^W
[i-Qp (Qp-2)d3 ^ [ I-PQ. -p j

One checks that PQ,= i, QP == i, so that F2 == i.

Proposition 2. — Let (H, F) 6^ a pre-Fredholm module over s/.
a) (H, F) is a Fredholm module over ^/.
b) Let Ho be the Hilbert space H with opposite Z/2 grading and o-module structure over J3 ,̂

then (HQ, o) z'j a pre-Fredholm module over ^/.
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c) One has H == H ® Ho as a Z/2 graded ^/-module, and

a(F — F C o) e JT V a e ̂ /.

Proof. — a) Since F2 == i, conditions i) and 3) are verified. Let us check that
[F, a] eJT, V a e j2/. One has by hypothesis [F, d\ ejT, a(F2 — i) e Jf and hence
(F2 — i) ^ e JT. Let us first assume that a is ^w. One has
[F,

^ r pa-flp a(i -PQ.)I
Pa - aP == 6 Jf.

[(I-QP) a o Jo

Since Q. = P~1 one gets Qa — aQ,e Jf, hence [F, a] e Jf. Let now a be odd and

[ o a^l
e .S?(H) be the corresponding operator in H. By hypothesis one has

"21 o J
fii2 P + Q/»2i e ̂ , a2i Q. + Pai2 e ̂ , (dP - i) ^12 e ̂ ,
^{Qf - i) e Jf, (PQ,- i) aai e Jf, Bi2(PQ,- i) e Jf.

The action of a in H == H'1' ® H~ is given by the matrix

r° T " } r î oi ra,a oi
T = where T' == , T" = l

IT' o j [o oj' [ o oj

One has to check that T" P + QT' e ;T and T' C[ + PT" e Jf. This follows easily.
from our hypothesis.

b) Obvious. \o o'i ["P oi ro. oi<;.» Let F' == F®o. Then F' = with P' == , Q; =
[P' o J L° °J L0 "J

With a even one has,
fo a(i-PO)1fo a(i-PO)1

,(P-P') = ^ ^)\
[o o J

a(P - P') = | v ^" 1 e JT
0 0

[a(2 -OP)0-aQ. a(i-Q,P)1fr\ r\f\ I v ^ / ^ ^ x / I /- ^^(Q.— Q.) == ejr.
L o ° J

The odd case is treated similarly. D
Let p e [i, oo[. We shall say that a pre-Fredholm module (H, F) over ^ is

p-summable when,
a) [F, a] e ̂ (H) for a e ̂ ,

P) ^(F2 - i) e JS (̂H) for a e ̂ .

Proposition 3. — Let (H, F) be a p-summable pre-Fredholm module over j2/. Then (H, F)
is a p-summable Fredholm module.

Proof. — In tlie proof of proposition 2 one can replace Jf by any two-sided ideal. D
We shall now discuss the index map associated to a Fredholm module.
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Lemma 4. — Let ^ be a Z/2 graded algebra, (H, F) a Fredholm module over ^.
/V/

a) Let ^ == ^ ® C he obtained from ^ by adjoining a unit. Let S act in H by
{a + -hi) ^ == ̂  + H for a e ̂ , \ e C. Then (H, F) is a Fredholm module over ^.

b) Let H,=H®C, F^=F®id, and M,(̂ ) = ̂  ® M,(C) act in H, ^
the obvious way. Then (H^ FJ ^ a Fredholm module over M^(J^).

The proof is obvious.
Let us now assume that ^ is trivially graded.

Proposition 5. — Let (H, F) be a Fredholm module over ^/. There exists a unique additive
map 9 : Ko(j^) -> Z such that for any idempotent e eM^(^), <p(|>]) ^ the index of the
Fredholm operator from eH^ to eH^ given by

TS=^S V^e^.

Proof. — One checks that T is a Fredholm operator with parametrix T' where
T T] = eF^ 7] for T] e <?H^, and that the index of T is an additive function of the class
of e in Ko(j^).

Finally we shall relate the above notion of Fredholm module with the Kasparov
A — B bimodules, we recall (cf. [42]).

Definition 6. — Let A and B be G^-algebras. A Kasparov A — B bimodule is given
by i) a Z/2 graded (^'module S == <T- © S- over B, 2) a * homomorphism n of A in ̂ {S\

3) an element F of oS^(^) such that F == | and
[P o J

a) [F,a] ejfB(^) V a e A ,
(B) ^(F-F*) eJfB(^) V < 2 e A ,
Y) a(F2- i) eJT^) V ^ e A .

(Gf. [42] for the notions of endomorphism [S^W) of € and of compact endomor-
phism (^B^)-)

Let us take B = C. Then a Kasparov A — C bimodule is in particular a
pre-Fredholm module over A. Conversely,

Proposition 7. — Let A be a C^-algebra and (H, F) a * Fredholm module over A. Let
F'=F|F |~ 1 . Then (H, F') is a Kasparov A — C bimodule. Moreover, for each t,
F( == F I F J - ^ defines a * Fredholm module (H, F<).

Proof. — One has [F* F, a] e jf; V a e A , thus [ I F I ^ ^ G J T for j eR, ^ e A .
Let F == JA be the polar decomposition ofF, with A = | F [. One has F~1 = A"1^1

which gives the right polar decomposition of F === F'"1, thus J == J-1 and J == J* = F',
so that (H, F') is a Kasparov A — C bimodule. Finally JAJ-1 = A~1 and hence
J A^J-1 == A-8 for any s e R, so that J A8 is an involution for any s. It follows that
(H, FJ is a * Fredholm module. D
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Appendix 3: Stability under holomorphic functional calculus

Let A be a Banach algebra over C and ^ a subalgebra of A, A and e^be obtained
by adjoining a unit.

Definition 1. — ^ is stable under holomorphic functional calculus if and only if for any/^ ^/
n e N and a e M (̂̂ ) C M^(A) one has,

f{a)eM^)

for any function f holomorphic in a neighborhood of the spectrum of a in M^(A).

In particular one has GI^(J^) = GL^(A) n M^(^?), hence if we endow GL^(^)
with the induced topology we get a topological group which is locally contractible as
a topological space. We recall the density theorem (cf. [4], [40]).

Proposition 2. — Let ^ be a dense subalgebra of A, stable under holomorphic functional
calculus.

a) The inclusion i: ̂  -> A is an isomorphism of ̂ -groups
t,: Ko(^)-> Ko(A).

^ /^>
b) Let GL<»(J2/) be the inductive limit of the topological groups GL^(^). Then ^ yields

an isomorphism^

7r,(GL,(^)) -^,(GL,(A)) = K^(A).

Let now (H, F) be a Fredholm module over the Banach algebra A and assume
that the corresponding homomorphism of A in -S^(H) is continuous.

Proposition 3. — Let p e [i, oo[ and ^ = {a e A, [F, a] e oSf^H)}. Then ̂  is a
subalgebra of A stable under holomorphic functional calculus.

Proof. — One has [F, ab] = [F, a] b + <F, b] for a, b e A. Thus as JS^(H) is
a two-sided ideal in -S^(H), j^ is a subalgebra of A. Let n eN, (H^, FJ be the
Fredholm module over M^(A) given by lemma 4 b) of Appendix 2 and TT^ the corres-
ponding homomorphism: M^(A) ->,§f(HJ. One has,

M^) = {a e M,(A), [F,, 7^)] e J^(HJ}.

Moreover Sp(7^(fl)) C Sp(a), and since TT^ is continuous, ^(/(a)) ==f(n^a)) for any/
holomorphic on Sp(fl). The conclusion follows from proposition 5 of Appendix i. D

Let now A be a G*-algebra and ^ a dense * subalgebra of A stable under holo-
morphic functional calculus.

Proposition 4. — Let (H, F) be a * Fredholm module over ^. Then the corresponding
* homomorphism n of^/in -̂ (H) is continuous and extends to a * homomorphism % ofA in -S?(H)
yielding a • Fredholm module over A.
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Proof. — We can assume that ^ and A are unital and 7T;(i) == i. Let a e j^,
then the Spectrum of a* a in ̂  is the same as its Spectrum in A. Thus the norm of a
in A is 11 a \ \ == p172 where p is the radius of the Spectrum of a* a in ^/. One has

Spectrum (^(fl* a)) C Spectrum (a* a),

thus || n{a) ||2 = Spectral radius ofn(a* a) <_ p = || a ||2.

This shows that n is continuous. Let % be the corresponding * homomorphism of A
in cS?(H). For aeA, [F,%(fl)] is a norm limit of [F, 7c(aJ], a ^ e ^ / , which are
compact operators by hypothesis, thus [F, ̂ {a)] e Jf for all a e A. D
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II. — DE RHAM HOMOLOGY AND NON COMMUTATIVE ALGEBRA

In part I the construction of the Chern character of an element of K-homology
led to the definition of a purely algebraic cohomology theory H^(c^). By construction,
given any (possibly non commutative) algebra ^ over C, H^(J^) is the cohomology
of the complex (C^, b) where G^ is the space of (n + i)-linear functionals cp on ̂  such that

<p(^, ..., a\ a°) == (- ir 9(0°, ..., 0 V a1 e ̂

and where b is the Hochschild coboundary map given by

(6y)(^ ...^n+l) = S^(- l)W, ...,^+l, ...^n+l)

+(^l)n+l^n41^ ..^n).

Moreover H^(J3/) turned out to be naturally a module over H^(C) which is a polynomial
ring with one generator cr of degree 2.

In this second part we shall develop this cohomology theory from scratch, using
part I only as a motivation.

We shall arrive, in section 4, at an exact couple of the form
H*(J ,̂ ja^)

B/ \I

HI(O ———s——^ Hl(^)

relating H^(^) to the Hochschild cohomology of ^ with coefficients in the bimodule
of linear functionals on .̂ This will give a powerful tool to compute H^(^) since
Hochschild cohomology, defined as a derived functor, is computable via an arbitrary
resolution of the bimodule ^ (cf. [13] [47]).

For instance, if one takes for ̂  the algebra G°°(V) of smooth functions on a compact
manifold V and imposes the obvious continuity to multilinear functionals on ^, one
arrives quickly at the equality (for arbitrary n)

H^^/, j^*) = space of all de Rham currents of dimension n.

(This will be dealt with in section 5. The purely algebraic results of sections i to 4 easily
adapt to the topological situation.) The operator I o B : H"^, ̂ } -^H""1^, ja^)
coincides with the usual de Rham boundary for currents, and the computation of H^(^)
will follow easily (cf. section 5). In particular we shall get

H*^) == Ordinary de Rham homology of V,
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where H*(J^) is defined as in part I by

H^)-Hl(^)®H3,(c)C.

As another application we shall compute H*(J3/) for the following highly non
commutative algebra. Fix 6 e R/Z, 6 ^ Q,/Z. Then ^/^ is defined by

^e == {^.m ̂  V"1; (^,J^gz sequence of rapid decay},

where VLJ = (exp i2nQ} UV gives the product rule. The algebra <S/Q corresponds
to the " irrational rotation G*-algebra" studied by Rieffel [58] and Pimsner and
Voiculescu [55]. It arises in the study of the Kronecker foliation of the 2-torus [i6],

In section i we introduce the following notion of cycle over an algebra ^/ which
is crucial both for the construction of the cup product

H^) xH^(^) -^H^^®^)

and for the construction of B : H^^, ̂ ) ->H^).

By definition a cycle of dimension n is a triple (Q, d, f) where 0, == © il3 is a\ J / j-=o
graded algebra, d is a graded derivation of degree i such that rf2 ==== o, and | : ̂ n -> C
is a closed graded trace. A cycle over an algebra ^ is given by a homomorphism
p : s/ -> 0° where (Q, d, j ) is a cycle.

In part I we saw that any ^-summable Fredholm module over efi/ yields such
a cycle. Here are some other examples.

1) Foliations

Let (V, F) be a transversally oriented foliated manifold. Using the canonical
integral of operator valued transverse differential forms [14] of degree q == Godim F, we
shall construct in Part VI a cycle of dimension q over the algebra e^== C^° (Graph (V, F)).

2) C* dynamical systems

Given a G* dynamical system (A, G, a) (cf. [19]) where G is a Lie group, the
construction of [19] associates a cycle on the algebra A00 of smooth elements of A to
any pair of an invariant trace T on A and a closed element v eA (Lie G).

3) Discrete groups

In part V we shall associate a cycle on the group algebra C(r) to any group
cocycle co e Z^F, C) and obtain in this way a natural map of the group cohomology
H^F.C) to HX(C(F)).

p
Given a cycle of dimension n, ^ —> 0. over j^, its character is the {n + i)-linear

functional
^.....^^jp^0)^1) ...^n).
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We show that T e Z^) =- C^(J^) n Ker b, that any element of Z^(e^) appears in
this way and that the elements of B^(J^) == AG^"1^) are those coming from cycles
with ii° flabby. (See [40] for the definition of a flabby algebra).

Then the straightforward notion of tensor product of two cycles gives a cup product
H )̂ ® H (̂̂ ) -> H$; -^(j^ 0 S9}.

We then check that H^(C) is a polynomial ring with a canonical generator a of degree 2
and we define at the level of cochains the map

S: H^Q-^Hr^O

given by cup product by CT.
In section 2 we show that the standard construction of the Ghern character by

connexion and curvature gives a pairing of H^(^) with the algebraic K theory
group K()(J^) and ofH^(^) with Ki. The invariance of this pairing naturally yields
the group H*(^) == H^(J^) ®H^(C) C? inductive limit of the groups H^(J^) with map S.

We then discuss the invariance ofH^(j^) under Morita equivalence. In section 3
we show that two cycles over ^ are cobordant (cf. 3 for the definition of cobordism)
if and only if their characters T^, Tg differ by an element of the image of B, where B is
a canonical map of the Hochschild cohomology H""^^,^*) to H^(e^) defined as
follows:

BT= S £(Y)(BoT)^
ver

where F is the group of cyclic permutations of{o, . . . , % } ,
y^a0,...,^)^^^,...,^)),

e is the signature and (Bo r) (a0, . . ., ^n) = r(i, a°, . . ., a") + (— i^ T(a°, .. ., ^n, i)
for all of e ̂ . Thus defined at the level of cochains, B : G^, ̂ ) -> G"-^^, ̂ )
commutes (in the graded sense) with the Hochschild coboundary b, which yields the
basic double complex of section 4.

The above result yields a new interpretation of H*(J^) as

IP(^) == (Cobordism group of cycles over j^) ®cobordism of c c

which is completed in section 4 thanks to the exact triangle

H*« ̂ )
B/ \ ]
^ \

Hl(^) ————^--> Hl(^)

where I is induced by the inclusion map from the subcomplex G^ to C .̂ This exact
triangle gives in particular the characterization of the image of S which was missing
in part I (cf. theorem i6): r e Im S if and only if T is a Hochschild coboundary. It also
proves that H^(J^) is periodic with period 2 above the Hochschild dimension of j^.
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By comparing the above exact triangle with the derived exact sequence of
o -> C^ -> C" -. G"/C^ -> o we prove that there is a natural isomorphism

H"(C/C,) S HF^).

We then show that the cohomology of the double complex
C"'m = C"-»'« j^*), ^ == b, ^ = B

is equal to H"^) for n even, and H"" )̂ for n odd. The spectral sequence associated
to the first filtration ( S C"-") does not converge in general, and in fact has initial

n -> p

term E^ always o. This and the equality S == bB~1 are the technical facts allowing
to identify the cohomology of this double complex with H*(J^).

The spectral sequence associated to the second filtration ( S C"^) is always
m^ q

convergent. It coincides with the spectral sequence associated to the above exact
couple and

1) its initial term E^ is the complex (IP^, j^), I o B) ofHochschild cohomology groups
with the differential given by the map IoB;

2) its limit is the graded group associated to the filtration F^H*^)) by dimensions
of cycles.

Finally we note that in a purely algebraic context the homology theory (which
is dual to the cohomology theory we describe here) is more natural. All the results
of our paper are easily transposed to the homological side. However, from the point
of view of analysis, the cohomology appeared more naturally and, for technical reasons
(non Hausdorff quotient spaces), it is not in general the dual of the homology theory.
This motivates our choice.

Part II is organized as follows:

CONTENTS

1. Definition of HX(*fi^) and cup product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Pairing of H^) with K^), i == o, i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ̂  . ̂  . ̂  ... ̂  ̂  . 107
3. Cobordism of cycles and the operator B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,,..
4. The exact couple relating H^(*aQ to Hochschild cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ig
5. Locally convex algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i. Definition of H^(^/) and cup product
n

By a cycle of dimension n, we shall mean a triple (h, d, (} where Q == © Q.
\ ^ j=o J

is a graded algebra, d is a graded derivation of degree i with d2 = o and f : ̂ n -> C
is a closed graded trace.
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Thus one has:
1) ^xiyC^VzJe^.i,...,^, i + j ^ n ;
2) dO^C Q14-1, rf((oco') = (Ao) (o' + (- i)^0 co rfco', d2 = o;

3)Jrfo)==o, Vcoety 1 - 1 ; fco 'co = (~ i)^0^']'^'.

Given two cycles Q, Q' of dimension 72, their sum £2®Q' is defined
by (Q")1 == a1 ® iT', (<o,, o;) (0)2^2) = (^^^2). ^ ̂ ) = (^ ̂ ) and
J(co,co') ^co+J^.

Given cycles Q, n' of dimensions w and n\ their tensor product Q" === t2®Q'
is the cycle of dimension n + ^/ which as a differential graded algebra is the tensor
product of (ti, d) by (Q', rf'), and where

f((o®(o') =Jco Jo' V c ^ e Q ^ co' e Q'^'.

For example, let V be a smooth compact manifold, and let C be a closed current of
dimension q (^dimV) on V. Let Q1, ie{o, . . . ,?} be the space G^V.A'TPV)
of smooth differential forms of degree i. With the usual product structure and dif-

<i
ferentiation £1 == © Q1 is a differential algebra, on which the equality f <x) = < C, co >,
for o e Q3, defines a closed graded trace.

In this example Q was graded commutative but this is not required in general.
Now let ^ be an algebra, and Q(^/) be the universal graded differential algebra

associated to ^ ([i] [39]).

Proposition 1. — Let T be an (n + i) -linearfunctional on s/. Then the following conditions
are equivalent:

1) There exists an n-dimensional cycle (Q, rf, f) and a homomorphism p : ̂  -> Q° such that

T(a°, ..., 0 = jp(<z°) rf(p(a1)) ... rf(p(0) V a°, ..., ̂  e ̂ .

2) There exists a closed graded trace T of dimension n on Q(J^) such that

T(a°, ..., a^ == T(a° ̂  ... ̂ n) V a°, ..., ̂  e ̂ .

3) One has r(a\ ..., a^ a°) == (~ î  T(fl°, ..., a") for a\ ..., ̂  e j^ flnrf

^(-l)S(^^^^^+l^^^n+l)

+ (- i)^1^4-1^0, ...,^) =o for fl0, ....a^^^.

Proo/. — Let us first recall the construction of the universal algebra Q(e^) ([i] [39]).M
Even if ^ is already unital, let ^ be the algebra obtained from ^ by adjoining a unit:

r<^

^ =={a +\i;a e^,\E C}. For each n e N, % ^ i, let ^(J^) be the linear space
n

n"(.saQ = ̂ ® ® ̂ .
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The differential d:Q.n-^Qn+l is given by
d{{a° + 7° i) ® a10 ... 0 (f) === i ® a° ® .. . ® ̂ n e ̂ n+l.

By construction one has rf2 == o. Let us now define the product ^ x Q.3 -> ̂ +i.
One first defines a right j^-module structure on Q" by the equality

n

(^°®fl1® .. . 0^) a == S (— i)"-^0® ... (S)^'^1® ... ®a.
j=o

Let us check that (<x)a) 6 == <o(aA) V <o e ty, a, b e ̂ . One has

(y0® ... ®f l j - l ®^a j + l ® ... (g)^®^4-1)^^2^ S e,.a. , ,
Jc=0

where ^ ,=0 i f j = A , ^==(-1)^-1 i f j < A
and ^^=(-1)^^ i f A < ^

while a^ = a^^ = a° ® .. . ® ̂ ' ̂ +1 ® ... ® ̂  ̂ +1 ® .. . ® ̂ +2.

Thus if one expands ((y°® ... 0^) a'14-1) a'14-2, one gets twice the term a^
for j, A e{o, i, .. .3 n} and with opposite signs:

(- i)^ (- 1)^+1-^ and (- i)^ (- i)"-^.

Thus ((y°® ... 0^) ^+1) ^+2 = S (- i)'- ,̂,̂ ! a,,,̂ ,

== (a'0® ... 0fln)(an4-lan+2).
^_ /^/

This right action of ^ on Q^ extends to a unital action of ^/. One then defines the
product: Q1 X Q3 -> ̂ ^ by

u(b° ® 61 ® ... ® '̂) == co?o ® A1 ® ... ® ̂  V co e Q\

It is then immediate that the product is associative.
With co == y°® ̂ ® . .. ® ̂  G Q^ one has, for a e ̂ ,

n

rf(cofl) = S ( — 1 ) " - ^ ' i ® a ° ® ... ^^a^1® ... ®a,
i-o
n+l

(</CO) ^ == S; (-- l)^1-^!®^0® ... ®^-1^® ... ®fl
j = 0

=== (- I)n- l<x>^+rf(c0fl).

Thus (ti, rf) is a differential graded algebra, and the equality
a'° da1 .. . da" == y° ® fl1 ® ... ® ̂

shows that it is generated by j2/. One checks that any homomorphism ^ -^ ti'0 of ^
in a differential graded algebra (Q', rf'), rf'2 == o, extends to a homomorphism p of
(Q(^), d) to (Q', rf') with

^°da1 . . . rf^) = p(^0) rf^p^)) rf'(p(a2)) . .. <r(p(^))

+^°rf'(p(^)) ...rf'(p(^))
for ^e< y'eja?, y0^^0^0).
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Thus i) and 2) are obviously equivalent. Let us show that 3) => a). Given
any {n + i)-linear functional 9 on ,̂ define 9 as a linear functional on ^(j^) by

9((fl° + 7 ° i) ® a1 ® . . . ® ̂ ) == 9(a°, ̂ , . . .̂ ).

By construction one has 9(^00) = o for all co e^-^). Now, with T satisfying 3)
let us show that ? is a graded trace. We have to show that

^((fl0 da1 . .. da^ (^+1 A^+2 .. . da^1))

- (- i^-^W^da^2 ... da^^^da1 . . . rf^)).
Using the definition of the product in Q(J^) the first term gives

k

2(- i)'-^0, ...,^+1, ....a^),

and the second one gives
n-k
S („ i)fc(n-^)4-n-fe-,^+^ ..^-H+j^+l+j+l^ _^^^

The cyclic permutation X, X^) == ^ + i + ̂  has a signature equal to (- 1)^+1)
so that, as T^ = e(X) T by hypothesis, the second term gives

n+l

- ̂  (- 1)^-^(0°, .. ., a^a^\ . .., ̂ +^).

Hence the equality follows from the second hypothesis on T.
Let us show that i) => 3). We can assume that ^ == Q°. One has

T(a°, a\ ..., a-) == f^da1)^2... da-) = (- i)-1 J {da2 . . . da^^d^)

= (- i)^^2 ... da-da0) a1 = (- i)" ̂ a\ . . ., ̂  a°).

To prove the second property we shall only use the equality

Jaco == jcof l for (o e Q", a e^.

From the equality rf(^) = (rfa) b + a db it follows that
n

(rfa1 ... da^ an+l == S (- iY-Jda1 ... d{a3 a3-^1) .. . rf^1

+ (- i)^1^2 . . . ^n+l,
thus the second property follows from

fa^^a0 da1 . . . d^) = J(fl° ̂  ... ̂ ) ^+1 n

(Note that the cohomology of the complex (O(^), <f) is o in all dimensions, including o
since D°(^) == ^.)

Let us now recall the definition of the Hochschild cohomology groups IP(J^, ̂ )
of ^ with coefficients in a bimodule Jf ([13]). Let ^e == ^®j^° be the tensor

^(5
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product of ^ by the opposite algebra. Then any bimodule J( over ^ becomes a left
^ module and by definition: H^,.^) = Ext^(e<^), where ^ is viewed as a
bimodule over ^ via <?(&) c = abc, V a, A, c e ̂ . As in [13], one can reformulate the
definition of JEP^, e^) using the standard resolution of the bimodule ^/. One forms
the complex (G^^,^),^), where
a) G"^,^) is the space of ^-linear maps from ^ to Jt\
b ) for T eC^,^), 6T is given by

(HW,...,^1) =^T(^ ...^n+l)
n

+ ̂ (~ i^T^, .. .,^t+l, .. .,^+1) + (- i)n^ T(a1, ..., a-) ^+1.

Definition 2. — The Hochschild cohomology of ̂  with coefficients in J( is the cohomo-
logy H^^^T) of the complex (G^^^),^.

(Note the close relation of the ^(e^) with the standard resolution and the use
of the bimodules ^/W^) in the process of reduction of dimensions: see for instance
[36], p. 8).

The space ̂  of all linear functionals on s/ is a bimodule over ^ by the equality
{a^b) (c) = <p(^fl), for a, b, c e ̂ . We consider any T e G^J^, ja^) as an (n + i)-
linear functional T on ^ by the equality

T(^°, a\ ..., ̂  == T(a\ ..., a") (a°) V ^ e ̂ .

To the boundary bT corresponds the (n + 2)-linear functional &T:
(6r) {a°, . . ., ̂ n+l) = T(^0 a\ a\ . . .^n+l)

n

+is(-I)tT(flo> •••^ i^+^ ...^n4-1) ^-(-i)^1^4-1^ ....a-).

Thus, with this notation, the condition 3) of proposition i becomes
a) TY = e(y) T for any cyclic permutation y of {o, i, . . . ,%};
;̂ ^T = o.

Now, though the Hochschild coboundary b does not commute with cyclic permutations,
it maps cochains satisfying a) to cochains satisfying a). More precisely, let A be the
linear map of C ,̂ ̂ ) to C ,̂ ja^) defined by

(Ay) == S s(y) 9^
Y G F

where F is the group of cyclic permutations of{o, i, ...,»}. Obviously the range of A
is the subspace C^(^) of G^^, j^*) of cochains which satisfy a). One has

£<?wwa 3. — boA== A o A' w^r^ 6': G ,̂ e^*) -> G"4'^^, ̂ ) ^ ̂ ^ ^
^ equality

(&'cp)(^ ...^n+l) = S (- i)^^0, ... '̂+1, ...^n+l).j==o
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Proof. — One has

({Ab') y)(.to,...,^+l)=S(-I)<+(»+l'&(p(^,...,^+*^+•+l,...,^-l)

where o <_ i <_ n, o<^k<_n+i. Also

((M) y)(^°, ..., ̂ +1) = S (- l)^' (Ay) (̂ , ..., x'x'+1, ..., ̂ +1)

+(_i)"+i(A<p)(^"+i^ ...̂

For j e{o, ...,»} one has

(A9)(<°, ...,^-+1, ...,^"+i) = S (-i)"" <p(̂ , ...,^+1, ...,^-1)
7c==0

n+l
+ S (- i)n(^l) ̂  ^ ^ ̂ n-^ ̂  ^ ̂ ^ , , ̂  ̂ -1^

K —j "t" 2

Also, (Ay)(x"+1 x°, ..., ^») = <p(^»+i ^o, ..., ^»)
n

+ S (- I)̂ , . . ., X\ X^X\ . . ., X'-1).

In all these terms, the x^s remain in cyclic order, with only two consecutive x^s
replaced by their product. There are (a + i) {n + 2) such terms, which all appear
in both bAy and Ab' y. Thus we just have to check the signs in front of T^ . {k ̂ j + i)
where T ,̂. = y(^, ..., ̂ ^+1, ..., ̂ -1). For Ab' we get (-i)<+^+i)t where
! =J — k (mod n + 2) and o<,i<_n. For ^A we get (— i)^^ if j^ k and
(— i^+"(ft-D ifj<^;. When j ^ k one has i = j — k thus the two signs agree.
When j < k one has i == n + 2 — k +j. Then as

n + 2 — k +j + (n + i) k =j + »(A! — i) modulo 2

the two signs still agree. D

Corollary 4. — (C^(^), b) is a subcomplex of the Hochschild complex.

We let H (̂̂ ) be the n-th cohomology group of the complex (G^, b) and call it the cyclic
cohomology of the algebra ^. For n = o, H°̂ ) = Z^) is exactly the linear space
of traces on sS.

For ^ = C one has H^ == o for n odd but H^ == C for any even n. This
example shows that the subcomplex C^ is not a retraction of the complex C", which
for s/ == C has a trivial cohomology for all n > o.

To each homomorphism p : ̂  -> S§ corresponds a morphism of complexes-
p*: GW -^ C^) defined by

(p*(p) (a° , . . . , a» )=<p(p(a° ) , . . . , p (a" ) )

and hence an induced map p*: H^(^) —^H^(ja/).
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Proposition 5. — i) Any inner automorphism ofs/ defines the identity morphism in H^(J^).
2) Assume that there exists a homomorphism p : ̂  ->• ̂  and an invertible element X

[a o 1 _ [o o I
of M^{^) (here we suppose ^ unital) such that X X l = for a e s/.
ThenH^) is o for all n. ° P^-l l-o p(^)J

Proof. — i) Let a e ̂  and let 8 be the corresponding inner derivation of s/ given
by S{x) == ax — xa. Given 9 e Z^(^) let us check that 4s

^a0,...,^)^^^^...^^),...,^),

is a coboundary, i.e. that ^ e B^j^). Let ^(^ - • - ? an-l) == P^ • • - 5 ̂ ^ ^) with
a as above. Let us compute bA^Q = A^' 4/0 • One has:

(&' +o)(a°, ..., ̂  == 'S (- i)1 9(^ •.., ̂  ̂ -'S ..., ̂  a)
»= o
= (&9)(a°, ..., a", a) - (- i)» <p(a°, ..., a"-1, a" a)

-(-i)^1^0, ...,a»-l,<^»).

Since Ay = o by hypothesis, only the last two terms remain and one gets
Ab' <po = (- i)"^. Thus + = (- i)"AA' ̂  = b{{- i)"A4»o) eB^(^).

Now let a be an invertible element ofj^, let <p e Z^j^) and define 6 (A;) = uxu~1

for A; e J?/. To prove that <p and y o 0 are in the same cohomology class, one can
\u o 1

replace s/ by Ma(J^), M by v == and 9 by 93 where, for a* e sf and
^eM,(C), LO .-1J

^{a° ® ̂  a1 ® A1, ..., a" ® ^n) == 9(0°, ..., ff") Trace(A° ... A^.

r^ o] fo - i l f^ - 1 o] f o i]
Now v == v-,v^ with ^i = h ^2 == • O116 has

^ LO iJ L 1 oJ LO t J L ~ 1 oJ
^ == exp a^ a^ == — ^, thus the result follows from the above discussion.

2) Let 9 eZ^(j2/) and 92 be the cocycle on Ma(e^) defined in the proof of i).

[ a o 1 [o o 1
For a e ^ / , let a(<z) == and (B(a) === . By hypothesis a and (B

o p(a)J [0 p(fl)J
are homomorphisms of j^ in Ma(^) and, by i), 930 a and 92° P are ln ^e same
cohomology class. From the definition of 9^ one has

9,(a(a°), ..., a(0) = 9(^ .... ̂ ) + ?(P^0), .. •. PW).

9,(P(^0), ..., P^)) == 9(P(^0), ..., P(^)). a

Following Karoubi-Villamayor [41], let C be the algebra of infinite matrices
(^'^jeM wlt^ % e C, such that
a) the set of complex numbers {a^} is finite,
P) the number of non zero a^s per line or column is bounded.
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Then C satisfies condition 2) of proposition 5, taking p of the form
p(a) == Diag(<z, o, a, o, . . . ) .

The same condition is satisfied by ^ ® C for any ,̂ thus:

Corollary 6. — For any ^ one has H^(CJ^) = o where C^/ == C ® ̂ .

We are now ready to characterize the coboundaries B;C Z^ from the corresponding
cycles, as in proposition i. For convenience we shall also restate the characterization
ofZ?.

Definition 7. — We shall say that a cycle is vanishing when the algebra 0° satisfies the
condition 2) of proposition 5 ([41]).

Given an w-dimensional cycle (0, rf, f) and a homomorphism p : ̂  -> QO, we
shall define its character by

T(^0, . . ., ̂ n) == jp(^) rf(p(a1)) .. . rf(p(0).

Proposition 8. — Let T be an (n + i) -linear functional on eC/; then

a) T e Z^(j^) Z/' aw^ on^ if ̂  is a character9,
P) T e B^(J^) t/' and only if T ^ the character of a vanishing cycle.

Proof. — a) is just a restatement of proposition i.

P) For (n, rf, J) a vanishing cycle, one has H^(Q°) = o, thus the character is
a coboundary. Conversely if reB^), T == b^ for some ^eG^-1^), one can
extend ^ to C^ == C ® j^ in an ^-linear functional ^ such that

?(i ® a°, ..., i ® ̂ -1) = 4/(a°, ..., an-l) for all ^ e <

and such tha^ ^x == e(^) ^ for any cyclic permutation X of {o, ..., n — i}. (Take
for instance ^°, ..., ^n-1) == ^(a(A°), .. ., a(^-1)) where a(&) == ̂  e ̂  for any
b == (bij) e c^) Let p : ̂  -> C^/ be the obvious homomorphism p(<z) = i ®a.
Then T' === 6ij/ is an w-cocycle on Cs/ and T == p* T' so that the implication 3) => 2)
of proposition i gives the desired result. D

Let us now pass to the definition of the cup product
H^)®H^) -^H;4-^®^).

In general one does not have 0(^®^) = Q(^) ®Q(^) (where the right hand sid
is the graded tensor product of differential graded algebras) but, from the universale
property of Q(^®^), we get a natural homomorphism 7r:Q(^®^) -^ a(e^) ® a(^).

Thus, for arbitrary cochains 9 e G" ,̂ ̂ ) and ^ e G^, ^*), one can define
the cup product 9 # ^ by the equality

(<p # ̂  = ($®$) OTT.
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To become familiar with this notion, let us compute 9 # ^ where <p e G" ,̂ j^*)
is an arbitrary cochain, and where ^ G G^C, C) (so that 3S == C) is given by ^(i, i) == i.
Here ja^0 38 == j^ so that 9 # ^ e G'14"1^ j^*). One has

(9# ^)(fl°, ...^n+l) = (^^(fl0®!)^1®!) ... ^(a^1®!)).

One has nd^a1® i) == da1® i + ̂ ^di. As i2 == i one gets i(di) i = o thus
the only component of bidegree {n, i) of (7c(^°® i) d(a1® i) . . . rf^"-^1® i)) is
(0° da1 . . . da^ ^^ ® i di. Hence we get

<p# +=S(- i)^^^0. ...^^^S ...^w+l) == (- i)^^

with the notation of lemma 3.

Theorem 9. — i) The cup product 9, ^ ̂  9 # ^ defines a homomorphism

H^)®H^?) -^H;4-^®^).

2) TA^ character of the tensor product of two cycles is the cup product of their characters.

Proof. — First, let 9 eZ^(ja^), ^ eZ^(^); then 9 (and similarly $) is a closed
graded trace on O(J^), thus 9®$ is a closed graded trace on Q(J^)®Q(^) and
9 # + eZ^^®^) by proposition i.

Next, given cycles t2, Q' and homomorphisms p : ̂  -> a, p': 3S -> Q', one has
a commutative triangle

O(^) ® Q(^
rc -̂̂ ^r

Q(J^®^) "̂ , ?®p'

(p®p') ^^^ r

ft 0 Q'

Thus 2) follows.
It remains to show that if 9 6 B^(J^) then 9 # ^ is a coboundary:

9 # ^eB^^®^).

This follows from 2)5 proposition 8 and the trivial fact that the tensor product of any
cycle with a vanishing cycle is vanishing. D

Corollary 10. — i) H (̂C) is a polynomial ring with one generator a of degree 2.

2) Each H^(ca/) is a module over the ring H^(C).

Proof. — i) It is obvious that H^(C) = o for n odd and H$;(C) = C for n even.
Let e be the unit of C; then any 9 e Z^(C) is characterized by 9(^5 .. ., e). Let us
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compute 9 # tp where 9 eZ^C), ^p6^*'^)* Since ^ is an idempotent one has
in Q(C) the equalities

de = ede + {de) e, e{de) e = o, e(de)2 == (A?)2 e.

Similar identities hold for e®e and n{e®e) e Q(C) ® t2(C) and one has
TC((<? ® (?) rf(<? ® <?) rf(<? ® <?)) = ^feA? ®e + e® edede.

Thus one gets (9 # +)(<?, ..., <?) ^ ——;—— 9(^ . .., e) ^{e, ..., e). We shallm\ m!
choose as generator of H^(C) the 2-cocycle a

a(i, i, i) == 2in.

2) Let <p eZ^(J2/). Let us check that a # 9 == 9 # cr and at the same time
write an explicit formula for the corresponding map S : H^(J2/) -^H^2^).

With the notations of i) one has

-L (9 # CT)(a°, .. ^a"4-2) == (9®-^ (a°0^(a1®^ ... rf^4-2®^))
2t7T \ 2Z7T /

== 9(0° ̂  a2 da3 ... ^n+2) + 9(0° ̂ (a2 fl3) ^4 .. . ̂ n+2) + ...

+ 9(a°rfa1 .. . rffli-l(^+l) ̂ i+2 ... ^n+2) + .. .

+9(^0^1 ... ^n(flN+lan+2))•

The computation of o # 9 gives the same result.
For 9 e Z^(J^), let 89 = cr # 9 == 9 # cr e Z^2^). By theorem 9 we know

that SB^(^) C B^2^) but we do not have a definition of S as a morphism of cochain
complexes. We shall now explicitly construct such a morphism.

Recall that 9 # ^ is already defined at the cochain level by (9 # <p)" == (9 ® !{1) o TC.

Lemma 11. — For any cochain 9 e G^(J^) let S^eC^2^) be defined by

$9 = ——— A((T # 9); then
» + 3

a) ——— A(a #9) = <r # 9 /or 9 e Z?(J^), ^0 S extends the previously defined map.

b) ^9 = "-̂  S&9 /or 9eG^).
" + 3

py^ — ^ If <p e Z^(^) then ((T # 9)x = s(^) cr # 9 for any cyclic permu-
tation X of {o, i, . . . , »+ 2}.

b) We shall leave to the reader the tedious check in the special case ^ = a of
the equality (^9) # ^ = bA{y # ^) for 9 e G^^, e^). It is based on the fol-
lowing explicit formula for A(9 =H= (?). For any subset with two elements s =={i,j},
i<j, of {o, i, ..., n + 2} == TL\(n + 3) one defines

a(^) = 9(0°, ..., d-\ da^\ ..., ̂  a^\ ..., a^2).
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In the special case j == n + 2 one takes

aM == (p^a0, . . ., ̂ -^ .. ., ̂ ) if , < n + i,

a^) = (p^ ̂ +2 fl°, . . ., ̂ ) if i^ n + i.

l+E(n/2)

Then one gets A((T # 9) = S (- i)14-^ + 3 - ̂ ') +< where, for » even, one has

^-^{O,?}) + a ( { i , z + i}) + ... + a ( { w + 2 , t - i}),

and for n odd
^ == a({o, ? } )+ . . . + a({w + 2 - i, n + 2})

— a ( { 7 i + 2 --i + 1,0}) ... — a { % + 2 , z — i}. D

We shall end this section with the following proposition. One can show in general
that, if 9 e Z^, ̂ ) and ^ e Z^, ̂ ) are Hochschild cocycles, then 9 # ^ is
still a Hochschild cocycle 9 # <{/ e Z^"^ ® ̂ , ̂ * ® ̂ *) and that the corresponding
product of cohomology classes is related to the product v of [13], p. 216, by

[9 # +] == ——.—— [9] v [^]. Since a e Z^C, C) is a Hochschild boundary one has:
n\ m\ '

Proposition 12. — For any cocycle 9 e Z^(ja/), 89 is a Hochschild coboundary: 89 == ̂
where

°̂, ..., ̂ +1) = 2^^ (- i)^^^0^1 ... da^-1) a^da^1 ... ̂ n)).

Proo/'. — One checks that the coboundary of thej-th term in the sum defining ̂  gives

9(a°(^1 . .. da3-^ ^a^^da3^2 .. . ^n+2)). D

2. Pairing of H )̂ with K,(e^), i == o, i

Let ^ be a unital (non commutative) algebra and Ko(e^), K^(^) its algebraic
K-theory groups (cf. [16]). By definition Ko(^) is the group associated to the semi-
group of stable isomorphism classes of finite projective modules over s/. Also Ki(j^)
is the quotient of the group GL^(J^) by its commutator subgroup, where GL^(e^)
is the inductive limit of the groups GL^(^) of invertible elements of M^(^), under

\x o]
the maps x ->\

[o ij
In this section we shall define by straightforward formulae a pairing between H^(J^)

and Ko(^) and between H^J^) and K^).
The pairing satisfies (89,6?> = <9, e\ for 9eH^(^), ^ e K(J^) and hence

is in fact defined on H'(jaf) === H^(<^) ®^^) c- As a computational device we shall
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also formulate the pairing in terms of connexions and curvature as one does for the
usual Chern character for smooth manifolds.

This will show the Morita invariance ofH^(<^) and will give in the case ^ abelian,
an action of the ring Ko(eC/) on H^(^).

Lemma 13, — Let 9 e Z^(«fi/) and p, q e Pro] M^(^/) be two idempotents of
the form p == uv, q == vu for some u, v e M^(J^). Then the following cocycles on
OS == {x e M^(J^), xp = px == x} differ by a coboundary

^....^^ftTr)^...,^),

^(a°, ..., a^ = (9 # Tr) (^° u, ..., ̂ n u).

Proof. — First, replacing ^ by M^(J^) one may assume that k == i. Then one

[ p o1 fo o1 fo u~\ [o o1
can replace p, q, u, v by 9 , 9 and hence assume the existence

o oj [o q\ [o oj [v oj
of an invertible element U such that U?V~1 == q, u = pU~1 = U~1 q, v == q\J == Up

/ f i — p u ]\
[ take U == |. Then the result follows from proposition 5.1. D
\ I v i-d/

Recall that an equivalent description of Ko(^) is as the abelian group associated
to the semi-group of stable equivalence classes of idempotents e e Proj M^(J^).

Proposition 14. — a) The following equality defines a bilinear pairing between K.o(J3/)
and Hr(^): < [e], [<p] > = (2^)^ (m!)-1 (9 # Tr) (,, ... ,e) for e e Proj M,(̂ ) an
yeZ2^^).

b) One has <M, [89]) = <|>], [<p]>.

Proo/'. — First if 9 eB^"^), <p # Tr is also a coboundary, 9 # Tr = b^ and
2m

hence (9 # Tr) (^, . . . , e) == b^(e, . . . , < ? ) = = S (— i)1 +(^ .. ., e) = ^(^, ..., e) == o,
i==o

since ^x == — <p. This together with lemma 13 shows that (9 # Tr)(^, ..., e) only
p o1

depends on the equivalence class of e. Since replacing e by does not change
the result, one gets the additivity and hence a). L J

.. 2m

b) One has — 89^, ..., e) = S ^((fe)^"1 ̂ (A?)'1"^1) and, since e2 = <?, one
2?7T j == 1

has ^(ak) e = o, ^(<fe)2 == {de)2 e, so that

— 89^, .. . , <?) === (w + i) 9^, ..., e). D
2t7T

We shall now describe the odd case.
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Proposition 15. — a) The following equality defines a bilinear pairing between Ki(^)
and H (̂̂ ):

<["], [<p]> == W" 2-(2'"+l) 7——r^——r
(OT — 1/2) ... 1/2

(y # Tr)^"1 — i, u — i,u~1 — i, .. .,u — i)

u^crc yeZi"-1^) anrf yeGL^^).
b) O^Aar <M,[Sy] >=<[«],[<?]>.

/N/

Proof. — a) Let j^ be the algebra obtained from ^ by adjoining a unit. Since
f>^

^ is already unital, ^ is isomorphic to the product of ^ by C, by means of the homo-
morphism p : (a, X) -> [a + Xi, \) of ̂  to ^ x C. Let ^ e Z^(^) be defined by
the equality

W, ̂ °), . . ., (^ X71)) = 9(a°, ..., a"), V (^ X1) e ̂

Let us check that b^ = o. For (a0, X°), ..., (<^n+l, X"4-1) e e^ one has

^((^ X°), ..., {a\ ̂  (a<+l, ̂ +1), ..., {a^\ X"4-1))

=y(a°, ...,flt^+l, ..^fl^1) +^<p(fl°, ...,ai-l,^+l, ...,^+l)

+^+19(^...,^^+2,...^n+l).

Thus ^((^X0),...,^^1^"4-1))

==X°9(fl1, ...,an4- l) +(- i)'-1^0^^^1,^ ...O =o.

Now for ^ e GLi(̂ ) one has

9(U-1- I,M- I, . . . ,M-1 - I,M- I) == (^o p-1)^-1,^, . . . ,M-1 ,^7)

where u = (w, i) e ̂  x C. Thus to show that this function /(«) satisfies

X(^) = X(^) + X^) for M, y e GLi(^),

one can assume that 9(1, a°, ..., fl""1) = o for a1 e j^, and replace ^ by

xW = y(^~S^ ...,u-\u).

[ uv o~\ \u o~\
Now one has with U = V =

o ij [o v\

^^(y^TrHU-SU^.^U-^U),

^(u) + ̂ (v) = (y # Tr) (V-1, V, . . . , V-1, V).

Since U is connected to V by the smooth path
[u o1 fsin t —cos^ l j"i o1 [" sin t cos t~\
[o i j [ c o s ^ sin t\ [o z j [ — c o s ^ sin J
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it is enough to check that

^ ( 9 # T r ) ( U r S U < , . . . , U , ) = o .

Using (U;~1)' = — U(~1 V'f Vt~1 the desired equality follows easily. We have shown
that the right hand side of 15 a) defines a homomorphism ofGL^(^) to C. The compa-
tibility with the inclusion GL^ C GL^ is obvious.

To show that the result is o if 9 is a coboundary, one may assume that k == i, and,
using the above argument, that 9 = 6 ^ where ^ e G^~1, ^(i, a°, ..., an~2) = o for
a1 e ĵ . (One has b^ == {b^)^ for ^ s C^~~1.) Then one gets b^{u~1, ..., M~1, M) == o.

b) The proof is left to the reader. D

Definition 16. — Let H*(e^) = H^(J^) ®H^) c-

Here H^(C), which by corollary 10 i) is identified with a polynomial ring C[<y],
acts on C by P(o) h^P(i) . This homomorphism of H^(C) to C is the pairing given
by proposition 14 with the generator of K()(C) = Z.

By construction H*(^/) is the inductive limit of the groups H^(e^) under the
map S : H^(J^) —^H^^J^), or equivalently the quotient ofH^(^/) by the equivalence
relation 9 ̂  89. As such, it inherits a natural Z/2 grading and a filtration:

F"^^) =ImH^).

We shall come back to this filtration in section 4.

Corollary 17. — One has a canonical pairing between H01^^) and 1^0(^)5 and between
H^{^) and K^).

The following notion will be important both in explicit computations of the above
pairing (this is already clear in the case ^ == G^V), V a smooth manifold) and in
the discussion of Morita equivalences.

p
Definition 18. — Let ^ -> 0 be a cycle over ^/, and S a finite projective module over ^.

Then a connexion V on § is a linear map V : S -> S ®^ ii1 such that

V(^) == (Vi;) x + S ® rfpW, V S e ̂  x e ̂ .

Here € is a n^ module over ^ and Q1 is considered as a bimodule over j^ using
the homomorphism p : ̂  -> Q° and the ring structure of Q*. Let us list a number
of obvious properties:

Proposition 19. — a) Let e e End^(<^) be an idempotent and V a connexion on €\ then
^ -> (^® i) VS ^ ^ connexion on e§.

b) ^4w^ ̂ wî  projective module S admits a connexion.
c) T^ space of connexions is an affine space over the vector space Hom^(<^, <?®^Q1).
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d) Any connexion V extends uniquely to a linear map of S'== <s?®^ Q ^o z^y JM^A ̂

V(S®(o) == (V^)co+S®^, V S e < ? , coea

Proo/'. — a) One multiplies the equality 18 by e® i (on the left).
b) By ̂  one can assume that S == C^® ̂  for some A. Then, with (^)<=i,... &

the canonical basis of <?, put
V(Sî ) = S^OOJp(^) e <^Q1.

Note that, if k == i (for instance), then J^®^ a1 == p(i) n1 and Vfl == p( i ) rfp(a)
for any a ejaf since ja^ is unital. This differs in general from rf, even when p(i) is
the unit of i2°.

c ) Immediate.
< /̂

^ By construction S is the finite projective module over Q. induced by the homo-
morphism p. The uniqueness statement is obvious since VS is already defined for ^ e S.
The existence follows from the equality

V(Sa) (o + ̂  ® d^ = (VS) flo> + S ® </(^)
for any ^ e <^, a e ^/ and co € Q. D

We shall now construct a cycle over End^(<^). We start with the graded algebra
End^(^) (where T is of degree k if T^'C ^+& for all j). For any T eEndo(^)
of degree k we let 8(T) == VT — (- i)^ TV. By the equality d ) one gets

V(^<o) == (V^) (*)+(- i)^ S rfo> tor S e <^ <o e Q,
/V/

and hence that 8(T) e End^^), and is of degree k + i. By construction 8 is a graded
rv /^/

derivation of End^ (<;?). Next, since S is a finite projective module, the graded trace
J r t P - ^ C defines a trace, which we shall still denote by f, on the graded
algebra End^ (<!?).

Lemma 20. — One has j8(T) = o for any T eEndo(J) of degree n — i.

Proof. — First, if we replace the connexion V by V = V + F, where
r eHom^(<!?, <!?®^n1), the corresponding extension to S is V == V + F, where
oj ^/
r eEndo(<?) and is of degree i. Thus it is enough to prove the lemma for some
connexion on §. Hence we can assume that S = e^ for some e e Proj M^(^)
and that V is given by 19 a) from a connexion Vo on j^. Then using the equality
8(T) == e 8o(T) e for T e End <FC End ̂  («?o = ^fc), as well as

8o(T) = 8o(.T.) - 8o(.) T + 8(T) + (- i)^ T 8o(.),

one is reduced to the case § = ^7C, with V given by 19 b). Let us end the computation
say with k = i. Let e = p-(i). One has /== ^Q, Enda(^) == ^^, 8(a) = ^(rfa) e.
Thus j8(a) == J(</(^) - (de) a - (- i)^A) = o. D
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Now we do not yet have a cycle over End^( <?) by taking the obvious homomorphism
/^/

of End^(<s?) in End^^), the differential 8 and the integral ). In fact the crucial
property 82 == o is not satisfied:

Proposition 21. — a) The map 6 = V2 o f € t o S is an endomorphism: 6 e End^{/)

and 82(T) == OT - TO for all T e End^(^).

b) O^AOJ <[<?], [r] > == -^ (6/2^)^ wA^ % ̂  ̂ ,̂ w == 2m, where [<f] e Ko(j^)

is the class of <?, and T ^ ̂  character of £1.

Proo/: — a; One uses the rules V(-y]<o) = (VY)) co + (— i)^" T] rfo) and d2 = o
to check that V^co) = V^T]) <o.

6J Let us show that Jo"* is independent of the choice of the connexion V. The
result is then easily checked by taking on € = e^ the connexion of proposition 19.
Thus let V = V + F where F is an endomorphism of degree i of S. It is enough
to check that the derivative of fo^ is o where 6, corresponds to V, = V + tV. Also
it is enough to do it for t = o. We get:

^Je?=:sj-e;(^,)e--1-.

As ( d Q\ == rV + VF == 8(r) one has
\dt /t^o

(Wdt) Jer)^ = mJ8(6w- l F) == o. D

Thus, while 82 =t= o, there exists 6 e Of = End^^) such that
§2(T) ==eT-T6, V T e D ' .

We shall now construct a cycle from the quadruple (Q', 8, 6, f).

Lemma 22. — Let (Q', 8, 6, H be a quadruple such that Q' is a graded algebra, 8 a graded
derivation of degree i of Of and 6 e Q'2 satisfies

8(6) = o and 82((o) = Oco — o6 /or o> e 0'.

TA^TI on^ constructs canonically a cycle by adjoining to Q! an element X of degree i with
flfX = o, J^A ^^ X2 == 6, <0i Xog = o, V co, e a'.

Proo/'. — Let H" be the graded algebra obtained by adjoining X. Any element
of Of' has the form <o = (o^ + co^ x + x(02l + X^ X? ^y e ̂ '- Thus, as a vector
space, Q" coincides with M^Q'), the product is such that

\^i î ̂  r^n ^12] r1 0] r^n ^21
[o)^ (O^J [^ (022J [o OJ [0)21 COgj
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and the grading is obtained by considering X as an element of degree i; thus [co^] is
of degree k when coji is of degree A, 0)12 and ̂  of degree k — i and 0)22 °^ degree k — 2.
One checks easily that t2" is a graded algebra containing Q'. The differential d is
given by the conditions du = 8(co) + Xco --(— i)^" <oX for <o e Q' C ^", and
rfX == o. One gets

[^n ^121 ^ [ 8(con) 8W| [o - 61 [^n <*>i2l
[021 COgj [—8((02l) —^^l L 1 0.1 L^21 ^22\

fton <x)iai r o ii
_ (_ ^degco u "

[cogi 0)22] [ — 6 oj

One checks that the two terms on the right define graded derivations of Q" and that
d2 = o.

Finally one checks that the equality

J(^n + ̂ x + Xco^ + x^x) = Jco^ - (- ^"Jc^e
defines a closed graded trace. D

Putting together proposition 21 a) and lemma 22 we get:

Corollary 23. — Let s^ -> 0 be a cycle over ĵ , S a finite projective module over ^ and

^/' = End^(<?). To each connexion V on € corresponds canonically a cycle s^' -> Q! over ^/'.

One can show that the character T' e Z^(J^') of this new cycle has a class
[r'] e H^(J^') independent of the choice of the connexion V, which coincides with
the class given by lemma 13. One can then easily check a reciprocity formula which
takes care of the Morita equivalence.

Corollary 24. — Let e ,̂ 88 be unital algebras and S an ĵ , 88 bimodule, finite projective
on both sides, with ^ = Endg(^), 86 == End^(<?). Then H^(J^) is canonically isomorphic
to H\W.

Finally when ^ is abelian, and one is given a finite projective module § over j^,
then one has an obvious homomorphism of ^ to ^ ' •=- End^(<^). Thus in this case,
by restriction to ^ of the cycle of corollary 23 one gets:

Corollary 25. — When ^ is abelian^ H^(e^) is in a natural manner a module over the
ring Ko(^).

To give some meaning to this statement we shall compute an example. We let V
be a compact oriented smooth manifold. Let ^ == C^V) and S.1 be the cycle over s/
given by the ordinary de Rham complex and integration of forms of degree n. Let E
be a complex vector bundle over V and € == C°°(V, E) the corresponding finite
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projective module over ^ == COO(V). Then the notion of connexion given by defi-
nition 18 coincides with the usual notion.

Thus corollary 25 yields a new cocycle reZ^), ^ = G^V), canonically
associated to V. We shall leave as an exercise the following proposition.

Proposition 26. — Let ̂  be the differential form of degree 2k on V which gives the component

( A \ fc
of degree 2k of the Chern character of the bundle E with connexion V : o^ == ijk\ Trace —.)
where 6 is the curvature form ([17]). Then one has the equality 2 T C-

T=SS fcS„

where 2^ e Z^^^) is given by

W\ . • .,/n-2fc) = J/^A . . . A ^-^A ̂ , V/1 6 ̂  == C^V),

W w r̂<? T ̂  ̂  restriction to ^ -== GOO(V) o/^ character of the cycle associated to the bundle E,
the connexion V, and the de Rham cycle of ̂  by corollary 23.

3. Cobordism of cycles and the operator B

By a chain of dimension n + i we shall mean a triple (a, BQ, f) where Q and BO.
are differential graded algebras of dimensions n + i and n with a given surjective
morphism r : Q -> BQ of degree o, and where f : t^14-1 -> C is a graded trace such that

Jflfc) == o, V (o e ̂ n such that r(co) == o.

By the boundary of such a chain we mean the cycle (80., H where for o/ e (BQ)" one
r' rtakes J co' == J rfco for any <o e tP with r(co) = <o'. One easily checks, using the

surjectivity of r, that ) is a graded trace on ^Q which is closed by construction.

Definition 27. — Let ^ be an algebra, and let ^ -^ t2, ^ ̂  t2' be two cycles over ^
{cf. proposition i). We shall say that these cycles are cobordant {over ^/) if there exists a chain O."

'^/ i f>J /*\
with boundary f2®^' [where Q' is obtained from Q! by changing the Sign of O and a homo-

morphism p": ̂  -> Q!' such that r o p" == (p, p').

Using a fibered product of algebras one checks that the relation of cobordism
is transitive. It is obviously symmetric. Let us check that any cycle over ^ is cobordant
to itself. Let 0° == G^IO, i]), Q1 be the space ofG00 i-forms on [o, i], and d be the
usual differential. Set 8£1 == C ® C and take f to be the usual integral. Then taking
for r the restriction of functions to the boundary, one gets a chain of dimension i with
boundary (C(DC,<p), 9 (a, b) == a — b. Tensoring a given cycle over ^ by the
above chain gives the desired cobordism.
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Thus cobordism is an equivalence relation. The main result of this section is
a precise description of its meaning for the characters of the cycles. We shall assume
throughout that the algebra ^ is unital.

Lemma 28. — Let T^, T^ be the characters of two cobordant cycles over ĵ . Then there
exists a Hochschild cocycle 9 e Z^^e^, ĵ *) such that ^ — Tg = Bo 9, where

(Bo 9)^ . . ., ^n) == 9(1, a\ . .., 0 ~ (- i)^1 9^, ..., a\ i).

Proo/'. — With the notation of definition 27, let

9(^0, ..., ̂ n+l) == JP"^°) rfp"(^) . . . rfp"^4-1), V a1 6 ̂ .

Let (o == p"(a°) rfp"(fl1) ... rfp"(^) e n"»».

Then by hypothesis one has
(Ti~Ta)(a0,^ ...,^) ==Jrfo>.

Since p'7^0) = p"(i) p"(a0) one has

rf(0 = (^p"(l)) p"(fl0) ^"(fl1) . . . d^W + p'^l) rfp'^0) . . . rfp"(^).

Using the tracial property of ( one gets

Jrfo == (- i)" 9(0°, a\ ..., ̂  i) + 9(1, a\ ..., ̂ ).

Using again the tracial property of f one checks that 9 is a Hoschchild cocycle. D

Lemma 29. — Let TI, T^ e Z^(j3/) and assume that T^ — T^ == Bo 9 for some
y eZ"'1"1^, ĵ '1'). Then any two cycles over ^ with characters TI, T^ ar^ cobordant.

Proof. — Let ^4-n be a cycle over efl^ with character T. Let us first show
that it is cobordant with (O(J^), ?). In the above cobordism of Q with itself, with
restriction maps to, ̂  we can consider the subalgebra defined by ^(co) eQ', where
0' is the graded differential subalgebra of Q generated by p(^). This defines a cobor-
dism oft2 with £1\ Now the homomorphism 'p: D(J^) ->t2' is surjective, and satisfies
' p j = = ^ . Thus one can modify the restriction map in the canonical cobordism of
(Q(^), r) with itself to get a cobordism of (O(e^),;?) with Q'.

Let us show that (O(^), ^i) and (t2(^), ^g) are cobordant. Let (JL be the linear
functional on Q^1^) defined by
1) ^a°da1 . .. ̂ n+l) = 9(a0, ..., ̂ +1),
2) pt(^ l...^n+l)=(Bo9)(^...^n+l).

Let us check that ^ is a graded trace on D(J^). We already know by the Hoch-
schild cocycle property of 9 that

pt(a(&co)) = p.((i(o) a), V a, b e e ,̂ co e a"4-1.
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Let us check that ^au) = ^{ua) for o == ^1 ... rfa"4-1. The right side gives
n+ l

pi(S (- i)^1-^1 ... d^a^1) ... dan+lda)

+ (- i)^1^1^2 ... rfa)
n+l

= ̂  (- i)^1-^ 9)(^, ..., ̂ a^\ ..., a^\ a)

+(-I)n+19(^2,...^n+l^)
= (- i)- W Bo 9) - 9) (^ a2, .. .^n+l^).

Now one checks that for an arbitrary cochain 9 eG"4'1^, ĵ 1) one has

Bo 69 + &' Bo 9 = <P - (- i)^ 9\

where X is the cyclic permutation X(z) == i — i. Here 9 is a cocycle, 69 = o and
6' Bo 9 -- 9 == (— i)" 9X so that {ji(o)a) = 9(a, a1, ..., an+ l) = ^.(acx)).

It remains to check that for any a e ̂  and <o e n" one has
^{{da) <o) =(-1)^(0)^).

For (x) e rfQ'1"1 this follows from the fact that Bo 9 e C^ (recall that BQ 9 = TI — Tg).
For (o = a0 rffl1 . . . ̂  it is a consequence of the cocycle property of Bo 9. Indeed
one has &BQ 9=0 , hence V Bo 9(^°, fl1, . . . , a^ a) == (— i)" Bo ^{aa°, a1, .... j^ and
since 6' Bo 9 == 9 — (— i)"4'1 9^ we get

9(^...,an,a)-(~I)n+19(^flo,...^n)

^(-i)^^^^^...,^),

i.e. that ^((rfa) a0 da1 ... rf^) == (- I)n pi(a° rfa1 ... d^ da).
To end the proof of lemma 29 one modifies the natural cobordism between (Q(e^), ̂ )

and itself, given by the tensor product ofQ(^) by the algebra of differential forms on [o, i],
by adding to the integral the term (JL o r^ where 7-3 is the restriction map to { i } C [o, i], D

Putting together lemmas 28 and 29 we see that two cocycles T^ T^ e Z^(J^)
correspond to cobordant cycles if and only if TI — T^ belongs to the subspace
Z^^^r^Z^^^)).

We shall now work out a better description of this subspace. Since AT = (n 4- i) T
for any T eG^(J^), where A is the operator of cyclic antisymmetrisation, the above
subspace is clearly contained in the subspace

Z^aQ r^Z"4-1^,^)),

where B = ABo : G^1 -> G".

Lemma 30. — a) One has bB = — B6.
b) One has Z^jaQ n Bo(Zn+l« ̂ )) = BZ^^ ̂ ).

Proo/. — fl^) For any cochain 9 e G^^^, '̂1'), one has

Bo ^9 + ̂ ' Bo 9 = 9 - (- ̂ n+l <?\
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where X is the cyclic permutation \(i) = i — i. Applying A to both sides gives
ABo 69 + A6' Bo y = o. Thus the answer follows from lemma 3 of section i.

b) By a) one has BZ^^, ̂ ,) C Z^). Let us show that
BZ^^, j^) C Bo Z^G^, eO.

Let (B e BZ^^, ̂ ), so that P = By, 9 6 Z^^, j^).
We shall construct in a canonical way a cochain ^ e Gn{^/, ̂ /*) such that

——— P = Bo(9 — 6^). Let 6 == Bo 9 — —I— P. By hypothesis A6 = o. Thus there
n + i T Z + I
exists a canonical ^ such that ^ — e(X) ^x = 9? where X is the generator of the group
of cyclic permutations of {o, i, ..., n}, \{i) = i — i. We just have to check the
equality

Bo 6+ = 6.

Using the equality Bo b^i + 6' Bo + == ^ — e(X) ^\ we just have to show that h' Bo + = o.
One has

Bo ̂ °, .. ., a-1) = ̂ (i, ̂  ..., a71-1) - (- i)- ̂ ^0, .. ., a^ i)

== (- i)-1 (^ - e(X) ̂ ) {a\ .. .,an-\ i) = (- i)-^^0, .. .,an-l, i)

= (- i)"-1 (9(1, a\ . . ., a-1, i) - (- i)^1 9(0°, . . ., a"-1, i, i))

^-^(-irp^...,^-1,!).
The contribution of the first two terms to A' Bo ^(fl0, .. .5 ^n) is

(- i)'-1^ (- î ' (9(1, ̂  . . . , ̂ a^\ . . . , a\ i)

+(-I)n9(^...^J^+l,...,^I,I))
== (- i)- (69(1, a\ .. .̂ n, i) - 9(^0, ..., ̂  i))

- (69(a°, . . . ,^ ,1,1)- (- i)- 9^ .. ̂ a\ i)) = o

since 69 = o.
The contribution of the second term is proportional to

V (- l)^^0, . . ., ̂ '+1, . . ., ̂  i) = 6p(^ . . ., ̂  i) = o. D
i-o

Corollary 31. — i) TA^ zma^ o/ B : C"4'1 -̂  Gn ^ exactly C^.
2) B^^CBoZ^1^,^).

Proo/'. — i) => 2) since, assuming i), any 69, 9 e G^4"1 is of the form 6B^ = — B6ij/
and hence belongs to BZ^^ja^, ja^*) so that the conclusion follows from b). To prove i)
let 9 e G^. Choose a linear functional 99 on ^ with 9o(i) = i? and then let

4,(flo,...,a»+l)=<p^o)v(al,...,a"+l)

+ (- i)» y((a° - 9o(a°) i), a\ ..., a") •po^1).
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One has ^(i, a\ ..., 0 = <p(fl°, ..., a^ and

^(a°, . .., a\ i) = 9o(a°) 9(<z1, . . ., a\ i) + (- i)' <p(^ . . .̂ n)

+ (- i)'^ 9o(^0) 9(i, ̂  .. .,0 - (- i)' 9(^ . . ., ̂ ).

Thus Bo 4 == 29 and 9 e Im B. D
We are now ready to state the main result of this section. By lemma 4 a) one has

a well-defined map B from the Hochschild cohomology group IP^e^, c^*) to H^(^).

Theorem 32. — Two cycles over ̂  are cobordant if and only if their characters T^ , Tg e H^(^)
differ by an element of the image of B, where

B: H^1^,^) -^H^(^).

It is clear that the direct sum of two cycles over ^ is still a cycle over ^ and that
cobordism classes of cycles over ^ form a group M*(^). The tensor product of cycles
gives a natural map: M*^) x M\88) -> M*(^® ̂ ). Since M^C) is equal to
KKG) == GM as a ring, each of the groups M*(^) is a C[(r] module and in particular
a vector space. By theorem 32 this vector space is H^(^)/Im B.

The same group M*^) has a closely related interpretation in terms of graded
traces on the differential algebra t2(e^) of proposition i. Recall that, by proposition i,
the map T l-> ? is an isomorphism of Z^(J2/) with the space of closed graded traces of
degree n on Q(J3/).

Theorem 33. — The map T l-> T gives an isomorphism of H^(j^)/Im B with the quotient
of the space of closed graded traces of degree n on Q(J^) by those of the form d1 [A, p, a graded trace
on Q(J^) {of degree n + i).

Proof. — We have to show that, given T e Z^(j^), one has ^ == dt [L for some
graded trace (A if and only if T e ImB DB^. Assume first that T = d1 [L. Then as
in lemma 28, one gets T == Bo 9 where 9 eZ^^^,^*) is the Hochschild cocycle

9(fl°, a\ .. ., a^) == ^(a° Az1 ... ^n+l), V a1 e ̂ .

Thus T = ——— ABo 9 e Im B.
7 2 + 1

Conversely, if T e Im B, then by lemma 30 b) one has T = Bo 9 for some
9 eZ^^c^, j^*). Defining the linear functional [L on t^4'1^) as in lemma 29 we
get a graded trace such that

yi(da° da1 . .. ^n) = T(a°, . . ., 0, V ̂  e ̂

i.e. (Ji(Ao) -= ?((o), VcoeQ^). D

Thus M"^) is the homology of the complex of graded traces on Q(^) with the diffe-
rential d1. This theory is dual to the theory obtained as the cohomology of the quotient
of the complex (t2(J^), d) by the subcomplex of commutators. The latter appears
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independently in the work of M. Karoubi [39] as a natural range for the higher Ghern
character defined on all the Quillen algebraic K-theory groups K,(e^). Thus theorem 33
(and the analogous dual statement) allows:
1) to apply Karoubi's results [39] to extend the pairing of section 2 to all K,(^);
2) to apply the results of section 4 (below) to compute the cohomology of the complex

(^)/[, ],</).

4. The exact couple relating H^(c^) to Hochschild cohomology

By construction the complex (G^(J^), b) is a subcomplex of the Hochschild
complex (C^^, ^*), b), i.e. the identity map I is a morphism of complexes and gives
an exact sequence:

o -̂  C^-i Gn -> G^G^ -> o.
To this exact sequence corresponds a long exact sequence of cohomology groups.

We shall prove in this section that the cohomology of the complex C/C^ is
H^C/G^H--1^).

Thus the long exact sequence of the above triple will take the form

o -> H°,(̂ ) -I H°« ̂ ) -^ H^(^) -> H\(^) -I H^, ̂ )
->H°,(^)->Hi(^)-^...

H )̂ -i H ,̂ ̂ ) -> H^-1^) -> H^1^) -I IP4-1^, ̂ ) -> ...

On the other hand we have already constructed morphisms of cochain complexes S
and B which have precisely the right degrees:

s: Hr^o-^Hr1^),
B: H"^,^) ^Hr'W

We shall prove that these are exactly the maps involved in the above long exact
sequence, which now takes the form

H^(J^) -^ IP« j^) 4. H^-1^) -^ H^4-1^) -^ ...

Finally to the pair b, B corresponds a double complex as follows:
Qn,m ̂  c^^^, s / ' ) (i.e. G^ is o above the main diagonal) where the first diffe-
rential d^: G^ —^Cn+11m is given by the Hochschild coboundary b and the second
differential ^ ; cn,m _^ Qn,m+i ^ given by the operator B.

By lemma 30 of section 3 one has the graded commutation of</i, d^. Also one
checks that B2 = o so that d^ == o. By construction the cohomology of this double
complex depends only upon the parity of n and we shall prove that the sum of the even
and odd groups is canonically isomorphic with

Hl(^) ® C - H-(^)
H^O)

(where H^(C) acts on C by evaluation at a == i).

335



^o A L A I N C O N N E S

The second filtration of this double complex (F^ = S G"^) yields the same
m^q

filtration of H'"(^) as the filtration by dimensions of cycles. The associated spectral
sequence is convergent and coincides with the spectral sequence coming from the above
exact couple. All these results are based on the next two lemmas.

Lemma 34. —Let ^ e Gn(^, ̂ ) be such that b^ e C^4-1^). Then B^ e Z^-^^)
and SB^ = 2iT:n(n + i) b^ in H;;4-1^).

Proof. — One has B^ eG^-1 by construction, and AB^ == — Kb^ = o since
^eC^1. Thus B+eZ^-1 . In the same way ^eZ^4-1.

Let cp = B^, by proposition 12 of section i one has 89 = b^ where
n

<i/(a°, ..., a") = ̂  (- i)^-1 ̂ a°{da1 ... ^--i) a^da^i ... <^»)).

It remains to show that

+' - e(X) ̂  ==»(»+!) (<T - s(X) ^"^)

where X(t) == i — i for i e{o, i, ..., n + i} and ^" — ^ e B". Let us first check that
(+' - e(X) ̂  (a°, ..., a") = (- i)»-i (n + i) <p(a»^ ̂  _ _ ^ ^n-i^

One has

<W, ..., <7») = S (- i)^ $((rfa° ... <^'-1) a^(^+1 ... da'1-1) a").

Let cDj = a°(aa1 . • • da1-1) a^da^i ... da"-1) a".

Then dw, == {da° ... da3-1) a^da^1 . . . da " - 1 ) a"

+ (- i^-1^0^1 ... da1 ... da"-1) a"

+ (- i)» a°{da1 ... da3-1) a^da^i ... da").

Thus for j e{ i, ..., n — i } one has

(- i ) 1 - 1 v(a°(rfa1 ... da1-1) a^da^i ... da"))

- e(X) (- i)3 y((rffl° ... da3-1) a^da^i ... da"-1) a")

={-l)n-l^anao,al,...,an-l).

Taking into account the cases j = o and j == n gives the desired result.
Let us now determine y, ij/' — ^ e B"(^/, ^*) such that

(.V - e^) ^"x) (a°, ..., a") = (- I)""1 y(a» a°, ..., a"-!).

Let 6 == Bo 4» and write 6 = 61 + 63 with A6i = o, 62 e G?-1^) so that 62 = -[ y.
n

Since A6i = o there exists ^ e C"~1 such that 61 == D^ where D+i = ̂  — e(^) ^^.
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Parallel to lemma 3 of section i one checks that D o b = V o D and hence D(6^) = V Q^.
Let ^' == ^ - ̂ . As D = Bo & + 6' Bo we get D^ == 6' Bo + = 6' 6i + b' 62 hence

D^" === b' 62 = - &' 9. Finally since &<p = o one has

A' 9 = (- i)"-1 9(0" a°, ̂  . . . , ̂ -1). D

As an immediate application of this lemma we get:

Corollary 35. — The image of S : H;-̂ ) -^H^^) ^ ̂  ^r^/ of the map
I:H^1^) -^H^1^^).

This is a really useful criterion for deciding when a given cocycle is a cup product
by aeH^(C), a question which arose naturally in part I. In particular it shows
that if V is a compact manifold of dimension m and if we take ^ = C°°(V), any cocycle T
in H^(J^) (satisfying the obvious continuity requirements (cf. Section 5)) is in the image
of S for n > m = dim V.

Let us now prove the second important lemma:

Lemma 36. — The obvious map from (ImB n Ker&)/6(ImB) to (KerB n Ker 6)/& (KerB)
is bijective.

Proof. — Let us show the injectivity. Let 9 e Im B n Ker b, say 9 G Z^^),
and assume 9 6 b (KerB). Then the above lemma shows that 9 and So == o are
in the same class in H^4'1^) and hence 9 e6(ImB).

Let us show the surjectivity. Let 9 e Zn+l{^, j^*), B9 == o and ^ e G^^, j^"),
^ — s(X) ̂  = Bo 9. As in the proof of lemma 30 of section 3 one gets Bo b^ == Bo 9.
This shows that 9' = 9 — b^ e Z^(j^) since D9' == Bo b^' + b' Bo 9' = o. Let us
show that B^ e bG^~2. Since ^ — s(X) ̂  == Bo b^ one has ^' Bo ^ = o. One checks
easily that 6'2 == o and that the b' cohomology on C^j^, ̂ ) is trivial (if b' 9^ == o
one has 6' ^(a°, . . ., ^n, i) = o i.e. 91 = 6' 93 where

9 °̂, . . ., ̂ n-1) = (- i)-1 9i( ,̂ .. ., ̂ -\ i)).

Thus Bo + = b' Q for some 6 e G^2 and B^ == A&' 6 == &A6 e &C^-2.
Thus since G^'^ImB one has B^ = b'KQ^ for some Q^ eG'1"1 i.e.

^ + bQ^ £ Ker B and b^ e 6 (Ker B). As 9 — b^ e Z^ this ends the proof of the
surjectivity. D

Putting together the above lemmas 34, 36 we arrive at an expression of
S : H?-^^) -^H;;4-1^) involving b and B:

S == 2ZTO(7? + i) &B~1.
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More explicitly, given (peZ^"1^) one has 9 e Im B, thus <p == B^ for some ^,
and this determines uniquely b^ e {Kerb n Ker B)/^ (Ker B) == H^1^). To check

that b^ is equal to — ————- S<p one chooses A as in proposition 12:
2in n{n + i) * *

°̂, ..., fl") == ——I——- S ^a°{da1 .. . rf^-1) a\da^ . . . rf^)).
n\n + i) J-i

As an immediate corollary we get:

Theorem 37. — The following triangle is exact:

IP(̂ , ̂ )
B/ K I

HI«> ————'——> Hl(^)

Proo/. — We have already seen that Im S == Ker I. By the above description
of S one has Ker S == Im B. Next B o I == o since B is equal to o on C^. Finally
if <p e Z^a^ <a^) and B<peB;~1 , By = AB6 for some OeG"""1 so that

9 + bQ e Ker B n Ker b C Im I + &(Ker B)

by lemma 36. Thus Ker B == Im I. D
We shall now identify the long exact sequence given by theorem 37 with the one

derived from the exact sequence of complexes
o -> C^ -> C -> G/G^ -> o.

Corollary 38. — The morphism of complexes B : C/C^ -> G induces an isomorphism
<?/'!?( G/Cy with H^"^^/) and identifies the above triangle with the long exact sequence derived
from the exact sequence of complexes o -> G^ -> G -> C/G^ -> o.

Proof. — This follows from the five lemma applied to

H^C^) —> H^C) ————> H^C/G^ —> H^^C^) —> Hn+l{C)
n n I B % ^

y

H^(^) -i> H^^,^*) -^ H^-^^) -^> H^^^) —> H^1^,^) D

Together with theorem 32 of section 3 we get:

Corollary 39. — a) Two cycles with characters T^, Tg are cobordant if and only if ST^ = ST^
in Hl(̂ ). '

b) One has a canonical isomorphism

M*(^) ® C = H*(J )̂ {cf. definition 16).

c) Under that isomorphism the canonical filtration Fn H^JS/) corresponds to the filtration
of the left side by the dimension of the cycles.
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Proof of b). — Both sides are identical with the inductive limit of the system
(H^),S). D

Let us now carefully define the double complex G as follows:

a) C^ === C^-^, ̂ ), V n, m e Z;
^ for y e C"^ </i 9 == (n - w + i) 69 e C^^;

^ for 9 e C^, ^ 9 == —I— B^ e C^-1-1 (if ^ = m, the latter is o).
n — m

Note that d^d^ == — ^ ^i follows from B6 == — &B.

Theorem 40. — a) TA^ t'Tz^a/ ^rw Eg o/' ̂  spectral sequence asociated to the first filtration
FpG = S C^ ^ ^a/ ^ o.

n^ p

h) Let FIC= S C"-'" ^ ^ second filtration, then HP{'FqC)=H^) for
. m'> qn == p — 2q, ~

c) The cohomology of the double complex G is given by

IP(G) == H6^^) z/ n is even

and H^C) == H^^J^) z/' 71 zj odd.

d) TA^ spectral sequence associated to the second filtration is convergent', it converges to the
associated graded T^Fq'H.*(^/)|¥q+l'H*{^/) and it coincides with the spectral sequence associated
with the exact couple. In particular its initial term Eg is

Ker(IoB)/Im(IoB).

Proof. — a ) Let us consider the exact sequence of complexes of cochains
o -> Im B —> Ker B -> Ker B/Im B -> o where the coboundary is b. By lemma 36 the
first map: Im B -> Ker B becomes an isomorphism in cohomology, thus the b cohomo-
logy of the complex Ker B/Im B is o.

b} Let 9 e (F3 G)^ == S; G^, satisfy Ap == o, where d == ^ + d^.
m^q, n+m-^p

By a) it is cohomologous in F^G to an element ^ of G^3'3. Then d^ = o means
^ e Ker b n Ker B, and ^ e Im d means ^) e b (Ker B). Thus using the isomorphism

(Ker b n Ker B)/6(Ker B) == H^-2^^) (lemma 36)

one gets the result.
c ) By the above computation of S as d ^ d ^ ' 1 we see that the map from H^F9 C)

to H^F^-1 C) is the map S from H^-2^) to H^-2^2^) $ thus the answer is immediate.
d ) The convergence of the spectral sequence is obvious, since G"'"* = o for

m > n. Since the filtration of H^G) given by H^F^ G) coincides with the natural
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filtration ofH*^) (cf. the proofof^), the limit of the spectral sequence is the associated
graded

2: P H6^) /F^ +1 H6^) for % even,
9

SF^H^^/F^H0^^) for ^ odd.
9

It is clear that the initial term Eg is Ker I o B/Im I o B. One then checks that it
coincides with the spectral sequence of the exact couple. D

We shall end this section with several remarks.

Remarks. — a) Relative theory. Since the cohomology theory H^(e^) is defined from
the cohomology of a complex (G^;, &), it is easy to develop a relative theory H^(^, 88\
for pairs ^ -> g8 of algebras, where n is a surjective homomorphism. To the exact
sequence of complexes

o -> CM ̂  G )̂ -^ G ,̂ ̂ ) = C^/CW -> o

corresponds a long exact sequence of cohomology groups.
Using the five lemma, the results of this section on the absolute groups extend

easily to the relative groups, provided that one also extends the Hochschild
theory H*(J3^, j^*) to the relative case.

b) Action ofH*{^, ̂ /). Using the product v of [13]
H^, .0 ® H^, ̂ ) -> H" +wl(^, ̂  ®^ ̂

one sees that H*(J^, s/) becomes a graded commutative algebra (using ^®^ ^/ == j^,
as j^ bimodules) which acts on H*^, ^*) (since ja^®^ j^1'= j^*). In particular
any derivation Sofja^ defines an element [8] ofH1^, j^). The explicit formula of [13]
for the product v would give, at the cochain level

(<p v 8) (a°, a\ ..., a^1) = 9(8(fln+l) a0, a\ ..., fln), V <p e Z^j^, ̂ ).

One checks that at the level of cohomology classes it coincides with

((p^Ka0,^,...,^1)
n+l

= ——— S (- i ) ' 9(ff°(rfa1 ... da3-1) 8 '̂) (^'+1 ... rfa»+1)),

V y 6Z"(^,^*).

With the latter formula one checks the equality

8* v = (I o B) (8 v <p) + S v ((I o B) 9) in IT^1^, ̂ *)
n

(where 8* 9(fl°, ..., a") = S; ^(fl0, .... 8(a1), ..., ̂  for all a' e ̂ ). This is the

natural extension of the basic formula of differential geometry 8^ == di^ + i^ d, expres-
sing the Lie derivative with respect to a vector field X on a manifold.
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c) Homotopy invariance ofW[^). Let ^ be an algebra (with unit), 3S a locally
convex topological algebra and 9 e Z^(^) a continuous cocycle (cf. section 5). Let
P(, t e [o, i], be a family of homomorphisms p,: ̂  -> 3S such that

for all a e ja^, the map t e [o, i] -> p,(a) e ^? is of class C1.

Then the images by S of the cocycles p^ 9 and p^ 9 coincide. To prove this one extends
the Hochschild cocycle 9 # ^ on S9® G^o, i]) giving the cobordism of 9 with itself

(i.e. ^(/V1) == Jo1/0^ v/' e ̂ (l^ I])) to a Hochschild cocycle on the algebra
G^IO, i], 8§) of G^maps from [o, i] to 3S. Then the map p : ̂  -> G^o, i], S3),
(p(a))( = p<(fl), defines a chain over ^ and is a cobordism of p^ 9 with p^ 9. This
shows that if one restricts to continuous cocycles, one has

p;=pI:H^) -^H^).

5. Locally convex algebras

Before we begin with the examples we shall briefly indicate how sections i to 4
adapt to a topological situation. Thus we shall assume now that the algebra ^/ is
endowed with a locally convex topology, for which the product ^ X ^ -> ̂  is conti-
nuous. In other words, for any continuous seminorm p on ^ there exists a continuous
seminorm^' such that p{ab) ^ p\a) P ' W , V a, b e ̂ /. Then we replace the algebraic
dual ^* of ^ by the topological dual, and the space C^ja/, ^*) of (n + i)-linear
functionals on ^ by the space of continuous {n + i)-linear functionals: 9 e G" if
and only if for some continuous seminorm p on ^ one has

19(0°,...,^)| ^p{a°) ...^n), V^e^.

Since the product is continuous one has 69 e C"4'1, V 9 e G". Since the formulae for
the cup product of cochains only involve the product in ^ they still make sense for
continuous multilinear functions and all the results of sections i to 4 apply with no change.

There is however an important point which we wish to discuss: the use of reso-
lutions in the computation of the Hochschild cohomology. Note first that we may
as well assume that ^ is complete, since G" is unaffected if one replaces s/ by its comple-
tion, which is still a locally convex topological algebra.

Let S8 be a complete locally convex topological algebra. By a topological module
over 89 we mean a locally convex vector space ̂ , which is a ^-module, and is such that
the map (&, ^) -> b^ is continuous (from 3S x M to ̂ ). We say that M is topologically
projective if it is a direct summand of a topological module of the form M' = SS ®^ E,
where E is a complete locally convex vector space and ®^ means the projective tensor
product ([29]).

In particular M is complete, as a closed subspace of the complete locally convex
vector space ̂ '.
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It is clear then that if^i and ̂ 3 are topological ^-modules which are complete
(as locally convex vector spaces) and p : ̂  -> ̂  is a continuous ^-linear map with
a continuous C-linear cross-section s, one can complete the triangle of continuous
^-linear maps

^^\

t/yo w */wQ

for any continuous ^-linear map f\^->^^.

Definition 42. — Let ̂  be a topological St-module. By a (topological) projective resolution
of ̂  we mean an exact sequence of projective 3S-modules and SS-linear continuous maps

*^t "^— ^^Q ^— *^€\ "^— l/^2 ^~~ * ' *

which admits a C-linear continuous homotopy s^:^ -^^+1

^+1^+^-1^== id, Vi.

As in [36] the module ^/ over 88 == ^ ®^ ea^0 (tensor product of the algebra ^
by the opposite algebra ^/°) given by

{a ® b°) c === ^6, fl, b,c e ̂

admits the following canonical projective resolution:
1) ̂  = 88 (§>„ E^ (as a ^-module), with E^ == j^ ®^ . . . ®^ ̂  (w factors);
2) e :^o -^ ̂  is given by e(<? ® A°) == <?&, <z, A e ja^;
3) ^(l ® ̂  ® . . . ® flj = (fli ® l) ® (^ ® . . . ® <?„)

n-1
+ S (— i) •'i ® ̂  ® . .. ® a^ ^.+10 ... ® aj

J-i
+(-I)n ( I®^)®(^0.. .®^_,) .

The usual section is obviously continuous:
^((a®6°)®(^® ... ®aJ) == ( i ® ^ 0 ) ® ^ ® ^ ® ... ®flJ).

Comparing this resolution with an arbitrary topological projective resolution of
the module ^ over SS yields:

Lemma 43. — For any topological projective resolution (̂ "5 b^) of the module s/ over
38 = ̂  §>„ c °̂, the Hochschild cohomology Hn(e^3 ̂ *) coincides with the cohomology of the
complex y

Hom^(^°, ̂ ) -> Hom^(^S ̂ ) -> ...

(where Hom^ means continuous SS linear maps).

Of course, this lemma extends to any complete topological bimodule over ^/.
Let us now pass to the examples.
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6. Examples

i) ^ === C°°(V), V a compact smooth manifold.
We endow C°°(V) with its usual Frechet space topology, defined by the semi-

norms sup \y'f\ == A*(/) using local charts in V.
( a j ̂  n

As a locally convex space, G°°(V) is then nuclear ([29]) and one has

C^V) ®^ C^V) == G^V x V).

Thus ^? == j^®^ J^° is canonically isomorphic to G°°(V x V) and the module ^
over ^ corresponds to the diagonal A:

V/eC^VxV), £(/)== A-/.

Let us assume for a while that the Euler characteristic ofV vanishes. The general
case will be treated by crossing V with S1. Let E^ be the complex vector bundle on
V x V which is the pull back by the second projection prg : V X V -> V of the exterior
power A^ Tc(V) of the complexified cotangent bundle of V. By construction, the
dual E^ofEi is the pull back by pr^ of the complexified tangent bundle. We let X(<z, b)
be a section of E[ such that:
a) for (a, b) close enough to the diagonal, X(fl, b) coincides with the real tangent

vector exp^^a) (where exp^: T^(V) -^V is the exponential map associated to a
fixed affine connexion);

b) X(a, b) + o when a + 6.

By hypothesis, the Euler characteristic of V vanishes so that there exists on V a
real nowhere vanishing vector field Y, with the help of which one easily extends the
germ of X around the diagonal to a section of E^ satisfying b). (Use Y as a purely
imaginary component.)

Lemma 44. — The following is a continuous projective resolution of the module G^V)
over C^V X V) (with the diagonal action):

G^V) i (^(V x V) ̂  C^V2, Ei) ̂  ... <- C°°(V2, EJ <- o

[n == dim V) where i^ is the contraction with X.

proof. — Each of the modules ^ = G^V X V, E^) is finite projective and
hence also topologically projective. Obviously zj| = o. To show that one has a
topological resolution it remains to construct a continuous linear section. Let
^, / e G^V X V) be such that :

X(<z, b) =. exp,-1^), V (a, b) e Support x';

^ = = i on the support of % and ^ == i is a neighborhood of A.
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Let ex)' be a section of E^ such that < X, co' > = i on the support of i — y. Put
9,(a, b) === exp,(^X(6, a)) for (^, &) close enough to A and let

/•i i,
s^) = // 9K^(/^)) 7 + (i - X) 0' A co.

•/o v

By construction ^ is G^V) -linear in the variable a. Fixing a and taking normal coor-
dinates around a = o one gets 9^) = ^, X(o, b) == — b, so that one can easily
check the equality

(9; ̂ x î) 7 + ix f (?? ̂ i) 7̂  = f <P?(^x «>i) -^ = ̂ i
•'0 v JQ v Jo T

for any differential form coi vanishing off the support of % and satisfying coi(a, a) = o.
Applying this with ^ = ^co shows that si^ + i^ s = iW. D

We are now ready to prove:

Lemma 45. — Let V be a compact smooth manifold, and consider ^/ == G^V) as a locally
convex topological algebra^ then:

a) The continuous Hochschild cohomology group H^eS/, ^/*) is canonically isomorphic with
the space ofde Rham currents of dimension k on V. To the (k + i) -linear functional 9 is asso-
ciated the current G such that

< G,/° df1 A . . . A df^ = S £((T) ̂ (/V0^/^ . . . J0^.
06 ©A

b) Under the isomorphism a) the operator I o B : H^eS/, ĵ *) -^IP'"1^ ja^*) ij ̂
A AAflm boundary/or currents and the image ofB in H^1^) is contained in the space of totally
antisymmetric cocycle classes.

Proof. — a) One just has to compare the standard projective resolution of ^ with
the resolution of lemma 44, applying lemma 43. Note that (cf. [33]) given any commu-
tative algebra ^ and bimodule Jt, the map Th> S £(0) T°, where T eC^e^,^)

oe®jb
and T°(a1, . . . , a^) = T^0^, ..., 0°^), transforms Hochschild cocycles in Hochschild
cocycles and its kernel contains the Hochschild coboundaries.

Next, if (peZ^,^*) and 9° = £(o) 9 for oe®^ , with j^ == C°°(V), then
(under the obvious continuity hypothesis) there exists a current G on V such that

< C,/° df1 A ... A df^ = 9(/V1, ...,/'), V/1 e ̂ .

Indeed 9 now satisfies the condition

^(/V1/2,/3, .. .^+1) = 9(/°/W3, .. .^+l)

+9(/o/W^...,/fc4-l)

for /l e C^V), which shows that, as a distribution on Vk+l, its support is contained
in the diagonal A^i = {(^, A:, . . . , x) e V^, ^ e V}. Thus the problem of existence
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of G is local and easily handled say with V = T" or also using local coordinates. Let
^ be the space of currents of dimension k on V. Define (B : 3>^ -> I-P(^, ja^) by

P(C) (/V1, ...,/') = < C,/° df1 A ... A df\ V/1 e COO(V);

then the map (B has a left inverse a given by 0(9) = G, where
<G,/0^1A . . . A ^> = I/A! S £(G) ̂ f\f°^\ . . .,/°W).

o6®jfc

To check that (B o a == id we may replace V by V X S1, since the homomorphism
p : ̂  = G^V x S1) -> ̂  == G°°(V) given by evaluation at a point ^ e S1 induces a
split injection H^j^, ̂ ) ̂  H^, ̂ *).

Thus we may as well assume that the Euler characteristic of V is o. Let X be
a section ofE^ as above. Let then (^, b^) be the projective resolution of C^V) given
by lemma 44:

< = C°°(V2, E,), b, = zx.

By lemma 43 the Hochschild cohomology H^C^V), (C^V))*) coincides with the
cohomology of the complex Hom^v)^', C^V)*). One has a natural isomorphism

C^V2, E,) ®coo^ C^V) » COO(V, A- E,)

and since A* E^ is by construction the exterior power A^T^V), one has a natural
isomorphism of Hom^y.)^, G^V)*) with the space ^ of A-dimensional currents
on V. More explicitly, to T e Homely.) (^, G00^)*) corresponds the current C
given by the equality

<C, co> = ̂ ^(i), Vco'e^, A* co'= co.

Since the restriction ofX to the diagonal A is zero we see that the coboundary operator i^
is zero and hence that IP^, ̂ ) = ̂ . To write down explicitely the isomorphism
we just need a chain map F of the resolution ^' to the standard resolution
(^ == (j^ ®^ ̂  ®^ ̂  ®^ ... ®^ ^) above the identity map Jt^ -> ̂ . Here
^ == G"^ x V x V^) and we take

(Fco) (<z, 6, ̂  . .., ̂ ) = <X(^ 6) A ... A X^^ 6), co(^ &)>,
V a, A, ^ e V

and coe^; = G00^2, E^).
One has

(^ Fco) (fl, &, ̂  . .., ^&-1) = (Fco) (^ A, ̂  ̂ , ..., ̂ -1)

- S^ (- i)3 Fco(^ &, ̂  .. ., ̂  ̂  ..., ̂ ft-1)

^^-i^Fco^^...,^1^)

= <X(^ 6) A X(x\ b) A . . . A X(^-1, 6), co(^ ^>.

This shows that b^ Fco = F^x co, V co, so that bj, F == F^ and F is a chain map.
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Let 9 e Z*(^/, s/*) be a Hochschild cocycle, the corresponding element of
Homcoo(v«)(^t, «aQ is given by the equality

w®g) ®/1 ® . . . o/6) (/°) = v(gf°f,f1,. •.,/'}, f, g,r e ̂ .
Let us compute the A-dimensional current corresponding to ^ o F. One has

<C,f°df1^ ...A(^>=?oF(o/)(l),

where <o' =/° o^ A ... A o^, o),(a, &) = df\V) e T^(V).

One has
F(^(a, A, ̂ , ..., ̂ ) = <X(^S b) A . . . A X(^, A), <o'(a, &)>

=/°(&) S £((T)^<X(^,6),^0^<>W>.
oe®A i

This shows that to compute ^ o F one may replace 9 by the total antisymme-

trization 9' == _ S e(<r) 9° on the last k variables. As the differential of the functionk\ ©j^
x -> <X(A:, b), df{b)^ at the point x == b is equal to df{b), we conclude that the
^-dimensional current corresponding to 90 F is C ===== k\ 0(9) and hence that a is an
isomorphism.

b) Let G e Q^ be a A-dimensional current, and 9 the corresponding Hochschild
cocycle: 9(/VS •.../') - ̂ /^A .., A ^>. Then

Boy^...,/'-1)-^!^...^-1)
==<C,^°A ...A^-^^KV^A ...A^-1).

As an immediate corollary, we get:

Theorem 46. — Let ^ = G^V) as a locally convex topological algebra. Then:

1) For each k, H (̂̂ ) is canonically isomorphic to the direct sum

Ker b (C ̂ ) C H,_^(V, C) C H,_,(V, C) C ...

{where H^(V, C) u ̂  MJMa/ de Rham homology of V).
2) H*^) is canonically isomorphic to the de Rham homology H,(V, C) (with filtration by

dimensions).

Proof. — i) Let us explicitly describe the isomorphism. Let 9 eH^(^). Then
the current C = 0(1(9)) given by

< G,/° df1 A ... A df^ = - S 9(/VOW .. • ./o(fc))
R\ ae^k

is closed (since B(I(9)) = o), so that the cochain

?(/V1, ...,/') - < G,/° df1 A ... A df^

346



NON-COMMUTATIVE DIFFERENTIAL GEOMETRY 131

belongs to Z^(e^). The class of 9 — 9 in H^(J^) is well determined, and is by cons-
truction in the kernel of I. Thus by theorem 37 there exists ^ eH^"2^) with
S^ = 9 — 9, and ^ is unique modulo the image of B. Thus the homology class
of the closed current a(I(^)) is well determined. Moreover by lemma 45 b) the class
of ^ — ^ in H^"^^) is well determined. Repeating this process one gets the desired
sequence of homology classes co, eH^_2j(V, C). By construction, 9 is in the same

00

class (in H^(«^)) as C -(- S S^S^ (where for any closed current cô . in the class one
takes J = l

W0,/1, . . .J '̂) = <^J°df1^ ... A df^2^).

This shows that the map that we just constructed is an injection of H^(e^) to
KerA( C <^) ®H^(V, C) ®... ®H,_^(V, C) ® ...

The surjectivity is obvious.
2) In i) we see by the construction of the isomorphism, that S : H^(J3/) -> Hj^^j^)

is the map which associates to each G e Ker b its homology class. The conclusion
follows. D

Remarks 47. — a) In this example the spectral sequence of theorem 39 d) is dege-
nerate and the Eg term is already the de Rham homology of V (with differential equal
to o).

b) Let 9 eH$[(G°°(V)). Then theorem 46 shows that 9 is in the same class as
00

G + S S3 S, where the current C is well defined and the homology classes o). are also
j==i

well defined. One can prove that, once an affine connection V on V has been choosen,
one can associate canonically a sequence (dj of closed currents to any 9 eZ^C^V))
whose support (in 'Vk+l) is close enough to the diagonal A == {(x, ..., ,v), x e V}.
Moreover if 9 is local, i.e. if its support is contained in A, then the germ of (Oj around
any x e V only depends upon the germ of 9 around x and the connexion V. This
is proven by explicitly comparing the resolution of lemma 44 and the standard one.
It remains valid without the hypothesis ^(V) == o.

c ) Let W C V be a submanifold ofV, f : G^V) -> G^W) the restriction map,
and o -> Ker i* -> C^V) -> G^W) -> o the corresponding exact sequence of algebras.
For the ordinary homology groups one has a long exact sequence

-^ H,(W) ^ H,(V) -> H,(V, W) -> H,_,(W) -^ . . .

where the connecting map is of degree — i.
Since H^ is defined as a cohomology theory, i.e. from a cochain complex, the long

exact sequence
-^(C^W)) -^H^G^V)) -.H^G^V^G^W))

-^H^C^W)) -> . . .
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has a connecting map of degree + i. So one may wonder how this is compatible with
theorem 46. The point is that the connecting map for the long exact sequence of
Hochschild cohomology groups is o (any current on W whose image in V is zero, does
vanish), thus Im(B) C SHi-^C^W)).

d ) Only very trivial cyclic cocycles on C°°(V) do extend continuously to the
C*-algebra C(V) of continuous functions on a compact manifold. In fact for any
compact space X the continuous Hochschild cohomology of ^ == C(X) with coefficients
in the bimodule j^* is trivial in dimension n ̂  i (cf. [35]). Thus by theorem 37
the cyclic cohomology of ^ is given by H.^{^) == H^(^) and 'H^+1{^) == o. This
remark extends to arbitrary nuclear C* algebras [51].

Example 2.— ^ = ̂  6 e R/Z. (Cf. [16] [19] [55] [58].) Let \ == exp 2^6.
Denote by ^(Z2) the space of sequences (^Jn^z' ^ rapid decay (i.e.
(\n\ + \m\)q |^J is bounded for any q eN).

Let ja^e be the algebra whose generic element is a formal sum S^ m U; U^,
where (^ J e <$^(Z2) and the product is specified by the equality Ug U^ = XU^ Ug.

For 6 e Q^ this algebra is Morita equivalent, in the sense of corollary 24, to the
commutative algebra of smooth functions on the 2-torus. Thus in the case 6 e %,
the computation of H*(J^) follows from theorem 46.

We shall now do the computation for arbitrary 6. The first step is to compute
the Hochschild cohomology H(^/e, ̂ *), where of course j^ is considered as a locally
convex topological algebra (using the seminorms pq{a) == Sup(i + \n\ + 1^1)^ | ^J).

Let us describe a topological projective resolution of ̂  viewed as a module over
S == j^e ®n -<• ^t ^ = 3S ® Q, where £1 = 0.^ ® Q^ ® Qg is the exterior algebra
over the 2-dimensional vector space £1^ = C2 with canonical basis e^e^.

For j == i, 2 let ^ :̂ . ̂ ^4.1 be the ^-linear map such that

^(i®^,) = i®U,-U^i, j= 1,2 .

& 2 ( l ® ( ^ A ^ ) ) = (U2®I — X ® ^ ) ® ^ - (^Ui®I - I ® U ? ) ® ^ .

o

As usual, let e : SS -> ̂  be given by e(a ® b) = ab for a, & e j^.

Lemma 48. — a) (̂ , 6^) u a projective resolution of the module ̂ .
b) H^O-o for i>2.

Proof. — For v = (^, ̂ ) e Z2, let U' = U;1 U^« e j^e. ^v = U^® i e ̂  and
0

Y^ = i ® IP e ̂ . Then Xv and V commute for any v, v' and any element of 3S is of
the form

x==^a^.X^\

where the sequence (^ ^) is an arbitrary element of e^(Z4).
One has X^ X^' == X^^ X^^, V V = X"'^ Yv+v\
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Let us check that Ker s = Im 63. The inclusion Im ̂  C Ker e is clear. For
x = 2^ X^ y, e(^) = o implies 2^ X^ X^ = o i.e. x = 2^ X^Y^ ~ X^). Using
the equality

(i ® U?) (i ® U;1) - (U? ® i) (U?® i)

= ( i®U^) (S Ui^U;1-1-^!®^-^®!)
0

n,-l

+W®i)(^ u^u?-1-^!®^-^®!),
we see that the left ideal Ker e is generated by i ® U^ — U^ ® i and i ® U^ — Ug ® i
and hence is equal to Im ̂ .

Next, one checks that b^ b^ == o. Given x = x^ ® ̂  — ^ ® ̂  e Ker A^, one
has ^(i ® Ui — Ui® i) = A:a(i ® Ug — Ug ® i). To prove that x e Im ̂  it is

o

enough to find y e S8 such that A:i ==^(1^® i — X® Ug).
o °0

With Z == XUa-^Ua one first proves that ^( S Z^) = o, using the relation
— oo

oo oo

Xi{ 2 Z*;)(I®Ul-Ul®I) =^(i®U^-Ui®i) S (Ua-1®^
— 00 — CO

= ^3(1 ® Ug - Ug® i) S (Ua-1® Ua)* == 0.
— 00

Then writing x^ == Sfl^; Z^, where (^) is a sequence of rapid decay of elements of the
o

closed subalgebra of 39 generated by Ui® i, i ® U^, U^® i, one gets

^ == ̂ a^ - i) = ^(YZ^) (Z - i) =^(Z - i).

Finally the injectivity of b^ is immediate. D
Using this resolution one easily computes ?(^3^). We say (cf. [32]) that

6 satisfies a diophantine condition if the sequence | i — X^"1 is 0(7^) for some k.

Proposition 49. — a) Let 6 i %. 0^ has H°(.̂ , ̂ e1) = C.
b) If 6 ^% satisfies a diophantine condition, then H^J^,^) ij o/' dimension 2 for

j = i, fl/irf o/' dimension i yor j = 2.
c) If 6 ^ Q^ rfo^y ^o^ j-fl̂ î  a diophantine condition, then H1, H2 ar^ infinite dimensional

non Hausdorjf spaces.

(Recall that by theorem 46, IP'(J^e,efl^1) is infinite dimensional for j ̂  2 when
6e%.)

Proof. — We have to compute the cohomology of the complex (Hom^(*^, ̂ ), A^).
The map TeHom^(^^) -> T(i) e^; allows to identify Hom^(^, ̂ ) with
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j^"®^. Moreover, using the canonical trace T on cQ/Q, r(2^ U^) == a^o) one can

identify ̂  with the space of formal sums
9= So, IP,

where (flv)vgz« is a tempered sequence of complex numbers (|^^| ^ G( |w | + l ^ l ) 3

for some G and (3). The linear functional is given by <<p, x ) == r(y^) for x G^/Q.
With these notations, the above complex becomes

<^<e<-^<->o
where 04(9) = ((Ui 9 — yUi), (Ug 9 — (pUg))
and 03(91, 92) = Ug 91 — X9i Ug — (XUi 92 — 93 Ui).

Since X ^ Q, one easily gets Ker ai == C, which gives a).
For (91, 92) 6 Ker ocg, one has U^ 9i — ^91 U^ = XUi 92 — 92 Ui and the

coefficients a^ of 9 = Sfl^, IP are uniquely determined by the conditions

^(0,0) == °? u! 9 — 917! == 9i. ^ ? — 9^ ̂  ?2-
Indeed one has (i - 7^) ^-i,n. == <,n. and (X^ - i) ^n.-i == <.n.. For

these conditions to be compatible one needs
<0 === 0 V^; <, = 0 V H; <4-l,n.(l - ̂ r1 = <n.+l(̂  - l)~1

for ^ +0, n^ 4= o.
From the hypothesis 03(91, 92) == o one gets

(^ - i) <,.̂  == (i - X^) <^,^i V n,, n^.

Thus the compatibility conditions are: a\ o = o, ^ i == o.
If 6 satisfies a diophantine condition, the sequence (aj is automatically tempered,

which shows that H^^e, ̂ ) = C2.
If 6 does not satisfy a diophantine condition, then by choosing say the pair (91, o)

where 91 = S U^ U^, one checks that the compatibility conditions are fulfilled but
n+O

that (^) is not tempered. This proves b), c) for H1; the proofs for H2 are similar. D
At this point, it might seem hopeless to compute H*(^) (cf. definition 16) when

6 is an irrational number not satisfying a diophantine condition, since the Hochschild
cohomology is already quite complicated. We shall see however that even in that
case, where H^^,^) is infinite dimensional non HausdorfF, the homology of the
complex (IP^Q, J^Q*), I o B) is still finite dimensional. The first thing is to translate
I o B in the resolution used above. Before we begin the computations we can already
state a corollary of proposition 49 and theorem 37:

Corollary 50. — (6 ^Q,). One has H^(J^e) = C ̂  the map

I: Hi^^H^e,^)

is an isomorphism.

(Thus in particular any i-dimensional current is closed.)
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Proof. — By proposition 49, a) one has H^(J^) == H°(^, ̂ ) = C. By
theorem 37 the following sequence is exact:

o ̂  H{W ^ H^e, ̂ ) -^ H°,(̂ e) ̂  H^e).

Since the image by S of the generator T of H^(J^) is non zero (it pairs non
trivially with i e Proj <^) one gets B == o. D

Lemma 51. — Let 9 ej^/Im o^ = H^^, *^e*)? ^^

(I o B) (9) e H1^ ̂ ) = Ker ̂ lm a!

ij the class of (915 92) where

(Vl)n,» = - ̂ (I - ̂ "-l)m) (I - ̂ n-1)-1 Vn,^

and (̂ )n,. == X-^i - X"""-1)) (i - X"-1)-1 9^^.

Proo/. — To do the computation we first have to compare the projective resolution
of lemma 48 with the standard resolution (e^ = OS €)„ ̂ /fk . . .), i.e. to find morphisms
A : Jt -> J ( ' and k: M' -> M of complexes of ^-modules which are the identity in
degree o. Recall that

^(i ®f l i® ... ®<zJ == (a^ i) ® (^0 ... ®flJ
n-l

+ S (— 1)^' I ®^® . . . ̂ fl^i® ... ® ... 0^
J'^l

+(- I )n ( I®^)®(^®. . .®^_,) .

The module map h^ is determined by Aj^(i ®^.) which must satisfy

&' Ai(i€)^.) ==^(1®^,) === i®^ 0 —^.®! ;

thus we can take A^(i ®^.) = i ® U,.
One determines in a similar way (but we do not need it for the lemma)

^ ( i 0 ( ^ A ^ ) ) = i ® U 2 ® U i - ^ i ® U i ® U a .
The module map k^: S8®^^ -> B®Q^ is determined by ^(i ® U")

(v == (n,, n^)) which must satisfy 61(^(1 ® U')) == ^(i ® IT) == U"® i - i 0 (U")0.
As in the proof of lemma 48 we take ^(i®!^) = A ^ ® ^ + B ^ ® ^ where

A, = ^•(Ur1 - U?1) (Ui ~ Ui)-1, B, = UrW ~ U?') (Ua ~ V^)-1 where to simplify
0 0

notation we omit the tensor product signs (i.e. Uj, Vj mean Uj ® i, i ® U,).
Now the module map k^: JSf^ -> ̂  is uniquely determined by the equality

^ k^ == k^ &2 since ^3 = o.
A tedious but straightforward computation gives:

^n«Wi TTWi _ ^-WiW, Tjmi Tjn, _ n̂, Tyn, o

^(1®^®^)=^^——-1———-—————^u2———^-US'^^A^).
X"' Ui - X-'"* Ui Ug - XUa
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In fact we shall only need the special cases
a) v = (i, o), VL arbitrary,
b ) v arbitrary, (JL = (o, o),
c ) v arbitrary, (JL = (i, o);

one may as well check directly that k^ == o in cases a), b) (compute k^b^) and that

k,{i ® ̂ 00 U,) = UFTO - ̂  U?') (U, - XUg)-1 ® (^ A ^).

We thus have determined the morphisms h and A. They yield the morphisms
k\: Hom^(^, 0 -> Hom^(^', <),
^ : Hom^(^, ja^) -> Hom^(^, ja^),

and we want to compute the composition
a == ^(1 o B) ̂  : ̂ e* -^ ̂  ® j^.

Let 9 ej^e* and let 9' be the corresponding element of Hom^(^, j^):
9'(a ® 6° ® ̂  A ^) W = 9(&^) V a, b, x e ̂ .

Let ^ == ̂  ? = ? ° ̂ 2 • One has
<p(;C0, A:1, A;2) == ̂ (^(l ® A:1 ® A:2)) (̂ °) V X0, X\ X2 6 ̂ .

Let ^ = (I o B) ^. One has by definition, for x°, x1 e J^Q,
+i(^ ^) == ^(i, ̂  ̂ ) - +(^ x\ i) - ̂ (i, ̂  ̂ ) + +(^ ̂  i).

Using b) one gets that ^(A?°, x1, i) = o for x°, x1 e^; thus
^°, ̂ ) = <KI, ^0, x1) - ̂ (i, ̂ , ̂ ) V x°, x1 e j^e.

Let then 0(9) == (y^, 93). One has 0(9) = h\^\ thus
9^) ==^(^U,) =^( i ,^ ,U, ) -^( i ,U^^) V^e^e , J = i , 2 .

Let us compute 9/1^), v = (^, ^2), j = i, 2. Using a), we have
^(U^^i^Ui).

Using c) we have
9^) = <KI, U-, Ui) = ?(^(i ® U-® U,)) (i)

_ ( { i - X^^) (i - x^1^)-1 9(Ur1 U^'-1) if ^ =t= o,
[ o if n^ = o.

The knowledge of 91 )̂, V v e Z 2 , determines the coefficients a\ of 91=2^^
by the equality

^=^•9^-^.

Hence we get
^^-(i -^-^^(i -X-^-1))-1^^——1)^,^,,

where 9 == 2fl^ Uv.
The computation of 93 = S^ Uv is done in a similar way. D
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We are now ready to determine the kernel and the image of I o B. Let
9 e j^/Im 03 e H2^, ̂ ) be such that (I o B) 9 e Im ̂ . Let thus ^ == S^ l^ e e<
with a^(^) == (I o B) 9. Then
!) C 1 - ̂ ) ̂ -i,n. == - ̂ (i ~ X^-1^) (i - ̂ -1)-1^^,

2) (i -^) ̂ .n.-i = -X-^i -^-^(i -x^-1)-1^^,^.

So the image (I o B) 9 e H^e, -<) is o if and only if the following sequence
is tempered: c^ = (i - X^) (i - X^-1 (i -- X^1)-1 ̂ +1^+1.

One has 9 e Im oc^ if and only if one can find tempered sequences (4 J, j = i, 2,
such that (^ ~ i) .̂ ^ + (X- - i) c^, == a^^, V ̂  m. This \ equivalent
to ^1,1 == o and the temperedness of the sequence ([X" — i [ + [^ — 11)-1 ̂  ^ ^

Thus the next lemma shows that in all cases the kernel of I o B is one-dim^nsi^nal.

Lemma 52. — For any 6 ^ %, and {n, m) e Z2, (n, m) =|= (o, o), one has

(l^-ii+l^-iD-^'^i+li-x-iii-x-l-1!!-^!-^
with \ = ̂ 2me.

proof. — For n = o, | (i - X^) (i - X")-11 is equal to | m \ ̂  i so that the ine-
quality is obvious. Thus we may assume that n =)= o, m + o. V \i —'>nm\^\l —\n\
the inequality is again obvious, thus one can assume 11 —7nm\< [ i — X"). With
^==^ ae[-7c,7r[, one has 11 - ̂ j < [ i - ̂ J with w + o, thus [wa|^7r ,
| ̂ a -- I [ ^ 2/w. D

Let us now look for the image of I o B in H^efl^, ̂ ) == Ker ag/Im a^. Any
pair (91, 93) e Im(I o B) + Im ai satisfies a\^ == o, a^ = o (using lemma 51).
Conversely, if a\ ̂  == a2^ == o, let us find '96 ̂  (<P = Sfl, U") and ^ e ̂
(^ = S^ U^ so that, with the notation of lemma 51, one has

(9i? 92) == ai(<p) + (I o Bj 9.

This means:

1) <m == (I - ̂ m) ^_i., - X-^I - ̂ -l)w) (I - X-1)-1^,^,,

2) <m == (^ - I) ^m-l + ̂ -'(I - ̂ -^ (I - X"-1)-1 <Z^i^.

Since 02(91, 93) = o by hypothesis, one has (^n — i) a\^^ = (i — X"*) ^^+r
Thus one can find sequences b, a satisfying the above equalities with

Km|==k-H.m+ll==(l + [ 1 - ^ 1 1 1 -X"!-1!! ^7m\-l)-l a^m'i — V1

%

where for m == o and n =t= o the right term is replaced by n>OT+l

i — T" '
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By lemma 52,

I^J ̂  (i + M) (1^- 1 1 + |r- 1 1 ) K_i,J l(i - ̂ )-1!
-(i +|^|)(|^j+|<^i|).

Thus fl, A are tempered and we have shown that (91, 93) belongs to the image of I o B
in IP(J^O.

Theorem 53. — a) For all values of 6, H6^) ^ C2 W H0^^) ^ C2.
b) TA^ w<^ (91,92) eK•era2^->(9l(Uj-l),92(U2~l)) e C2 ^m fl% isomorphism of

H0^^) = H^e, .<)/MI o B) z^A C2.
c) One has H ĵ̂ e) = H^^); it is a vector space of dimension 2 z^A ,̂ay ST

(r ̂  canonical trace) and the functional 9 ^y^ by

9(^, ̂ , ̂ ) =: x\W) W) - W) W)) V ̂  e ^e-

In the last formula, 8^, Sg are the basic derivations of J3^: 8^(UV) == win-^ U",
S^U^ == 27c^ V\

Proof. — Since H"^^, j^*) = o for ^ >^ 3, one has by theorem 37 an equality
H0^^) == Hi(^e) = H^(^e)/Im B. By corollary 50 one gets

Hl(^e)/Im B = H^^e, 0/Im(I o B).

Thus b) follows from the above computations.
In the same way, one has H^J^) == H^(J3^), and the exact sequence

o -> H°,(̂ e) ̂  H2,̂ ) -^ H2^, 0 -B- H^^e). With 6 ^ % one has H°,(̂ ) = C
with generator T, and using corollary 50 and the computation of Ker(IoB), we see
that the image of I in the above sequence is the one-dimensional subspace of
H^^, ja^*) = ja^/Im o^ generated by U^ U2 (i.e. the functional x h> T^U^ Ug),
V A: ee^). Let us compute the image 1(9) of the 9 eH^(J^) given by 53 c). Let
^ e Hom^(e^2, Ĵ Q*) be given by

^((fl ® &°) ®x1® x2) {x°) = ̂ {bx° a, x1, x2) V a, b, ^ e ̂ ,

with the notations of lemma 51. Under the identification of HP^Q, e^*) with j^*/Im Og,
1(9) corresponds to the class of ^oAg . One has

Wi ® .1 A ^)) (^0) = 9(^ U^, Ui) - X9(^, Ui, U^)
= -2X(27C^)2T^OUlU2).

This shows that H^(^) is generated by ST and 9. D
We can now determine in this example the Ghern character, viewed (as in section 2)

as a pairing between Ko(^) and I-P^e^e). With the notations of theorem 53, we
take ST and 9 as a basis for H^J^). From the results of Pimsner and Voiculescu [55]
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and of [19] lemme i and thtoreme 7 the following finite projective modules over ^
form a basis of the group Ko(^) == Z2:
1) J^Q as a right ^-module.
2) ^(R), (the ordinary Schwartz space of the real line), with module structure given by:

(S.Ui)M =^+9), (S.Ua)M =^SM, V.eR, Se^(R).

We shall denote the respective classes in Ko(^) by [i] and [̂ ].

Lemma 54. — The pairing of K()(^) with H®^^) ^ ^zwz by:

^<[ I ] ,ST>=I, <[^],ST>=6e]o, i ]

^ <[i],9> -o, <[^],9> == i.

Prooy. — a) One has r(i) = i. We leave the second equality as an exercice.
b) Since 8^(1) == o the first equality is clear. The second follows from [19]

thdoreme 7, noticing that the notion of connexion used there is the same as that of
definition 18 above relative to the cycle over ̂  which defines 9 namely:

^e — ^e 0 A1 -^ ^e 0 A2 -^ C

where A1, A2 are the exterior powers of the vector space C2, dual of the Lie algebra ofR2

(which acts on j^ by S^, 83). (Cf. [19] definition 2.)

Corollary 55. — For 6 ^ Q^ the filtration of IP Ĵ̂ ) by dimensions is not compatible
with the lattice dual to K.o(J3^).

We shall see in chapter 4 that any element of this dual lattice is the Ghern character
of a 2 + s summable Fredholm module on j^g.

Problem 56. — Extend the result of this section to the (c crossed product " of C°°(S1)
by an arbitrary diffeomorphism of S1 with rotation number equal to 6 [32].
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Terminology (references to part II)

Chain, section 3
Character of a cycle, introduction and proposition i
Cobordism of cycles, section 3
Cup product of cochains, section i
Cycle, introduction and section i
Cyclic cohomology, section i, corollary 4
Exact couple, section 4
Filtration by dimension, section a, definition 16, section 4, corollary 39
Flabby (algebra), introduction, section i, corollary 6 and [13]
Hochschild cohomology, section i, definition 2
Hochschild coboundary, introduction
Homotopy invariance, section 4, remark c.
Irrational rotation algebra, section 6
Pairing with 'K.-theory, section 2
Relative theory, section 4, remark a.
Stabilized cyclic cohomology, section 2, definition 16
Suspension map, section i, lemma n
Tensor product of cycles, section i
Topological projective module, section 5
Universal differential algebra, section i, proposition i and [i] [14]
Vanishing cycle, section i, definition 7

List of formulae in Part II

bA == Ab'
b2=o, b'^^o
Db == V D
Bo b + b' Bo = D
&B == — B&
B^o
SB === 2inn(n + i) b

A(<T#9) = = ^ # 9 V<peZX(.flQ
n + 3

bS = "-J-1 Sb
n + 3

Z; UBoZ^^BZ^1

Im B == C^
AC^CBoZ^1

[?*+]== (n^1 W v W
e(de) e = o
e(deY=We
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Notation used in part II

s/9 f2 algebras over C
^{s/, .fi/*) space of n 4- i linear forms on ja^
9 (̂0°, ..., a") == 9(0^°), ..., o^)) V 9 e C^GC/, .aQ, Y permutation of { o, i, .. ., n} and a9 e ̂
^9, 9eC"(^,^) ^

^p(a0, ..., a^1) = S (— i)^ 9W • • •, ̂  ̂ +1, • • •» ̂ n+l) + (— i) '̂ y^1 ̂  • • • > ^n)
^-0

Zn( ,̂ ̂ *) == Ker b, Bn(̂ , ̂ ') = Im b, W(^, ̂ ) == Z^
C^(^) = = { 9 6 ̂ (J ,̂ ja^*)}, 9^ == e(X) 9 V X cyclic permutation
ZX(.aO ==C;; (̂ ) nKer&
B?(^) ^bC^W
HS(̂ ) = ZX(^)/BX(^)

j^ algebra obtained from s/ by adjoining a unit
n(J2/) universal graded differential algebra
^(a0 da1 ... dc^) = T(a°, a1, ..., a") (proposition i)
^ == ^ ® j2/°, ja^0 = opposite algebra of ja/
A9 == S e(Y) y"^? r' == gro11? o^ cyclic permutationsver
&' 9 == S (— i)̂ ' 9(̂ , ..., ̂ ' ̂ >+1, ..., ̂ n+l) V 9 e ̂ (^ ̂ )

^-o
TT:O(^®B) -^ Q(J^)®^(B) VA:ie^
9 # 4/ == (9(g)$)07T

(reZi(C), 0 ( 1 , 1 , 1 ) ==2w
S 9 = = 9 # o V9eZ^(J^)
H-^) == Hm (H;(̂ ), S)

F" H*(^) == Im H;(^)
Bo9(a°, ..., fl"-1) = 9(1, a0, ..., a^1-1) — (— i)^^ • • ̂ an~l^ I^ >/<? e ̂ (^ ̂ )
M.*(^/) Cobordism group of cycles over <s^
I : morphism of complexes (C^, b) -> (C", b)
I>9 == 9 —e(X) 9^ V 9 e ̂ (J ,̂ J^*), X canonical generator of cyclic group T
</i9 == ( w — w + i ) & < P V9eCn»w==Cn-w(^,^)

<49 ==— I—B9eCn•TO+ l V9eCn•w

" ' n—m ' •

y 9(fl°, ..., a") == S 9(fl°, . •., SW, • •., o") V fl1 e ̂ , 96 a* ,̂ ̂ *) and 8 derivation of ^/.
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