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VOLUME PRESERVING ACTIONS OF LATTICES IN
SEMISIMPLE GROUPS ON COMPACT MANIFOLDS^

by ROBERT J. ZIMMER (2)

i. Introduction

In this paper we begin a study of volume preserving actions of lattices in higher
rank semisimple groups on compact manifolds. More precisely, let G be a connected
semisimple Lie group with finite center, such that the R-rank of every simple factor
of G is at least 2. Let F C G be a lattice subgroup. Assume M is a compact manifold
and (o is a smooth volume density on M. The general question we wish to address
is to determine how F can act on M so as to preserve co. All presently known actions
of this type are essentially of an algebraic nature, and a fundamental general problem
is to determine whether or not the known examples are an essentially complete list or
whether there are genuinely (< geometric " actions of such groups.

The standard arithmetic construction of cocompact lattices shows that in the
cocompact case one may have homomorphisms F -> K where K is a compact Lie
group and the image of F is dense in K. Thus, F acts isometrically (and ergodically)
on the homogeneous spaces of K. One way to attempt to exhibit new actions of F
would be to start with a given action and try to perturb this action. One of our main
results shows that if we start with an isometric action and make a sufficiently smooth
perturbation, then at least topologically we stay within the class of isometric actions.
More precisely:

Theorem 6 .1 . — Let G and F be as above. Let M. be a compact Riemannian manifold^
dim M = n. Set r = n2 + ̂  + T • Assume F acts by isometrics of M. Let FQ C F be
a finite generating set. Then any volume preserving action of F on M which

i) for elements of FQ is a sufficiently small Gr perturbation of the original action^
and

ii) is ergodic\
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(2) Sloan Foundation Fellow.
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actually leaves a G° Riemannian metric invariant. In particular^ there is a ^-invariant topological
distance function and the action is topologically conjugate to an action of T on a homogeneous space
of a compact Lie group K defined via a dense range homomorphism of F into K.

In addition to showing that we obtain no new ergodic actions of F by perturbing
an isometric action, Theorem 6. i can be profitably viewed from other vantage points.
We recall that if we have an isometric diffeomorphism (i.e. Z-action) a volume preserving
perturbation of this diffeomorphism is not likely to be isometric. In fact, hyperbolicity
rather than isometry is typical of properties of a diffeomorphism that are preserved
under a perturbation. A similar remark obviously applies to actions of free groups
as well. Thus Theorem 6.1 shows a sharp contrast between the behavior under
perturbation of actions of lattices in higher rank semisimple groups and that of free
groups. From another point of view, we recall from the work ofWeil [19], Mostow [i i],
Margulis [9], and others that homomorphisms of lattices in higher rank groups into
(finite dimensional) Lie groups have strong rigidity properties. Theorem 6. i can be
viewed as a type of (local) rigidity theorem for a class of homomorphisms of F into the
infinite dimensional group of diffeomorphisms of M.

As all <( algebraic " examples of volume preserving actions of F on manifolds
have dimension restrictions, we put forth the following conjecture.

Conjecture. — Let G, F be as above. Let d(G) be the minimal dimension of a
non-trivial real representation of the Lie algebra of G, and n{G) the minimal dimension
of a simple factor of G. Let M be a compact manifold, dim M = n (> o).

Assume
i) n < d{G); and

ii) n(n + i) < w{G).

Then every volume preserving action of F on M is an action by a finite quotient of F.
In particular, there are no volume preserving ergodic actions of F on M.

With one additional hypothesis, we can verify the final assertion of this conjecture.
We recall that on any compact manifold, the space of Riemannian metrics has a natural
(metrizable) G^topology for each integer r ̂  o. If ^ is a metric, 0 a G^neighborhood
of ^ in the space of metrics with the same volume density as ^, and S is a finite set of
diffeomorphisms, we say that ^ is (C^, S)-invariant if /^ e 6 for each fe S. In other
words ^ is <c nearly G^invaiiant " under S. In general, this is not a very strong condition.
For example, let 9^ be a smooth flow on M, preserving the volume density of a metric ^.
Then for any ^, we have that for t sufficiently small, ^ is (^, 9^)-invariant. Since highly
mixing diffeomorphisms can arise this way, e.g. all (f>^ t =t= o, may be Bernoulli, " near
isometry " has no implications in general for the existence of an invariant metric. With
the additional hypothesis that the generators of F act nearly isometrically we can prove
the final assertion of the conjecture.
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Theorem 6.2. — Let G, T be as above and M a compact manifold, dim M == n (n > o).
Assume n(n + i) < 2^(G), where n{G) is as in the conjecture. Set r = n2 -\- n -{- i. Let
FQ C r be a finite generating set. Then for any smooth Riemannian metric i; on M, there is a
(7 neighborhood (9 of^ such that there are no volume preserving ergodic actions of F on Mfor which
^ is {(P, To)-invariant.

Both Theorem 6. i and 6.2 are deduced from the following.

Theorem 5 .1. — Let G, F be as above, and r^C F a finite generating set. Let M. be
a compact n-manifold, and let r == n2 + n + i. Let ^ be a smooth Riemannian metric on M
with volume density co. Then there is a G" neighborhood (!) of ̂  such that any (^-preserving smooth
ergodic action of F on M, with ^ [0, To)-invariant, leaves a GQ-Riemannian metric invariant.

Once again, Theorem 5. i shows a sharp contrast between actions of F and actions
of Z or more general free groups as shown above by the example coming from a flow.

The framework of both the results and conjecture above can be generalized in
a number of directions only the most direct of which we shall consider in this paper.
(We hope to return to some of these other directions elsewhere.) For example, let k
be a totally disconnected local field of characteristic o, and suppose that G is a connected
semisimple algebraic ^-group, such that every ^-simple factor of G has ^-rank^ 2.
Let r C Gfe be a lattice. From results of Margulis [9] (see also the work of Raghu-
nathan [16]), it follows that for any homomorphism F -> GL{n, R) the image of F
is precompact. The following version of the previous conjecture would be a general-
ization of this result where GL(n, R) is replaced by the infinite dimensional group of
volume preserving diffeomorphisms of a compact manifold of arbitrary dimension.

Conjecture. — Let FCG^ be as in the preceding paragraph. Then any smooth
volume preserving action of F on a compact manifold is an action by isometries.

As in the case of real groups, we can establish the final assertion with one additional
hypothesis.

Theorem 6.3. — Let FCG^ as above. Let M be a compact n-manifold (n> o). Let
r = n2 + n + i. Let FQ C F be a finite generating set. Then for any smooth Riemannian
metric ^ on M there is a Cr neighborhood (9 of ̂  such that any volume preserving ergodic action
of r on Mfor which ̂  is {Q, T ̂ -invariant leaves a C°-Riemannian metric invariant.

We now outline the contents of the remainder of this paper, and in doing so
indicate some of the tools needed for the proofs of the above theorems. The first major
step in the proofs, and the result which leads one to put forward the above conjectures,
is the superrigidity theorem for cocycles proved by the author in [26], [27], [28], [29].
This is a generalization of Margulis5 superrigidity theorem [9] and its proof draws in
part on Margulis5 techniques. (See [28], [29] for an exposition of all of this material.)
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While in [26] we used the superrigidity theorem to construct homomorphisms between
Lie groups, here we use it to construct measurable invariant metrics on vector bundles.
In particular, the superrigidity theorem when applied to the derivative cocycle on the
tangent bundle, will in our situation give us a F-invariant assignment of an inner
product to each tangent space on the manifold, but this assignment will only be measu-
rable. To deduce the existence of such a measurable invariant metric from superrigidity
requires the use of Kazhdan's property, the Furstenberg-Kesten theorem on the products
of random matrices [3], [7], and some general structural properties of algebraic groups.
This measure theoretic information that the superrigidity theorem gives us, as well as
some other results of a similar type, is developed in section 2. Sections 3-5 are devoted
to trying to make the measurable invariant metric continuous.

In section 3 we discuss certain constructions on the frame bundle of a manifold
and on some associated jet bundles, and apply some of the results of section 2 to this
situation.

Section 4 is devoted to a simple but basic estimate which compares a measurable
invariant metric to a smooth metric on a vector bundle over a manifold. Here we
make use of the " near isometry " condition, ergodicity of the action, and of Kazhdan's
property. We deduce that the measurable invariant metric must satisfy L2 conditions
with respect to a smooth metric.

In section 5 we complete the main argument (the proof of Theorem 5.1). We
use the results of sections 2 and 4 applied to a cocycle defined on a jet bundle over the
frame bundle of the original manifold. " Near CY-isometry " and Kazhdan's property
are used to construct a fixed point in an associated Sobolev space, and using our L2

estimates, the Sobolev embedding theorem and some supplementary ergodic theoretic
arguments we construct an invariant C° metric.

Section 6 contains the deductions of Theorems 6.1, 6.2, 6.3 from the arguments
of section 5. In section 7 we present the known examples of volume preserving actions
on compact manifolds for the arithmetic groups we have been considering and some
questions concerning these actions. Some of the results of this paper were announced
in [30].

2. Measurable cocycles and superrigidity

In this section we present some fundamental results we will be using concerning
measurable cocycles. We will be applying these in subsequent sections to the actions
on various natural vector bundles related to a smooth action on a manifold. As a
general background source on measurable cocycles and related matters, see [29].

Let r be a locally compact second countable group and (S, (x) a standard Borel
r-space with p. a r-quasi-invariant probability measure. We recall that if H is a
standard Borel group, a Borel map a : S X F -> H is called a cocycle if for all yj, y2 e r,
a(J, YiY2) == ^^ "^^YD T2) ^or almost all s e S, and that two cocycles a, (3 : S X F -> H
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are called equivalent if there is a Borel function <p : S -> H such that for each y e r,
a(^ y) = PMPG^ v)?^)""1 almost everywhere. We shall be most often concerned
with the case in which H is a linear group (usually algebraic). In this case an important
invariant of the cocycle is the algebraic hull, introduced in [24] (see also [28]). We
summarize some relevant information.

Proposition 2.1 [24], [28]. — Suppose HCGL(n,C!) is an algebraic 'R-group and
a: S X r -> H^ is a cocycle. Suppose the T-action on S is ergodic. Then there exists an
'R-sub group LCH such that a ̂  a^ where ai takes values in tig, and there is no proper
'R-sub group MCL such that a ̂  a^ where ag takes values in Mg. The group Lp is unique
up to conjugacy by an element of Hg and is called the algebraic hull of a.

If G is a connected semisimple Lie group with finite center Z(G), then
G/Z(G) ^ (Gg)0 where G* is a connected semisimple algebraic R-group with trivial
center. IfH is an R-group and TC : G -> H^ is a homomorphism with TT | Z(G) trivial,
we shall call TT R-rational if the induced homomorphism on G/Z(G) is the restriction
of an R-rational homomorphism G* —> H.

The following is the version of the superrigidity theorem for cocycles that we will
need. It is adapted from the version in [27]. (See also [29], Theorem 9.3.14.)

Theorem 2.2 [26], [27], [29]. — Suppose G is a connected semisimple Lie group with
finite center such that every simple factor has H-rank>_ 2. Suppose FOG^ is a lattice and
that r acts ergodically on (S, (A) where (JL is an invariant probability measure. Suppose that H is
a connected, semisimple, adjoint algebraic 'R-group, that HR has no compact factors, and that
a : S X r ->HB is a cocycle whose algebraic hull is Hg itself. Then there exists an 'R-rational
homomorphism 7r:G->HR (trivial on Z(G)), such that a ̂  a^ where a^:Sxr->Hn
is the cocycle a(J, y) == Tc{^).

We shall need information concerning the situation in which the algebraic hull
of a is not necessarily H^. To this end we recall the following fact about cocycles in
the case in which F has Kazhdan's property. (See [i], [6], [i8], [29] for Kazhdan's
property.)

Theorem 2.3 [17], [25]. — Suppose F has Kazhdan's property and that A is an amenable
group. Suppose F acts ergodically with finite invariant measure on S. If a : S X F -> A is
a cocycle, then a is equivalent to a cocycle taking values in a compact subgroup of A.

We observe that equivalence of a cocycle into a linear group to a cocycle into
a compact subgroup is germane to the problem of finding invariant metrics. If
a : S X r -> H where H is a group acting continuously on the left on a separable
metrizable space X, by an a-invariant function <p : S -> X we mean a measurable
function 9 such that for each g e F, <x.{s, g)^{sg) = <p(.$') for almost all s e S. (See [29]
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for a general discussion.) If HCGL(n, R) is a subgroup, then H acts on the space
of inner products on R", which we denote by In^R^. Fixing the standard basis in R"
we can identify In^R^ with the positive definite symmetric matrices, and hence we
may speak of the determinant of any element in Inn^R^. If the determinant is i we
say the inner product is unimodular.

Definition 2.4. — If a: S x r->HCGL(w,R) is a cocycle, an ^.-invariant function
B : S - În^R") is called a measurable ^.-invariant metric.

We let SL'(w, R) be the subgroup of GL(n, R) consisting of matrices A with
det(A)2 = i . We then have:

Proposition 2.5. — Suppose HCGL(n,R) and a :Sx r ->H is a cocycle. If
a ̂  (B where (B(S X F) C K, KCH a compact subgroup, then there is a measurable on-invariant
metric B. If HCSL'(/z,R), we can assume detB(^) = i for all s.

Conversely, if a is a cocycle into SL'(n, R) and there is a measurable ^-invariant metric,
then a is equivalent to a cocycle taking values in 0{n, R).

Proof.— Let Bo e In^R") be a K-invariant inner product and let B(J) =9(J)Bo
where <p :S ->H satisfies a(J, y) == pMP^ T)?^)"1" Then B is the required
a-invariant metric. To see the converse, let BQ be the standard 0(n, R)-invariant inner
product on R^ and Inn^R") the inner products of determinant i. We can choose
a measurable function < p : Inn^R") -> SL(%, R") such that P==9(P) -Bo for all
P e Inn^R"). If s ->'K{s) is the measurable a-invariant metric, let ^ : S -> SL(w, R)
be ^) = ^de^BM)-1^)). Then ?(., y) = W-1^ y)^(^) e 0(n, R).

We can now give an application of Theorems 2.2, 2.3 to the existence of measu-
rable a-invariant metrics. We first record an elementary lemma.

Lemma 2.6. — i) Suppose Y acts ergodically on S, a : S X F -> H is a cocycle, and
H()C H is a subgroup of finite index. Then there is a finite ergodic extension p : T -> S (i.e. all
fibers are of fixed finite cardinality) such that the cocycle a': T X F ->H, S ,̂ y) == aQ&(<), y)
is equivalent to a cocycle into Hg.

ii) Suppose a : S X F -> H is a cocycle, p : H -> H^ is a surjective homomorphism,
and p o a is equivalent to the trivial cocycle. Then a is equivalent to a cocycle into ker p.

iii) Suppose T -> S ^ a finite extension of ergodic Y-spaces and a : S X F -> SL'(TZ, R)
^ a cocycle. Let 0' ̂  defined as in (i). TA^ there is a measurable ^.-invariant metric if and
only if there is a measurable ^-invariant metric.

Proof. — For (i), (ii) see [29]. For (iii), one direction is clear. Conversely, if
there is an a-invariant metric, summing the metrics over the fibers produces an a-invariant
metric.

We recall the following notation from the introduction.

10
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Definition 2.7. — If G is a semisimple Lie group with no compact factors, let d{G) be the
minimal dimension of a non-trivial representation of the Lie algebra of G on a real vector space.

Theorem a. 8. — Let G, T be as in Theorem 2.2. Suppose that (S, pi) is a Y-space such
that (almost) every ergodic component of the F action on S has a finite Y-invariant measure. Let
a : S x r -> SL'(n, R) be a cocycle. If n < d{G^), then there is a measurable ^.-invariant
metric B with det B(J) == i for all s.

Proof. — Using a standard ergodic decomposition argument it suffices to consider
the case in which F acts ergodically with an invariant probability measure. Let
HRCSL'(%,R) be the algebraic hull of a (Proposition 2.1). If H is not connected,
by Lemma 2.6 (i) we can pass to a finite ergodic extension of S and assume that 0'
(defined as in 2.6) takes values in (H0)^. If the algebraic hull of o? is not (H0)^, take
the algebraic hull. Once again, if this is not connected repeat the process, passing
to a finite ergodic extension. In this way, replacing S by a finite ergodic extension
if necessary, we can assume (using lemma 2.6 (iii)) that the algebraic hull of a, say H^,
is such that H is connected. We can write H^ = L^ IX UR where L is reductive
and U is the unipotent radical of H. Let q: H^->LB/[LH, Ljg] be the natural
projection. By Theorem 2.3, q o a is equivalent to a cocycle into a compact subgroup
ofLa/[LH,LB]. Since LB/[LR, L^] is the algebraic hull of q o a, it follows that this
group is compact. We have L == [L, L]Z(L) where Z(L) is the center of L and
[L, L] n Z(L) is finite. It follows that Z(L)n is also compact.

We can write the R-group L/Z(L) as a product of connected semisimple R-groups
L/Z(L) = Li x L^ where (L2)n is compact and (L^^ is centerfree with no compact
factors. Let ^i ^ Hg-> (Li)g be the projection. Then q-^o a is a cocycle with
algebraic hull (L^R and by the superrigidity theorem for cocycles (Theorem 2.2)3
there is a R-rational homomorphism 7r:G->(LijR such that q^ o a is equivalent
to o^. We can consider TT as a rational homomorphism TT : G ->Li where G is the
algebraic universal covering group of G*. (Here G* is as in the discussion preceding
Theorem 2.2.) Then TC lifts to a homomorphism % : G -> [L, L] C GL(w, C). By the
definition of^(G), our hypotheses imply % is trivial. Since the algebraic hull of %(G-a)
is (L^R, Li is trivial. It follows that L^ is compact and hence that HR is amenable.
Applying Theorem 2.3 once again, we deduce that a is equivalent to a cocycle taking
values in a compact subgroup and hence by Proposition 2.5, there is a measurable
a-in variant metric.

If we drop the restriction that n < d{G) the conclusion of Theorem 2.8 is obviously
no longer true in general. There are however other hypotheses which will lead to the
same conclusion with close to the same proof. If a : S X F -^ GL(n, R) is a cocycle,
FoC r is a finite set, and e > o we say that a is (e, ry-admissable if [| a(J, y) || ̂  i + e,
l la^Y)"1!!^ i + e for all s e S and all y e Fo.

11
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Theorem 2.9. — Let Y, S be as in Theorem 2.8, and suppose FQ C F is a finite generating
set. Fix n > o. Then there exists e > o such that for any (s. To)-admissible cocycle
a : S X r -> SL'(n, R) there is a measurable ^-invariant metric.

To describe the proof, we first recall the theorem of Furstenberg and Kesten
concerning products of random matrices. If A is a group, S a A-space, and
a : S X A -> GL(n, R) is a cocycle, we call a a tempered cocycle if for each h e A,
|[ a(., A) |[ e L^S). Now suppose A = Z, the group of integers. Define

eW{s)^}im^\o^\\^s,n)\\

if it exists. (We remark that if a(S X Z) CSL\n, R), then | | a (^n) | |>i , so
log+l|aM|l=log||aMl|.)

Proposition 2.10 (Furstenberg-Kesten). — L e t (S, p.) be a TL-space with invariant
probability measure. Suppose a : S X Z -> GL(w, R) is a tempered cocycle. Then:

i) e(v) exists and is a Z,-inuariant function on S. Hence, if Z acts ergodically, e{(x) is
a constant.

ii) If a and (3 are tempered and a ^ p, then <?(a) == <?(?) .̂

For a proof, see [2], [3], [7]. The following proposition summarizes some other
useful properties of e{cx).

Proposition 2.11

1) If a(^, n) == A" for some matrix A e SL'(n, R), ^w

^(a) == max {log | X [ [ X is an eigenvalue of A}.

2) More generally, suppose AeSI/^R) and a(.y, n) s A" mod K where
KCSL'(n, R) is a compact subgroup normalized by A. Then

<?(a) = max {log \\\ \ \ is an eigenvalue of A}.

3) Let HCGL(w.C) be a connected R-group, H = L IX U where L ^ U
are respectively reductive and unipotent JUL-sub groups. Let q : Hg -> L^ A<? projection. If
a : S X Z ->- Hn zj tempered, then ^(a) == ^(^ o a).

4) More generally, with H, L, q as in (3), suppose a : S X Z -> GL(T!, R) £? tempered,
that a -a wA^ a ( S x Z ) C H R , and that q o ex. is tempered. Then e[q o a) ^ ^(<r).

5) 7/' p : T -> S ^ a finite extension, and a ^ a tempered cocycle on S, then e{w) = ^(I?)
wA^ ^(^ 72) = v.[p{t), n}.

We now recall one fact about Lie algebras and one fact about lattices in semisimple
algebraic groups.

12
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Proposition 2.12. — a) Let 3 be a complex semisimple Lie algebra. Then for any n the
number of inequivalent representations of3 on a space of dimension n is finite.

b) Let G be a connected semisimple algebraic 'R-group such that Gg has no compact/actors.
Let r C GB be a lattice. Then for any non-trivial Irrational representation TC : G -> GL(n, C),
there exists y e r svtc^ ̂  7r(Y) has an eigenvalue \ with \\\> i.

Proof. — a) is standard and follows for example from the Weyl character for-
mula [20, p. 363].

b) follows from [12], [15].
With these preliminaries, we can now prove Theorem 2.9.

Proof of Theorem 2.9. — As in the proof of 2.8 it suffices to consider the case in
which r acts ergodically with an invariant probability measure. Let /: G-^Gg be
the projection, where G* is as in the discussion preceding Theorem 2.2. Let ^ : 6 -> G*
be the algebraic universal covering of G18, F = ^~l(fW)' By 2.12 we can choose
a finite set F C F and r > i such that if a is any non-trivial R-rational representation
<y:G->GL(%,C), there exists ^ e F ^ch that a(^) has an eigenvalue X with
log |X| > log r. Let F r^-^^F)). Since FQ generates F, there is an integer N with
(FQ u FQ-^DF. Let s> o be such that (i + s)^ < r. For each y e F and each
tempered cocycle a, let ^,y = ^(a I S X {y"}). Then if a is (e, Fo)-admissible, we have
for Y e F that
(*) 1 e^^s) | < log r for all s e S.

Now consider the proof of Theorem 2.8. We can construct the R-rational
homomorphism n and the lifted homomorphism % : 6 -> GL(n, C) as in that proof.
Let p : HR -> Lg and p^: Lg -> (L^g be the projection maps where the groups are
defined as in the proof of 2.8. Since p^ o p o a ^ a^, it follows that p o a ̂  p where
P : S X F - > L B is a cocycle with p^{s, y)) = -n^y). Thus, if 7 e 5 projects to
/(T) e/(F),^we have A(P^ Y)) =AW))- In other words, (B(., y) = %(7).^,7)
where b (^,7) eker(^). However, ker(^) is a compact normal subgroup of L^. It
follows from Proposition 2.11 (2) that e^ = max {log | X | | y is an eigenvalue of%(7)}.
However, ^^ ^a,y by Proposition 2.10 and 2.11, and hence it follows from (*)
that for all y e F, e^ ^ log r. But this contradicts the choice of r unless n is trivial.
We can then complete the argument as in the proof of Theorem 2.8.

A similar argument shows the following.

Theorem 2.13. — Let F be as in 2.8, S a F-space with an invariant probability measure.
Suppose a : S X F -> SL'(%, R) is a tempered cocycle. If e^ ^ == o for all y e r? tflen

there is a measurable (^.-invariant metric.

An argument similar to that in the proof of Theorem 2.8 yields another result
of the same type.

13
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Theorem 2.14. — Let G, F, S as in 2.8. Suppose HC GL(̂ , C) z'j <m fL-group and
a : S X r -^H^ is a cocycle. Suppose R-rank(H) < R-rank(GJ for every non-trivial
almost J^-simple factor G^ of G. Then there is a measurable ^.-invariant metric.

3. On principal bundles and jet bundles

In this section we recall some basic information concerning principal bundles
and jet bundles incorporating some of the measure theoretic information of the previous
section.

Let H be a Lie group, M a manifold, and n : P -> M a principal H-bundle.
We shall take H to be acting on the right of P, so that M is the quotient space P/H.
The trivial principal H-bundle is just the product bundle M X H "with H acting on
the second coordinate by right translation. We recall that any section 9 : M -> P
of TC defines a trivialization of P, i.e. an equivalence of P with the trivial H-bundle. If
9 is smooth (resp. continuous, measurable), then the equivalence of P with M x H
will be smooth (resp. continuous, measurable) as well. If X is any left H-space, then
H acts on the right of P X X via {z,x).h== {zh,h~lx) and the quotient space
E == (P X X)/H will be a bundle over M with fiber X, the <( associated bundle " to P
with fiber X. Suppose now that F acts (on the left) by automorphisms of the principal
H-bundle P. Letting F act trivially on X, the F action and the H action on P x X
commute, so that F acts on the bundle E in such a way that the projection map E -> M
is a r-map.

For any principal H-bundle TV : P -> M one can always find a Borel section of TT.
This defines an associated measurable trivialization P ̂  M X H. If F acts by auto-
morphisms of P, then under this trivialization we have the F-action given by
Y.(w,A) == (y.w, a(w, y)"1^ where a(77i, y) sH. Since the trivialization is Borel,
a : M X r -> H will be a Borel function, and if we write the action of F on M on the
right (as in section 2) instead of the left, it follows directly that a is a cocycle. It is
easy to check that different trivializations yield equivalent cocycles. In other words,
whenever F acts by automorphisms of the principal H-bundle P -> M, we have a
naturally defined equivalence class of measurable cocycles M X F -> H. Furthermore,
if M is compact we can choose the image of the Borel section to lie in a compact subset
of P. It follows that for M compact and H linear we can choose the cocycle a to be
tempered. (See the definition preceding Proposition 2.10.)

If E -> M is the bundle associated to P by the action of H on X, the measurable
trivialization of P defines a measurable trivialization of E ^ M x X. If F acts by
automorphisms of P then the associated action on M x X is simply given by
^.{m,x) == (yw, a(w, y)~1^) where a is the above cocycle. We record the following
trivial observation.

14
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Lemma 3.1. — There is a measurable T-invariant section of the associated bundle E -> M
if and only if there is an (^.-invariant measurable function M -> X (in the sense of the discussion
following Theorem 2.3^.

If X == H/* and H acts by a differentiable linear representation on R", then
the associated bundle TT : E -> M will be a vector bundle and F will act on E by vector
bundle automorphisms. As usual a F-invariant (Riemannian) metric on E will mean
a r-invariant assignment w->-B^, where B^ is an inner product on n~l{m). This
assignment may be smooth (resp., continuous, measurable, etc.), and for a given bundle
we may enquire as to the existence of a smooth (resp., continuous, measurable, etc.)
r-invariant metric. If E = TM, the tangent bundle of M, we speak of a smooth
(resp. continuous, measurable) metric on M. Via Lemma 3.1, we may translate some
of the results in section 2 into the present situation. It will be convenient to introduce
some notation.

If V is a real vector space and 73 is an inner product on V, let || |[y, denote the
corresponding norm on V.

Definition 3.2. — If Y], ^ are two inner products^ let

M(^)=max{|H[J.eV,|M|,=i}

=m^x{|H|J|H|,}.

If E -> M is a vector bundle over M and T], ^ are two measurable Riemannian
metrics on E, then M(T)/S)(^) = M(7](J)/^(^)) is a measurable function of s e M.

If e > o and F is a finite set of vector bundle automorphisms of E, we call a
metric T) on E (e, F)-invariant if for each ^eF,

M(/^/T]), MW^) < e.

For Theorems 3.3-3.5 we make the following hypotheses. Let G be a connected
semisimple Lie group with finite center such that every simple factor of G has R-rank ^ 2.
Let F C G be a lattice and FQ C F a fixed finite generating set. Suppose (N, <o) is
a manifold with a smooth volume density G), and E -> N is a vector bundle.

Theorem 3.3. — Suppose degree(E) < rf(G). Then any action of F by vector bundle
automorphisms of E which covers an (^-preserving smooth action of F 'on N, for which the ergodic
components (of the action on NJ have a finite invariant measure, leaves a measurable Riemannian
metric on E invariant. If E = TM, the associated volume density of this metric can be taken
to be <o.

15
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Theorem 3.4. — Let 73 he a smooth metric on E. Then there exists e > o such that any
action of F by vector bundle automorphisms of E which covers a smooth ^-preserving action of F
on N such that:
i) the ergodic components of F on N have finite invariant measure; and
ii) T] ij (e, To)-invariant;

leaves a measurable Riemannian metric on E invariant. If E = TM, ^ associated volume
density can be chosen to be <x>.

We recall that if HCGL(TZ, R) is a closed subgroup, n == degree (E), then an
H-structure on E is a reduction of the structure group of E to H. Equivalently, it can
be defined as a smooth section of the bundle with fiber GL(n, R)/H associated to the
principal GL(w, R)-bundle of frames of E. If F acts by vector bundle automorphisms
of E, one can clearly speak of a F-invariant H-structure on E.

Theorem 3.5. — Suppose F acts by vector bundle automorphisms ofJL covering an (^-preserving
smooth action on N for which the ergodic components have finite invariant measure. Let
n = degree(E) and HCGL(^, C) an ISL-group with R-rank(H) < R-rank(G,) for every
non-trivial simple factor of G, of G. If Y leaves an Ily-structure invariant, then there is a
measurable T-invariant Riemannian metric on E.

Theorems 3.3-3.5 follow from Lemma 3.1 and the results of section 2. When
applied to the tangent bundle of a manifold on which F acts, Theorems 3.3-3.5 show
that the superrigidity theorem for cocycles yields, under very natural and general
hypotheses, the existence of a measurable F-invariant Riemannian metric. The next
main problem, to which most of this paper is devoted, is to obtain the existence of a
C° r-invariant Riemannian metric, which we achieve via the existence of the measurable
invariant metric. Before proceeding, however, we make some general remarks about
diffeomorphisms with a measurable invariant metric.

Let 9 : M -> M be any volume preserving diffeomorphism of a compact manifold.
Consider the following properties:

i) there is a G°9-invariant metric on M$
ii) there is a measurable ^-invariant metric on M;

iii) A(<p) == o where A(<p) is the entropy of 9.

For a general diffeomorphism, we have (i) => (ii) => (iii). (The first assertion
is trivial. As for the second, from Pesin's formula [14] for the entropy of a volume
preserving diffeomorphism, to see that ^(9) == o it suffices to see that ^(a) == o where
a is the cocycle corresponding to the derivative under a bounded measurable trivialization
of the tangent bundle. However, if there is measurable a-invariant metric, then a ^ (3
where (3 takes values in 0(yz), n = dim M. Since a and (3 are tempered and equivalent,
^(a) = ^((B), and clearly ^((B) == o.) On the other hand, the converses are not true
in general. For example, the time i diffeomorphism of a classical horocycle flow

16
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satisfies (iii) but not (ii). Thus, for a single diffeomorphism the existence of a measurable
invariant metric lies properly between the two classical notions ofisometry and o entropy.
For the groups we have been considering we have:

Theorem 3.6. — Let F be as in 3.3 and suppose F acts on a compact manifold by smooth
dijfeomorphisms preserving a smooth volume density. Then the following are equivalent:

a) There is a measurable ^'invariant metric.
b) A(y) == o for all y e F.

Proof. — From Pesin's formula for the entropy of a volume preserving diffeomor-
phism [14], we have that under a bounded Borel trivialization of the tangent bundle
A(y) == o implies ^a,y == ° where a is the cocycle corresponding to the trivialization.
The result then follows from Theorem 2.13.

Conjecture. — For F as in 3.6, conditions (a) (or (b)) imply the existence of a
C°-invariant Riemannian metric.

It also follows from this discussion that the above consequences of the superrigidity
theorem for cocycles. Theorems 3.3-3.5, without approaching the question of the
existence of a G° invariant metric, already have strong implications for smooth F-actions.
For example:

Corollary 3.7. — Suppose M is a compact manifold, dim M < d(G). Then for any
smooth volume preserving Fraction on M we have A(y) = o for all y e r.

This of course follows from 3.3. Similar results may be deduced from 3.4, 3.5.
For other results of this type, see [4], [29].

In our proof of the existence of F-invariant C° Riemannian metrics on TM where
M is compact (under suitable hypotheses of course), we shall be applying the above
consequences of superrigidity not only to TM but to certain jet bundles on the frame
bundle of M which is of course a non-compact manifold. This accounts for our formu-
lation of Theorems 3.3-3.5 for certain non-compact manifolds.

We now recall some basic facts and establish some notation concerning jet bundles.
Our basic reference here is [13, Chapter 4].

Let N be a manifold and E -> N a (smooth) vector bundle. (Vector bundles
will always be assumed to be finite dimensional unless explicitly indicated otherwise.)
Then for each integer k we have another vector bundle J^N; E) over N, the A-jet bundle
of E, where the fiber at each point x e N consists of smooth sections of E, two sections
being identified if they agree up to order k at x. For any vector bundle E we let C^N; E)
be the space of smooth sections of E. There is a natural map

/: G^E^G^.nN;^),

jk{f) being called the k-]et extension of f e G^N; E). We can naturally identify the
bundles E andJ°(N;E).

17
3
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If V, W are finite dimensional real vector spaces, we let S^V, W) be the space
of symmetric /-linear maps Vr ->W. Similarly, if E, F are vector bundles over N,
we let S^E, F) denote the vector bundle whose fiber at x is S ,̂ FJ. If NCI^
is open and E is a product bundle over N, then we can naturally identify

J^(N; E) ^ S® S^TN.E), where TN is the tangent bundle of N. However this
r=0

decomposition cannot be carried over in a natural way to an arbitrary N (even for
trivial bundles) via coordinate charts. In general there are natural maps

J^N; E) -^J^-^N; E) and S^TN, E) ->.T(N; E)

such that
o -> S^TN, E) ->r(N; E) -^-^(N; E) ̂  o

is exact. (This is the jet bundle exact sequence.) There is no natural split-
ting of this sequence. (One exception of course is that the composition map
J^N; C) -^J°(N; C) -. o where C denotes the trivial i-dimensional bundle, is naturally
split by the " constant map ".) However, given a connection Vg on E and a connec-
tion VT*N o1! T*N, then there is a natural splitting of the jet bundle exact sequence and

k
hence a natural (given the connections) identification J^N; E) ^ S S^TN, E).

r=0
(See [13, p. 90].) If /: (N, E) -> (N', E') is a vector bundle isomorphism covering
a difFeomorphism N-^N' (which we still denote by/), then/ induces natural maps
SV) : S^TN, E) -^ y(TN', E') and ]\f) ̂ (N, E) -^(N', E'). If / is connec-

k
don preserving on E and T'N, then under the above identification, Jk(f) ^ S @ S^/).
This of course is no longer true if/fails to preserve the connections.

Suppose now that E = C, the i-dimensional trivial bundle. Any smooth
Riemannian metric ^ on N defines in a canonical way a connection on TN, hence on T^N,

k
and hence an isomorphism J^N;^^ S S^TN, C). This isomorphism depends

r=0

upon the k-th iteration of the covariant derivative defined by ^ [13, p. 90] and hence,
in local coordinates upon derivatives of the coordinates of the metric up to order k.
The metric S also defines in a natural way a metric on each S^TN, C) and hence via
the above isomorphism a metric ^ on the bundle J^N; C). Our remarks imply the
following.

Proposition 3.8. — i) The map S ->^ is natural; i.e. if /:N ->N' is a diffeo-
morphism with /^/) = S, then the induced map J\f) :J^(N; C) ->.p(N', C) satisfies
jvr(^) - ̂ .

ii) The map S -> ̂  is continuous where metrics on N have the C^topologv (defined by
G^-convergence on compact subsets ofN) and metricson J^N; C) have the C°-topologv (defined
by (^-convergence on compact subsets ofN).

18
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4. Integrability of a Measurable Invariant Metric

In this section we make an estimate giving conditions under which a measurable
invariant metric will satisfy L^ conditions with respect to a smooth metric. This will
be a consequence of the following general fact about actions of groups having Kazhdan's
property.

Theorem 4 .1 . — Let T be a (countable) discrete group having Kazhdan^s property, and
FO C r a finite generating set. Then there exists K > i (depending on Y^) with the following
property. If (S, pi) is any ergodic T-space with invariant probability measure, and y:S->R
is a measurable function satisfying \f{s^) \ ̂  K \f{s) \ for all s e S, y e FQ, then f e L^S).

We recall the definition of Kazhdan's property. If TT is a unitary representation
of a locally compact group F on a Hilbert space ̂ , F C F is compact, and e > o,
a unit vector x eJf is called (e, F)-invariant if |[7r(Y)A;—x\\ < s for all y e F. We
say that F has Kazhdan's property if there is some (e, F) such that any TT with
(s, F)-invariant unit vectors actually has invariant unit vectors [i], [6], [29]. Any
discrete group with Kazhdan's property is finitely generated and F can clearly be taken
to be a generating set. Furthermore, if Fo, F C F are two finite sets with I^DF
for some integer n, then any (s/%, Fg) "invariant unit vector will be (s, F)-invariant.
(To see this just observe that if x is (e/%, Fo)-invariant and y» e ^05 then

||^(Yl • • • fn)x-x\\^ ll^(TlMY2 • • • Yn)^~ ^(Yl^ll + ll^(Tl)^-^ll

< 1 1 ^ ( Y 2 • • • Y J ^ - ^ 1 1 +£^.

Repeating the argument we see that x is (s, 1̂ ) -invariant.) Thus, in the defining
condition of Kazhdan's property we may assume F is any predetermined finite gene-
rating set.

Proof of Theorem 4.1. — We apply Kazhdan's property to the unitary represen-
tation TT of r on L^S) 0 C defined by translation. By ergodicity of F on S (with respect
to an invariant probability measure), there are no invariant unit vectors for TT. Hence,
given FO there exists e > o (independent of the ergodic action) such that there are
no (s, Fo)-invariant unit vectors. In other words, for every unit vector x, there exists
Yo e r such that H^yo)^ — x\\ ̂  e. For any measurable set ACS, let ̂  be the
characteristic function, p^ the projection of /^ onto L^S) G C, and f^ == AJIlAdI
when A is neither null nor conull. If A ,BCS with (JL(A) = (Ji.(B), and A neither
null nor conull, then a straightforward calculation shows that

IIA -/all2 = ̂ AAB)/^(A)(i.- pi(A)).

19
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Choose a measurable set AoC S such that |/| is bounded on Ao, say \f[x) \ ̂  B
for x eAo and with (Ji(Ao) > 1/2. If (Ji(Ao) == i, we are done. If not, there exists
Yo e FO suc!1 ^at

ll^(Yo)A, -AJI ̂  s, i.e. ||A^ -/J| ̂  £.

e2

Thus, (Ji(AoYo A Ao) ^ — (i — [x(Ao)), so that

^(AoYo ^ (S ~ Ao)) ^ e2 (i - (i(Ao)).
4

g2
Thus we can choose A^C (AoYo n (S — Ao)) such that (Ji(Ai) == — (i — pi(Ao)). (We

4
remark that we can assume S is non-atomic for otherwise ergodicity implies S is finite.)
Suppose |/(^y) | < K \f{x) \ for x e S, K > i. Then we have \f{x) \ < KB for x e A^.

We now repeat the argument applied to AQ u Ai instead ofAo. We deduce the
e2

existence of A^C (S - (Ao u A^)) with ^(A^) === - (i - |ji(Ao u A^)) and |/(A:) | < R2B
4

for xe\. Continuing inductively, we find a disjoint collection of measurable sets
A,CS such that [ / (^I^K^E for x e A^, and letting a, = (x(A,) we have, for

g2 n

^^ 0) ^n+i == — (i — S ^). Thus if n>_ i,4 »~o

£2 n-1

^4.1=- (I - S fl,-^)
4 i^o

e2

== a^— - a^
4

/ ^
== flji — - .

I £ \
For n = o, we have ^ = — (i — ^o)-! We clearly have S ^ = i, and hence

\ 4 / < = o

fl/| < S ^^B. This will be finite if lim an+lKn+l < i, i.e. if K < ——T-——.
•/ n = o a^Y^ i —. £^4n = o a^ J i -£2/4

This completes the proof.

We now apply Theorem 4.1 to a measurable invariant metric. For two measu-
rable metrics T], ^ on a vector bundle, recall from Definition 3.2 the measurable
function M(r^l^). We remark that ifv), ^, T are metrics, then M(T]/T) ^ M(T]/^)M(^/T).
We also note that if T : W -> V is a vector space isomorphism and Y), ^ are inner products
on V, then M(T*T]/T^) = M(^).

^
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Corollary 4.2. — Let T be a discrete group with Kazhdan's property, FoCr a finite
generating set. Let E -> N be a continuous vector bundle over a separable metrizable space N
and suppose that F acts by vector bundle automorphisms of E so that the action on N preserves a
probability measure p.. Suppose f\ and ^ are measurable Riemannian metrics on E such that:
i) T] is T-invariant \ and

11) for Y e FQ, M(Y*^) and M^/y'S) are uniformly bounded by K^ (p^ i) where K is
as in Theorem 4. i.

Then M(^), M(^)eI7(N^).

Proo/*. — For s eN and y e FO? we ^ve
M(^)(.Y)=M(Y^/Y^)M

< M(T]/S)M.M(S/Y*S)M
< K^M(7^)(.).

Thus M(7]/^) eL^N) by Theorem 4.1. That M(^/T]) e 17 is proved similarly.

5. The Main Argument

The point of this section is to prove the following theorem stated in the introduction.

Theorem 5.1. — Let G be a connected semisimple Lie group with finite center such that
the R-rank of every simple factor of G is at least 2. Let F C G be a lattice and FQ C F a finite
generating set. Let M be a compact n-manifold, and let r = n2 + n + i. Let S be a smooth
Riemannian metric on M with volume density co. Then there is a C'-neighborhood (9 of S such
that any ^-preserving smooth ergodic action of T on M with S (^, Î ) -invariant leaves a
Cy-Riemannian metric invariant,

We begin the proof with some observations on the frame bundle. The volume
density o> defines a SL'(n, R)-structure on M. We let P ->• M be the corresponding
principal SL'(^ R)-bundle, where the fiber F^C P over m e M is the space of frames
in TM^ spanning a parallelepiped of volume i with respect to co(w). Thus, SL'(TZ, R)
acts on the right of P and we have an action of F on the left of P which commutes with
the SL'(^, R)-action. Fix an inner product on the Lie algebra sf(n, R) which is
Ad(0(n, R))-invariant. In the standard manner this defines a smooth metric on each
fiber F^CP which is right invariant under 0(n, R) and in any admissable chart
for P, under which we identify F^ ^ SL'(n, R), we have that the metric is left invariant
under SL'(TZ, R). In other words, we obtain a smooth metric T on Vert(P), the vertical
subbundle of the tangent bundle to P, which is invariant under the right action of0{n, R)
on P. Now let S be a smooth metric on M whose volume density is co. This defines
a reduction of P to the subgroup 0(^, R) C SL'(^, R), or equivalently a smooth section
9 : M -> P/O(TZ, R) of the map P/O(TZ, R) -> M. Let q : P -> P/0(^, R) be the
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natural map. The space q-\^M))CP is 0(n, R)-invariant, and in fact consists of
exactly one 0{n, R)-orbit in each fiber over M. The metric T on Vert(P) is 0(n, R)
invariant on ^-^(M)) and since SL'(7z, R) acts freely on P, T | q-^^M)) extends
in a unique manner to a metric on Vert(P) which is invariant under the right action
of SL'(TZ, R) on P. (We note that this metric on Vert(P) is not equal to T on all P.)
Furthermore, the metric ^ on M defines in a canonical way a connection on P, i.e. a
SL'(TZ, R)-invariant subbundle Hor(P)CT(P) complementary to Vert(P). The
metric ^ lifts in a canonical way to a SL'(n, R) invariant metric on Hor(P). Putting
together these metrics on Vert(P) and Hor(P) we have, given a smooth metric S on M,
a canonically defined smooth metric ^ on P. The map ^ -> ̂  has the following
readily verified properties.

Proposition 5.2. — i) For any r^ i, the map ^ -> ̂  is continuous where metrics on M
have the G'-topology and metrics on P have the €7-^-topology. (On a non-compact manifold
the C'-topology is given by C'-convergence on compact sets. The loss of one degree of differentiability
stems from the fact that the connection form on P defined by ^ is expressed locally in terms of the
Cristoffel symbols which contain first derivatives of the components of SU

ii) The map ^ -> ̂  is natural. I.e., if f:M^-^M^ is a diffeomorphism such that

f\^ = Si, then the induced map f: P^ -> Pg on the (special) frame bundles satisfies ^(^) == ^.
iii) y is SL'(TZ, R)-invariant.

We also remark that the volume density on P induced by ^ is independent of ^
as long as the volume density of ^ is (o. When we speak of the measure on P, we shall
henceforth mean this measure.

Combining Propositions 5.2 and 3.8 we obtain:

Proposition 5.3. — Let M be compact. Then the map \ -> ̂  from metrics on TM
to metrics on Jk(P; C) satisfies:

i) If f: M -> M' is a diffeomorphism such that f\^) = ̂ , then

Jvn™ = ̂
ii) If V ->S is a convergent sequence of smooth metrics on M with the Ck+^topology,

then (^')^->^ uniformly on P in the sense that M(( '̂)^) and M(^/(^) converge to [
uniformly on P.

Proof. — (i) and the fact that M((^')^) and M(^/(^) converge to i uniformly
on compact subsets of P follow directly from corresponding assertions in Propositions 5.2
and 3.8. It remains only to see that this convergence is uniform on P. By construction,
the metrics (^')* and ̂  on the bundle TP -> P are invariant under the action of SL'(n, R)
on P. Hence, by Proposition 3.8 (i), the metrics (^ and ^ are also invariant under
SL'(^, R), and therefore the functions M((^)^) and M(^/(^) are SL'(7Z, R) inva-
riant as well. Since M is compact, there is a compact subset of P whose saturation
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under SL'(/2, R) is all of P. (For example, just take the compact set q~l{^{M.)) cons-
tructed preceding Proposition 5.2.) Thus, uniform convergence on P follows from
uniform convergence on compact subsets.

We wish to use Proposition 5.3 in conjunction with Theorem 3.4 to deduce the
existence of measurable F-invariant metrics on J^P; C). To this end (as well as
others) we now examine the ergodic decomposition of the F action on the non-compact
infinite volume manifold P.

Let us choose a Borel section <p : M -> P of the natural projection P -> M. As
in the beginning of section 3, this defines a Borel trivialization of P via the map
Oo : M X SL'(n, R) -^ P, ^o{m, g) == (?{m)g. Under this trivialization the action of F on
M x SL'(%, R) is given by y(^ <?) == (v^? ̂ ^ ̂ )~lg) where a : M X F -> SL'{n, R)
is a cocycle if the F-action is written on the right. Applying Theorem 3.4 to the F-action
on the bundle TM -> M, we deduce that we can find a C°-neighborhood (9 of ^ (and
hence a CJC neighborhood, k ̂  i) such that for any co preserving F-action with ^
(^3 Fo)-invariant there exists a measurable F-invariant metric. By 3.1 and 2.5, this
implies that a -^ [B where (3 is a cocycle taking values in O(TZ, R). Let KCO(n, R)
be the compact subgroup which is the algebraic hull of (B (Proposition 2.1) and 8 ̂  (B
with 8(M X F) C K. (Recall that compact real matrix groups are real points of
algebraic R-groups.) From the theory of cocycles into compact groups developed
in [21], it follows that if the F-action on M is ergodic, then the action of F on M X K
given by y- (m? ^) = (Y^ ^(m? Y)~1^) ls ergodic. Furthermore the ergodic components
of the action of F on M X SL'(n, R) defined by the cocycle 8 will be exactly the sets
of the form M X K^, where a e SL'(TZ, R). (In other words, the ergodic components
are explicitly in bijective correspondence with the coset space K\SL/(n,R). Since
a ^ 8, there is a measurable map \: M -> SL/^, R) implementing the equivalence,
and hence the ergodic components of the F action defined by the cocycle a will be sets
of the form {(m, \{m)K.a) e M X SL'(n, R)} for some a e SL'(TZ, R). Transferring this
back to P via Op, and letting ^{m) == <p(m) .X(w), we deduce the following.

Lemma 5.4. — There is a measurable section ̂  of the map P -> M and a compact subgroup
KC 0(n, R) such that the ergodic components of the action of F on P are exactly the sets of the
form E == U ^{m)K.a where a eSL'(n,R). Furthermore^ the corresponding measure on E

weM re
(decomposing the measure on P) is Haar(^(w)Kfl)A?2 where Haar(^(m)Ka) is the measure

J M

defined on the submanifold ^{m)'KaC1? as the image of the Haar measure of K under the map
k ->^{m)ka. In particular, each ergodic component has finite measure.

Combining 5.4, 3.4, and 5.3 we deduce:

Corollary 5.5 (With the hypotheses of Theorem 5 .1^ . — Let ^ be a smooth metric on M
with volume density co. Then for any k > i there is a C1^^^'neighborhood 0 of ^ such that any
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smooth (^-preserving T-action on M with ^ (^, Fg) -invariant leaves invariant a measurable
Riemannian metric on Jk(P; C).

We shall now modify the measurable metric on J^P; C) given by this corollary
so that it satisfies certain integrability conditions.

Lemma 5.6. — Let M, F as in 5. i, ^ a smooth metric on M with volume density o. Then
for any k > i, ^r^ î  a C?4'1 neighborhood Q of i; J^A ^A^ ayy/ smooth ^-preserving ergodic
action of F on M. with S (^5 To)-invariant leaves invariant a measurable Riemannian metric T]
(̂  the jet bundle Jk(P; C) such that:

1) M(7]/^), M(^/T]) e Lĵ (P) r^ ^^ flr^ square integrable on any compact subset of P);

2) yor any compact ACP, ) M(v]/^)2^ ^(A), w^r^ f:(A) zj a constant depending only on A
J A.

(and on the choice of Haar measure on SL'(TZ, R)^);
3) on the naturally split trivial subbundle J°(P; C) CJ^P; C), the metric f\ on each fiber C

agrees with the usual metric (i.e. z, w) == zw). (We note that this is also true of the metric ̂
on J°(P; C) by construction.)

Proof. — From Proposition 5.3 and Corollary 5.5 we deduce that for any e > o,
there is a C?4'1 neighborhood 0 of ^ such that for any co-preserving smooth ergodic
r-action on M for which S (^? F^)-invariant we have:

i) the metric ^ on Jk(P; C) is (e, 1̂ ) -invariant; and
ii) there exists a measurable F-invariant metric 7]o on J^P^ ^)-

Since J°(P; C) CJ^P; C) is a r-invariant subbundle with a natural F-invariant
complement, by taking the standard metric on J°(P$ C) and 7]o on the complement
one can assume that conclusion (3) holds for y]o. Since 7]o is F-invariant, 7]o [ E will
be F-invariant for almost every ergodic component E of F acting on P. Fix one such
ergodic component E. By Lemma 5.4 we can apply Corollary 4.2 to E, and hence
ifsis sufficiently small we deduce that M((v]o | E)/(^ | E)), M((% [ E)/(v]o | E)) e L^E).
Let us write ^ == ^ e^ where i is the standard metric on J°(P; C), t^ is the metric
on the complement, and similarly write Y]() = i@^Q. We note that if V, W are finite
dimensional vector spaces, ^ an inner product on V and 7]i, T)^ inner products on W,
then on V @ W we have

M(^®7]i/Se^) ^ max(i, M{^)) ̂  i + M^/^).

Hence, for any t"> o we have

M{i@t^li@^) < i + ̂ M(%/?D

< i + ̂ M(y]o/^),
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and we have a similar expression for M(z®£^"<9^). Therefore, by choosing t
sufficiently small and replacing 7]o by z®^o? we can assume that Y]() satisfies:
a) J^MM;;)2^;
b) M((^ |E)/ME))EL2(E).

Let K be as in lemma 5.4 and choose a measurable map \: K\SL'(%, R) -> SL'(w, R)
such that \{Kg) e Kg. As in 5.4, we write E == U ^{m)Ka for some a eSL'(n,R).

»7l

If E' is any other ergodic component of the F action on P, then we can write
E' = U ^{m)Kb for some b e SL'(TZ, R). Thus E == E^-^. We define the metric T]

w
on J^P; C) | E' to be (^(K6)-lfl)*7]o. Since \ is measurable, the resulting Riemannian
metric 73 on the bundle J^P;^-^? will be measurable. Furthermore, since the
r action on P (and hence on J^P; C)) commutes with the SL'(w, R) action and T]() [ E
is r-invariant, the metric T) will be F-invariant.

We now claim that M(T]/^) e Lf^P), and in fact that the more exact assertion (2)
in the statement of the lemma is valid. Let A C P be compact and consider O'^A)
where 0 : M X SL'(TZ, R) -> P is the measurable trivialization defined by ^ 19e'
(S>(m, g) == ^(m)g. Since 0 is measure preserving, it suffices to see

J^(M(y)/^)o<D)^,(A).

Via the measurable section \ we can write SL'(TZ, R) as a measurable product,
K x K\SL'(n, R) ^ SL'(w, R), namely by the map (A, Kg) -> ̂ (Kg). We may view <D
as a map defined on M X K X K\SL'(^, R). If we let v be Haar measure on SL'(n, R)
we can write v == v^ X Vg under above product decomposition where v^ is Haar measure
on K and v^ ls an invariant measure on K\SL'(n, R).

Since ^ is right invariant under SL'(n, R), from the definition of T] it follows
that Y = M(T]/^) o 0 sadsfies the following condition: Y(w, k, x) is independent
of x eK\SL'(n, R). When convenient, we shall write this as ^(m^k). The asser-
tion ( a ) above that f M(7)o/^)2^ 2 implies that for each x e K\SL'(n, R),JE

Y(w, A, x^dmdv^k) ^ 2. Since A is compact, the sets A^ G SL'(TZ, R) given by
•/ So. X J\.

A^ == {g e SL'(TZ, R) | 0(w, g) e A} for m e M have a uniformly bounded Haar
measure, say v(A^) < c{A) for all w e M. (We remark that by the bi-invariance of
Haar measure, c{A) depends only on A and the choice of Haar measure, not on the choice
of the section ^.) For m e M, x e K\SL'(w, R), let A^ ̂  = {k e K | 0(w, k, x) e A}.
Then

L-^2 = JM.KVSL- (L .T(w5 k-xwk))dmw

^jMxKVSL-^^yK^^^)2^)^-

Integrating over x and recalling that T(m, ^, A:) is independent of A*, we obtain

f y2^ f v(Aj f ^v(m,kYdkdm^ c{A) f y2^ 2^(A).
JO-^A) JM ' w / J K v 5 / ' ' J M x K ' /
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This verifies assertion (2). The proof that M(^)eLfJP) h similar, and this
completes the proof of Lemma 5.6.

We now consider Sobolev spaces defined using the metric T] constructed in
Lemma 5.6.

Quite generally, suppose E-^N is a smooth vector bundle over a mani-
fold N and co is a smooth volume density on N. Suppose a is a measurable
Riemannian metric on E. Then for any p, i < p ^ oo, we define L^E),, to be
the set of measurable sections/of E (with the usual identifications modulo null sets) such
fhat ||/ILo=(^||/M||^)A) l /p<a). L°°(E), and \\f\\^ are defined similarly.
Then L^E)^ is a Banach space, and for p = 2 is a Hilbert space. We also recall
that we denote by G^N; E), G^N; E) the space of smooth (respectively smooth with
compact support) sections of E. In general, of course, G°°(N;E) n L^E)^ may be
trivial if the measurable or is very badly behaved locally. However, if ^ is a smooth
metric on E and M((T/S) e L^(N), then for /e C^N; E),

II/MUS^ MM(̂ ||/(.)||̂  MMW\\f\\^
and since supp(/) is compact /eL^E)^.

Suppose now that T] is a measurable Riemannian metric on J^N; E), o- a smooth
metric on J^N; E) with M^/o") e L^(N). If /eG°°(N;E), we have the yfe-jet
extension /(/) e C^N^N; E)), and of course if /eG^E), then/(/) also
has compact support. Let us set

G°°(N; E),,,,, = {fe G°°(N; E) |/(/) e LfflN; E))J.

By the remarks of the preceding paragraph, we have C;:°(N; E) C C^N; E)y^ ^. We
have an injective linear map

G°°(N; E),,,,, -> LWN; E)),, /->;V),
and the completion of G^IS^E)^,, with the induced norm will be denoted
by L^(N; E), the CM) Sobolev space with respect to T]. The linear embedding j*
extends to a map L^(N; E) -^L^J^N; E))^ which we still denote by/.

Returning now to the situation of Lemma 5.6, we observe that because the
measurable Riemannian metric 73 on J^P; C) is F-invariant the F-action on sections
ofp(P; G) defines a unitary representation ofF on L^J^P; C))^ and hence on L^(P; C).
(This of course is not necessarily the case for L|^(P; C).) We also remark that condi-
tion (2) of Lemma 5.6 implies that for /eG^P) with supp(/)CA, we have

(*) II^V)lk^^(A)| | jV)lky
where c{A) depends only on A and not on T).

We construct an explicit element of L^(P; C). Recall that a smooth metric ^
on M defines in a natural manner a smooth section 9 of the natural projection
P/O(TZ, R) -> M, as in the discussion preceding Proposition 5.2. As in that discussion
we have the compact submanifold ^"^(M^CP whose saturation under the right
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SL'(^ R) action is all of P. Fix a non-zero function F e C,°°(0(^ R)\SL'(^ R)) such
that J |F [2= i. Then for p eP define F^) = F(^) where g e SL'(^ R) satisfies
^ e y-^M)). If pg^\pg,-1 e y^M)), then there exists a 6 0(^ R) such that
Pgi^Pg^1^ so that by freeness of SL'(TZ, R) on P, ^eO^R)^. Thus F^ is
independent of the choice ofg. It is easy to see that F^ is smooth and in fact F^ e G^P).
The following properties of the assignment S -^ F^ are readily verified.

Proposition 5.7

i) The map S-^F^ is continuous where metrics on M have the C? topology and G^CP)
Aaj ̂  topology of uniform ^-convergence on compact sets.

^Jp lFd 2 ^! .
3) Fix ^ and a compact set A C P which contains an open neighborhood of supp(Fp).

Then there is a C° neighborhood 0 of ̂  such that if a e 0, then supp(FJ C A.
4) The assignment is natural. I.e. if h: M ->• M' is a dijfeomorphism and S is a metric

on M, then F^ o Ti = F^ wA<?r<? I!: P' -^ P ^ the induced map on the principal bundles.

Now fix ^, e > o, and a compact set A as in condition (3) of Proposition 5.7.
By 5.6 and 5.7, we can choose a C?4- ̂ neighborhood 0 of ^ such that the conclusions
of 5.6 hold, (3) of 5.7 holds, and using (i) of 5.7, such that a e 0 implies

\\jW-W\\^<—
C[^\)

where c{A) is as in 5.6. By equation (*) above, this last assertion implies

(**) lljW-/(F,)||^<e.

We also remark that ||/(F^) |[^ > i by (2) of Proposition 5.7 and (3) of Lemma 5.6.
Hence, if F acts with S (^, I^) invariant, it follows from (*•) and (4) of Proposition 5.7
(by taking cr = y*S in 5.7 (4)) that we have

llYJTO -J-W H,,, < e for all y e FQ.

In other words, the vector /(F^) eL^(P) is (e, ^-invariant under the unitary
representation of F on L^(P) and has norm at least one. Thus, if e is sufficiently small,
Kazhdan's property implies there is a non-zero r-invariant function /eL^P).

Let B C P be a relatively compact open set. By Lemma 5.6(1), f M(^/7])2 < oo.
Since /eL^(P) we can find a sequence ^ e G^P; C)^ such that f^->f in L^P)
and {y^^)} is a Cauchy sequence in L^J^P; C)),. It follows that by restricting to B,
we have f, ->/ in L^B) and {/(^)} is Cauchy in LV(B; C)),. Therefore

JjljV,)^) -/(/.)WII^^< J,M(TO |l^(^)(y)) ^j\fW\\,dp

^(jB^Wf2!!^^)-^^)!!^.
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From this we deduce that /,->/ in L^B) and U^.)} is Gauchy in L^J^B; C))y.
Since ^ is a smooth metric, it follows that in local coordinate neighborhoods f has weak
derivatives up to order k and that these derivatives are in L1. Hence, the classical
Sobolev embedding theorem implies that if A>dimP, feC°(P). Thus, we may
summarize our results so far in this section by:

Lemma 5.8. — Let n == dim M and k == n2 + ̂  Then for any smooth metric S on M
there is a G^4'1 neighborhood 0 of^ such that for any volume preserving smooth ergodic action of F
on M with ^ ((P, Fo)-invariant there is a non-zero T-invariant function /eL^P) n G°(P).

We now proceed to show how the existence of such a function / implies the
existence of a F-invariant C°-Riemannian metric on M. For convenience of notation
we shall denote SL'(w, R) by H for the remainder of this section.

Let 0 : M X H -> P be a measurable trivialization of P. With this identification
we identify f as a function feIj^^M. X H) and, as usual, the F action on P with the
F-action on M X H given by y^ h) == (Y^ v-(m^ T)~1^) where a : M X F -> H is
a cocycle. For each m e M, let ^eL^H) be f^(h) ==f(m,h). Let TC be the left
regular representation of H on L^H). Then F in variance of^is the assertion that
f^ == 7c(a(w, Y))^m- The orbits of H in L^H) are locally closed in the weak topo-
logy [22] and hence the quotient space L^H)/!! is a countably separated Borel space
(see [29], e.g.). Letting^ be the H-orbit of/^, we deduce that ̂  =J^ in L^^/H.

/^/
Since L^H)/!! is countably separated and F is ergodic on M, f^ is essentially constant.
I.e. there is \ e L^H) such that f^en{H)\ for almost all m e M. (Cf. [27], [28,
Theorem 2.10].) In particular, X e L^H) n G°(H) and X =1= o.

We can rephrase this in terms of the original bundle P -> M as follows. Let
^ —> M be the associated bundle to the left H-action on L^H), so that the fiber ofJ^
is L^H). We have ^(H^CL^H) is a G-invariant subset and hence we have an
associated bundle jf^ -> M with fiber 7r(H)X and a natural inclusion J^\ c—> ̂ . We\ /

M
remark that the stabilizer of \ in H, say H^, is compact (this is true for the regular
representation of any locally compact group) and that 7r(H)X is homeomorphic as an
H-space to H/H^ [29]. From the preceding paragraph we see that f defines a measurable
section m —>f^ of the associated bundle ^ -> M which satisfies the condition that
f^ e ̂  for almost all m e M.

Lemma 5.9. — Let W = {772 e M \f^ ee^J. Then

a) if m ^W, then ̂  == o;
b) the map m ->f^ is continuous on W;
c) W is open and T-invariant.
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Proof. — Fix m e M and an open neighborhood U of m over which P is trivial.
Then over U we can consider / as a function in L^U x H) n C°(U x H). To
verify (a), suppose m ^ W. Since W is conull we can choose u^ e W, u^ ~>- m. Then
choose A ^ e H such that f == T^(AJ^. We consider two cases: (i) h^ -^ oo;
and (2) h^ has a convergent subsequence. In case (i), given any compact subset
ACH, and s,8>o, the fact that \ e L^H) implies that for n sufficient large,
v({a eA [ (7r(AJ^)(a) > e}) < 8, where v == Haar measure. Since 7r(AJ^, ==jC and
f ->fm uniformly on compact sets, it follows that f^ == o on A, so f^ == o. In
case (2), we can assume h^->heH.. Then f^ = TT(AJ>.->7c(A)X uniformly on
compact subsets of H, and since f^ ->f^ uniformly on compact sets, we have f^ = Tc(A)^..
Thus m eW. This verifies (a). "

The proof of (b) is similar. To see continuity at m e W, it suffices to assume
u^ e W, u^ -> m, and to show the existence of a subsequence u^. such that jC -^/m
in L^H). Choose h^eH such that f == 7r(AJ^. If A^->oo, then as above we
deduce that f^ == o, contradicting the assumption that m e W. If h^. -> h e H, we
deduce as above that f^ = n{h)\. But by continuity of the left regular representation,
7r(A^7^)X in L^H), so f^f^ in L2(H).

Finally, to see (c), we have that W = {m \f^ is not identically 0} and from this
it is clear that W is open. Since f is F invariant, W is as well.

Lemma 5.10. — With W as in 5.9, there is a I^invariant C°~Riemannian metric on W
(with volume density <o^.

Proof. — By Lemma 5.9 and the discussion preceding it, there is a F-invariant
G°-section of the bundle ^ -> M defined on the open set W. However, by our
remarks preceding Lemma 5. g, J^ is C°-isomorphic as a bundle over M to the associated
bundle of the left action of H on H/H^. Since H^ is compact, a conjugate of H^ is
contained in 0(^,R). Thus we have a F-invariant C° reduction of the bundle of
frames (of volume i with respect to co) to the orthogonal group, and this implies the
existence of a G° F-invariant Riemannian metric on W.

We now complete the proof of Theorem 5.1. Choose a connected component
WoCW. The F-invariant G° metric on Wo, say 73, defines a topological distance
function on Wo in the usual way: d{x,y) •-= infj j [ [ ^ ' ( t ) \\^ \ 9 is a continuous piecewise
differentiable path from .ytoj/ j and the topology defined by this distance function agrees
with the original topology on Wo. F permutes the set of connected components of W
and since the measure on W is finite and invariant, FWo contains only finitely many
connected components. Thus, the subgroup Fo C F leaving Wo invariant is of finite
index. We have FoC Iso(Wo, rf), the latter being the group of isometrics of Wo with
respect to d. Since Wo is a connected manifold, Iso(Wo, d) is locally compact [8] and
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the stabilizers of points in Wo are compact. Let FQ be the closure of FQ in Iso(Wo, d).
Then Fo is a locally compact isometry group with compact stabilizers, and since FQ
leaves the finite measure co | Wo invariant, so does FQ. Since F is ergodic on W,
FO is ergodic on Wo, and hence we can find x e Wo such that FQX is dense in Wo. It
follows from [5, proof of IV, 2.2] that Fo is transitive on Wo. The finiteness of the
measure on Wo and compactness of the stabilizers imply that the Haar measure of Fo
is finite and hence that Fo is compact. This implies that Wo is compact. Ergodicity
of r on W implies FWo = W, so that W is also compact. Since W is conull in M,
it is dense in M. Thus, W == M and the proof of Theorem 5. i is complete.

6. Perturbations and Near Isometrics

Theorem 5. i immediately implies the following perturbation theorem stated in
the introduction.

Theorem 6.1. — Let G be connected semisimple Lie group with finite center such that every
simple factor ofG has R-rank ̂  2. Let JT C G be a lattice. Let M be a compact Riemannian
manifold^ dim M = n. Set r == n2 + ̂  + i • Assume F acts by isometrics of M. Let
FQ C r be a finite generating set. Then any volume preserving action of F on M which

i) for elements of FQ is a sufficiently small Gr perturbation of the original action^ and
ii) is ergodic;

actually leaves a C°-Riemannian metric invariant. In particular there is a ^'invariant topological
distance function and the action is topologically conjugate to an action of Y on a homogeneous space
of a compact Lie group K defined via a dense range homomorphism of Y into K.

The only part of this result we have not proven is that the compact group K is
actually Lie. However, this follows from [10, p. 244].

Theorem 5. i also implies the following result stated in the introduction.

Theorem 6.2. — Let G, F be as in 6. i. Let M be a compact manifold, dim M == n
(n> o). Assume n(n + i) < 2n(G) where n{G) is the minimal dimension of a simple factor
of G. Set r = n2 + n + i. Let Fo C F be a finite generating set. Then for any smooth
Riemannian metric ^ on M there is a Cr neighborhood 0 of ^ such that there are no volume preserving
ergodic actions ofT on t^Lfor which ^ is (^, To)-invariant.

Proof. — By Theorem 5. i we can choose (9 such that for any ergodic volume
preserving action with ^ ((P, Fo)-invariant there is a dense range homomorphism of F
into a compact Lie (by [10, p. 244]) group of isometrics K of M. By results of Mar-
gulis [9] concerning homomorphisms of F into Lie groups (see also the work of Raghu-
nathan [16]), it follows that dimK^n(G). On the other hand, it is well known
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that dirnK^ -^———- [10, p. 246]. Thus 2n(G) <_ n(n + i), which contradicts our
hypotheses.

We now turn to the p-a.dic case.

Theorem 6.3. — Let k be a totally disconnected local field of characteristic o. Let G be
a connected semisimple algebraic k-group such that the k-rank of every k-simple factor of G is^ 2.
Suppose r C Gj^ is a lattice. Let M be a compact n-manifold (n > o), and let r == n2 + n + i •
Let r^C r be a finite generating set. Then for any smooth Riemannian metric S on M there is
a Gr neighborhood 0 of ^ such that any volume preserving ergodic action of F on M /or wA^A
^ ij" (fl?, To)-invariant leaves a C°-Riemannian metric invariant.

Proof. — The proof is basically the same as that of Theorem 6.2 (and Theorem 5.1)
once we have two properties of F:

(i) superrigidity for measurable cocycles defined on ergodic F-spaces with finite
invariant measure;

(ii) Kazhdan's property.

For (i), see [28]. In this case the superrigidity theorem asserts that for any
cocycle a : S X F ->" Hg where H is a connected semisimple adjoint R-group such that
the algebraic hull of a is H^, we have H^ is compact. Property (ii) is well-known [i], [6].

7. Concluding Remarks

Let G be a connected semisimple Lie group with finite center such that every
simple factor of G has R-rank ^ 2. Let FC G be a lattice. We have the following
examples of smooth volume preserving actions of F on compact manifolds.

Example 7.1

a) Suppose H is a Lie group, A C H is a cocompact subgroup such that H/A has
a finite H-invariant volume density, and there is a continuous homomorphism G --> H.
Then F acts on H/A.

b) Suppose N is a Lie group and that G acts by unimodular automorphisms
ofN. Suppose ACN is a cocompact lattice such that yC^) == A for all y e r. Then
r acts on N/A.

c ) If K is a compact Lie group acting smoothly on a compact manifold M and
there is a dense range homomorphisms F -> K, then F acts on M. This includes
of course the actions of F that factor through a finite quotient of F.

We can then formulate the following question.
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Problem. — Can every volume preserving F-action (or at least every such ergodic
action) on a compact manifold be obtained from these examples by elementary cons-
tructions (e.g. products, finite covers and quotients) ?

In particular, in case the action preserves a stronger structure than a volume
density, we put forward the following conjecture.

Conjecture. — Let HC SL'(^, C) be an R-group and suppose F acts on a compact
manifold M so as to preserve an Ha-structure on M. If R-rank(H) < R-rank(G^)
for every simple factor G, of G, then there is a G° F-invariant Riemannian metric on M.

In this regard, see Theorem 2.14.
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