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THE HOMOTOPY LIE ALGEBRA FOR FINITE COMPLEXES
by YVES FfiLIX (1), STEPHEN HALPERIN (2)

and JEAN-CLAUDE THOMAS (3)

i. Introduction. — A generic question in topology asks how geometric restrictions
on a topological space S are reflected in restrictions on^(S). A classical example is
this: which discrete groups G admit a finite GW complex as classifying space?

In this paper we shall deal with an analogous question for Lie algebras and simply
connected spaces. Henceforth, and throughout this paper, we shall consider only those
spaces which are simply connected and have the homotopy type ofGW complexes whose
rational homology is finite dimensional in each degree. Such spaces will be called
i-connected GW spaces of finite Qj-tyRe.

For such spaces 7Tp(S)®Q^ is finite dimensional (each p), and the Whitehead
product in ^(S), transferred to T^(OS) by the canonical isomorphism, makes T^(QS) ® Q,
into a connected graded Lie algebra of finite type {i.e. finite dimensional in each degree):
the rational homotopy Lie algebra of S. A striking result of Quillen [QJ asserts that every
connected graded Lie algebra (over QJ of finite type arises in this way.

The situation for finite complexes is very different, and the question referred to
above, which forms the starting point of this paper, can be stated as the

Problem. — What restrictions are imposed on the rational homotopy Lie algebra
of a space S, if S is a finite, i-connected, GW complex?

We shall establish serious restrictions, both on the integers dimTTp(S) ®Q,, and
on the Lie structure.

These restrictions, moreover, turn out to hold for the much larger class of those
i-connected GW spaces of finite Q^-type whose rational Lusternik-Schnirelmann category
is finite. Recall that the Lusternik Schnirelmann category of a space S, as normalized by
Ganea [Ga], is the least integer m such that S can be covered by m + i open sets, each
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contractible in S. The rational LS category, denoted by cato(S), is the LS category of
the localization SQ—cf. for instance [LS], The inequality

ca^S^sup^lH^Q^+o}

implies that finite GW complexes have finite rational category.
Rational category has the following <( hereditary property "—cf. [FH; Theo-

rem (5. i)]: If <p : S -> T is a continuous map of spaces such that

y#: ^(S)®Q^T^(T)®%
is injective, then

cato(S)^cato(T).

In particular all the Postnikov fibres of a finite CW complex have finite rational category
(but usually not finite dimensional rational homology). It is this fact (which plays an
important role in the proofs to come) that has led us to weaken our hypothesis from
<c finite CW complex " to (< finite rational category ".

We wish, then, to deal with the

Problem. — What restrictions are imposed on the rational homotopy Lie algebra
of a i-connected CW space of finite 0,-type, whose rational LS category is finite?

And our first result is the

Theorem (1 .1 ) . — Let S be a 1'connected GW space of finite Q^type and finite rational
category. Then either

(i) For some N, 7Tp(S) 00 Q^ = o for p > N {i.e. T^(S) 0 Q^ is finite dimensional), or
(ii) For some k and G (G > i) there is an infinite increasing sequence of odd integers^ q , such

that q^ <_ K' and

dim7^.(S)®Q^G\

We call spaces in the subclass (i) rationally elliptic and those in the subclass (ii)
rationally hyperbolic.

The " generic " space (or manifold) is rationally hyperbolic, and the results of
this paper deal with the homotopy Lie algebras of such spaces. But it seems worthwhile
to briefly recall some of the known properties of rationally elliptic spaces, if only to
illustrate how exceptional is this subclass.

Indeed for rationally elliptic spaces, their rational cohomology algebra is necessarily
finite dimensional [FH] and satisfies Poincard duality [H^]; the integers dimTCp(S) ®Q,
determine the degree n of the fundamental class [HJ, and the sum of the Betti numbers
is <^ ̂  [Hj; all the possibilities for the integers dim n y(S) ® Q, are completely classified
[Fr-H]; the Euler Poincard characteristic is necessarily non-negative [HJ.

As for rationally hyperbolic spaces, we have available the very beautiful
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Conjecture (Avramov-Felix). - Suppose S is a i-connected CW space a/finite Q,-type such

cato(S) is finite and dim7c.(S)®Q, is infinite.

Then the rational homotopy Lie algebra contains a free sub Lie algebra on two homogeneous
generators. °

As a first step towards this conjecture we establish

Theorem (1.2). - Suppose S is a i-connecfed CW space of finite Q,-type, such that cato(S)
is finite and dim TT.(S) ®Q, is infinite. Then the rational homotopy Lie algebra is not solvable.

Corollary. - //cato(S) and cocato(S) [Ga] are both finite then S has finite dimensional
rational homotopy and finite dimensional rational homology.

The main step in deriving Theorem (i . 2) is a result which guarantees a plethora
of nonzero Whitehead products for a rationally hyperbolic space. Recall that a linear
transformation <p : V -> V is locally nilpotent if for each . e V we can find an n = n(v}
such that 9"(o) = o. • '

Theorem (1.3). — Suppose S is a i-connected GW space of finite Q,-type such that

cato(S) <_ m and dim TC,(QS) ® Q, is infinite.

Assume c^, ..., a, e^(^S) ®Q, (some k) are linearly independent elements such that each
ad a, is locally nilpotent.

Then the sub Lie algebra generated by the a, is infinite dimensional.

Theorems (i. i) and (i .3) are in fact special cases of somewhat more technical
results; these are stated in § 2. First, however, we should like to point out analogues
for these topological theorems in two other, apparently very different categories- the
category of graded Lie algebras, and that of local noetherian rings. We begin with Lie
algebras.

Lct L=pI'oLP be a connected S^d Lie algebra (over %) with universal

enveloping algebra UL. A representation of L in a graded vector space V = 2 V

makes V into a UL module in which elements of degree^ act by linear transformSLs"
of degree p. The minimum length of a resolution of V by free graded UL modules is
called the homological dimension of V; the supremum of the homological dimensions
as V ranges over all graded UL-modules satisfying V. = o, i< o, is called the global
dimension of UL.

Now recall [QJ that L determines a chain coalgebra (A.L, 8) in which AsL is the
free graded cocommutative coalgebra on the suspension ^L. We may regard AsL as
the space of « graded symmetric " tensors on sL; then 8 is homogeneous of tensor
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degree — i. It is well known [L] that gib dim UL is the largest m such that (AjL, 8)
has nontrivial homology in tensor degree m.

On the other hand if L has finite type the cochain algebra dual to (AjL, 8} is the
minimal model of a Q^-local space S, uniquely determined up to homotopy type ([BG],
[S]), and called the -^-formal space associated with L (cf. § 3 for minimal models). As
we shall see in § 3, it is well known that

(i) L == T^(QS) ® % (graded Lie algebras) and sL == T^(S) ® %.
(ii) gib dim UL == cato(S).
(iii) The linear map L ^ ^L —^ H(AjL, 8) is just the Hurewicz homomorphism

A : TT,(QS) ® Q^ 7r,(S) ® % ̂  H,(S; %).

We thus obtain the

Theorem (1.4). — Let L == S L be a graded Lie algebra of finite type. Then
p>o

theorems (i.i)-(i.3)3 as well as the theorems ^§2, when translated by the dictionary above, hold
forL.

The other setting in which graded Lie algebras appear is local algebra, and here
the analogy with topology, while less precise, is striking and deep. (Although this analogy
was known to Quillen in the mid sixties, it is the recent article of Roos [R] which has
drawn attention to its importance.)

In this setting we do not offer theorems, but shall propose the appropriate trans-
lation of the results above as conjectures. Here the dictionary runs as follows:

Suppose R is a commutative local noetherian ring with residue field k. Then
Extj^k, k) is the universal enveloping algebra of a graded Lie algebra L. We associate:

(i) L<->7T,(aS)®%, A^->7T,(S)®Q,.

(ii) dim^I/I2) — depth R<-> cato(S). (I the maximal ideal in R.)
(iii) R not a complete intersections dim 7r,(tlS) ® Q^ == oo.

Notice that in this dictionary the dichotomy between rationally elliptic and hyper-
bolic spaces corresponds to the well known dichotomy between complete intersections
and everything else.

In an earlier version of this paper we made the

Conjecture (1.5). — With the dictionary above theorems ( 1 . 1 ) 3 (i .2), (1.3) hold for local
noetherian rings.

Now Avramov [AJ, [Ag] has shown that if R is not a complete intersection then
L is not abelian. Since our original preprint he has established Theorem (1.1) and,
together with Halperin, showed that if R is not a complete intersection then L is not
nilpotent.
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THE HOMOTOPY LIE ALGEBRA FOR FINITE COMPLEXES 183

The full conjecture can be established when char k == o and R is the localization
of an evenly graded connected noetherian commutative k-algebra H, by applying the
techniques of [F-H] and of this paper to the " bigraded model " of H—cf. [F-T] where
this is carried out for the case of Theorem (i. i). (An easy modification of a result of
Gulliksen [Gu] shows that the Koszul complex ofH has category <^ dim^(I/I2) — depth R.
If I"^1 == o one could also replace cato(S) by m.)

The main tool in this paper is Sullivan's theory of minimal models which we recall
briefly for the convenience of the reader in § 3. This is preceded in § 2 by the statements
of the main results for topological spaces in full generality. In particular. Theorem (i. i)
is a special case of Theorem (2.1) while Theorem (i. 3) is a special case of Theorem (2.2).
(For completeness we restate Theorem (1.2) as Theorem (2.6).) The proof of
theorem (2.1) (ii) is in § 4, the key lemmas relating LS category and Whitehead products
are in § 5 and are followed by the proofs of the other theorems in § 6, 7 and 8.

2. Statement of results. — In the following, S denotes a i-connected GW space
of finite Q^-type. We denote the Hurewicz homomorphism, combined with the cano-
nical isomorphism

7^S)®Q^7T,(S)®%

by h: 7r,(aS)®Q^H,(S$%).

Theorem (2.1). — Suppose cato(S) <_m and dim^(S)®Q^ is infinite. Then

(i) There is an infinite arithmetic progression p^ = r + dk (d even) such that T^.(S) ® Q,=t= o
for all k ̂  o.

(ii) There is a constant G > i and an infinite increasing sequence of positive integers q^ such that
for i^ i, ^ = ̂ y»_i— i for some integer ^ e [2, m + i] and such that

dim TT^(S) ® Q^ G^, i >_ o.

Theorem (2.2). — Suppose catg(S) < m and dim TC^(S) ® Q^ is infinite. Assume that

oci, ...,a^G7r,(OS)®%

are m linearly independent elements whose degrees are even and lie in an interval of the form [k, 2k — 2].
If the ad o^ are locally nilpotent then the o^ generate an infinite dimensional sub Lie algebra.

Theorem (2.3). — Suppose cato(S) ̂  m and dim^(S)®Q, is infinite. Suppose

a^ . . . , a^e^(OS)®%

are homogeneous elements of even degrees such that A(ai), ...,A(a^) are linearly independent
homology classes. If the ad o^ are locally nilpotent then the a^ generate an infinite dimensional sub
Lie algebra.
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As an immediate corollary of Theorems (2.2) and (2.3) we have

Theorem (2.4). —Suppose cato(S) ̂  m and dim7T,(S)®% is infinite, and denote
by Z(S) the centre of the homotopy Lie algebra ^{Q.S) ® %. Then

2k-l

(i) S dimZ^<m
n==&

and (ii) dim h{Z) < m.

Theorems (2.2) and (2.3) give no information as to how low the least degree of a
nonzero Whitehead product must be. More precise information about the location of
nonzero Whitehead products is contained in

Theorem (2.5). — Suppose cato(S) ̂  m and dim7r,(S)®% is infinite. If n is
an integer such that dim7r^(QS) ®Q^ m + i, then for some p e [4 ,̂ (472 + i)w],
TCp (OS) ®% contains a nonzero Whitehead product.

Finally we have

Theorem (2.6). — If cat^S) is finite and dim7r,(S)®% is infinite then the rational
homotopy Lie algebra is not solvable.

3. Minimal models and Lie algebras. — With a i-connected GW space, S,
of finite Qrtype is associated its minimal model (AX, d); (AX, d) is a graded differential
algebra over % with

(3-1) x == S X^ and dimX^ oo.
p^2

(3.2) AX = exterior algebra (X^) ® symmetric algebra (X^611).
(S-3) d is homogeneous of degree i and Im dC (AX)4-. (AX)4-.

The minimal model is determined (up to isomorphism of graded differential
algebras) by S, and every g.d.a. (AX, d) satisfying (2.1)-(2.3) arises as the minimal
model of a space ([S], [EG], [Hg], [L]).

If (AX, d) is a minimal model we denote by (AX)^ the subspace of degree^. Because
of (3.2), however, a second (wedge) gradation AX == S A^ is defined: A^X is the

p^o
linear span of elements of the form ^ A ... A ^, x, e X. Let ^: A-^-X -> X denote
the projection with kernel A^X; then ^od == o (by (3.3)) and so ^ induces a linear
map ^:H+(AX) ->X.

Again by (3.3) we can write d as the sum of derivations (/, [i>_ 2) with
d,: X -> A'X. In particular (<4)2 = o. We define a graded space L === S L by

p^ i
Lp = Hon^X^4-1; QJ and a bilinear map [ , ] : Lp X L^ -> Lp+ ^ by (cf. [F] for precise
signs):

(3.4) <^; [a,P]>=±<^A:;a,p> aeLp, p e L,, ^eX^^4-1.
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THE HOMOTOPY LIE ALGEBRA FOR FINITE COMPLEXES 185

The equation d\ == o is equivalent to the Jacobi identity [QJ and so L becomes
a graded Lie algebra. Further, put H,(AX) = Hom(H(AX, d); QJ; then ^ duaUzes
to a linear map of degree i

(3.5) h: L->H,(AX).

Finally^observe that for each m, A>WX is stable under d, and so a quotient g.d.a.
(AX/A^X, d) is defined. It follows from Sullivan's theory [S], [By that there is a
commutative diagram of g.d.a. morphisms (of course everything depends on m)

AX——>-AX®AY

AX/A^X

in which A X ® A Y = A ( X © Y ) satisfies (3.1) and (3.2) and 73 induces a cohomology
isomorphism. (It can be shown that AX® AY also satisfies (3.3), but we shall not
need this.)

Following [F-H] we shall say that (AX, d ) has category <_ m (cato(AX, d) <_ m)
if there is a g.d.a. morphism r : AX ®AY -> AX such that ri is the identity.

Now suppose (AX, d) is the model of a space S. There are then standard iso-
morphisms (the first multiplicative)—[S], [BG]—

H*(AX, d) ̂  IT(S; %) and X ^ Hom^S); QJ.

The second can be interpreted as an isomorphism L ̂  TT^^S) ® Q, and a theorem
of Andrews and Arkowitz [A-A] shows this to be a Lie algebra isomorphism. Moreover
the map h (3.5) is identified with the composite

TT,(QS) ®%^ 7r,(S) ̂ Q^'-^H^S; %).

Finally ([F-H]; Theorem VIII), cato(S) == cato(AX, d).
Next, suppose E is any graded Lie algebra as described in the introduction. Then

the cochain algebra on E (dual to the chain coalgebra described there) is in fact a minimal
model of the form (AX, d^. By definition the Lie algebra L which results is just E again.
Next notice that H(AX, <4) inherits a second gradation from the wedge gradation of AX.
IfUE has global dimension m then, as we observed in the introduction, H(AX, d^ is zero
in wedge degrees greater than m. Choose a graded complement I for the space of
cocycles in A^X. Then J = I + S A^'X is an acyclic ideal. The projection

^ j>wi
^:AX->AX/J factors over the projection AX -^AX/A^X to yield a retraction
AX® AY ->AX. It follows that cato(AX, ^) <_ m. On the other hand a non-trivial
cohomology class of wedge degree > m would clearly prevent a retraction and we conclude
that

gib dim UE == cato(AX, ̂ ).

393
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4. The integers dim A:P. — In view of the preceding section, Theorem (2.1) (ii)
is a consequence of

Theorem (4. i). — Let (AX, d) satisfy (3. i)-(3-3) and suppose cat^AX, d) <_m and
dim X = oo. There is then an infinite sequence q^, q^ ... with {for i>.i) q, == /»^-i— i,
some integer /, e [2, m + i], and there is a constant G > i such that

dimX^ G ,̂ i^.o.
£

To prove this theorem we write X^ = 2 X^ We first establish
p=&

Lemma (4.2). — With the hypotheses of (4.1), ̂  i^w A?(n) = dimX1"'2""23 are
unbounded.

Lemma (4.3). — With the hypotheses of (4. i) ̂  rn^r^ dim Xp are unbounded.

Proof of Lemma (4.2). — Define an f-widget (strictly for the purpose of this proof!)
to be a sequence of nonzero homogeneous elements x^ ..., X{ e X such that
(i) each x^ has odd degree,
(ii) deg x,> deg ̂  + ... + deg x^ (i > i), and
(iii) there is a g.d.a. morphism

^: (AX,rf)^(A(^,...,^),o)

with ^i == ^r
It then follows from ([F-H]; Theorem (5.1)) that t <_ m = cato(AX, rf) for any

^-widget. We shall prove the lemma by showing that the three hypotheses:
cato(AX, d) <^ m, dim X = oo and k(n) <_ K for all n imply the existence of ^-widgets
for all t.

Indeed assume k{n) <_ K in addition to the hypotheses of (4.1). Since
cato(AX, d) < oo it is immediate that X^^ o and the existence of i-widgets follows.
Suppose by induction that (AX, d) always has /-widgets.

t
If (TI = A-i, ..., Xf is such an/-widget put q = S deg ̂  and consider the quotient

model (AX^, d) obtained by dividing by X^. By [F-H; Theorem (5.1)] this model
also satisfies our three hypotheses and so by the induction hypothesis admits an /-widget
<^2 = ^+1. • • •. ̂ - Clearly the composite AX -^AX^ ^A(^+i, ..., x^) exhibits 0-2
as an /-widget for AX.

Continuing in this way we find a sequence of K + i /-widgets

X^ .... X{\ .V/-H5 . . ., X^(\ . . . ; ̂ K/+l? • • • ? ^(K+l)/

/

with deg^+i> Sdeg^.i)^,.
»=*!
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/
Now put N == 2 deg^+»- The quotient model AX^ having finite category,

we can find a nonzero generator x of odd degree p > N. The K + i intervals
/

^^ [P +deg^i-i,^+ S degA^-i], o^^K

are disjoint and they are all contained in [p, 2p — 2]. Since k{p) <_K it follows that
for one of the intervals !„

X^=o, qel,.

Fix such an s, and write y, = A-^,, i <_ i < (. We will show thatj^, ... ,y^ x is
an I + i widget for AX. Certainly the condition on the degrees is satisfied, so we have
only to construct the morphism ij/.

Restrict the projection (AX, d) -> (A(ji, .. .,j^), o) to A(X<P) and then form
the g.d.a. morphism.

AX=AX<P®AX^->A(ji, ...,j^) (g) AX==A(^,...,^)®AX^.
AX<P

This gives a surjective map of minimal models

(AX, d) -^ (A(j,, .. .,^) ®AX^^, d1}

in which d^ == o.
Write X P = = ( ^ ) ® Y P and note that because J&>Sdegj^, rf^X?) == o. We

can thug project YF to zero, arriving at a morphism

(AX, rf) -^ (A(^, .. .,̂ , ̂ ) ®AX>^, rf").

It follows now from the condition X^ = o, ? e I, that the ideal generated by X^ is
^''-stable. Divide by this ideal to achieve the desired morphism, and complete the proof.

Proof of Lemma (4.3). — Fix an integer N, and in the quotient model (AX^, d)
write

dx == w.{x) + p(^), x e X,

where a(A:) eAX^'^-2^ and p(;c) is in the ideal generated by X>2N-2. Since
cato(AX^, d) ̂  m by [F-H; Theorem (5.1)] and since ^(X^^-2!) = o it follows
that A^X^^-^CIm^ This implies that

(4.4) ^X^.AX^-^DA^X^-2!.

Recall the integers k(n) of Lemma (4.2). If OL^X) is the component of a(^) in A'X
we have for degree reasons that a^X^ == o unless

p e [iN - i, i(2N - 2) ~ i] C [iN - i, 2(iN - i) ~ 2].
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Thus dim a^X^) ̂  k{iN — i). From (4.4) it follows that
m+l i JL/TVT\ \

(4-5) S k(iN - i).^)™4-1-1^ < / 1 .
^ ^ + i/

Put k == sup {A(zN -- i) | 2 <^ i <_ m + i}. Choose N so that

^(N)>[2m + l(m+ i)!w2]3

—possible by lemma (4.2). Then (4.5) yields

m.k.kW1 > A(N)m+l
v / - 2w+l(m+ i)!5

yfefN)2

whence ^^i^+i)!^^)5^ [>w+l(^+ i)!^T.

We can thus iterate the process to find a sequence No < N1 < ... of integers
with (j^ i) N ^ = ^ _ i — i , some integer .y, e [2, w + i] and

W+i)^W^>kW\ j ^ i .
Then ^±x) ^ ^(N,4-1) ., ̂ (N,)2/3 (̂N,) ^ A(N)^ (̂N,) ^)

N,+i (w+i)N,-m+i N, ~ m + i N, -2 N, •

kCN) ^j-2

Hence Jî m -^- === oo. Since (̂N,) = S dim XP, this implies the lemma.

Proof of Theorem (3.1). — This follows from Lemma (4.3) as in Step III in the proof
of [F-H; Theorem (8.1)]. We recall the argument for the convenience of the reader.

/ i \m+l
put a == \^(m 4- i ) j and choose y so that N == dim X^ satisfies N^> i.

The argument at the start of the proof of Lemma (4.3), applied to (AX^AX^, rf),
yields a degree i linear map a: X>5-^A^X^ such that o^X^.AXOA^X^

In particular o^X^ === o unless p =lq — i, t>_ 2, and hence
w+l

^n+ix^^ s A^1-^^^^-1).
f»2 v /

It follows that

/ N \n+l I N \
-7————r < ^dimA^X^

\2(W+I); -^+1;--

m+1
< S Nm+l-^dimX^- l.
~~^«=2

This implies that for some / e [2, m + i], dim X^-1^ aN^> N.
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THE HOMOTOPY LIE ALGEBRA FOR FINITE COMPLEXES 189

Iterating this procedure yields a sequence of integers q == q^ q^ ... with
9i = ̂ ?»-i — I and ^ an integer in [2, m + i] such that

dim X^' ̂  a(dim X^i)^.

It follows that
dimX^ a( l+ / .+^l• /i+•••+^•.. .•^N^2-^

Since each ^2, (i + A + . . . + ^2- • • • -W^ • • •^< -L + . . . + Jt < i and so

dimX^ (aN/i^--^ [(flNWs each z.

To finish the proof, put C == (flN)1^.

Corollary (4.6). — <7W(?r the hypotheses of (4. i), w^A a

lim^sup (dim X3)17^ sup (a dim XP)^.

\ m + l

\2(^ + I)

5. The main lemmas. — Here we prove the essential two lemmas for the remai-
ning theorems. First some notation: if a == (o^, ..., <yj e 7^ we define ^<r e V by

^-h-^i .
Thus 8, ̂  = g^. We also put | a[ == 2^, and write Z^ = {(T | (T,^: o, each i}.

Suppose now (AX, d) satisfies (3.i)-(3.3) and cato(AX, d) <_ m. Assume
fl>i, ..., 0^, Y are homogeneous elements of (AX)4" such that

, . {d^ == o and 0, has odd degree, i <_ i<_ m.
( 5 ' l ) [d^^ ... A O ^ A Y ) =o.

From the definition of cato(AX, d) in § 3 it follows that the projection
AX -^AX/A^X is injective in cohomology. In particular, for some u eAX
(5.2) du = Oi A . . . A 0^ A Y.

For [ CT | = o put

(5.3) u ̂  ^(o^-o)\3 ^/ •*o i ••/* •̂[ o n some CT, < o.

Z^mwfl (5.4). — Suppose cato(AX, d) <_ m and 0,,Y,^6AX are as described
above. There are then elements Zy e AX, a e Z ,̂ such that z^ = o if some a, < o W

'^0 \a\ = o

(5.5) ^- S^^-^) 1 - 1 ==I

m
^SO.A^^,, |<r|>i.
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Proof. — Define a minimal model (AX® AW, D) as follows. Give W a basis of
elements Wy, a eZ^. Put Wy == o if some (T,<O. Define D to coincide with d
in AX, and by the formulae (5.5) in W (replacing z^ by Wy and d by D). The relations
0,0, ==--0^0^ and ^ = 8^ imply that D2 == o.

Define a g.d.a. homomorphism AX ® AW -^ AX/A>mX, extending the projection
in AX, by po/o == u and pw^ == o, |a| > o. (Note that du eA>mX so that pM is a
cocycle in AX/A^X.) The theory of minimal models now implies that p lifts over T)
to a morphism <p :AX®AW ->AX0AY extending id^x? where T) is defined in § 3.
Since cato(AX, d) <_ m we have a retraction r :AX®AY->AX; put Zy == r^{Wy):

AX •>-AX®AY

AX/A^X

-AX

and the lemma follows.

Lemma (5.6). — Let A(^, ..., A:J A^ ̂  exterior algebra generated by linearly independent
elements ̂ , and let B be any vector space. Suppose/or some p>_ i, 0-r eA(A:i, ..., ̂ J ®B
(reZ*", H ==^), ̂ ^

(i) ^ == o if some T, < o.
m

(ii) SA: ,AO^==O, ^ | (T| = = p + i .
v==l

TA^ flr^ ^^ elements Y^ e A(^i, ..., x^} ® B, | a> | == p — i, j^A ^^ Y^ == o
?/' jom^ o), < o flwrf

0^ = S ̂  A Y5«T? fl/^ T.

Proof. — It is clearly sufficient to prove this when B = %. Assume this. The
lemma is trivial when m == i and follows for general m by an easy induction.

6. Lie structure and finite category. — In this section we fix a minimal
model (AX, d), satisfying (3.i)-(3-3)^ with cato(AX, d) <_m. Let L = S L. denote

p^i
the corresponding Lie algebra, and recall the linear map A : L -^H^(AX) of degree i,
defined in (3.5). IfA(ai), .... A(a^) are linearly independent we can find cocycles in
AX of the form ^ + 0,, 0, eA^X, such that

<^+0<,A(a,)>==^.

Redefining X by replacing x, by x, + 0, we arrive at elements x, e X with
(6.1) ^==o and < ^ A ( a ^ ) > = 8 y .
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Theorem (2.3) follows from

Theorem(6.s).—Suppose cato(AX,rf) <_m and dimX==oo. Assume a^...,a^eL
have even degrees and generate a finite dimensional subalgebra of L. If A(ai), ..., A(a^) are
linearly independent, then for some (3 e L and some i e [i, m]

(ad a^jB =t= o, all p.

Proof. — Let a^, ..., a^, pi, ..., ̂  be a basis of the subalgebra E generated by
the a^ and note that each (B, has even degree.

Let W C X be the subspace of vectors w such that < w, E > = o and choose
vectors x^ x^ e X such that

<^,o,> == 8̂ . <^,o,> = o

and <^, (B,> === o <^, (3,> == 8^.

Then X is the direct sum of W and the subspace Y with basis x^ x ' ^ so that

A 2 X=A 2 Y©(Y®W)®A 2 W.

In view of our remarks above we may suppose dx^ == o, i <^ v <_ m.
Denote by ad* the representation of L in X dual to the adjoint representation.

Since [E,E]CE, W is an E-module and ^weYOWQA^. Thus formula (3.4)
yields

m /
(6.3) d^w ± S x, A (ad ^YW ± S ̂  A (ad ^YW eA^, w e W.

v=»l (A=I

Since a^, ^ have even degree the x^ x^ have odd degree. Since dim X = oo
there is a generator a e X, linearly independent of the x^. Choosing a of least degree
we see that da e A(;^, ..., A-J, so that d(x^ A ... A x^ A a) == o. As remarked in § 5,
because cato(AX, d) <_ m, there is an element u eAX with du = x^^ ... A ̂  A a.

Apply Lemma (5.4) to the elements x^ a, u. This yields elements ^eAX
(<T e Z^*) which satisfy the following equations:

(6.4) Zy = o if some <r»< o

o \a\ == o
m

(6.5) dz^.^^^-^ H-1

W

S ^A ZQ \G\^ 2.
v=l v

(Here we have put MO == M ^d ^o == ° if I C T I == ° and some ^ < o.)
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The main step in the proof of the theorem is the following lemma.

Lemma (6.6). — With x^ a, u, E as above, fix integers q >_ i, and j\ k >_ o. Suppose
the E-module generated by each (3 e L has finite dimension. Then the elements Zy can be chosen
so that in addition to (6.4) and (6.5) they satisfy: for \ <r| = q

^ e S [A^-1^, ̂ ) ^A^W] ©A^^X.

Proof of the lemma. — The lemma holds trivially for all q, j when k == o. If for
some fixed k it holds for all j <^ k + i and all q >_ i, then it holds for k + i, j == o
and all q>,i. Thus to prove the lemma we may (and do) assume it true for some
fixed k, j and all q>^ i, and establish it under this hypothesis for k, j + i, and all q>_ i.

Since each (B e L generates a finite dimensional E-module, we can find an increasing
sequence ... ApCAp^C ... of finite dimensional graded E-modules such that L ^ C A .

Let UpCX be the graded E-module of vectors vanishing on A . Then U DU .1,
each Up has finite codimension in X, and U CX^'1"2.

Now fix q^ i. Choose N^ so large that W^ = X^, ^^N^, and so that if
H = = y then deg^<Ni. Then U^CW. Choose N^>'N^ so that

W^X^CU^ if ̂ N2.

Finally choose y' > q so that for | a \ =- q'

(6.7) deg ̂  ̂  2 deg ̂  + S deg ̂  + (k + i)Na.
V= 1 (A=l

Our induction hypothesis allows us to suppose that

(6.8) ^ e S [A^-^^^A^WJQA^^1^ |o [ =y'.
i> -»

Let I CAW be the graded ideal generated by U^ and let GCA^'W be a graded
complement for I n A- '̂W inA^'W. Define graded spaces V(J-), V'(J), s = k ork + i by

V(J) ^A^^XC S [AS-i(^,^)®AiW]©[AS-j(^,0®(AiWnI)]
i^j +1

and V'M = A<SX © S [A8-1^, ̂ ) ^A^W] © [A8-^, ̂ ) ® C].
i<j

Clearly AX = V(^) © V'(^), s == k or k + i. Moreover since Vy is an E-module
so is A^'W n I. It follows thus from (6.3) that </(V(A)) CV(& + i). 'We shall show
now that for any q^ e [q, q ' ] , we can choose the Zy to satisfy (6.4)3 (6.5) and

(6.9) ^V(A), H=^.

Indeed (6.8) and an easy degree argument show that (6.7) implies (6.9) when
?i == ?'• Suppose now that for some ^ > q: the z^ satisfy (6.4)3 (6.5)3 and (6.9) holds.
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For | T | = ̂  — i write ^ == ^ + ̂ , ^ e V(^), ^ e V'(^). Then ^ A ^ e V(A + i),
A^A ^ eV'(^ + i), while for |(j| == ^, dz^ e V(A + i). Thus (6.5) yields

m

S A:,A^ ==0, | or| =^.
v==l v

By hypothesis q^—i^:?^:i. Thus Lemma (5.6) asserts the existence of
elements a^ e AX, | <o | = q^ — 2 such that a^ == o if some co^ = o and

m

^ == 2; A:,A^ |T| = ̂ -1.
v=l

Replace ^ by -$'0 when | or [ === q^ — i or q^ — 2 as follows:

4 === ^-^o. 1 ^ 1 =?i-i
and ^ = ̂  + ̂ o, | <71 = qi — 2.

By definition (6.9) now holds for | <r | = q^ — i. A simple calculation shows
that (6.4) and (6.5) continue to hold.

Continuing this way we see that we may assume (6. g) to hold for | cr [ = q. But
now deg Zy < N^ if | a ] == q, while U^ = o if p ^ N^. For degree reasons, then,
Zy can have no component in A(^, ̂ ) ^A^W n I and it follows from (6.9) that

^ e S [A^-1^, ̂ ) ^A^W] ©A^^^, | o| == a.
i^j+l '

The lemma follows by induction.
The proof of the theorem is now completed by the following two steps:

Lemma (6.10). — Some p eL generates an T^-module which is an infinite dimensional
vector space.

Lemma (6. n). — Suppose 6 represents a finite dimensional connected graded Lie algebra E
in a graded vector space V and some v e V generates an ^-module which is an infinite dimensional
vector space. Suppose E is generated by elements a,, i ̂  i <^ m. Then for some w e V and
some i

e(a,)pw + o, all p.

Proof of (6. ie). — We suppose each (3 e L generates a finite dimensional E-module,
and deduce a contradiction. Indeed with the notation above choose k so that k > | Zy \
for 1 a | = i and apply Lemma (6.6) with q = i. It follows that we may assume
Zy = o, | cr | = i. Now (6.5) reads

m

0 = 2 x,A(Zs -Us ), |<r| = I.
V= 1

When cr is given by cr^ == i and orj = o, j =t= i, this equation reads
x! A (^0 — M) == °-



194 Y V E S F f i L I X , S T E P H E N H A L P E R I N A N D J E A N - C L A U D E T H O M A S

Since this holds for each i we conclude

u — ZQ = x^ A ... A x^ A 6, some & e AX.

Differentiating one last time, and recalling that dz^ = o, we find

x^ A ... A ̂  A a = ± ̂  A ... A x^ A db,

which is impossible because a eX and db eA^X. The lemma follows.

Proof of (6.11). — Recall that a linear transformation 9 : V ->• V is locally nil-
potent if for v e V there is an integer w(y) such that ^v = o. We shall show that
if each 6(0^) is locally nilpotent then each v e V generates a finite dimensional E-module.

First observe, since E is finite dimensional and connected, that if (B, y e E then
for some p\ o =(= co == (ad P)FY? and o = (ad y)p+l^. A simple computation shows
that if v eV satisfies 6((3)y == o then

6((3)^6(Y)^ = X6((o)^,

where X is a certain binomial coefficient. In particular, if 6(y) is locally nilpotent then
for some n, 6(0))^ == o.

We show now that if 6((3) and O(Y) are both locally nilpotent, then so is 6(<o).
Indeed suppose by induction that Q^^v = o if vekerQ^)^ If yekerOdB)3 4 '1

we can find k so that Q^^Q^v = o. But by construction [[B, <o] = (ad (S)^^ == o
and so 6((3) commutes with 6(c»)). It follows that 6((B)6((x))fcy = o. The argument just
given then implies that for some /, O^/O^)^ = o. Thus 6(c«)) is locally nilpotent.

In particular we may construct an element a in the centre of E (because E is finite
dimensional and connected) of the form

a == (ad oc î o ... o (ad 0^)^ + o,

and such that for eachj

o = (ad ̂ +1 o (ad a^^i o ... o (ad a^oci.

The remarks above, applied to each (ada,.)^o ... o(ada^)^ai in turn, imply that
6 (a) is locally nilpotent.

We complete the proof by induction on dim E. If 6 : E -> End V is not injective
we replace E by 6(E) and conclude by induction on dim E. Hence we may suppose 6
injective. Consider the exact sequences of E-modules

o -^ ker 6(0^ -> ker 6(0)^1 -> ker 6(0)^ ̂ ker 6(0^ -> o.

By our induction assumption (since a acts trivially in the right hand vector space)
if v eker6(a)p+l then the E-module, E(^), it generates has finite dimensional image
in ker 6(a)p+l/ker 6(a)P. Thus for some n

E(^Cker6(a)p, j>_ n.
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Now the E-module E(y)^ is generated by the finite dimensional vector space
n+8

S E(y)j, s == maxdega,. Thus by induction on p this time, dim E (&)>„< oo and
j=n —
so dim E(^) < oo. Thus dim E(z/) < oo for all v e U ker 6(0)^. But since 6(a) is
locally nilpotent V == U ker 6 (a)p; hence the claim. p

P

7. The remaining theorems, except for Theorem 2.6. — The next theorem is
almost a corollary of Theorem (6.2); on the other hand, it clearly gives Theorem (2.2).

Theorem (7.1). — Let (AX, d) satisfy (3. i)-(3.3) and assume cato(AX, d) <^m and
dim X = oo. Suppose a^, ..., a^ are homogeneous elements in the associated Lie algebra, L,
whose degrees are even and lie in an interval of the form [k, 2 ^—2] . If the a, generate a finite
dimensional sub algebra then for some p e L and some i e [i, m]

(ad 0^(3 + o all p.

Proof. — Let (AX^, d) be the quotient model obtained by putting X^ == o, p <_ k.
Its associated Lie algebra (say L) is a subalgebra ofL; the inclusion is dual to the projection
X -> X^, so clearly L == L^. In particular a^, ..., a^ eL.

On the other hand, evidently ^(X^) = o, k + i < p <_ 2k. It follows easily
that ^Lp-^Hp+^AX^) is injective for p e [k, 2k — 2]. Finally, by [F-H;
Theorem (5.1)], ca^AX^,^) <_ m. We can now apply Theorem (5.2) to L.

Remark (7.2). — Theorem (2.1) (i) and Theorem (2.4) (i) are corollaries of
Theorem (2.2). Theorem (2.4) (ii) is a corollary of Theorem (2.3). It only remains
to prove Theorem (2.5). It is a consequence of

Theorem (7.3). — Suppose (AX, d) satisfies (3.i)-(3.3), cato(AX, d) <^ m, and
dim X = oo. Assume x e X2^4'1, x^ ..., x^ e ̂ 2n+l are linearly independent of degrees
such that k <_ 2», and let t be the lesser of k and n.

Then in the associated Lie algebra L the derived algebra [L, L] is nonzero in degree p for some
p e \2l + 2n, 2n(m — i) + {w + i)m + 2k].

Proof. — Choose a graded subspace YCX-^^ as follows:

(a) if k < n: Y^ = Xp unless p = 2k + i or p == w + i, Y^4-1 ® {x) == X^4-1,
Y^^o,

(b) if k = n: YP = X^ p < M + i and Y2"4-1 = o,
( c ) if k>n: YP = X^ ^ < 2n + i, Y2^1® (^, ..., xj = X^

Then Y generates a fif-stable ideal I. Dividing by I produces a new minimal model
which still has category <_ m ([F-H; Theorem (5.1)]). It is thus sufficient to prove
the theorem for this new model; i.e. we may assume that Y = o. We then have the
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following additional facts: ^i, ...,^ are linearly independent cocycles linearly inde-
pendent of x, and dx eA(^, ..., x^).

As in the proof of Theorem (6.2) we can write x^ A ... A x^ A x == du and apply
Lemma (5.4) to the elements x^ x and u. This yields elements z^ eAX such that
(7-4) za == o if some CT,< o

and
/ o, H == o

(7.5) ^o= ^/^(^-^o), H-i

^ S ^ A ̂ , |o|> I.

(As in the proof of (6.2) UQ == u and Uy == o, otherwise.) A simple computation
shows that

deg 2y == 2n\a\ + (w + i)w + 2^.

Now suppose in L that [a, [B] == o whenever
deg a + deg (B e \2t + 2^3 2^(w — i) + (2^ + i)w + 2^].

We shall deduce from this a contradiction. Because of the way we have constructed AX,
{^^Y =• ° in degrees < 2^ + w + 2. It follows from (3.4) that [a, [B] = o if
deg a + deg (3 < 2/' + 2^, and so

[a, p] == o, deg a + deg (B <^ 27z(77i — i) + [w + i)w + 2k.

We can thus apply (3.4) to get
<4 = o in (AX)^, N = w(m — i) + (272 + i)m + 2k.

In particular d^Zy = o, | ( y | ^^ — i.
We shall show now by induction on i that we can arrange that

^eA^^X, | a\ == m — i — z, o <_ i <_ m —-2.

Indeed this is trivial when i = o. Suppose it holds for some i < m — 2. For
| o | = m — i — z, <4^ = o and so

^eA^-^X.

For every |r| = w — i — 2 we write ^ == ^ + ̂ , ^ eA^^2^ w^ eA<i+2X.
For |a| = m—i —i, dZy = S^A v^y + ̂  A w^o with | ̂ (r| === w —i — 2. Since

w m

dZy eA^^X we have o = ̂  X^/\WQ y and ̂  = S A^A ̂  g.
v==i v v=i v

We can thus apply Lemma (5.6) to find elements a^ |co[ ==m—i—^ such
that a^ == o if some <x^ == o and, for | T | == m — i — 2

m

w,== S X^OQ
v==l v
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Modify the ^ by replacing ^ by v^== z^—w^ if | T [ = m — i — 2, and by
replacing ^ by z^ + a^ it | co | = 771—^—3. Leave the other z^s untouched. A
simple calculation shows the new z^s satisfy (7.4) and (7.5) and that z^ eA^^X if
[ <r | === m — 2 — i.

We may thus suppose Zy eA^m~lX when |cr| == i. Write u— ZQ = $ + Y,
<D eA^-^X, T eA^X., Using (7.5) we deduce that (since dz^ eA^^X)

^ A 0 = o, i <^ i<_ m,

whence 0 == o. It follows that
A:lA . . . A , ^ A A : = ̂  = ^F eA>-m+2X,

again because (for degree reasons) d^V == o. This is the desired contradiction.

8. Proof of Theorem 2.6. — The main step in the proof of the theorem is the

Proposition (8.1). — Assume cato(S) < oo and a e T^(QS) ® %, (B e 7^-1(^8) ® <^
^fl^ij^

(ad ^^^JB =)= o, all p.

Then ad a, restricted to 7T^(t2S) ® %, ^ no^ a nilpotent transformation.
Assuming the proposition for the moment, we deduce the theorem as follows. Let

L=ST^(QS)®Q^ and let L^ denote the s-th derived algebra of L: L^-^ = [L^L^].
We show by induction on s that: For any N there is an integer k ̂  N such that

2k-2

(8.2), 2 dimL^^w.

This certainly establishes Theorem (2.6).
Now (8.2)0 is true by Theorem (2.1). Suppose it holds for some s. Fix N and

choose m linearly independent homogeneous elements
2k-2

oci, . . ., a^ e S L^, some k ̂  N.
i=fc

If the a^ generate an infinite dimensional Lie algebra there will, in particular, be an
infinite sequence z\, z'g, z'g, ... such that

Yv == [^[^.iC- • • DV aj ...] + o, each v.

For ^ ^ 2 each Yv is in L^4'^. For sufficiently large r we have
^g Yr+m ̂  2 deg y,+ i — 2

and so (8.2)5+1 follows in this case.
On the other hand, if the a, generate a finite dimensional subalgebra, Theorem (2.2)

implies that for some (3 and some i
(ada,)^+o, all/?.

405



198 Y V E S F f i L I X , S T E P H E N H A L P E R I N A N D J E A N - C L A U D E T H O M A S

We may clearly take deg (B > N. If deg (B is even then [a,, [B] e L^ and so
(ad a,)^ e iJ8"^, p>.2. By choosing j& large we may arrange that

deg(ad a,)^^ ̂  2 deg(ad a,)^^ - 2,

and so establish (8.2)3^1.
Finally, suppose deg (B is odd. By Proposition (8.1), there are then elements

Y e L of arbitrarily high degree, such that (ad a^y =t= o- Formula (8.2)^1 follows,
and with it Theorem (2.6).

It remains to give the

Proof of (8.1). — We suppose ad a nilpotent of order k in T^(OS) ®% and
deduce a contradiction. By replacing (B by a suitable (ad a^jS we may arrange that
I > knm{m + i)!. Denote the minimal model of S by (AX, D). By projecting onto a
quotient model we may, without affecting our hypotheses, arrange that (AX, D) has
the form

AX = A (x) ® AY, Y == VQ © Y> 2^,

where x is dual to a, andj^o is dual to p. Thus for 0 eAY we have
DO = d<S> +A:A60;

here d is the induced differential in the quotient model AY. In particular
6 = 61 4- 82 + • • • is the sum of derivations each of degree — w with 6,: Y -> A^Y.
By formula (3.4)3 6i is dual to ad a.

The hypothesis (ad a^jB + o, all p, can thus be restated as: j^ enim^O^. If
6^ ==j^ then p

ep^-e^e(A^2Y)^=o

and so also j^o e H (I111 Q^O*
P

Now for any q
. . . >, dim[(AY)^ n Im^)] ̂  dim^AY)5 n Im{QP+1)] ̂  . . . ,

and, since dim^AY)^ oo, it follows that for some p ;
(AY)3 n Im 6^ = (AY)3 n (f1 Im 6^.

p

This implies that 6 : AY^2" n (fl Im OP) -> (AY)3 n (H Im OP) is surjective. In
P p

particular we can find an infinite sequencer 5^15 • • • such that Qy, ==j^_i. Evidently
none of the j^ are in A^Y and so (by a new choice ofY) we may suppose all thej^ belong
to Y. Note that degjy, == 2{£ + in).

Denote by U C Y the span of the j^. For any 0 eAY

(8.3) 0 ̂ y, = 6(^(-- i)W AJ.,^^).

4(?<?
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It follows that 6 : U .AY -> U .AY is surjective. Thus a straight-forward argument
by increasing induction on degree permits us to write AY == AU ® AZ, with AZ stable
under 6. We may suppose (by a new choice of Y) that Y = U 0 Z.

Recall that 6 = SO, with O^CA'Y. Define linear maps (p^Z-^A'U,
i ̂  2, of degree i by the equations

dz — S ̂ z e Z.AY, z e Z.

We shall show that

(8.4) ^t=Qi^ ^2.

Indeed, put 9 = S<p,. Then since 6^ eA^Z, j^ 2, we have ^6,^ eZ.AY,
j^_2 and so

^-^GZ.AY.

On the other hand, 6 preserves the ideal Z.AY and so

Qdz — Q^z eZ.AY.

Since Qd == dQ and since 6 reduces to O^ in AU, (8.4) follows.
The hypothesis that ad a is nilpotent of order k in n^{Q.S) ® Q, (adopted at the

start of the proof) implies that 6^ = o in Z0^. In view of (8.4) we may conclude that

(8.5) ^(Z^CkerO?, i^ 2.

Put s = km(m + i)!, and denote by p : AU ->A(j^ • • ' ^ 3 ) ^he projection
whose kernel is generated by the y^ with j > s. Then

^(AY^HA^O^...^)
Cl^Z^.AU] nA-4-1^ •••^)
C{S [pcp^Z0^) .AU]} n A--^^ • • .^3)

C^py^Z^.A^1-^, •••^s)-
<=2

In Lemma (8.6) below we use (8.5) to show that dim py^Z0^) <^k[s + i)'-1,
i ^> 2. Thus the inclusions above give

dim^AY)0^) n AW+l(J/o» • . ->^)}^ M^ + I)m

On the other hand, by hypothesis I > knm(m + i)! == ^5 ^d so

degj^ == degj^o + ws <_ degj^o +2(^~ i ) = = 4 / — 2 = 2 degj^o — 2.

Since (A^Y)^-2 = o, we find ^==0, o^j^^. Because the quotient
model (AY, d) also satisfies cato(AY, d) <_ m, we have

AW+l(J/o,•«•^)C^(AY)odd)

4<?7
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and hence

("m^t x) == dimAm+l(->'o' • • -^) ̂ km^ + I)"'-

This implies that
(^ 4- i)»»+i

<,km{s + 1)'",
(CT+I)! - v • / '

whence km[m + I ) ! + I = = G ? + I ) <!_^m{m + I)!? an obvious contradiction. The
proof is complete.

Lemma (8.6). — With the notation and hypotheses of Proposition (8.1) and its proof:

dim pcp^Z0^) ̂  &(J + i)1"1, ^ ̂  2.

Proo/. — Fix i and denote by y the restriction of O^ to A^U. In view of (8.5) it
suffices to prove that

dim p(ker ̂ ) <_ k(s + i)1-1, t^ 2.

For this, linearly order the monomials in AU, putting j^°j^1 ... < J^°J^1 ... if
for some v : kj = ̂  (j < v) and A^ < ̂ .

If 5 is a linear combination of monomials, each greater than a given monomial f^
we write g^>f.

Next, if y^J^0^1 • • • is a monomial we write

^ if^>0
V= ^^v

o if k^ == o.

Thus if ^>o, (V)j,=/.
Consider the set ^ of monomials /eA'U of the form f =^•J^•• • • • •J^' with

ky>_ o and A(^ 2. For fey put

"/=-ji^-ww^+j+i-
Then

(8.7) /< a/,

and
(8.8) Q.f e ideal generated by thej^,, v> t.

Recall, moreover, that 6 = 61 in AU. Thus by (8. g)

(8.9) /+"/ekerY.
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Because of (8.7) the elements /+ ̂  are linearly independent (/e e$^). We
show now they are a basis for ker y. Indeed if 0 == g + Y e ker y with ^ a monomial
and ,?< Y, we shall show that g e y. In fact write g ==j^°' • • • •J^ with k^>_ i.
If ^ = i it is easy to see that

Y^J^...-.^-1

while y^ =^o.... .̂ +1 + Y'

with y >j^o.. .. •j^Y1'1. These two facts would contradict y(^ + Y) == o and so
we conclude k^ >: 2; z.^. ^ e e .̂

Thus 0 -- (^ + t^) e ker y can be written as a linear combination of mono-
mials > g; proceeding in this way and using the fact that ker y is finite dimensional in
each degree, we see that ker y is spanned by the vectors /+ 0,^ fey.

It follows from (8.3) that y is surjective. Thus for feY we can find
fo^fi, • • • eA'U such that

fo==f+^f and Y^-=/j-i, J ^. i.

Clearly the elements f^ o <_j < k, f e y form a basis of ker y^.
Now if/is in the ideal generated by the;^, v > j, then so is /o ===/+ °p by (8.8).

In this case by (8.3) we can choose /i,/^ • . . so that they too are in the ideal generated
by the ̂ , v > j. Thus for these/we have p/ = o, j ^ o.

It follows that dim p(ker y^) ^ kq, where y is the number of monomials f e y
such that /eA^j/o, ...,J^). There is a one to one correspondence between such
monomials and monomials g eA1-1^, .. .,j^) given by (if g ==jy^ ... y\^ t>_ i)

^^o.....y<+1.

Thus y = dimA1"1^, .. .,j/J and so

dim p(ker y') ̂  k dimA1-^, .. .,j/,) ^ A(^ + i)1-1,
q.e.d.
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