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CONTRIBUTIONS OF RATIONAL HOMOTOPY THEORY
TO GLOBAL PROBLEMS IN GEOMETRY

by KARSTEN GROVE and SteprEN HALPERIN

1. Introduction

In this paper we would like to draw attention to some very suggestive parallels
between certain problems in global differential geometry, and some recent developments
in rational homotopy theory. The problems in geometry centre around positively
curved manifolds on the one hand, and the existence of isometry-invariant geodesics on
the other. In the first case the relationship with rational homotopy theory is still
conjectural; in the second it is precise, and we will use it to prove a very strong existence
theorem.

Throughout, manifolds will always be assumed to be closed connected and simply
connected.

A natural context for this discussion is provided by the following result of Felix
and Halperin [4]; the class of #z-manifolds M" (or more generally the simply connected
topological spaces of the rational homotopy type of a connected finite n-dimensional
CW complex) is divided into two subclasses: either

(a) w,(M") is a finite group for all p>2n—1, or
(b) the integers p, = X dim =, (M)®Q grow exponentially in p (ie. IC>1,
9<p
dkeN:p>k =p,>CF).

Manifolds in class (@) are called rationally elliptic; the rest (in class (5)) are called rationally
hyperbolic.

The ¢ generic ” manifold is rationally hyperbolic; rational ellipticity is a severely
restrictive condition, albeit satisfied by all the simply connected homogeneous spaces.
For instance if M" is rationally elliptic then

(r.1) dim7,(M)®Q <= ([7])

(r.2) dim H,(M; Q) < 2" ([14])

and

(x.3) the Euler-Poincaré characteristic yy >0 ([13]).
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Moreover
(x.4) xu > 0 if and only if H,(M;Q) = o for all odd p ([13]).

By comparison if M" admits a metric of non-negative sectional curvature
then the classical conjecture of Chern-Hopf would imply yy.> o0 while a recent
conjecture of Gromov [8] asserts that dim H,(M"; Q) < 2". (Gromov in fact proves
that dim H,(M"; F) < G,, C, only dependent on n) The link between geometry
and topology is provided by

Conjecture (x.5). — A closed 1-connected manifold M, which admits a metric of non-negative
sectional curvature, is rationally elliptic.

This conjecture has been attributed to Bott. Our interest in it was first
stimulated by D. Toledo. An assertion equivalent to the conjecture is that the integers
pp = = dim H,(QM; Q) grow only sub-exponentially in p (ie. VCG>1, VEkeN,

a<p
3p>k:p,<CF); in particular the principal result of [3] is a much weaker version of

this conjecture.

In contrast with (1.5) we point out the existence of positively Ricci curved closed
rationally hyperbolic manifolds. Indeed in [15] Hernandez-Andrade constructs metrics
of positive Ricci curvature on the Brieskorn varieties

V,(4) ={zeC"*!||z| =1 and 2; + ... + 2} ., =0},

for large m. The Brieskorn-Pham theorem (cf. [16]) implies that
dim nm—l(vm(4)) ® QZ 4 for m Z 3

whereas it follows from [7] that a rationally elliptic manifold V of dimension 2m — 1
satisfies dimx,,_,(V)®Q <2 for m > 3 odd.
For rationally hyperbolic manifolds M an important invariant is the constant Ry
given by
Ry ! = lim sup[dim H?(OM; Q )]'7;

it is the radius of convergence of the Poincaré series X dim H?(QM; Q )#* of the loop
space QM, and it is always less than 1 because of (4). This invariant has been studied
by Babenko [1] and Felix-Thomas [6]. We pose the following

Problem (x.6). — If g is a Riemannian metric on M, express Ry in terms of invariants of g.

We turn now to our results on geodesics. Recall that a geodesic ¢(f) on a
Riemannian manifold is called invariant with respect to an isometry A if ¢(¢) is not constant
and if Aoc(t) =c¢(¢t + a) for some constant a. If A has finite order then ¢(¢) is auto-
matically closed. Two A-invariant geodesics are geometrically distinct if their images (as
point sets) do not coincide. We establish
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Theorem A. — On a rationally hyperbolic Riemannian manifold M any isometry A has
infinitely many geometrically distinct invariant geodesics.

The conclusion of Theorem A does not hold in general for rationally elliptic mani-
folds: a rotation of the round two sphere has only one invariant geodesic and a generic
““rotation > of S? has only two. Indeed it is not known if there must always be at least
one invariant geodesic. We shall, however, show that this is the case for a large class
of rationally elliptic manifolds (Theorem 2, § 3) and, as a corollary, deduce

Theorem B. — On a 1-connected closed Riemannian manifold of odd dimension every isometry
has an invariant geodesic.

The transition from geometry to rational homotopy which is necessary here is
accomplished by Tanaka’s optimal extension [20] of the main result in [12] on the one
hand, and by that of [11] on the other. These, together with non triviality theorems
for Whitehead products [5], provide the ingredients for the proof of Theorem A (§ 2).
For our results on isometry-invariant geodesics on rationally elliptic manifolds (§ 3) we

rely on [10], [13] and [7].

2, Invariant Geodesics on rationally hyperbolic Manifolds

Throughout A denotes an isometry on a fixed (closed 1-connected) Riemannian
n-manifold M". The space M} of A-invariants paths on M is defined as the paths
6:1 - M satisfying o(1) = A(s(0)) with the uniform topology. The homotopy type
of this space depends only on the homotopy class of A, and the existence theorems for
A-invariant geodesics depend only on the homotopy type of M} (cf. [9], [10], [20]).

Since the isometries of M form a compact Lie group [17], A is homotopic to an
element of finite order, and so it is sufficient to consider the case that A has order k.

In this case we know from [11] that A yields an automorphism (which we also
denote by A) of order & on the Sullivan minimal model over Q, (AXy, d), of M, and this
automorphism can be taken to preserve X,,. Here AXy is the free graded commutative
algebra over the graded space Xy, and the standard isomorphisms

H(AXy) = H'(M; Q);  Xf = Homy(m,(M), Q)

are A-equivariant [11]. Note also that, in view of the second isomorphism, M is rationally
elliptic if dim Xy < co and rationally hyperbolic if dim Xy = oo.

By a recent theorem of Tanaka [20] generalizing an earlier result of [12] an
isometry A has infinitely many invariant geodesics if M} has an unbounded sequence
of rational Betti numbers. The main result of [11] states on the other hand that this
is the case unless dim(X#) ™ < dim(Xj)* <1, where Xj < Xy is the subspace
of vectors fixed by A. In particular if dim Xj = co then A has infinitely many
invariant geodesics.
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In [4] is introduced the notion of rational category of a minimal model, which is
finite for models whose cohomology is finite dimensional. The category caty(M) of
(AXy, d) is the Lusternik-Schnirelmann category of the rationalization M, of M ([4];
Theorem (4.7)) and satisfies caty(M") < cat(M") < n.

Theorem A in the introduction now clearly follows from

Theorem 1. — Let A be an automorphism of finite order k of a minimal model (AX, d) of
finite rational category. Suppose A preserves X and dim X = 0. Then dim X4 = 0.

Proof. — By induction on k. Write £ = pk’ with p> 1 a prime and put B = A”,
Then by induction X®is infinite dimensional. In [11] is described a differential 4 in AX®
and a surjective morphism w: AX — AX® of minimal models. It follows in particular
from [4; Theorem (5.1)] that then caty(AXE, d) < co.

Moreover since A induces an automorphism of AX? of order p, and = is equivariant,
it suffices to consider the case where % is a prime p.

In this case a recent result of [5; Theorem (1.1)] asserts that the sequence of integers
dim X¥*1 is unbounded. We can thus pick ¢ so that

dim X¥*+1> p.m, m = cat(AX, d).

Now extend the coefficient field to C and let {x;} be a basis of X of homogeneous eigen-
vectors for A, and note that the eigenvalues are contained among the p-th roots of unity,
| O PO

Our condition on X¥*+! implies that the eigenspace corresponding to some ; has
dimension bigger than m. If A, =1, then dim(X*) "> cat(AX* d) and [4;
Theorem VII] implies that dim X* = co.

Now suppose A;# 1. The graded space L = ZL; defined by L; = Hom(X/*'; C)
has a canonical structure of a graded Lie algebra, as determined by the quadratic part
of the differential in AX (cf. [18], [19], [5]). In particular A acts on L by a Lie algebra
automorphism of order . Our hypothesis A;+ 1 gives m + 1 linearly independent
eigenvectors «, € Ly, with A(a,) = Na,. A second result of [5; Theorem (2.2)] now

implies the existence of a B € L such that for all s there is a sequence vy, ..., v, with
1<v;<m and

ﬂs = [Otvs, [a"x—l’ [- .. [a"l’ ﬂ]] +* 0.

Clearly B may be taken to be an eigenvector of A with eigenvalue A, say. Because p is
a prime, A; is a primitive root of unity and so A} = A~' for some r. It follows that
Brrjp€Lt j=0,1,2,... and so also dim X* = o0, q.e.d.

The main result of [11] can be used also to exhibit rationally elliptic manifolds
on which any isometry has infinitely many invariant geodesics. We do not, however,
have anything like a classification of these manifolds.
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3. Invariant Geodesics on rationally elliptic Manifolds

With our results for rationally hyperbolic manifolds in mind we confine ourselves
in this section to rationally elliptic manifolds.

Recall [10] that an isometry A on a 1-connected closed Riemannian manifold M
has at least one invariant geodesic provided Mj is not contractible, or equivalently
id—A, : n,(M) > =, (M) is not an isomorphism.

It follows from this that if A has no invariant geodesics then for all finite dimensional
A-stable subspaces Y < Xy

det(idy — Aly) =1

and hence, in particular (cf. [10], Corollary (1.8)), each such Y has even dimension.
(Recall that AXy denotes the Sullivan minimal model over Q and that A: X, — Xy
has finite order.)

Theorem B of the introduction follows from Theorem A and

Theorem 2. — Suppose M. is a rationally elliptic Riemannian n-manifold which has an isometry
with no invariant geodesics. Then

(1) m is even.

(i1) If yy+0 then n = o(4) and the Poincaré polynomial f(¢) = X dim H?(M; Q)¢ s
the Poincaré polynomial of a space S X S, where S is rationally elliptic. In particular
xu =f(1) s a square.

Progf. — Put p, = dim X§; and note by our remarks above with Y = Xj that
it is an even integer. Hence by [13]

n= ; (2¢ — 1) (Pgi—1— P2i)

is also even, and congruent (mod. 4) to 2 py_, —px. Again by [13] this sum is zero

if yy#+ o. Finally, if y, =+ o it follows from [13] that
S8 =T (x — #pa=s.
Write o; = i p;. It follows from [7] that

g(t) = I:I (1 — tzi)aﬁ—l—°2i

is the Poincaré polynomial of a rationally elliptic space S. Clearly f(t) = g(f)* and
the theorem follows.

Remark 1. — From Poincaré duality it follows that the Lefschetz number L, of
an isometry A on a closed 1-connected odd-dimensional manifold is even. A result
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of [g] states on the other hand that if A has no invariant geodesics then A has exactly one
fix point. This gives a proof of Theorem B with out using rational homotopy theory.

Remark 2. — By wusing the full structure of the A-equivariant minimal
model (AXy, d) we can exhibit many more examples of manifolds on which any isometry
has invariant geodesics. On the other hand each of the minimal models (AXg g, d)
and (AXg, g ygxgs d) have automorphisms A of finite order (6 and 12 respectively)
satisfying det(idy —Aly) =1 for each A-invariant subspace Y CXy. There are
also non product models AX with finite order automorphisms A satisfying this condition.
Take e.g. X = X*®X°® X" with a basis {x, x,} for X% {9, 9,} for X® and {z, z,}
for X”. Define the differential d as follows

dxy =0, dyy =21+ 2 —ainy,  dn = xixg(r — )"

dey =0, dyy, =53 + %57 — x5,  dzy = x5 (%, — %5)°
and define the action of A by

Ax; =%y, Ayy =2, Azy =2,

Ax, =2— 2%, Ay, =09,—, Az, =2,—2.

Then H(AX, d) has finite dimension and by a theorem of Barge-Sullivan [2] there is
a closed manifold M (dim M = 22) with (AX, d) as model. We do not, however,
know if A is induced by an action on M.
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