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STRUCTURAL STABILITY OF LORENZ ATTRACTORS
by JOHN GUCKENHEIMER (1)

University of California, Santa Cruz

and R. F. WILLIAMS (1)

Northwestern University and University of Colorado

Dedicated to the memory of Rufus Bowen

Introduction.

E. Lorenz studied the following system of differential equations in connection
with problems in hydrodynamics [5]:

x== —iox+ toy
(i) <j==2Qx—y—xz

i=—8/3<2'+^•

The apparent dynamical behavior of the solutions of this system of differential equations
has been a topic of recent interest ([i], [12]). The first author introduced a geometric
description of a flow which seems to have the qualitative dynamics of the solutions of
the Lorenz equations (i) . This geometrically defined flow has a complicated attractor
which is not topologically structurally stable in a persistent way [i]. The second
author proved that there is an uncountable set of these attractors, each with a different
topological type [12]. These results represent some of the striking behavior which
has been discovered in an attempt to classify generic flows up to topological equivalence.
This paper is an attempt to demonstrate that the Lorenz attractor is not as pathological
as these results indicate. We prove that the continuous family of attractors described
in [12] is indeed a complete family of attractors occurring for flows in a neighborhood
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60 J O H N G U C K E N H E I M E R A N D R . F. W I L L I A M S

of the geometric Lorenz flow. In particular, we construct a 2-parameter family of
flows containing the geometric Lorenz flow, which has the property that any perturbation
of the geometric Lorenz flow is topologically conjugate on a neighborhood of the attr actor
to a nearby member of the family. In this sense, the geometric Lorenz attractor is
structurally stable of codimension 2. The Lorenz equations (i) are invariant under
rotation ofR3 around the ^-axis by TT. Within the space of flows possessing this symmetry,
the geometric Lorenz flow is structurally stable of codimension one rather than two.
The proofs of these results are based upon

(i) the constructions of suspensions [9] and inverse limits [n] in dynamical
systems, and

(ii) recent results on the bifurcations of maps of the unit interval [2].

Henceforth, we shall work exclusively with the geometric Lorenz flow, ignoring the
question of whether it accurately portrays the solutions of (i) . Thus our principal
result can be stated as:

Theorem. — There is an open set ^U in the space of all vector fields in R3 and a continuous
mapping k of % into a two-dimensional disk, such that

(A) each Xe^ has a 2-dimensional ( " L o r e n z " ) attractor,

(B) X and Ye^< are topologically conjugate by a homeomorphism close to the identity iff
they have the same image under k.

Note. — Here<c near the identity9? means within M of the identity for the C° distance.
For the < c only if part " M is the diameter of the holes in figure 2, or about 20 units for
equation (i). For the cc if part " M is the front to back thickness of figure 2, or less
than i/10 for equation (i) . The underlying problem [12] is that there are conjugacies
changing kneading sequences, but they are not even the identity on n^ of figure 2.

There are several natural choices of coordinates in the two-dimensional disk.
However, we do not go into this subject heavily.

We choose a pair, without proving how they are related to kneading sequences,
which would seem to be a natural choice. Another natural choice are the (< Parry-
coordinates 9?, (m, c). That is, in [7] Parry proves that any/satisfying (8) is topologically
conjugate to one and only one map P==P^, given by:

(m(x—c)+i o<x<c
(2) PW- ~K ) v / \m{x-c) c<x<ii.

It would, of course, be nice to know how these coordinates are related to one another.
The authors would like to thank the referee for a number of helpful comments,

including a simpler proof of the Lemma in Section II.
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STRUCTURAL STABILITY OF LORENZ ATTRACTORS

i. The model differential equations.

We begin with the topological g-cell T shaped as in the Figure i

FIG. i

61

except that the front and back faces are tangent along the A:-axis. Thus the three
" triangles " drawn, actually have cusps at their bottom <c vertex 9?.

We can best describe T in terms of three model linear differential equations:

(3) y==—by, o<c<a<b.

-cz

Let S, the top square of T, be given by

(4) ^I, —I/2<iA: , jKl/2 .

With initial conditions (^05^05 1) m S, we solve

[ X ^ X ^ 1

(5) \y=y^
I z^e-61

Now the right hand c( triangle " of T is taken in the plane x==i, so that the trajectory
meets this plane when

(6)
[ x = l

J^o^-Jo^, o<^i/2
( z^^^x^ o<s<i<u

with similar equations holding for —1/2^0<0- We now flow in a smooth, non-
zero (non-linear) way so as to take this c< triangle ?5 into a subset of S as indicated
in Figure 2.

209



62 J O H N G U C K E N H E I M E R A N D R . F. W I L L I A M S

FIG. 2

There is of course a choice here. But we can clearly make this choice so that the resulting
Poincare map F : S-^S has the form

'F^o^o)=(f^o). H(^o^o))

where

a) H(^,J\))>- for XQ>O,

(7)
b) 'H.{xo,jyo)<—— for ^o^

4

and where f satisfies:

a)Ao+)=-l|2, /(o-)-i/2,

(8) h) f\x)>^

C) -I/2</W<I/2,

b) and c ) holding throughout the range —-1/2^ x ̂ 1/2. This describes a flow with
a Lorenz attractor. Condition (8) above implies thatyis locally eventually onto [12]. This
means that if JC [—1/2, 1/2] is any subinterval, then there is an 72>o such that
y"( j )==[—i/2^ 1/2]. Here we have chosen —1/2^^, J^o^i/2 to simplify our
differential equations. Below, we will use the more usual domain:

o<_x, J^i.

2. One-Dimensional Analysis.

The Lorenz attractor is a two-dimensional set in R3. In [12] it is described as
the inverse limit of a semiflow on a two-dimensional branched manifold. The return

310



STRUCTURAL STABILITY OF LORENZ ATTRACTORS 63

map of this semiflow is a discontinuous function on an interval. This function f\ I—^I,
as a map of the unit interval, has the following properties:

a) f is locally eventually onto;
b) f has a single discontinuity c and is strictly increasing on [o, c)

(9) - and (c, i];
^ /-M=i, MC)==O, /(o)<.</(i);

d ) y'M-xx) as ^->^ (from right and left).

Figure 3 displays the graph ofy.

1

This section is devoted to a study of the map f. In particular, we use the theory
of symbolic dynamics to obtain two real numbers which characterize f up to topological
equivalence. Recall that two maps f: M->M and g : N-^N are topologically equivalent
if there is a homeomorphism h: M-^N so that hof==goh. The results of this section
are obtained by constructing a topological space from a set of sequences with the property
that the shift map on the sequence space induces a map which is almost topologically
equivalent to f.

We begin by establishing some notation and terminology. Sequences will be
denoted by underbars: ^={^}^Lo- ^he kneading sequences of f satisfying (2) are the
sequences ^, b_ of o's and I's defined by:

(10)

( ==0, I, 2,

to if /'(o+)<c
(i if /•(o^c

fo if f\i-)<c
[i if AI-)>C

In particular a and b_ are always infinite sequences.
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64 J O H N G U C K E N H E I M E R A N D R . F. W I L L I A M S

The (one sided) shift space (on two symbols) S is the set of sequences ofo's and I's,
indexed by the non-negative integers, with the topology it inherits from the distance

oo

defined by d(x,y)== S \x^—y,\2~\ The shift map ( y : S — ^ 2 is defined by a{x)=y

where jy^==x^^. A subshift is the restriction of CT to a closed subset FC2 which is
invariant under cr. Define an ordering on 2 by x<y if there exists an n such that
^==j^ for i<n and A^==O, J^==i. This agrees with the usual order of the real line
when x andj/ are the binary expansions of distinct real numbers.

We use the kneading sequences of/to construct a subshift FCS. Define F by
xeF if

(n) a^^x^l^, i==o, i, 2, . . .

Let Io==[o,^, Ii===[^, i].
Note that there are numbers y, § such that ^<c<S and /(y) ==f(S) == c. We

use the conventions f~l{lo)=[p, y]^^ S] and /"^(Ii) =[y, ^^[S? i], though/has
n

a discontinuity at c. Using this convention, we define I{XQ, . . ., x^) to be l l f~\^-)
for ^eF and y?^o.

Lemma. — If xeF, ^A^ I (^3 . . ., x^) is a closed line interval J such that /' w^ J
homeomorphically into I(^) /or o^z^^. The interval J z'j- maximal with respect to this property.

Proof. — We proceed by induction on n. The case T Z = = O is trivial. Assume
the lemma is true for n, and consider J=I^XQ, . . .3 ^+1) for some xeF. Now axeF
so that K==I(A:i, . . . , ^+ i ) satisfies the lemma by the induction hypothesis. Note
that J^I^n/'^K). There are several cases to consider. We write a==/(o)
and (B =/(i).

Case L — KC [a, (Bj. Then /(IJ DK for x^==o or i, so that J ̂ (^n/'^K)
is a closed interval and /(J) == K. The two properties of the lemma are clearly satisfied.

Case 2. — a is an interior point of K. If XQ=I, then /(Ii) DK and we proceed
as in Case i. Assume XQ=O. Then /(Io) D [a, ^], so that J==Ion/'~ l(K) has the
form [o, &'], where/maps [o, b'~\ onto [a, b"} and b" is the right end point ofK. Once
again the properties of the Lemma are clearly satisfied.

Case 3. — (B is an interior point of K. This case is similar to case 2.

Case 4. — KC [o, a]. If XQ==I, we proceed as in Case i. We further assert
that we cannot have XQ==O. Indeed, we will show that XQ==O and KC [o, a] imply
that x<a, contradicting the assumption that xeF.

Suppose K=[d,e] with o^aK^a and Xo==o. Then, for some k<n,
fk(K)CIQ and fJ\e)==c. Otherwise, there would exist an e>o such that /^+£)el^. ^
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STRUCTURAL STABILITY OF LORENZ ATTRACTORS 65

for o<_i<_n, contradicting the maximality of K. Pick the smallest f^k such that
f^e)==c or j^(a)==c. Then for Q<i<{, we have f\e)Cm\.(l^. ). Since ^a,
we have either:

(4^) for all o<_i<^, f\c) andy^(a) are on the same side ofc and f\e)<_f\^)^ or:

(4^) there is a smallest integer o<_ {^<f such that f{l{e)<c<f{l{<y.}.
Since oc==/(o), case (40) gives ^==^ for z^/'. Also, since K is a non-trivial

interval and^jK. preserves orientation for o<^i<_n, we have ^(K)Clg. This gives
^^^==0. Since f\v)^_c^ we have <^4- i==i , so x^a as required.

On the other hand, case (4^) clearly gives x^==a^ for z<^i, ^+i==°? ^d
^,^==1 which again gives x<a.

Case 5. — KC [[B, i]. This case is similar to Case 4. The Lemma is proved.
00

Define now a map 9 : F-^I by <p(^)=.n /"^I^.). The above Lemma together
with the expansiveness ofy imply that 9 is well defined. We prove 9 is onto. First
a,b_eT and (p(^)==o, 9(6)==!. Now let xel and assume o<^<i. Then define
xeTi by x^==j if f^x^^el^ This means there is an interval (x, 8) such that
f\{x, 8))C Int Ij. Now 9(^)===A: so it suffices to show ^eF. But o<x+ so that
yi+i^o+^yi+1^4-^ ^g long as^o4') andy1^4') are on the same side of6:, i==o, 1,2, ...
Let n be the biggest such 7. Then:

^ . . .^ -^•••^ but ^^==o< 1=^+1,

so that a<x. Similarly x,<b.
The map 9 is well defined and onto. Moreover, 9 is i — i except on the set of

sequences mapped to {f~\x)}^Q by 9. On this set, 9 is 2 — i with:
9(^, .... ̂ , i, o,a)==9(^, . . . ,^, o, i, b).

This establishes that f: I—^I is topologically equivalent to the map induced by cr : F—^r
on the quotient space of F defined by identifying the sequences {^, . . . ,^,o, i, a}
and {^, . . ., x^, 1,0, b,}. The map induced by cr is not well defined at the point of the
quotient corresponding to {o, i ,^} and {1,0,^}. This is its only discontinuity.

If x is a sequence of o's and I's, denote by x,' the sequence obtained from x by
changing all of the terms of the sequence. With this notation we state the main result
of this section.

Theorem. — Let f^f^: I->I be two maps of the unit interval satisfying properties (2).
Then f-^ andf^ are topologically equivalent if and only if the kneading sequences of f^ and f^ satisfy
{^,b^}=={a^,b^}, a^==a^ b^==b^ or a^==b^ b^==a^.

Proof. — Denote by 1̂  ̂  the subshift constructed from the kneading sequences
of a map/. If the kneading sequences of/i and/2 agree, then both/i and/g are topo-
logically equivalent to the map induced by cr on the same quotient of I\ ̂ . Note

313
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66 J O H N G U C K E N H E I M E R A N D R . F. W I L L I A M S

that a and b, determine which sequence pairs of the form (^, .. ., ̂ , i, o, a) and
(^i, . . . , A^, o, i, b,) occur in F^. If the second set of equalities is satisfied and g : I->I
is the map g{x)=i—x, then/^ and gof^og have the same kneading sequences. There-
fore, y^ and gof^og are topologically equivalent. Since g==g~1, /i and/g are also
topologically equivalent. Therefore,/! and/^ are topologically equivalent if one of the
sets of conditions on the kneading sequences are satisfied.

On the other hand, if/i and f^ satisfying (2) are topologically equivalent, the
topological equivalence h must map the discontinuity of/i to the discontinuity of/a.
Moreover, h must map the endpoints of I to themselves. If h is orientation preserving,
this implies that the kneading sequences of/i and/g agree. If h is orientation reversing,
this implies that a.^=b^ and b_i ==^2 ? proving the theorem.

As a final remark, we note that if /: I-^I satisfies the equation /(i —x) == i —f{x),
then its kneading sequences satisfy a' == b.. Therefore, one binary sequence characterizes
the topological equivalence class of a map satisfying this identity.

3. Inverse Limits; The Poincare map F.

The next topic we consider is the construction of an almost everywhere i — i map
of the unit square which reflects the dynamic properties of the map /: I-^I studied
in Section II. This will be the Poincare map of our example. Denote the unit square
in R2 by S. Given a map /: I->I satisfying properties (9), define a map F : S-^S
with the following properties:

a) F(^,j^)=(/(^), g{x,jy)) for some smooth function g.
^ b) F is i — i on the complement of {^}xl, where c is the disconti-

nuity of F.
(12) i 8S^I

c ) ^2-
d ) As x-^c± from the right or left, the functions f\xxl tend uni-

formly to a constant function, b^.

These properties yield the picture of the image of F shown in Figure 4:

FIG. 4
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STRUCTURAL STABILITY OF LORENZ ATTRACTORS 67

The intersection of the iterated images o f S b y F constitutes a complicated i-dimen-
sional set A which is the co-limit of almost all points of S. Here we study the topology
of A and the dynamics of F j^ . We prove that F[^ is almost the (c inverse limit " of
the sequence of " maps " I^—I^—I<- . . . (Recall that/ is poorly defined at c.)

Let us briefly describe the construction of the inverse limit for well defined maps.
I f / :X—>-X is a map on a metric space, then the inverse limit of/is defined on the space X
consisting of sequences ^CX such that ./(^+i)=^. The map /: X-^X is defined
by f{x)==y with J^^/C^). If X is a space of one-sided sequences and f is the shift
map, then f is the shift map on a space of two-sided sequences. A point of X consists
of a point of X together with a history for the point.

There is a general technique for realizing the inverse limit of a map f\ X->X
on a "good 5? space X as an invariant set for a map which is i — i . The technique
consists of embedding X in a larger space so that X has a tubular neighborhood and so
that f can be approximated by an embedding which extends to a fiber preserving map
of the tubular neighborhood. This fiber preserving map of the tubular neighborhood
is required to be a contraction on each fiber and to project to f by the projection map
of the tubular neighborhood. Then the map g has an invariant set to which its restriction
is the inverse limit of f: X->X.

For the balance of this section, we regard F as defined at c x I with two values:
F^ x I) = ̂ ; similarly, /(^) == o, i.

Apart from the discontinuities, the map F has all of the properties necessary for
containing the inverse limit off. We regard the unit square as a tubular neighborhood
of a horizontal interval with vertical fibers and projection map n. Then F is a fiber
preserving map which contracts the fibers and projects onto f. The only novelty in
our situation lies in the discontinuities or ambiguities off and F. Let us therefore

00

examine the set A== fl F^S), paying particular attention to the treatment of the
discontinuities. Since the map F fibers over the map f {i.e. 7roF==/o7r) each orbit
ofF lies over an orbit of/. Labelling the two halves ofS by So, S^ as shown in Figure 2,
and the closure of the images of Sg and Si by A and B, it is clear that the specification
of the projection -rc{x) determines whether f\x) lies in A or B for z>o.

We assert that F |̂  is topologically equivalent to a certain quotient space of the
inverse limit of/. The pinched inverse limit P of/ is the quotient space of I by the equi-
valence relation which identifies two sequences x, andj/ if there is an i for which ^ ==j^ ==o
or ^==^=1. We assert that the map ^ : A->P defined by ^(x)==x, A^TI^F"^))
is a topological equivalence between F[^ and the map/induces on P. Note that ^ is
well defined for those points of A which do not project onto points in the/orbit of eel
since F is i — i on the complement of Tf"'1^). For points of A which do project onto
points in the /-orbit of ^, there is an ambiguity, but this ambiguity disappears when
one passes from I to P. It is clear that ^) o F=/o ̂ . Thus, to prove that ^ is a topological
equivalence, we need only establish that it is a homeomorphism.
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68 J O H N G U C K E N H E I M E R A N D R. F. W I L L I A M S

First, we assert ^ is i — i. If +W = +C>0? then ^W= ^(jQ- Uence x and ̂  lie
on the same vertical segment in S. Now F~1 expands vertical segments by a factor
of at least 2. Therefore distinct points x, y on a vertical segment cannot have the
property that T ~ i ' { ' l x and F"'"^ lie on the same vertical segment in S for i sufficiently
large. We conclude that ^{x)=^{jy) implies x=y a n d ^ i s i — i . Next we argue
that ^ is onto. If xeP, we need to find a point x in rc"1^) so that ^{x)==x. Letj^
be the sequence of o's and i's determined by ^==j if ^elj. Then the point x is
identified as (.f1 F^Sy.^nTT;"1^). The argument that this set is nonempty is very
much like the argument that the map 9 defined in Section II is well defined, so we do
not repeat it here. The map ^ is a topological equivalence from F [^ to the map induced
by/on P. Since/and P are determined up to topological equivalence by the kneading
sequences of/, so is F[^.

Before proceeding further with the construction of a Lorenz attractor from the
information contained in the kneading sequences of/, we examine the stability properties
ofF.

Proposition. — Let F : S->S be a map satisfying properties (12) . Assume that f is
piece-wise smooth and /'>-\/2. Let G have the form I'oF' where F' satisfies (12) and is near F
and V is a C1 perturbation of the identity. Then there is a piece-wise continuous map g such that'.

1) g satisfies (9);
2) g is C° near f',
3) G has an invariant set topologically equivalent to the pinched inverse limit of g.

The key step of the proof revolves around the persistence of the " strong stable
foliation " for F (compare [4]).

Lemma. — Let F and G be as in the preceding proposition. Then S has a G-invariant,
contracting partition into continuous curves which intersect each horizontal line in a single point.

proof. — We make the observation that the set D of iterated inverse images of
the discontinuity of F : S-^S is dense in S. Indeed, D is a set of vertical segments
projecting onto the set of iterated inverse images of/. Since/is locally eventually
onto, this set is dense in I.

We assert that the set D' of iterated inverse images of the discontinuity of G also
consists of a family of almost vertical segments and is dense in S. This is proved by

la {x) o \
examining the derivatives ofG. The derivative of F has the form where& \b{x) d{x)]

la\x) c\x)\
a>\/2, d< i /2 and b is small compared to d. Therefore DG has the form \p \x) a \ x ) j
with fl'>-\/2, d'< 1/2, b' is small, and c ' is very small. This implies that DG (hence
DG~1) always has a nearly vertical eigenvector. If A is an angular sector in R2 containing
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STRUCTURAL STABILITY OF LORENZ ATTRACTORS 69

all of these nearly vertical eigenvectors, then each DG~1 will map the sector A into
itself. In particular, if the discontinuity set of G has tangent vectors which always
lie in A, then the iterated inverse images of the discontinuity set of G will be smooth
curves whose tangent vectors lie in A. We still want to prove that D' is dense. For
this purpose, it suffices to prove that any open set eventually extends across S under
iteration by G until it intersects the discontinuity set of G. It is clear that this must
happen since G is uniformly expanding in nearly horizontal directions. Indeed, the
argument used above for G~1 yields an angular sector containing the horizontal direction
which is mapped into itself by DG. All vectors inside the angular sector are stretched
by almost -y/^. This implies that any open horizontal segment in S must intersect
the set D'.

Therefore, the components of D' are nearly vertical segments extending across S.
Moreover, the components of the complement ofD' are each the intersection of vertical
strips extending across S whose width tends to o. We conclude that the components
of D' and the components of the complement of D' form a family of invariant,
almost vertical segments of S which are uniformly contracted by G. The lemma
is proved.

Proof of Proposition. — Define a projection map T:' : S->I whose fibers are leaves
of the invariant foliation constructed above. Define g : I->I to be 7ToGo(7r')~1. It
is clear that g satisfies (9). Since G is near F and the leaves of the invariant < c foliation "
of G are nearly vertical, g will be near f. We can now repeat the proof that F [^ is
topologically equivalent to the pinched inverse limit off to prove that G restricted to
its invariant set is topologically equivalent to the pinched inverse limit of g. The proof
for F only used properties of the invariant vertical foliation which are valid for the
invariant foliation of G. We leave the details to the reader.

4. Perturbations of the model flows.

Now suppose 0 is one of our model flows with vectorfield X and O' is the flow
of a G^small perturbation X' of X. Then O' has a hyperbolic singular point 0' near (9
with eigenvalues near those of <I>. That 0' is also conjugate to its linear part -via a
G^conjugacy [10] is true if there is no inappropriate dependence of eigenvalues. As
the last is an open, dense condition, we may assume it. Furthermore the conjugacy
is only valid near (?'\ But away from the singular point, only a finite amount of time
is involved, so that no problem arises. Thus O' has a return map G of the form

G==roF'
where F' satisfies (5) and I' is C1 near the identity. Note that this is the form we used
in the previous section.
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70 J O H N G U C K E N H E I M E R A N D R. F. W I L L I A M S

Thus we have shown that any small perturbation of a flow 0^ ^ in our family
yields certain data:

(15)
l i) A Poincare map G on a solid square S.

2) A nearly vertical foliation ^ of S left invariant by G.
f 3) Via (2), G induces a map g : I—^I having kneading sequences a\ V.

Finally, the pair a ' ^ V depends continuously upon 0^.
Now suppose we are given two such sets of data 0,, S^, G^, ^, g^ z = = i , 2,

satisfying (15) and having the same kneading sequences (a, 6). We want to show that
<DI and <I>2 are topologically conjugate on a neighborhood of their attractors. In
section II above, we constructed a topological conjugacy h from g^ to ^3.

To proceed, enlarge the squares S, to S^ by adding thin rectangles at each side
of S^ (see Figure 5).

FIG. 5

The foliations on the new rectangles are induced from the foliations inside,
as G^(S^)CS^. In the figure we have also indicated a "fundamental domain55

D,=S^"—Int G^(S^) and its image G^(D^). We follow the familiar practice of
beginning by defining a conjugacy H:Di->D2. First, H is defined on the outside
boundary SS^ of S^, so as to agree with h. That is:

D, D,

(16)

^ ^

commutes, so far as defined. Here 1̂  is a lengthening of the interval 1^, caused by
the enlargement of the squares, S^. Of course, G^ induces an extension of g^ to 1̂
which we also call ̂ . Finally, h is extended to 1̂  by h(x)=g^'1 ohog^x), where each
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STRUCTURAL STABILITY OF LORENZ ATTRACTORS 71

map on the right side of the equation is first restricted to one " half35 of I^ or Ig at a
time (see the Figure 4 again).

This definition of H on ^S^ (the outer boundary of D,) induces a definition
on G^Sf) by:

H[GiW)=GooHoGr1, on G^W).

Now, H is defined on £D^, it agrees with h as far as defined, and we proceed to " fill in "
the definition of H on the interior of D^. Here we come to the basic fact that there are
two types of Lorenz attractors: right-handed and left-handed ones. This depends
upon whether G^ (right side ofS,) is in front or in back ofG^ (left side ofS^). But this
is a gross part of the flow, and since we have consistently chosen right-handed-attractors
(like those of the Lorenz9 equations) we are dealing with two right-handed ones here.

Thus we can extend H to the interior ofD^ so that the diagram (16) still commutes,
where it is defined. Note that we have used the fact that A is a conjugacy quite heavily.

Now the process is quite standard ([6], [n]). Define, inductively H(A:), for
x e G\ (D^), by H (x) == Gg"1 o H o G^ (x), with care that one takes the correct inverse of Gg,
among at most two. This is no problem, as h is already a conjugacy. It is interesting
to note (but not necessary to the argument) that one is using the fact that g^ and g^ have
the same i-th term of their kneading sequences, to perform the i-th step of this definition.
Tins process converges and extends to a map on all of S^, because the connected
components C of VnG(D^), Ve^-, have lengths which converge to o (exponentially,
in fact) as z->oo. The diagram (16) remains commutative since each of these components
has a single point as image under TT^.

At this point we have shown that if two Lorenz attractors (both right-handed)
yield one-dimensional maps f and g with the same kneading sequences, then there are
cross sections D^ and D^. whose return maps F and G are topologically conjugate.
The flows 0 and 0' in a neighborhood of their attractors are (< suspensions " ofF and G
relative to 3-cells homeomorphic to the 3-cell T described in Section I. Our theorem
will be proved once we prove that any two such suspensions of topologically conjugate
maps are topologically equivalent.

The argument here uses the arclength of segments of trajectories. In the 3-cell T
depicted in Figure i, insert two triangles Wi and Wg whose boundaries are piecewise
linear triangles with a vertex at the origin and opposite edges along the left and right
boundaries of S, respectively.

We shall define a topological equivalence from 0 to O' using W^ and Wg and
analogous surfaces W^ and Wg transverse to the flow O'. We begin by defining the
topological equivalence to be the conjugacy on the upper surface S which we constructed
earlier in this section. Extend this conjugacy to each segment of a trajectory leaving S
and joining it to W^ or Wg by ratio of arc length. This means that if the map sends
a curve y parametrized by arc length to y' parametrized by arc length, then it sends y(^)
to y'(p^) where p is the ratio of the length of y to the length of y'. Similarly, extend
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the map thus far defined to segments of trajectories which leave W\ or Wg and return
to S by ratio of arc length. The map defined in this way will be a topological equivalence
because we began with a conjugacy of return maps. Note that the continuity of the
map follows from the fact that the length of trajectories approaching a hyperbolic
singular point approaches the sum of the lengths of the limiting trajectories in the stable
and unstable manifolds.

This completes the proof of the theorem.

REFERENCES

[i] J. GUCKENHEIMER, A Strange, Strange Attractor, in The Hop/Bifurcation Theorem and its Applications, ed. by
J. E. MARSDEN and M. MCCRACKEN, Springer-Verlag (1976), 368-381.

[a] J. GUCKENHEIMER, On Bifurcations of Maps of the Interval, Inv. Math., to appear.
[3] M. HIRSCH, C. PUGH, Stable Manifolds and Hyperbolic Sets, Proceedings of Symposia in Pure Mathematics XIV,

Am. Math. Soc. (1970), 133-163.
[4] M. HIRSCH, C. PUGH, M. SHUB, Invariant Manifolds, Springer Lecture Notes in Math., 583 (1977).
[5] E. LORENZ, Deterministic Nonperiodic Flow, Journal of Atmospheric Sciences, 20 (1963), 130-141.
[6] J. PALIS, S. SMALE, Structural Stability Theorems, Proceedings of Symposia in Pure Mathematics XIV, 'Am.

Math. Soc., 1970, 223-231.
[7] W. PARRY, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966),

368-378.
[8] C. L. SIEGEL, J. MOSER, Lectures on Celestial Mechanics, Springer-Verlag, 1971.
[9] S. SMALE, Differential Dynamical Systems, Bull. Am. Math. Soc., 73 (1967), 747-817.

[10] F. TAKENS, Partially Hyperbolic Fixed Points, Topology, 10 (1971), 133-147.
[n] R. F. WILLIAMS, Expanding Attractors, Publ. I.H.E.S., no. 43 (1974), 196-203.
[12] R. F. WILLIAMS, The Structure of Lor en z Attractors, Preprint.

Manuscrit re^u Ie 14 mars 1978,
revise Ie 1^ novembre 1978.

320


