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HAUSDORFF DIMENSION OF QUASI-CIRCLES
by RUFUS BOWEN (1)

Let G be the group of all linear fractional transformations taking the unit disk U
onto itself. One calls a discrete subgroup F C G a surface group if U/F is a compact
surface without braitch points. This paper concerns the relation between two such
groups I\ and I\ yielding the same topological surface. This is a classical and well-
developed problem [6]; what is novel here is the application of the Gibbs measures of
statistical mechanics and dynamical systems.

The groups r\ and Fg as above are isomorphic since each is isomorphic to the
fundamental group of the surface. Furthermore, for any isomorphism a : Fi—^Fg
there is an interesting homeomorphism h•.Sl—^Sl of the circle S1^^^:]^^!}
so that:

A(40=a(^)A(0 for ^eFi, ^eS1.'

This homeomorphism A, which is unique, is called the boundary correspondence (Fenchel
and Nielsen, see [n], [14], or [22]). Let G* be the group of linear fractional trans-
formations taking S1 onto itself. (G has index 2 in G*). We will give a new proof
of the following result of Mostow [13]:

Theorem 2. — The boundary homeomorphism h is a linear fractional transformation if it
is absolutely continuous.

Now recall the quasi-Fuchsian group A==A(Fi, Fg, a) [6] associated to the pair
of Fuchsian groups F^, Fg, and a given abstract isomorphism a: Fi—^Fg. This is a
discrete group A of linear fractional transformations of the extended complex plane
(C == S2) which simultaneously uniformizes the surfaces U/F^ in the following
sense:

(i) There is a Jordan curve y m S2 (called a quasi-circle) with ^M^T ^or a^
elements ^ in A, and each orbit of A is dense in y*

(*) Partially supported by NSF MCS74-19388^01.
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12 R U F U S B O W E N

(ii) There are analytic diffeomorphisms ^: U->D^ where D^, Dg are connected
components of S^y so that a,(^)=^ - lo^Fo^ belongs to F, for all ^eA and a,: A-^F,
is an isomorphism, and

(iii) agoa^1 is the given isomorphism a : r^-^rg.

The curve y is generally not smooth nor even rectifiable [5, p. 263].

Y is a round circle (Theorem i) Y is a genuine quasi-circle (Theorem 2)
FIG. i

Theorem 2. — Suppose I\ and I\ are not conjugate as Fuchsian groups^ namely via (BeG*.
Then the Hausdorff dimension a of y is greater than i. Furthermore O<^(Y)<OO, where v^
is a-dimensional Hausdorff measure^ and ^ | y is ergodic under A.

The paper starts with a variant of the Nielsen development. This associates
symbol sequences (generalized c < decimal expansion 33) to points in SMn a way determined
by r^. The reader familiar with dynamical systems will recognize this as a cc Markov
partition for 1̂  55. Via this construction functions and measures are transferred from
the circle (where they have geometric meaning) to the Cantor set of symbol sequences
(where they can be analyzed). The paper ends with results on Schottky groups, where
the symbolic sequences are quite transparent.

The author thanks Dennis Sullivan for introducing him to Kleinian groups and
Hedlund for his paper [9] which motivated the present one.

i. Nielsen Development.

Let FOG* be a surface group. A piecewise smooth map f:Sl->Sl is called
Markov for F if one can partition S1 into segments Ii, . . . , 1̂  so that:

(i) f\^k=fk\^ some /^er, and
(ii) for each k, f(l^) is the union of various Ij's.
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HAUSDORFF DIMENSION OF QUASI-GIRCLES 13

Condition (ii) can be rephrased as follows. Letting W be the set of endpoints of the I^'s,
consider each such point to be really two points, depending on which 1̂ ; it is associated
with. Then condition (ii) is equivalent to ./(W) C W. The idea of a Markov map is
to replace the action of the group F on S1 by the single map f.

For each g^2 let O^ be a surface group of genus g whose fundamental domain R
in U is a regular 4^-sided noneuclidean polygon ([9], [12], [18, p. 89]). The Nielsen
development is a certain Markov map for O^ ([9], [14, pp. 211-217]). We shall construct
variants which are more suitable for our purposes.

Each angle ofRis a= — and each vertex of R belongs to 4^ distinct translates <p(R),

(pe0^. The net 91 is defined to be the collection of all sides and vertices of all translates
<p(R), (pe^. This net has the following crucial property:

(*) the entire noneuclidean geodesic passing through any edge in 91 is contained in 91.

Let V be the set of vertices in 91 which are adjacent in 91 to vertices of R but are
not themselves vertices ofR. The set Vis contained in the set of vertices of the noneucli-
dean polygon R which is the union of R plus all the translates <p(R) which touch R.
The polygon R is convex since each interior angle equals 2a<7i;. For each vertex^ of 91
let W be the set of 4^ points on S1 which are the points at infinity of the 2g noneuclidean
geodesies in 91 passing through p. Letting W== U Wy, property (*) implies that:

WgCW for q a vertex of R.

Recall now a set of generators for 0^ (fo]? E1^], [18]). Divide the sides of R
into g groups of 4 consecutive sides; label thej-th group ̂ , ̂ , a^~1, b^1. Gall a^ and a^1

(and b^ and b^1) corresponding sides. For each side s of R there is an element ^se(^g
so that:

(p^)=:Rn(pg(R)==side corresponding to s.

The set {93} generates 0.. Let Jg be the smaller segment of S1 whose endpoints are
the points at infinity of the noneuclidean geodesic through s.

Lemma L — <p,CLnW)CW.

Proof. — The geodesies passing through nonconsecutive sides of R do not intersect.
One way of checking this well-known fact is by an area argument. If two such geodesies
intersected (perhaps at oo), then, they together with m sides (m^-1) of R would form
a polygon containing R and with noneuclidean area less than mn^^g—3)^. This
polygon contains at least 2g translates of R, each having area (4^—4.)n. So
2s{4•g—4)^4«?—'33 which is impossible since g^-2.

We claim that J^nWC U W where Tg is the set of vertices in 91 adjacent to
p(=Ts *

an endpoint ofs. Now (p^(T^)CVu{ vertices ofR} because 9^) is a side ofR. Hence
the above claim would yield:

9,(J,nW)C U W.CW.Ts\Js ; ^^ p
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14 R U F U S BO W E N

Suppose ^eJ,nW but u^ U, Wp. Let y be a geodesic in SR from some ^eV\T,
to u. Let ^, ^ be the vertices of R on the geodesic a through s; let r^, ^ be the
vertices of R adjacent to ^, ^ respectively and exterior to the domain bounded
by a and Jg. Let (B, be the geodesic containing a side of R, passing through r, but
not q^ Then (B, and a do not intersect as they pass through nonconsecutive sides of
an image 9(R).

Since the endpoints of J, are in W^uW^, and fteT,, one has ueintj,.
Therefore the geodesic y must cut the geodesic a; this intersection ^is a vertex of the
net. If q lay between q^ and q^, then ^ would be an endpoint of s and ue U W .
Suppose 'q lies between q^ and S1 on a. PE s

Consider the region Q in the unit disk exterior to the half disks bounded by the
geodesies a, (B^ and Pa. Because (B^, [Bg are sides of the convex polygon K, the point qeR
above lies in Q. Because Qis convex the geodesic ^ C y from y to ^lies in Q^. ^ must

now intersect r^; this intersection is a vertex of the next, hence r^ or q^ Either case
gives a contradiction. •

Let v be a vertex of R, belonging to the sides s and ^' of R. We will construct
a segment J(y)Cint(J,nJ,,). Let j^'eV be the vertices of the net 91 adjacent to v
in yi and lying on the geodesies a and a' through j and s\ Choose vertices q, q ' of R
so that ̂ , v,p\ q ' are consecutive vertices of a translate <p(R), ^eO.- The geodesies (B, p'

containing j&y, j^' do not intersect; they intersect S1 at points w{v}, ^(^eint^nj^).
LetJ(y) be the interval [w{v), ^'(^)]CS1. The endpoints w{v), w\v) of]{v) are in,W;
arguments analogous to the proof of Lemma i show that WnintJ(y)==0.

Theorem 0. — A surface group FCG has transitive Markov maps on S1.

Proof. — For some g^2 there is an isomorphism A : F-^O^ and a boundary
correspondence H: S1-^1 so that H(^)=A(^)H(;?) for ^eF, zeS1. It is enough
to produce Markov maps for 0^ and pull them back by H.

The set WC S1 above partitions S1 into closed segments I^, . . ., 1 .̂ By Lemma i
we get a Markov / simply by requiring:

/II/^PJI/C where J,3I^. •

Since some I^s belong to more than one Jg, there are a number of ways of doing this.
Letting v, v ' be the vertices of side s we can arrange that:

(i) the set Jg where f= <pg is a closed segment with

intlDX3J,\(J(.)uJ(.')),

and:
(ii) either J { v ) C J , or

int(J(y)nJJ =0 as desired.
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HAUSDORFF DIMENSION OF QTJASI-CIRCLES ,5

This is possible since the interval J(zQ is an I, and J(y)Cint(J,nJ,,) for v a common
vertex of s and s ' . The flexibility stated in (ii) will be important later. From now
on/will denote a Markov map for $y chosen as in (8).

Let us write k^j if /(L) DIj. Transitivity means that for any k, j one can
find Xy, x-^, ..., x^ so that:

k = x^x^x^ ... ->^_^->^ =y.

This is the same as saying that /"(Lpl,. First we claim that some iterate/»(L)
contains J{v) for some vertex v of R. Otherwise/is continuous and one-to-one on/"(L),
and /" +' (4) is an interval longer than /"(L) by a factor inf | /' | > i everywhere. This
cannot continue indefinitely.

Given a vertex v of R and a translate S==<p(R) containing v we will construct
a segment J(o, S) C S1 with endpoints in W: Let q^ q^ v, ^3, ^ be consecutive vertices

of S. Continue the directed geodesic rays ̂  and y^ until they intersect S1 at ^

and ^. Let J{v, S) be the segment q^, chosen so that the interior of q^q^vq,,q^ is
(noneuclidean) convex. Notice that J{v)==J{v, S) for the translate S=<p(R) opposite R
at v. The intervals J{v, S) are unions of various I^'s. We say intervals J(v, R) are
of type 0 and J{v, S) has type n {n^ i) when there are »—i translates <p(R) between S
and R angularly at v. In particular ](y} has type 2g, the maximum type.

WhenJ(z»,S) has type »>i, notice that f(J{v, S))=J(o', S') has type K-I.
We now see that some iterate /"'(L) of any L contains a J(y, R). Since

J(.,R)u/J(.,R)=S1,
/ is transitive. •

Let s>o be smaller than the minimum distance along S1 between points in W.
For each k let D^ C C be the closed disk containing L; whose boundary circle 9'D^ is
perpendicular to S1, with S'n 9D^ the two points on S1 at distance e/2 from the endpoints
of I..

Lemma 2. —If X=inf{ [/;(<) | : ze-D^, i^k^m}, then \>i, and D,Cint/(D,)
for k-^j.

Proof. — /;=9, for some .L3L;. Because R is a regular 4^-gon centered at
the origin, one sees that |c^(z) |=i on the circle containing s and |¥;(z)|>i inside
this circle. In particular X>i. Since /(I,) 31, and/|D^ expands distances,
DjnS^int^D^nS1)) as subsets of S1. As/,(D^ is a disk with boundary perpen-
dicular to S4 and/^(D^nS^/^D^nS1), it follows that D^Cint/^D,). •

We will now review the standard construction of symbolic dynamics. A finite
sequence (xy, x^, . .., x^)e{i, .. .,m}n+l or an infinite sequence

^=w=o^n{i, ...,m}
263



16 R U F U S B O W E N

is admissible if x^x^^ for every z. The set of all admissible infinite sequences is
00

denoted Sy; it is a closed subset of JI { i , . . ., m} and is homeomorphic to the Cantor set.
The shift map CT : Sy->2^ is defined by ^{Xi}^o={x^^}^Q.

For XQ, ^i, . . ., ̂  admissible, the map F^ ^^/^o . .. o/^o/^ maps D^
onto a disk D(^, . . ., ^)=F^ ,...^(D^) Cint D^ with diameter ̂ -n. By induction
one sees that D(^, . . „ , ^JnS1 is an interval intersecting 1̂  . Clearly:

D(^, . , . . ,^)DD(^, . . . , ^+ i )
00

and so, for xe^, T:{x) == H D(A:o, . . ., ^) is a single point of 1̂  . The map TC : S^S1

is continuous since n{y_ :^=x,, i==o, . . . ,^}CD(^, . . . ,A:J has diameter ^\~n. It
00

is onto because TrS^ is compact and contains every z not in the countable set U/""W.
ft ==0

(For such a z one has ;2'===7r(^) where xe^ is defined by ^==thej with fkzeI^)
We now return to the group F. The boundary correspondence H : S1—^1 can

be extended to a homeomorphism of S^C^oo} so that H(^)=oc(^)H(^) for zeS2,
4'eF (His not unique on all of S2 but it is unique on S1 [n]). Let/p=H-l/'H, a Markov
map for F.

Lemma 3. — There is an N so that, if (J i==inf{[ (/^)'(^) | : zeS1}, then (JL>I.

Proof. — Define:
Dp^H-1^, /^=H-y,H, Ip^=H-1!,,
Fp^ ^ -H-^ ^H, etc.i ,a;o, ...,a^ a;o» ••• '^ '

Let YA be a smooth Jordan curve interior to Dp^ and surrounding Ip^;. For ye\
and F = = F p ^ 3; , Gauchy's formula gives:

^'[y){=^ L^^ ^constant.diamFr,^,,.,^(Dr,J.

Since F^^,.,,^(DF,^) =^^(^0, ..., x,) and diam D^, .. ., A-J ^X-», |P(^)|^o
uniformly as n—>co. In particular, for some N,

sup{\f"^.x»,...,^{J>}\'• J^,^, . . . , X y admissible }< i.

But K/r^'^MFr^,...,^)!-1 for some x,, . . . , X y , where y=f^. U

Define the continuous surjection 7rp : S.-^-S1 by:

^r{x) ̂ li-^x) = HD^X,, ..., A:J.

Notice that:

f^x^r^) = ̂ fr^r^o, . . ., ̂ )

== n Dp(^, . . . ,^)=7Tp(^).
n=0

^4



HAUSDORFF DIMENSION OF QUASI-CIRCLES 17

2. Measures.

Define the real-valued function <pp on S^ by:

^(^--^l/r^r^l-'

Lemma 4. — There are ae(o, i) ^na? ^>o so that lyrC^)'"?!^) 1^°^ ^^ ^^J^?
fori==o, i, . . ., TL

n

Proo/. — The set E == H fr^x-^-^^y :J^==^for z=o, i, . . ., n} is a closed

segment; ff==fr,x _ o . • • o/p^ o/p^ is continuous on E and /pE =1^ . By Lemma 3:

[(/^'(^[^const.^ with [JL>I.

Hence E has length at most const. o^ where a^^'^^e^, i). The lemma follows
because TC?^ TTpj^eE and —In \f^\ is Lipschitz on each 1 .̂ •

n

Lemma 5. — There is a constant d> i so that the segment E^(^) = Q f^3!^., for xeJj^
,n-\ v J--o

A<2j length in the interval exp ( S 9p((j^) ( [^"S^I-V j = o /

Proof. — Each j^eE = E^(^) is TTp(j^) for some j^eS^ with j^=^, for z===o, i, . . . , ?? .

Then | (/?)'(j) | = n |/pJ/^) | = n |/p,,(7Tp(^)) |^o •""'•./" -" / 1 j--=o •-- t ' - ; '
^-1 v( n-1 x

==exp -^Pr^))-' ^o^03-^)'

Since (T^, cr^ agree in places o, i, ..., n—j,

{^^-^A^^w
n—l n—1 n—1

J.and s CP^(^^ - ,2 yr(^) 1^ ,2;, ̂ n-^j = o ' , == o — • j = o i — a
n—1

/ \Hence | { f ^ ) ' [ y ) \ differs from exp ( — S 9p((7j x ) J by at most a bounded factor; the

lemma follows because f{I^==^f^-E)= J [(/^'(jOI^. •

The theory ofGibbs states ([7], [i6], [19]) constructs a Borel probability measure ^p
on S^ so that:

(i) pip is invariant and ergodic under cr, and
(ii) there are constants b and P so that:

^^{J ; :Ji=^ fo rz=o.•••^}

is in the interval:

(
n-1 \

exp —P^+S^p^ '^j^- 1^] for all xe^, n-^o.
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i8 R U F U S B O W E N
00

The map TCp : Sy->S1 is one-to-one except on the countable set U f~n^f (where it
n== 0

is two-to-one). Since (A? is nonatomic, ^ == Tr? [JL? is a Borel probability measure on S1

and TTp gives an isomorphism of measure spaces (Sy, (JLp)^(S1, ^p). By Lemma 5,
normalized Lebesgue measure di on S1 and ^p differ by a multiplicative factor in
exp{—Pn)[{bd)~1, bd] on sets E^(^). Calculating the total measure of S1 one has
ieexp{—Pn)[(bd)~1, bd]; letting n->co, P==o. It now follows that p^p is equivalent
to di.

Theorem 1. — Suppose I\ and Fg are isomorphic surface groups. If the boundary corres-
pondence corresponding to this isomorphism is absolutely continuous^ then the isomorphism is conjugation
by an element of G*.

Proof. — Choose consistent isomorphisms of I\ and Fg with 0^. Let H : S1-̂ 1

be the boundary correspondence for Fi^Fg. As H is absolutely continuous and
Pri^^ Hp^ >^pg; hence ^n^P^ on ^y Since these measures are invariant
and ergodic under a, ^^l=:[L^2' ^° ^r ^P^ an(^ H~1 ls absolutely continuous.

Since H and H~~1 are absolutely continuous, w(x)=—In [H'(TCp^))| is defined
for (pip^= (ipj-almost all ^e2^. Differentiating the equation yp==H - l /pH gives
9r/^) —9r,(^) = ̂ (^) —w{ax) for almost all x. Now the theory of Gibbs measures ([io],
[I9]5 [7? P* 4°]) produces a continuous u : 5^->R so that 9?^)—<pp {x)=u{x)—u{cx)
for every x. It follows that:

u{x) — w{x)= u{ax) — w(ax)

for almost all x. Since pip^ is ergodic, u{x)—w{x) is constant almost everywhere. Sub-
tracting this constant from u{x) we may assume w{x)==u(x) almost everywhere (1).

Lemma 6. — If 7i:{x)==n{y) and x^^-y^, then u{x)==u{y).

Proof. — Find a sequence of indices {^J^=i so that ^i->A:o==j^ and ^i-^-
If ^^.^^.i...^^ and y^-.^^-i.-.^iJ;, then a^4-1^^ yields:

^(^(n))=^(^n+l)+9^,(^n+l)-9^,(^n+l))

and u{x) == u{x^) + ̂  {^{x^) - ̂ {x^)).

Now T^^T^y^) gives Pr.^^yr/y^) and u^-u^^^x^-u^). This
last expression tends to o as N-^oo since z/ is continuous. •

Lemma 7. — Each H : Jp g -> Jp g ^ G1.

Proo/'. — Let Jp^ ^ = Ip^ ^ u Ip^^. ̂  ̂ u . . . u Ip^ ^ . First we show that ff(^x) = u{x)
defines a continuous function 2'onjp^. Lemma 6 proves this for each V\ Ip ^. Suppose

(1) At this point one has that the derivative ofH is a.e. bounded. It then follows that corresponding elements
have the same eigenvalues at their fixed points. It is then classical that the two Fuchsian groups are conjugate
(editor).
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HAUSDORFF DIMENSION OF QUASI-CIRCLES 19

that p is a common endpoint of Ip^ , and I^.i+i; let p == TTp^) = 7Tp^(j/) where Xo==i,
j^=z+i . Now /p^==<pp^ on Jr,,s has image <pi\.s(Jr,,s) ^Jr^- Hence one can
find sequences {a^^ {6J^i so that ^^.a^a^ . .. ̂ , V^.Vn-i • • . ̂  are
admissible and furthermore ^, ^e[j, r]. Then Tr^^T^y^), (pp,^) == Pr.O^)
and the proof of Lemma 6 gives u{x)=u(y). So ^ is continuous on Jp ,.

Because H'{x)==e~u{x) for almost all ^ejp^s? fixing ^ejpx s one has:

HM=H(j&)+JjH^)A

=H(^)+JV-^A.

By the fundamental theorem of calculus H/(A')=^"~M(a;). •

Lemma 8. — For each s, H|Jp^==[BjJp g for some PseG*.

Proo/'. — Letj^ be the fixed points of <pp^ g [Jp^. g. Since H gives a local C1 conjugacy
between these points, T==yp^g(j&i)==9p^ 5(^3). These points are sources and T>I
by Lemma 3. Changing coordinates by linear fractional transformations each (pp.^ |Jp. g
is conjugate to A:l-^T"~1^ on a real interval L^ containing o (^ is sent to o). In these
coordinates H :Jr,,s -^Jr,,s ls transformed into h: L^-^Lg such that ^h{x)==h{^~lx)
and A(o)=o. Writing h{x}=^h{^~lx) and iterating one gets:

w^^--^^''^)^^.
So h{x) is linear. Unravelling coordinates H equals a linear fractional transformation
P,eG* on Jp^,. •

Finally we prove Theorem i. For two consecutive sides s, s ' ofR each ofH|Jp 3
and H|Jp^ g, are in G*. Now there is an interval Iri j^Jr s°Jr s' which can be
in either Jp^ g or Jp^ g, depending on the choice of/. Since H|Ip^ does not depend
on/, it follows that H|Jp^ g and H|Jp^ 5, are restrictions on the same element of G*.
Continuing around the circle one has H=p[S1 for some peG*.

3. Quasi-Fuchsian Groups.

This section proves Theorem 2. Let A==A(r\, Fg, a) as in the introduction.
It is classical that ^ extends to a homeomorphism ^ : U -^D^=D^Uy (e.g. [20], p. 121).
It is well-known that if y is rectifiable, then ^: S^y is absolutely continuous (para-
metrizing y by arc length) and so is e^1: y->S1 (e.g. [21, p. 293]). Then the boundary
correspondence e^loe^: S1-^S1 would be absolutely continuous. Under the hypotheses
of Theorem 2 therefore, Theorem i tells us that y is not rectifiable.

Since A[y is topologically conjugate to I\ | S1 and Fg | S1, there is a natural Markov
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20 < R U F U S BO W E N

map f^ of y and projection TT^ : S^y. Since A [ D , U Y is topologically conjugate
to rjU,, one finds closed neighborhoods D^ of the topological intervals 1̂  by

DA^-^Dr^n^u.^Dp^nU).

Then int/^(D^) D D^ j and the proof of lemma 3 shows that the function
TT1 __ f~1 f~1

JLA,Xo,...,Xn——JA,Xoo • • • °/A,^_i

has derivative

^^...^(^const.o^ for ^D^

where oce(o, i). (Here one uses topological disks E^ slightly larger than D^ ^ having
the same properties and integrates around YA^EA; surrounding D^ ^.) As in the proof
of Lemma 5 we find a constant independent of n so that:

l^o,...^M^011^- l̂ o,..,^2)! for ^, ̂ D^.

(Choose the E^^s with smooth boundary so that any ^, ^eD^ 3; can be joined by
an arc in D^ ̂  of bounded length.)

Lemma 9. — There are positive constants q and c^ so that the following is true:

B^(T^)CD^ . . ., A:J=F^,^D^JCB^(T^

where r=F^ ,,^(01^)).

Proo/.—Now D^^^B^(T^^((Tn^)) for some d^>o independent of n and ^eSy,
since G^^el^. By Koebe's one-quarter theorem take ^==^1/4. Assuming D^ 3. has
a smooth boundary (perturb if necessary) there is a <^>o so that every ^, ^ in the
same D^ ^ can be joined by a smooth curve of length d^. Since IF'^)] varies by at
most a bounded factor on DA „ one has:

^i ̂ n

diamF(D^)^ 2^. const. |F /(7^^((Tn^))[. •

Let (?{^)=—^\fA,x{nAX)\ fo1' ^^^. As before |9(^)—9(7)1^0^ when
^ ̂ ^ fo1' au ^ = o, i, . . . 3 72. The inequality | F' (z) | ̂  const. o^ implies that for
some N>o

N-l

SN^(^)== S (p((J^)^ —£<0.
7i;=0

There is a unique <2>o so that the topological pressure P(acp) === o. To see this consider
the variational formula (see [7]):

/ r \P(^p)-sup ^((T)+ \a(pd^\
(JL \ J I

^supj^^+.^Say^)
(JL \ 1>1 J I

268



HAUSDORFF DIMENSION OF QUASI-CIRCLES 21

where [L varies over all a-invariant measures on 2^. When a==o, one has

P(^<p)=P(o)>o

and when a is sufficiently large P(a<p)<o (since S^—s). The formula shows that
P(a<p) strictly decreases as a increases; since P(^<p) is continuous in a, there is a unique ^
with P(<2(p)==o.

Lemma 10. — The Hausdorff dimension of'y ̂  ̂ . 7^ a-dimensional Hausdorff measure v^
OTZ y is finite and equivalent to TC^(JI^.

Proo/. — Here ^cpls tne Gibbs measure for a^\ It is invariant and ergodic under c-
and there is a constant u^>i so that:

/n-l \

^A^{En{x))eexP( S ^(<J^) ][U-\U]

for any ^e^ and E^^^^y-^I^^^Tr^eS^ :^=^. for z=o, i, . . . , 72} . Here we

use that P==P(^(p)==o. The family ^={D^(A:o, . . ., ^)} covers y, each member
has diameter^ const. ̂ \ and

S (diamD^o, ...^J^^const. S |F^ (^^^
(a;0. ....a-n) (^0. .... ̂ ) ' °' ' "

(n—1 \

^ const. S exp S a^^x) (
(a-o, ..., a-n) A; == 0 /

^ const. S (74 ̂ ) (E, (A:o, . . ., ^))
(a-O, ..., Xn}

^ const. i.

It follows that the Hausdorff dimension ofy is at most a; restricting ourselves to {XQ, . . ., x^)
beginning with a given sequence (j^, . . .,J^J the above shows that

^(EmC^O. • • • ̂ m))^ COnSt. (^J(EJĵ  • • -^m))-

We will now find an ZQ such that the following is true: if {U,}j°^ is an open cover
00

of EJj^ ...^J, then 2^ (diam U^ ^(^^acp) (E^(^o. • • -^m))- Since every

(7r^(Ji^)(E^(j^))>03 this will prove the lemma.

Suppose the inequality is false (so as yet undetermined). For each U.
pick ^^Tr^^eUjnE^j^, . . .,^J. Then U-CBg^^.) where ^.=diamUj. Since
r-i '7N—l

s
fc=0
S <p((?^)=—ln [(/^'(^^[^const+Nlog a where ae(o, i), there is an n^ so that:

In^efSy^^) ,^ 9(0^)).
^ V f c ^ O " ~ / k=0 Tv ~ / /
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From Lemma 9 one has U^CD^^, . . . , x ^ ] ) . Also

^ ̂ 11^ exp'S^o^)
\2 / fc=0

and so

(fi^-iiviiooL/-1^.. vp/yy) ^^J.-H.lloo ^-^^^)(E(4^ ...,^)).
l2

Our hypothesis that the desired inequality failed implies:

«^)E(^ .. .^J>?oS«^)(E(4^ .. . , ̂ ))

where ^= (^"''^T^S"1-
\2 /

The disks D^were chosen so as to intersect two of the intervals I^j other than 1̂ ,
one containing each endpoint ofl^ (true for <S>g and then pulled back). By induction
one sees that D^(^o, . . . ,^J, which contains E(A"o, . . . ,^'J, intersects at most two
other E(^o, . .^w^ 's (1). As each of these contains a point of E(^o, . . . , ;vJ, the
various estimates on measures gives us:

(^I^)(DA^O> • • -^n^Y^const^^E^o, . . ., ^)).

Since the D^^^, ..., A^'S cover E(j/o, .. .,^), we now have:

«^<p)E(^o. •••^J>———-(^v^)(E(^o. • • • .Jm) ) -
£0

For small £o this is a contradiction. •

The HausdorfT measure Va(y) ls fmite and positive by the above inequalities.
Now a^ i since y is topologically a circle; a^r i because then Va(y)<^ + oo would imply y
is rectifiable. Hence d> i, V ^ [ Y is ergodic forj^ because it is equivalent to (JL for (T and
vjy is ergodic under A because^ is locally in A. This finishes Theorem 2.

4. Schottky Groups.

Let GI, . . . , G^p be 2j^ Jordan curves in Cuoo (j&^2) whose interior domains are
pairwise disjoint. Suppose for each k such that i ̂ k^p we are given a linear fractional
transformation ^ mapping the domain interior to C^ onto that exterior to Cgp.^^.
Then the gj^s freely generate a Kleinian group F called a Schottky group [5].

(1) One can ignore this point if he omits the countable set Uf"1'1 Wand computes the Hausdorff measure of
the rest using the estimates valid on the open intervals (editor).
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Let Dp^==G^u (domain interior to Cy, fk==gk for i ^ k ^ p , fk==gp^^k for

p<k^2p, and i->j unless z+J=2j&+i . Then DpjCint^(Dp^) when z->; and the
00

set S of admissible sequences xe I"! { i , . . ., 2p} consists of those with ^+^4-i+2^+ 1,
i =0

for all i. These sequences correspond naturally to the unending irreducible words
in the gj^s and g^'1^. By a quasi-conformal change of variables the Schottky
group r can be conjugated into another one P6 where the G^'s are isometric circles
for the g^s ([4], [8]). Here |/r*,J ls l^ger than and bounded away from i on each
Dp*^. Defining y?* on UDp*^ by yi^lDp^^/r* & ? one can see ll161^ is a unique

' /^ • ^ ' ' 'point 7rp*(^)e.n Vp^D?*^.) for each ^eS. The set L(r*)={7i;p*(^) : ̂ eS} is just
the ^W^ j^ of r* (see [5]) and TT?* : S->L(r*) is a homeomorphism of Cantor sets.

For the original F we now assume the C^s came from the C^s by the quasi-
00

conformal change of variables. Defining 7Tp:S—^L(r) by 7Tp(^)== H f^~l(^^,x^
the proof of Lemma 3 in section i goes through to show [ [f^)'^) |^ (JL>I on the domain
of definition of/j?, for some N. Letting <f>{x)=—In 1^^(71;?^) | it follows that for
some ^>o, ae(o, i), one has \^(x)—^(j^l^o^ when x^==jy^ for i==o, i, ...,n. The
analysis of section 3 carries over. Things only become simpler because TT? is a homeo-
morphism instead of a surjection which is 2-to-i over some points. The proof of
Theorem 2 gives us

Theorem 3. — Let F be a Schottky group with limit set L(F) as above. The Hausdorff
dimension a of A. is positive. Furthermore o<v^(L(r))<oo where v^ is the Hausdorff a-dimensional
measure^ and vJL(r) is ergodic under T (1).

This theorem and the next one contain a number of earlier known results, namely
those in [i], [2], [3], [15] concerning Fuchsian groups without cusps. Since L(F)
has zero 2-dimensional measure, one has a<.2 also.

Theorem 4. — Let T be a Schottky group and a the Hausdorff dimension o/'L(r). For
^L(r) the absolute Poincare series S \g'{^) Is converges iff s>a (1).

oer

Proof. — A fundamental domain R for F consists of the region exterior to all the G^s.
We omit from the series any term with |^'(^) [ ==oo (at most one). Alternatively, we
use a metric on S2 to compute derivatives. Recall that a>o was the unique positive
number such that the pressure P(fl(p)==o. It is enough to check the statement for
2'eR. Under the correspondence:

gk^^ gk'l^>P+I—k (i^<^),

reduced words in the {gjc, gk1} correspond to finite admissible strings x^. .. x^. Now:

/r,^°/r,^_i° • • • ^r^oDp^o, . . ., x^) 3R

(1) For "Fuchsian Schottky groups" this is contained in Theorem (4.1) and (7.1) of [15] (editor).
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where Dp(^, • • '^n)=f^° ' ' - °/r^_i(Dp,J is a disk. The derivative of

/^,..,^==/r,^°- • •°/r,^

varies by at most a bounded factor over Dp 3; , independent of n (using metric on S2,
as in section 3). It follows that K/^1..^)'' {z)\\ zeR differs by a bounded factor
from

^{^^^^=^^=0, "-,n}==[L{Xo, . . . , x^ ) .

As XQ, . . ., ̂  runs over all admissible strings, f^ ^ runs over F\{^}. So S [^'(^l8

converges or diverges as Spi^o, . . ., ^J8^. <7e r

For s^a this diverges, since the sum for each fixed n is ^ i . Because:
N-l

S 9((7^£o<0.
fe = 0

it follows that [ji(^, . . ., x^^c^ for some c>o, (B£(O, i). If s>a, then

^o3 "'^^rifr ^'l^'"1)^^ ^pfn T ^
, ^P-^O? • • • 3 ^J ^ ^ P ? P^l0? ^[i^o, . . ., x^)

and S (i( ,̂ ...^J^^1. •
n fixed

Remarks:

a) Let T be a finite union of pairwise disjoint rectifiable arcs with endpoints on
the boundaries of the Dp^'s and not intersecting the interior of the Dp ^s. Choose T
so that two endpoints are on each BDp ̂  S2\(Tu U Dp ^) has two connected components
(each simply connected), and^; takes the two endpoints of T on ^Dp ^ onto the two
on aDpp_^_^ . Then Y^HI^ U g(T) is a quasi-circle for T. The proof above
shows that y is rectifiable iff the Hausdorff dimension a ofL(F) is less than i. Further-
more, if r had a rectifiable quasi-circle y, then the above constructs y from
T=y\(UintDp^).

b) Finally, we mention a zeta function. For geF, g ^ e , let p(^)=^(j&) where
p is the fixed source of g. Then p(^) is constant on conjugacy classes. Call a conjugacy
class primitive if g in the class cannot be written as H1 with heF, n >i. The function:

SrM- n (i-p^)5)
primitive

classes

converges for Re s>a and continues to a meromorphic function on all of C (the values
°f PC?)8 being chosen in a proper consistent fashion). This is seen by the method of
Ruelle [17]. The zeta function above is of course an analogue ofSelberg's zeta function
for surface groups. Ruelle's paper generalizes the meromorphy of Selberg's function.
Presumably, the Nielsen development and Ruelle's method gives meromorphy of ^{s)
when A is a quasi-Fuchsian group corresponding to surface groups, as in section 3.
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Problems (1) (added November 1978 by the editor)

a) (Generalizing Ahlfors measure problem). For a (finitely generated) Kleinian
group is it true that either the limit set is all of S2 or has Hausdorff dimension strictly
less than 2?

b) If T denotes the closure of Teichmuller space in Kleinian groups and 2 denotes
the Cantor set of symbols above, is there a continuous parametrization of the limit set,
TxS-^S2, so that image (/, 2)== limit set F;?

Is the Hausdorff dimension of A(F() continuous in t ranging over T?
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(1) These were the last two of over 150 items in a private notebook of problems and questions found in Bowen's
papers. (Editor).
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