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THE TOPOLOGY OF HOLOMORPHIC FLOWS
WITH SINGULARITY

by Cesar CAMACHO (%), Nicoraas H. KUIPER (%) and Jacos PALIS (%)

Prologue and summary (%)

The integrals of the differential equations defined by a holomorphic vector field F
on a complex manifold are complex curves parametrized by C. The corresponding
action of C is called a holomorphic flow and the complex curves are its orbits. These
orbits, in general two-dimensional real surfaces, form a foliation % (F) with singularities
at the zeroes of the vector field F. We study the topology of such foliations &% (F), in
particular near a singularity. A simple example on C? which is rather general from
the point of view of topology as we will see later, is given by the differential equations
in complex numbers:

dzl__z dz,
dT Y 4T

with solution in T=u-1v:
—U—1 — ,—V+iu
=€ w,, 2p=¢ Ws,

through the point (w,, w,). The solutions are real two-dimensional leaves of a foliation #
with singularity at o0eC2 Special leaves (topologically cylinders) are the coordinate
axes (2,£0=2,) and (z,#0=2;). We see that every other leaf is transversal to |z,|=r,
to |2;|=7, and to the ¢ sphere” sup;|z|=r for r>o0. It is topologically a cone with
(deleted) top at 0eC2 Starting from any point (w,, w,), it is seen to wrap around the
zy-axis while converging to it for u=o0, v—oo:
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See Ilyashenko [15].
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6 C. CAMACHO, N. H. KUIPER AND J. PALIS
and that it wraps around the zy-axis while converging to it for v=o0, u—>oo0:
Zl———e—"wl, 2’2=8i“w2.

Such leaves that wrap converging along two coordinate axes will be called Poincaré
leaves, also in the more general case of linear differential equations, in normal form, on G™:

dz;
i T S
aTI‘_)\jz’" z=e"w;, j=1,...,m, TeC.

If m>g a different kind of leaf to be called a Siegel leaf may arise. A Siegel
leaf is a closed embedding of C in C” with minimal distance ||{||=p>0 to the origin
0eC™ at a point {. If we fix {, then the points in the leaf at distance 7>p from the
origin form an embedded circle, because the distance to o has at most one critical point ()
on a leaf. For decreasing p>o0, moving { to 0o€C", but keeping r=1 fixed, we have
the curious phenomenon that an increasing portion (with respect to length) of the
embedded circle is very near to the axes and a point moving on the circle wraps around
an axis a finite number of times, before going to the next. The finite number for the
J-th axis can be defined as the number #; of intersection points of the leaf with a small
transversal section to the j-th axis. It now happens that the sequence of ratios 7, /% ,

for j=1, ..., m, has as accumulation points as {—>o0eC", thatis as Xn,—>o0, exactly
. k
the set of sequences of non-negative numbers (measures) ¢y, ..., ¢c,:

"
A={¢,>0,...,¢,20: Xg=1, XN '=o0}.
J J

A is a topological invariant of the foliation F and it is the only one under the assumption that
no two of A4, ..., A, are linearly dependent over R. This is theorem I of chapter I.
Note that A is empty in case 0 is not in the convex hull £ (2, ..., A,) of Ay, ..., A, in C.

Let the foliation % be a member of a family @, a topological space with a linear
or at least a differentiable structure. % is called topologically stable of codimension <d
(or just stable in case d=o0) in @, if all members in some neighborhood U of & in ®
are completely classified up to homeomorphism by d linear or differentiable real functions.

Theorem I (chapter I) can now be expressed as follows: Let @ be the set of
foliations coming from linear vector fields on G™ with i#%j=MN¢R)A. The foliation #
is stable, respectively stable of codimension 2m—4, in @, in case 0¢# (A, ..., 7,),
respectively o€ (7, ..., 7).

Chapter II gives an application of the linear theory of chapter I to kolomorphic
Slows on the complex projective space P = CP(m). As we recall and prove again in § 8 every
vector field F on CP(m) arises naturally from a linear vector field ¢ : G"*!—>C™*1 a5
the quotient by the action of C*=C—{0} by scalar multiplication. At the m +1 singular
points in P, #(F) has the topological invariants of chapter I. This gives the complete
topological classification of the foliations of such flows: Assuming that no three of the
eigenvalues Xy, . .., N, of o are collinear in the complex plane C, F is stable, respectively stable
of codimension 2m— 4, in case (g, - . ., N,) s an (m-+1)-gon, respectively an m-gon in C. If

6



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 7

more than one among Ay, ..., N, are inside #(Ng, ..., \,), then the topological classification
coincides with the classification under projective transformations taken together with complex conjugation
of G, and F is * stable of codimension 2m—2 .

This is theorem II. We recall that holomorphic vector fields are rare on algebraic
smooth varieties that are different from the complex projective spaces CP(m). For a
precise statement see Lieberman [8].

Consider now the larger class @ of foliations of all holomorphic vector fields with

an isolated singularity at oeC™:

dz _
T
oz = (DF,) (2),

F(z)=02+4+R(2)eC", 2eC", F(o)=o0 (1)

¢ has eigenvalues Ay, ..., A,,.

The problem of finding a holomorphic local equivalence between F and o was considered
by Poincaré [11] and Siegel [13], see also [1], [4], [12]:

Theorem of Poincaré. — Assume that i4j = N¢RN and o¢H# (A, ..., 2,). If
no relation:

m
A= S EA
i=1

17

m
keZ,, Elk,-ZQ, Jj=1,...,m,

holds, then F is holomorphically equivalent to ¢ near oeC™.

Theorem of Siegel. — Assume that i+j=> N¢RA and o0ed(), ...,2,). Then
for almost all A={xA, ..., 7,}, with respect to Lebesgue measure, F is holomorphically
equivalent to ¢ near oeC™.

From these theorems we obtain easily in Chapter I, § 7, the characterization for
local stability of F near oeG™:

Corollary. — F s stable (of codimension zero) if and only if i%j = N¢RN and
0¢H Ay, «« oy Ay

The sufficiency of this condition is Guckenheimer’s [5] stability theorem: Any two
foliations & (F) and & (F’) of vector fields F and F’ with singularity at oeC™, and
with spectra A of DF; and A’ of DF; in the Poincaré domain, are locally homeomorphic.

In chapters III and IV we study the local problem for the Siegel case:

0€H# (N, - hy)s i) = NERN,.

We conjecture that the foliation &% (F) near the isolated singularity of F at oeC™ is
homeomorphic to the foliation & (o) of its linear part ¢=(DF),. We prove this for
m =3 in chapter III (theorem III) and find therefore with theorem 1: If oes# (A, Ay, Ag),
then (the germ at o of) F is stable of codimension two in the space ® of (germs at zero of) foliations
of holomorphic vector fields with singularity at zero. This theorem is rather different from

7



8 C. CAMACHO, N. H. KUIPER AND J. PALIS

classical results concerning holomorphic equivalence to linear or other normal forms, in
which “small” and  zero divisors” play an important role (Poincaré, Siegel and
others. Compare Brjuno [1]).

In chapter IV (and chapter III, § 11 and § 12 for m=3) we give a weak normal
Sorm for any F (see (1)) by proving the existence of a holomorphic change of coordinates after
which the remainder R(z) belongs to a specific simple class. In this weak normal form
the union of all Poincaré leaves for & (F) is already in the same stratified union V of
linear subspaces as for the corresponding linear case % (o). This is a first step in the
proof of our conjecture for m>4, which we hope to give in another paper ().

I. — LINEAR FLOWS

1. Introduction and main theorem.

Let % (o) be the holomorphic foliation or flow with singularity at o, defined by
the vector field F(z) in G™:

%:F(z):czecm, TeC, oceGL(m,C) (2)
with real two-dimensional leaves:

z=eTw, weC™ (3)
Set: spectrum 6 =A ={};, ..., A,}CC (4)

spectrum 2mic™t=A={%,, ..., %,}

ij =omiN L (5)

The equivalence class of A C C under the natural action of GL(2, R) in C=R? is denoted:
7(o). (6)

In § 2 we give the easy proof of the

Pre-theorem. — If o is diagonal, then the topology of F (o) is completely determined by n(s).

Already in case m=2 equality and even real dependence of two eigenvalues
of ¢ complicates the topology of % (¢) very much. We therefore assume that any two
eigenvalues are independent over R:

i+j=NeRy, ij=1,...,m. (7)

(Y) Added in proof (May 1978): For a non linear flow F with singularity at o€ C™, we can now define the
topological invariant A, and it depends, in the same way as before, only on the linear part of F at o. This is
necessary but not sufficient to prove the conjecture also for n > 4. Dumortier and Roussarie [17] have important
related results on linearization.

8



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 9

The convex hull of A={k;, ..., 7,} in Cis denoted #(A). The open set of unordered
m-tuples { A : (7)} consists of a connected component, the Poincaré domain {A : o¢#(A)},
and its complement, the Siegel domain (1):

{A: 0e#(A)}.
7(o) is topologically irrelevant in the case of the Poincaré domain (Guckenheimer)

as we prove again (for later applications) by an explicit homeomorphism in § 6.
For the Siegel case the situation is different and we have (§ 5):

Main Theorem 1. — If the spectrum of o lies in the Siegel domain ((7) and oes#(A)), then
(o) ts a topological invariant. It determines and is determined by the topology of the foliation F (o).

2. Proof of the pre-theorem.

In suitable coordinates, (1) (2) is expressed by:
dz; =2 2dT, zj=e7‘iij=e*i(T+CJ'), j=1,...,m (8)
For a given diagonal o, and analogously for &', recall that ij=2nix;1. We assume
first 'ijf:gij, Jj=1,...,m, geGL¥(2, R). The homeomorphism:
h: (G, F (o)) > (C", F(d'))
required for the pre-theorem is then defined as follows:
If z(z)=2¢"" respectively o,
then %(h(2)) =47 respectively o, where T|= &T;.
This is well defined because T; is determined modulo '7:] and T modulo ')\\J' Moreover
the image of an (any) % (o)-leaf (8) is the set:
eMWT +90j) — AT’ w]’ ,
and this is an % (¢’)-leaf.
The non-oriented elements (2) g of GL(2, R) are realized by composing with

one of them e.g. complex conjugation of CG=R2  TItsends (A, ..., 2,) into (A;, ..., K,).
The required homeomorphism of CG™ is given by complex conjugation:

ki (2, .05 2) (21, - .05 2,).

Remark. — If z(z)=¢***, then z(h(z))=¢%"**"®**+* for some real constants a,
B; and the mapping A:

| 2(h(2)) | = 2(2)|"

(©)
arg 5(h(z)) = arg 5,(2) + 1n| £,(2)| ?

) (Replacing A; by )\j/[ Aj |, we easily see that the Siegel domain is connected for m = g and 4, and it has
three components for m ='5).” A more complicated definition of Siegel domain is customary in the theory of
holomorphic equivalence.

(2) J.-P. Francoise drew our attention to this case which we had overlooked.



10 C. CAMACHO, N. H. KUIPER AND J. PALIS

produces in the j-th coordinate axis {z:z,=o0 for k=%j} a spiraling homeomorphism (g)
for z—>o0or oo, with the unit circle |z|=1 pointwise fixed. It leaves invariant each of
the manifolds z=o0 and |z|=1, as well as the piecewise smooth (2m— 1)-sphere:

S={z: sup|4|=1}. (10)
Remark. — h preserves the additive group action of G=R? (see T in (8)).

3. The foliation on W, the union of the Siegel leaves, is stable.

We assume (7). The real function ||z||*=2ZX 2z has a critical value on a leaf (8)
at a point z if and only if: !

0=dZ 5% =3 (5)5dT + £ 5dT)
J J

J

=§zj%()\de+7\de)=o for dTeC
dT=1 yields 2Xzz(N+X)=0
J
dT=i yields XzZz(\—X;)=o.
J

The union M of the o-nearest points, 240, has therefore the equation:

M: 2zz)\=o0, z+o. (11)
J

No leaf has two (or more) critical points and every critical value is a minimum, because
for any T,+T, the real function:

tHlejlz, zj_____e)\j(tT]-l"(l—‘)Tg)wj’ j=19 ee.,m,
J

is a sum of real expomential functions in teR, hence concave. A leaf with a minimum
is called a Siegel leaf. 1Tt is a closed embedding of G and can be characterised by its
critical point {= (¢, ..., ¢,) in M. The union W of all Siegel leaves is therefore the total
space of a trivial bundle, W=MxC—>M, embedded in C™ by:

=,  j=1,...,m; ({, T)eMxC
with base space M.

M is seen to be a manifold by putting in (11):
s=x+h,  h=wiy, M D H)y=ZE )y =0,
and by calculating the tangent space:

(s s ) 5 S 2,00 1= (s ) =0

with coefficient matrix of rank 2, because every determinant p;v,—wv;+0, for j+k
by (7). The manifold M is a cone with deleted top 0eC™ over the compact manifold:

M(1)={zeM : ||z|P=Z55=1}.

10



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY It

From (11), where ¢=zz>0, we see that 0eC is a weighted mean of the set of
complex numbers A={};, ..., 7,}. Hence Siegel leaves can only exist (and M is
not empty) in the Siegel domain case oes#’(A). In § 4 we will see that then:

W={z: oes’({N: jeJ(2)})} (12)
where: J(&)={j: %(2) %o} (13)
It is open dense in C™.

The (abstract) differentiable manifold M depends by (11) continuously on A, and
is therefore “ constant > on each component of the Siegel domain. Then also the topology of the

restriction of the foliation: F (o) | W is locally constant (= stable), and gives therefore no topological
invariants.

4. Geometry in the T-plane of a leaf.

We assume (7), use coordinates as in (8) but ordered in such a way that:

o<arg A, <argh,...<argi, <om. (14)

The parameter T in the leaf of a point z is determined up to translations in C=R2,
The intersection of a leaf with the “ ball” B={z : sup;/%|<1} and with the manifolds
| 4| =1, gives rise to interesting configurations in the T-plane of that leaf. We introduce
the configuration G = G(z) consisting of the half-planes (see (8) and fig. 1):

={T: |%|<1}CGC, jeJ(2)={j: z+o}.

The boundary de; is a line parallel to and oriented by the vector ’ij. We also
define the convex disc:

D()=NacC, (15)

which represents the intersection of the leaf with B, and its boundary, the oriented convex
polygon C=GC(z). Let I(z)CJ(2) be the set of indices j involving edges dux; of C(z).
Let the edge on da; be between vertices T;_ and T; where j is the cyclic successor of j_
in I(z). For later use we define 7eR by:

Ty="T, + (16)
2n; is the increase of the argument of z from T; to T;. The real number #; differs

from the integral number of those points on the edge T, T; where z is real by at most one.

If the polygon C is bounded and if we set 7;=o0 for j¢I(z), then clearly (see (16)
or fig. 1):

J

A =o. (17)

11



12 C. CAMACHO, N. H. KUIPER AND J. PALIS

T;
a) Siegel leaf b) Poincaré leaf
Fic. 1

‘The complete configuration G*(z) of the leaf of z consists of the set G(z) of half planes o,
numbered by jeJ(z) with oriented boundaries dw;, together with the set of those points
(marked in fig. 1) on d«; where 2; is real. G*(2) is to be considered modulo translations
of C=R2 The point 0e€CG" is represented by the empty configuration.

Lemma 1. — Every complete configuration that agrees with A=Ay, ..., },) determines
a unique leaf. A point TeC determines a unique point z in that leaf.

Proof. — 1If the half-plane «; is not in G(2), then z(z)=o0 on the leaf. If 2 is
known at some point of the leaf (and z; is known to be 1 at the marked points of du;!)
then the formulas (8) determine z; at every other point T and for example at T(z).
So then z=2z(T) and its leaf are determined.

Remark. — By letting geGL(2, R) with gA =A’ act on the T-plane C=R? and
on all complete configurations with respect to A in R2 we obtain the homeomorphism %
of § 2.

Lemma 2. — Assuming (7), every leaf of F (o) outside oeC™, s of one of the following

kinds:

— A coordinate axis, topologically a cylinder, in case the polygon C(z) is onme line. There
are m axes.

— A Siegel leaf (se¢ (13)), a closed embedding of G in C™, with bounded or empty polygon C(z),
in case oeA({N : jeJ(2)}).

— A Poincaré leaf, an embedding of G in C", transversal to each * sphere” sup;| z;| =r>o,
with unbounded polygon C(2), in case o¢ ¥ ({'7:J 1 jeJ(2)}).

Proof. — First suppose z+0 for all j, 0¢H (X .- 2,)), m>2. We then
may assume: ~ ~
o<arg \,<arg A,<...<arg),<mw (18)

12



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 13

and the half planes «; clearly have an unbounded intersection. Along any real vector
ueCG=R? for which:

arg A, <arg u<n

attached at any point in the T-plane, the linear function on R? In|z|, decreases for
J=1,2,...,m. Then the leaf is transversal to every sphere” sup|z|=r>o.
Topologically, the leaf is a cone over its intersection C(z) (homeomorphic to R) with
S={z:sup|z|=1}. For weR=C(z) (see fig. 1b) converging to —oo (resp. o)
the first (resp. last) coordinate converges in absolute value to 1, and all others to zero.
The point weC(z) converges to the unit circle in the first (resp. last) axis. The leaf
is called a Poincaré leaf.

The same argument applies to any z for which o¢s# ({ij :7€J(2)}) in case J(z)
contains at least two indices. We then restrict the argument to the coordinates z;
for which jeJ(z).

There remains the case where oes#’ ({’7\\] :jeJ(2)}). Then C(2) is either a bounded
polygon or empty. In both cases {T :sup;|z|<N} is for large N>o a compact
convex set on the T-plane and || z|| has a minimum in the interior. So the leaf is a
Siegel leaf by the definition in § 3.

As announced in (12) we have:

W ={zeC": oe,}f({ij :JjeJ(2) N
An immediate corollary of lemma 1 is (see fig. 1):

Lemma 3. — The leaf of z, given A, is completely determined by the following < coordinates > :
y 7y 4

1) J(2), I(2) and 7 for jel(z).

2) The maximum ¢~ %<1 of |2,(T)| for TeCQ(z), seJ(z)\L(2). This equals |z,(T;)]|
Jor j_<s<j in cyclic order j_,jel(z2).

3) The argument ¢,=arg z,, at the vertex T;eC, for j_<s<j.

In the case of a Siegel leaf, oes#’ ({3:J : jeJ}), all these, IC]J, %, B,, ¢, mod 2w, can
be chosen arbitrarily, but for the condition:

5. The topological invariant 7n(c) =A in the Siegel domain case.

We prove theorem 1, knowing the pre-theorem, by giving a topological description

of the (m— 3)-dimensional convex polytope:
A={(cy, ..y ) : >0V, Zj]cjz 1, §c}5\j=o}c R", (19)
A sequence of weights ¢, .. ., ¢, in (19) which makes o the barycenter of A is invariant

under the action of GL(2, R) on A. Vice versa A determines A modulo that action.

13



14 C. CAMACHO, N. H. KUIPER AND J. PALIS

To see this take A, =1, A =1, and determine ')\\J' by taking ¢,=o for %1, 2 orjin (19).
Hence A is equivalent to (o).

Let S; be a small section transversal to the foliation % (s) at a point p; on the
J-th axis and n;=mn,(L) the number of intersection points with some Siegel leaf L. We

now define A’ as the closure in R™ of the set of m-tuples (¢y, ..., ¢,) of positive numbers,
for which there exists a sequence of Siegel leaves L, («=1, 2, ...) such that for a—c0:
L .
m—co  and llmz—’n=cj for all j (20)
<My

The definition of A’ is purely topological. We prove that for every choice of §;, p;:
Lemma 4. — A =A.

Progf. — Under holonomic transport of §; with respect to the foliation, the
intersection numbers with any leaf remain constant. After such transport along a
curve in the j-th axis from p; to the point with coordinates z;=1, z=o0 for k+j, we
may assume for some 0<8§<r1:

S;(8) CS;C8;(1) CS={z: sup|z|=1}
where: S,8) ={z: z=1, |%[<3<1 for k#j}. (21)

The Siegel leaf of z meets S;(3) and S; inside S, hence in the convex polygon C(z) in
the T-plane and in marked points of du;. Because the real functions In|z,|=Re N (T +¢)
on the T-plane R? with level lines parallel to ,, have constant gradients, no two of
which are R-linearly dependent by (7), there exists for any >0 a number K>o0 such that:

|In5(T + ) |—In|5,(T) ||>|In 3|

for t>K, for all # and j+k. In particular in the edge T, T; (see fig. 2) of the
polygon C(z) (on which |z[<1 for all k) we see that S; and

S;3) : [z]=1, |%(T)|<8<1 for k+j (22)
contain all points:
T=T, +&, K<i<#—K. (22')

T, =T, +7j;

J-

T+ (F—K)3;
T 44

Fic. 2

14



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 15

Counting intersection points (marked on da;) of a Siegel leaf L, we see from (21):
1(S,3)) < my(8) = m<m(S;(1)) <A+ 1.

From (22) we read that all marked points on the interval (22") belong to S;(3). There
remain at most 2(K + 1) other marked points between T;_ and T so that:

—n(S5;(8))<2K 3.
Hence for all Siegel leaves:

| —m| <2K + 3. (23)
But by (17) ZJ)%; ;=o.

Then: S=_)\=o.
i

We have proved A’CA. If we take any (¢, ...,¢,) in A with ¢>o for all j, then
there is by lemmas 1 and g a Siegel leaf L, with:

m=oc, J=I,...,m.
For a=1,2,3,..., a—>o0 we have:

~s ~ .
nj/Zk]nk_—_cj, hence }E%"f/§”k=fj

by (23). Consequently A’=A and theorem I is proved.

6. An explicit homeomorphism in the case of the Poincaré domain.

Here we assume (%), (8), o¢#(A):
o<arg X, <argh,...<arg},<arg u<m. (24)

Every leaf that is not an axis is a Poincaré leaf, meeting S in a curve that is represented
in the T-plane by an unbounded convex polygon C. It has at least one vertex and is
transversal to the constant vector field w. The T-plane of a leaf is then naturally a

product:
T=T,+su, ToeC seR.

Taking all these products together we write & (6) as the product of a 1-foliation
F,(c)=F(s)nS and R, by the formulas for o+weC”, z€S, seR:

w,=e"%z, j=1,...,m. (25)
Let ¢ fulfil the same conditions as 6. In order to define a homeomorphism:

k: F(c) > ZF (o)

15



16 C. CAMACHO, N. H. KUIPER AND J. PALIS

it suffices by the last remark and (25) to define the restriction:
hy="r|S : F(c) > F,(d')

of £ to S. The map 4, will induce a map #;, from the set of leaves of #,(s) onto the
set of leaves of #,(c¢"). We begin with the definition of 4;,. Recall lemma 1, § 4 saying
that for given A the leaves (except axes) are 1-I-represented by complete configura-
tions G* modulo translation. We define 4;, by claiming that it is expressed by the identity
in terms of the ¢ coordinates ” of lemma 3, § 4. This does not work for the m axes.
We let £, map each axis onto itself. We now examine this definition of #4;, in detail.

Equality of the first sets of *“ coordinates >’ in lemma g has the following consequences:
J'=J gives the invariance of (the union of all leaves in) z=o0 for j=1,...,m.

If G and C’ are convex polygons corresponding with a leaf y and its image leaf £ (y),
then I'’=1 implies that the same coordinates among 2z, ..., 2, take absolute value
one on edges of C and of C’. This determines a correspondence of edges.

-
Fic. 3

#y =m; for jeI=1" determines, for given A, A’, the lengths of the bounded edges of C’
of the leaf ; (y) once those of C of the leaf y are given. Therefore we now have obtained
a one-one-correspondence between polygons C and G’ modulo translations, which
correspondence must lift to ;.

With equality of the second sets of “ coordinates” in lemma g, we obtain the
necessary information on the absolute values of those coordinates z, jeJ, for which
j¢l, at certain vertices of C and C":

e = l zs(Tj’_) | =¢ b= I zs(Tj_) I
for j_<s<j, and j the successor of j_ in I

16
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With equality of the third sets of ¢ coordinates” in lemma 3§, we complete the
definition of h;, because we obtain the necessary information on the arguments of the
coordinates z; of certain vertices of G and G

@;Zarg zs(TjI):cps: arg Zs(Tj)

for j_<s<j, j successor of j_.
On one hand z(T;) is not defined if T;=ceCuc but no ambiguities arise

in case neither T; nor T; is o, because %/ =7%; implies:

% (Ti) =#(T;) = ¢ (Tj) = 9,(T))-
Having obtained the map %, we now define a point set bijection £, : S—S, which is
a lift of 4;,, by assigning to the point T="T; + tij on the polygon C of a leaf v of %#(¢)
the point T’=Tj’_—|-t’)\\j' on the polygon C’ of the leaf A, (y) of %#,(s’), and similarly
in case T; =oo0 with T=Tj—t’7:j. In particular vertices of C go to vertices of C’.
We define £, to be the identity map on each axis. It remains to prove that 4, is
continuous. Then also &' is continuous by interchange of #(s) and % (q').

Proof. — For a given A, the set of all leaves with a fixed set of nonzero coordinates J
is homeomorphically represented by the set of all its complete configurations (lemma 1)
in its natural topology. This space is also seen to be homeomorphically represented
(embedded) by the following sets of ‘ coordinates > of lemma 3:
iz (T) =ev=ttioe j <s<j for Ty+oo+T,
=z(T;) for T,=o0 (26)
=z(T;) for T; =oo;
J is the successor of j_ in I.
Recall that T;*co is a point in the polygon (1-leaf) C, at which |z| takes its
maximal value <1. If this value is smaller than one, then 7, is automatically zero.
As £ is the identity in these * coordinates” we conclude that the restriction of h
to {z:J={j:2+0}}NnS induces a homeomorphism of the space of those 1-leaves
in S, and then #%; is a homeomorphism of that part of S onto itself as well.
The formulas (26) tell even more, because we can include the values z,=o0 in
the consideration and let s run through all indices between the first, j,, and the last, j,,
of J. Therefore we can conclude that %, is a homeomorphism onto itself on each of
the sets:
Q7. J.)={2: %, %0, % #0, z=0 for j<j,<j, and z;=0 for j>j,1nS,
and in particular on the open dense set:
Q(1,m)={z: z*o0, 2,+0}NSCS.
We next prove that 4 is also continuous at any point w¢Q(j,,j,), w not on an axis:
w=(wy; wy; W) =(0; wy; 0)=(0, ..., 0; Wiy weos W3 0 veey 0)
w;, 0, W, *0, I5Je-
17
3



18 C. CAMACHO, N. H. KUIPER AND J. PALIS

By the above consideration % is continuous at and near w, on the subspace defined by
z;7=0 and zp;=o0. So we can restrict our study of continuity to points:

z=(z; 25 ) with  zp=wy.

The point weS is represented by some point T(w) on the configuration G(w). The
configuration G(z), in the T-plane of the leaf of 2, is then obtained from G(w) by adding
half-planes «; for the coordinates in z; (2 :j<j,) and half-planes for the coordinates
in 2y (% :5>4,). Let [|z—w|[=3. If 3 is small then all the new boundaries da;
will meet C(w) far away from its vertices and from T(w) on either of the two unbounded
edges (fig. 3). Then the point w and the point z are represented by the same point
of G(w). (See the equations for a leaf.) The 1-1-correspondence %, preserves this
property of far-ness concerning the images G'(k,(w)) and G'(k,(2)). Moreover uvice
versa far-ness of the new half-plane boundaries de; implies that |z is small for j<j,
and j>j,. Therefore continuity follows:

[|4(2) —~(w) || = O(3).

By the equations (26), we find for any point zeS not on the j-th axis, but so that
| 5(2) | =1:
z(h(2)) =2%(2).

This identity relation is also the definition of £ on the j-th axis. With a “ far-away
argument concerning other coordinates, this proves continuity also at axis-points in S.

7. A corollary on stability admitting non linear perturbations as well.

Corollary 1. — Let ¥ be a holomorphic vector field in C", F(o)=o, and let o=DF,
have the spectrum {\,, ..., N,}. Then F is locally stable (of codimension zero) near oeC™
if and only if i%j = N¢RN, and 0¢H (N, ..., A,).

Proof. — If o0es#(N,...,2,), then we can approximate F, by Siegel’s
theorem ([13], [12]), by another vector field F, F(0)=o, which is holomorphically
equivalent to its linear part §=DF,, and whose spectrum ¥ is in the Siegel domain.
By theorem I & is not stable, so F is not stable. On the other hand, if i+j= A¢R)
and o¢ ' (A), Guckenheimer [2] proved that & (s) meets every sphere

S, : ||zl|2=j§12j5j=r2>o

transversally, hence in a real 1-foliation, and that the leaves are the orbits of a Morse-
Smale vector field with m closed orbits. From the structural stability of these vector
fields [10] follows the local stability of F, also under small non-linear perturbations.
So it remains to show that whenever o¢s#(A) and two eigenvalues are dependent
over R then F is not stable. Suppose AeR¥;, 0¢H#(A, ..., 7,). Arbitrarily near
to F we find F' with {A{,...,2,} in the Poincaré domain: o¢s#(A;, ..., N,),

18



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 19

i$j = N¢R), and moreover obeying the conditions A — X kA +o0 for any non-negative
i=1

integers &, ..., k,. By Poincaré [11] F’ is locally holomorphically equivalent to its

linear part. It has Poincaré leaves only except for the cylindrical coordinate axes.

Arbitrarily near to F we also find F"" with {}{’, ..., \,, } obeying the following conditions:

0 (N5 ..y \y)s N =77, rrational, A'¢RA’ for i+j, i>2, j>2, and:

m/>
m
N — 2k #o

for any non-negative integers %,, ..., %,,. By Poincaré [11] F" is locally holomorphically
equivalent to its linear part ¢”’. But all leaves of ¢"’ in the linear subspace with equations
23=2,=—...=2,=0 are cylinders, so #(F’) and #(F") are not homeomorphic near
zero, and F is not stable.

II. — HOLOMORPHIC FLOWS ON CP(m)

8. Holomorphic flows on CP(m) arise from linear vector fields on Cm+1,

Here we prove the (known)

Lemma. — Every holomorphic vector field over P = CP(m) originates naturally from a
linear vector field on C™*' (5z2eC™*') ¢eGL(m+ 1, C)).

Progf. — Consider the embedding of the trivial one dimensional vector bundle
over C"*1=C™*'—{0} into the (trivial) tangent bundle, given by the following inclusion
of total spaces:

{(z, u2) : 2eC™*1 ueC}CCrtix CmH,
The first bundle has the section p=1. This section, as well as the embedding, is
invariant under the action of CG*'=C—{o}:

A (2, w)=(Az, \0), AeC.
The quotient is an embedding of vector bundles over P that can be completed in an
exact sequence with the tangent bundle © of P:

0—>0—>n—>1—>0.
0 is trivial with non zero section (w=1). Cech cohomology of P with coefficients in

the sheaves of germs of sections of these bundles, gives rise to a long exact sequence
that begins with groups of global cross sections Hy=I":

o I'(P, 0)=C —TI'(P, 7)(=C™*" see below)
— T'(P, %) - H, (P, sheaf ) = H, ,(P, C)=o.

19



20 GC. CAMACHO, N. H. KUIPER AND J. PALIS

Hence . is surjective onto the set of holomorphic vector fields I'(P, ©). Each holomorphic
section of I'(P, 7)) lifts to a holomorphic vector field F(z) on C™**that is invariant under
the action of C*:

W (25 - ..y 2,)=F(%, ..., A2,).
Differentiation with respect to z; yields

A F (2, .oy 2,) =0 F(Nzg, ..., 02,) M
The holomorphic vector field

0, F(Nzg, ..., 02,)=0;F (2, ..+, 2,)

m.
is bounded near 0eC™*! hence it extends over zero, with value 0eCm™*!, Then:
9;F(zy, ..., 2,)=20F (o, ..., 0) =constant.

F(z) is linear and the lemma is proved.

9. The topological invariants.

Let & be the flow of a holomorphic vector field on the projective space CP(m),
which comes from the linear vector field on C™*1!:

dz

dT

6z, z=¢w, z,weC"*! TeC. (27)

As before z=(zy, ..., 2,) is a set of homogeneous coordinates for
CP(m)=(C"*'—{o}) /C".

The spectrum A={},, ..., \,} of ¢ is a projective invariant of the flow, but should now
be considered modulo the group of all translations and similarities in C. (If we replace T
by © !T, then ACG is multiplied by weC*, and if we replace ¢®Tw by T ~*w, reC,
this translates A, to ;,—A for j=o, ...,m.) If ¢ is diagonisable we have in preferred
coordinates the flow % (A):

dz

7;:7\]..21., z=¢"w;, j=o,...,m. (28)
It has a singularity at each of the vertices of the coordinate simplex. Outside the

coordinate hyperplane 2z,=o0, we take z,=1 and non-homogeneous coordinates
%[%,=2z and we obtain the linear flow on C™:

F=F ) : =1, z="Ww j+k (29)

In order to have N—XA, and N—2, real independent for every i%j+k+:
(condition (7)), we make the

Assumption. — For N, N, MeA, ikj+k+t, N, N, N are not collinear in the
plane C. (30)

20



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 21

By theorem 1, %, has only the non-trivial topological invariant 7n(c)=A in case
the spectrum A, ={(\—2,), j*£} is in the Siegel domain, that is in case A, is in the
interior of S#(A), and no topological invariant otherwise. We now formulate:

Theorem II. — A complete set of topological invariants of a holomorphic flow F(A) (27)
on CP(m), under the general position assumption (30), consists of the topological invariants of
chapter I at the m+ 1 singular points. In other words:

A) If the boundary 04 (A) of the convex hull # (A) is an (m + 1)-gon, then there are no topological
invariants: F s stable.

B) If 0 (A) is an m-gon with one eigenvalue, say ), in the interior, then
{omi(N—N) 7Y j+AICC

modulo action of GL(2, R), ts the only topological invariant.

C) If #(A) has at least two eigenvalues in its interior, then A, modulo translations, similarities
and reflections in CG=2R?2, s a topological invariant. It is the only one because it clearly is
the complete invariant of F under projective transformations and complex conjugation of CP(m).

We first prove case G by determining the topological invariant. In § 10 we prove
case A. We shall not elaborate on the proof of case B which goes along the same line
as case A. For m=2 cases B and G do not occur, and case A was proved in [16].

For case C we assume (30) for A and A'. Let k:ZF(A)—>F(A') be a
homeomorphism of CP(m) onto itself sending leaves of % (A) onto leaves of F(A’).
It sends any singular point onto a singular point with the same local topological invariants.
We may assume after projective transformation of % (A’) in CP(m) that each of the
m+ 1 singular points is invariant under 4.

Let 2, and A, be interior points of S#(A). The corresponding singular points
are then of Siegel type for #(A) and the same holds for their images under £ which
are singular points for #(A’). Then Aj and 2] are also interior points of #(A’). We
can assume Ay=Aj=o0 and A=A =1 by permitted changes of coordinates and
parameters (translations and similarities).

By theorem 1, there exists g,eGL(2,R), £=o0, 1, such that for all j:

gu(amiy—2y) ™) = 2mi0y — )
Hence if x,, y,€R, are such that:
(k=o0) omiN'=x,2mid; ! 4 yo2mi
and: (k=1) emi(Ag—1)"'=x2mi(Ay—1) '+ y2mi(0—1)7H,
then the same equations hold for A, and 2;. Elimination of 23 yields (for given
Xo5 Jo> X1, J1)*
Ay A—1

A= =14
? %o+ Yohe %1 +y1(he—1)

21



22 C. CAMACHO, N. H. KUIPER AND J. PALIS

which is a quadratic equation in A, with real coefficients. If one solution is A,, then
another is A =»x, or A, and it follows that g, is either the identity (A\,=2,) or the
reflection: complex conjugation (M =X,). The topology of & (A’) is therefore deter-
mined by A=A’ modulo translations, similarities and reflections, and case C is proved.
Observe that the foliation of A’=A is obtained from that of A by complex conjugation,
a homeomorphism of CP(m) onto itself.

10. Stable holomorphic flows on CP(m).

Here we prove case A of theorem II:

Theorem II A. — The holomorphic flow F (A) on CP(m) is stable in case A (A) is a
convex (m -+ 1)-gon.

Proof. — Let Ay, 2y, ..., A, be cyclic successive vertices of S#(A) (fig. 4). Let
O, be the singular point {z:2=o0, j*k, z=1}cCP(m) and let O,O, denote the
‘“edge”, a cylinder {z:z=o0 for j¥&,/, %0, z,#0}. The flow & on z=*o, as
expressed in (29), has a singularity at O,, and it is in the case of the Poincaré domain
as described in § 6. Thus the leaf of a ““ general ” point z (thatis: z+o0 Vj) wraps
around the axes (=*edges”) O,_,0, and O,0O, ., while converging to them. This

O,

H(A) N 0,
k41

a) b)
Fic. 4

being the case for all £ we see that a general leaf wraps around and converges to all
“ edges ” of the «“ (m+1)-gon > Oy, Oy, ..., O,,, and converges to all vertices as well.
Projecting into RP(m) by taking absolute values of all coordinates we get the interior
of an embedded two-disc whose boundary is the ordinary (m 4 1)-gon O,, Oy, ..., O,,
of the R-coordinate simplex in RP(m) (fig. 4 5).

In § 6 we saw that the topology of &%, is completely determined by the 1-flow
in which it meets the ¢ sphere” S=S§,; in homogeneous coordinates:

Se: {z: |%|=sup|z]|}
J¥k

22



THE TOPOLOGY OF HOLOMORPHIC FLOWS WITH SINGULARITY 23

The intersection of a leaf with S, is represented in the T-plane by a convex unbounded

polygon:
C,=éD,CC

boundary of the disc D,CC that represents the intersection with

B,={z: |z|=sup|z|}CCP(m).
J

As '.kJBk=CP(m), therefore .%JD,,=C for a “ general > leaf.
We now define the graph GR =GR (z) of a leaf of a point zeCP(m) as the union:
GR = Lk]Ck={TeC : 3k |z|=sup|z|}.
i*k

In fig. 5 we give some example of graphs.

Fic. 5

The intersection D;ND,CQC is either an interval parallel to the vector
A= 2mi(y—2) 7

23



24 C. CAMACHO, N. H. KUIPER AND J. PALIS
with end points T;; and (see (29) and fig. 6):
Toji =Ty + - 278 (h—2) ™ (31)

for some 0<7%;<oco, or a point and we put %, =o0, or empty and %, is not defined. For
cyclic successors £ and &+ 1, 7 ;4 is oo,

Let T, denote the endpoint of the infinite segment D,ND,, ; (fig. 5 and 6):

- —
——
—

D,

Fic. 6

We intersect the graph with a huge convex 2-disc which is then divided in e,=m+1
cells, and has ¢, vertices and ¢, edges, including m + 1 vertices and m + 1 edges on the
boundary of the disc. The Euler characteristic of the disc is 1=¢,—e;+¢,. In general
every vertex is on three edges: g3¢,=2¢,. Then the number of vertices is ¢, = 2m.
Among these are m— 1 vertices of GR. There are ¢, =g3m edges, of which m+1 on
the boundary of the disc and m-+1 leading to this boundary. There remain m—2
bounded edges on GR giving rise to m—2 positive numbers 7, for m—z2 specific pairs
of indices j, .. Given this set, any m—2 positive numbers 7; yield up to translation
a unique graph GR compatible with A :D;nD, is parallel to 7\3-,‘. By admitting
values 7;=o0 for some of these index pairs we cover also the cases where more than
three edges meet in a vertex.
For z such that z=+o for all j, we know that in its leaf:

Bl (=1 for k=o,...,m

2y
and we define the argument ¢, by:

(%) (T) = ¢

k

Lemma 5 a. — Let A be given. The leaf of 26 = l,.cJSk, z*0 V j, determines and is

determined by the set of *“ coordinates {7y}, a set of m— 2 non negative numbers, for a specific set of
index pairs (j, k), and the m arguments ¢; mod 2w, j=o, ..., m—1.
That the leaf z determines the ¢ coordinates” is clear. Now suppose the
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“ coordinates ” given. Given A, the numbers %, for a given % determine the convex
disc D, but for translations. We attach D, to D, ., along the common infinite edge
for k=o,1,...,m—1. The finite sides fit also. We see that the m—2 numbers 7
determine the graph GR but for translations. Knowing ¢,, we know

%1 1]%,
at the point T,eGR. But in any other point TeGR we read from the formula:
(z41/7) (T) =M =WE=T0 (7, [2) (T,).

So for every point TeGR we know without ambiguity 2,/2y, 23/2y, « .., Z,/%,_1, that
is the set of non-zero homogeneous coordinates

(Zgs 215 o« os Zpy)e

If the point T is on D;nD, with vertex T,;€C, then T as well as the corresponding
point zeC™ can be characterized by 0<t<#u;, for which

T =Ty, + temi(h—n) "L (32)

For a point z for which some (at most m—2) coordinates vanish, the same
considerations apply to the remaining (at least three) non-zero coordinates, its leaf,
its graph (with less domains D,), etc. We get therefore:

Lemma 5. — Let A be given. The leaf of a point ze S = LkJSk with m' 4+ 1 (at least
three) non-zero coordinates determines and is determined by:

J()={j: z+o}
m'—2 non negative numbers %y, and m' arguments ¢, mod 2w, j, keJ(z).
Now let A, A’ be given and let 95#(A) and 85# (A’) be convex (m +4-1)-gons. Define
a 1-1 correspondence 4 : &% by the identity in terms of the  coordinates” of

lemma 5 and the coordinate ¢ of (32) on D;nD, outside the “ edges”, and by the
ordinary identity map on O,0,n <.

End of the proof. — Clearly & maps S,C.% onto itself. It is not exactly the same
as the map % which we defined on S in § 6, but the same continuity arguments remain
valid. So %|S, is a homeomorphism and it extends to a leaf preserving homeomorphism
of B, onto itself for each £ (cone). This combines into the required homeomorphism:

kh: (CP(m), #(A)) - (CP(m), F(A)).

In case B of theorem II, we let (\,=)2A,=o0 bein the interior of (A, ..., 7,)
and we proceed as above. C, is a convex polygon, unbounded for k+o0, bounded
or empty in general in case £#=o0. The graph GR(z) of a leaf may therefore contain

one cycle whose numbers #; then necessarily obey:
~/ _1 _—
%‘”j, N t=o.

Apart from some special care concerning the case where C, is empty, the proof of II B
follows the above pattern.

25
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III. — NON LINEAR FLOWS NEAR A SINGULARITY IN DIMENSION m=3g

11. A simple solution of a formal power series problem (m general).

We now start the study of the topology of a flow near a singularity at 0eC",
defined by:
dz '
— =F(2)=02+R(2)eC", zeC" (33)
dT
where F is holomorphic, F(o)=o0, o¢z2=(DF),z is the first term of the Taylor series
of F and R is the rest. We assume again for the eigenvalues of o:

itj=>NgRN, i j=1,...,m (7)
In suitable linear coordinates (83) is expressed as:

dz; .

d—’f‘=)‘j3:,'—|—<pj(21, e ), J=I1,...,m (34)

¢; is considered as a convergent power series starting with terms of degree >2:
@j(z)=§@jqzq,

where Q=(¢y, --) @), 22=2hz2...20m is of degree ||Q|l=¢1+¢+-.-+4,

N 2y, ..., 2,.

Formal power series lemma 6 (known).— There exists a unique solution in formal power series:
z=w,+ 6wy, .- w,), C= X Cowd j=I,...,m
i =+ Gy ) j ”Q“22CJQ J (35)
which transforms (34) into
2y, + b b= D et 6
aT \ W; q”j Wiy oeey Wy)s %—IIQIIZ2 QW ‘ (36)
. def
where $iq=0 mcase g=qM+...+ A, —NFO
: (37)
and Go=0 incase Jg=o.
Proof. — Substitution of (35) in (34) yields with (36):
dw; e
ﬁ'l‘zk:a—u)lc()\kwk'l' 4’k)=7\j(wj+§j)+‘9j(w1+cn ce s Wyt 8.
Substract (36) to get:
e e
%‘a_iv;)‘kwk—)‘jcj—l""’j:(?j(wl_l—cb .. )—g'a—wk% (38)
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0
As % (—ag wq) N —Nwd=38,,w?, we find the equivalent equations:
k

S (b )W = g+ )~ T (58)
Q £ Ow,

The terms on the right hand side of degree || Q ||=n do not involve coefficients of terms
of §, §;, j=1, ..., m, of degrees >n. By (37) we compute unique values Lo and ¢y
for ||Q||=n, once we know them for ||Q||<n.

The unique power series {; and {; satisfy (38). From (38) with (34) and (35)
we can deduce the equations (j=1, ...,m):

Wj+k§13—wkwk=0 for Wi=d—T—7\.-w¢-¢i-

The determinant of the coefficient matrix is near one for (w,, ..., w,) near (o, o, ..., 0),
so that (36) holds:
W;=o0, j=1,...,m

Our unique power series give solutions indeed, and lemma g is proved.

12. Holomorphic normal forms for m=3.

First normal form: Lemma 7. — If m=23g, 0€3# (A, As, Ag), (7), then there exists a
holomorphic change of coordinates (35) near 0e€GCd, transforming (34) into the (not unique)
normal form:

dw; .

ﬁz)‘jwj+wlw2w3xj’ J=1,2,3 (39)
%= (W1, Wo, w3) holomorphic near 0eC3.
Proof. — Because o€ (A, Ay, Ag), we conclude from geometry in the plane G

that if 8;,=(g:—1) M+ gahs+¢s)3, [31¢|<8 and 8>o0 small, then
q122> q2213 q321

and similarly for j=2,3. The ideal ¥ generated by the polynomial w,w,w; contains
therefore among others all polynomials #®=wfwiwf for which |3,|<3 for some j.

As in § 11 there is a formal power series solution (35) transforming (34) into (36),
but now, instead of (37), such that

Go=o0 if ¥, {(u=o0 if u¢¥ (40)

because all small divisors |8,q|<8 (in particular zero divisors) are avoided in the computation
of G from (38). In order to prove that §; is convergent near 0€C?, we use the following
notations concerning power series £. The series £ (in Siegel’s notation [£ ], see [14]) is
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obtained from & by replacing each coefficient by its absolute value. E is obtained from £
by taking all arguments equal (w,=w for j=1,...,m):

E(w) =E(w, w, ..., w).

We write (with Siegel) £< 7 to express that [£g|<|ng|=mq for all Q. Clearly if £
is convergent near 0€GC, then £ is convergent near oeC™, and then £ is convergent
near oeC".

From (38) and |8;q|>8 we obtain:

_ - _ ot _
8Cj<ZSjQICjQ‘wQ+4)<(Pj(w1+c1a )+2—tﬂ¢‘k (41)
Q k awk

The power series at the extreme left has no terms in the ideal ¥'. So we can delete
the last part in the form at extreme right which is in ¥, and obtain:

3 < (wy+Cys wa+ Gy, - - 2)-
Hence 2j‘,§<8—1§:@(w+fl+...+Em,w+il+...+im, ). (42)
We define a new power series u=u(w)= T 4" by:

wu =2, (43)

Recall that Xo,(w, ..., w,) is given, convergent near o, and it begins with terms
i

of degree >2. Therefore Ay>0 and A>o0 exist such that:

2
Ayw

B <R (44)
(42), (43) and (44) yield
Ay(w + wu)?
S A+ )
A, 2 e )
1 —Zg(;r:)u) =Aow(r +u)° Z (Aw(x +u))" (45)

We compare (45) with the equation for the power series »(w)= X y,w", v(0o)=o0:
n=1

_ Agw(1+0)?

= Aw(i+9) +v)=Aow(1 +v)2,§0(Aw(r + o))k (46)

v(w) is unique and convergent near 0o€C because

dv
= (El;)w=0=A0=|=0.

By choosing A,>o0 big enough we find o,>u,>0 for the first non zero coefficient u,
of u. Then by induction with respect to » while reading and comparing (45) and (46)
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we obtain the majoration 2,>4,>0 for all n. Then u, §, § and § are convergent
near o and lemma g is proved.
We push the normalisation further in the

Second normal form: Lemma 8. — With the conditions of lemma 7 there exists a holomorphic
change of coordinates (35) near 0eGC® iransforming (34) into the normal form

dw; .
ﬁz)\jwj(l +wwawsy)  J=1,2,3. (47)

Proof. — By lemma % we can assume for (34):

dz;

JT=N4Te %Y, =123 (48)
Again we formally solve:
0%
%:(SjQCjQ’Fq‘jQ)wQ:‘Pj(wl‘l‘th wy+ 8, )+%5;k & (35)
3

but now instead of (37) or (40) we claim
Go=o0 if uPe¥;, {Yg=o if ud¢¥,
where W;CY is the ideal generated by 72z 2,2;. We can solve because |34|>3>0
for wqé‘l"j!
By induction with respect to |[Q||=7 we see that the formal power series {;

belongs to ¥, and for all Q, by construction, fq#+0 implies that '?.;-Q w¥¢¥;. For j=1
for example we can therefore write

Ci=w, w3 E05(w,, wy)

by, = 10,0, Wy w3 Y, (W, W, W)

oC.
and consequently for k=1, 2, 3, % . has a factor www? and belongs to the ideal ¥2.
q y 2w 1Wa Wy g
i

d
So does 8_1%% for j=2,3. The power series {; has no terms in ¥?*>%¥;. We can
k

then repeat the arguments with the equations (41)-(46), neglecting terms in ¥?, and
conclude the convergence of §; j=1,2,3 near 0eC’ Lemma 10 is proved.

13. Local stability of codimension two.

Theorem III. — The foliation F (F) defined by a holomorphic vector field F(z) near 0eC3,
with singularity at o such that the set of eigenvalues {\y, Ay, A3} of (Df)o=0 is in the Siegel
domain, is locally homeomorphic to the foliation of its linear part F (6). The invariant A (=n)
of chapter I characterises the topology completely. F (F) is locally stable of codimension two.
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By lemma 8 we can assume (34) in the form

dz; .
ﬁ:)\jzj(l—l—zl@zaxj), J=1,2,3. (49)

The three coordinate planes are invariant and they already contain linear vector fields.
There exist 0<gy<1 and K>o such that y;(z, 2,, 2;) is convergent and |[yx|<K
for sup;|z|<e,. Assume ¢K<1. By substituting &’z for z, j=1, 2,3 with 0<e<¢,,
we obtain new equations instead of (49) with new functions y; for which we can assume
convergence in the “ unit ball” sup;|%|<1 and moreover:

‘Xj|<€8' (50)
We will first construct a homeomorphism £, of S onto S, carrying the leaves of
F(F)=F(F)NnS onto those of %,(c)=%(5)NS, and which is the identity on
V,=VnS, where
V={z: 2,22;=0}.
Our strategy will be to let &, preserve the strata of S and to let %; be identity on
{z: |u]=|z|=1} (see fig. 7).
The first part of theorem III will then follow from general considerations, and

the last part is a consequence of theorem 1.
For later estimation purposes we write the unit disc in C:

0={ucC: |u|<1} (51)

and f(0)={f(u) : ue6} for any function f of ueC.
We assume arg %, <arg A,<arg rg<argd,;+2m so that with ij=2ni7\j‘ :
ReaA >0,  Re i, <o. (52)

The leaves of # (o) are transversal to S except at the points where |2;| = |2;| = 23] =1.
The same holds for the slightly perturbed & (F). Any 1-leaf in S meets |z3|=|z|=1
in at most one point z(Ty)=(2,(T,), 25(Ty), 235(Ty)) with parameter value T, say;
it meets |z,|=|z|=1 in 2(Ty); it meets |z,|=|z3|=1 in z(T,). This will be made
clear in the following calculations. We start at ¢t=o0 from a point:

2(Ty) = (61, é2~N, &%), N>o. (53)
We shall perform the calculations only in the special case «;=oa,=a3=0, hence

z(T0)=(I: e-N> 1). (53’)

The general case (53) is formally but not essentially more complicated. We follow
its 1-leaf in S with respect to & (F) in |z|=1, substitute

2= >0 (54)

in (49), and find:

dlnzl_)\( n ) )d_T
a =M\T T 2312231 i’

2Tl =
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If >0 is small enough, depending only on 2, A;, A3, then (see (50) and (51))

dT . ~ .

O =31t 1)~ R € sup a7l (55)
dT .

"d—t— E)\l + 870. (56)

The sup is here over the segment from T, to T, where, as we see below in (57), |2;]
increases up toits value 1 at T, at which weset ¢=%;. Similarly |z;| decreases between T,
and T;. Inthe T-plane the curve from T to T, is for small € almost parallel to X, by (56).
See fig. 7.

EA T,

\ ! T,

/ S~ )\1
[ 2]

Fic. 7

Next we use (55) and the equation (49) for z, to get, for small £>o:

dln z dT _ . ~
7 P= (14 21222 Xz)z ENghy + ¥ SuPp | 21 25 25 [0 C Myhy €56, (57)

We integrate:

In zye— N 4 (Aghy 4 € sup | 2; 2,23 0) 1C — N 4 (Ah, +€%0) ¢ (58)

~ de!

In|zy| <—N+(Re 7\27\1+€6)t=f_N+Y3t, Y3>0. (59)
Analogously for z;:

In zye(Agh; + € sup |2, 2,25 0) 1C (AR, +€°0) ¢ (60)

In|z7g| < (Re Aghy + &)t = —ypt, 750, (61)

From (59) and (61) it follows that
Yo In|zy| 4 v5In|z5| <—7,N.
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As In|z|=1, In|z|<o, In|z|<o:
ln|z122z3|=ln]z2|+ln|z3[<max(—1, ——) . d_if—nN
sup |2y 2525 | e~ YN, (62)
|25(Ty)| =1 for ¢=7;, and substituting (62) in (58) gives an estimate for 7;:
0 =In|zy(T;)|[e— N+ (Re Ak + *e~ "¥0) 71 C— N -+ Re Aghy (1 + %~ N 0) 7.
Then for ¢ small enough:

oN
Re A2,

N

hence — =
Re a2

< m <&fe N Re M W< etNe v, (63)

The corresponding answer for a 1-leaf of & (c) starting at the same point
2(Tg)=2(To)=(1, 7%, 1),
is obtained by putting e=o0. We use primes for the linear case % (o):
N
=m.

~y

ny

(63")

The difference is small for large N:
|2 (W —7)| = [In 2,(Ty) —In 2{(T})| = |arg 2,(T,) —arg #(T;)|[<e*Ne~ ™. (64)
Substituting (62) and ¢=7; in (58) gives:
In zy(T;) e— N 4 (Agh; + 2~ 7N 0) %,
In 2(T}) = —N 2\, 77
Hence |In z,(Ty) —1In 2, (T})| =| arg z5(T;) —arg 2 (T;)|< Ne ¥, (66)
Substituting (62) and ¢=7; in (60) gives:
In z,(T,) (Mg, 4t~ TN 0) 7,
In z(T;) =AM 77 = Naghy /Re Ak,
Hence |In z3(T,) —In 2;(T)| < Ne~¥¥, (68)
We conclude from (64), (66) and (68) that the mapping 2z(T,)—2'(T;) of
Sn{z: |z|=|z|=1, z+*o}
onto itself tends to the identity map in z3=o (for N—oo). Thisisequally true starting
from (53) instead of (53’). The same calculations for the 1-leaf segments T, T, in
| 25| =1 give the analogous conclusions for the mapping z(Ty)—2'{(T3).
We now define the map
hy=(8, #,(F)) = (S, #1(0))
by the following conditions:
a) The restriction of %, to the union V={z : 22,2, =0} of the Poincaré leaves

is the identity.
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b) hy leaves invariant each stratum of the stratification of S by |z|=1, j=1, 2, 3.
¢) On the stratum |2,| = [23| =1, £, is the identity map. In our notation ¢) means
hy(2(Ty))=2"(Tg)=2(T,). As every Siegel 1-leaf in S meets |z5|=|2,|=1, ¢) determines
Sor each Siegel F,(F)-leaf its image F1(c)-leaf. In view of ) we have by intersection:
WT))=7(T) i |al=lal=1, z+o at «(T)).
This agrees continuously with the identity at z;=o0 (see ¢)). Similarly for
hy(2(Tg)) =2'(T3).

d) A point on the edge T, T, of an &, (F)-leaf with total z-argument-length 2=,
is determined by a rotation number ¢ 0<:<7;, if we start from 2(T,), or 7—¢t if
we start from z(T,) (see (54)). It is analogous for the edges T, T, and T, T, by cyclic
permutation of 1, 2 and §=o0. The same applies to the linear case & (o), which we
continue to distinguish in the notation by primes. The action of %, on the points of
an % (F)-leaf onto its image &,(s)-leaf, is given by proportional rotation numbers:

6’/6=”7,'/%3, jZIaQ’ 3.
For n—o these quotients converge to 1. (64) tells this for j=1. For j=3g it follows
by studying T,T, instead of T,T,. The value 2n7, is the z,-argument difference
between z(T,) and z(T,), which can be read also going along two edges via z(T;). The
formulas then tell again that also 7, /7%, tends to 1 for N-—oo0.

If we keep t=¢; or %—¢ fixed for some j and let N go to co, then the map of
the initial point in the &, (F)-leaf converges to the identity map of a point of a Poincaré-
Z,(F)-leaf in V. Therefore &, agrees continuously with the identity map on V, it is
continuous as is its inverse. Then h, is the desired homeomorphism.

There remains to define with the help of #; a homeomorphism % : #(F)—% (o)
near 0eC® Let U, be the neighborhood of V in B={z:sup,|z|<1} that is the
union of all #(F)-leaves in B at euclidean distance (||z|[?=2X|z[?) smaller than

J

some p with O<p<; from 0eC?® The restriction & (F)|U, is transversal to S and

to S,={z:[|z||=7} for v>p. Recall that in each Siegel leaf of # (o) the function ||z||
has exactly one critical point, where ||z|| has a minimum, and the critical points form
together a manifold M. These two properties are stable under our small perturbations
and hold equally well for #(F). This can be seen also by a calculation of dX 2% —=o.
Call the manifold of nearest Siegel leaf points MF. First observe that:

(Upn{z: |]zl|>%})

is homeomorphic (%) to Z,(F)x [2, I]. Extend this homeomorphism with the help

F(F)

of the ||z||-gradient lines in each & (F)-leaf in U, to obtain a homeomorphism:
ZF(F)|(U\MFuUo0) L F(F)X(o, 1].
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The union of the Siegel leaves in this foliation is a trivial 2-disc fibration with
base space U,nM" from which a cross-section U,nMF is deleted. We recover it
by compactifying each Siegel-leaf with one point, and we recover F(F)|U, by
compactifying the space so obtained with one more point, the origin 0eC3 The
foliation & (F)|U, of #(F) near o is now up to topological equivalence completely
determined by & (F)|(U,NS), and the same holds for # (o). Therefore the existence
of h, carries with itself the existence of a homeomorphism of #(F)|U, onto & (s)|U,
where U is obtained from ¢ in the same way as U, from F. Theorem III is proved.

v

14. Holomorphic reduction to normal forms, m>3.

We terminate this paper with the necessary preparation for a proof (that we hope
to give later) of the stability of codimension 2m— 4 for Siegel domain type singularities
of vector fields on G™, m>3 (see footnote (*) on page 8).

Theorem (IV.x). — Given, as before, near oeC™, the equations
dz dz

ﬁ=F : ;l—vfz.;‘jzj"-q)j: i*j$7\z¢R7‘j5 i,j=l, ceeym (7)’ (34)

we can assume after a suitable holomorphic change of coordinates that the union V (F) of the Poincaré
leaves and the axes equals the unperturbed set

V(e)=V={z: if {j1, ..,J,}={j : 540}, thm oA, ..., )}

This follows from the reduction to normal form:

Theorem (IV.2). — Assuming (7), (34), there is a holomorphic change of coordinates

Z=w;+G(wy, ..., w,) (35)
transforming (34) into

dw.

;I%=)\jwj+q)j+)(.j (69)

such that $;(w,, ..., w,) is in ¥, the ideal in the ring of convergent power series generated by
the monomials w;w,w, for which o€t (A, N, N),

4‘; 063?’(7\;,7\,‘,7\() (et lCﬁM’

and ¥;(wy, ..., w,) is a sum of scalar multiples of terms, finite in number,
W=wluwh, ..., wl, ¢>o0,...,¢>0,
Jor whick 8 is a Poincaré zero divisor:

Sq=aq1N,t- .-+ N —N=0 (70)
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and there is an open half plane for some weR:
{*eC : Re“2>0} (71)
to which A, ..., N, and }; belong.

Corollary. — The theorem of Dulac [4]. This is the special Poincaré domain case
0¢H (A, ..., Ny,), for which ¥ is empty, hence ¢;=o0 in (69g).

Proof of VCV(F) in theorem (IV.1), from (IV.2).

We shall assume that the vector field F has the form (69) with the condition of
theorem (IV.2). The set V is a finite union of maximal linear subspaces, and we first
prove that any one of them, say V,, is invariant under F. There is no loss of generality
in assuming that V, is defined by equations

Vo: 2 41=...=2,=0 (72)
for some r, which implies that, for some o,

ne{h: Reéd®ra>o0}, for  1<i<r (73)
We have to prove that, on V,, (72) implies that

%=0 for j>r41.
To see this substitute (72) in the right hand side of:

dz; .

ﬁ=7\jzj+‘pj+)(ja J2r+1.

Then 2jz;=0; ¢;=o0 because the definition of ¥ implies that every term in {; contains
one of the z for which Re ¢, <o, thatis ¢£>r and z=o0; y;=o0 because if it has
a nonzero term ¢z%=czft...z¥ then Re(e“3g) =Re(d“(g A +...+ g1 —N))>0
and 3 cannot be zero. Then the left hand side vanishes as well.

The nonlinear vector field F defines in the invariant part (73) of V a Poincaré
domain vector field near o. So this part, like any part near o of V, lies in V(F) and:

VCV(F).
We do not give the proof here of the stronger assertion:
V=V(F)

which is an elaborate calculation.

Proof of theorem (IV.2). — As in § 11 we can obtain a (unique) formal solution
for ¢; from equations (38) but now with the conditions

Go=o0 if w¥e¥ or if 3q=0,

%ig =0 if «?e? orif SjQ=l=o.

We have to prove that §; is convergent near 0eC™ for j=1,...,m.
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We first prove the

Lemma 9. — There exist ny>0 and 8>o0 such that if
wig¥,  dp+o, [[Qll=q+.. +gn=m,
then |501>5.11Q1.

As wQ=qu11. wfg¥, ¢>o, ..., ¢,>0, we conclude that A, ..., A, are contained
in some open half plane {A:Ree“r>o0}. If A is not in that half plane, hence
Re ¢)\<o, then:

|30|>Re e85 =Re (g, +- - - + ¢, 5, —N)
>Red(gh,+---+¢N,)
>[|Q|| min(Re €°n, ..., Re é)) =[|Q]|3,>o0.
If 3 is in that half plane, hence Re ) =C,>o0, then for ||Q]|>n, large:
|3g]>Re 6°8q=Re (g, + . . . +¢,2;) —Re 6N

21— G 11 (3.~22).

We need to consider only a finite number of half planes, that is of values of w, and
can choose 3>o0 small and #z, big to satisfy lemma q.

We make a preliminary change of coordinates by finite polynomials, to arrange
that {;g will be o for ||Q||<n,, below. We can do this because we can do it in formal
finite power series.

Next we proceed as in § 12. In order to prove that g is convergent, it suffices
to prove the convergence of ZJ=%} |l -w® hence of ij=n§2 an” (where Ej is defined
as in § 12, which means E,-,,= 2 |%ql), hence of u=u(w) defined by (the factor n
will be needed below!): lati=n

Z (74)

wu=2
j

n

(With respect to notation we recall that: %® means w®...wfm, whereas »" means
the n-th power of one variable w.)

For the calculation to follow we also observe that if we let w,=w,...=w,=uw,
HQ|l=¢1+-.-+¢,=n, then whwf... wm=w" and
/) 0 ow, ow"
E_ iz, . . win =Z— witwlz . win _.._k.._: __nw”—'l
% awk(wl w2 m) % awk( 1 "2 m aw aw (75)

For example:

3{1 wQ =
5 (2—&—)= e,
lQl[=n\% Wt 20

ow,
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We study the solutions of (38) modified according to (69):
oC
%quCjQwQ-i—tbj-i- %= 901 +Ce5 oy Wy +Cm)_§3_l%k("pk+)(k)-

We replace coefficients of all formal power series in this equation by their absolute values,
delete all terms of the ideal ¥ that we see, use the lemma, and apply obvious majorations
to obtain (compare § 11):

STIQII- Gl -u* < 23T | "
— = - aC; _
e R AR DA 0P ARNNCD
Y

We sum (76) over j, substitute w;=w,=...=w,=uw, use (74) and (75) and apply
considerable majorations. We also use that, for some A;>0 and A>o,
Ay w?
1—Aw’

325 w) <

e T, w
and: EL—C’=Z——C’"—w=wu.w"l=u.
ik 0w, jn OW

Then we find:
Ag(w + wu)®

w < 1—A(w + wu)

+u(S T/
(77)
Ayw(t +u)?

t < m'l‘u(% X/ Sw).

X %, is a (finite) polynomial in w, that starts with terms of degree >2. Now compare (77)
k

@
with the equation for v=Xy,w":
1

_ Aw(1+40)?

Ry +o(Z7/5w) (78)

which has a convergent solution near w=o0, because

dv
— =A .
(dw)w=0 0=’=0

For A,>o0 big enough we obtain:
0,>u,, r>n,
where %, is the first nonzero term of the power series u.
Then by comparing (77) and (78) we find by induction on =z :0<u,<y,, and

also # is convergent. Then ¢ (j=1,...,m) is convergent, and theorem (IV.2)
is proved.
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