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INTEGRAL REPRESENTATION
OF MEASURES ASSOCIATED WITH A FOLIATION

by DAVID RUELLE

To Jean Leray

Let M be a compact differentiable manifold, y a foliation of codimension k, and
y the set of open submanifolds of dimension k transversal to ^'. A transverse measure p
for y is a collection of real measures p^ on the Se^, such that these measures correspond
to each other by the canonical isomorphisms defined by ^'. For a discussion of these notions,
and applications, see Plante [8], Ruelle and Sullivan [io], Schwartzmann [n], Edwards,
Millett and Sullivan [6], Sullivan [14], Garnett [7]. We note that we can, as in [io],
assume that y is only a partial foliation of M, and that the orientation assumptions
of [io] are unnecessary here.

We generalize the notion of transverse measure by introducing measures associated
with a cocycle. We call cocycle a family [f^) indexed by the canonical isomorphisms,
such that:

( a ) If T maps See99 onto S'e<99, then j .̂ is a continuous function on 2/ with
strictly positive real values.

( b ) If T' maps S' onto S", then:
/^=^.(/,OT'-1).

We say that a collection p==(ps) of real measures on the 2e^ is a measure associated
with the cocycle (^), or is a {f^)-measure, if the image of the measure p^ by T : S-^2'
is ^r.ps" Otherwise stated:

. d^/,.==—,—— a.e.
^

for each local isomorphism T : S->S'. The transverse measures are those associated
with the trivial cocycle (ij. The notion of (^.)-measure occurs naturally in the work
of Gonnes [5]; see also Bowen [i].

The (^-measures form a real vector space / . We call vague topology the
topology defined on / by the semi-norms:

pHps(?)l
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128 D A V I D R U E L L E

where cp is a real continuous function with compact support in See99. We write p^o
if p^o for all Se^. With these definitions^ is an ordered topological vector space.

Choose S e y and a compact set K C S. There is a map a^ of^ in the space ^(K)*
of measures on K, such that a^p is the restriction of p^ to K. The map oc^ is linear
and order-preserving.

Lemma i. — Let S, K he such that each leaf of 3F intersects the interior ofK. in 2. Then
(XK ^ an isomorphism of the ordered vector space / onto a subspace of ^(K)* closed for the vague
topology.

Remember that the vague topology is the ^-topology of ^(K)* as dual of the
space ^(K) of real continuous functions on K. Note that a^ need not be continuous for
the vague topologies.

To prove the lemma we remark that ifK' is compact in S/Ge^, there are finitely
many open L^ in S' covering K', and canonical isomorphisms T, : L^ into S such that
the closure of T^L^ lies in the interior of K. Therefore, using a partition of unity, and
the fact that p is associated with the cocycle (^.), we obtain an order preserving map TT
from the continuous functions on 2V with support in K' to the continuous functions
on S with support in K, such that ps'(<p)=Ps(^9) := :(aKp) (7T?)- Thus a^ is injective,
and p^o if and only if a^p^o. Furthermore, if a^p tends to a limit vaguely, a^'p
also converges vaguely, hence p converges vaguely, and the limit is obviously associated
with the cocycle (^).

Lemma 2. — Let ^ be a linear subspace of the space ^(K)* of real measures on the compact
set K. If pe^ implies [p[e^, then the cone .̂ of positive measures in ^ is simplicial. If
p, p' belong to distinct extremal generatrices of the cone ^_, they are disjoint measures.

Remember that a cone C in a real vector space is simplicial if the order that it
defines on itself is a lattice (any two points have a min and a max). The easy proof
of Lemma 2 is left to the reader.

Theorem. — The cone C of positive elements of/ is simplicial. If p, p' belong to distinct
extremal generatrices of G, then the measures p^, p^ are disjoint for all 2 e y.

In view of Lemma i, the theorem immediately follows from Lemma 2 applied
to ^=0^.

The cone G is closed and has a basis B which is convex, compact, and metrizable.
For instance, if S, K are as in Lemma i, let 9 have compact support in S, 9^0, and
(p(^)==i if ^eK; one can take:

B^P6./-1 P^° and P^)"1}-

According to Choquet's theory [4], the theorem implies that each p^o has a unique
integral representation in terms of extremal elements of B:

P-J^pW
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INTEGRAL REPRESENTATION OF MEASURES ASSOCIATED WITH A FOLIATION 129

where m^ is carried by the set of extremal points of B. The arbitrariness in the choice
ofB corresponds to the fact that there is no natural normalization of positive (^)-measures,
but all choices ofB give equivalent decompositions. If p is an extremal point of some B
[i.e. if p 4= o and p belongs to an extremal generatrix ofG) we say that p is a pure {f^-measure
(respectively a pure transverse measure in the case of the trivial cocycle). The theorem
gives thus a unique decomposition of (^-measures into pure (^)-measures, and states
that two pure (j^)-measures are either proportional or disjoint (1).

Given a positive (/^-measure p, we let e^p be the algebra of classes of bounded
real functions on M which are constant on leaves of ^r, and such that their restriction
to each 2;Gc97 is p^-measurable. Two functions are in the same class if their restrictions
to each See97 are equal p^-almost everywhere.

Proposition. — A positive (^) -measure p is pure if and only if ̂  is trivial (consisting
of the constant functions).

If p is not pure, let p==p l +p 2 with non proportional (j^)-measures p1, p^o.
Choose S, K as in Lemma i, and let G'^ps—in^p^, p|^). There are ps measurable
functions ^1,^2^° such that a'==^p^. We have ^-(-(j^o (because

01+CT2=SUp(p^,p^+o)

and ^.^2=0 a.e. (because c1, a2 are disjoint). Choosing some Riemann metric d
on the leaves of ^r, let:

^{x)=^mm{^)^eK,d{x^n}.

Clearly Y1, V2 belong to e^ and are not proportional, so that e^p is non trivial.
Conversely, if j^p is non trivial, it is immediate that p is not pure.

Interpretation of the decomposition. — Let h be a diffeomorphism of a compact
manifold B, and y be the foliation by the orbits of the suspension of h. We identify B
with a submanifold of codimension i of M, transverse to y. The transverse measures
of y correspond then to the A-invariant measures on B. The pure transverse measures
correspond to the A-ergodic measures, and the decomposition into pure transverse measures
corresponds to the ergodic decomposition. The integral representation of positive
{f^) -measures appears thus as an extension of ergodic theory. A different, deeper,
relation is with the theory of Gibbs states in statistical mechanics, as discussed in the
following example.

Example. — Let AeSLJZ) be hyperbolic, i.e. the spectrum of A is disjoint from
[z : \ z | == i }. Let Vs (respectively V") be the subspace of V^ associated with the eigen-
values less than i (respectively larger than i) in absolute value. We call A the map

(1) For cases where there is only one pure (/^)-measure, see Bowen and Marcus [2], and also the Example
below.
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^o D A V I D R U E L L E

induced by A on T^R^Z^ and W8, W^ the images of Vs, V^ in T. It is readily
seen that G^W'nW" is a ^-generator subgroup ofT", G is dense in T1 because W5,
W" are dense.

Choose a-^, ..., ^eR" such that their images in T" are generators of G. Write
^=(^1? • • - 5 ̂ 5 take x=={x-^, . . ., ArJeR^ and define:

^-{(^i+S^ •••^n+pA^i, ...^JeR2': ^ ...,^eR}.

The images F, of the F, in M^T^xT^ constitute a codimension 72 foliation of M,
with holonomy group G with respect to the Section T^T^o}. We shall define
functions f^ : T^R when reG, i.e. for the canonical isomorphisms of the section T1.
It is easy to extend this definition to that of a cocycle for ^r.

Let 9 be a real Holder continuous function on T\ We let:

/,M=exp S ((p(AfcT-^)-9(A^)).
fc= — 00

There is one and only one measure p associated with this cocycle. In fact:
I m

PT î̂ ^exp _S <p(A^))^
^w I(;— —w

where dx is Haar measure on T^ and N^ a normalizing factor. These statements have
their origin in a relation between statistical mechanics and differentiable dynamical
systems introduced by Sinai: p^n is a Gibbs state for the function <p (see Sinai [13],
Gapocaccia [3], Ruelle [9], Chapter 7). We notice that if 9=0 then ^n=dx, and
uniqueness follows from the fact that G is a dense subgroup of T .̂ For the general
case the reader is referred to the papers quoted above.

In view of the frequent non-uniqueness of Gibbs states we conjecture that, for
the foliation discussed here, there exist cocycles with several non proportional associated
measures.

Invariance under a diffeomorphism. — Let g be a diffeomorphism of M pre-
serving 3F (i.e. permuting the leaves). Suppose that (/J is a cocycle compatible with g, i.e.
such that:

Jgo-cog-1 ==J'coS

This condition is for instance always satisfied by the trivial cocycle (ij.
If P^Pa) ^ a (^)-measure, then ^p=(^-is) is again a (/J-measure. This

is because:

T(^P^^)=^te-loTo^)p^xs=<?(/^^P^^)

=<?((/T<^) • P,-S) =/T- (^-S)-

Thus g / = / , and in fact ^G=C, where G is the cone of positive measures in / .
Suppose ^+o, and let B be a compact basis of C. We have B = G n { p : X(p )== i}
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INTEGRAL REPRESENTATION OF MEASURES ASSOCIATED WITH A FOLIATION 131

for some continuous linear functional p on / . The map pl-^p/X(^p) has a fixed
point poeB. Therefore ^po^po, where ^o=^(<?Po)>o. and \ is in general different
from i.

Consider now the case of the trivial cocycle, i.e. of transverse measures. Under
suitable conditions, discussed in [10], [14], \ is an eigenvalue of the action of g on
cohomology, and the corresponding class is associated with a geometric current determined
by po. If the class is nonzero, \o is thus an algebraic number (in fact, a unit in the ring
of algebraic integers).

Question: under what conditions do the numbers XQ associated with the transverse
measures of afoliation form a finite set of algebraic numbers? A. Gonnes has pointed
out to me that this is not always the case.

Diffeomorphisms which expand leaves. — Let the foliation ̂ "contain a leaf with
polynomial growth (i.e. the Riemann volume of a ball B(A:, r) C L increases polynomially
with its radius r) then Plante [8] has shown that ^ has a transverse measure p+o with
support in the closure of L.

If the diffeomorphism g preserves y and expands the leaves [i.e. multiplies
sufficiently small distances on leaves, with respect to some Riemann metric, by a factor
>C>i), then the leaves have polynomial growth. This was proved by Sullivan and
Williams [15]; see also Shub [12]. In particular y has a transverse measure p4=o,
and by the preceding Section we may assume that ^po==^oPo- We recover thus a result
stated in another context by Sullivan (see [14], III, 13): if the dzffeomorphisms g preserves ̂
and expands the leaves., there is a transverse measure po=t=o such that <^po=^oPo-

Acknowledgements. — My thanks are due to Dennis Sullivan who convinced
me that measures associated with a foliation are interesting, and to Alain Connes who
explained to me his beautiful recent results.
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