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MODULAR CURVES AND THE EISENSTEIN IDEAL
by B. MAZUR (1)

INTRODUCTION

Much current and past work on elliptic curves over number fields fits into this
general program: Given a number field K and a subgroup H of GL^(Z.)== IlGL^Z )P v

classify all elliptic curves E/^ whose associated Galois representation on torsion points
maps Gal(K/K) into HCGL^Z). By a theorem of Serre [67], if we ignore elliptic
curves with complex multiplication, we may take H to be a subgroup of finite index.

This program includes the problems of classifying elliptic curves over K with
a point of given order N in its Mordell-Weil group over K, or with a cyclic subgroup
of order N rational over K (equivalently: possessing a K-rational N-isogeny). These
last two problems may be rephrased in diophantine terms: Find the K-rational points
of the modular curves Xi(N) and Xo(N) (cf. I, § i).

In this paper we study these diophantine questions mainly for K=Q^. In par-
ticular we shall determine the (Q-) rational points of Xi(N) for all N. The precise
nature of our results (which require close control of a certain part of the Mordell-Weil
group of J=Jo(N), the jacobian of Xg(N) when N is a prime number) may indeed
be peculiar to the ground field Q,. There are other reasons why this ground field may
be a reasonable one on which to focus. For example, the recent conjecture of Weil
would have every elliptic curve over Q^ obtainable as a quotient ofJo(N) for some N.
Thus, a detailed analysis of the Mordell-Weil groups of these jacobians may be relevant
to a systematic diophantine theory for elliptic curves over Q^.

We shall now describe the main arithmetic results of this paper (2).

Theorem (i) (conjecture 2 of Ogg [49]). — Let N^5 he a prime number, and

% == numerator |———). The torsion subgroup of the Mordell-Weil group ofJ is a cyclic group
\ I2 /

of order n, generated by the linear equivalence class of the difference of the two cusps (o)—(oo)
(chap. Ill, (1.2)).

(1) Some of the work for this paper was done at the Institut des Hautes etudes scientifiques, whose warm
hospitality I greatly appreciate. It was also partially supported by a grant from the National Science Foundation.

(2) See also [36], [38] which give surveys of these results.
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34 B. M A Z U R

Control of the 2-torsion part of this Mordell-Weil group presents special difficulties.
Ogg has made use of theorem i to establish, by an elegant argument, that for prime
numbers N such that the genus of Xo(N) is >,2 [i.e. N^23), the only automorphisms
of the curve X()(N) (defined over C) are the identity and the canonical involution w,
except when N=37 [51].

Ogg had also conjectured the precise structure of the maximal torsion sub-Galois
module ofj which is isomorphic to a sub-Galois module of G^:

Theorem (2) (conjecture 2 (twisted) of Ogg [49]). — The maximal [L-type group
(chap. I, § 3) is the Shimura subgroup (chap. II, § n) which is cyclic of order n.

Despite their " dual5? appearance, theorem 2 lies somewhat deeper than theorem i.
Decomposing the jacobian J by means of the canonical involution w, we may

consider the exact sequence o->J+-^J-^J~->o where J+=(i+w).J. One finds a
markedly different behavior in the Mordell-Weil groups ofj+ and J~ (as is predictable
by the Birch-Swinnerton-Dyer conjectures).

Theorem (3). — The Mordell-Weil group o/J+ is a free abelian group of positive rank,
provided ^=dimJ+>o (i.e. N^73 or N=37, 43, 53, 6i, 67) (chap. Ill, (2.8)).

As for the minus part of the jacobian, a quotient JofJ is constructed (chap. II,
(10.4)), the Eisenstein quotient. It is shown that J is actually a quotient ofj~ (chap. II,
(17.10)), and its Mordell-Weil group is computed:

Theorem (4). — The natural map J-^J induces an isomorphism of the cyclic group of
order n generated by the linear equivalence class of (o)—(oo) onto the Mordell-Weil group of J.
We have: J(%)=Z/^ (chap. Ill, (3 .1)) .

Since n>i whenever the genus of X()(N) is >o, it follows from theorem 4 that
J is nontrivial whenever J is, and one can obtain bounds on the dimension of simple
factors ofj (chap. Ill, (5.2)). Here is a consequence, which is stated explicitly only
because one has, at present, no other way of producing such examples:

Theorem (5). — There are absolutely simple abelian varieties of arbitrarily high dimension,
defined over %, whose Mordell-Weil groups are finite (chap. Ill, (5.3)).

Using theorem 4, one obtains:

Theorem (6). — Let N be a prime number such that X()(N) has positive genus
(i.e. N=)=2, 3, 5, 7, and 13). Then Xo(N) has only a finite number of rational points over Q^
(chap. Ill, (4.1)).

One obtains theorem 6 from theorem 4 as follows: since the image of Xo(N) in J
generates the nontrivial group variety J, it follows that X()(N) maps in a finite-to-one
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MODULAR CURVES AND THE EISENSTEIN IDEAL 35

manner to J. Finiteness of the Mordell-Weil group ofj then implies finiteness of the
set of rational points of Xo(N).

The purely qualitative result (finiteness ofJ(QJ) is comparatively easy to obtain.
It uses extremely little modular information, and in an earlier write-up I collected the
necessary input to its proof in a few simple axioms. To follow the proof of theorem 6,
one need only read these sections: chap. I, § i; chap. II, §§ 6, 8.10, prop. (14.1) and
chap. Ill, § 3. See also the outline given in [39].

To be sure, the assertion of mere finiteness is not all that is wanted. One expects,
in fact, that the known list of rational points on Xo(N) (all N) exhausts the totality of
rational points, and in particular that the only rational points of Xg(N) for N any
integer > 163 are the two cusps (o) and (oo) [49].

In this direction, we prove the following result, conjectured by Ogg (1):

Theorem (7) (conjecture i of Ogg [49]). — Let m be an integer such that the genus
of Xi(77z) is greater than zero (i.e. m= 11 or m^ 13). Then the only rational points of X^m)
are the rational cusps (III, (5.3)).

This uses results of Kubert concerning the rational points of X^m) for low values
of composite numbers m [27]. Equivalently:

Theorem (7'). — Let an elliptic curve over ^possess a point of order m<+oo, rational
over Q^. Then m^io or 771=12.

This result may be used to provide a complete determination of the possible torsion
subgroups of Mordell-Weil groups of elliptic curves over Q. Namely:

Theorem (8). — Let 0 be the torsion subgroup of the Mordell-Weil group of an elliptic
curve defined over Q^. Then 0 is isomorphic to one of the following 15 groups:

Z/TTI.Z for m^io or m==i2
or: (Z/2.Z)x(Z/2v.Z) for v^4.

(III? (5 - 1 ) - Sy [27] theorems 7 and 8 are implied by theorem 7 for prime values of
772^23. See also the discussion of this problem in [49].)

Since theorems 7 and 8 may be of interest to readers who do not wish to enter
into the detailed study of the Eisenstein quotient J, I have tried to present the proof
of these theorems in as self-contained a manner as possible. For their complete proof
one needs to know:

a ) J(QJ ls a torsion group (see discussion after theorem 6 above) and
b) the cusp (o)—(oo) does not project to zero in J if the genus ofXo(N) is greater

than zero (which is easy).

(1) Demjanenko has published [12] a proof of the following assertion: (?) For any number field k (and, in
particular, for k == Q), there is an integer m(k) such that X^w) has no noncuspidal points rational over k, if m^s. m (k].
However, the proof does not seem to be complete. See the discussion of this in (Math. Reviews, 44, 2755) and in [27].
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36 B. M A Z U R

One then need only read § 5 of chapter III.
If J^CGL^F^) is any subgroup such that detJ^^F^ there is a projective

curve X .̂ over Q^ parametrizing elliptic curves with <( levels-structures " [9] (chap. IV).
The determination of the rational points of X^ amounts to a classification of elliptic
curves over Q^ satisfying the property that the associated representation of Gal(Q/QJ
on N-division points factors through a conjugate ofJ^. If N>5 is a prime number,
any proper subgroup J^CGL^F^) is contained in one of the following four types of
subgroups ([67], § 2):

(i) JT = a Bore I subgroup. Then Xj^=Xo(N).
(ii) ^f=the normalizer of a split Cartan ( ( < deploy e " [67]) subgroup.
In this case, denote X^= Xgp^(N). It is an elementary exercise to obtain a natural isomorphism between

Xg^(N) and Xj^N2)/^]^ as projective curves over Q, where w^a is the canonical involution induced from
^h>—i/N 2 z on the upper half-plane.

(iii) ^== the normalizer of a nonsplit Cartan subgroup.
In this case write X^= Xnonsp^N).
(iv) J^=an exceptional subgroup (or to keep to the terminology of [67] (2.5)), ^ is the inverse image in

GL^FN) of an exceptional subgroup of PGL^FN). An exceptional subgroup of PGL^FN) is a subgroup isomor-
phic to the symmetric group ($4, or alternating groups ^4 or ^5.

The further requirement det^=F5 insures that the image of ^ in PGLg(F^i) be isomorphic to (^4.
Moreover, if such an Jf (with surjective determinant) exists when K = Q, then N = ± 3 mod 8. For such N
write X^=X(^(N).

We do not treat cases (iii) and (iv) in this paper. Of the four types of subgroups of GL^F^) listed above,
the normalizer of a nonsplit Cartan subgroup seems the least approachable by known methods. In particular
(to my knowledge) there is no value ofN for which X^gp^(N) has been shown to have a finite number of rational
points. As for case (ii) Serre remarked recently that for any fixed number field K there are very few N ̂  5 such
that Xj^(K) is nonempty when 2^ is an exceptional subgroup of GL^F]^). Firstly, if the image of^in PGL^F]^)
is ^4 or ^5, then detJ^c (F§)2. Using the e-^-pairmg of Well, one sees that if Xj^(N) has a K-rational point,
then K contains the quadratic subfield of Q(^N)« This can happen for only finitely many values ofN for a given K,
and not at all when K = Q.

Secondly, Serre proves the following local result:
Let Jf be a finite extension of QN , of ramification index e. Let E be an elliptic curve over Jf with a semi-stable Neron

model over the ring of integers 0^. Let r : Gal(JT/jT) —> PGL^F )̂ denote the projective representation associated to the
action of Galois on ̂ -division points of E. Then', if 2e < N— i, the image of the inertia subgroup under r contains an element
of order ^ (N— i)le.

Using this local result one sees that there is a bound c(^T) such that if N >c(Jf) then Xj^(Jf) is empty for
all exceptional subgroups ̂ . In the case of Jf= Q, X(^(N) has 720 points rational over QN it N > 13. Hence
it has no points rational over Q for N > 13.

Serre constructs, however, a rational point on X^(ii) and on X(^(i3) corresponding to elliptic curves with
/——

complex multiplication by \—3.

Concerning case (ii) (elliptic curves over Q^ such that the associated Gal(Q/QJ-
representation on N-division points factors through the normalizer of a split Gartan
subgroup of GLg(F^)) we obtain the following result:

Theorem (9). — If N==n or N^17 (i.e. ifX^{N) is of positive genus and N+13)
then Xgp^(N) has only a finite number of rational points (chap. Ill, § 6).

36



MODULAR CURVES AND THE EISENSTEIN IDEAL 37

Remarks. — Since Xgp^(i3) is of genus 3, one expects it to have only a finite
number of rational points as well. The proof of theorem 9 is given in Chapter II, § 9.
It uses the following two facts:

a) J(Q,) is finite (see the discussion after theorem 6 above) and
b) J factors through J~.

It is interesting to note that when N = i mod 8 fact b ) seems to depend on the
detailed study of j (chap. II, (17.10)).

It is often an interesting problem to apply theorem 4 to obtain an effective deter-
mination of the rational points on Xg(N) for a given (even relatively low) value of N,
and, to that end, somewhat sharper results are useful.

Theorem (10). — Let p : X()(N)(QJ->Z/^ denote the map obtained by projecting the
linear equivalence class of x—(oo) to the Mordell-Weil group of] (cf. theorem 4). Then
p(^) is equal to one of these jive values in Z/TZ : o, i, 1 /2 {possible only if N==—i mod 4),
1 /3 or 2/3 (the latter two being possible only if N= —i mod 3) (chap. Ill, (4.2)).

Using these results, tables ofWada [70], Atkin, and Tingley, and work ofOgg [49],
Brumer and Kramer [4], and Parry [73], one obtains the chart given at the end of
this introduction where the rational points of Xy(N) for N<250, N4=151, 199, and 223
are determined explicitly (also see note added in proof (end of chap. III)).

The main technique of this paper involves a close study of the Hecke algebra T
(chap. II, § 6) which we prove to be isomorphic to the full ring of C-endomorphisms
ofj (mildly sharpening a result ofRibet). We establish a dictionary between maximal
ideals 9JI in T and finite sub-Galois representations of J which are two-dimensional
over the residue field of 9JI (cf. chap. II, (14.2), for a precise statement and precise
hypotheses). The prime ideals that distinguish themselves as corresponding to reducible
representations are the primes in the support of a certain ideal which we call the Eisenstein
ideal 3 (chap. II, § 9), and which is the central object of our investigation.

We like to view the Eisenstein ideal geometrically as follows: Let T* denote the
algebra generated by the action of the Hecke operators T^ ((={= N) and by w, on the
space of holomorphic modular forms of weight 2 for F^N). The algebra T is the image
ofT* in the ring of endomorphisms of parabolic forms. We envision the spectra of these
rings schematically as follows:

Eisenstein prime (?

———"S.————————————————Eisenstein line=Spec Z
specT ^ ^s.

m^^ __ }spec T

where the extra irreducible component belonging to T* (the Eisenstein line) corresponds
to the action ofT* on the Eisenstein series of weight 2. The Eisenstein ideal is the ideal
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38 B. M A Z U R

defining the scheme-theoretic intersection of Spec T and the Eisenstein line. The
Eisenstein quotient J is the quotient of j associated to (chap. II, § 10) the union of
irreducible components of Spec T which meet the Eisenstein line. One may think
of the " geometric descent " argument of chapter III, § 3, as a technique of passing
from knowledge of the arithmetic of the Eisenstein line {i.e. of Eisenstein series, and ofG^)
to knowledge of the arithmetic of irreducible components meeting the Eisenstein line
{i.e. o f j ^ b y a " descent5? performed at a common prime ideal. One might hope that
for other prime ideals common to distinct irreducible components (primes of fusion)
one might make an analogous passage (cf. [39], § 5, Prop. 4).

Control of the local structure of T is necessary for the more detailed work. For
example, it is easily seen that the kernel of the ideal SJtsT in J(Q) is 2-dimensional
as a vector space over the residue field of 9JI if and only if Tg^ (the completion at 9JI)
is a Gorenstein ring (chap. II, (15.1)). We prove that Tgj^ is a Gorenstein ring, at
least if 9?l is an Eisenstein prime, or if its residual characteristic is +2, or if it is super-
singular (chap. II, § 14). When 9JI is not an Eisenstein prime this is relatively easy
to prove. When 9JI is an Eisenstein prime, it involves the structure theory of admissible
group schemes developed in chapter I and a close study of modular forms modp (chap. II).
Using this work we prove:

Theorem (n). — The Eisenstein ideal 3 is locally principal in T. If <^=(f,p) is
an Eisenstein prime of residual characteristic p, then the element Y]^==I -\-t—T^ is a local generator
of the ideal 3 at ^ if and only if:

(i) I is not a p-th power modulo N
y_i (if not both t and p are equal to 2)

(ii) —— s(= o mod p
2

or (when l==p=2) 2 is not a quartic residue modulo N (chap. II, (18.10)).

Most of this analysis of T<p is crucial for the proof of Ogg's conjectures 2 and 2
(twisted) (theorems i and 2) and for the more delicate descent needed to establish:

Theorem (12). — If^ ls an Eisenstein prime whose residue field is of odd characteristic,
then the ^-primary component of the Shafarevich-Tate group of] vanishes (chap. Ill, (3.6)).

As described in the survey [36], theorems 4 and 10 may be used to prove a version
of the Birch-Swinnerton-Dyer conjecture relative to the prime ideal ^. In the last two
sections of chapter III we pursue this theme obliquely by studying the ^3-adic L series (1).
Guided by formulas, and by conjectures, we are led to the following result, which we
prove, independent of any conjectures:

Theorem (13). — Let ^ be an Eisenstein prime whose residual characteristic is an odd
prime p. Let Q^ be the unique ip-extension of Q^. Let J^ be the p-Eisenstein quotient (the

(i) Ref. [34].
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MODULAR CURVES AND THE EISENSTEIN IDEAL 39

abelian variety quotient of J corresponding to the union of all irreducible components of Spec T
containing ^=(3,^), chap. II, § 10).

Then J^Q^), the group of points ofj^ rational over Q ,̂ is a finitely generated group,
and is finite if p is not a p-th power modulo N.

We also obtain asymptotic control of the ^-primary component of the Shafarevich-
Tate group of J in the finite layers of Q^.

It would be interesting to develop the theory of the Eisenstein ideal in broader
contexts {i.e. wherever there are Eisenstein series). Five special settings suggest them-
selves, with evident applications to arithmetic:

One might study Xo(N) for N not necessarily prime {e.g., N square-free). Although
much will carry over (cf. Appendix) there is, as yet, no suitable analogue of the Shimura
subgroup, and the " geometric descent " is bound not to be decisive without new
ideas: (but see forthcoming work of Berkovich).

One might attempt the same with Xi(N) (cf. [71]) and here one interesting new
difficulty is that the endomorphism ring is nonabelian.

One might work with modular forms of higher weight k for SLg(Z), where a major
problem will be to understand the action of inertia at p on the j^-adic Galois repre-
sentation associated to the modular form.

One might stretch the analogy somewhat and consider some important non-
congruence modular curves {e.g., the Fermat curves, following the forthcoming
Ph d. Thesis of D. Rohrlich) where the (< Eisenstein ideal " has no other definition than
the annihilator, in the endomorphism ring, of the group generated by the cuspidal
divisors in the jacobian of the curve.

One might also work over function fields in the context of Drinfeld's new
theory [13].

Throughout this project, I have been in continual communication with A. Ogg
and J.-P. Serre. It would be hard to completely document all the suggestions, conjec-
tures and calculations that are theirs, or all that I learned from them in the course of
things. I look back with pleasure on conversations and correspondence I had with
them, and with Atkin, Brumer, Deligne, Katz, Kramer, Kubert, Lenstra, and Van
Emde Boas, Ligozat, Rapoport, Ribet, and Tate.

We conclude this introduction with a chart describing the numerical situation
for prime numbers N<250. The columns are as follows:

N: ranges through all primes less than 250 such that g== genus (Xo(N))>o.
/N-i\

n==n\im\ ——— l.
\ 12 /

g^ = number of± eigenvalues ofw acting on parabolic modular forms of weight 2
for ro(N). Also ^=dimJ+=genus(Xo(N))+; g_=dimj-.

We write g^ as a sum of the dimensions of the simple factors comprising J^. When
a simple factor is a quotient of the Eisenstein factor, it is boldface. When the
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40 B . M A Z U R

TABLE

N

ii
i7
^
23
29

3i
37
4i
43
47
53
59
6i
67
7i
73
79
83
89
97

101

103
107
109
"3
127

i3i
137
i39
149
i5i
157
163
167
173
179
i8i
i91

i93
i97
199
2 1 1

223

227

229

233

239

241

n

5
4
3
ii

7
5
3

10

7
23

13
29

5
1 1

35
6

13
4i
22

8
25

i7
53
9

28

21

65
34
23

37
25

13
27

83
43
89
15
95
i6
49
33
35
37

"3
19
58
"9
20

§+

0

0

0

0

0

0

I

0

I

0

I

0

I

2

0

2

I

I

I

3
i
2

2

3

3
3
i
4
3
3
3
5

1+5
2

4
3
5
2

2+5

1+5
4

3+3
2+4

2+3

1+6
7
3
7

g-

1
1
1
2
2
2
1
3
2
4
3
5
3

i+2
35+37

12+23

5
6

l2+5n
4
7
6
7

1+4
l^+2a+37

7
10
7

1+7
9

3+6
7
7
12
10

i+ll
9

14
8

10
2+103,11

25+87
12

2+2+10

11

12+1129

17
12

v

3
2

I

0

0

0

2

0

I

0

0

0

0

I

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

??
0

I

0

0

0

0

0

0

0

??
0

0

??
0

0

0

0

Values of
pW

o, ± 1/3
±i/3

0^

^5 ==2

± I

^2=3

0

0

^17=2

^2 ==3

<?7=2

^5=2

^==3

??

0

^==3

(?3=2

^5=2

??

Cp
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MODULAR CURVES AND THE EISENSTEIN IDEAL 41

Eisenstein factor is not simple, there is a subscript p to each boldface simple factor.
If a factor has p as subscript, then it is a quotient of the ^-Eisenstein quotient J(p). An
asterisk * signals a Neumann-Setzer curve (chap. Ill, § 7).

v=the number of noncuspidal rational points on Xo(N).
For p see theorem 7 above.
^ = rankz T<p, where ^5 is the Eisenstein prime associate to p and T^p is the

completion at ^5. For the range of the table it is the case that T<p is a discrete valuation
ring except when N=113 and p==2 (see chap. Ill, remark after (5.5) where this
case is shown to be "forced 33 by the existence of a Neumann-Setzer factor).

Thus, for all entries of the table except N=113, p=2, €y = absolute ramification
index ofT^. In the majority of cases T^=Zy (equivalently: ^ p = i ) $ therefore we
only give e^ when it is greater than i.

By forthcoming work of Brumer and Kramer [4] all the non-boldface elliptic
curve factors ofj~ (resp. J4') on our table have Mordell-Weil rank o (resp. ^i). The
factorization of J^ into simple components comes from tables of Atkin, Wada, and
Tingley. The fact that T<p is integrally closed (N=(= 113) comes in part from a theorem
(chap. II, (19.1)) and from Wada's tables, as do the calculations ofe. The fact that
the values of p given are the only possible involves work of Ogg, completed by Brumer
and Parry (also see note added in proof at the end of chap. Ill, § 9).
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CONVENTIONS

N : a fixed prime number^ 5 (the level) (1).
/N-i\

n : numerator | ——— |.
\ 12 /

S : SpecZ.
S' : SpecZ[i/N].

I f j & i s a prime number we write pf\\n when p^ is the highest power of p
dividing 72.

If X is a scheme over the base S and T->S is any base change, X/rp will
denote the pullback of X to T. If T=Spec A, we may also denote this scheme
by X/^. By X(T) we mean the T-rational points of the S-scheme X, and again,
if T==SpecA, we may also denote this set by X(A).

J/g : the N^ron model of the jacobian of Xo(N).
T : the Hecke algebra acting on J/g (chap. II, § 6).
3 : the Eisenstein ideal in T (chap. II, § 9).
^ : the Eisenstein prime associated to a prime number p (chap. II, § 9).
9JI : a general maximal prime ideal in T (not necessarily Eisenstein).

If a C T is an ideal, then 1\ denotes completion with respect to a. If m
is an integer and A an object of an abelian category, then A [m] denotes the kernel
of multiplication by m.

1. — ADMISSIBLE GROUPS

i« Generalities.

Consider quasi-finite separated commutative group schemes of finite presentation
over the base S== SpecZ which are finite flat group schemes over S'=Spec Z[i/N].
In this chapter we refer to such an object as a group scheme or (if there is no possible
confusion) a group over S (or over whatever restriction of the base S concerns us). If
G/g is such a group scheme, its associated Galois module is the (finite) Gal(Q/QJ-
module G(QJ (of Q-rational points ofG, where Qis some fixed algebraic closure ofQ^).
By the order ofG/g we mean the order of the finite abelian group G(QJ, or, equivalently.
the rank over Z[i/N] of the affine algebra of the scheme G/gr {rank meaning its rank
as locally free Z[i/N]-module). For the general properties of group schemes the reader

(1) In the appendix we consider more general N.
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44 B . M A Z U R

may consult [40], [9]. We now fix a prime number p different from N, and suppose that
the order of G^ is a power of p. In this case, if S"==Spec Z[i//?], G/g,. is an etale quasi-
finite group ([41], lemma 5) and consequently it is an etale finite group over:

S'nS'^SpecZ^/j&.N],

determined up to isomorphism by its associated Galois module, which is a representation
of Gal(Q/QJ on G(Q)—unramified except possibly at p and N.

(a) The structure of G away from p:

Let us fix a choice of compatible algebraic closures:

Q c-^ QN ̂  ZN -^ FN

( 1 . 1 )

Q. c—> Q.N ^-3 z^ ->-> FN
Let G/g.. be a group scheme as above. It is given, over S", by the following

diagram of compatible Galois modules:

(1.2) G(F^)^>G(Q)

where G(Q) is the Galois module (the Gal (Q/QJ -module) associated to G/Q, G(F^)
is the Gal (FN/F^)-module associated to G/^ and the homomorphism j maps G(F^)
into the part of G(Q) which is fixed under the action of the inertia subgroup of
Gal(Q^/Q,N)- The homomorphism^' is compatible with Galois action (compatibility
being defined in an evident manner using (1.1)) and it is injective since G is assumed
to be separated.

(b) Extensions of group schemes from S' to S:

Let G/'g, be a group scheme (as at the beginning). To give an extension, G/g
ofG' to the base S (up to canonical isomorphism) amounts to giving a sub-Gal (QN/Q.N)"
module HCG(QJ whose elements are fixed under the inertia group at N. For the
sub-Gal(Q^/Q^)-module H then inherits a Gal (F^/F^) -structure and HCG(Q) may
be viewed as a compatible diagram of Galois modules of the form (1.2) . This compatible
diagram gives us an etale quasi-finite group scheme G/'g.. and an isomorphism:

G" r^i C^'/s"ns' = °"/s'ns"?

which, by patching, gives our extension G/g.
For a given G/'g. there is a minimal and a maximal extension to the base S, which

we shall denote G^ and G^ respectively. The minimal extension [extension-by-zero\
compare [33]) Gb is defined by taking H={o}CG(QJ. The maximal extension G*
is defined by taking H to be the subgroup of G(QJ consisting in all elements invariant
under the inertia group at N. If G/g is any extension of G/'g., we have G^ C G C G^.
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MODULAR CURVES AND THE EISENSTEIN IDEAL 45

From this discussion we have:

Proposition (1.3). — These are equivalent'.

(i) G/'g. admits an extension G/g which is a finite flat group scheme.
(ii) The inertia group at N operates trivially in the Gal(Q/Q^)-mo^^ associated to G/'g'.
(iii) G^g is a finite flat group scheme.

(c) Subgroup scheme extensions:

Let G/g be a group scheme as above, and let H(Q) be any sub-Gal(Q7QJ -module
of G(QJ. By the subgroup scheme extension to S, H/g, of H(QJ we mean the scheme-
theoretic closure of H(QJ in G/g. To understand this, it is perhaps best to consider
it over the bases S' and S" separately.

Over S', we are taking the scheme-theoretic closure of H(QJ in the finite flat
group scheme G/g. [55], which is a finite flat subgroup scheme H/g, C G/g/ whose
associated Galois module is our H(QJ [55].

To describe it over S" we must give its "diagram (1.2) " H(F^)CH(QJ; one
sees easily that H(FN)=H(QJnG(FN), the intersection taking place in G(QJ.

It follows that the subgroup scheme extension of H(QJ in G/g is a quasi-finite
closed subgroup scheme H/g C G/g which is finite and flat over S', and whose associated
Galois module is our original H(QJ. Moreover, this construction provides a one-one
correspondence between sub-Gal (Q/QJ-modules in G(QJ and closed subgroup schemes
in G/g.

If H/gCG/g is a closed subgroup scheme, we may consider the quotient (G/H)/g
([SGA 3], exp. V, VIg) first as sheaf for thefppf topology. This quotient is representable
by a group scheme (of the type we are considering) as can be seen, again, by working
separately over the bases S' and S": Over S', H/g is a finite flat subgroup scheme of
the finite flat group scheme G/g, and the quotient is representable, by [57] theorem i.
Over S", one easily constructs the "diagram (1.2) 5? of the quotient and one finds:

o o

JHH(F^) ^ H(Q)

G(F^) ^ G(Q)

(G/H)(F^) ̂  (G/H)(Q)

I i
0 0

where J(G/H) is injective because H(FN)=G(F^)nH(QJ.
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46 B . M A Z U R

It follows from this discussion that there is a one-one correspondence between
filtrations ofG/g by closed subgroup schemes, and filtrations ofG(Q) by sub-Gal (Q7QJ-
modules. Moreover the successive quotients of any filtration of G/g by closed subgroup
schemes are again group schemes (of the type we are considering), and their associated
Galois modules are canonically isomorphic to the successive quotients of the corresponding
filtration of G(QJ.

(d) Determining G/g. by its associated Galois module:

Here is a consequence of the work of Fontaine.

Theorem (1.4) (Fontaine). — Let G^l, G^ be two finite flat p-primary group schemes
with isomorphic associated Galois modules. If either':

(a) p^2 or
(b) G^ are both unipotent finite group schemes.

Then G^. is isomorphic to G^,.

Discussion. — By Fontaine's theorem 2 [14] and the subsequent remark (p. 1424),
the isomorphism between the associated Galois modules extends to an isomorphism:
G^ ^G^ (Fontaine works over the Witt vectors of a perfect field).

A standard patching argument gives the version of Fontaine's result quoted above.

(e) Vector group schemes of rank i.

If V/g. is a finite flat group scheme killed by p, we may view V/g. in a natural
way as admitting an Fy-module structure. If k is any finite field and V/g, is endowed
with a A-module structure, we shall call V/g, a k-vector group scheme. The rank of V/g.
(as ^-vector group scheme) is the dimension of the ^-vector space V(Q). If V/g. is
a Ai-vector group scheme and k^k-^ is a finite field extension, then by V®^2 tne evident
construction is meant (one takes the direct sum of as many copies ofV as there are elements
in a V^-basis of ^3, and gives it the natural ^-module structure).

Proposition (1.5). — Let k be a finite field of characteristic p. Let V/g be a finite flat
k'vector group scheme of rank i. Then either V/g^(Z/p)/g®^ or: V/g^ p^g®^.

proof. — The Gal(Q/Q^)-representation of a ^-vector group of rank i is given
by a character ^ : Gal(Q7QJ—^* and hence determines a cyclic abelian extension
of 0 of order dividing j^—i (^=card(^)) unramified except at p. Such an extension
must be contained in Q^p) (^ a primitive p-th root of i) and therefore has order dividing
p—i. Consequently the character ^ takes values in FyCA* and it follows that there
is a sub-Fp-vector group scheme of rank i, Vg/gCV/g whose associated Gal(Q7QJ
representation is given by the character ^ ^ ^(d/O.) ->F.?- SY the Oort-Tate classi-
fication theorem ([54], Cor. to thm. 3) applied to the group scheme of order p, Vg/g,
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MODULAR CURVES AND THE EISENSTEIN IDEAL 47

one has that Vo/p is either of multiplicative type or ^tale (1). Replacing V/g by its
Carder dual, if necessary, we may suppose that Vg/g is ^tale, and consequently the
character ^ is trivial.

Moreover, the group scheme (V/p)61' has a A-module structure and is nontrivial
since it contains Vo/p . Its order is then ^y, and at the same time <_q since the order
of V/g is q. It follows that V/g is ^tale, and has trivial Gal (Q/QJ -action; it follows
that as ^-vector group scheme, V/g=(Z/p)®p A.

For a detailed study of A-vector group schemes, especially of rank i, see Ray-
naud's [55].

Corollary (1.6). — Let V/g be a group scheme of order p.

(i) Let j^=t=2. If the associated Galois module to V is Z/j&, then V/g. ̂  (Z/p)/g». If
the associated Galois module to V is (JL^, then V/g.^p^/g,.

(ii) Z^ p==2. Then V/g, ij isomorphic either to (Z/a)/g. or ^0 P-2/s'-

(f) Admissible p-groups.

Definition. — An admissible {p-)group G over S (or over S') is a group scheme (as usual
in this chapter: commutative, quasi-finite, separated, flat, such that G/g, is finite and
flat) which is killed by a power of p, and such that G/g. possesses a filtration by finite
flat subgroup schemes such that the successive quotients are S'-isomorphic to one of
the two group schemes: Z/p or (JL^ (called an admissible filtration).

By (1.6) and (c) G/g, possesses an admissible filtration if and only if its associated
Gal (Q,/QJ -module possesses a filtration by sub-Gal(Q^Q^) -modules whose successive
quotients are isomorphic to the Gal (Q/Q,) -modules Z/p or ^ (called an admissible
filtration of a Gal (Q,/QJ -module).

Clearly a closed subgroup scheme of an admissible p-group is again admissible,
as is the quotient group scheme of an admissible ^-group by a closed subgroup scheme.
We have the notion of short exact sequence of admissible ^-groups:

o-> G^-> G^-> G^-> o

where G^ is closed in Gg and the morphism Gg-> Gg induces an isomorphism of'fppfsheaves
G2/Gi->G3.

To an admissible j^-group we may attach the following numerical invariants:
/'(G) ==logp(order of G/g,) (the length of G)
8(G)=logp (order of G/g,)—logp (order of G/^) (the defect of G)

a(G)==the number of (Z/p)'s occurring as successive quotients in an admissible
filtration of G/o..

(1) We may deduce this from the following simple consequence of the theory of Oort-Tate, which may also
be checked directly: The group scheme OLp over the base Spec (Z//») admits no extension to a finite flat group of
order p over the base Spec (Zip2).
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48 B. M A Z U R

Al(G)=logp(order(Hi(S, G))), cohomology being taken for the fppf topology
([SGAs], Exp IV, § 6).

Remarks. — The invariant t(G)= logy (order G(QJ) depends only on the Galois
module associated to G. The invariant §(G) is detectable from the structure ofG/g g^z ) •
The invariant a(G) is detectable from the structure of Gyp :

a(G)=log,,(order G(F^).

If j&4=2, one can also determine a(G) from the Gal (Q7Q,) -module structure
ofG(QJ. This is, of course not the case if p=2.

We are mainly interested, in this paper, in K for i = o, i. Note that:
HO(S,G)=G(S),

while H^S, G) may be given an appropriate ic geometric " interpretation.

(g) Elementary admissible p-groups.

By an elementary admissible group G we shall mean an admissible group of length
one. Up to isomorphism there are four elementary admissible ^-groups:

Z/p, Z/ph, ^, ^

where (Z/p^/g is, as in (b), the extension-by-zero of (Z/p)yg. and similarly with (Ji^g,.
The invariants of these elementary groups are given by the following table:

Z/pb Z/p ^ ^

8 o i o i

a i l o o

^ i o ^^
1(^=2)

z.1 °(^+2)
h1 Q 0 \ [ S

_________________________1(^-2)__________

( o if N^ i modp {p odd)
where s= '\ or N = s — - i m o d 4 (j&==2)

f i otherwise.
It is straight forward to establish the first three lines of the above table. To compute

H^S, (A^,) use the Kummer sequence (of fppf sheaves) o-^(JLp->G^->G^->o giving:
H^S, (JLp)=(Z<l)/(Z*)p since the ideal class group of Z is zero. Also, Hl{S,Z|p)=o
because there are no unramified cyclic ^-extensions of %.

The nontrivial class in ?(8, p-g) is represented by the S-scheme Spec ZI^^^T],
regarded as (Jig—principal homogeneous space (torseur) over S. Forming the exact
sequences of fppf sheaves over S:
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MODULAR CURVES AND THE EISENSTEIN IDEAL 49

o-^Z/p^Z/p-xp-x)
o->(4-^-^-.o,

one computes H°(S, <p)=Z/j&; H°(S, ^^^F^). The natural map:
HP(S,^)^Hi(S,^)

is injective if and only if the principal homogeneous space Spec Zl^^] for ̂  over S
does not split when restricted to the base Spec F^ {i.e. when N = s — i mod 4). These
facts establish the table.

Proposition (1.7). — Let G/g be an admissible group. Then:
^(^-^(^^(G)-^).

Proof. — The right hand side of the above inequality is additive for short exact
sequences of admissible groups. The left hand side is sub-additive in the sense that if
o->G^->G^->G^—^o is such a short exact sequence, then:

^(G,)-AO(G,)^(Ai(Gi)-AO(Gi))+(Ai(G3)-AO(G3)).

To see this, one simply uses the long exact sequence offppf cohomology coming from
our short exact sequence. One clearly has equality if, instead of ^(€3) one inserts
h1 (€3) '= logp (order (image H^Gg) in ?(03))) in the displayed line above. The asserted
subadditivity follows.

Since any admissible group G has a filtration by closed subgroup schemes whose
successive quotients are elementary admissible groups, the discussion above reduces the
problem of checking the asserted inequality for any admissible group to the same problem
for elementary admissible groups, where it follows from an inspection of the table above.

Remark. — When e == i (which will be the case in our applications) the asserted
inequality is, in fact, an equality for elementary admissible groups.

2. Extensions of [ip by Z/p over S.

The point of this section is to show that there are no nontrivial such extensions.

Proposition (2.1). — Let p be any prime number. Then:
Exttdji^Z/p^o.

Proof (1). — To begin, we reduce our problem to a calculation in etale cohomology.
Let Sch (JL^/g denote the underlying scheme (ignoring group structure) and let:

s : Sch p^ X Sch (Ap -> Sch (JL^,

be the group law.

(1) An alternate approach to the proof of (2. i) in the case of an odd prime p is to show that an element of
^S^p? ̂ P) must g° to zero m K^pecQ? using Herbrand's theorem below, and the argument of chapter III,
§ 5. One then could apply Fontaine's theorem (1.4) to conclude.
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Since Sch (Ji^g is connected, and (Z/p)/g is etale, there are no nontrivial 2-cocycles
for p^/g with coefficients in (Z/p)/g, and therefore Ext^^, Z/p) is the kernel of:

Hi(Sch (JL,, Z/p) ̂ ^ EP(Sch^x^,Z/p)

where T^ are the first and second projections (^==1, 2) and cohomology is computed
for the fppf topology or ([15], § n) since Z/p is etale, for the etale topology. To see
the assertion made, the reader may verify it directly, following [12] and ( e .g . ) [SGA 3],
exp. Ill, § i.

If X, Y are any two schemes equipped with Tp -valued points:
X

(2.1) SpecF^
'Y

we allow ourselves to use the symbol XvY to refer to any scheme-theoretic union of X
and Y along (subschemes which are nilpotent extensions of) Spec(F^). Taking
Spec(Fy)—^X to be one such scheme, and Y==S=Spec(Z) to be the other, denote
by H^X) the etale cohomology group H^XvY, Z/p). One obtains an exact sequence:

o -> HI(X) -> Hi(X, Z/p) -> Hi(Spec(F^), Z/p)

using: the Mayer-Vietoris exact sequence for etale cohomology, the fact that Spec(Fp)
is connected, and that ?(8, Z/p)==o. We learn, in particular, that the group H^X)
is independent of which scheme-theoretic union of X and Y was made (provided that
it is subject to the above conditions). A similar calculation gives an additivity formula
for H1 (for any diagram (2 .1) ) :
(2.2) H^XvY^H^eH^Y).

We may write Sch (JL,=TVS where T denotes the <( cyclotomic scheme":
Spec(ZM/(^- l+^-2+...+!)).

If M denotes the ^-primary component of the Galois group of the Hilbert class field
extension of (the field of fractions of) Z^]/^"1^-^"2^-. . .+i), then:

IPCT.Z/p^Hoi^M.Z/^).

Therefore by (2.3), if M is the maximal quotient of M such that p splits completely
/•S.'

in the field extension classified by M, we have:
(2.5) H^T^Hon^M.Z/^).

The automorphism group of (A^g maps to the automorphism group of the scheme T
and we have canonical identifications:

Aut(^,g)-Aut(T)=F;

where aeT^ operates by Ca=cc raising to the a-th power 53 in the group scheme (JL^ .
The isomorphism (2.5) is compatible with this action in the following sense:
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If aeV^ and (peHom(M, Zip), then ?(^)==(^.y)(^.w) where the action
of ^ on M is the natural action of the morphism ^ : T->T on McHi(T) (one-
dimensional homology).

To decompose our spaces into eigenspaces for the action of F ;̂ we need some
terminology: If H is a Zp [F;] -module and jeZ/(^—i)Z, let H^^AeHI ̂ .h^a^h}
(where if aef^ we denote its operation on H by aj. Then H=== (DH^, the summation
being taken over all j 'eZ/(j&—i) Z.

By the compatibility formula above, we get:
(2.6) HW^Hon^M^, Zip)

for all jeZ/(^—i)Z.
Note that Sch((JLp x (JL?) is a wedge (in the sense of v) of S with p +1 copies of T;

these copies can be considered as the images:
TC Sch (Ap c^ Sch(^x (Ay)

where, to be noncanonical for a moment, we may take the maps T to be given by the
set of 2 X i matrices:

(a, i) for a=o, i, . . . ,^—1 and (i, o).

Using (2 .2) we obtain that H^Sch^Xp^)) is a direct sum of p-\-i copies of
H^T). Let us describe this group in a more < c choice-free " manner.

Consider all imbeddings T : p.p <-^ (JL ,̂ x ̂ . The 2 X i matrices representing all
imbeddings T range through the set of nonzero elements of F^xF^,. Let Funct(A, B)
denote the set of functions from A to B and form:

H^Sch^x^)) ^Funct(F^xF,,Hi(T))

by sending AeH^Sch^x ^)) to the function (rh^T*A). Let Op*(EpXFp, H^T))
denote those functions which send (o, o) in TpXfp to o in H^T), and which are compa-
tible with the natural action of F^ on domain and range.

From our noncanonical description of H^Sch^x p^)) it follows that (B induces
an isomorphism between H^Sch^x (J^)) and Op^EpXF^, H^T)).

By the analogous but easier construction for Sch pip we get an isomorphism:
Hi(Sch pL,) ̂  O^F,, H^(T))=Hi(T)

and one can check the commutative diagram:

IP(Sch^) ^"l Hi(Sch((x,x^))

Op;(F,,Hi(T)) -^ <^(F,xF,,,HTT))

57



52 B. M A Z U R

where 8 is just the obstruction-to-linearity:
If/GO^(F,,Hi(T)) then Sf{x^)=f[x+y)-f{x)-f^).

We are reduced to analyzing the kernel of 8, the obstruction-to-linearity. Let
$j denote functions which bring o to o and are homogeneous of degree j, under the
natural action of F^ on domain and range. Thus:

(D^(F,,HI(T)) ———5——. O^(F,XF,,HI(T))

@0,(F,,F,)®HW') -^ ©O,(F,XF,,F,)®HI(T)^

where the summation is taken over jeZ/(^—i)Z. We are led to consider the maps:
fa ^ O.fF F ) -> O.fF xF F )v^-7 / -.A-p? " p ) § ^•3\'•p/>-s'p^ " p )

for each jeZ.I{p—i) Z. Clearly 0^.(Fp, Fy) is a one-dimensional vector space over Fy
generated by the function xv^x3, and 8 applied to it is the function [x-{-y)3—^—y\
Thus (2.7) is injective if J = t = i . To show that Ex4(p.p, Z/p)=o it therefore suffices
to show that H^T^o.

Equivalently it suffices to show that M^^^o. In fact, M?""^ vanishes. This
is a consequence of a theorem of Herbrand [20] together with the calculation of the
second Bernoulli number.

For the convenience of the reader, we shall reprove the theorem of Herbrand,
which follows from the theorem of Glausen-von Staudt, Rummer's congruence, a power
summation congruence (cf. [72], chap. V, § 8) and Stickelberger's theorem (cf. [23]).

To prepare, let the Bernoulli numbers B^ be defined by:

^-i)-SB^! (1)i
and the Bernoulli polynomials:

B^^^S^.B^.X-1

i

(So Bo=i, Bi=-i/2, ...).
We have these classical facts:
Ifp is a prime, p. B^ is a p-integer, and B^ itself is a p-integer provided m ̂  o mod {p — i)

(Clausen-von Staudt).
Ifp is a prime, and m^=o mod{p—i), then By^/w is a p-integer whose residue class modp

depends only on mmod(p—i):
^mlm==1sm+p-ll^m+P—l)modP (Kummer).

(1) This differs from Iwasawa's choice [22].
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Letp be an odd prime number. Suppose k is a nonnegative integer such that k +1 ̂  o mod p,
and ^—i=t=omod(^—i) . Then:

p-i
S ^ss^.B^mod^2.

a=0

{Power summation congruence [72], chap. V (8.11) Cor. to theorem 4.)

To apply the Stickelberger theorem, we use the class field theory isomorphism
to identify the Galois group of the Hilbert class field of K=^[x]|{xp~l+ . . . 4-1) with
the ideal class group of K (1). Let Y denote the ^-primary component of this ideal
class group. Thus:

M-^Y.w
It is important to check that 6 commutes with the natural action of F^ on domain and
range. The action on the domain may be viewed as follows: If L/K is the Hilbert
class field extension, then L/Q^ is Galois and the natural action of G on itself by inner
automorphisms {^g{x)=gxg~1) induces an action of F^ on M, which is equal to the
action considered above.

The action on Y is induced by the natural action of F—Gal(K/QJ on ideals.
The fact that 6 commutes with these actions is, then, VII, theorem (11.5) (i) of [5].
Thus, we have:

M«) =Y^\

In what follows we suppose that p>2 and j is odd. This makes sense because
j is an integer mod(j&—i) andj^ is odd. For convenience, take^' to be an ordinary integer
in the range o<j<p—i. Write j=p—i—j (so j= —j mod(j&—i), and o<j<p—i).

Let co : F^->Z^ be the Teichmiiller character.
We shall now quote (what is, in essence) Stickelberger's theorem (cf. Iwasawa's

p-adic ^functions [23]. Our (< Y " replaces his c< Sg "):

Proposition (2.8). — Y^^o. If j = t = i , then the p-adic number:

^=(i/^)^^.co-^)

is a p-adic integer^ and L.Y^^o.

Corollary (2.9) (Herbrand). — Let j be odd and different from i. If By_^o modj&,
then Y^o.

Proof. — We show, under the hypotheses of the corollary, that L is a j^-adic unit.
For this, we examine:

p-i p-i
S ^.(^(^^ S a.^[a) modj&2.

(1) For definiteness, take the class field theory isomorphism 6 to be the map induced from 4>-1 as in [5], VII, § 5.

63



54 B . M A Z U R

p-1 _ p-l _
Since <o(^) ss^ modp2, S a.^[d)=. S^modj^2, where k=pj-}-i.

a=0 a=0

Since ^=t=2, k-\-i=^omodp. Since J = t = i , ^ — i = ( = o m o d ( ^ — i ) . Therefore the
power sum congruence (above) applies, giving:

p-i
S a^^p.^modp2.

a=0

To prove corollary (2.9) we show that if Bp_^=Bj_^ is not congruent to zero modj^,
then B^==Bpj^_i also is not. But pj +i =;' +1 ̂ o mod(^-i) and so Kummer's
congruence applies; it proves the assertion since pj +i and j+1 are both^-adic units.

Corollary ( 2 . 1 0 ) . — Y^^o (^to: y^=Y^ =y^=Y^=o) for all p
{also: ^-^==0 for all ^4=691, . . . ) .

Proof. — We may suppose p odd (this is the only place in this paper where p = 2
is significantly easier than its fellow primes).

Writing Y^^Y^-^4-1^ we see (2.9) that Y^^o if B,+i^o mod? and
i + i ^o mod p—i or (2.8) if i-\-i^omodp—i. The Corollary then follows from
Clausen-von Staudt, and determination of the first few Bernoulli numbers.

3. Etale admissible groups.

Fix a prime number p different from N. We consider only ̂ -groups in this section.
By a constant group over any base we mean an etale finite flat group scheme with

trivial (constant) Galois representation.
By a [L-type group we mean a finite flat group scheme whose Carder dual is a

constant group.
By a pure (admissible) group we mean a finite flat group scheme which is the direct

product of a constant group by a [i-type group.

Proposition (3.1). — Any etale admissible finite flat group over S is constant. Any admissible
finite flat group of multiplicative type over S is a \L-type group.

Proof. — The second assertion follows from the first, by Carrier duality. To see
the first, let G be an etale, finite flat admissible group over S. Proceed by induction
on the length of G, and suppose ^(G)^i. Then, there is a finite flat subgroup GoC G
such that G/Go=Z/p, since G is both etale and admissible. By induction, GQ is constant,
and G represents an element in Ext^(Z/p, Go). Now consider the Ext1 exact sequence
associated to o->Z->Z->Z/p->o over S. Note that Ext'g(Z, Go^H^S, Go), and
I-P(S, Go) vanishes since Go is a constant group and there are no nontrivial unramified
(abelian) extensions of Z. We obtain an isomorphism:

H°(S, Go)^.H°(S, Go) ^> Extt(Z/p, Go).
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Performing the same calculation over (e.g.) Spec(C) rather than S, and comparing
(using that S is connected) we get:

Ext^Z/p, Go) -^ Ext^c(c)(Z/p, Go)

which indeed implies that every extension of Go by Z/p over S is constant. Q.E.D.

If G is a constant admissible group over S', killed by^6, it is sometimes convenient
to write:

G=^Z|pe)®G

where C is an abstract finite group killed by p\ and Z/p6 is, to be sure, the constant
S'-group scheme. The ® construction is the evident one. We may take:

C= Hoing. (Z/p^G).

Similarly, if G is a (i-type group over S', killed by p6, we may write:
G=(Jy®M

where M is the abstract finite group Homg,((Ji <', G).
Now let G/g, be an ^tale admissible group which is an extension of A/g, by B,g,

where both A and B are constant groups over S'.
Write A^Z/p'OA, B^Z/p^B, for an appropriate integer e, and abstract finite

groups A, B killed by p\ We may view G/g. as giving rise to an element:
^Ext^a).

To deal with Ext^, (A, B) it is useful to have the following fairly complete des-
cription. Let J^HN-I. Set (Z/N)*=Hom((Z/N)^Z^a) (the Pontrjagin j&-dual).

Lemma (3.2). — There is a canonical isomorphism:

Ext^A, B)=Ext(A, B)e((Z/N)*®^a)Hom(A, B)[^])

(to be described in the course of the proof below).

Proof. — By Ext(A, B), we mean Ext in the category of abelian groups. By
Horn (A, B) [j^] we mean the kernel of^ in Horn (A, B).

The map Ext (A, B) -> Ext^(A, B) is the one which associates to an extension of
abstract groups o->B->E-^A-^o the corresponding extension of constant groups over S'.
The map Ext^(A, B) -> Ext (A, B) is "passage to underlying abstract group'5 (or
equivalently: restriction of the base from S' to Spec(C)). To establish the isomorphism,
resolve A by free abelian groups (of finite rank): o—^R—^F->A—^o and evaluate the
long exact sequence of Ext's to get:

o^Ext(A, B) ->Ex4(A, B) -^Hom(A, H^S', B)) —o.

Since B is a constant group scheme, an element in H^S', B) is given by the following
data: an abelian extension K/% unramified outside N, and an injection Gal(K/QJ C B.
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Since any such extension is isomorphic to a subfield of Q^^) (recall: j^4=N) we have
the canonical isomorphism:

Hl{S\'B)=Hom{(Z|N)\B)

(using the isomorphism Gal(%(^)/Q.)^(Z/N)*) and therefore, we have the canonical
isomorphisms:

Hom(A, ?(8', B))=Hom((Z/N)*, Hom(A, B))
=Hom((Z/N);, Hom(A, B)[^]))

where the subscript^ above means ̂ -primary component. Since (Z/N)^ is a free module
of rank i over Z/^01, we have:

Hom(A, ?(8', B))=(Z/Nr®^aHom(A, B)[^].

Remark (3.3). — It is sometimes convenient to make a choice of a generator
^ : (Z/N)* ->• Z/j^ (1), in which case, an element ^eExt^(A,B) gives rise (under
projection to the second factor of the formula of (3.2)) to a well-defined element ^N^T?
where YeHom(A, B)^]. We refer to y as the classifying map for g (dependent, of
course, on the choice of ^). The associated Galois module to the group scheme G/g.
may be neatly described in terms of ^ anc! T? as follows. Fix (reGal(Q/Q^). For
;veG(QJ the mapping x\->a{x)—x induces a homomorphism from A=A(QJ to
B==B(QJ which is simply ^N^-T^) ^ere x is the image of A: in A.

If G is an ^tale admissible group over S', let the canonical sequence of G denote the
filtration of closed (^tale admissible) subgroup schemes over S':

o==GoCGiC . . . CG

defined inductively as follows: G,+i is the inverse image in G of the group generated
by the S'-sections {i.e. the Galois invariant sections) of G/G,. Thus, the successive
quotients are constant groups and G = G^ for some integer m. If m is the least such
integer, say that G is an etale (admissible) group of m stages.

If GiCG is the "first stage9' then, by definition, Gi is the largest constant
subgroup of G.

If GgC G is the cc second stage ", then Gg is an extension of the constant group
A==G2/Gi by the constant group B=G^ and, furthermore, its classifying map y is
injective since G^ is the maximal constant subgroup of G^.

If G is an admissible group of multiplicative type over S', we may similarly define
the canonical sequence for G, as follows: G^^C G is the inverse image in G of the largest
(Ji-type subgroup of G/G(.

Note that ifGis an admissible multiplicative type group then its canonical sequence

(1) Which we also view as a homomorphism from Gal(Q/Q) to Z//^ by composition with:

Gal(Q/Q) -> Gal(Qp:N)/Q) ^ (Z/N)\
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is not necessarily dual to the Carder dual of the canonical sequence of the etale admissible
group G". Rather, Gi is dual to the largest constant quotient group of G", etc. The
natural functor which passes from multiplicative type admissible groups to etale admissible
groups, and which preserves canonical sequences is the functor: Gh>j^owg,(^a p., G)
where ^a (JL == lim (JL „.

m

Lemma (3.4) (Criterion/or constancy). — Let G be an etale admissible group over S'.
If N =t= i mod p, then G is constant. In general, G is constant if and only if there is a prime
number / '+N such that:

a) { is not a p-th power modulo N;
b) The action of cp^ (1) in the Galois representation of G is trivial.

Proof. — Consider the canonical sequence (G,) for G. We need only show that
G'2=Gi, under the above hypotheses. Thus we may assume G==Gg is an etale
admissible group of two stages. Let y '' G^Q) -> Gi(Q) be its classifying homomorphism
which is infective by the above discussion. Thus, for any /'+N (even for f=p} the
endomorphism <p^—i of G(QJ induces a homomorphism A^(^) .y : ̂ (Q) -> Gi(QJ
where ^ is the chosen homomorphism of remark (3.3). Also j^.y^o, where
J ^ H N — I . It follows that if N ^ i modp, y==o, and we are done. If t is not a
p-th power mod N, it is a generator of the j^-part of the group (Z/N)*, and therefore
^M is a unit in the ring Z/j^. Hypothesis b) then implies that y==o.

Lemma (3.5) (A [L-type criterion). — Let G be an admissible multiplicative type group
over S'. If NEJE i modp, then G is a [L-type group. In general, G is [L-type if and only if
there is a prime number f^p, N such that:

a) t is not a p-th power mod N.
b) The Frobenius element 9^ acts as multiplication by t in the Galois representation of G.

Proof. — Pass to the etale admissible situation by applying J^wzg,(^ (JL, —-) (or
by Carrier duality) and then use lemma (3.4).

Lemma (3.6). — Let ^p, N be a prime number not a p-th power mod N. If G is
a multiplicative type groups then the Galois module of G^ (the first stage in its canonical sequence)
is the kernel of <p^—^ in the Galois module of G.

Proof. — Passing to the etale situation by the functor ^om^,[^a (JL, —) we may
replace G by an etale admissible group over S', and we must show that the Galois module
of GI is the kernel of <p^—i.

Work by induction on the number of stages of G. Suppose that it is true for
groups of m— i stages and let G have m stages (m>_2). Thus G/G^_g has two stages

(1) /-Frobenius.
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and its "first stage subgroup" is, by construction, G^G^_^ Using the for-
mula (3.3) ^(x)-x=^).^{x) where y is the classifying homomorphism for the
2-stage group G/G,_,, ^(G/G^)(Q)jmd ^ is its image in (G/G^)(Q), we see
that the kernel of ^-i in (G/G^)(Q) is the subgroup (G,_i/G^)(Q) (since
Y is injective, and ^00 is a unit in the ring Z/j^). Consequently, any element A;eG(Q)
which is in the kernel of 9^—1 must be contained in G^_i(Q) CG(Q).

But G^_i is a group of m— i stages, and therefore A:eGi(Q), by induction.

4. Pure admissible groups.

Proposition (4. i). — £^ j& 4= 2. £^ A ̂  a ̂ w^ ̂ ro^ aW M a (JL-̂  group. Then:

Ext^^M^o.

Proo/: — This reduces to showing Ext^Z/p, (Jip)=o. But applying Ext^-, ̂ )
to the exact sequence of fppf shewes o-^Z-^Z->Z/p-^o yields a long exact sequence
which may be evaluated using the fact that Ext^Z, (JL^H^S, ^). One gets the
short exact sequence:

o->H°(S, (x,) -^Extl(Z/p, (JL,) ->H\S, ̂  ->o.

From the Kummer sequence o-^(ip->G^->G^->o of fppf sheaves, and the fact
that the ideal class group of Z vanishes, one gets: ?(8, (JL^^Z^Z^. Thus we
have a short exact sequence:

o -> (Z-) [A] -> Ext^Z/p, ^) ̂  (Z-) /(Z*) ̂  o.

Now suppose j&=|=2, and one sees that the middle group must vanish. If p==2,
we get:

Proposition (4.2). — There are three nontrivial extensions o/Z/ss by ^ over S:

Extension 1: an extension whose associated Galois representation is trivial, and whose underlying
abelian group is cyclic of order 4.

Extension 2: the unique nontrivial extension over S killed by 2:

0->(JL2->D->Z/3-^0.

Its associated Galois representation/actors through Q/A/^T). If we let:

^-i : Gal(Q/QJ -^ Gal(%(V^T)/%) ̂  Z/2

be the composite where the first map is the natural projection, and the second an isomorphism, then
the Galois representation associated to D is given as follows:

(4-3) oM-A;==^i(a).YOQ

where if A-eD(QJ, then x is its projection to Z/2, and y is the only surjective homomorphism
^Q) -^ ^(Q) with kernel (^(QJ.
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As usual, identifying Ga^Q/v^^/QJ with (Z/4)', if ̂  denotes {-Frobenius (in the
Galois group of any extension field of Q/V^7) which is Galois over Q, and unramified over t )
then we also write ^_^) for ^_i(^). One has: +_i(^)=i if and only if 1= -i mod 4.

Extension 3: (the sum in Ext1 of the above two elements) an extension whose underlying
abelian group is cyclic of order 4, and whose Galois representation satisfies the same formula as above.

Proof. — This is evident from the exact sequences in the proof of (4.1) except
for the assertions concerning Galois representations. To see those, one must recall
that the nontrivial (Jig-torseur representing the (nontrivial) element in ?(8, pig) is the
S-scheme Spec Z [-y/—i].

Remark. — The group scheme D/g (Extension 2 of (4.2) above) will play a central
role in our study of the prime 2. Since Fontaine's theorem does not apply to admissible
2-groups in general, the following result is useful:

Proposition (4.4). — Let D;g, be a finite flat group scheme, and (p :D/Q^D;Q an
isomorphism over Q^ (equivalently: an isomorphism of associated Galois modules). Then <p extends
to an isomorphism y : D/g, -> D/'g, of group schemes over S'.

Proof. — Since the associated Galois module to D' is admissible, D/'g, is admissible,
and since the inertia group at N operates trivially in the Galois representation of D
(and hence also ofD'), D' extends to a finite flat group scheme over S. Since the Galois
representation of D' satisfies (4.3), D' cannot be an extension of (Jig by Z/a (2.1), nor
ofZ/2 by Z/2 (3.3), nor of ̂  by ̂  (applying (3.3) to its Carrier dual).

Therefore it must indeed be isomorphic to D, by (4.2).
Since there is only one nontrivial automorphism of the Galois module associated

to D, and this automorphism extends to an automorphism of D/g, our proposition
follows.

Proposition (4.5) [Criterion for purity: p^2). — Let p+2, and let G/g, be an admissible
group. These are equivalent:

a) G is pure.
b) The associated Galois module to G is pure (i.e. it is the direct sum of a constant Galois

module and the Cartier dual of a constant Galois module).
c) The action of inertia at N is trivial on the associated Galois module to G.
d) G extends to a finite flat group scheme over S.

Proof. — Clearly a )=>b)=>c) . By (1.3), c)=>d). To conclude, we must show
that any finite flat admissible group over S is pure. Let G be such a group, and:

o^GoCGiCGgC . . .CG,=G

an admissible filtration. Thus the successive quotients are isomorphic either to Z/p
or to (Jip over S.
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Step 1: We may suppose all the successive quotients isomorphic to (JL precede those
isomorphic to Z/p. This follows immediately from proposition (2.1), and induction.

Therefore, for some s, GgCG is an admissible subgroup of multiplicative type,
and G/Gg is an admissible ^tale group.

Step 2: Gg is a (i-type group and G/Gg is constant.

Proof: (3.1) .

Step 3: G is a trivial extension of the constant group G/Gg by the (x-type group Gg.

Proof: (4.1).

Remark. — Demanding that the action of inertia at N be trivial in the Galois
representation is clearly not sufficient to insure purity when p==2 {e.g., consider the
nontrivial extension D of (4.2)). Nevertheless, for admissible 2-groups over S killed
by 2, purity is equivalent to the requirement that the action of Gal(C/R) be trivial
in the associated Galois module. As it turns out in our ultimate applications, however,
the notion of purity is not the relevant one when p==2.

The final proposition of this section will be used in studying the cuspidal subgroup
(chap. II, § n).

Proposition (4.6). — Let C/g be a finite flat group whose underlying Galois module
is a finite cyclic group with trivial Galois action. If G is of odd order, then G is a constant group.
IfC contains a subgroup isomorphic to (ig, then the quotient C/jig is a constant group.

Proof. — The first assertion of (4.6) follows from (1.6) and (3.4). As for the
second, we may suppose that C is killed by a power of 2 (say 2°'). If a = i, we are
done. Now suppose that a ==2. It suffices to show that G/pig is etale over S. Clearly
C/pig cannot be isomorphic to (Jig, for then the Gartier dual ofC/g would be etale, hence
constant, and so the Galois action on C could not be trivial. Thus G/p<2^Z/2.

Now let oc>2. We shall show that C/p.^ ls ^tale as follows: filtering C by the
kernels of successive powers of 2, ifG/pig were not ^tale, using the result proved for <x=2,
one could obtain a subquotient of C, whose underlying abelian group is cyclic of order 4,
and which is an extension of (Jig by Z/2, which is impossible by (2.1) .

5. A special calculation for p== 2.

Let Ex4_g.(A, B) denote the subgroup of elements in ExtI,(A, B) which represent
extensions of A by B which are killed by multiplication by 2.

Consider the (nonflat) surjective homomorphism Z/z—^p-g (over S'). This
induces a homomorphism:

ExtI_g,((J^ Z/2) ^ Ext^g.(Z/2, Z/2)

and we shall show that this map is injective. The full story, however, is the
following:
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Proposition (5.1):

a) Ext|_g,(Z/2, Z/2) is of order 2.
b) If N = t = ± i mod8, then Ext^dxg, Z/2)==o.
c) jy N = ± i mod 8, then the homomorphism (B ij an isomorphism of groups of order 2.

Proof. — a) Follows from H^S', Z/2)==Ext|_g,(Z/2, Z/2).
As for an analysis of Extl_s,(pi2, Z/2) there are two ways to proceed. We may

adapt the general method of (2.1) to the base S', or (since our group schemes have
such small orders) we may work directly. We choose the latter course.

Consider the composition:

p : Ex4_s,((JL,, Z/2) -^ Ext|_g.(Z/2, Z/2) ̂  H^S', Z/2).
r^

A " geometric 55 construction of (B is the following:
If.x is an element in ExtI_s,((JL2, Z/2) represented by an extension:
(5.2) o-^Z/2->E->(Ji2-^

let r : S'->p<2/g» denote the nontrivial section, and let E^CE denote the fiber-product:

E, —> Ei i
S- -^ t.

Thus Ey is the " nontrivial " Z/2-coset. It is a Z/2-torseur over S' and represents
the element ^{x) in H^S', Z/2).

The scheme-theoretic intersection of E,. and Z/2 in E consists in two points lying
over Spec Fg. From this we deduce that the prime 2 splits in the S'-extension E^.

If p(;c)==o, E,. is a trivial Z/2-torseur. Take the subgroup of E generated by
the (unique) S'-section of E,. which meets (at Spec(Fg)) the zero-section of E. This
is a group scheme which projects isomorphically to [L^, and therefore gives a splitting
of (5.2)3 showing that x=o. Thus p (and hence (B) is injective.

Now suppose that x is nontrivial {i.e. (5.2) does not split). The Galois representation
associated to the group scheme E of (5.2) is isomorphic (to be sure) with the Galois
representation associated to the pull-back via p. In particular (3.3):

If GeGal(Q7Q,) and ze}L{Q^), we have a{z)—z==^{z) .y^) where z is the
image of z in ^(Q.) an(! Y : ̂ (Q.)""^/2 ls an isomorphism.w

This Galois representation factors through the unique quadratic number field
in Q^)? namely:

fQXV^N) if NEEE -i mod 4
[Q/VN) if N= i mod 4.

Note that if N ={= ± i mod 8, then 2 does not split in K, whence b). As for c)
we need only construct a nontrivial extension (5.2) when N = = ± i mod 8. We omit
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the details (noting that no use of c) is made in this paper) and merely sketch this
construction: Since 2 does split in K, when N = ± i mod 8, one can glue the S'-scheme Z/2
and the nontrivial Z/2-torseur over S' transversally at their closed points of characteristic 2,
and check that the evident group law away from characteristic 2 extends to a group-
scheme structure of S'.

II. — THE MODULAR CURVE Xo(N)

i* Generalities.

We shall be reading closely in two sources of information concerning moduli
stacks, their associated coarse moduli schemes, and the theory of modular forms: [9], [24].
Our ultimate object is to derive as complete a description as possible ofLg, the Neron
model of the jacobian of Xo(N) over S (N^5, a prime number; Xo(N) the modular
curve associated to Fo(N)). Technically, reduction to characteristics 2, 3, and N (in
that order) produce the thorniest problems, and we shall spend most of our time dealing
with them.

We keep to most of the conventions of [9]. Thus, for m any integer, and
HC GL^Z/m) we have the algebraic moduli stack ̂  ([9], IV, (3.3)) proper over S,
which may be interpreted over Spec Z [1/772] as the fine moduli stack classifying generalized
elliptic curves with a level H-structure ([9], IV, (3.1)). Its associated coarse moduli
stack ([9], I, (8.1)) may be denoted M^. If H is the trivial subgroup of GI^Z/m)

we write ̂  for ̂ . If H=ro(N)=(^ b) c == o mod NJ write:[\c dj }
^-^(N); MH=MQ(N).

Given a pair (E/T, h) where E is an elliptic curve (or a generalized elliptic curve [9],
chap. II) over the scheme T, and A is a level H-structure of E/T, then the T-valued
point of MH determined by this pair will be denoted J'(E/T, A).

In relating modular forms to differential forms, and in other arguments as well,
we shall have use for certain refinements of M()(N), associated to level structures H,
where e^^M^ (^. where the fine moduli stack "exists" as an algebraic space).
Two notable refinements having this property are ([9], IV, th. (2 .7)) :

a) Take m=N, and H=roo(N)=f^ ^ c==o mod N, a^ i mod NJ (recall:

N.>5) in which case we write MH=MI(N).

b) Take m=^ and H=ro(N; ̂ ^[(a ^W1 °) mod 3; c=o mod NJ
which case we write Ma=Mo(N;3). {v ' vo I / j

The schemes M^->M:i(N)-.Mo(N) are smooth when restricted to:

in

S'=Spec(Z[i/N]).

62



MODULAR CURVES AND THE EISENSTEIN IDEAL 63

As in [9], the superscript h (e^o(N)\ Mo(N)^, etc.) refers to the open substack
or subscheme obtained by removing the (< supersingular points 3? of characteristic N.
The precise geometric structure ofMo(N)/g is given by [9], IV, th. (6.9). In particular,
^OT/FN is a union of two copies of P^ (the j'-line) intersecting transversally at the
" supersingular points 3?, where a point x on the second copy gets glued to the image
under N-Frobenius ^(N) on the first. One has that Mo(N)^g is smooth, and i f j is a
supersingular point of characteristic N (using [9], IV, (6.9) (iii) and the fact that
N^5) then Mo(N)/g is regular at j if j+o, 1728. In the latter two cases, Mo(N)
is formally isomorphic to :

Wd^k^/^-N3) if j==o

W(FJ[^]/(^-N^) if ^=1728.

In any case, Mo(N)->S is locally a complete intersection, hence Gorenstein,
and hence also Gohen-Macaulay [3]. By suitable blow-up of the points j=o, 1728
in characteristic N, when they are supersingular, we may arrive at the minimal regular
resolution of Mo(N)/g, which we call Xo(N)/g. See the appendix for a study of these
minimal regular resolutions in a somewhat broader context. The structure of the
(c bad fiber 5? {i.e. over F^) of Xy(N) may be schematized as follows:

blow-up of ^"==1728 when supersingular z'_ ^ Zy
(oN == — i mod 4)

transversal intersection at ^=(=1728,0, supersingular

cusps

blow-up of j=o when supersingular

(oN= —i mod 3)

Diagram i

The irreducible components E (which occurs if and only if N = — i mod 4) and
F, G (which occur if and only if N^ —i mod 3) are the " results 5? of the appropriate
blow-ups, and are all isomorphic to P^. See appendix for further discussion.

The morphism Xo(N)—^S is a local complete intersection, and, again therefore
a Gorenstein morphism, and hence Cohen-Macaulay. Clearly Mo(N)/g, = Xo(N)/g,,
and therefore (over any base extension of S') we have two possible names for the same
thing. We try to keep to this usage: it will be called Mo(N)/g, when we are interested
primarily in questions of modular forms, and Xo(N)/g, when we are interested in more
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geometric questions. Also, for reasons of consistency, and compatibility with other
authors, we allow ourselves the same double notation Mi(N)/g.=Xi(N)/g, in dealing
with H=roo(N), and likewise: Mo(N; SW^I/SND-X^N; 3)/spec(z[i/3N]).

The usual names (o and oo) are given to the two cusps of Mo(N). We view these
as (nowhere intersecting) sections of Mo(N)/g ([9], VII, § 2). They also give rise to
sections of Xo(N)/g (denoted by the same symbols) and, after arbitrary base change
T->S, to T-sections of Xo(N)/T.

The cuspidal sections o and oo distinguish themselves as follows: The morphism
of stacks ^o(N)-^o(i) induced by the rule (E^H^E/T is unramified at oo and
ramified at o.

2. Ramification structure of Xi(N) -> Xo(N).

As always, let N be a prime number ^5. Let k be a field which is algebraically
closed and of characteristic different from N. The map (2.1) Xi(N)->Xo(N) over k
is unramified at the cusps, and has precisely these points as ramification points:

TABLE i

Name o
Char A; in X,

(i)+f
+2,3 ,N

(P)+,

(P)+,
2 w

w+,
3 „

(P
fication of first type "

f point
»(N)

(<)-

(P)-

(P)-

(')-

)

Value of j

1728

0

o = i 728

o = 1728

Occi
and c

N= i

N ^ i

N = i

Nssi

N = i

Nsi

ITS if
>nly if

mod 4

mod 3

mod 3

mod 4

mod 4

mod 3

Structure
of inertia gr

cyclic of order

cyclic of order

cyclic of order

cyclic of order 2: ( < wild
ramification
type"

order 2

order 3: < ( wild

oup

2

3

3

of first

rami-

Definition (2.2). — A Galois p-cy die extension of local fields whose residue fields are of
characteristic? will be said to be wildly ramified of the ^-th type if the higher ramification sequence (G;)
(cf. [60], chap. IV) of subgroups of its Galois group G has the following structure:

G==Gn=G,=...=G.

Gy+i=G^2=. . .==o.

We shall establish the facts of the above table. Recall that (since k is of charac-
teristic different from N) the cusps are unramified in the mapping (2.1). If (E, C)
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is a pair representing a point j(E, G) eXo(N) (1), then the automorphism group Aut(E, G)
denotes the stabilizer of G in Aut(E); since N^5, the natural homomorphism:

Aut(E, G) ^Aut(G)=(Z/N)'
is injective (2). Passing to the quotient:

Aut(E, C)/(±i) -> (Z/N)-/(±i)=Gal(Xi(N)/Xo(N))

the above homomorphism identifies Aut(E, C)/(± i) with the inertia group of the
point j(E,C).

If j(E)+o, 1728 then Aut(E)=(±i), and therefore j(E, G) is not a point of
ramification.

Characteristic A+2, 3, N. — j{E)==ij28: The group Aut(E) is cyclic of order 4.
It can stabilize no cyclic subgroup of order N, CCE if N ^ i mod 4. On the other
hand, if N = i mod 4 there is a 4-th root of unity in F^ and consequently Aut(E) stabilizes
precisely two cyclic subgroups of order N. Call them G± and write (^ =;(E, G+).
We have (z)++(z)- since no element of Aut(E) interchanges G+ and G-. ) This
establishes the first line of the table.

j(E)==o: The group Aut(E) is cyclic of order 6 and reasoning similar to the above
establishes the second line of the table.

Characteristic k =2. — Let E be an elliptic curve with j(E)== 1728=0. We may
take E to be the curve Jy2+Jy==x3. The endomorphism ring of E is the ring ofHurwitz
quaternions and its automorphism group is of order 24. The quotient Aut(E)/(±i)
is isomorphic to SÎ  the alternating group on 4 letters. The cyclic subgroups of ^
have orders i, 2, 3 and any two cyclic subgroups of the same order are conjugate. Fix
cyclic subgroups Hg, HL^C Aut(E)/(±i) of orders 2 and 3 respectively. Note that
the inverse images of these in Aut(E) are cyclic groups of orders 4 and 6 respectively.

As above, then, H:3 stabilizes precisely two cyclic subgroups of order N (call them
C+CE) if N = i m o d 3 and none if N^ imod3 . Write (p)+=;(E, G+). Since
H3 is its own normalizer in Aut(E)/(±i), (p)++(p)- and we have established the
third line of the table.

The subgroup Hg stabilizes two cyclic subgroups of order N (call them, again,
G + C E ) if N = = i m o d 4 and none if N ^ i m o d 4 . But the normalizer of Hg in
Aut(E)/(±i) is isomorphic to the Klein 4-group. Since the entire Klein 4-group
cannot stabilize G^ any element in the normalizer of Hg which is not in Hg must inter-
change G+ and C-. Consequently j(E, G+) =;(E, G-). Denote this point (i). Clearly,
(z) is a point of wild ramification. We shall show it to be of first type, using an argument

(1) Hcre c is a cyclic ̂ g1'0"? of order N in the elliptic curve E, giving the (< level :To(N) structure ".
( ) I f a 4= ± i is an automorphism of any elliptic curve over any field k, then a is of order 4 or 6, and generates

a ring ofendomorphisms isomorphic to the ring ofcyclotomic integers of that order. See the discussion in Appendix i
01 [29] concerning endomorphism rings, and automorphisms. The assertion concerning injectivity above then
follows tor there is no homomorphism of the ring ofcyclotomic integers of order 4 or 6 to FN, which sends a to i
provided N^.5.
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communicated to us by Serre: For any field k of characteristic different from N, one
has the short exact sequence:

0 ->J*^Xo(N)//(; "̂  ""Xi(N)/fc "̂  ^Xi(N)/Xo(N) "̂  °

where the zero on the right comes from the fact that X()(N) is smooth, and
f: Xi(N) ~> Xo(N) is generically separable. Note that dim^ H°(Q^N)/Xo(N)) ls the

degree of the global different ([6o], chap. Ill, § 7, Prop. 14) giving us the Hurwitz Formula.
Namely, the degree of the global different of Xi(N)/Xo(N) is:

2.^(N)-2-(^).(2^(N)--2)

where ,?»(N) is the genus of the curve X^(N). It follows that the degree of the global
different of Xi(N)/Xo(N) is independent of the characteristic of the field k (provided
that it is different from N). From the first two lines of our table, choosing k to be of
characteristic different from 2, 3 and N, we compute the degree of the global different
to be:

/N-i\ , /N-i
2 . ———— + 2 . /

4 / \ 3 /
where if r is a rational number we let the symbol < r > be r if r is an integer and o if not.

On the other hand, if k is of characteristic two and if {i) is wildly ramified of the
v-th type, using prop. 4 of [6o] chapter IV, from what we have established concerning
the ramification structure ofXi(N)/Xo(N) we compute the degree of the global different
to be:

, , , /N-i\ , /N- i \(•+•)•^/+2•M•
Consequently, v== i , and the third and fourth lines of our table have been

established.

Characteristic k ==3. — Here, again, we take E to be an elliptic curve with
^(E)=o==i728; for example: y^-^x^—x. The group of automorphisms Aut(E) is of
order 12 and has the following structure: it contains a normal subgroup of order 3,
^C Aut(E) such that the quotient ofAut(E) by Sig is a cyclic group of order 4, which
acts in the unique nontrivial way on ̂  ([29], App. i, § 2). The center ofAut(E) is (±i)
and Aut(E)/(±i) is isomorphic to ©3, the symmetric group on 3 letters. Again we
have that the cyclic subgroups of ©3 have orders i, 2, 3 and any two cyclic subgroups
of the same order are conjugate. Fix cyclic subgroups H^, H^C Aut(E)/(±i) of orders 2
and 3 respectively. It is again true that the inverse images of these in Aut(E) are cyclic
groups of orders 4 and 6 respectively.

From this point on, to establish the last two lines of our table, we proceed exactly
as in the case of characteristic 2, with the one important difference that now it is Hg
which is its own normalizer in Aut(E)/(±i) while H^ is normal in Aut(E)/(±i).

Our table is established.
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Corollary (2.3). — Let n= numerator ( ~ 1 ) . Let S'=Spec(Z[i/N]). Let
\ 12 /

Xg(N)/g, -^ Xo(N)/g, denote the unique covering intermediate to Xi(N)/g/ -> Xo(N)/g, which is
a Galois covering, cyclic of order n.

Then X^IsO/g, -> Xo(N)/g, is etale.
We shall refer to the above etale covering as the Shimura covering.

3. Regular differentials.

Deligne and Rapoport [9] work out Grothendieck's duality theory in the case
of a Gohen-Macaulay morphism TT : X->T (purely of dimension d). We shall recall
the contents of [9] in the case d==i, with some change of notation.

Definition (3.1). — If TT : X—^T is a Cohen-Macaulay morphism purely of dimension i,
where T is a noetherian scheme, the sheaf of regular differentials is:

^-^-'(R^T) (1) (M. chap. I, ( 2 . 1 . 1 ) ) .

The sheaves ^xr are ^at over ^ their formation commutes with arbitrary base
change T'^T and with etale localization of X. IfX/rp is smooth, then ^.^^CT-
If X is a reduced curve over an algebraically closed field k which has only ordinary
double point singularities x^ .. .5 ^ and if (^', x^) denotes the inverse image of^ in X*,
the normalization of X, then the regular differentials on X consist in meromorphic dif-
ferential forms on X* regular outside of the ^'3 x [ ' , having at worst a simple pole at
the x[ and x[\ and verifying:

res^.=-res^ (z==i , . . . , ^ ) .

The duality theorem gives an isomorphism.
If ̂  is a locally free ^-Module, and if the R^TC,^ are locally free ^-Modules,

the duality theorem (loc. cit. (2.2.3)) gives:

(3.2) R^TT^OO^) ̂  (R^r
where ^ denotes ^-dual.

We prepare to apply the duality theorem to the morphisms ny, 7^, which are
the base changes to T->S of the morphisms occuring in the diagram:

Xo(N)——^ Mo(N)

S

where i is the minimal regular resolution introduced in § i.

(1) Deligne-Rapoport call this (OX/T* ^e often omlt ^e subscript X/T when no confusion can arise.
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Let ^^/s^^P8) denote the locally free sheaf, which when restricted to the
complement of the cuspidal divisor, is equal to the sheaf of regular differentials and
whose sections in a neighborhood of the cuspidal divisor are meromorphic differentials
with, at worst, a simple pole along the cuspidal divisor. Let C^/^g (cusps) be the
subsheaf of functions in ^Mo(N)/s ^ich are zero along the cuspidal divisor. An easy
computation gives that R^T^M.^T^11^) vBmshes when 7=1=1, and is an extension
of R^T^^UNhT ^Y ^T) when j==i. Consequently, the R^T^MotN)^11^) are locally
free ^-Modules, when the R^^^ot^/T are*

Lemma (3.3). — Let T be a noetherian scheme flat over S = Spec(Z), or over the spectrum
of a field. Then:

R^lAw/,
R-'^TA.WfT^P8)

R^A(N),,
are locally free (9^- Modules.

Remark. — The duality isomorphism (3.2) then applies in these cases.

Proof. — By the preceding discussion we need only prove the assertion for R^ffy
where f:Y—>T stands for either the morphism TC or TC'. Formation of R{/r ^Y/T
commutes with flat base change T'->T ([EGA], III, (1.4.15)), which reduces us
to considering the unique case T=Spec(Z). Also, j=i is the only nonobvious
dimension. Tuet p be any prime. Since ffy ls ^at over Z, we have the exact sequence:

o -> R°/A^ R°/^y^ RV/F^Y^ RV^y^ RV^Y.
The only global functions on Y/p are constant functions. This is evident for

j&=f=N, since Y/p is then smooth and irreducible, and follows for j&=N from the explicit
description of the fibers Xo(N)/^ and Mo(N)/^ (§ i). It follows that R^^Y has no
nontrivial j^-torsion.

Proposition (3.3) (commutation with base change). — Consider the category of rings which
are flat over TL\mfor some m, or over Z. Let R->R' be a homomorphism in this category^ then:

HO(Mo(N)^, a)O^R' -^ HO(Mo(N)^, ̂
and: H°(Mo(N)/R, t2 (cusps) )®RR' ̂  H°(Mo(N)^, ^(cusps))

are isomorphisms.

Proof. — The assertion holds for R->R' flat, by [EGA], III, (1.4.15). This
allows one to reduce the question to the base changes Z—^Z/TTZ (for m an arbitrary
integer); for these the assertion is true since H^M^N)^, Q.) and H^M^N)^, ti(cusps))
are torsion-free Z-modules, by (3.3) and the duality isomorphism (3.2).
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Proposition (3.4). — Let T be a (noetherian) scheme flat over S or over afield. The
natural map induces an isomorphisms

R ^T*-"X(,/(N)/T ~^ rv ^T'^MotI^/T*

Proof. — This is evident ifN is invertible in T. Thus, since formation of R^+^Y/T
commutes with flat base change, we are reduced to the cases T=Spec(Z), and
T=Spec(F^)« For the latter case, we must check that the regular differentials on
Mo(N)^ and on Xo(N)^ coincide. But this is elementary, taking account of the
explicit description (diagram i of § i) of Xo(N)/^ in terms of Mo(N)^ and using
the fact that a meromorphic differential on P1 with at worst simple poles at two points
a, beP1 is uniquely determined by its residue (at a, say).

For T=Spec(Z), we have:
i : HO(Xo(N), Qxo(N)) -^ HO(Mo(N), QM,(N))

is a morphism of free Z-modules of finite rank (3.3), (3.2). Since ^®zZ[i/N] is
an isomorphism, it follows that i is injective, with cokernel V a finite N-primary abelian
group.

Since by (3.3), (3.2) Hl(Xo(N), O^)) and H^I^N), ̂ ^) are free Z-modules,
we have the diagram:

o oi \
0 ——^ HO(Xo(N), ^Os)) ——> HO(MQ(N), ^Mo(N)) ——> ^ -^ 0

^ ^N ^

0 ——> HO(Xo(N), ^,(N)) ——> HO(Mo(N), ^,(N)) ——> ^ -^ 0

I 1
HO(Xo(N)^, Q^J -^> HO(Mo(N)^, ^(N)J

0 0

giving that ^=0.

4. Parabolic modular forms.

In this section R will denote a ring flat over Z, or over Z/w for some m. We shall
be interested in comparing three different points of view concerning holomorphic modular
forms of weight 2 over F^N), defined over R.

i. q-expansions of classical modular forms (Serre [47]).
If RCQ^, let B(R)CR[[y]] be the R-submodule of ^-expansions (at oo) of

(classical) modular forms of the above type (1) (whose ^-expansion coefficients (at oo)

(1) Holomorphic, of weight 2, over P()(N).
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lie in R). Let B°(R) C B(R) be the subspace generated by parabolic forms. We
do not require that the ^-expansion coefficients at the other cusp o lie in R. Using ([9],
VII, (3. i8)) and the discussion of§ 6, (i) below one sees, however, that these <( other 5?

coefficients lie in N-^RCQ. The unspecified term q-expansion will mean: at oo. It
follows from the work of Igusa and Deligne or ([69], p. 85, th. (3.52)) that:

B(Z)®R^B(R) and B^Z^R^B^R) for R C %

(formation "commutes with base change35) and we define the R-submodules:

BO(R)CB(R)CR[M]

for an arbitrary ring R by the above isomorphisms.

2. Sections of the sheaf ̂  over the moduli stack (which are holomorphic at the cusps) (Katz [24];
Deligne-Rapoport [9]).

Let A(R) (resp. A°(R)) denote the R-module of modular forms (resp. parabolic
modular forms) of the above sort, as defined in [24], (1.3) (compare [9], VII, § 3).
We also refer to an element ofA(R) as a modular form in co02. Thus, an element aeA(R)
is a rule which assigns to each pair (E/^, H), where E is an elliptic curve over an
R-scheme T, and H a finite flat subgroup scheme of E^ of order N, a section a(E/T, H)
of co^2 where co^ is the sheaf of invariant differentials.

The rule oc must depend only on the isomorphism class of the pair (E/T, H) and
its formation must commute with arbitrary base change T'-^T. Finally, it must satisfy
the condition of holomorphy at the two cusps.

The q-expansion morphism:

q-exp : A(R)^R[[y]] a^o?

defined by:

a(Tate curve/R^, p.J == a. square of canonical differential {1)

is infective, if R is flat over Z or if i/NeR (2) and allows us to identify A(R) with an
R-submodule of R[[^]] in these cases.

We shall be especially interested in A(R) for rings R containing i/N. In this
case one has an alternate description of A(R) as the space of holomorphic modular
forms of level N, defined over R ([24], (1 .2)) which are invariant under the action
of the appropriate Borel subgroup.

The question of whether formation ofA(R) commutes with base change is a difficult
one, and may be viewed as the main technical problem of this paragraph (3).

0 Compare [9], VII, (i.i6); [24], A 1.2, p. 1 6 1 .
(2) This follows from the argument of VII, (3.9) of [o], or, if i/NeR, [24], ( i .G . i ) .
f3) Compare [24], (1.7) and (1.8). » L ̂  v }
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3. q-expansions of regular differentials.

The pair (Tate curve/mrii, (JL^) gives rise to a morphism:
T : SpecZ[[?]]^Mo(N)/,

as in [9] VII, Th. (2.1) and T identifies Z[[^]] with the formal completion of Mo(N)/z,
along the section over S = Spec Z corresponding to the cusp oo. For any ring R,
T induces a morphism:

t : SpecR((<7))->Mo(N)^

where R((?))==R[[?]][i/?] is the ring of <( finite-tailed " Laurent-series.
Suppose U is an open subscheme ofMo(N)/R through which the above morphism t

factors, and such that U/gp^/R/^) ls contained in the irreducible component of the Hasse
domain Mo(N)^p^R/N) to which the cusp oo belongs. If y is a regular differential
on U, we refer to y as a meromorphic differential on Mo(N)/^. Define the q-expansion

of y to be that element ^ of R((^)) such that ^Y=7'-"-

The y-expansion morphism is an injection of the space of meromorphic differentials
over R to R((?)). The reason for this is, briefly, as follows. I fy is defined on U and
7==o, then Y is defined, and vanishes, on a formal neighborhood of the section in Mo(N)/R
corresponding to the cusp oo. Since Q is an invertible sheaf, and the support ofy inter-
sects each geometric fiber ofUin a finite number of points, ^==0 (cf. argument of [9],
VII, th. (3.9); or of [24], ( i .6 .2)) .

The ^-expansion morphism also induces an injection:

<?-exp : IP(Mo(N)/R, Q(cusps)) ~> R[[y]].

To prove this when R == Z/N use the structure of the fiber in characteristic N and the
fact that a differential on P/^? which possesses at worst simple poles, is known when
its poles and (all but one of) its residues are known. It then follows for R=Z/Nm

(m^i) by an argument using (3.3). If i/NeR, the argument of the preceding
paragraph gives injectivity; ifR is flat over Z one must use that Mo(N) is Cohen-Macaulay.

By means of the map y-exp, we identify H°(Mo(N)/R, i2(cusps)) with a sub-
R-module of R[[?]].

The relation between A(R) and H°(Mo(N)/R, il(cusps)) is given by the (< Kodaira-
Spencer style morphism" of [24], (1.5) and A, (1.3.17). For our purposes, the fol-
lowing statement is convenient.

Lemma (4.1). — The natural mapping ([24], A, (1.3.17)):
^->Q>

a) is an isomorphism on the complement of the cuspidal sections in Xi(N)/R,/or any R,
as above, which contains i/N;
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b) is defined on the complement of the cuspidal sections and the supersingular points of
characteristic N in Xo(N$ 3), for any R, as above5 which contains 1/6.

Now when R contains i/N, let:

U\(N)/R==the open subscheme of Xi(N)/R obtained by removing the discriminant
locus of Xi(N)->Xo(N).

Uo(N)/R=the image of Ui(N)/R in Xo(N)/R. The Galois covering Ui(N)/R -> Uo(N)/R
is a finite ^tale Galois extension with Galois group (Z/N)'7(± i) (1).

When R contains 1/6, let:

Vo(N; 3)/R==the open subscheme ofXo(N$ 3)^ obtained by removing the discriminant
locus of X()(N; 3) -> Xo(N) and the <c supersingular points " in charac-
teristic N.

^o(N)/R =the image of Vo(N; 3)^ in Mo(N)/R. If G is the covering group of
Xo(N; 3) ^-Xo(N), then Vo(N; 3) ->V()(N) is a finite etale Galois extension
with covering group G.

Lemma (4.2). — The Kodaira'Spencer morphism induces•:

an imbedding: A(R)-> H°(Uo(N)/R, ti(cusps)) if i/NeR$
a morphism: A(R) -> H°(Vo(N)/R, tl(cusps)) if i/6eR.

Moreover, these morphisms bring A°(R) to the subspace of regular differentials on the respective bases.

Proof. — Suppose i/NeR. Modular forms for F^N) on co02 ([24], (1.3)) are
modular forms for I\(N) which are invariant under the action of the covering group.
Using lemma (4.1), the Kodaira-Spencer morphism associates to an element a in A(R)
a regular differential a^ on the complement of the cuspidal sections in U^N)^, which
is invariant under the action of the covering group. Since Ui(N)^ -> Uo(N)yR is
dtale, a^ descends to a regular differential a on the complement of the cuspidal sections
in Uo(N)/R. By Cor. A, (1.3.18) of [24], the ^-expansions of a coincide with the
^-expansions of a. The condition of holomorphy (resp. parabolicity) at the cusps then
insures that a have at worst a simple pole (resp. is regular) at the cusps; consequently
a is a section of ti(cusps) (resp. £1) on all of Uo(N)/^.

Similarly, if i/6eR, one constructs a differential on V()(N)/R.
Note that both Uo(N)/R and Vo(N)yR, when defined, are open dense subschemes

of M()(N)/R. Also, the construction which associates to a differentials on these open
subschemes yields the same differential on the intersection (same ^-expansion).

Consequently, to any oceA(R), and for any ring R as considered in this section,
we may associate a meromorphic differential on Mo(N)yR, <3, with the same ^-expansion as a.

(1) To avoid confusion with Various Galois actions we refer to this group as covering group.
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To compare differentials with elements of B(R), we begin with:

Lemma (4.3):

HO(Mo(N)^)CBO(R)CR[[<7]]
HO(Mo(N)^, Q(cusps)) C B(R) C R[M].

Proof. — If R=Z, the first inclusion follows since H°(Mo(N)/z5 ^) is a subspace
of H°(Mo(N)yQ, t2) having integral ^-expansions. Consequently we obtain the desired
inclusion for any R of the type considered in this section, since formation of both range
and domain commute with base change Z->R (3.3). The second inclusion follows
similarly.

Lemma (4.4):
(1) If R is afield of characteristic j^4=N, then:

AO(R)=HO(Mo(N)/^)
and: A(R) ==H°(Mo(N)/R, t2(cusps, (z))) if p==2 and N = i m o d 4

A(R) =H°(Mo(N)/R, ^(cusps, (p))) if p=s and N = i mod 3
A(R) ==H°(Mo(N)^, ti(cusps)) otherwise

(i.e. p^>_5, or p==2, N = — i m o d 4 or ^==3, N = — i m o d 3 ) . (See Table i.)
(2) If R==Z[i/77z] for some integer m, then:

A(R) CH<>(Mo(N)/R,^(cusps))
AO(R)ClP(Mo(N)^).

Note, — By tl (cusps, (i)) is meant the sheaf of meromorphic differentials which
have, at worst, simple poles at the cusps and at the point (z) of Table i.

Proof. — Let aeA(R) and let a be its associated meromorphic differential.

( i ) R a field of characteristic ^=t=N:
Here a is a meromorphic differential on M()(N)/R which is regular on Uo(N)/R,

except for possible simple poles at the cusps, and which lifts to a differential on Xi(N)/^
regular except at the cusps.

We shall make a local calculation to determine when a meromorphic differential
can become regular, after finite extension. Explicitly, let k be an (algebraically closed)
field of characteristic p and D^ C Dg a finite extension of A-algebras, which are discrete
valuation rings, with residue field k.

Let a^ denote a meromorphic differential on Di relative to A, and let a^ denote the
induced differential on Dg, relative to k.

Sublemma. — If D^CD^ is (etale, or) tamely ramified, then the meromorphic differential a^
is a regular differential (regp. has a simple pole} if and only if a^ is a regular differential (resp. has
a simple pole) on D^.
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If DI C Dg ^ wildly ramified of the first type (2.2), then a^ is a regular differential if and
only if a^ has (at worst) a simple pole on D^.

Proof. — Since there are no nontrivial etale extensions in our situation, we may
assume DiCDg a totally ramified Galois extension of degree r. Write D2=A[[^]]
for a choice of unifbrmizer y ofDg, and Di==A[[^]], where x is a uniformizer, chosen
so that x== (p(j^), where <p(Y)e^[Y] is a polynomial.

Using ([6o], III, 7, Cor. 2) one calculates the different of DiCDg to be ((p'OO).
If v^ is the valuation on Dg such that ^(j/)==i, then y2(A:)=r, and ^(P'OQ) can be
calculated in terms of the orders of the higher ramification groups of DiCD^ ([6o],

00

IV, § 2, Prop. 4: ^(y'OQ)^ S (Gard(G,)— - i ) ) and consequently:
i=0

^2(9'(jy))=r—i (tamely ramified case)

v^{<^'{y))==2p—2 (wild ramification of first type).

Up to multiplication by a unit in D^, we may write a^ as x8 .dx for some set.
Thus, a^ is, up to a unit, of the form Xs .cp'^) .dy, and:

y^8.9'(j^)) == ̂  + r—I (tame ramification of degree r)

=^+2(j&—i) (wild ramification of first type).

The assertions of the lemma can now be read off from the above formulae (^e^., in
the case of wild ramification of first type, s^—i if and only if ^+2(^—1)^0).

Now return to the case (i) of lemma (4.4)3 and the meromorphic differential a.
By Table i, Xi(N)/^ ->• Xo(N)/^ has at most one point of wild ramification, and none if
characteristic R=(= 2, 3. Moreover, if there is a point of wild ramification, it is of first type.

By the sublemma, the meromorphic differential a is regular with the exception
of possible simple poles at o, oo, and (z) and (p), if they occur (see Table i). Conversely,
any meromorphic differential which is regular, except for such simple poles will (by
the sublemma) lift to a differential on X^(N) with, at worst, simple poles at cusps. This
gives us the identification of A(R) with the appropriate space of meromorphic diffe-
rentials, as in the statement of (i). The subspace A°(R) is then identified with the
space of differentials on Mo(N) which are regular everywhere with the exception of
a possible simple pole at (z) (if p==2, and N = i mod 4) or at (p) (if j&==3, and
N = i mod 3). Since the sum of the residues of a differential over a complete curve
is zero, it follows that A°(R) is identified with the space of everywhere regular differentials.

(2) R==Z[i/m]:

We show A°(R) C H°(Mo(N)/R, Q.); the other inclusion is proved in the same way.
Recall that Mo(N)^ denotes the complement of the characteristic N supersingular

points, in M()(N)/R. The meromorphic differential a is regular on an open dense
subscheme of Mo(N)^.
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Let DOQ (resp. Do) denote the divisor of poles (resp. of zeroes) of a, on Mo(N)^.
Recall their definition: if x is a point of the scheme Mo(N)^, and (9^ the local ring at x,
let (pa; be a local generator of ^Mo(N)^ at •y* Since 0^ is a unique factorization domain,
one can find &;,^eC^ with no common factors such that g^.a==h^.^. A local
equation at x for D^ (resp. for Do) is given by: g^==o (resp. Z^==o).

Now let p be a prime number with these properties:
a) jK2.3.N.w;
b) DOQ and Do have disjoint support in characteristic p : [ D^®F | n | DQ®F | ==0.

It follows from the definition of polar divisor and a), b) that a®f is definitely
nonholomorphic at D^®Fy. Therefore part ( i) of our proposition implies that the
support of D^o is disjoint from the fibre of Mo(N)^ ->• Spec(R) in characteristic p.
Since Doo contains no irreducible component of any fibre of TC, it follows that D^=o;
therefore a is regular on Mo(N)^. To see that a is, in fact, regular on M()(N)/R, use
that the supersingular points of characteristic N are of codimension 2 in Mo(N)/R, and
0. is an invertible sheaf, and Mo(N)^ is Cohen-Macaulay (SGA 2, Exp. Ill, Cor. (3.5)).

Lemma (4.5). — Let R be flat over Z[i/N]. Then:
A(R)=Ho(Mo(N)/R, Q(cusps))=B(R)

Ao(R)=H"(Mo(N)^, Q)=B"(R).

Proof. — We establish the first line above; the second may be obtained by essentially
the same argument.

First let R=Z[i/N]. By the previous two lemmas, we have inclusions:
A(R) C H°(Mo(N)^, ^(cusps)) C B(R)

and so we must prove that A(R)=B(R). But this follows from the q-expansion prin-
ciple ([24], Cor. (1.6.2)). To be more precise, using the notation of (1 .6 .2)5 take
f to be any element in B(R), TZ==N, K==Q^, L==R. Katz's corollary (1.6.2) then
gives us that f is a holomorphic modular form (in co02) of level N, defined over R.
Since y, viewed as a modular form of level N, is invariant under the appropriate Borel
subgroup of GLg(F^), it is in A(R).

Now let R be flat over Z[i/N], Lemma (4.5) will follow from what we have
done, provided we show that:

A(R)=A(Z[i/N])®^R.

Even this c< commutation with base change " is not totally trivial. If one takes
the point of view that A(R) is the space of (Z/N)*/(± i)-invariant differentials (regular,
with the possible exception of simple poles at cusps) on X^N)^, however, it is an easy
exercise (1).

(1) If G is a group and M a Z[i/N][G]-module, flat over Z[i/N], and R a flat Z[i/N]-module, then
MG®z[l/N]R is isomorphic to (M^z^/NjR)0. (The superscript G denotes invariants under G.)
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Lemma (4.6):

H°(Mo(N)/R, Q(cusps))=B(R)
H°(Mo(N)/R,n)=BO(R).

Proo/. — We show the second equality; the first is done similarly. It suffices
to prove this equality for R=Z, since formation of both sides of the equation commutes
with base change from Z to any of the rings R we consider.

By lemmas (4.3) and (4.5), H°(Mo(N)/z, £2) is a subgroup of B°(Z), and the
quotient Q, is an N-primary finite abelian group. Since:

H"(Mo(N)^, Q) C B"(F^) C F^EM]

one checks that multiplication by N is an isomorphism on Q.

Lemma (4.7). — Let m be an integer prime to N and R=Z/TO. Then:

IP(Mo(N)/R,Q(cusps))CA(R)
H°(Mo(N)/B,n)CA»(R).

Proof. — These inclusions follow from (4.5) and the fact that the morphisms:
H°(Mo(N)z^, n(cusps)) -> H°(Mo(N)/R, ^(cusps))
IP(Mo(N)^, Q) ^H»(M,(N)/B, £1)

are surjective (3.3).

Lemma (4.8). — Let m be prime to N, and R=Z/m. Then:
AO(R)=:HO(MO(N)/R,D)=BO(R)

^ A(R)=:H°(Mo(N)/R, ^(cusps))=B(R)

if m and N satisfy the following properties:

(a) either m =j= o mod 2, or N ̂  i mod 4 and
(b) either m^=omod^, or N4=1 mod 3.

Proof. — In the light of (4.6), what must be shown is that the inclusions of (4.7)
are equalities, under the hypotheses above. Lemma (4.4) ( i ) assures us that they
are if m is a prime number. We now proceed by induction. Let p be a prime dividing 772;
m^m'.p. Let R 'CR be the sub-R-module consisting in multiples of p (R'^Z/w').

Consider:

A(R') —^ A(R) —^ A(F,)

H(R') —^ H(R) —> H(F) —> o
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where H(*) stands for H°(Mo(N)/,, ti(cusps)). The bottom line is exact since formation
ofH(*) commutes with the type of base change which occurs in that line (3.3). The
top line is exact, by an application of the y-expansion principle ([24], (1.6.2)). The
two flanking vertical inclusions are isomorphisms by induction, since if m and N
satisfy (a), (b), then m' and N also satisfy (a), (b). Therefore the central vertical
inclusion is an equality, as well. This establishes the assertion of lemma (4.8)
concerning A(R); the assertion concerning A°(R) is established by a similar argument.

Summary and convention (4.9). — We shall be chiefly concerned with modular forms
of weight 2, over Fo(N), for some (usually fixed) prime number N^5. Except when
indicated explicitly to the contrary, ^parabolic modular form (over ro(N), defined over R)
will mean an element ofB°(R); or, equivalently, a regular differential on M()(N)/R;
or, equivalently (if R is flat over Z or over a field) a regular differential on Xo(N)^;
or (if R=Z/w with (w,N)=i (4.8); or R flat over Z[i/N] (4.5)) an element
of A°(R).

For holomorphic (nonparabolic) modular forms it is true that elements of B(R)
coincide with differentials defined over R, regular with the possible exception of simple
poles at cusps (4.6). Nevertheless, for certain rings R, A(R) may differ from B(R)
{e.g.. Remark below). Thus we shall always make clear, in what follows, whether we
are dealing with an element ofA(R) [a modular form in co02) or ofB(R), and both notions
will be useful.

Remark (concerning the distinction between A(R) and B(R)). — The Riemann-
Roch Theorem and the description given in (4.4) (i) show that B(R) is of co dimension i
in A(R), if R is a field of characteristic 2 and N=s i mod 4; or of characteristic 3 and
N= i mod 3.

In certain cases one can exhibit an element ofA(R), not in B(R). For example,
if charR==2, and N=5 mod 8, it follows from the description in (5.12) below that
the power series S modulo 2 is (the (/-expansion of) such an element; the power series 8
modulo 3 is such an element if charR==3, and N=4 or 7 mod 9.

On the other hand, the Eisenstein series e ' (§ 5) is in B(Z) but not A(Z), since
its (/-expansion coefficients at the cusp o can be seen to lie in N^.Z but not in Z.

Proposition (4.10). — There are no nonvanishing parabolic modular forms over Î i)
(in (o02), defined over any ring Rflat over Z or over Z/TTZ.

Remark. — There are nontrivial holomorphic modular forms over ro(i) (in co02),
defined over certain rings R (cf. (5.6)).

Proof. — If i/5eR, lift to Mo(5)/^. This is a curve of genus o, and therefore
has no nonvanishing regular differentials on it. Since i/5eR there are no parabolic
modular forms (in co02) over 1^(5), as well. Therefore there are none over ^(i).

If i /yeR, lift to Xg(7) and use the same argument.
The general ring R (as considered in this section) is then treated by patching.
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5. Nonparabolic modular forms.

Consider the following three power series in Z[[y]].
oo

€==1—24. S (T^)^
w==l

where a(m) is the sum of the positive divisors of m.

(5-1) { ^'=i-N-24 S (/(^w

* m= 1

where (/(m) is the sum of the positive divisors of m which are prime
to N (as usual, N is a fixed prime number ^5).

00

8= S (/(m)^.
w==l

The power series e is the ^-expansion of the Eisenstein series of weight 2 of level i (1).
It is the logarithmic derivative of the ^-expansion of the normalized modular form (of
level i) of weight 12:

oo

A=^n (1——^)24 (2).
w==l

The power series e'{q)==e{q)—'N.e{q^) is the ^-expansion of the Eisenstein series
of weight 2 on Fo(N) (3). It may be regarded, as meromorphic differential, as the
logarithmic derivative of the function A(^)/A(^) on Mo(N)/Q. Since this functions
has zeroes and poles only at the cusps, e ' is (the y-expansion of) a differential whose
only poles are (simple) poles, occurring at the cusps. Since e' has integral coefficients,
we have ^'eB(Z). Viewed as modular form in co02 over Q,, the y-expansion of e ' at the cusp o
may be seen to be (using [9], VII, (3.18)):

00

i/N.(N-l+24 S a^m)^)
W==l

and therefore e ' is not in A(Z).
The power series S is simply e ' , deprived of its constant term and conveniently normalized.

It will be of interest to consider those rings R over which 8 is a modular form.
It is proved in [24], (4.5-4) (also (A. 2.4) if ^5) that e is a p-adic modular

form ([24], (2.2)) for every p. Thus, if R=Fy, e is the ^-expansion of a meromorphic
differential on the Hasse domain Xo(i)^. This differential may have poles at the

( Q \

(1) It is the ^-expansion of -g) .Gg^; o, o, i) in Hecke*s terminology ([19], p. 474). It is denoted P
in [24]. n '

(2) Cf. [24], A 1.4.4 for a proof of this fact, which does not use the Jacobi identity.

(3) The ^-expansion of (—-^).E(T,N) in HECKE [19], p. 474.
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supersingular points. Our first object will be to study e, both as section of co02 over
the moduli stack, restricted to the Hasse domain, and as meromorphic differential.

Lemma (5.1). — The power series e is the q-expansion of the meromorphic differential:

—dj
—— modulo 24. <^2. ̂

J " °

and of: — -,—J—— modulo 24.32.7
j I

on Xo(i).

Remarks. — In the above, j is the elliptic modular function, which is a rational
parameter for Xo(i), and has (/-expansion beginning i /y+744+.. . . If:

oo

<?4= 1+240 S a^m)^
m=l

€6=1-504 S; a^m)^
m^l

are the normalized Eisenstein series of weight 4 and 6 respectively, we have:

(5.2) j=^/A=i728+^/A.

It would be interesting to study the poles and residues of e at the supersingular
points ofXo(i)/z/pr for pT any power of a prime. 0. A. L. Atkin, M. Ashworth, and
(independently) N. Koblitz have some interesting formulae, algorithms, and machine
computations which suggest some precise conjectures in this direction.

Proof of lemma (5.1). — Take logarithmic derivatives of formulas (5.2), regarded
as identities in power series in q, noting that:

d log(^) =. o modulo 3.240 = 24.32.5

dlog{e^) =o modulo 2.504=24.32.7. Q.E.D.

To study e as a section of o02 over the moduli stack, recall the standard formulas
giving elliptic curves in " generalized Weierstrass form 5? over arbitrary bases (we use
the notation and conventions of Tate. Cf. Appendix i [29]). Thus, if (E/T, n) is
an elliptic curve over the base scheme T, equipped with an invariant differential, TT,
we may represent (E/rp, 7r) locally for the Zariski topology over T as a curve:

Jy2+a^xy+a^=x9+a^x2+a^x+a6
(5*3) TT = dxf{2y + a^x + ̂ 3) = dyf{y2 + 2a^x + a^— a^y)

where, if /: E-^T is the structure map, and e : T->E the zero-section, then (i, x)
is a basis of/,(P(2e) and {i,x,j) is a basis of/,^(3e).

This representation may be modified by making a different choice (re', x ^ y ' ) to
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obtain a new equation (5.3)'. The relation between the old and new choices is given
by the "data":

(u, r, s, t) where ueF^T, 0^)

r,^er(T,6y
defined by the formulas:

'^:f=un
x ==u2xf-^-r
y ==uy+SU2X'+t

and, conversely, any such data gives us a new choice. The new formula (5.3)' is related
to the old by:

ua[ == a^ + 2^
u2a^ == a^—sa^ + y—s2

2/3 a^ ^3 +ra^+2t
u^a[ = a^—sa^ + 2ra^~ (t + rs)a-^ + y2— 2st
ifa'Q = OQ + ra^ + r2^ + r3— ̂ 3— ^2— r î.

Following Tate, define:
&2 == ̂  + ̂ 2^ ^4 ::= ala3 + 2^.

For the new formula (5.3)' one has:
(5.4) ^=^+i2r; u^b[==b^+rb^+6r2.

Lemma (5.5). — Let R=Z/72 (72==23.32). Let T be an ^-scheme. Let (E/rp, jr)
be a pair consisting in an elliptic curve E/rp and an invariant differential n such that b^ is invertible
in r(T, fl^). Then the function z==b^~ 12^4/63 depends only on the isomorphism class of the
pair (E/rp, n) and not on the representation (5.3) chosen. It defines a section of co02 over the
open substack of the moduli stack of level i over R obtained by removing the cusps and(< inverting b^ ".
The q-expansion of s is e^ modulo 72.

Proof. — One checks, using (5.4) and working modulo 72, that the relation between s
and s' (under a change of representation given by the (( data 9? {u, r, s, t)) is ^s^s
which establishes everything but the last sentence of lemma (5.5). For this, we
evaluate s on the Tate curve whose equation is ([63], IV, 30):

/ v n3^ \
^-xy^x^+a^x+OQ ^=-52.———J

\ n I — ( l /

n3^ w m3^
Thus, ^2=1 and &4==—ioS—'—, giving £=1+120 S——^. Sincen i — q m==i i — q

i20m3^—24^2 mod 72, we conclude that e==e.

Remark. — This lemma gives the first two terms of an c< asymptotic expansion "
of e in terms of the parameter b^ (which cuts out the supersingular locus, 2-adically
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and 3-adically). Using his algorithm and machine computation, N. Koblitz has obtained
the first 40 terms.

Proposition (5.6). — {Holomorphic modular forms of level i):

(a) There are no nontrivial holomorphic modular forms of level i (in co®2) defined over a
field R of characteristic +2, 3.

(b) The (< square of the Hasse invariant" is a holomorphic modular form mod 4, with
q-expansion equal to e.

The < ( Hasse invariant " is a holomorphic modular form mod 3, with q-expansion equal to e.
(c) If (p is a holomorphic modular form [of level i; in co02), defined over R=Z/w, with

q-expansion beginning with the constant i, then:
(i) m divides 12;
(ii) (?==<?.

Summary. — Every holomorphic modular form of level i, defined over R=Z/m
has (/-expansion equal to a constant.

Proof:

(a) R a field of characteristic =t=2, 3
Let cp be such a holomorphic modular form defined over R, and denote by the

same letter the meromorphic differential on Xo(i)/^ associated to (p. Since the moduli
stack associated to ^(i; 3) " exists 9? (§ i), lifting 9 to Xo(i; 3) yields a meromorphic
differential, with at worst, simple poles at the cusps. Since Xo(i $ 3) ->Xo(i) is a
tamely ramified Galois extension, the sublemma in the proof of (4.4) assures us that
<p has, at worst a simple pole at the cusp oo ofXo(i) /R. Since Xo(i)/R is of genus o,
cp must vanish.

(b) Going back to (5.5) one sees that, modulo 12, e is given by 63, and is therefore
a holomorphic modular form modulo 12. Its y-expansion is the constant i. Modulo p
(any p) the Hasse invariant is a holomorphic modular form of weight j^—i, and
(/-expansion equal to i ([24], (2.o)).

Thus, modulo 2, the Hasse invariant is of weight i and can be taken to be a^.
By <( the square of Hasse invariant mod 4 5? we mean a2, which is a section ofco02, mod 4.
But, e -= 63 = a2 mod 4.

Working modulo 3, the Hasse invariant is a modular form of weight 2, with the
same ^-expansion as e. It coincides, therefore, with e.

(c) Let <p be a holomorphic modular form mod m, such that the constant term
of its ^-expansion is i. By (a) m=2a.35. To show that m divides 12, it suffices to
show that no such 9 can exist mod 8 or mod 9.

Let 9 be such a modular form mod 8 (resp. mod 9). Note that 9 ==e mod 4
(resp. mod 3), because, by (b) (p—<7 is a holomorphic modular form mod 4 (resp. mod 3);
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it is parabolic by our assumptions on 9, and therefore must be zero by (4 8) Let
R=Z/8 (resp. Z/g).

We may write <p=r(j) .e, where r(j) is a rational function inj (viewed as rational
parameter ofXo(i)) with coefficients in R. If we view both 9 and e as meromorphic

differentials, and use (5.1) that e=-4, and (4.2) that 9 is a regular differential on

the open subscheme Spec RD'J-1] of Xo(i)/R, we obtain that r(j) is in RfjJ-1]. By
the above, we may write r(j)=i+4L(j) (resp. i+3L(j)) where L(j) is a - Laurent
polynomial35 in RljJ-1]. We now use holomorphicity of 9 about the point j=o,
together with the above description ofr(j).

If R = Z/8, consider the following elliptic curve E over the power series ring R [ [t]].
E : ̂ -}-fxy+jy=x3, n==dxf{2y+tx+i)

One computes:

^=t2
e=b^-I2bJb^t2—l2|teR[[t]][t-l]

D^—t

j =tl\^-2^)-lE^[\f\~\.

We now compute the value of the section 9 of co02 on the pair (E, n) over the
ring of finite-tailed Laurent series R[H] [r1].

9(E, ̂ -{l+4^j)){t2-l2|t)eR[[t]] [r1]
:=^2-I2/^+4^.L(J).

Since 9 is holomorphic, and (E, 7r) is defined over R[M], 9(E,-n:) must lie in
R[M]CR[M] [r1]. That is:

(5.7) ^^.LORrM].

Let j6 be the lowest power of j occuring in the Laurent polynomial L(j) with
coefficient a unit mod 8. Writing 4^ L(j) as a finite-tailed Laurent series in t, one
has that ^12&+2 is the lowest power of t occuring with nonzero coefficient. One reasons
now, that if b is nonnegative, the 12 jt term in (5.7) cannot be cancelled by any term
in 4^L(j), while if b is negative, t12^2 is the lowest power of t occurring in the expression
°^ (5-7)- I11 either case, one has a contradiction.

If R==Z/9, it is convenient to work with the elliptic curve E given by the
representation:

^=^3=1; ^=(^—i)/4; ^4=0; aQ==—il4.
Then:

b.==t
e==b^-i2bJb^==t-i2lteR[[t]][t-1]

j ^(^-^-^R^]].

b,==i
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Again: ?(E, 7r)=(i+3L(j))^-i2/^)

(5-8) =t~i2lt+st.L{j)eR[[t]] [r1].

Ifj6 is the lowest power ofj occurring with unit coefficient in the Laurent poly-
nomial L, then ^66+1 is the lowest power of t occurring with nonzero coefficient in
3^.L(^)eR[[q][r-1], and, as above, (5.8) leads to a contradiction. Q,.E.D.

We now prepare to study the status of the ^-expansion cc i " as a modular form
over Fo(N). The following lemma, which is in the spirit of the theory of Atkin-Lehner,
and which was suggested to me by J.-P. Serre, will be helpful.

Lemma (5.9) (reduction of level). — Let i /NeR. Let y be a holomorphic modular
form in co®^ over F^N), defined over R {k>_2).

Suppose, further, that the q-expansion {at oo) of 9 is a power series in q^ : ̂  ==f{q^)
y^R™. /^/

Then f is the q-expansion of a holomorphic modular form over 1^(1) {again in co0^ and
defined over R).

To obtain an analogue of (5.9) in characteristic N, we return to the setting of
interest to us:

Lemma (5.10). — Let N^5 be a prime number and <p a holomorphic modular form
over Fo(N), in B(F^) (§ 4). Suppose, further, that the q-expansion of <p is a power series in

^^=A^
Then 9 == o.

Proof of lemma (5.9). — Let ^T denote the stack ̂ (N) over R and ^—^(N)0.
Thus, if one is given a pair (E/T, H) where T is an R-scheme, E is an elliptic curve
over T, and HC E is a subgroup of order N, defined over T, one may associate to (E/T, H)
a T-valued section of the stack jV. There are maps:

^ -^ ̂  4- ̂ °
where ̂  and J([ are the moduli stacks of level N and i respectively, defined over R.

These maps are determined by the rules:

(E/T, Y) -°> (E;T, H)
/^/

where y : Z/NxZ/N->E[N] is an isomorphism of group schemes over T, and: E'
is taken to be E/y(oxZ/N); H is taken to be the image of y(Z/Nxo).

(E/T,H)^(E/H).

The map (3oc :^->e^° is a Galois, etale morphism of stacks. The Galois
(covering) group may be identified with GL^) acting in the natural way (by compo-
sition with y) on ̂ . The intermediate stack ^T0 is fixed under the Borel subgroup
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K=[o ^)C G L2(FN)• We may view 9 as either a section of the sheaf (^@k over

the stack ^T0, or as a section over ̂ , invariant under the action of B.
A " formal neighborhood of the cusp oo 5? in ^T° is induced from the pair

(Tate(y)/R^, (AJ whne a "formal neighborhood of the (unique) cusp oo 3? in ̂
is induced from the Tate curve over R((y)) ([24], (1.3)). We have the following commu-
tative diagram:

SpecR((^)) -i> ^o

^h>gN

SpecR(,(^)) —> ̂

where we can check that the left-hand vertical map is given by q\-^q^ as follows: By
([24], ( i . i i ) , p. 91) we have Tate^/^-Tate^), and Tate(^) is induced from
Tate(^) by extension of scalars R((y)) -> R((^)); q^q^.

By the above discussion we may give the following geometric interpretation to
our hypothesis concerning 9: the restriction ^ of 9 to Spec R((^)) descends to a section
of ^®k over the cc formal neighborhood of the cusp 59 in e^°.

We now consider the cusps ofe^, and for this we make the base change from R
to Ro=R[^]. Note that the map ^->jV is etale over the cusp oo. Let:

U=±(; ^)CGL(2,F,)

A= ^ ^CGL(2,FJ.

The inertia groups in GLg(F^) of the cusps in .Ĵ  consist in the conjugates of the
group U (cf. [9] Cor. (2.5) of VII). From the definition of the map a one sees that
the inertia groups of those cusps lying above ooe^ consist in those N conjugates of U
which do not lie in B. Let oo be a cusp in e^, lying over oo, whose inertia group (for
the Galois extension ^->^) is U. Since the group A normalizes U, it follows
that, for all aeA, a.o5 also has U as inertia group.

Viewing 9 as a section of co0^ over e^, the Fourier expansions ^ „ descend to
a formal neighborhood of the cusp in JK^, and therefore ^ ^ is invariant under the
action of the inertia group of a.oo (namely U). Thus, for any ueV, 9^—9 has zero
^-expansions at each of the cusps a. oo for aeA. Since the group A operates transitively
on the N—i distinct connected components of ^^ we have that 9^—9 has zero
y-expansion at (at least) one cusp belonging to each of the N — i distinct connected
components of the geometric fiber of^- Therefore theorem (1.6.1) of [24] applies,
giving that 9"— 9=0. It follows that 9 is invariant under both B and U. Since B
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and U generate GL^F^), 9 descends to a modular form over 1^(1), defined over
RO=RRN]- Since its y-expansion has coefficients in R, [9], VII, th. (3.9) (ii) insures
that 9 is defined over R.

Proof of lemma (5.10). — Suppose that 9 is a nonzero holomorphic modular form
satisfying the hypotheses of our lemma. Since 9 is the reduction modulo N o f a modular
form of weight 2 over Fo(N) with integral ^-expansion, we use [6i], th. 11 (c), and regard 9
as the reduction modulo N of a modular form over SLg(Z), of weight N+i. In the
terminology of [6i], 9 is of filtration ^N+i, as a modular form over SL^Z). Since
the filtration of 9 is congruent to N+i modulo N—i ([66], th. 2) and since it cannot
be 2, the filtration of 9 is N+i. On the other hand, our hypotheses may be interpreted

as saying 69=0, where 6 is the derivation q.—. Since N^5, we may apply

lemma i (a) of [6i], which gives an absurd equality for the filtration of 69=0. Conse-
quently, there are no nonzero modular forms 9 satisfying the hypotheses of (5.10).

Corollary (5 .11) . — Let ^[q)=i+a^ +a^a^+. . . be a power series in ^N,
with integral coefficients, beginning with constant term i. Then:

(i) y reduced modulo N is not a holomorphic modular form [for Fo(N)) in B(F^) (§ 4).
(ii) Ifm is prime to N, and ,̂ reduced modulo m, is a holomorphic modular form {in G)02,

over Fo(N)), then m divides 12, and 9=1 modulo m.

Proof. — (i) is a repetition of (5.10), while (ii) follows from (5.9) and (5.6)
and (4.10).

We now consider the status of the power series 8(^)=S cr'^)^ (see beginning
m

of § 5)3 as modular form, when reduced modulo integers m.

Proposition (5.12):

(i) The power series 8 is not the q-expansion of a holomorphic modular form of weight 2
over IVN), modulo N ("holomorphic modular form" in B(F^) (§ 4)).

(ii) Let m be prime to N. The power series S(^) is the q-expansion of a holomorphic modular
]VT_T

form over F^N) modulo m {in o02) if and only if m divides —— (1).
2

(iii) Let m be any integer. The power series S(y) &y the q-expansion of a parabolic modular

form if and only if m divides n== numerator (___).
12

Proof. — Consider the formula:

-^'=(N-i)+248

(1) See also KOIKE [26] when m is a prime >, 5.
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from which it follows that if S were a modular form modulo N (in B(F^)) then the
constant i would be the ^-expansion of such a modular form as well. This is not true
by (5.11) (i), whence (i).

We shall now prove (ii). But first we need a fact about modular forms (in co®2)
which is not totally obvious: Let ̂  be a power series in q with integral coefficients. Let
a, b be integers. Then ^ is a holomorphic modular form mod b if and only if d^ is a
holomorphic modular form mod ab.

To prove this, we invoke the y-expansion principle ([9], VII, (3.9) (ii); [24],
( i .6 .2)) . We view a.TL\b as submodule ofZfab and note that a^ has all ^-expansion
coefficients lying in the above submodule.

Now, suppose that 8 is a holomorphic modular form modulo m with (^z, N) == i.
From the formula quoted above, it follows that N—i is (the y-expansion of) a holo-
morphic modular form, modulo 24^. By (5.11) (ii) and the fact proved above, if m'
is any integer prime to N such that N—i is a holomorphic modular form modulo m',

then mf divides i2 (N—i) . It follows that 2±m divides i2(N—i) , or m divides ( — — — ( .
\ 2 /

Conversely, e is a holomorphic modular form (in o®2) modulo 12. Therefore (N—i) .e
is a holomorphic modular form modulo i2(N—i) . Moreover:
(S^S) —^==(N-- i ) .<?+24S modulo 24(N—i),

from which it follows that 8 is a holomorphic modular form modulo ( — — — ) . This
proves (ii). 2

As for (iii), it suffices to consider integers m which divide ( — — — ) , by (ii).
\ 2 /

Consider (5.13) as an equation of meromorphic differential forms, and we shall compute
the residues of each term appearing in it, at the sections oo and o.

To do this, consider the involution w of Xg(N) induced by the rule:
(E,H)^(E/H,E[N]/H)

operating on sections of the moduli stack ^° and on modular forms (cf. terminology
and discussion in proof of lemma (5.9) above; for a discussion of w cf. § 6) below. If
<p is a (holomorphic) modular form, defined over R, of level i, and if we denote by 9,
again lifting to ^F0 defined by the rule (p(E, H)=9(E), then the ^-expansions of 9
and 9.w are related by:

^.^(^-W)

as follows from the discussion in the proof of lemma (5.9). Since w interchanges the
cuspidal sections oo and o, we have the following

Sublemma. — Let i/NeR. If^ is a holomorphic modular form {in o02) of level i, defined
over R, regarded as meromorphic differential^ and if the same letter 9 denotes its lifting to Mo(N)^
as above, we have the formula for residues'.

ReSo(<p)=N.Res,((p).
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Thus:
Res^((N-i).^)=N-i mod24(N-i)

5114 ReSo((N-i) .^)E=N(N-~i)mod24(N—i) (1)>

Since e ' is an eigenvector for w with eigenvalue —i , we have:

(,.„) R...(-.-)=N-, ^
ReSo(--0==i--N

Formula (5.15) would also follow from the fact that the only poles of e ' occur
at o and oo.

Combining (5.13), (5.14) and (5.15) we get:
Res^(8)=o (as it should)

(5-16) i.—N2

Reso(8) s ——— modulo N—i.
24

Assertion (iii) then follows from (ii), (5.16), and the following elementary fact:
, /N-i i-N^n = g.c.d. ———, ——— .

\ 2 24 /

6. Hecke operators.

1) The involution w (induced by {z\->—i/N^) on the upper half-plane).
This is defined on M^N)/^] by the rule (E, H) h> (E/H, E[N]/H); it extends

to an involution of Mo(N)/z (by [9], IV, (3.19)). and of Xo(N)/z.
We denote this involution (as well as the involutions induced by it on the moduli

schemes Mo(N.N'), where N and N' are relatively prime) by w^, or by w, if no confusion
can arise. In the terminology of [9], IV, (3. i6), w is induced by conjugation of F^N)

by the matrix <?=(^ ) • It interchanges the cuspidal sections oo and o.

By (c transport of structure " {i.e. functoriality of the sheaf of regular differentials)
the involution w induces an involution on the space of regular differentials (on B°(R))
and also on B(R). Care should be taken to distinguish this involution w (which is indeed
the <c classical " one) from the mapping on modular forms in co02 defined by Deligne and
Rapoport ([9], VII, (3.18)). Referring to their w by the bold letter w, one can show
that for a modular form in co02 over Q^, w<p==N. wy. Our mapping w does not necessarily
^preserve" A(R).

If /eH°(Mo(N)/z, Q) has ^-expansion f=^a^qm, the ^-expansion of w.f is
^_, w

given by w.f^-^a^^ ([6i], (2.1), and (3.3), th. n (a)).
m

2) Tf for prime numbers /'+N.

(1) In these formulas e and e ' are regarded as meromorphic differentials.
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These are correspondences determined by the diagram of morphisms:

Mo(N./)

(*) / V
Mo(N) ——^——-Mo(N)

where c, on the rnoduli stack, is determined by the rule: (E, H^, H^) l-» (E, H^). Here
H^C E is a subgroup scheme of order N, H^C E of order t. Compare [9], VI, (6. n).
The morphisms c, cw^ are finite (loc. cit.) (1).

If A:=J'(E/K, H^) is a point on the curve Xp(N) with values in a field K, then
TfX is the divisor:

(6.1) y(E/H,(H^+H)/H)

where the summation is taken over all cyclic subgroups H of order I ofE, defined over K.
Define morphisms:

( a ) ^ : ff(Mo(N)/z, ^MO(N)) -> Hl(Mo(N.^/z, ^(N^))
( b ) c- : IP(Mo(N)^ ^) -> HO(Mo(N.^/z, ^)

as follows: ^ is induced from the natural map:

^Mo(N) "^^^(N./)-

As for ^^), let U denote the open subscheme of Mo(N.^) which is the complement of
the supersingular points of characteristics N and i (the smooth locus of Mo(N.^) -> Spec(Z))
and let V be the image of U under c. The restriction of 0, to U (resp. to V) is ti^g
(resp. ^/g). One has the natural map:

^->^

which induces a morphism c* : H°(V, 0.) -> H°(U, 0.). But since 0. is an invertible
sheaf on Mo(N./') and the complement of U in Mo(N./') consists in a finite set of points
of codimension two, whose local rings are Gohen-Macaulay, we have:

H°(U, a)==H°(Mo(N.^, Q)

whence the mapping in ( b ) above.
Applying the Grothendieck duality isomorphism " ((3-3)+(3-2)) to ( a ) and ( b ) ,

we obtain morphisms:

(a-) c^^Y : HO(Mo(N.^, ^) -> H"(Mo(N), ^)

( b - ) c^{cr : Hi(Mo(N.^,,, ^(N.^)) -> Hi(Mo(N),,, ^(N)).

(1) They are not necessarily flat. To determine the (finite) set of points at which they are nonflat is an easy
exercise, using [62], IV, Prop. 22; [9], V, (6.9).
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We now define the endomorphism T^ on H°(Mo(N)w, t2) and on:
IF(Mo(N)^ ^MO(N))

by the formula:
Tf-=c^[cWfY-=[cu)f\.c\

From the definition one sees that the action of T^ on H^M^N), ^M(N)) anc^ on

H°(Mo(N), 0.) are adjoint with respect to Grothendieck duality. The correspondence T/
also induces endomorphisms of:

(i) The Hodge filtration on i-dimensional de Rham cohomology:
o -> H°(Xo(N)^ ̂  a1) -> H^(Xo(N)/^ ̂

->Hl(Xo(N)^l/N.,]^Xo(N))->0.

(This action is hermitian — (T^,j^)==(.y, T^y) — with respect to the cup-product self-
duality on H^)R and it exhibits the adjointness of the action of T^ on the two flanking
members of the above exact sequence) (1).

(ii) Thejacobian of Xo(N)/q; its N^ron model J/z; the " connected component55

of the N^ron model J°z; the singular cohomology groups of Xo(N)/c with coefficients
in Z; the ^-divisible (Barsotti-Tate) groups L/Z[I/N]«

The endomorphisms T^ are hermitian with respect to the cup-product self-duality
of i-dimensional singular cohomology of Xo(N)/c and the auto-duality of the Barsotti-
Tate groups Jp/z[i/N]-

The effect ofT^ on the ^-expansions of elements in H°(Mo(N), Q.) may be computed
over the base Q^ (or C) and one finds (applying (6.1)) the classical formula:

If the ^-expansion of^is given by f^^a^q^' then:
m

(6.2) f^SU" where b^.a^+a^^
m

(with the convention that a^ = o unless I \ m).
Consider the action of T^ on the Neron model ]^ and restrict to characteristic I .

The Eichler-Shimura relation on the level of correspondence, (whose proof in [7] works
mutatis mutandis for F^N)) gives the formula:

Eichler-Shimura:

T^=Frob^/Frob^ on J/^ (^+N).

Here Frob^ is the Frobenius endomorphism of the group scheme J/p , and ^/Frob^
may be regarded as the canonical <( Verschiebung 55 of the group scheme J/p . It
follows that Frob^ satisfies the quadratic Eichler-Shimura equation:

X^T^.X+^o

in the endomorphism ring of J/p, .

(1) Duality for de Rham cohomology is compatible with (indeed: constructed by means of) duality for coherent
sheaves (cf. [18]).
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Definition. — By the Hecke Algebra T we shall mean the subring of End(J/q) generated
by the Hecke operators T^ (^=|=N) and by w.

The algebra T operates, by definition, onJ/Q. It also operates (via the previously
defined actions ofT^ and w) on the following list of objects:

J/z^ J/z^
Pic°(Xo(N)^£j0,;
H^X.^)^, (Px.(N))=Tan. space Pic°(X<,(N)/z);
H°(Xo(N)/z, Q) (which is the dual of the above);
HI)R(XQ(N)/Q) (which is the Lie algebra of the universal extension

ofJ/Q [37]);

_H^(Xo(N)/c,Z).

Clearly, T is a free Z-module of finite rank. It is known that T®Q, is a
commutative Q^-algebra of rank g = genus (X()(N)), and that it is isomorphic to a product
of totally real algebraic number fields:

(0.3) TOft=nt- 0.
a=l, . . . , ^

(6.4) Say that a T-module M (of finite type) is of rank r (as opposed to free or
locally free of rank r) if, equivalently:

( a ) M®% is free over T®% of rank r.
( a ' ) For some, or any, field K of characteristic o, M®K is free of rank r over

T®K.
( b ) M®^ is a vector space of dimension r, over ^, for a==i , . . ., t.
( c ) M contains a free T-module of rank r, of finite index.

Note that if M is a T-module of rank r, then the Z-dual T-module M"==Hom(M, Z)
is again a T-module of rank r (2).

Since H°(Xo(N)^3 ̂ ) is known to be a free T®C module of rank i (as follows
from lemma 27 of [2]), one has:

(6.5) HO(Xo(N),,,Q) and IF(Xo(N)/,, ^,(N,)

are T-modules of rank i.
H^(Xo(N)/c, Z) is a T-module of rank 2.

(1) This follows from lemmas 13, 27 of [2].
(2) It is not at all evident, however, that the operation ^ preserves the category of locally free T-modules.

This latter assertion is equivalent to saying that T is a Gorenstein ring (but see §§ 15-17 below).
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7. Quotients and completions of the Hecke algebra.

Let m be an integer. Let J[^]/z denote the scheme-theoretic kernel of multipli-
cation by m in the N&on model J/^. Since J is semi-stable (cf. appendix) J[^]/z is
a quasi-finite flat group scheme, whose restriction to S'==Spec Z[i/N] is finite and flat.

Let aC T be an ideal containing m. By J[a]/Q we shall mean the kernel of the
ideal a in the jacobian J/Q. That is:

JM/Q=^ (kernel of a in J/%)

= n (kernel of a in J[w]/QJ.
a £ o ^

From the second description it is clear that J[a]/Q is a finite subgroup scheme
of J[^]/Q. Now define J[d]/z to be the Zariski-closure of J[a]/q in J/^. It is the
subgroup scheme extension ofJ[a]/Q in J[^]/z? a-s in chapter I, § i; J[a]/z ls a quasi-
finite flat group, which is, by construction, a closed subgroup scheme ofj/z, and killed
by a. The quotient T/a operates naturally on J[a]/z.

Caution. — The group scheme J[a]/z is not necessarily the full scheme-theoretic
kernel of a in J/z. This kernel is not necessarily flat over Z.

Fix a primer. Let aCT be any ideal containing p. Let T^^lim T/q™ denote
m

the completion of T at a. Denote by T the completion of T at the ideal generated
by p. Thus Tp==T®Zp. Since T is a finite Z-module, 1\ is a direct factor of the semi-
local ring Tp. Write:
(7.1) (a) T,=T,xT,

(b) i=^+ca

where T^ is our notation for the factor complementary to T\, and (7.1) ( b ) is the
associated idempotent decomposition of i in Tp.

Form the inductive limits of the quasi-finite group schemes:

(7.2) J^=limJ[r]/z
m

Ja/Z-^J^'V
m

Thus, J is an ind-quasi-finite group scheme, whose restriction to:
S'=Spec(Z[i/N])

is a ^-divisible (Barsotti-Tate) group admitting a natural continuous action ofTp. We
may use the idempotent decomposition (7.1) to write Jo as a direct factor ofjp:

(7-3) Jp=JaXJa'

Restricting to the base S', (7.3) becomes a product decomposition of Barsotti-
Tate groups. Moreover, since the action of T is hermitian with respect to the auto-
duality of Jy/g/, one obtains an induced auto-duality on J^,.
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To pass to pro-j^-groups, one uses the Tate construction. We recall this in the
category of modules.

The functor Mh>M®(Q^,/Zp) is an equivalence between the categories of free
Z -modules of rank r, and ^-divisible torsion Zy-modules of corank r. The Tate construc-
tion Wh>Hom(Q^/Zp, W)=^(W) provides an essential inverse to the above functor.

There is a perfect Zp-pairing between ^a(W) and the Pontrjagin j&-dual of W,
W^Hor^W.^/Z,).

The isomorphism W+-S^fl(W)"=Hom(^^(W), Zy) takes yeW to:
r.(<p) : r.(W)->r.((^/z^z,.

Let Xo(N)c denote the analytic curve associated to Xo(N)/c, andjc the complex Lie
group associated toj/c. We may identify the singular homology group H^X^N)^ Z)
with the kernel of the homomorphism of the universal covering group ofjc tojc. By
means of this identification, we obtain an isomorphism:

(7.4) Jp(C)=H,(Xo(N)c, Z)®^/Z,=H,(Xo(N)c, Op/Zp)

where the left-hand group is the group of C-valued points ofjp. Applying the Tate
construction:

(7.5) r.(J,)(C)=r^(C))-Hi(Xo(N)c,Z,)

and this isomorphism is compatible with the action of Tp. Applying the idempotent ^
to (7-5) giY^
(7.6) r.(JJ(C)-r.(J,(C))=H,(Xo(N)c,Z,)®,,T,

=Hi(Xo(N)c,Z)®,T,.

The last equality, together with (7.5) gives:

Lemma (7.7). —LetK be an algebraically closedfield of characteristic o. Then ^(J^K))
is of rank 2 over T^. (That is: ra(JJK))®Q^ is free of rank 2 over T^®QJ.

8. Modules of rank i.

If M is a T^-module of rank 2 (6.4) and there is an exact sequence of T^-modules
(up to torsion):

o —> Mi -> M -> Mg -> o

where M^ and Mg are Zp-dual (up to torsion), then they are each of rank i. We use
this elementary assertion three times in this section.

i. The defect sequence.
Suppose J&+N. Then J is an ind-etale (quasi-finite) group scheme over the

base Spec(Z^). Consider the natural imbedding:

JP(FN) ->Jp(Q.)
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which induces an imbedding on Tate constructions. Form the exact sequence:

(8.1) o->r<J^))^^(J,(QJ)^A->o

where A is the cokernel (the module of defect). The sequence (8.1) is compatible with
the action ofTp. By the <( theoreme d'orthogonalite 59 (th. (2.4) of exp. IX, SGA 7),
the tone part of ^(^(QJ) is orthogonal to itself. On the other hand, the fiber J^
is isomorphic to G^ where g is the genus ofXo(N) (cf. appendix). It follows by computing
ranks over Zy that the self-duality of ^(Jp(Q,N)) induces, up to torsion, a Zp-duality
between ^(J^F^)) and A. Applying ^ (7.1) ( b ) to (8.1) yields an exact sequence:

(8.2) o-^r<J,(F,))->ra(J,(QJ)->A^o

where Aa=A®^T^ ^d where A^ is dual to ^(J^FN)), ^P to torsion. Applying
lemma (7.7), we have:

Proposition (8.3). — ^(JJF^)) and A^ ̂  T^-modules of rank i.

2. jEtofe dW Multiplicative type parts, ^ ̂  ordinary case.

Now suppose that j&4=N, and J^ is an ordinary Barsotti-Tate group. This means
that over Spec(Zy) it admits a filtration:
(8.4) 0 -^J-lt.type ^J^J^tale ̂ ^

where J^ is an etale Barsotti-Tate group (the etale part ofJJ and J^'^P6 is the
connected component ofj^, and is a group of multiplicative type (the dual of an etale
Barsotti-Tate group). The self-duality of J^ induces a duality between J™"-type g^j
J^1'. Applying ^a to (8.4), and using lemma (7.7) one obtains:

Proposition (8.5). — ̂ (J^^Qp)) W ̂ (J^Qp)) are T^-modules of rank i.

3. Eigenspaces for complex conjugation.

Complex conjugation o on the topological space Xo(N)c commutes with cup-
product and induces multiplication by —i on H2. Consequently the cup-product
pairing induces (up to torsion) a duality between the 4-i-eigenspace of a operating
on H^X^^N^, Z) and the —i-eigenspace. Using (6.5) it follows that these eigenspaces
are T-modules of rank i.

9. Multiplicity one.

Let R be any commutative ring. Consider operators T^ : R[[^]] -> R[[?]]
(^=t=N) and U : R[[?]] -> R[[?]] defined purely formally by the appropriate equations:

If/=S^^, then:
m

(9.1) T/^S^^+^.S^/^^+N), and U/==:S^<T.
m m
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Let »S^ be any set of prime numbers, and JSf' the set of all positive integers which
are not divisible by any member of oS^ (so i is always in JS^'). Let :

f=a,q+a^+...eR[[q]]

be a power series with no constant term, which is an eigenvector for T^ (all /'e«Sf, ^=t=N)
with eigenvalue ^eR, and, if NeJSf, an eigenvector for U, with eigenvalue ^e^

The recursive relations:

^-^n^.^ /E^ ^N

^N.m^N^m if Net^

show immediately thatyis determined by the eigenvalues c^ for /'eJSf, and its coefficients a^
for me^ (1).

In particular, given ^eR for a/Z prime numbers /', there is a unique power series
f=i.q+a^+... in R[[y]] such that T^.f==Cf.f for all ^+N, and U./=^./.
Moreover, any eigenvector in R[[^]] possessing the same eigenvalues for all these
operators must be a scalar multiple of f. Call f the generating eigenvector (for the
eigenvalues {c/}.)

Proposition (9.2). — Let R and B°(R) be as in § 4. Z^ elements ^eR 6^ given, for
each prime number L

If (BeB°(R) is a parabolic modular form such that:
T^.p=^.p ^+N

w u .p-^.p
then the q-expansion of ? is a scalar multiple of the generating eigenvector f. The ^-submodule
ofB°(R.) consisting in all elements which satisfy (*) is a submodule of a free ^-module of rank i.

Now let 9?lC T be a maximal ideal, with ky^ as residue field, of characteristic p.
Let B°(F ) [9Jt] denote the kernel of the ideal SOT. This may be viewed, in a natural
way, as a A^-vector space.

Proposition (9.3). — B°(Fp)[9Jl] is of dimension i over kyj^.

Proof. — Let R==^, or 3Lny field of characteristic p, which is large enough. Let
M denote the A^-vector space B°(Fp)[SOl]. Clearly M=t=o, since T operates faithfully
on B°(Z). Since:

M®^RCB°(R)

(1) A (perhaps too) succinct way of expressing this determination is by the use of formal Dirichlet series with
coefficients in R. Once one defines the evident rules of manipulation of these formal Dirichlet series, one has:

^a^m-^{ S a^.m-^. H Df
m mes" fe^

where: D^ == (i—^. f-s^^-^-i ^ ^ ̂  and DN =(i —^.N-5)-1.
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the proposition will follow, if we show that B°(R) is an R-vector space of dimension
less than or equal to [ky^ : F ]. The action ofT on B°(R) induces an action of ky^ on
B°(R)[9[R] which commutes with the action ofR. Since R contains y^, B°(R) possesses
an R-basis of ^-eigenvectors. To each eigenvector in this basis, we may associate
a homomorphism A^-^R (by passing to eigenvalues). By the previous proposition,
no two eigenvectors in this basis are associated to the same homomorphism. The
proposition follows.

Proposition (9.4). — H^X^N)^? ^) is a locally free T-module., of rank i (1).

Proof. — Note that ifM is a T-module of rank i, it is locally free of rank i provided
M/9JLM is a k^- vector space of dimension i, for all maximal primes 9?l C T.

Letting M^H^Xt^N)^, 0), it is of rank i over T, by (6.5). Also:
M/9K.M-H?(Xo(N)^, ^)/9?l.:EP(Xo(N)^, 0)

and the right-hand side of the above equality is isomorphic to the (Fp-vector space)
dual of HO(Xo(N)^,^)[9J^:l=BO(Fp)[9[R], which is of dimension i by (9.3).

Proposition (9.5). — The Hecke algebra T is the full ring of endomorphisms ofj^.

Remark. — This is a mild sharpening of a result of Ribet: that:
T®%=End(J/Q)®%=End(J,c)®% [58]

which is, in fact, used in the proof below.

proof. — Let T'==End(J/c). By Ribet's result, any element of T' is defined
over Q^ and therefore acts on the Neron model of J/Q; hence on the connected
component J°z which is Pic°(Xo(N)/z); hence on the tangent space to Pic°(Xo(N)/z),
which is H^X^^N)^, Q}. It also follows by Ribet's result that T' is a subring of T®%
and hence is a commutative ring, and its action commutes with the action of the Hecke
algebra T. We get, then, a homomorphism:

T' -> EndT(Hl(Xo(N)/^)) =T

which is injective, since T®% acts faithfully on Hl(Xo(N)^, 0). Since H^X^^N)^, (0)
is a locally free T-module of rank i (9.4), T^T. The proposition is established.

Definition. — The Eisenstein ideal 3 C T is the ideal generated by the elements: i +/'—T^
[all ^=t=N) and by i+w.

IfRis any ring, any element in B°(R) [3], the kernel of 3 in B°(R), is an eigenvector
for the T/s and for U, satisfying equation (*) above, where:

^ = i + ^ if y+N
^==1.

(1) It follows that B°(Z) = H°(X()(N)/Z , 0-) is the Z-dual of a locally free T-module of rank i. The assertion
that B°(Z) is locally free over T is therefore equivalent to the assertion that T is a Gorenstein ring (see § 15 below).
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In R[[y]], the generating eigenvector for the above package of eigenvalues G{
is the power series S of (5.1). Consequently, the ^-expansion of any element of the
R-module B°(R) [3] must be a scalar multiple of 8.

Proposition (9.6). — Let m be any integer divisible by n^num^""1). Then
B°(Z/w) [3] is a cyclic group of order n, generated by {m\n} .8. \ 12 /

Proof, — This follows from the above discussion and (5.12).

Proposition (9.7). — T/3=Z/7z; the Eisenstein ideal 3 contains the integer n (1).

Proof. — We have a natural map Z-.T/3 which is surjective, since, modulo 3,
the operators T^ (i =)= N; and w are all congruent to integers. We cannot have T/3 = Z,
for then 8 would be the ^-expansion of a modular form (of weight 2 for Fo(N)) over C,
which it is not. Therefore, T/3==Z/^ for some integer m, which must be divisible
by n, since 8eB°(Z/7z) is of order n, and is annihilated by 3. We prepare to use the
previous proposition. Since:

BO(Z/77z)=HO(Xo(N)^,^)

is the Z/^-dual ofH^X^N)/^, 0) (3.2) we have that BO(Z/^)[3] is the Z/m-dual of:
Hl(Xo(N)^, ̂ IS.H^X^)^ ^)=IP(Xo(N)^ ff)/3.Hi(Xo(N)^ 6?)

where, we have the equality above since me3. By the previous proposition, then
the cokernel of 3.:W(Xo(N)^, 0) in H^X^N)^, 0) is cyclic of order n. Since (9.4)
^(^(N)^ ^) is a locally free T-module of rank i, it follows that T/3 is cyclic of
order n. ^ g p

Definition. — A prime ideal ^CT in the support of the Eisenstein ideal is called an
Eisenstein prime.

The Eisenstein primes ̂  are in one-one correspondence with the prime numbers p
which divide n by (9.7). Ifp is such a prime number, then the Eisenstein prime corre-
sponding top (which is the unique Eisenstein prime whose residue field is of characteristic^)
is given by:

^={^p).
Clearly:

T/^=F,.

One checks easily that n>i if and only if the genus of Xo(N) is greater than o.
Thus:

Proposition (9.8). — If the genus of Xo(N) is greater than o, the Eisenstein ideal 3 is
a proper ideal in T; there are Eisenstein primes.

(1) This vague result is sufficient for our purposes. It appears to be significantly more difficult to give an
^r^ssion for n m terms of the operators T^, in T. This would be particularly useful in questions related to § 19
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io. The spectrum of T and quotients of J.

As follows from the result of Ribet [58], there are one-to-one correspondences:

(10.1)

isogeny classes of
C-simple

abelian variety
factors of J/c

isogeny classes of
Q^-simple

abelian variety
factors ofJ/Qi

fields k^ occurring
in the product de-
composition (6.3)

of T®%

irreducible
components
of Spec T

Define J^ == (i + w) .J C J; J_ = (i — w) .J C J. These are sub-abelian varieties,
defined over Q^. Form the quotients indicated in the diagram below:

o
^

J+
^ \

(10.2) o ->J_ ->J --.J-1- -^ o
\ ^

J-
^
o

Thus J+, ]~ are quotients ofj on which w acts as +i? and —i respectively. We
let J/z denote the Neron model of J/Q over the base Z. By the criterion of Neron-
Ogg-Shafarevitch, J/Z[I/N] is an abelian scheme, as are J^/Z[I/N]»

The abelian variety J+yq can be identified with the jacobian of the quotient curve
X+=Xo(N)/w. One sees this as follows: since the map Xo(N)->X4' is ramified {w has
fixed points), the induced map on Pic° is injective and identifies the jacobian of X'1"
with the connected component of the identity in the 4~-eigGnspace of w in J. But the
diagram (10.2) identifies (i+w).J=J^_ with this same connected component.

To any ideal a C T we may associate an abelian variety J^ which is a quotient
ofJ/Q, whose C-simple factors are in one to one correspondence under (10.1) with
those irreducible components of Spec T which meet the support of the ideal a. To
define J^, let Ya^ be the kernel of T-^T^lim T/a™; let Ya-J^J be the sub-

m
abelian variety (defined over QJ generated by the images oc.J for aey^. Take J^
to be the quotient abelian variety:
(10.3) o->Y,J-^J^J^o.
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Let J^ denote the Neron model ofj^ over the base Z. By the criterion of Neron-
Ogg-Shafarevitch one has that J/^I/N] ls an abelian scheme.

Definitions (10.4):
1) If a ==3, the Eisenstein ideal, call J^ ̂  Eisenstein quotient of], and denote it J.
2) -//' a ==^5, ^ Eisenstein ideal at p, call J^ the ^-Eisenstein quotient and denote it]^.

Note that, for any p, the j^-Eisenstein quotient is a quotient of the Eisenstein
quotient. Conversely, any C-simple factor of J is a factor ofj^ for some prime p
dividing n.

It is also true (but not at all evident when n is even; cf. (17.10) below) that J
is a quotient ofj~.

Definitions (10.5):
^=di,m(J/Q)

^=dim(J^)=dim(J^)
^=dim(J^)

r^dim^).

So g==g+-\-g~9 and ^+ = genus (X4'). The Hurwitz formula computed for the
map Xo(N)-^X4' yields the well known relation: 2(g~—^+)==A—2, where h is the
number of fixed points of w.

Proposition (10.6). — The scheme Spec T is connected.

Proof. — Suppose not. It would follow that J/g could be expressed as a nontrivial
direct product J/p == A X B. Let us show that the principal polarization X : J ->J (^ denotes
the dual abelian variety and X is the 8-polarization ([43], chapter 6; [44])) induces principal
polarizations X^ : A—^A and Xg : B->B. By Ribet's theorem [58], since J decomposes
(up to isogeny) into a product of simple factors, each occurring with multiplicity one,
the simple factors of A are non-isogenous to simple factors of B, and consequently there
are no nontrivial homomorphisms from A to B and from B to A. Our assertion follows.
But a jacobian (taken with its natural principal polarization) cannot decompose as
a nontrivial direct product of principally polarized abelian varieties. This follows
from the irreducibility of its 6-divisor.

Remark. — When g^'^o, the above proposition insures the existence of (< primes
effusion " (see introduction) relating J4' to J~. It would be interesting to understand
these primes.

n. The cuspidal and Shimura subgroups.

Let c be the linear equivalence class of the divisor (o)—(oo) in J(QJ.

Proposition ( 1 1 . 1 ) . — The element ^eJ(Q,) is annihilated by the Eisenstein ideal 3.
It is of order n.

98



MODULAR CURVES AND THE EISENSTEIN IDEAL 99

Proof. — Since the correspondence T^ (/'=|=N) takes the cusp (o) to ( i+^).(o)
and (co) to (i+/').(oo), one has:

T^c={i+f).c for all ^+N.

Since w interchanges the cusps o and oo, one has:
( l+w) .€==0.

It follows that 3.^==o. From proposition we conclude that the order of c
divides n. But since (Appendix A. i ) the specialization of c to the Neron fibre L,
generates the cyclic group of connected components, which is of order n, it follows that
the order of c must also be divisible by n. O.E.D.

Remark. — The fact that order {c)= n was proved originally by Ogg [36]. He
shows that the order of c divides n by exhibiting a function/on Xo(N) whose divisor
is ^ . (o)—?z.(oo) . Namely, if v is the g.c.d. of N — i and 12:

( 1 1 . 2 ) /(^J^') ^^(I-^)-24^!-^
\L\^I'\^)I m==l

can be shown to be invariant under Fo(N), and clearly has the indicated divisor.
Let C denote the subgroup ofJ(QJ generated by c. Thus, G is a cyclic group

of order n, with a distinguished generator. Denote by C/z the finite flat subgroup
scheme of J/z generated by GCJ(QJ. Let C=the F^-valued points of C/z ("the
specialization " of C to J^). By the appendix, one has that G is, again, of order n
(the specialization map C->G is an isomorphism) and:
(11.3) J^jo^xG

where J°̂  is the connected component of the identity.

The retraction o/J(Q,) to C. — If ^eJ(QJ, denote the section over Spec Z induced
by x in J^ by the same letter.

Let x^ denote the restriction of this section to an Fy,-valued section of Lp
Let xbe the image of^, under projection, to G, using the product decomposition (11.3).
Let p(^)eG denote the unique element of G which maps to xeC, under the (c special-
ization map" described above. If M==J(QJ (the Mor dell-Well group ofj), we have
just described a retraction p : M-^GCM, giving a product decomposition.
(11.4) M=M°xC

where pis projection to the second factor; projection to M°=ker p is given by x\->x—p(A:).

The Shimura subgroup. — The Shimura covering (2.3):

(n.5) X,(N)^->Xo(N)^

is the maximal etale extension intermediate to X^(N) -> X()(N) and is a finite, etale,
Galois extension, whose covering group U is the (unique) quotient group of (Z/N)*
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which is (cyclic) of order n. Applying Pic° to the morphism (11.5)3 we obtain a
morphism J/g,-> Pic° Xa(N)yg/ whose group scheme kernel we denote S/g,.

Definition. — The Shimura subgroup S/gCj/g is the group scheme extension (i.e. Zariski
closure) of S/g. in J/g.

Let U^g==J^wzg(U, p.^) be the Cartier dual of U (where U is viewed as constant
group scheme over S).

Proposition (n.6). — There is a natural isomorphism U/*g^S/g. The Shimura
subgroup is a [L-type group {chapter I, § 3) over S; in particular it is finite and flat.

Proof. — We establish this first over the base S'.
Consider the Hochschild-Serre Spectral sequence (for the etale topology ([i],

III (4.7))) associated to the (finite etale Galois) Shimura covering X^N)^ -> Xo(N)/T
and the sheaf G^ where we have made the base change to an (arbitrary) S'-scheme T.
We obtain the exact sequence:

o -^ Hi(U, GJT)) -^ H?(Xo(N)/T, GJ -> IP(X,(N)/,, GJ.

Passing to associated sheaves, the morphism i induces an isomorphism, U^g. -> S/g,.
Since U* is a finite etale group scheme over the base S', this isomorphism extends to a
homomorphism U^g-^S/g (by the universal property of the Neron model). It follows
that S/g is a finite flat group scheme. Restricting to the base S', one has that the
morphism i is a homomorphism of locally constant groups, which is an isomorphism
on generic fibers. Hence i is an isomorphism over S'; hence i is an isomorphism over S.

Proposition (11.7). — The Shimura subgroup 2 is annihilated by the Eisenstein ideal 3.

Proof. — We must show that w acts as —i on S, and T^ acts as i+^ for /'=+=N.

As for the action of w, note that ( ,- ) induces an involution w' on X^(N) which

projects to the involution w on Xg(N). If aeI^/N), one computes conjugation by w\
and obtains: w' a^'=a~1 mod I\(N), which yields what we wish.

The operators T^ <;c act5 ? as well on X^(N), by the formula:

T,: (,)^(^,)+^(^).

In the above formula, as in the rest of this proof, we view the modular curves X^(N)
( z = = i , 2 , o ) as analytic manifolds, parametrized by the extended upper half-plane.

If a, P are points in the extended uper half-plane, let { a, p} denote the (relative)
homotopy class of paths in the extended upper half-plane beginning at a and ending
at p. Recall Ogg's convenient terminology for the cusps of F(N): Let:

(a=W^P l«l) l^=^modN,y=6modN;(Ay)=I}.
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With this notation, (^) is an equivalence class of P^QJ mod r(N). Therefore
it gives rise to a well-defined cusp of X^(N) {i == i, 2, o). One shows (^) = (^) mod I\(N),
provided {b, N) == i.

If 7Te{a, p} is a path in the extended upper half-plane, let Y(7^) eU be the (unique)
element of U which maps the image of a in Xg(N) to the image of (B in Xg(N).

Let n^ be a path in {(^), (^)}, for ^ an integer relatively prime to N. Then one
checks that y(7^) is the image of b~1 in U, while Y(T^.TT^) is the (i+^)-th power of
this image, as follows from the formula:

T,{(?), (?)}=-{(?), (?)}+'S1{G),(,^)}
j=o

The proposition follows.
The Shimura subgroup over the base F^. — Note that 2(F^)=Hom(U, (J^(F^)),

and that there is a natural generator of this group. Namely:

(Z/N)*=F^ ———. F^

U -^> (JL^)

where the unlabeled horizontal map is raising to the v-th power (v=(N—i, 12)).
The natural projection JKF^^J^F^xG-^G induces a homomorphism:

(n.8) S(F^)->G

which sends the canonical generator s to some multiple ^ of the canonical generator ceC.
Thus ^ is a well-defined integer modulo n.

Question. — What is ^?

Proposition (11.9) . — The homomorphism ( 1 1 . 8 ) is an isomorphism. The scheme-
theoretic intersection S^nJ^ is the trivial group scheme over F^. The integer (modulo n) i,
is relatively prime to n (1).

Proof. — The three assertions of the proposition are equivalent. We prove them
by showing that:
(n. 10) PicO(Xo(N)/J ̂  PicO(Xi(N)^)

is injective. For this, we may identify Pic°(Xo(N)/FN) as group-scheme over F^ with
the G^-dual of the singular one-dimensional homology group of the topological graph
(Appendix, § 3) associated to X()(N)/^ (homology with Z coefficients).

(1) In the light of this, it is hard to imagine that E, is anything other than +, i. We have not, however,
succeeded in answering our question.
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By inspecting (diagram i of chap. II, § i) it is clear that this is the same as the
G^-dual of Hi(Graph(Mo(N)/^),Z). To prove injectivity of (11.10) it suffices to
show that the map:

Graph M,(N)^ -^ Graph Mo(N)^

induces a surjection on one-dimensional homology. But the above map of graphs is an
isomorphism as follows from [9], V, th. (2.12) and VI, Cor. (6.10).

The relation between G and I;. — By the cuspidal subgroup C^CJ^ we mean
the Zariski closure of CCJ(QJ in the group scheme J/z. By the universal property of
Neron models, the isomorphism Z/^->C (of group schemes over Q^; i^c) extends
to a homomorphism Z/n/g->G/g, and shows that G/g is a finite flat group.

Proposition (n. n). — Ifn is odd, the group scheme C is a constant (etale) group over S;
the scheme-theoretic intersection ofC and 2 over S is the trivial group; the natural map C®2-^J[3]
is an injection.

If n is even, the group scheme G/g contains a subgroup scheme isomorphic to ^ {and which
we shall call ^). The cokernel of ̂  in C is a constant (etale) group. The scheme-theoretic
intersection of C and 2 in J/g is ^. The natural map C®2->J[3] has (< the diagonal" ^
as kernel, and induces an isomorphism of (C®:S)/(J4 with the finite flat subgroup of order n2|2
in J[3] generated by C and 2 [call it C+2).

Proof, — ( a ) We show first that the odd part of i; has trivial intersection with (the
odd part of) C. For by consideration of Galois modules, the odd part of 2 is a (Ji-type
group and the odd part of C is a constant group.

( b ) If n is even, the group S(Q^) (the rational points of 2) is of order 2.

Lemma. — S(QJ C C.

Proof. — Suppose that n is even, or, equivalently, N =s i mod 8. Then there is
an etale double covering X^(N)->Xo(N) intermediate to the Shimura covering (2.3).
This we shall call the Nebentypus (double) covering. Applying the functor Pic° to the
Nebentypus covering (over QJ, we obtain a morphism ofjacobians J/Q->Jac(X|?(N)/Q)
whose kernel is the group S(QJ. To prove the lemma, it suffices to show that the
image, ^, of c in Jac(X^(N)/Q) is of order n / 2 . For this, it suffices to show that if/is
the function (11.2) whose divisor is n. (o)-^. (w), then f1!2 is a rational function on
the Nebentypus curve X^N):

yl/2^n/2 ̂  (i-^-12/.^__^12/v

m=l

as follows from Dedekind's transformation formulas for the -^-function. (Cf. discussion
of this in [48], § 3.)

The Zariski closure ofS(QJ in J/g (which is its Zariski closure in 2/g) is a (i-type
group of order 2. Thus it is canonically isomorphic to (x^g and we shall denote it pig/g.
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By the lemma, ^ C C/g. Since C/g is a finite flat group scheme, whose associated
Galois module is a cyclic group with trivial Galois action, by (chap. I (4.6)) we have
that the cokernel of ^3 in C is a constant (etale) group scheme over S. It follows by an
easy argument that 2 n C/g is the finite flat group scheme pig.

There is a canonical auto-duality:

(i i. 12) J [n] ̂  J^m(J [n], (xj (over QJ
/^/

and the section ^eCCj[^](%) determines, by (11.12), a homomorphism:

^ : JM—P-n (over%).

Restricting ^ to S, we obtain a homomorphism:

c ^ : U*->^

which, in turn, may be identified with an element ueU (1).

Question. — What is this element u?

This element has been evaluated in no case where %>i . One can show that
ifp is an odd prime dividing n, then u projects to a generator of the ̂ -primary component
of U if and only if T^ (the completion of T at the Eisenstein prime ^3 associated to p)
is isomorphic to Zy (cf. (19.2) below) (2). In the light of the table of the introduction,
it then follows that u does project to a generator of the ̂ -primary component of U(p 4= 2, p \ n)
for all N<250 except when N==31, 103, 127, 131, i8i, 199 and 211.

i2. The subgroup DcJ[^P] (p==2; n even).

Suppose n==o mod 4 (equivalently: N s = i m o d i 6 ) . Choose ^e^Q/V^T))
an element of order 4. Let x={nl^).c, which is an element of order 4 in C. Thus
x, y are elements of C+2 rational over Q/V^^)- By (11 .11)3 2x=2y. Let
DC (C+S)/g be the closed subgroup scheme generated by the points x—y, and 2y.
In (C+S)(Q^(^/—i)) these two points are a basis of an Fg-vector space (of dimension
two) which is stable under the action of Ga^O/-^/^) /Q^). Ifr is the nontrivial element
of GanQ/^—i)/^), then the matrix of T computed with respect to the basis x—y,

. / i i \2y is (
' \o i/ __

Since OX^/^^/O. ls unramified at N, the group scheme D is finite and flat
over S (chap. I (1.3)), and it follows from the above discussion and (chap. I (4.4))
that D is isomorphic to the unique nontrivial extension of Z/2/g by (JL^/S killed by 2.

(1) Since there are two natural choices of sign of the above autoduality (or equivalently, of the ^-pairing),
the pair of elements y^ has, perhaps, greater significance than the element u.

(2) Which explains why we might be interested in some reasonable direct method of computation of u.
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The purpose of this section is to consider the case where n = 2 mod 4 (equivalently:
N=9 mod 16) and to construct a subgroup scheme ofj[^p], which is isomorphic to D.
In this case, the 2-primary components of C and of S coincide with (Jig. The group
scheme D, which we construct, will contain pig, but (necessarily) will not be contained
in C+S.

The construction ofD. — Ifnis even, the Nebentypus covering (§ 11) X^N) -> Xo(N)
is etale (over S') with Galois group U/U2. Let v be the nontrivial element in U/U2,
and J—^ the induced morphism on jacobians. Using the Leray Spectral sequence
(over the base Q) for G^-cohomology of the Nebentypus covering, one has:

(12.1) o->^(Q)-^J(Q)->(jft(Q)r->o

where the superscript v means the part fixed under the involution v.
To describe the Galois module associated to D, we shall construct a point of order 2

inJ^(QJ, and D(QJ will be, by definition, the subgroup ofJ(QJ generated by the inverse
image of this point.

There sire four cusps on Xj(N). Let o, o denote the cusps lying over o in Xo(N),
and oo, oo those lying over oo. Thus v interchanges o and o (and oo and oo). The
cusps o and o are rational over Q^, while oo and oo are conjugate over Q^ and defined
over Q/V^O- Compare [48], § i.

Proposition (12.2) (Ogg, Ligozat). — Let ^ be the Legendre symbol of conductor N,

^a)==^ j, and let Bg^ be the generalized second Bernoulli number associated to / ([22] a)).

Then the divisor class of (o)—(o) {and of (oo)-(oo)) in J^ is of order Bg ^/4. There is
a rational function f on Xo(N)/Q having the properties:

(a) (f)={^j4)^W-(o))

(b) v. /=-!//.

The function f, and the proof of the proposition ofLigozat and Ogg are discussed
below. We now prepare to apply their proposition in the construction of D.

Lemma (12.3).—If N = i mod 8, then Bg^Eso mod 8.
N-lN-l (u\Proof. — Bg =N. S ^(^.Bgl, ,) where Bg(X) is the second Bernoulli poly-

U

^i^'^VN
nomial, X2—X+I/6. Thus:

' u = l \ 1M /

„ V/^ ( u 2 u
B2-=N"S .(N^(N2-N
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and since N = i mod 8:
N-I / „ \/ M \B^= S I j(^_^ ^od8

= ^ (^-^-^--(N-.))
uIN,

1<M<N-2

= S (u)^-^^ s ('L.(^)
uodd V N / ' / r Modd \N/ \ 2 /

l^M^N-2 l^M^N-2

=4. S (^—i) /2 mod8
M odd

l^M^N-2

Writing u==i+2j (j=o, i, 2, ..., (N--3)/2) we get:

_ (N-3)/2.((N-3)/2+i)iDg ^ == 4. ————————————-—— mod 8

N—-I
=4.(N-3).——— mod8.

0

But N = i mod 8. O.E.D.
We conclude from (12.2) and (12.3) that (o)—(o) and (oo)-(oo) are of even

order (i /4) Eg ^==rfl in J^.
Set:

A=(^/2).^((0)-(0))

B=(^/2).^((oo)-(oo)

so 2A=2B=o. Since A and B are fixed under v, they are in the image ofj.

Suppose that N==gmodi6. — The image of c in J^ is the divisor class of
(o)+(o)—(oo)—(o)) which is of odd order m=nf2. Thus:

A+B=772.A+m.B=^/2 .%y(m.((o)4-(o)—(oo)—(oo)) )==o

and therefore A=B. Denote by DCJ(QJ the inverse image (inJ(Q^)) of the group
generated by A. Since A is fixed by w and wv (acting on J^), D is stable under the
action of w (acting on J). Also, D is stable under Galois. Let ae^Q,) be the non-
trivial element, and let pel) be an element in the inverse image of A.

Lemma (12.4). — D is a Kleinfour group. The action of Gal(Q/QJ on D is the action
which factors through Ga^Q/V'"^)/^) where the conjugation T acts on the basis a, (B by the[' ')•matrix o i /

Proof. — Using (12.2), the above lemma is an exercise in Galois theory. To
emphasize this, let K be the function field of Xo(N)/Q and L the function field of X|(N)/Q.

105
14



106 B . M A Z U R

Thus L/K is a quadratic extension with v as conjugation. By (12.2)/is not a square
in L®C. The extension H/^/K is a quartic extension. Since ^(/)=—i//,
(12.2) ^;, the extension L^2, y^) /^V^) is Galois. Let G denote its Galois
group. Fix v, a lifting ofv to G, and let T denote complex conjugation in L^2, V^).
By (12.2) (6), ^/^^^^/^T.y-^ Therefore 7V1/2) =f1!2, and consequently
v2 = i. It follows that G is a Klein four-group and therefore so is D, for D is the Cartier
dual of G. Let p denote the automorphism of 'L{f1'2, v^T^L^^) given by
p(/^)=-/i/2. One checks:

TVT~ 1 = p . V

TpT-^p

which yields the Galois action on D asserted in the lemma. Let D,g denote the group
scheme extension (Zariski closure) of D/Q in J/g. Let D^g denote the finite flat group
which is the unique extension of Z/2/g by ^/g killed by 2 {extension 2 of chapter I (4.2)).

Lemma (12.5). — D/g^D^/g.

Proof. — The two groups have isomorphic Galois modules. Therefore, if D/g
is a finite flat group over S, then (12.5) follows from chapter I (4.4). Consider an

/^/
isomorphism D^-^D^CJ^ and extend it to an isomorphism:

^l/ZEl/2] -> D/Z[1/2] c J/Z[1/2]

by the universal property of Neron models. In particular, D/z^j is finite. Since
D/g. is clearly finite, it follows that D/g is a finite flat group.

Lemma (12.6). — D is annihilated by the Eisenstein ideal 3.

Proof. — By the formulas giving the action of T^ on the cusps of X^(N) one has,
as in (11.1), T^.A=(i+/ ') .A (^+N). As already mentioned, A is fixed under w,
and since it is of order 2, (i + w) .A = o. It follows that D is annihilated by 32. Any
element ye 3 operates as an upper triangular matrix in terms of the basis a, (B. To
show that D is annihilated by 3, we show that ye I operates semi-simply on the vector
space D. For this, we choose a prime lying above N in Z[^/~^i], and consider the
specialization map D(Z[-\/^T]) -> D(FJ, which is an isomorphism of T-modules.
Let D(F^)°=D(FN)nJo(FN). Note that D(F^) is canonically a direct sum:

D(F^)=D(F^)O®^(FJ

(for the subgroup (J^CG maps isomorphically to the image of D(FJ in C (11.3)).
Since the action ofT (< preserves J° " it follows that the action ofT preserves the above
direct sum decomposition. Since each summand is an Fg-vector space of dimension i,
T does act semi-simply on D(Z[-v/::::T]).
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Discussion of proof of the proposition of Ligozat and Ogg. — Ligozat constructs the
function/using the " Klein forms55 of Kubert and Lang [28], which are essentially
Eisenstein series of weight i. Ogg has a different point of view; he works with products
of differences of Eisenstein series of weight 2. In the end, from either point of view,
one emerges with a function/on Xo(N)/Q whose divisor is Eg^/4. ((o)—(o)) and
which has the property that /(oo) ./(w)==—i. Assertion ( b ) of our proposition follows
from this equation since (v/)./ must be a constant. It also follows that, up to sign,
Ligozat's function and Ogg's function must agree (this identity is nontrivial). Both
Ligozat and Ogg check that their function / is " smallest possible " and thus Eg J^
is indeed the order of the divisor class of ((o)—(o)) in J*. Nevertheless, in the light
of the use we make of (o)—(o) it is worth noticing that the equation /(oo)/(oo)=—i
immediately implies that this divisor class is not killed by Eg /8 (1). For if it were,
there would be a function g on Xo(N)/Q such that g2 = r.f where r is a rational (nonzero)
number. This is impossible, for ^(oo).^(w) would then be a rational number whose
square is negative.

In the remainder of this section, although we do not prove the proposition in
full, we present an account of the construction of Ligozat's function and some of its salient
properties (2).

Ligozat's construction. — We may take N = i mod 4, N>5.
Let ^ be a primitive N-th root of i; set:

^-{^^(N-i^lx^^i}

- n (I--^:fl.<7w)(I-^a.<^).
and: g^)= n a-es±______________6±v / ^_- / . ^m\W-l)12(l_^)(N-l}/2m==l

The functions g^{z) (y=^) are expressible as products of Klein forms of
level N [28].

Explicitly, let p^ be the constant:

p±=(-2^)^-w.expfe. s a\. n (i-cr1
\2N aGS± / a£S±

then, using the notation of [28]:

^(0=P^. n k(o,a)(0.
a£S^

One checks:

g^z).g_{z)= n (I-^)(I-^)-N^7l(N^w=l ^r

(1) An integer, by lemma (12.3).
(2) Here I have simply copied a part of a manuscript that Ligozat provided for me, and for which I am

extremely grateful. It is to be hoped that Ligozat will present the full story in his future publications.
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and therefore (by Hecke [19], p. 924) g+.g_ is a modular form. of weight — ( N — i ) / 2
on Fo(N), of Nebentypus, whose associated character is the Legendre character ^.

Definition. — /(^)===^±^.
<?-(<)

Lemma. —f(z) is a modular form on I\(N).

Proof. — This follows from the transformation laws for the Klein forms k of [28]

If -CN?" A)6^' on. ha.

W^) = (N^ + N8). c,(y, 8) .k^(.)

where -^ 8)=(-1)^+1^+1) exp^^^) and therefore /^) is invariant
under F(N) if and only if: V 2±s /

(-1)^" n ^s^i
l^a^(N-l)/2

for any choice of y, S. Since N>5, 2;^) .a2 so mod N and therefore we may
a

rewrite the condition of invariance of f(z) as:

(•^H,. s _X(^)^)+Y(I+N8) S 7(^=omod2.
l^a.^(N— l)/2 l^a^(N-l)/2

Now note that ify is even, so is S, in which case the above congruence holds. Ify
is odd, it also holds since S ^a)(a+a2) =o mod 2. Therefore/is invariant

' ̂  .5̂ . ( — ^-)/2

under F(N). To see that it is invariant under I\(N), note that k^^z+i)='k^ [z)
for zeZ.

Definition. — If u==(^ ^eI^N), rf^ £(^)==/(^) ./(^-x(d).

Thus s is a character of ^(N), trivial on I\(N), and takes values in the group of
(2N)-th roots of i.

Lemma. — s(^)==y,(rf).

Proof. — Clearly s2 = i, since the index of I\(N) in Fo(N) is relatively prime to N.
To establish the lemma, one must show that 24=1.

If (a b}\=u is in ^(^ and 7.W=-i then:\L U /

g^uz)==^u).(cz+d)^-^.g^z)

where e^u) are 2N-th roots of i and z(u)=z^{u)^_(,u). But since g^.g_ =^z)^[zf
is of Nebentypus with character 7, £+ .£_=x(^ )=—i . It follows that z{u)==—i.

Corollary. — vf==—iff,

By the properties of Klein forms [28] the zeroes of/are concentrated at (o), (o)
and an elementary computation (compare [48], § 2) gives their order.
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13. The dihedral action on Xi(N).

We shall be working with the covering Xi(N)-^Xo(N) of curves over %, and
with certain subcoverings. Abbreviate the notation to X^-^XQ, and set:

U=(Z/N)-/(±i).

So, U operates on X^ with quotient curve Xg; it operates freely on the open curve
Yi== X^— cusps.

As in [40] form a "dihedral" group A containing U as follows:

A=Uu{^}^

where the w^ are <c symbols 35 indexed by the primitive N-th roots of i, ^eQ, where,
by convention, the element w^-i is taken to be equal to the element Wy. Impose
a group law on A by:

(13.1) {w^)2=^\ u.w^==w^u=w^.u~1

for all u(=V, and primitive N-th roots of i, ^. Here ^==^ for a an integer (mod N)
projecting to ueU.

The dihedral group A acts in a natural way as a group of automorphisms of X^
(cf. [40] § 2). The compatibility of the action of A and ofGal(Q/QJ on Xi(Q) is most
conveniently described as follows: Define an action of Gal(Q7QJ on A by the rules
^=^; {w^==w^, for aeGal(Q/<^), ueU, and ^ a primitive N-th root of i. Then,
for SeA, and A:eXi(QJ, we have: {S.x)(x=SX .x^ (1).

The action of A on X^ (c covers the action of the canonical involution w on Xg ",
in the following sense: If TT : X^-^Xo is the projection, then 'K(w^.x)==w.n{x);
-^(u. x) = n(^x).

Let 9oC X()(Q) be the fixed point set of the canonical involution w. Using the
modular definition of w, one sees that a point in <po is given by an elliptic curve defined
over Q together with an endomorphism whose square is — N (note: N^5). That
is, the fixed point set is in one-one correspondence with isomorphism classes of elliptic
curves over Q which possess a complex multiplication by V—N. Suppose that
NFS i mod 4. Then Z['\/—N] is the full ring of integers in Q/V—N) and <po is
a principal homogeneous set under the natural action of W, the ideal class group of
the field Q/V^).

Let 9iC Xi(Q) be the full inverse image of 90, and let cpi(^) C cpi be the fixed
point set of w^y for each ^.

(1) In [40] we call A, with its Gal(Q/Q) action, the twisted dihedral group.
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If x^e^, and ^ is a primitive N-th root of i, there is a unique element ofU, which
we denote ̂  ^ satisfying:

w^'xl=^^}^l'

Clearly, for veU, u^^v==u.u^^ from which one gets

Lemma (13.2). — <p^ decomposes into the disjoint union:

Pi^^Pi^)

where ^ runs through the set of primitive 'N-th roots of i, with the convention that we have identified ^
and C~1.

Let XQ denote the image of x-^ in X^. An elementary computation gives, for any
element u. x-^ in the inverse image of XQ , that:

O^-s) ^(u.^)^"2.^)
and consequently the question of whether or not u^ ̂  is a square in U depends on XQ
and ^ but not on ^. Write ^ ^eU/U2 for the image of u^ ^.

Lemma (13.4). — These are equivalent:

a) u^^ is trivial in U/U2.
b) w^ possesses a fixed point in the inverse image of XQ .

Moreover, if these conditions hold, then w^ will have exactly two fixed points in the inverse
image ofXQ, and these fixed points will be multiples of each other by the unique element veU which
is of precise order two.

Proof. — This is essentially immediate: If a) holds, choose an x^ mapping to XQ,
and let ueU be such that u2=u^ ̂ . Then (13.3) shows that u.x^ is a fixed point
of w^ The other direction is totally trivial. Finally, if ^ is a fixed point of w^ from
(13.3) the action of w^ on the inverse image of XQ is:

w^u.x^^u-1^^

giving the last assertion of our lemma.
Since (w^xY=w^..x(x' for aeGal(Q/Q^), it follows that a induces a i : i corre-

spondence pi^)-^!^), giving:

Lemma (13.5). — Let h be the class number of Q^V—N). Then, for any primitive
N-th root of i, ^, w^ has exactly h fixed points in X^(QJ.

Proof. — The cardinality of<pi is A. (N—i)/2 . By (13.5), (pi is the disjoint union
of the (N—i) /2 sets cpi(^), which are put in i : i correspondence, one with another,
by the action of Gal(Q/QJ. It follows that each of these sets has cardinality h.

Comparing lemmas (13.5) and (13.4) it follows that, for a given ^, precisely
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half of the elements of 90 have the property that w^ has a fixed point in their inverse
image. It is reasonable to expect that the elements of 90 with this property, for a
given ^, forms a principal homogeneous space under the action of %y2 C W (squares
of ideal classes).

Now pass to the Nebentypus curve X^->XQ which fits into a diagram:

Xi)
^ ^

u < x#
^ (^)
Xo 5

where v denotes the involution of X^ such that X^/V=XQ, induced from the action
of any ueV such that ufV2. From (13.1) one sees that the (N—i) involutions w^
induce precisely two distinct involutions of X^ which we arbitrarily call uft and v. uft.
These are conjugate over Q^ and defined over Q/A/N). From (13.1) we have that v
and vft commute. Also, from (13.4) it follows that if w^ induces w^y then 9i(y projects
bijectively to the fixed point set of uft. Consequently, both ufi and v.^ have exactly
h fixed points in X^QJ.

Now suppose N = i mod 8, so X^-^XQ is unramified. Consider the diagram:

X»
y Y/ ^

(13.6) X»/^ X»/v=Xo^ /
X+==Xo/w

Lemma (13.7). — Both a and (B are ramified.

Proof. — As for a, this follows since ufi has A fixed points. To compute the number
of fixed points of (B, we use the Euler characteristic ^:

/(X^)=2.^(Xo) (since X^Xo is unramified)
^(X^s.^X^/z^—A (^ft has A fixed points)
^(Xo)=2.•)c(X+)—A (w has A fixed points)

which gives: 7(X#/^ f t)==2.^(X+)—A/2 and therefore P has A/2 fixed points.

Lemma (13.8). — We continue to suppose N=i mod 8. The subgroup DCj/q
(cf. § 12) has trivial intersection with the sub-abelian variety J_^==(i+^)-J-

Proof. — We work with group schemes over Q^. We first show that the subgroup (JL^
of the Shimura subgroup has trivial intersection with J+. If Y—^Z is any double
covering of (smooth projective) curves, then the induced map on their jacobians (regarded
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as Pic°) is injective if and only if the double covering is ramified. Since Xo-^X"1' is
ramified, we may identify the jacobian of X4" with the sub-abelian variety J+ Cj. The
subgroup ^CD is the kernel of the map J—^ on jacobians induced by X^->Xo (12.1).

To show that p-g is not contained in J_^., it suffices to show that the composition
J+^J-^J^ is injective. But the map J+->J^ is induced from the covering of degree 4,
X^—^X4'. Returning to diagram (13.6) we have that this map is the composite pa
where by (13.7) both (B and a are ramified double coverings. Injectivity of J+->J^
follows. Since J_^. is defined over Q^, and DnJ^. is a subgroup scheme of D (over QJ
not containing [jig, it must vanish. Q^.E.D.

Corollary (13.9). — The subgroup scheme D/g,Cj/g, maps isomorphically onto a subgroup
scheme ofJ^ under the natural projection of abelian schemes J/g'-^J/g^ (cf. § 10).

Proof. — Let D/g. C Lg, be the subgroup scheme extension of the image of D/n
in LQ. Then we have a map Dyg,—>-D/g, which induces an isomorphism on Galois
modules. It must be an isomorphism, by chapter I (4.4).

For later purposes:

Corollary (13.10). — The subgroup (D/p^CLy ts n0^ m ^e image of i-\-w,

Proof. — The image of J/p, under i-{-w goes to zero in J/p^, but (D^)61' does
not, by (13.9).

i4. The action of Galois on torsion points of J.

Let m be an integer =)=o, and consider J[w](QJ as a T/(m.T)[G]-module (the
group ring ofG with coefficients in T/(TT!.T) where G is some finite quotient ofGal(QyQJ
through which the natural action of Gal(Q/Q,) on J[w](Q) factors). Say that the
T/(m.T)[G]-module V is a constituent ofJ[y7i](Q) if it is a constituent of a T/(m.T)[G]-
Jordan-Holder filtration ofj [m] (QJ. Since a constituent Vis irreducible (as T/(m. T) [G]-
module), its annihilator in T is a maximal ideal 9JI. Say that V belongs to 9JI. Thus,
V is a Ag^[G]-module where ky^ is the residue field T/9JI. By the dimension ofV we mean
its dimension as ky^-vector space.

Note that any constituent V belonging to 9JI is a constituent of the sub-module
JDnTKQJ ^J[^](QJ for suitable integers r, m. Note also that given a generating set
of elements (^i, . . ., a^) of the ^-vector space SJT/SR^1, the map x}->a-^.x@ .. . @a^x
is an injection of the module J[W] /JEW4'1] (QJ into the direct sum oft copies ofJ[9Jl] (Q),
and therefore V is isomorphic to a constituent in J[9?l](Q,). Regarding V as a specific
subquotient ofJ[m](QJ we may use (chap. I, § i (6)) to obtain a quasi-finite group
scheme subquotient V/g ofj[m]/g which is finite and flat over S', and whose associated
Galois module is the subquotient V.
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Note however that the isomorphism type of V/g may depend on the way we view V
as subquotient ofj [m] (Q) and is not necessarily predictable from the isomorphy type of V.

By Fontaine's theorem, chapter I (1.4), however, it is determined (over S') by
the isomorphy type of V provided the characteristic of k^ is different from 2.

Letp be the characteristic of A^ and V/^ the fibre of V/g reduced to characteristic^.
Consider the two possibilities:

a) TpG9Jl. Then, by the Eichler-Shimura relations (§ 6), both the Frobenius
and the Verschiebung satisfy the relation X2—^yX+p=o, and therefore, since 9K
annihilates V^ they satisfy the relation: X2 == o. That is, both Frobenius and Verschiebung
are nilpotent on V^. Consequently, V^ has the property that both it and its Carder
dual are unipotent finite group schemes. Equivalently, it has a Jordan-Holder filtration
by finite subgroup schemes, all constituents being isomorphic to ay ([9], IV, § 4 (3.14)).
In this case say that 9?t is supersingular.

b) Tp^9Jl. Then, as above, Frobenius and Verschiebung satisfy X . (X—T)==o ,
where Tp is an automorphism of V- and it follows that:

V —V^-vV61 '^IVp—^IVp >- ^/vp'

(The product decomposition arising, if you wish, from the fact that Tp1. Frobenius
and Tp"1. Verschiebung are orthogonal idempotents whose sum is the identity.)

Thus V/F^ is, as we shall say, an ordinary group scheme over F . In this case
we say that 9JI is ordinary.

Proposition (14. i). — Let V be a constituent belonging to 9JI. Then V is of dimension i
if and only if^Ql is an Eisenstein prime. If^ is an Eisenstein prime, then JPP^/g is admissible
(cf. chap. I, § i (f)).

Proof. — We first show that i fVis of dimension i, then it belongs to an Eisenstein
prime. Consider V/g, which is a finite flat group scheme if and only if the inertia
group at N operates trivially on the ky^- vector space V (chap. I (1.3)). Since the
inertia group operates unipotently (SGA 7, exp. IX (3.5) (critere galoisien de reduction
semi-stable) which applies since (appendix) J/g has semi-stable reduction at N) and
semi-simply (since V is of dimension i over ^), it does operate trivially (1).

Thus V/g is a finite flat one-dimensional Ag^-vector group scheme. By chapter I
(1.5), either:

^S-P^F^

or: V/g=Z/p®^

and in either case, the Eichler-Shimura relations (§ 6) give us the following facts about
the image of T^ (^4=N) in k^ which we can think of as contained in End(Vm ):

Tf=i+l mod9Jl (y+N).

(1) This was pointed out to me by K. Ribet.
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As for the image of w in kyj^y since w is or order 2, this image must be =L i. If the
image of w is —i , then 9JI is visibly the Eisenstein prime of residual characteristic p.

To conclude the first part of this proof, one must show that if p is odd, the case
w\-> +1 cannot occur. We show that the ideal 9JI generated by:p, i —w, and i +/'—T^
(all ^N) is the unit ideal in T. Suppose not; then it is a maximal ideal with residue
field Fp. By (9.3) the kernel of its action on H°(Xo(N)/F , Q.) is of dimension i over F .

This kernel is generated by a parabolic modular form mod p, g, whose ^-expansion
is entirely determined (9.2) by the above package of eigenvalues, and the fact that
it begins with the term i .q. Comparing the coefficients of g with that of the Eisenstein
series e ' (5.1) one sees that f=ef-}-24..g is a modular form modulo 24.? whose ^-expansion
(modulo 24.?) is a function of ^N:

7=(^N)-48.^+...

If P^.5^ such a modular form does not exist (1) by lemma (5.10) (if ^=N),
by lemmas (4.10), (5.9) (if ^ | N — i ) and corollary (5.11) (if j^4=N, j^N—i). If

^=3, and N = i m o d 3 3 then f|(j=^———j+I6.$rK+••• does not exist mod 3, as
• j '

a holomorphic modular form, by corollary (5.11) (ii) (if N=t= i mod 9) and by (4. lo)
and (5.9) (if N = = i mod 9). Finally, if ^==3, and N s — i mod 3, f does not exist
mod 9 by corollary (5.11).

To conclude the proof of our proposition, we show that if^? is an Eisenstein prime,
thenJ^P7'] is admissible (any r) and consequently any of its constituents is, indeed, of
dimension i. In the light of (chap. I, § i (f)) and remarks made at the beginning
of this section, it suffices to show that JPP](QJ possesses an admissible filtration by sub-
Galois modules. Let W denote the Gal (Q/QJ -module which is the direct sum ofj[^5] (Q)
and its Carrier dual. Thus W is a self-dual Gal (Q/QJ -module, annihilated by ^5,
of dimension 2d, say, over Fp. We let G denote a finite quotient of Gal(Q7QJ through
which the action on W factors. Since T^ acts as !+/' on W, (/'4=N), the Eichler-
Shimura relations (§ 6) impose the relation:

^-(i+^).^+^=o

on the action of the Frobenius automorphism 9^ (/'=t=N,j&) on W. Thus, the only eigen-
values possible for the action of 9^ on W are: i and f. Since Carrier duality cc inter-
changes 5? these eigenvalues, and since W has been devised to be self-dual under Cartier
duality, it follows that the characteristic polynomial of 9^ acting on W must be
(x-iy^x-^.

Now consider the Gal (Q/QJ -module (Z//^®^^, which we also regard as a
G-module (the natural action on this module factors through G, and if it did not, we
would have augmented G appropriately). It also has the property that the characteristic

(1) This has been proven independently by K. Ribet.
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polynomial of ^ acting on it is: (X-i^X-^. By the Cebotarev theorem any
element in G is the image of some q^ (^=t=A N).

Thus, any element geG has the same characteristic polynomial for the represen-
tation W as for (Z/j&y^^y. By the Brauer-Nesbitt theorem ([6], (30.16)), the
semi-simplification of the representation W is isomorphic to (the already semi-simple)
(Z/j^®^)^ Thus W has an admissible filtration and therefore, so does J[^](QJ.

Proposition (14.2). — Let 9JI be a prime which is not an Eisenstein prime, and which is

supersingular if char k^==2. Then J[9Jl] is an irreducible two-dimensional Gal(QyQJ-
representation over k^ (1).

Proof. — By theorem (6.7) (and (3.2)) of [10], there is a unique semi-simple rep-
resentation p : Gal(Q/QJ ->GL^k^) such that for every f^p, N, if ^ == image (T^) C^m:

Trace (9^)=^
det(^)=<f.

Denote by V the associated semi-simple ^m[Gal(Q/QJ]-module. Let:

rf=dim^(J[9K](Q)).

As in the previous proposition, form the Gal (Q/QJ -module W: the direct sum ofJ[9Jl] (Q)
with its Carder dual. Let W'==the direct sum of d copies of V. By the Eichler-
Shimura relations, the eigenvalues of 9^ are constrained to be solutions of the quadratic
equation X2—^X+/'==o, and since Carrier duality "interchanges the roots of the
above equation 3? the characteristic polynomial of 9^ operating on the self-dual Gal(Q/0)-
module W is: (X^^X+O^.

But this is also the characteristic polynomial of q^ acting on the semi-simple
Gal (Q7QJ -module W. It follows that W is the semi-simplification of W. By prop-
osition (14.1) (and the fact that 9K is not an Eisenstein prime) it follows that V is an
irreducible k^ [Gal (Q/QJ] -module. Therefore, W has a Jordan-Holder filtration of
sub-^[Gal(Q7QJ]-modules all of whose successive quotients are isomorphic to V. It
follows that J[9K](QJ also has such a filtration. In particular, considering the first
stage of such a filtration, we have an injection VCJ[9JI](Q). We must prove that
V=J[9Jt](QJ. We do this by studying V/gCj[9Jl]/g, the quasi-finite group scheme
extension of V.

Case 7. — Ghar^+N and either:
a) 9K supersingular or
b) 9JI ordinary and char ̂ +2.

(1) We also establish (cf. (16.3) below) that Jp?] is a 2-dimensional Gal (Q/Q)-representation, when ^ is
an Eisenstein prime.
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Here we make use of the contravariant Dieudonne module functor of Oda [47],
denoted M(-~). Its relation to De Rham cohomology is given by corollary (5.11)
of [47]. Namely, if A is an abelian variety over a perfect field k, of characteristic p
then there is a functorial isomorphism of Dieudonne modules:

M(A[^)^HLB(A^).

Moreover, under d^, the Hodge filtration:

o -> H°(A, Q1) -^ H^(A/,) -> H^A, )̂ -> o

corresponds to the filtration:

o -> M(A[Frob])' -> M(A[j&]) -> M(A[Ver]) -> o

where [ ] means, as usual, kernel, Frob means the Frobenius endomorphism, Ver means
the Verschiebung, and the prime superscript has the following significance:

JV^Frob])'-^, o-^^AEFrob])

where (A, a~1) is the abelian group k, regarded as A-algebra by the morphism A0"1—^
where cr is the p-th power map.

Moreover:

M(A[J&])[Frob]=Ver.M(A[^])^M(A[Frob])/

where Ver and the first Frob denote the V and F operators of the Dieudonne
module M(A[p]).

If G is a finite group scheme over k equipped with a homomorphism:

T/^T^End(G/,),

we induce a T/pT- module structure on M(G) commuting with its module-structure
over the Dieudonne ring. Since M(- ) is an exact contravariant functor, we have
M(G)/9K.M(G)=M(G[9Jl]).

Consequently:

Mcnm?,) = M(JM^) im. M(JM^)
= HLR(J/F,) /^ • H^(J/F,) ̂  H^(Xo(N)^) im. H^(Xo(N)^)

where the last isomorphism comes by the identification ofj with the Albanese ofXo(N),
and all isomorphisms are isomorphisms of T/^T-Dieudonne modules. Make these
abbreviations: M(V^)=M; H^(Xo(N)^)=H^.

The inclusion V/p Cj[9Jl]^ induces a surjection of the A^-Dieudonne modules:

H^/9?l.H^->M->o.
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Passing to the cokernel of Verschiebung, one has a diagram:

H^/ajl.H^ ——————> M —————> o

Y Y Y

H^x^.H^x) —> M/Ver.M —> o

i I
0 0

where we have written IF^x) for H^Xt^N)/^, (P).
By (9.4), H^xVS^-H^^x) ls a ^m-vector space of dimension i. Thus:

(14.3) dim^(M/Ver.M)^i.

We now use the hypothesis that either 9JI is supersingular or the characteristic
of kys[ is different from 2.

Lemma (14.4). — With the above hypotheses, V/g. is an auto-dual finite flat group scheme
with respect to Cartier duality. Neither Frob nor Ver vanish identically, nor are they isomorphisms,
on the Dieudonne module M.

Proof. — The Gal(Q/Q,) -module Vis auto-dual under Cartier duality. Therefore
V,gr and its Cartier dual Vyg, have isomorphic associated Gal (Q/QJ -modules. Under
our hypotheses, Fontaine's theorem, chapter I (1.4), applies. Thus V/g, is auto-dual.

Consequently, M is a self-dual Dieudonne module. Since Frob. Ver ==p=o
on M, it is clear that not both Frob and Ver can be automorphisms of M, and by self-
duality, neither are. Also, by self-duality, if one of the two operators Frob and Ver
are identically zero, then both are.

In particular, Ver would be zero, which is impossible, since its cokernel is of
dimension less than or equal to i by (14.3).

An immediate consequence of Lemma (14.4) and (14.3) is:

Lemma (14.5).— H^fiy/^-H^^x) -^ M/Ver.M is an isomorphism of i -dimensional
kyu-vector spaces.

Lemma (14.6). — Let o->Mi -^Mg-^M3->o be a short exact sequence of (finite)
kyj^-Dieudonne modules satisfying these properties:

a) the cokernel of Ver on Ma is of dimension i over k^;
b) Frob is nonzero on M.^.

Then Ver is an isomorphism of Mi onto itself.

Proof. — We show that Ver : Mi—>Mi is surjective, by showing:
(i) Mg/Ver.Mg-> M^/Ver.M3 is injective,
(ii) Mg[Ver] -> MgfVer] is surjective,
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and applying the snake-lemma. Since the morphism (i) is surjective, and Mg/Ver.Mg
is of dimension i over k^y it suffices to show that Ver.M^+M^ to obtain injectivity
of (i). But Ver annihilates Frob. M^ which is nonzero, by b). Therefore Ver is not
an automorphism of M^.

To show (ii), note first that since M^ is finite-dimensional over ky^ (?==2,3) ,
dim.^ (M2[Ver])=i (as follows from a)); also dim^(M3[Ver])==i (as follows from
the isomorphism (i)). Therefore all that must be shown is that the morphism (ii) is
nonzero. But this follows from the diagram:

M2 —————> Mg —————> o

M,[Ver] -^> M3[Ver]

and hypothesis b).
To apply lemma (14.6) to our situation, take M2=H^/9K.H^R and M3=M.

Both hypotheses a) and b) hold, by lemmas (14.4) and (14.5). We obtain the following
conclusion: If M^ is the kernel of the homomorphism H^R/SR.H^R—^M, then Ver
is an isomorphism on M^. That is, Mi is the Dieudonne module of a group scheme
of multiplicative type. Therefore the cokernel of V/s,Cj[9Jl]/g. has multiplicative
type reduction in characteristic p. But, by the discussion at the beginning of this proof,
and by Fontaine's theorem, this cokernel has a filtration by finite flat subgroup schemes
all of whose nontrivial successive quotients are isomorphic to V/g., which does not
have multiplicative type reduction in characteristic p. We conclude that this cokernel
is zero.

Case 2. — (A digression) 9JI ordinary and char Ag^4=N.
There is another more direct way of putting the above argument, when 901 is

ordinary. This alternate method does not use Dieudonne modules, but rather depends
upon an important isomorphism due to Gartier and Serre ([64], § n, Prop. 10). By
means of this isomorphism, one may deduce (14.8) below, which will also be useful
to us in the case where 9JI is an Eisenstein prime (cf. (14.9), (14.10)). Thus, in the
present case we let 9JI be any ordinary prime in T, Eisenstein or not, with char ky^ 4= N.
Recall the canonical isomorphism:

^J^W^HWN^nT
of [64], § i i , Prop. 10, where the superscript ^ means fixed elements under the Carrier
operator. (Note: this isomorphism is defined for any smooth projective curve and
not just Xo(N).) The definition of S is as follows: an element x of the domain is rep-
resented by a divisor D on X()(N)^ such that j&.D ==(/). One takes S{x)==dflf.
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Proposition (14.7). — The isomorphism above induces an injection:

8 : (JM(Fp))®F,F, ̂  H°(Xo(N)^, ̂ )

which commutes with the action of T/p.T on domain and range.

Proof. — By ([64], § n, Prop. 10) injectivity follows from injectivity of the natural
map:

(H°(Xo(N), ^)®^F^H°(Xo(N)^, ̂ )

which is an elementary exercise, using c~ ̂ linearity of ^: Let ^, . . ., x^ be the smallest
number {s>o) of Fp-linearly independent elements of H°(Xo(N), Q^ such that
^i+X2.A;2+- • .+\-^s==o, where ^-eFy. Applying i—%7 to this equation gives a
smaller relation.

That S commutes with the action of w is evident. To check that it commutes
with Tf boils down, in the end, to checking commutativity of the (two) squares:

T * (nog, 01
L ——> ^Lifp

t l t» NL/K i TFL/K
Y I ^

J\- ————>• i2T?-/Ti
d log K/F^

where K is a function field in one variable over F and L is a finite K-algebra.

Corollary (14.8). — Let 9?l be an ordinary prime ideal in T with char^=f=N. Let
(JEAI/F^ denote the etale part of the group scheme J [ p ] ^ , and let (JM^)[9Jl] denote the
kernel of the ideal 9JI in this group scheme.. Then { J [ p } ^ ) [S(R] is a k^-vector group scheme
of rank i. One has the equality:

3Wp={JWpW] if P>2.

Proof. — The rank of (J[^]^)[9?l] is at most i as follows immediately from the
previous proposition and proposition (9.3). To obtain the equality asserted, we must
show thatJ[9Jl]^ is nontrivial. If it were trivial, then J[9Jl]^ would be of multipli-
cative type. Since p>2, Fontaine's theorem, and the remarks at the beginning of
this section, apply, giving us that any constituent ofJ[9JT]^ is a constituent of J[9Jl]^.
It would then follow that the ^-divisible (Barsotti-Tate) group Jgj^, is of multiplicative
type, which is impossible, since it is auto-dual under Carder duality.

I f p divides n, let Jp[3]/g denote (as usual) the group scheme extension to S of
the kernel of the Eisenstein ideal 3 in the Barsotti-Tate group J / Q . This group scheme
is also J[3,j^]/g where p^^n. Let Gp/g denote the ^-primary component of the cuspidal
subgroup C (regarded as constant group over S). If p= 2, let D/g denote the subgroup
scheme ofj/g constructed in § 12.
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Proposition (14.9). — I f p is an odd prime dividing n, then:

^-(j.ra^^a^ra
and, if p===2, divides n:

D^=j[^]^=(j^)m.
Remarks and proof. — The right-hand group scheme on the first line of our prop-

osition is the kernel of 3 in the etale part of the ̂ -Barsotti-Tate group over Ep associated
to J. All of the asserted equalities of the proposition are known inclusions (reading from
left to right).

To establish the proposition, note that Corollary (14.8) gives that:

(j^m-jM^)^]
is a group scheme of order p. The assertion of the proposition for p == 2 then follows
simply by noting that (D/^)^ is also a group scheme of order p. To obtain the assertion
when p>2, let ^||^. Note that (J^)[3] is annihilated by pf by (9.7), and since
the kernel of multiplication by p in this group scheme is of order p, it follows that
(J^)[3] is of order p^ So is Cp, by (11.1). The proposition follows.

Corollary (14.10). — Ifp is an odd prime dividing n, then one has a short exact sequence:

(i) o -> Gp -JJ3] -^ M -> o {over S)

where M is an admissible group scheme of multiplicative type.
If p = 2 divides n, then one has a short exact sequence:

(ii) o — D -^JPP] -> M -> o {over S)

where M is an admissible group scheme of multiplicative type.

Proof. — In either of the exact sequences above, the cokernel is admissible by (14. i),
and of multiplicative type by the previous proposition.

Corollary (14 .11) .—Letpbeapr ime dividingn. LetW denote theZy-dualof ̂ CLp(Fp)).
The T^-module W is free of rank i.

Proof. — By proposition (8.4) it is of rank i {i.e. W®Q^ is free of rank i over
T\p®QJ. It suffices to show that W/^.W is of order p. But (§ 7) W is the Pontrjagin
dual ofJ<p(Fp) and therefore we must show that J<p(Fp)[^] is of order p, which follows
from (14.9).

As for the alternate argument: suppose 9JI is ordinary, not an Eisenstein prime, and
such that charA^+N, 2. By Fontaine's theorem, and the discussion at the beginning
of this section, V^ cannot be of multiplicative type. Thus, the A^-rank of (V/p ̂
is ^i, and (by (14.8)) the ^-rank of (JpJl]/^)61' is ^i. It follows that V==J[9Jl].
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Case 3. — Char ky^ =-- N.

This case parallels the (< alternate argument " in case 2. Note that if char kyj^ == N,
then 9JI is not an Eisenstein prime. Also,J[9?l]/g, is a finite etale group scheme, admitting
a Jordan-Holder filtration by finite etale subgroup schemes all successive quotients
being isomorphic to the finite etale group scheme V/g,. Consider the first layer in
such a filtration VCj[9Jl], and note that we have exact sequences:

o —>JW(QN) —^J™QN) -^J™TN) -^ o

U U u

o ——. VO(Q^) ———. V(Q^) ————. V(F^) ——> o

where the superscript ° may be viewed as denoting either the connected component
over Spec Z^, or the intersection of the (appropriate) group scheme over Spec Z^
with J0,,.

Since V is self-dual, we cannot have V(Q^)=V°(Q^) (for then it would be
of multiplicative type over F^). Therefore dim^^F^))^!. As in case 2, we
must show dim^J[9K](FN)^i. For this, we extend Serre's mapping 8 to cover
our present case. Let D represent a divisor class x in J[N](QN)=Pic°(Xo(N)/Qj[N].
Assume D is an eigenvector for w. Let/be a rational function on Mo(N)/^ (ZN=ring
of integers in Q^) such that ( /)=N.D on Xo(N)/^, and such that/does not vanish
identically on Mo(N)^. Since/satisfies an equation of the type fow==±f±l, and
w interchanges the two irreducible components of Mo(N)^, / vanishes on neither
component of Mo(N)/^. Form dfff in H°(Mo(N)^, ^1) where the superscript h
denotes the smooth locus. Note that:

H°(Mo(N)^, Q^H^M^N)^, t2)=H°(Xo(N)^, Q)

(the second equality comes from (3.4); for the first, since Mo(N) is Cohen-Macaulay,
Q. is invertible, and the supersingular points of characteristic N are of codimension 2
in Mo(N)/^).

Set §M=image of dfjf in HO(Xo(N)/^, ^).
Since the function/is unique up to a possible multiple u.g^ where u is a unit

in ZN and g is a rational function on Mo(N)/^, the mapping x\->S{x) is well-defined.
Also, 8{x')==o if and only if/, reduced modulo N, is an N-th power (or, equivalently,
x goes to zero in J[N](FN))» Extending the definition of S, by linearity, to all divisor
classes A:eJ[N](QN)5 we have:

8:J[N](FJ^HO(Xo(N)^,Q).
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Since the theory of the Gartier operator ([64], § 10) is local, it applies to the smooth
quasi-projective curve X()(N)^ and one has, as before, that the image of 8 is contained
in the fixed part: H°(Xo(N)-ty)^ and by the argument of (14.7)3 one deduces
an injection:

S : JCT(F^®^F^H°(Xo(N)/F,,Q).

At this point one uses (9.3) as in the proof of (14.8) to conclude that:

dim^j[are](Fj^i.
What is the minimal field of definition of the Gal(Q/Q,) representation determined

by JEW
Proposition (14.12). — Let 9JI be a prime which is not an Eisenstein prime., and which

is super singular if charA^=2.
Then ky^ is generated over Fy by the images of the operators T{ (/'=+= char ̂ ), and J[9Jl]

is an irreducible Gal(Q/QJ-mo^fo.

Proof. — Before we begin the proof, let us note that the last assertion is stronger
than the assertion of Proposition (14.2).

We are saying that the abelian group J[2R](Q,)=V is irreducible as Fp[Gal(Q7QJ]-
module. Let E be the image ofFp[Gal(QyQJ] in the endomorphism ring ofJplJTKQJ.
Let k C k^ be the subfield generated by the T^ (for all i 4=^3 N). Using the Eichler-
Shimura relations forJ[9Jl]/F. and the fact thatJ[9Jl] is etale in characteristic y=t=^,N,
we obtain a natural imbedding of A in the center of the ring E, which we therefore view
as A-algebra; in fact we take k systematically as our base field. Note that k^==k[rp]
(Tp=imageTp), if ^+N. If p==N then k=k^.

Let Vi be a two-dimensional Gal(Q/Q,) -representation over k such that Vi®^^=V.
Such a representation exists by [io], Theorem (6.7).

Viewing Vi C V as sub-Galois module, and taking the subgroup scheme extension
(Ghap. I, § i ( c ) ) ofViin V/g^fSDIJ/g, we obtain a closed (A-vector space) subgroup
scheme V^/g C V/g.

Let Vi^A^g denote the associated ^-vector group scheme, which one can
"construct59 simply by taking:

Vi/g®vV,/g®T^.V,/g®.. .©^.V^g

where d==[k^ : A], and giving it the natural ^-structure.
We have a homomorphism of ^-vector group schemes:

Vi®A/g->V,g

which is an isomorphism on associated Galois modules. Since, by our hypothesis,
Fontaine's theorem (chap. I (1.4)) applies, this is an isomorphism of group schemes over S',
and hence also when restricted to characteristic p. Note that over Fp, the endomorphism
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Frob+Ver preserves the above direct sum decomposition. By the Eichler-Shimura
relations, Tp must also preserve the above direct sum decomposition (over F) , which
is possible only if d=i. The proposition follows.

Proposition (14.13). — Let 9JI, 9JI' be primes such that char k^ = char k^. 4= 2 or:
9JI and 9Jt' are supersingular.

Then the Gal(Q/%) -modules J[9Jl](Q) and J[9Jl'](QJ are isomorphic if and only
z/'9K=9Jl'.

Proof. — By (14. i) we may suppose neither prime is an Eisenstein prime. Suppose
JIXKQJ and J[9Jl'](QJ are isomorphic as Gal(Q7QJ-modules. By Fontaine's theorem
JIXI/s' is isomorphic to J[9Jl']/s., and the Eichler-Shimura relations together with
Proposition (14.12) enable us to get an isomorphism k^^k^, such that if ^ is the
image of T^ in k^ (resp. T;= image of T^ in ̂ ) then z(^)==T; for all y+N. To
show that 9JI = 9JI', it suffices to show that w has the same image in ̂  as it does in k^.
Suppose not {i.e. w goes to +i in ky^ and —i in k^). Then consider the ^-expansions
of generating eigenvectors (§ 9) in H°(Xo(N)^, £i) [9K] and in H°(Xo(N)/,, ^2) [9JI'].

These ^-expansions are the same except for the coefficients of powers of^. Applying
(4-10)? (5-9) ? (5-10) to the difference of these generating eigenvectors, we obtain that
the generating eigenvectors are equal. Therefore 9JI == 9JI'.

15. The Gorenstein condition.

Let R be a local Zy-algebra, free of finite rank as a module over Z . Then R
is a Gorenstein ring [3] if and only if the Zp-dual to R, R*=Homz (R, Zp), is free (of
rank i) as a module over R.

Lemma (15.1). — Let 9JICT be a maximal ideal. We have the indicated implications
of the assertions below.

1 ) JpD^KQJ ls °f dimension 2 over k^.

2̂) ^CWQJ) is free of rank 2 over T^.
V
3) T^ is a Gorenstein ring.
^
4) H°(Xo(N)^,£2)®TT^ is free of rank i over T^.

Proof. — i ) = > 2 ) : Assuming i) we have that the kernel of 9JI in Jan(QJ is of
dimension two over k^. Hence the cokernel of 9JI in Hom(J^(Q), Q^/Zp)=H^ is
also of dimension two. But H^ is the Zy-dual of the Tate group (cf. § 7):

^(J^(Q))==Hl(Xo(N)c,Z)®,T^=H^.
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Since Hg^ is its own Zp-dual, we have that H^®^^ is of dimension two. But
since (7.7) H^® % is free of rank two over Tgji ® %, it follows that for any homomorphism
T^-^K (where K is any field) H^^K is of dimension two, and H^ is therefore
free of rank 2 over T^.

2) =>3): Write H^==Fi®F2, the direct sum of two free T^-modules of rank i.
Since H^=H^ (* denotes Zp-dual) we have an isomorphism F^®F^ -> F^OFg.

Consider the four projections TT,̂  : F; -> F^ (?J=i, 2). At least one is a surjection,
for if not the image of^. would be contained in the maximal proper submodule 9JI.F,
for all i, j, contradicting our isomorphism.

Suppose 7^ ̂  : F^—F^. is surjective. It is also injective since it induces an iso-
morphism after tensoring with %, and the domain is Z-torsion free. Thus, F, is a free
Tg^-module of rank i, whose Z-dual is also free and therefore T^ is Gorenstein.

3)04): By (9.4) H^Xt^N)/^, (P)®T:T^ is free of rank i over T^, and using
the idempotents £3^, s^ of (7.1), and the fact that T act in a hermitian manner with
respect to the duality (3.2) one sees that H°(Xo(N)/z, Q.)®^T^ is its Zp-dual.

2 ) = > i ) : An easy reversal of the argument that i ) = > 2 ) .

Corollary (15.2). — Let TO be a maximal ideal in T which is not an Eisenstein prime,
and such that, if charA^==2, then 9JI is super singular.

Then all four assertions of (15.1) hold and in particular Tg^ is a Gorenstein ring.

Remark. — In the next two sections, we shall establish this Corollary for Eisenstein
primes as well. This is significantly harder. We shall have use for the following
(elementary) sufficient condition for Gorenstein-ness.

Proposition (15.3). — If R==Zy[7)] is generated by one element over Zp, then R is
Gorenstein [3].

16. Eisenstein primes (mainly j&4=2).

Fix p a prime number dividing n.

Definition. — A prime number /'=)=N will be called good (relative to the pair [p, N),
usually unmentioned and understood} if either:

a) not both t and p are equal to 2, and

(i) t is not a p-th power modulo N and

(ii) —— =1= o mod p

or (the somewhat special " degenerate " case):
b) l=p=2, and 2 is not a quartic residue modulo N.
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The set of good primes has Dirichlet density ( — — ) if p>2, and - i f j&==2 .
In particular, there are some good primes.

For any £ set T^=I+^—T^.
The object of this section and the next is to establish the following proposition

and to derive some important consequences:

Proposition (16 .1) . — The Eisenstein prime ^}.T(pC T<? is generated by the elements p
and f\{, where t is any good prime (1).

Although some finer consequences of the above proposition will be developed
later, note these corollaries.

Corollary (16.2). — The Z-algebra T^ is generated by ^ for i any good prime.
Therefore, by (15.3) :

Corollary (16.3). — The ring T<p is Gorenstein. The Ty-vector group J[^5] is two-
dimensional. If p>2, then:

jm=c[p]@^[p].
If j&-2, then jm=D.

The T^-module H<? ==^z(J^(QJ) is free of rank 2.

Corollary (16.4). — If p>2, Jp[3]=]^[3]=C^@^ {recall: C^p-primary
component of G, and the same for Sy).

Proof. — CpOSp is contained in J<p[3] ((11.1), (n .7)) .
ButJ^[3](QJ is the Pontrjagin dual of H^/3.H^ (* means Zp-dual) and therefore,

by the previous corollary, it has the same order as Gp(Q)©2p(QJ.
We begin by establishing a lemma needed to control the action of inertia.

Lemma (16.5). — Let B be a subgroup of either the cuspidal or the Shimura subgroup of].
If the superscriptl denotes the module of fixed elements under the action of inertia^ we have an exact
sequence:

o^B^Q^CnQ^/B)'-^

{where Jp is the p-divisible (Barsotti- Tate) group associated to J).

Proof. — What must be shown is that L(QN) ~>Jp{Q.yi)l^ induces a surjection
on elements fixed under inertia. By the appendix we know:

Jp{W -JW X G (^ ̂ -divisible group associated to J°^).

(1) Carefully stated, our proof even works for f=p, if p happens to be a good prime. This is hardly relevant
for the main corollaries; moreover, our second proof of this proposition (by the theory of modular symbols (cf. (18.10)
below)) makes no distinction whatsoever between the cases £==p and t ^ -p . Nevertheless, the fact that our
proposition is true when £==p is a good prime has significance for the ^}-adic analytic number theory ofj, and
for the study of the arithmetic of the ̂ -Eisenstein factor j(P) in the j&'cyclotomic tower over Q (cf. chap. Ill, 9).
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By SGA 7, exp. IX (3.5) (critere galoisien de reduction semi-stable) we know that
if (B, Y are in the inertia group at N, then (i — (B) (i — y) acts trivially on Jp^). Hence,
ify is in the inertia ̂ ubgroup, (i -y) J^QN) ^Jp(%N)1- But since Jp(QJ is a ̂ -divisible
group, (i—T)Jp(Q.N) must be contained in the p-divisible part of Jp(QN)1, which is
J^FN) ^^ON^? by the above direct product decomposition.

Now, take an element e in J^Q^) which maps to ~e in CVQ^/B)1. Let y be
any element in the inertia subgroup. Since (i — y). e goes to (i — y)^= o in J (QU /B
(i—y).^B. Therefore, by the above discussion, ( i - y ) . ^ is in B n^F^) which
is the trivial group, as is clear from the displayed direct product, if B C G and as follows
from (11.9) if BC 2. Thus ( i — Y ) . ^ = o , for all y in the inertia subgroup. Q.E.D.

From now on, in this section, let p^2. — In this case, proposition (16. i) will follow
from a direct proof of the stronger proposition (16.6) below. When p==2, we shall
reverse the order of proofs of these propositions.

Proposition (16.6). — The ideal 3.T<p is a principal ideal in T<p, generated by ^ for i
any good prime.

Proof. — We shall be working with subgroup schemes (closed quasi-finite) in J^
(hence admissible by (14.1)). In particular, consider J<p[3]=Jp[3]. We make
extensive use of the tools developed in chapter I.

Lemma (16.7). — The admissible group Jp[3] is a pure group (1).

Proof, — Consider the exact sequence (14.10):

o-^->J,[3]^M-^o

over S', where Cy is the j^-primary component of the cuspidal subgroup, and M is of
multiplicative type. We first show that M is a (Ji-type group (1). Since 3 annihilates
J[3], for any prime number /'+N, T^ acts as i+^ on J[3]. Thus, by the Eichler-
Shimura relations, for any t^p, N, the y-Frobenius <^ satisfies ^—(i+^) . ̂  +/' = o, or:

(y/-1)^-^^-
If f^i modj&, then q^ acts as multiplication by I on M(Q). The reason for

this is as follows. Since the Galois module M(QJ is admissible, of multiplicative type,
the only eigenvalue that <p^ possesses (when acting on M(QJ) is i. Consequently,
(9^—1) maps M(QJ isomorphically onto itself, and the above formula then implies
that (9^—/') annihilates M(Q). If M" denotes the Gartier dual of M, then M^ is
an etale admissible group over S' such that ^ acts trivially in its Galois representation

(1) Chapter I, § 3.
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for every f^p, N such that t^. i mod p. An elementary density argument (or chap. I
(3.4)) implies that M^ is constant, and therefore M is a [A-type group.

Since M is a pi-type group, the inertia subgroup at N operates trivially on M(Qj^)
(M extends to a finite flat subgroup over S, of order prime to N). Applying lemma (16.5)
with B==Cp, we obtain that inertia at N operates trivially on J [3] which is therefore
a pure group by chapter I (4.5).

Thus Jp[3]/g is a finite flat group and, over S:

Jp[3]=CpXM.

It follows that:

jm=c[p]xM[p].
Let r be a nonnegative integer.

Claim 1. — The quotient group scheme JpES.^4'1]/^^.^] over S' is pure.

Proof. — Set ^=dimp 3.^/3. ̂ r+l. As in the discussion at the beginning of
§ 14, one may obtain an injection of the associated Galois module to JpES.^^'^/JpES.^]
into the associated Galois module to the direct sum of t copies ofj[^5].

Consequently, by lemma (16.7), the inertia group at N operates trivially on the
QN-valued points of JpCS.^4'1]/^^.^] and therefore it is pure, by chapter I (4.5).

Now fix a good prime number i.

Claim 2. — The group scheme L^.^", ̂ ]=Gr is pure for all r, and:

G.-CpXM^

where M^ is a [L-type group.

Proof. — By the above group scheme we mean, as usual, the subgroup scheme
extension in J/g of the intersection of the kernels of 3.^ and T]^ inJp/Q (or, equivalently,
in J(p/q). We proceed by induction, the first case r==o being already established
(lemma (16.7)).

Suppose Gj. is of the desired type: a pure group with etale part Gp and pi-type
part M^. Since its dtale and pi-type parts are canonically determined, the operation
of the Hecke algebra T must preserve these parts; in particular it preserves M^.

Now we work over the base S'. Since T\{ annihilates G,.^, the Eichler-Shimura
relations give us the equation:

(^-iK^-^o
on G^^.i, if f ^ r p and hence also on any subquotient of Gy^.^. If f==p we have the
above equation on any subquotient of Gy_^.^ which is etale.
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By claim i, and chapter I (4.5), it follows that G,+i/G, is pure. So we may
write:
(16.8) o^G^G^-^Z^xM'-^o

where a is some nonnegative integer, and M' is a pi-type group.

We first show that a == o. — Form the pullback:

o —^ G, —> G^, —> (Z/^xM' —^ o
f t t

-I 'I 'I
o —> G, —> G ———> (Z/p)" ————-> o

and set G^G/M^. Thus we have a short exact sequence:

o^C^G-^Z/p)01-^.

That is, G is an admissible ^tale group. Moreover, since (9^—1) (9^—^=0,
and t =t= i mod p, it follows that 9^ == i on G. By the c< criterion for constancy 9? (chap. I
(3.4)), G is a constant group. By the manner in which G was constructed, there is
a natural induced action of the Hecke algebra T on G. But the ideal 3 C T annihil-
ates G. To see this, use the fact that the action of Frob^, on G is trivial (for any prime
number ^'=t=N, including f==p) since G is a constant group over S'. From the Eichler-
Shimura relations one then sees that T^=i+f (for all /"+N). By construction
of G, ( i+w) 2 annihilates G. Since w is an involution, and j&4=2, it follows that
i-{-w=o on G. Thus the ideal 3 annihilates G.

Now reduce to characteristic p. From our exact sequences one sees that G-p
is equal to (G^^)^. It follows from what we have just shown that (G^^p)^ is
annihilated by 3. But by (14.10), Gy equals the kernel of 3 in {Jp^Y\ Therefore
a==o.

Return to our exact sequence (16.8), which now may be written:
o-> G,--. G, ̂ -^ M'-^ o.

Also we have the exact sequence:
(16.9) o^G,->G^^M"->o

where M" is an admissible group of multiplicative type which is an extension of M'
by M^. Since ^ == o, applying the Eichler-Shimura relations to the Gartier dual (M")"
which is an ^tale admissible group, we have that (9^—i)(<p/—^)==o on (M")".

Since i is a good prime number, we use, again, the above quadratic equation,
and the " Criterion of constancy " (chap. I (3.4)) to deduce that (M")" is a constant
group; thus M" is of (Ji-type. In particular, the inertia group at N operates trivially
on M"(Q^)? and hence also on G,.^(Q^), using the exact sequence (16.9) and
lemma (16.5) with B==Gp. Thus, by the criterion of purity (chap. I (4.5)), G,+i
is a pure group, whose ftale part is Cp.
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Claim 3. - C^J^)6^].

Proof. — By Claim 2, the kernel of ^ in J^g, has the following structure:

M^l-CpXM^

where M^^UM^ is a union of (i-type groups.

Consequently Cp=((J,p[^])^)61'. Our claim will follow from a lemma (which
we also use later when p == 2):

Lemma (16.10) . — Let p be any prime dividing n, and t any prime number different
from N. Then:

J^^(F,)-J<p(F,)h,].

One sees easily that ^ is an isogeny ofj onto itself, for if it were not, then, by the
Eichler-Shimura relations, <p^ would have an eigenvalue equal to i or to f in its represen-
tation ofJ^(Q) {f any prime different from t or N) which is impossible for various
reasons. Thus, T^ is a surjective endomorphism on all groups of the exact sequence:

o ->JW,) ->J<p(Q,) -^J<p(F,) -^0

giving us surjectivity of J<p(Qp)h/]->J<p(Fp) [^]->o by the snake-lemma. It follows
that J<ph,](F,)=J,p(F,)h,] (i).

Conclusion of the proof of Proposition (16.6) for j&4=2. — Let W denote the Zp-dual
of^CLp(Fp)) (or, equivalently, the Q^/Zp-dual ofJ,p(Fp); cf. § 7). By (14.11) W is
a free T(p-module of rank i. By Claim 3, and (14.9), W/^.W=W/3.W. Therefore
7^ •r^ == 3. T<p.

17. Eisenstein primes (^==2).

We now begin to study the case where p=2 divides n. Our first goal is to prove:

Proposition (17.1) . — The Eisenstein prime ^.T^CTsp is generated by the elements p
and 7^3 where i is any good prime different from 2.

(1) To help the reader see this, it may be worth discursively reviewing the (< brackets " terminology at this
point. By definition, the group scheme J<p[7^]/s' is the subgroup scheme extension in J/g' of the sub-Gal(Q/Q)-
module inJ<p(Q) consisting in the kernel of 7^. Thus, since r\c is an isogeny andj/g. is an abelian scheme, J<p[Y^]/s'
is a finite flat group scheme (it is, in fact, admissible) whose associated Galois module is J^(Q)[-y^] ==J^(Qp)['y)d*
ByJqsh^KFp) we mean, to be sure, the Fy-valued points of the group scheme J(p[Y^]/s' • We have a natural map
(a surjection in fact) from the Qy-valued points of the finite flat group J<p['^] to the Fp-valued points (reduction
to characteristic^): J<ph^](Qp)->J^[y]/](Fp), the range being naturally contained inj(p(^)[7)^] (the kernel of T\(
in J<p(Fy)). The asserted equality then follows from the previous discussion.
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Discussion. — The case p == 2 differs from p 4= 2 in many respects, the major
ones being:

a) Fontaine's theorem does not apply.
b) The equation (9^—^)(?^— i)==o (for/' a good prime) on an ^tale or multi-

plicative type admissible group does not imply that the group is constant or of pi-type.
c ) Where we have dealt in § 16 with the cuspidal subgroup, we must now deal,

systematically, with the group D.
d ) Cp and Sy have a nontrivial intersection (when p=2) and therefore it will

turn out that J<p[3<p] is larger than Gp+^p- If N = i mod 16 we give no direct
construction ofj<p[3<p].

We deal with a) by keeping strict control of the ^tale part of our group scheme.
We are forced by b ) and c ) to work with groups which are roughly (< twice the size "
(in terms of lengths of various filtrations) as in the case ^4=2. In particular, the pure
groups of § 16 are replaced by *-type groups (see below). We " pay for " d ) by not
being able to give a complete account of the Galois representation on J<p [3<p].

Recall the terminology of chapter I, § 3, and especially lemma (3.5):

Lemma (17.2). — Let M/gr be a multiplicative type admissible group. Let t be a prime
number which is not a quadratic residue mod N (e.g. a good prime) (^=1=2) such that
(<p^--^)(<p^—i)=o on M. Let MiC M be the "first stage 9? in the canonical sequence of M
(cf. chap. I, § 3) (i.e. the largest \L-type subgroup ofM.), Then Mi(QJ is the kernel of q^—t
and 9^ acts trivially on (M/M^QJ.

Proof. — The first assertion is a repetition of chapter I (3.6). The second
assertion is then evident since cp^—i brings M(Q^) into the kernel of (<p^—^).

* 'type groups.

We work with a fixed good prime number i 4= 2, and certain admissible subgroup
schemes G/g,Cj(p[7^]/g. {i.e. in J<p and killed by T\{). Say that such a group scheme
is a -¥»type group if it can be expressed as a <c push-out " (or (c amalgamated direct sum ")
of the following form:

oi
o —> (Jig —> D —> Z/2 —> o

(*) 1- I- 1-^ ^ y
o —> G° —>G —> Z/a —> o

where: DCjp?] is the subgroup scheme of§ 12, and G°Cj(p[7^] is some (admissible)
subgroup scheme of multiplicative type, containing the subgroup (J^CD.

We also denote the "amalgamated sum'9 as follows: G==G°v^D.
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Since D is fixed, a *-type group is determined by its multiplicative part G°C G, and
conversely: G° is the connected component containing the identity of the scheme G/g-

Lemma (17.3). — If G is ^-type, and:
o-^G^^G^^G^-^o

is the natural sequence displaying the connected and ^tale parts of G^ , then:
W=G^.

Remark. — In particular, the Qg-rational points of (G/zJ0 (which is, a priori,
only stable under the action of GaHQ^/Q^)) is stable under the action of Gal(Q7QJ
as subgroup of G(Q)==G(Qg); here we fix any imbedding QCQg.

Applying (17.2) to G0/^ we obtain a subgroup scheme G°°C G° containing (JL^,
such that G00/^ is the cc first stage " in the canonical sequence for G0/^. In particular,
G°°/(JL2 is a [i-type group and its Galois module is the kernel of 9^—^ in the Galois
module of G0/?^. Also ^ acts trivially on the Galois module of G°/G00.

Lemma (17.4). — G00 is a [L-type group.

Proof. — Since the inertia group at N operates trivially on G00/^ lemma (16.5)
(where we take B = (ig) assures us that it operates trivially on G00. We then apply
chapter I (3.1).

The key lemma enabling us to construct *-type groups is the following:

Lemma (17.5). — Let t be a good prime number different from 2. Let GC G'Cj<n[^]
be (admissible) subgroups stable under the action of T such that:

a) G is a ^-type group.
b) G'/G is of order 2.
c) 2 kills the etale part of G/^.

Then G' is a ^-type group.

Proof. — In the calculations of Claims i and 2 below, we deal exclusively with
Galois modules. For simplicity we let the symbol of the group-scheme stand for the
associated Gal(Q/Q^)-module, in the proof of those claims. Thus G' would stand
for G'(%), etc.

Claim 1: ^-I)(G'/D)C(Goov^D)/D=GOO/^A2.

Proof. — We have a filtration:

o C (G00 v^ D) /D C G/D C G' /D

G00/^ GO/(X,
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Since (<p^—i) annihilates G'/G and leaves D stable, we have that (9^—i)(G'/D)
is in G/D. But note that {^—l) : GQ|GOO-^GO|^ is injective (17.2), and consequently,
i^ (^-^KG'/D) were not contained in G00/^ we could not have (y/—^)(<p^—i)=o.

Claim 2: (c^—i) G'CG00.

Proo/: — By Claim i, (9^-1) G'C G°°v^D. But (p^-^ maps G°°v^D onto (ig,
with kernel G00 (since <p_^)=i, cp^—^ maps D onto (Jig; cf. chap. I (4.3)).

Again, since (<p/--^)(<p^—i)==o, Claim 2 follows.

C7<zwi 3. — The extension of group schemes over S':

o -> Z/2 -^ G'/G0 -> G'/G -> o
splits.

Proof. — By Claim 2, <p^ acts trivially on G'/G0. There are two possibilities:

Case I. — G'/G == Z/2 (as group scheme over S').

Then hypothesis c) insures that the ^tale group scheme G'/G0 is killed by 2, and
since 9^ acts trivially on it, it is indeed a product, by chapter I (3.4).

Case I I . — G'/G = pig.

It is also true in this case that G'/G0 is killed by 2. The reason is that any exten-
sion € of (ig by Z/2 splits over Spec Z^ (the splitting is obtained by showing that <?0,
the connected component of <?, must project isomorphically to (ig). Therefore, in
particular, 2 kills <?( Q^) = <?(QJ, and hence it also kills €. Again since <p^ acts trivially
on it, it is a product, by chapter I (5.1).

We now show that Case I cannot occur. That is, G'/G0 cannot be the constant
group scheme Z/axZ/a. Note first that the Hecke algebra T induces a natural action
on G'/G0. For it leaves G' and G stable by hypothesis. We must show that it leaves G°
stable. But by Lemma (17.3), the Galois submodule G°(QJ of G(QJ is determinable
as the sections which specialize to zero in characteristic 2 (the sections of the connected
component (G/zJ0) and is therefore left stable under the action of T. We follow the
proof for p odd, quite closely. For all primes ^ '=(=2,N, the Eichler-Shimura relations
assure us that T^=i4-/" on the constant group scheme G'/G0. Reducing to F^,
one has that T^==i{=Ei+2) on (G'/G0)^, again by the Eichler-Shimura relations.

We have to check that w+i=o, in order to conclude that (G^)61-=(G'/G°)^
is in (J/Fj^DP]- But since (w+i)2^^ (because w+i is certainly nilpotent on
GCJ^ and (G'/G0) is an Fg-vector group of rank 2) and since w-}-i annihilates
Z/a=G/G°, it suffices to show that (G/pj^ ^(D/^)61' is not in the image of w+i,
which is true by (13.10).

Thus (G/'pj6t C (J/^)6t [̂ 5] which contradicts (14.9). Therefore we have:

G'/G0 == Z/2 X(J4.
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Defining G'° to be the kernel of the natural projection of G' onto the first factor Z/2
in the above product, we have that G'° is a subgroup of G', of multiplicative type, and
G'=G'°v^D is therefore a *-type group. Q.E.D.

Let r^i be an integer. Consider the exact sequences of Gal (Q 3/Q^)-modules:

o-^t^, ^]°(Q,) -^[2-, ̂ ]{^) ->J<ph,](F,)

where the superscript ° denotes the connected component (containing the identity)
of a group scheme over Spec Zg.

Since ]^\2\ •^KQ^^.LpD^ ^](Q), this group is (in a fixed way) a Gal(Q7QJ-
module.

Let G^Cj^p^, T^KO^) denote the full inverse image of CLph^KFg)) [2] in
J^D^, ^(Q^)- ^t ls clear that G-(r) inherits a Gal (Q 3 /Q^) -module structure. It is
not clear that G(r) is stable under Gal(Q/Q^). Write G0^)^}^', -^(Qg).

We have:

(17.6) (i) o^GO(r) -G(r) ^(J.ph,](F,))[2]

and, ?/' r is sufficiently large:

(17.6) (ii) o-^GO(r) -.G(r) ̂  (^[^(F^))^] -^o.

We formulate two hypotheses:

I(r): The subgroup G^Cj^iy, •y]/](Q,) is stable under the action of Gal(Q/QJ.

I°(r): The subgroup G°(r) Cj^p^, ^](Q) is stable under the action of Gal(Q/QJ.

Lemma (17.7). — Hypotheses I(r) and I°(r) hold for all r>o. TA^ ^ro^ scheme G(r)
zj" a ^-type group for all r>o.

Proof of Lemma (17.7). — Our inductive proof consists in five steps. Set:
G(o)=DC.J[^] (§ 12).

Step 1. — For r^o, if I(r) and I(r+i) hold, and if G(r) is a ^'type group, then
G(r+1) is a ^-type group.

Proof. — Since the groups G(r) C G(r+i) are both stable under the action of T,
we may find a filtration:

G(r)=HoCHiC . . .CH,C ... C H,=G(r+i)

by T(p[Gal(QyQJ]-submodules Hj such that the successive quotients H,/H-_i are irre-
ducible T^[Gal(Q7QJ]-modules. Since H,/H^_i is therefore a module over:

T^.T^[Gal(Q,/%)]

and since T<p/^.T<p =F2, H,-/H^._i is an irreducible Gal (Q/QJ -module. Since G(r)
is admissible, it follows that H^/H^_i is of order two. By upwards induction on j,
applying Lemma (17.5) to G==H^._i, G'=H^, one obtains that G(r+i) a *-type group.
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Step 2. — Ifl{r) holds, and G(r) is a ^-type group, then I°(r) holds.

Proof. — Apply Lemma (17.3) with G(r)==G.

Step 3. — I°(r) =>I( r+ i ) .

Proof. — If xej^'^1, ^](QJ, then (since 2r.2x=o) by the defining property
of G(r+i), xeG(r+i) if and only if 2^eG°(r). Now, if (7eGal(Q/Q^, and xeG{r+i)
we must show that cr(^)eG(r+i). Equivalently, we must show that 2. (j{x)eG°(r).
But this is true since (by I°(r)) a leaves G°(r) stable, and c{2x)= 2. a(x).

Step 4. — Ifl{r) holds, and G(r) is a ^-type group, then I(r+i) holds and G(r+i)
is a -¥-type group (r^i).

Proof. — Combine the first three steps.

Step 5. — Conclusion: Clearly D=G(o) is a *-type group, and, since:

G(i)=J[2, ^](Q),

I(i) holds. By Step i it follows that G(i) is a *-type group. This allows us to apply
Step 4 (inductively) to conclude the proof of Lemma (17.7).

Proposition (17.8). — The following groups {of order 2) are equal:

D(F,) =JDp] (F,) -J.p(F,) [^] =J<p(F,) [2, T),].

Proof. — It is only the last equality that is new, but they will all follow if we
show that the right-most group is of order 2. By Lemma (17.7) and the exact
sequence (17.6) (ii) for r sufficiently large, we deduce that (J<p [^] (Fg)) [2] is of order 2 (1).
To conclude the proposition, we need that J^[^](F^=J^(F^) [^] which is true
by (16. i o).

Proof of Proposition (17.1). — We follow the proof for p odd. By (14.11), the
Pontrjagin dual, W, of J^Fg) is free over T<p of rank i. By Proposition (17.8),
W/(^,2)=W/^.W.

Therefore ^=(^,2). Q.E.D.

One has these immediate consequences (15.1):
(i) T<p is a Gorenstein ring',

(i7.9) (ii) JDP1-D;
(iii) H<p is free of rank 2 over T<p.

Proposition (17.10). — The Eisenstein quotient ]->] factors through ]~ (cf. § 4).

Proof. — Let us work over the base Q.

(1) The point here is that the etale part of a *-type group reduced to characteristic 2 is of order 2. This is
all we need.
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The fact that for p odd, the ^-Eisenstein quotient factors through J~ is fairly
evident: the kernel of ^ in J^. is zero, since w acts as —i on J[^5] and as +i on
J+^i+^J-kerCJ^J-).

For p==2 (if 2 n) we must also show that J+^PJ^o. But by (17.9) JPP]=D,
and by (13.10) DnJ_^=o.

18. Winding homomorphisms.

IfR is a commutative ring with unit let R[(r] denote the commutative R-algebra
i .R®(J.R where a is a symbol satisfying the law G2=I. If M is a free R[(y]-module
of rank i, then a is an involution on M; forming the (rbi)-eigen-subspaces M , C M
associated to o, and the corresponding eigenquotient spaces M^, we have the diagram
of exact sequences:

o
^
M^
^ \2"

(18. i) o -> M_ -> M -> M4- -> o
^\ ^

M-
^
o

where all four R-modules M^, M^ are free of rank i. In fact they may be canonically
identified with R and in terms of these canonical identifications, the diagonal homo-
morphisms above are <( multiplication by 2 9?.

Lemma (18.2). — Let R. be a commutative local ring with maximal ideal m. Let M
be a free R-module of rank 2 endowed with an {R-linear) involution G which is not a scalar modulo m.
Then M is free of rank i over R[<r].

Proof. — Let ^=R/m. Then M===M/m.M is a 2-dimensional vector space
over k on which the involution a does not act as a scalar. In particular, there is an
element xeM such that xeM is a generator of M as A [o]-module. Applying Nakayama's
Lemma to M over R, one deduces that x is a generator ofM as R [^-module. Moreover,

since the R[(r]-homomorphism R[o]-^M (aH-a.A:) is an isomorphism of R-modules
modulo m, and M is a free R-module, it follows that i is an isomorphism.

Proposition (18.3).— Let H=Hi(Xo(N)c, Z) and let G : H->H be the involution
induced from complex conjugation of the manifold Xo(N)c.

Let yR be any maximal ideal in T such that char ̂ +2. Then H^ is a free Tg^[(r]-
module of rank i.
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Let ̂  be (any) Eisenstein prime. Then H<p is a free T^[a]-module of rank i.
Let T^ denote the completion of T with respect to the (full) Eisenstein ideal. Then H^

is a free T^G]-module of rank i.

Proof. — Let 9JI be a maximal ideal such that p= char ^=t=2. By (15.2)
Ha^=^z(J^)(C) is free over T^ of rank two. On the other hand, one has a perfect
duality:

(18.4) ^J^)(C)xr<j^)(C) -^r.((x)(C)
oo

(where P-^U (JyCGJ. Since o- acts as — i on ^z((Ji)(C) and since ^=)=2, we have
that H^=Hgj^®H^_ where (18.4) puts H^ and H^_ in duality. Since (again)
p^=2 it follows that a does not act as a scalar modulo SR.T^ and consequently H^
is free over Tg^[o].

Now let ^P be an Eisenstein prime associated to p. By (16.3) and (17.9) H<n is
free over T<p of rank 2, and by (16.3) the action of or is evident. Namely, when ^4=2
CT acts as +1 on G and as — i on 2. Therefore it does not act as a scalar modulo ^5. T<n.
If p=2, a- does not act as a scalar on D(C) (cf. chap. I (4.3)). Therefore Lemma (i 8.2)
applies again.

Since T^^I-IT^, H^^IlH^, the final assertion follows, as well. Q.E.D.

Let Jc denote the complex Lie group underlying the jacobian of Xo(N), and U
its universal covering group. We have an exact sequence of topological groups:

(18.5) o^H-^U^Jc->o

where the discrete subgroup H C U is identified with H=Hi(Xo(N)c, Z). Moreover,
the Hecke algebra T and complex conjugation o- both operate naturally on the above
exact sequence. The Lie group U is isomorphic to H®R, as real Lie group: The
real Lie group Jc is canonically isomorphic to H®(R/Z).

Consider {he fundamental arc [o, ioo]={y/| o<_y<^ia^} in the extended upper-half
plane. We regard the fundamental arc as an oriented topological interval (orientation
from zoo to o). The parametrization of Xo(N)c by the upper-half plane induces a
natural homeomorphic injection:

[o, ico] ">Jc (h (zoo) == origin).

The continuous map A lifts uniquely to a continuous map to the universal
covering group:

h : [o, ico] -> U (A {ico) == origin).

Definition. — Set e==h{o)e\J. Call e the winding element.

Lemma (18.6). — We have S.eCH^C U. The winding element e is in H+®%.
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Proof. — The fundamental arc maps to the real locus of Xo(N) and, from the
definition it is clear that n[e)=c=^W{{o)—{co)) injp. Therefore, since 3.^==o (11.1),
it follows that 3. e C H, and since e is fixed under (T, 3. e C H+. Since ^e3, ^e( i //z). H^..

Definition. — Let:
e+ : 3^H+

6^ ̂  r!-homomorphism al->a.^.
7/' a ^ any ideal in T, fe^:

< 4 : 3.T<,->H^
denote^ as well, the induced T^ homomorphism.

If Ha is free over T^ of rank i, fe^:
<-+ : 3.T,->H^

&<? the T-homomorphism defined by: 2. e^ (a) = image in H^ of ̂  (a) (using diagram (18. i)).
We shall call the homomorphisms e^. and ^+ winding homomorphisms. The winding

homomorphisms are (conveniently normalized) (< generalizations " of the winding num-
bers of [39].

We shall be especially interested in the winding homomorphism e^ for a ==3:
.+: 3.T^->H^.

By means of the theory of modular symbols ([32], [35], [39]) we shall be able to
completely determine this homomorphism modulo 3, and deduce a number of impli-
cations. As we do this it is of interest to keep track of how little use we shall make of
all our previous work. We use only the assertions of Proposition (18.3) (those having
to do with Eisenstein primes). These, in turn, are easy corollaries of the (hard) result:
T<p is a Gorenstein ring, for ^} an Eisenstein prime.

Lemma (18.7). — H4" /3. ti+ is a cyclic group of order n. There is a canonical (1) surjection
<p : (Z/N):1C-^H+/3.H+ which identifies H+/3.H+ with the Galois group of the Shimura
covering ((2.3); cf. § n):

Xi(N)
^

X^CN)(Z/N)-
/ , ,\ - < ^ . /
[ ± l ) ^ H+/3.H+

\ Xo(N)

Proof. — Since H+/3.H+=H^/3.H^ and since H^.H^ is free of rank i
over T^/3.T^ by Proposition (18.3) and the discussion involving Diagram (i 8.1)3
it follows that H4'̂ .!!4' is, indeed, a cyclic abelian group of order n (9.7).

(1) To make it canonical, one must make, somewhere, a specific choice of sign. Compare the next footnote
and relevant text.
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Let y denote the unique quotient of (Z/N)* of order n. Thus y is a cyclic group
which is canonically the Galois (covering) group of the Shimura covering (2.3). Since
the Shimura covering is unramified (2.3) there is a canonical surjection H—^^. Since
Xg(N) -> Xo(N) is defined over Q^ (and hence over R) this canonical surjection factors,
to give a surjection H"^—^^. Since (Proposition (11.7)) the Shimura subgroup is
annihilated by 3, this surjection factors to yield a surjection H4' /SS.H4'—^^, which
must be an isomorphism, since both domain and range have the same order. Q..E.D.

If a / b is a fraction where b is an integer relatively prime to N, let {alb}e~H. denote
the modular symbol [32], [35], ([39], § 6).

Proposition (18.8). — (Congruence formula for the modular symbol.)
Let a, b be integers with b relatively prime to N. Let ^ denote the image of b in (Z/N)*.

Let 0 [a Ib) e H4' /3. H4' denote the image of the modular symbol { a l b } in H4' /3. H4'. Then:

0(^)==(p(&-l)eH4-/3.H4-.

(Compare footnote in Section (6.15) of [32].)

Proof. — Here we again (as in the Proof of (11.7)) make use of Ogg's terminology
for the cusps of F(N).

(^)={^/^P l((l)l^=^"lodN;?=&modN; (p,q)=i}.

From the definition of the modular symbol, one sees that if (6, <2.N)=i, ^{a/b)
is that unique element of e^^H^'/S.H4' which sends (the image in Xg(N) of) the

cusp ( ) to (the image in Xg(N) of) the cusp ( , ) . Since an element ce(Z/N)* acts

as the matrix I -i) (^ and since ( ) = ( , ) mod Fi(N) provided (6,N)=i, it\o c j \b / \b /
follows that O(^) is the image of~b~1 in H-^/S.H4-. Q..E.D.

Proposition (18.9). — (Congruence formula for the winding homomorphism.)
Let ^==i+/'—T^. Let e"1" : 3/32-> H^'/S.H4' be the homomorphism induced from

the winding homomorphism e^ : 3->H^.
Then:

s+(^)=(^I-)<P^) (^H^S.H^

where I is any prime number different from N.

Remarks. — First note that the right-hand side makes sense. For if t = 2, and
p=2 divides n, then Nsi mod 8. By the quadratic reciprocity theorem 2e(Z/N)'1'

(1) We follow Ogg in making this choice.
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is then a quadratic residue (2= A:2), and consequently (——l-}(?(^)=^{x). In any
other case, the 2 in the denominator is harmless.

The assertion of (18.9) may be viewed as a congruence formula for numbers of
rational points over F^. For example, in the first nontrivial case, N==n, it was first
proved by Serre, and takes the following shape: Let N^ denote the number of rational
points of the elliptic curve Xo(n) over F^+n). Let ^ : (Z/i i)*-.Z/5 be the
homomorphism which sends —3e(Z/II) i l t to 2 mod 5. Then:

N,=-5(^-1).^) mod 25.

Proof of (18.9). — Our proposition follows immediately from the formula:

(i+^-T,).^- S W}
kmod.£

(formula (8), § 6 of [39], compare (5.5) of [32]), together with Proposition (18.8),
(18.3), and the definition of ^+.

Theorem (18.10). — (Local principality of the Eisenstein ideal.)
Let p be a prime number dividing n. Let ̂  be the associated Eisenstein prime. Let i be

a prime number different from N. Then ̂  is a generator of the ideal 3^ = 3.T\p C T<p if and
only if i is a good prime number (with respect to p).

The winding homomorphism e+ : 3^-^H^ is an isomorphism of T ̂ -modules.

Proof. — Reducing the above winding homomorphism mod 3^n one gets the
homomorphism £+ : 3<p/3ip -> H^/3<p.H<p and by Proposition (18.9), the element ^

( f_j \
maps to a generator of H^/3(p.H^ if and only if — — j is not congruent to o mod?

and i is not a p-tb. power mod N (if we are not in the special case i =p==^). In the
case f=p=2. Proposition (18.9) assures us that i maps to a generator if and only if
f is not a quartic residue mod N. Thus, T^ maps to a generator if and only if t is a good
prime. Since good primes do, indeed, exist, we deduce that e^ : 3^->H^ is surjective,
by Nakayama's lemma. By counting dimensions over 0, we obtain that:

^®d,: 3^<lp->H<p®^

is an isomorphism. Since 3^ is torsion-free as a Zp-module, it follows that e^~ : 3<n-^Hg;
is an isomorphism. Since H^ is free of rank i over T<p, our theorem follows.

Remark. — Except for the (c only if " part of the theorem and the assertion concerning
the winding homomorphism., the (( new " information conveyed by (18.10) is for p=2.
For oddj&, it is a curious alternate to the methods of§i6, for (starting with Corollary 16.3.
The Gorenstein property for T^p) it enables us to quickly retrieve the results of § 16 in
their full strength.

If9Jl is a maximal non-Eisenstein prime in T, then the winding element e is naturally
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contained in H^. Thus if 9JI is such that Hgj^ is free over T^ of rank i [e.g., if
char A^ =j= 2; cf. (18.3)) then, choosing some identification between the Tg^-modules H^
and T^, ^ will correspond to some element in T^. The principal ideal ^CT^
generated by this element is independent of the choice made and shall be called the
winding ideal associated to 9JI.

19. The structure of the algebra T<p.

Fix p a prime dividing n, and ̂  the associated Eisenstein prime. We know (18. i o)
that i f^ is any good prime number, Y]^ generates the Eisenstein ideal 3<pCT<p, and
3<p=Zp[7]^]. Let R^(A:)eZp[.v] be the minimal monic polynomial satisfied by T^
over Zp. Thus T<p =Zp[A:]/(R^). Denote by gp the rank of T^ as Zp-module, or
equivalently, the degree ofR^A:). Since T<p is local and ̂  is in ^}, R^ is a (< distinguished
polynomial55 {i.e. R^A;) =s;^ modj&Zp[A:]). Since T^/T^.T^ ^ Z/^ where j^||%, the
constant term of R^A:) has j^-adic valuation y. Since, if f and /" are two good prime
numbers, T]^ and T^/ are associate in the ring T<p, the Newton polygons of R^(A:) and
R^(^) are equal. One might call the common Newton polygon of R^A:) for t any
good prime number, the Newton polygon of T^ (or, more strictly speaking, of 3(p).

Is there anything general that can be said about the Newton polygon of T<p, or
even about gp?

One has hardly enough numerical data to begin serious speculation about this
question. As far as my calculations go (N<25o) there is only one instance where
T<p is not a discrete valuation ring (N=113,^=2) (1). In this case f= 2, g == 3, and
the Newton polygon is the only possible one conforming to this data.

There is no practical difficulty in computing the Newton polygon of T<n, using
(e.g.) the tables of Wada [70]. Wada gives the characteristic polynomial of T( (call
it Sf{x)) acting on the parabolic modular forms for Fo(N). The most straightforward
thing to do is to look for the smallest good prime number f such that S^(i +/') has j&-adic
valuation f (2). For such a prime number/', R^) is simply the < c Weierstrass-prepared
part" of S^i+^—x).

Proposition ( 19 .1 ) . — Suppose p\\n (i.e. /==i). Then T<p is a discrete valuation ring,
totally ramified over Zp, of ramification index gp.

Proof. — In this case, the maximal ideal ^3==3<p, and is principal, by (18.10).

Proposition (19.2). — Let p^2, pf\\n (/^i). The natural auto-duality of ][p^
restricts to a nonde generate auto-duality of Gp®Sp (the direct sum of the p-primary components

(1) As we shall see (chap. Ill, § 5) if we avail ourselves of certain standard conjectures, this instance is the
first of an infinite series of analogous instances (all with j&=2) .

(2) In practice one does not have to go far to find one, at least when N < 250.

140



MODULAR CURVES AND THE EISENSTEIN IDEAL 141

of the cuspidal and Shimura subgroups) if and only if T<n=Z (i.e. ^p==i). In particular,
the element u {end of § 1 1 ) is a generator of the p-primary component ofVif and only if g = i.

Proof. — If T<p==Z^, then C^QSy^J^lj^], and on the latter group the natural
auto-duality (11.12) is nondegenerate. Conversely, suppose the natural auto-duality
ofj^plj^] restricts to a nondegenerate auto-duality of Cp©2^,. Then the natural auto-
duality ofj^p [p] would restrict to a non-degenerate pairing of C [p] with S [p]. By (18.3)
J<p[Al(Q.) ls ^ree of rank 2 over T^/j&.T^, which by the above discussion is isomorphic
to Tp[^] where T]^ satisfies the relation T]^=O (over F^,). One sees immediately
that J^[R, ^](Q) (which is the kernel of T)^ in J<p[^](o)) ls tne image of rfP~1. If
^,—i>o, the relation {rfP'~lx,y)=={x, ffP'^y) gives us that the natural auto-duality
restricts to zero on Ci[j&]€)S[^], contrary to assumption.

Remark. — The only instances (N<250, j&4=2) where <§p>i are: N=31, 103,
127, 131, i8i, 199 and 2i i .

III. — ARITHMETIC APPLICATIONS

i. Torsion points.

Lemma (i. i). — Let A^ be any quotient abelian variety of J^. Let p be a prime number
dividing the order of the torsion subgroup A(QJ^g of the Mordell-Weil group of A/Q. Then
p divides n.

-yA,Q is a quotient abelian variety of LQ on which T operates in a manner compatible with
its action on J/q, then A(QJ^.g is annihilated by a power of the Eisenstein ideal 3.

Let A/Q be a simple {equivalently: C-simple or (^-simple; cf. chap. II ( 1 0 . 1 ) ) quotient
abelian variety ofj^ such that the prime number p divides the order of A(QJ^rg. Then A/Q is
a quotient of the p-Eisenstein quotient J^ (10.4).

Proof. — Start with the first assertion. Consider the surjective morphism of
associated ^-divisible groups over Q^, J —>A . If r is large enough, the image of the
finite group scheme J^] in Ay contains A[j&]. Find a Jordan-Holder filtration ofJQ^],
as T[Gal(QyQJ]-module. Since, by hypothesis, there is a point ofA[^j, defined over Q^,
some successive quotient of the Jordan-Holder filtration must have trivial Gal(Q/QJ-
action. By (chap. II (14.1)), this subquotient ofjjj^] belongs to (1) an Eisenstein
prime ^S, necessarily associated to p. Therefore p divides n (chap. II (9.7)).

The second assertion is similar, but easier. Every successive quotient of a Jordan-
Holder filtration of the T[Gal(Q7QJ] module A(QJ^g must belong to some Eisenstein
prime, by chapter II (14. i). By the Mordell-Weil theorem, A(QJ^g is a finite group,
and is therefore annihilated by some (finite) power of 3.

(1) In the terminology of § 14.
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The third assertion depends upon the one-to-one correspondence of chapter II
(10.1) where isogeny classes of simple abelian variety factors of J are "identified95

with irreducible components of Spec T. Since p divides the order of A(QJ^,g, by
what we have already shown, the irreducible component of Spec T corresponding to
the (isogeny class of the) simple abelian variety quotient A must contain the Eisenstein
prime ^}eSpec T associated to p.

Since J^J/y^J where •^==11^ (chap. II (10.4)) it follows that, up to
isogeny, J^ is a product of those simple factors corresponding to irreducible components
of Spec(T) containing ^B. Since J^ is the quotient ofj by a connected subgroup scheme,
it follows that J->A factors through J^.

Theorem (1.2). — (Conjecture of Ogg):

C-J(%)tors.

[Any rational torsion point of ] is a multiple of <:=^y((o)—(oo)).)

Proof. — Set M=J(QJ (the Mordell-Weil group ofj) and recall the retraction
p : M — ^ d C M of chapter II, § n, giving rise to the direct product decomposition
M=M°xC (chap. II (11.4)). It follows that C is a direct factor of M^g^KQ^ors-
By (1.1) it suffices to show M°pp]==o for all Eisenstein primes ^. But this follows
from the inclusion G[^]xM°[^] Cj[^3], and the determination of J[^] (chap. II
(16.3) or (for j&4=2) (14.10)).

Theorem (1.3). — The Shimura subgroup 2 is the maximal \L-type subgroup in Lg,.

Proof. — The sum of two (finite) (i-type subgroups ofj is again a (finite) (i-type
group. It suffices to show that if S' is a (finite) (i-type subgroup of J containing S,
then 2'=2. We first show that S is a direct summand in 2'. Using the universal
property of the Neron model J/g (and the fact that the inertia group at N operates
trivially in the Galois module associated to S') one has that the subgroup scheme
extension S/gCj/g is a finite flat (pi-type) subgroup scheme. Consider specialization
to characteristic N, where one obtains a diagram:

S' —> J/r^J^XC

proja

s —^—^ c

where ~ denotes specialization, and where the bottom horizontal map is an isomorphism,
by chapter II (11.9).

It follows that S is a direct summand of S' and one easily obtains from this that
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S is a direct summand in S'. Write S'==S®B where B is a ^-type group. Applying
chapter II (14.1), one has that every successive quotient of a Jordan-Holder filtration
ofB belongs to an Eisenstein prime. It suffices to show that B[^S]==o for all Eisenstein
primes. But 2[^]©B[^] CJ[^J, and B[)p] must therefore vanish, by chapter II (16.3).

Remarks. — Theorem (1.3) was also conjectured by Ogg [48]. Although (1.2)
and (1.3) have the appearance of being of comparable difficulty, there are notable
differences between them. Ignoring 2-torsion, Theorem (1.3) is far easier than
Theorem (1.2) (it uses only chap. II (14.10)3 and does not depend on the Gorenstein
condition). In dealing with the 2-torsion subgroup ofJ(QJ, however, one must control
subgroup schemes of J/g isomorphic to Z/2 as well as subgroup schemes isomorphic
to (Jig (since either will contribute to a point of order 2 in J(QJ). Consequently, this
requires the full strength of chapter II (16.3), e.g., all of chapter II, § 17.

Corollary (1.4). — The natural maps induce isomorphisms of torsion subgroups of Mordell-
Weil groups'.

C=J((l)tors->J-(<l)tors-J(%)tors

(cf. chap. II, § 10).

Proof. — By ( i . i) one has thatJ~"(QJ^g and J(Q,)tors are annihilated by a power
of the Eisenstein ideal 3. We shall show that the natural maps:

Js^J^ ~^Js
are isomorphisms. The map J^-^J^ is an isomorphism since ( ( i+w) .J) [3]==o
(chap. II (17. i o)). The map J^-^J^ is an isomorphism since its kernel is y^-Js an(^
the supports of T/3 and of "^=03^' are disjoint.

Corollary (1.5). — The Mordell-Weil group of J^_=(i4-^).J is torsionfree.

2. Points of complex multiplication.

In this section we examine a set of points ofXo(N) defined over fields of particularly
low degree. A somewhat larger class has been studied by Birch and Stephens (called
Heegner points).

Fix N (a prime number ̂  5, as usual) and work over the field of complex numbers.
If E/c is an elliptic curve, an ^-isogeny by complex multiplication n : E-^E is an endo-
morphism such that ker TT is of order N. Thus, n is a complex multiplication of E such
that if R is the ring of complex multiplications of E, TT . TC = u. N where u is a unit in R.
Let a^ „ =j(E, ker jr) eXo(N) (C), which we will refer to as PL point of complex multiplication.

If a = a^ „ is a point of complex multiplication, set:
R(^)==the ring of endomorphisms of E. The ring R(^) is an order in a quadratic

imaginary field k{a) which may be viewed as naturally imbedded in C (since
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End(Tan(E/c))=C and R(a) acts faithfully on Tan(E/c), the tangent space
of E/c).

A(a)=a sublattice ofC such that C/A(a)^E. It is well known (cf. [29]) that A{a) is
a locally free R(fl)-module of rank i.

T:{a)=n. It is an element in R(a) of norm N.

Given a triple (R, A, n) where R C C is an order in a quadratic imaginary field,
A is a locally free R-module of rank i, taken up to isomorphism, and TT is an element
of R of norm N, given up to multiplication by a unit in R, then we may construct a
unique point of complex multiplication ^=^^eXo(N)(C) such that R=R(a),
A=A{a), and n=n{a). Let j^CXo(N)(C) denote the set of all points of complex
multiplication. It is easy enough to produce elements of ^. Consider equations:

N^r^-D.^

where D is a positive integer not necessarily square-free and r, s are either both positive
integers, or both positive half-integers (1). If D=i, suppose r>s. Let n=r±V—D.s
and let R be an order in Q/V—D) containing TT. Finally let A be a locally free R-module
of rank i (e.g., R itself).

The points of complex multiplication are defined over algebraic number fields
which are studied in detail by the classical theory of complex multiplication (cf. [29],
chap. 10, § 3, theorem 5 and remarks i, 2 following it). We give a synopsis of this
theory below:

(2.1) Let R be an order in a quadratic imaginary field k ̂  C and (rr) C R a
principal ideal of norm N. Let A^, . . ., A^ run through a system of representatives
of isomorphism classes of locally free R-modules of rank i. Set ^ = a,^ ^ ^e^. Then
the points ^, . . ., ^eXo(N)(C) are rational over Q^==k and are a full set of
conjugates over k. Let G denote the quotient of Gal^/A) which acts faithfully on the
above set of conjugate points. There is an isomorphism ((rh>A^) of G onto H(R),
the group of isomorphism classes of locally free R-modules of rank i, such that if aeG,
then CT(^)==^, where Ai0A^=A^.

R

The group G cuts out that ray class field L of k whose conductor is the conductor
of R. The field extension L/Q^ is Galois, with Galois group G. We may write
L ==A(j(R)) C C in which case the real subfield L4' == L n R is given by L4' == Q/j(R)).
Let p denote the nontrivial element of Gal(L/L+)=Gal(A/%). Then G is a semi-direct
product of G and the group { i , p} where the action of p is given by ^~l=g~l for geG.
Thus G is a dihedral extension of G. One has:

(2-2) P^RA^^A-^)-

(1) H. Lenstra and P. Van Emde Boas have tables of the smallest such D for a given N < 500,000.
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The action of the canonical involution w on ^ is easily determined:

(^-S) ^(R.A^-^A,^-

Let aeXo(N)(C) be a fixed point of w. Then a is represented by an isogeny
E->E' which is isomorphic to E'-^E (its dual). It follows that E'^E and consequently
the isogeny must be a complex multiplication E-^E and n2=u.~N where u is a unit
in R(a). Multiplying TT by a unit in R(a), if necessary, we may suppose that n =='\/—N.

Consequently, R is either Z[V—N] or Z - 1——————, where the latter case may
occur only if N = — i mod 4. L -^

Using classical facts concerning the class numbers of the orders Z^—N] and
[ i + V — N ]

Z —————— ([28], chap. 8, § i, th. 7) we may give the following description of the

fixed point set of w. Let A(N) be the class number of Q/V—N). If N = = i mod 4,
then the fixed point set of w consists in one Q-conjugacy class of A(N) points. If
N s = — i m o d 4 it consists in two distinct Q^-conjugacy classes, the first containing
A(N) points and the second containing A(N) or 3^(N) points according as N= — i mod 8
or N = 3 mod 8.

Proposition (2.4). — Let a be a point of complex multiplication and let ^eX^N)"^)
be its image in X^N)^ Xo(N) /w. Then a+ is defined over (^ if and only if the class number
ofR{a) is i.

Proof. — This follows immediately from (2.1) and (2.3).

Such points a+e^+ are examples of rational noncuspidal points. It is natural
to refer to them as points of class number one. One obtains a point a^ of class number
one for each order R (in a quadratic imaginary field) of class number one, in which
N splits or ramifies.

Note that if N splits or ramifies in any one of the 9 quadratic imaginary fields
of class number one, there are some points of class number one on the associated X4'.
This is the case, for example, for all prime numbers N<7ooo except for N=3167,
as was communicated to me by H. Lenstra and P. Van Emde Boas. The Dirichlet
density of primes N whose associated X'1' possesses no point of class number i is 1/512.

What further noncuspidal rational points does the curve X4' possess ?
This diophantine question (when the genus g+>o) is extremely interesting,

since no known method appears to be applicable to it, for any value of N. In the first
nontrivial case (N==67) the genus ofX^" is 2. A. Brumer has obtained its hyperelliptic
representation, and has begun a numerical study.

When A(N)=i, the description of the fixed point set of w given above shows
that there is a (unique) rational point <zeXo(N)(Q^) fixed under w.
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Proposition (2.5) [compare [48]). — £^ N==n, 19, 43, 67, or 163. TA^ Xo(N)
possesses a rational point fixed under the action of w. Moreover {when g= genus Xo(N)>o)
these are all the points of complex multiplication in Xo(N)(C) which are rational.

Recall that J+=( i+^)JCj may be identified with the jacobian of X^N)4-
(cf. chap. II, proof of (13.8)). We shall produce some rational points inj^.

If R C C is a fixed order in a quadratic imaginary number field such that the
ideal generated by N splits into a product of conjugate principal ideals:

(N)=(^)(7r),

let a^ej^, be the linear equivalence class containing the divisor:

s ^(RA)-A(R).(00)
AGH(R) VK1A) v / v /

where a^^ is the common image of ^R,A,TT) ^d ^R,A,7T) in X4", ooeX4' is the unique
cusp and A(R) is the order of H(R).

By (2.1-3) a^ is defined over %, and therefore represents an element in the Mordell-
Weil group ofj^..

To study these points we use a modification of an elegant trick due to Ogg: [49].

Lemma (2.6). — Let d be an integer.
If the dimension of H°(Xo(N)/Q; ^(rf.oo)) is >i, then rf<N/96.

Proof. — Suppose d is as in the assertion above. Using (chap. II, § 10), J+/g, is
an abelian scheme. By ([9], VI, 6.7) one sees easily that Xo(N)4' has a smooth
model over S' (which we call X/^). Consider the base change SpecF4->S'. Using
the upper-semi-continuity property (EGA III (7.7.5), I) one obtains that the dimension
over ?4 of H°(X^, (P{d.ao)) is also >i. Thus there is a morphism f:X^->P^
of degree d, such that the inverse image of the point oo of P1 is the divisor d. oo of X4'.
Composing/with the projection X-^X4", we obtain a map g : X/p. -^P1? of degree 2d
such that the inverse image of the point oo of P1 consist in the cusps. This gives us the
upper bound 8d for the number of rational (noncuspidal) F4-valued points of X()(N).
But, as Ogg remarked [49], all the supersingular points of Xo(N)/^ are rational over F^
and there are more than N/i2 of them.

Corollary (2.7). — IfR is an order in a quadratic imaginary field such that the ideal generated
by N splits into a product of conjugate principal ideals, and such that A(R)<N/96, then a^ is
a point of infinite order in the Mordell-Weil group of J^..

Proof. — By (1.5), the Mordell-Weil group ofj+ is torsion-free. Therefore it
suffices to prove that a-^^o. Suppose a^=o. Then there would be a function/
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on X/Q whose divisor of poles is A(R).(oo). By (2.6) A(R)>N/96 contrary to
assumption.

Proposition (2.8). — Suppose g+>o {which is the case for all N>73, as well as
N=37, 43? 53? 61, 67). Then the Mordell-Weil group of J^ is a torsion-free group of infinite
order (i.e. of positive rank).

Proof. — Write 4N==fl2+D&2 with a, b integers, D>o and a2 largest possible.
One obtains N==7r.7r with TT in R, the ring of integers of (^(V—D) and if A is the
discriminant of R, then [A|<4V /N. By a standard upper estimate for the class
number A(R), we have A(R)^(i/3) [A^. logiA] ̂ i/s)!^4 log(i6N) if [A|>4. A
calculation shows that (1/3) .N^4 log(i6N) <N/g6 when N^4^, or N^2401.
Thus by (2.7) a^ is a point of infinite order when N>240i. But by the calculations
of Lenstra and Van Emde Boas, Xo(N)4' possesses a point of class number i (hence
defined over Q^ (2.2)) for all N<3i67 and therefore (2.8) follows.

Remarks. — i. Using the estimates in the proof above one may show that if N is
sufficiently large, each of the points a^eX^N)4" is of infinite order.

2. The above theorem depends on the fact that J+(QJ is torsion-free, which, in
turn, depends on the full strength of chapter II, § 17. It is significantly easier to show
that 2.J+(Q,) is torsion-free (for one has far less to do with Eisenstein primes associated
to 2). If one wishes to obtain the above proposition using only this weaker fact, one
must prove that for same B., 2. (2^4=0. The estimates give this for R as in the proof
above, provided N<7ooo. We may then use the calculations of Lenstra and Van Emde
Boas quoted above to reduce considerations to the one case: N=3167. But, quoting
their tables, 3167 ==562+31. i2 and Q,(V—3i) has class number 3. For:

R^Z^^I
L 2 J

the estimates above enable us to conclude that 2. a^ =t= o.
3. Let V'̂ J.^Q^Q, which we regard as a T4'®^ module, where:

T-^T^i-^T.

We have shown that V"1' is a Q-vector space of positive dimension if ^"^a. Let V^
(resp. Vg^) be the sub-T4'®^ of V4" module generated by the point a^ where R is
the ring of integers in Q/^—N) (resp. by all points of complex multiplication).
Consideration of Dirichlet L-series and the Birch Swinnerton-Dyer conjectures might
lead one to suspect that Vg^ will play a significant role in studies of the Mordell-Weil
group ofj^.. It is tempting to hope that V^ is always a free T4'®^ module of rank i.
Numerical evidence is too slim to make any conjectures yet, but Atkin has recently
produced some interesting tables which bear on the problem.
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3. The Mordell-Wea group ofj.

The object of this section is to prove

Theorem (3.1). — The natural projection J->J induces an isomorphism of the cuspidal
subgroup C onto the Mordell-Weil group J(QJ.

We shall also obtain complementary information concerning a part of the
Shafarevich-Tate group ofj. Our method will be to use <( geometric descent " together
with much of the information we have accumulated up to this point.

Let ^ be an Eisenstein prime and J°Cj/g the connected component containing
the identity (which differs fromj only in its fibre at N). LetJ0^^] be the kernel ofj^,
andj0^]^ its ^-component (which is the image ofj0^] under the idempotent ^ for
the Eisenstein ideal, as discussed in chap. II, § 7).

Lemma (3.2). —J0^]^ is an admissible group (chap. I, § i(/)) and when m varies,
the order of H^S,^)^]^) remains bounded.

Proof. — It is admissible as can be easily seen by chapter II (14.1). Since
H^.rij^]^) Is a subgroup of the torsion part of the Mordell-Weil group ofj, it is
a finite group which has bounded order as m varies. Thus, to prove the lemma, it
suffices to show that ^—h0 has bounded order. But by chapter I, Prop. ( i . 7) it suffices,
then, to prove that SJ^^-aJ0^]^ has bounded order.

This is done by showing:
(a) S(jo[r]<p)=^.^+0(i)

( b ) a(jo[r]<p)=^.^+o(i)
where g^ is the rank of T<^ over Z .

Proof of ( a ) . — Letting ]y denote the ^-divisible group associated to J over S,
and J<p its ^-component {i.e. the image of the idempotent s<p) then JQ^]^ ̂ J^p"1]
and J0^]^^^^] where the superscript o denotes, as usual, the inverse image
of J°. We now make use of the results and terminology of chapter I, § 8. Consider,
in particular, the exact sequence chapter I (8.2):

o -> r<ĵ )) -> r^(Qj) -> ̂  -> o
where (8.3) ̂  is a T^-module cc of rank i " {i.e. it contains a free T(p-module of rank i
as a subgroup of finite index). One checks that:

8(JUr:l) - log,(order(Ay A^)) + 0(i)

where v denotes Z^-dual. Since A^ is also a T^-module of rank i, we have:

8(JUr:l) = log,(order T^/rT<p) + 0(i).

Proof of ( b ) . — This follows the same lines as ( a ) above. One need only note
that a(J^[r])=log^order(J^[r](F^))=log^(order(J^[r]^ and since ^ is an
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ordinary prime, we have the exact sequence of chapter II, § 4 and chapter II, Prop-
osition (8.5).

Lemma (3.3). — Let M==J(Q^) be the Mordell-Weil group ofj, regarded as T-module.
Then T<p®j,M andVl^ {the ^-component of the Shafarevich-T ate group III of'J) are finite groups.

Proof. — Set M^H^S.J0) and note that M=H°(S,J). The quotient M/M°
is finite. Therefore to show that T^®^^ is finite it suffices to show that T^®,rM°
is finite. The long exact sequence of cohomology associated to the exact sequence of
fppf sheaves over S:

0->JO[^]^JO/-:JO^o

yields: o -> M°//>"'. M° -> H?(S, J0^"]) -> ?(5, J°) [?"] -> o

and, by passage to the limit as m tends to oo, using the maps:

o -^ jo[y»] ———^jo J^ jo _^ o

£ id p

o —> j°iy»+1] —> j° ̂  j° -^ o
we obtain an exact sequence of T^-modules:

o ̂  Qp/Zp® M»-^ Urn ?(8, J"[r])-> HI(S, J"), ̂  o
m

where the subscript p on the right means ̂ -primary component. Passing to ^S-component
(by applying the idempotent £<?) we obtain:

O^T^(<W®MO) -.limff(S,Jo[r]<p) ->Hi(S,Jo)<p^o.
m

Since the middle group is finite, by Lemma (3.2), the two flanking groups are.
Since M° is a finitely generated group (by the theorem of Mordell-Weil), finiteness
of T\p®T (Q^/2^01^0) implies finiteness of T^^M0.

To see that III(n is finite we use that (working modulo the category of groups whose
order is a power of two) III may be identified with the image of H^S.J0) in H^S,^
(Appendix of [34]), and the 2-primary component of III is a subgroup of the 2-primary
component of this image. Finiteness of III(p then follows from finiteness of H^S.J0)^.

To use (3.3) conveniently, we make a digression and recall the terminology of
chapter II, § 10. Let a C T be any ideal of finite index in T, y^^flcf, T^^T/y^

(so T^ maps injectively to the completion TJ and J^ =J/Y(a)'J? ^e quotient associated
toj (chap. II, § 10). Let V=J(QJ®% as T®Q, module, and V^-J^QJ®^ as
T^Qrmodule.
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Lemma (3.4). — V^^V/Y^.V^^V.

Proo/. — On the category of abelian varieties over %, the functor A^A(<^)®<^
is exact since A(%) is finitely generated and H^GaHQ/QJ, A) is a torsion group, for
all A in the category. The lemma then follows by applying this exact functor to the
diagram:

ot
o-^W—^—^—x)

t(a,...,a<)

JxJx. . .xJ
where a^, ..., a^ is a system of generators of the ideal a.

Corollary (3.5). — If T^®^V=o, then the Mordell-Weil group of J^ is finite.

Proof. — Let W be the torsion-free quotient of the Mordell-Weil group J(QJ.
Thus W is a free Z-module of finite rank and gives rise to a coherent sheaf over Spec T.
By hypothesis, the support of T^®^W contains no irreducible component of Spec T^.
Since the support of a meets every irreducible component of Spec T^ it follows that
the support of W contains no irreducible component of Spec T^. The support of W
then meets Spec T^ in a finite union of closed points and (3.5) follows from Lemma (3.4).

Proof of Theorem (3.1). — Applying (3.3) for all Eisenstein primes we obtain
that T^OO-rM is finite, where 3 denotes the Eisenstein ideal. It then follows from (3.5)
that J(Q,) is finite. The theorem follows from Corollary (1.4).

Proposition (3.6). — Let ^ be an Eisenstein prime associated to an odd prime number p.
Then III<p = o.

Proof. — We shall perform a more delicate descent to establish this. Let f be
a good prime number and T]===T]^ (using the terminology of chap. II, § 16). Then
T] is an isogeny (cf. Proof of (16.10)); we consider:

(3.7) o -> ker T] ->] ^>J -> coker T] -> o

as an exact sequence of fppf sheaves of T-modules over S. Let A denote a finite set
of points in Spec T, not containing ^5, but containing all other points in the support
of the T-modules ker T] (Q) and coker ^ (QJ. We shall work in the category of T-modules,
modulo the category of T-modules whose supports lie in A {modulo A).

By chapter II (16.6) and (16.4) it follows that:

ker Y] == Cp®S^ modulo A
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and cok T] is a skyscraper sheaf concentrated in characteristic N5 whose stalk in charac-
teristic N is isomorphic to the T-module Gy, modulo A.

Since G is a constant group over S and 2^ is a pi-type group, we have {e.g., chap. I
(1.7)) that ?(8, Gy®2y == o, and therefore ?(8, ker T)) ==o modulo A. One obtains
then the following exact sequence modulo A of fppf cohomology from the exact
sequence (3.7):

o -> C, -> HO(S, J) -^ IP(S, J) -^ IP(S, coker ^).

Since H°(S, coker T]) ==C1^ modulo A, the above exact sequence shows that i is
surjective modulo A. It also shows that T] is automorphism, modulo A, of the torsion-free
quotient of the Mordell-Weil group, which can be used as an alternative to the proof
of Theorem (3.1), at least as it concerns odd Eisenstein primes. Reconsidering the
exact sequence (3.7), surjectivity (modulo A) of the mapping i, gives that:

T ) : ff(S,J)^Hi(S,J)

is injective, modulo A. Since III is a submodule of H^S,^, multiplication by T] is
also injective modulo A on III, which establishes our proposition.

Combining this with recent results of Brumer and Kramer [4] we may obtain:

Proposition (3.8). — Let N<250. The natural map J->J~ induces an isomorphism
ofC onto the Mordell-Weil group ]~ (Q,) except possibly in cases N==151, 199 and 227.

Proof. — From the table of the introduction, one sees that for N<250, J~==J
except for the following values of N:

N=67, 109, i39, 151, 179, i99, 227

and when N =67, 109, i39» I793 J~ differs from J by an elliptic curve factor. Brumer
and Kramer have shown (3) that these elliptic curve factors have finite Mordell-Weil
groups over Q .̂ It then follows that J~(QJ is finite, using (3.1), for all values of N
considered in Proposition (3.8). The assertion then follows from (1.4).

Recently, Atkin communicated to me that J~ is a simple abelian variety (and
hence equal to J) for N=383, 419, 479, 491, and consequently (3.8) holds for these
values of N, as well.

4. Rational points on Xo(N).

Theorem (4.1). — Let N =f= (2, 3), 5, 7 and 13 (i.e. the genus of Xo(N) is >o). Then
Xo(N)(%) is finite.

Proof. — Work over Q^, and consider the projection Xo(N)->J defined by
x\->imsige{x—oo) in J. Since J is nontrivial and the image of X = X()(N) generates J

(1) See their forthcoming publication [4].
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as a group variety, ifX is the image ofXinJ, then X/Q is a curve, and X-^X is a finite
morphism. Since X(Q) CJ(Q)=C (3.1), X(QJ is a finite set and therefore X(%) is
also finite. To be sure, we have little control over this set if we know nothing concerning
the structure of the finite morphism (3. What is its degree? What are the singular
points of the image?

Remark. — It is a theorem of Manin ([31], [65]) that for every number field K
and integer m^i, there is an integer e(m, K) such that X^m'^K) is finite for all
e>_e{m,K), but no effective bound for e{m, K) is obtained. I understand that the
Russian mathematician Berkovich has recently obtained such effective bounds using
the techniques of this paper, and in particular the techniques of the proof of (4. i).

To analyze the finite set X(Q^) we make use of the retraction p :J(Q^)-^Z/^ of
chapter II, § n.

Proposition (4.2). — If ^eXo(N)(QJ, the element p(^) of Zfn is equal to one of the
following values'.

( o or i
(4.2) i) < 1/2 {possible only if N = — i mod 4)

f 1/3 or 2/3 [possible only if N = = — i mod 3).

Remarks. — i. If N = — i mod 3, the integer n is not divisible by 3 and 1/3 has
a sense in Z//z; similarly 1/2 has a sense in Zfn when n is odd, which is the case
if N = — i mod 4.

2. p(o)==i and p(oo)==o.

Proofof(4.2). — The point x extends (by Zariski closure) to a section of Xo(N)/g.
This section must lie in the smooth locus of Xo(N)->S and hence, if xis its pullback
to Spec(F^), x must lie in exactly one irreducible component of the fiber Xo(N)^
(see diagram i of chap. II, § i). Thus, x lies on one of these:

Z' or Z
(4.2) ii) • E (possible only if N E E — I mod 4)

G or F (possible only if N = — i mod 3).

But the natural map Xo(N)^ooth ->J/^ -> C==Z/n sends the five components
listed in (4.2) ii) to the corresponding values listed in (4.2) i) as follows from the table
of the appendix.

Let J_==(i—^)jcj . One obtains a map:
r : Xo(N)-^JL

by the rule x^cl{{x)-{wx)). If A;eXo(N)(%), set X(A;)==p(r(A:))eZ/^.

Corollary (4.3). — One has X(A:)=±I, o, or±i/3.

Proof. — This follows from (4.2) and the fact that X(.y)=2p(A:)—i.
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Corollary (4.4). — Suppose J_(QJ is finite. Then:
a) One has J_(QJ ==(:;.
b) For all A;eXo(N)(QJ, ^ A^ r(^)=X(^) .c with X(A;)=±I, o, or ±i /3.

Proo/. — Assertion a) comes from the fact that C is contained in J_(QJ and it is
the torsion subgroup ofJ(Q) (1.2). Assertion b) follows from (4.3) and the fact that
p is the identity on C.

Remark. — By (3.8) and the remarks after it, (4.4) applies to at least these values:
N<250, with the possible exceptions of N=151, 199, 227 and N=383, 419, 479, 491.

The next proposition is due mainly to Ogg and includes work of Parry and of
Brumer.

Proposition (4.5). — a) If N^23 and N=37 then the morphism r :Xo(N)-^J_
is injective off the locus of fixed points of w.

b) VJ-W is finite, and ;ceXo(N)(QJ, one has:
X ( ^ ) = d L i / 3 = > N = n , 17
HX)== o => N =11, 19, 43, 67, or 163.

Discussion of the proposition. — The following is Ogg's proof of a). Suppose
^V^oWW such that r{x)==r(y), x^y, and x is not fixed under w. Write z=w{y)
and we have:

x+ z=w{x}-{-w{z)

where =: denotes linear equivalence on Xo(N). Since x -\-z is not invariant under w,
it follows that X()(N) is a hyperelliptic curve, and moreover, the involution w is not the
hyperelliptic involution. But Ogg ([38], theorem i) has determined that N=37 is the
only value ofN such that X()(N) admits such a description. As for b), let A;eXo(N)(QJ
be a point such that >^)=±i/3. Then N = — i mod 3, and (replacing x by w{x)
if necessary) we may assume:

3A:+(oo)sE3^)+(o).

By an elegant argument (end of [49]) Ogg shows that n<24.o. We recall the
argument and sharpen this upper estimate a bit. Let ~ denote specialization of a section
over S to Spec F4. Then we have:

3^+(w)=3w(^)+(o),

yielding a function/on Xo(N)/^ such that the inverse image of the point ooeP^)
is the divisor 3^+(oo) and the inverse image of oePl(F4) is 3w(;c)+(o).

Since the points of Xo(N)(F4) different from x, w(x), oo, o must lie in the fibers
of/above the 3 points ofPl(F4) different from oo and o, we have:

#Xo(N)(F4:)^i6.
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But Ogg has constructed [49] at least N/I2 noncuspidal rational points
in Xo(N)(FJ, so:

N/ i2+2^16 or N^168.

Let us now consider an argument which helps to eliminate many low values of N.
Find^a function from Xo(N)/Q to P/^ whose divisor is y + oo— yjox—o. Define /w

by fv){^)==f(wz). Since f.f^ has neither zeroes nor poles, it is a constant e. Define
an involution w : P1-^?1 by the formula y\->^ly. We obtain a commutative square:

x -^ x
r| [f
y y

pi _^ pi

and consequently f induces a rational map on quotients by w:

X -"̂  X/w=X+

4 1 [r
y Y Y

pi JL^ P^w^P^

The double covering P1-^?14" has precisely 2 ramification points ̂ =±^/s. Also,
the mapV4' is of degree 4. Consequently, the double covering TT : X-^X4' can have
at most 2.4=8 ramification points. That is, the number of fixed points of w is <_8.
This condition is easily shown to be equivalent to the condition g~—g+<^_Z9 by the
Hurwitz formula applied to the covering X-^X"^", and one checks {e.g.^ consult the
table of introduction) that those N such that a) N^168, b) N s — i mod 3,
c ) g~—g+<.^ are:

N=n, 17, 23, 29,41, 53, 113, and 137.

When N = = I I , 17, X()(N) is of genus i, and there is a (unique) point A:eXo(N)(QJ
such that X(^)==i/3.

When N=23, 29,41, Xo(N)4' is of genus o, and Ogg has special arguments to
show that there are no rational points such that X(;v)=i/3 [49].

The remaining three cases have been ruled out by work ofW. Parry and A. Brumer.
Finally, note that if A;eXo(N)(C), 'h(x)=o^>x is a fixed point of w, and so the

final assertion of (4.5) follows from (2.2) and the solution of the class number one problem
(Heegner-Baker-Stark).

Remarks. — i. By (3.8) and (4.5) we have determined all the rational points on
all curves Xo(N) for N<250, with the exception of N=151, 199 and 227.
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2. (Fields of low odd degree.)

^J-(Q.) 1s finite, Ogg's trick has strong implications concerning rational points
of Xo(N) in the totality of fields of a given degree. Brumer has some computations
for degree 2, and we shall give a fragmentary result for degree 3. By a point on Xg(N)
of degree d we mean a point of Xo(N)(QJ defined over any extension field of degree d
over Q.

Proposition (4.6). — If N==383, 419, 479, ^491, then Xo(N) has only a finite number
of cubic points {points of degree 3).

Proof. — Let d be any odd positive number. Let K^ be the set of all Q^-conjugacy
classes of points of degree d in Xo(N)(QJ not containing a fixed point of w.

Define a mapping L : K^ —^J_(Q,) by:

Kh>d( S X— S W{x)).
XGK xGv.

Lemma (4.7).—If (d is an odd positive number^ and) N>i20.rf, then i:K^->J_(0)
is injective.

Proof.—Suppose I.(K)==I(K') where K+K'. Writing K"=W(K') we get a relation:

(4.8) S x+ S jy== S w{x)+ S w{y).
xG^ VGK" a;e=K y£K"

The above linear equivalence cannot be an identity of divisors, for by hypothesis w
does not interchange the conjugacy classes K and K", nor does w stabilize either conjugacy
class. The reason for the latter assertion is that an involution of a finite set of odd
cardinality must have a fixed point and the conjugacy classes containing fixed points
of w are excluded from K^.

Thus there is a nonconstant function f on Xg(N) whose divisor of zeroes is the
left-hand side of (4.8) and whose divisor of poles is the right-hand side.

Letting D be the Cartier divisor in Xo(N)/g, obtained by taking the closure of
the right-hand side of (4.8), we have that H°(Xo(N)^, ^(D)) is of dimension >i, using
(EGA III (7.7.5), I) as in the proof of Lemma (2.6). It follows that there is a mapping
/ : Xo(N)^ -> P^ of degree 2fifand therefore lo.d is an upper bound for the cardinality
of Xo(N)(F4). Since this cardinality is greater than N/i2, the lemma follows.

The proposition then follows by taking d=^, and using the remark after (4.4).

It is interesting to consider the problem of showing finiteness of Xo(77z)(QJ when
genus (Xo(77i))>o, for all integers m. By (4.1) we may restrict attention to composite
numbers m, and it is evident that it suffices to treat those composite numbers m such
that genus Xo(rf)==o for all proper divisors d of m. There are 17 such values of m,
of which 9 are of genus i and have been shown to have finite Mordell-Weil groups, by
various people, including Ligozat ([30], and see discussion in [48]). The case 7^=26
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is treated in [41]. The cases 772=35, 50 have been taken care of by Kubert [27];
the case m = 50 was also done independently by Birch. The case m = 39 has been
settled by a descent argument on the elliptic curve quotient of X^g) using an explicit
equation given for this curve which can be found in an extensive table compiled by
Kiepert. This equation (formula 6316 on page 391 of [25]) and these useful tables
were pointed out to me by Kubert. Re-writing the curve as a quotient defined over Q,
its minimal model is y2-}-xy=x3 +x2—4.x—^ and the descent follows the lines of the
case 772=35 ([27], [34], § 9). Sixteen of the seventeen cases (all m above except 772=125)
have been covered by the recent work of Berkovich (cf. remark following (4.1)).

5. A complete description of torsion in the Mordell-Weil group of elliptic
curves over Q .̂

In this section we shall prove the following theorem, first conjectured by Ogg [49]:

Theorem (5.1). — Let 0 be the torsion subgroup of the Mordell-Weil group of an elliptic
curve E, over Q^. Then 0 is isomorphic to one of the following 15 groups:

Z/77zZ for m<_io or 772=12
or: Z/2.ZxZ/2vZ for ^4.

Remark. — All these groups do occur. The fifteen curves:
Xi(m) and X(2) X^X^2v)

for m, v in the above range are all isomorphic to P/^. Consequently, the elliptic
curves E/Q whose Mordell-Weil group contains a given group 0 (chosen from among
the 15 above) occur in an infinite (rationally parametrized) family. These fifteen
explicit rational parametrizations are given in the table of [27], chapter IV.

Corollary (5.2). — Let an elliptic curve, defined over Q^, possess a point of order m rational
over Q^. Then m<_io or m ==12.

Equivalently:

Corollary (5.3). — Let m be an integer such that the genus of Xi(m) is greater than o
(i.e. m = 11 or m > 13). Then the only rational points of X^TTI) {over Q^) are the rational cusps.

We shall begin the proof of (5.1-3) with a series of reduction steps.

First reduction. — To prove (5.1-3) it suffices to prove (5.2) in the special case where
m =N, a prime number such that the genus of X()(N) is >o {i.e. N=t=2, 3, 5, 7, and 13).

This is so by virtue of the close study of the above conjecture of Ogg, made by
Kubert, for low values of composite numbers m.

In particular, Kubert has shown ([27], chap. IV) that it suffices to consider only
prime values of m, greater than or equal to 23. For 772=13, see [40].

For the duration of the proof, let, then, N denote a prime number =(=2, 3, 5, 7 or 13,
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and let Z/NC E be an elliptic curve over Q^with a point of order N, rational over Q
(generating the subgroup Z/N). The object of the proof will be to show that Z/NC E
does not exist. As usual, Eyg will denote the Neron model of E over S and Z/N/gC E/g
is the etale constant subgroup scheme over S generated by our point of order N.

Let K ==Q^), where ̂  1s a primitive N-th root of unity, and let L be the field
extension of Q, generated by the N-division points of E. By considering the short exact
sequence of Gal(Q7QJ -modules:

(5.4) O->Z/N^E[N]->(JL^O

one sees that Gal(L/K) has a faithful representation into GL^F^) of the form ( *)

where 7 : Gal(L/QJ ->->- Gal(K/QJ -^> F^ is the cyclotomic character. Thus, one has
the diagram of field extensions:

L

K ,

%
^N

where L/K. is either an N-cyclic extension, or is the trivial extension. Moreover, an
elementary computation gives that the natural action of Gal(K/QJ on Gal(L/K)
(conjugation in Gal(L/QJ) is by multiplication by y"1. This computation uses the

existence of the faithful representation of Gal(L/QJ of the form \ L and, as Serre
\ A./

remarked, can be most conveniently seen by noting that the * in the upper right corner
takes its values, canonically, in the vector space Hom((JLN5 Z/N).

It is clear that the exact sequence (5.4) splits if and only if L=K.

Second reduction. — It suffices to prove that (5.4) splits, or equivalent, that L=K.
For we would then have the following result from which we easily derive a

contradiction: Given any elliptic curve S^ and a sub-Galois module Z/NC <?, there
is a sub-Galois module (JL^C S.

Let us obtain a contradiction from this.
Forming the quotient ^'=<?/(JL^, we get another elliptic curve over Q^ and the

image of Z/N provides S ' with, again, a sub-Galois module Z/NC <??'. We may then
apply the above result inductively to obtain a chain of such elliptic curves over Q^, related
by (Ji^-isogenies, rational over Q^:

^_^'_^_._

all containing sub-Galois modules isomorphic to Z/N. This is impossible for various
reasons. Firstly, the members of the above chain cannot be all mutually nonisomorphic.
For, if they were, they would represent an infinite number of elliptic curves over Q^
with good reduction outside a given finite set of primes. This would contradict the
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theorem of Shafarevitch (cf. [63], IV (1.4)). Alternatively (and more in the spirit
of the present work), it would provide an infinite number of distinct rational points
on Xo(N); and this would contradict Theorem (4.1). We have therefore shown that
for suitable i 4=^, ^(i) ̂  S^\ and consequently there is a non-scalar endomorphism
of €^ defined over Q^. In particular, ^(t) possesses a complex multiplication over Q^,
which is impossible.

Third reduction. — It suffices to show that L/K is unramified (at all places).
For suppose that L/K is unramified, and nontrivial. Then it is an N-cyclic

(unramified) extension, and consequently N must be an irregular prime. Since L/Q^
is Galois and the natural action of Gal(K/Q^) on Gal(L/K) is ^-1 it would then follow,
by Herbrand's theorem (chap. I (2.9)), that the Bernoulli number Eg must have numerator
divisible by N. Since B^i/6, L/K must be the trivial extension.

We shall now prove that L/K is unramified. Although this is a local question
at each place v of K, it is unlikely that one can prove this by local arguments. Indeed,
the essential step 3 below is global. We proceed by 4 steps, analyzing the structure
of the putative Z/NC E.

Step 1. — E/g is semi-stable. That is, E has semi-stable (i.e. good or multiplicative)
reduction at all points of S.

Proof. — Let q be a (rational) prime of nonsemi-stable {i.e. additive) reduction
for E. Thus the connected component of the fibre E/p , (E/p )°, is an additive group,
and, as is well known, the index of (E/p )° in E/p is s^g6 for suitable integers a, b.
It follows that the specialization Z/N/p must be contained in (E/p)°. Consequently,
q=N.

Using ([72], § 2, Cor. 3) one sees that there is a finite extension field jf /Q^ such
that Ep^ has semi-stable reduction at the maximal ideal of the ring of integers Q = (9^,
and if ^==^(jf : Q^) is the absolute ramification index, we may choose jf so that e<_6.
IfE^ is the Neron model ofE over the base 0, and E/^®^ is the pullback to 0 of the
Neron model over Z, there is a natural morphism 'E^®6)->E^ which is trivial on
the connected component of the closed fiber, since there are no nontrivial maps from
an additive group over a field to a multiplicative group, or to an elliptic curve. If
G/^C E/^ is the closed subgroup scheme generated by Z/N/^C E/^-, we have a natural
morphism Z/N/^ -> G^ which is an isomorphism on generic fibers, and not an iso-
morphism on the special fibers, by the above discussion. From this, one sees that G^
is a finite flat group scheme. But since ^6<N—i, by [55] a finite flat group scheme
of order N over Q is determined by its generic fiber. In other words, G^ must be
isomorphic to Z/N/^, which is a contradiction.

Step 2. — If q = 2, or 3, then E has bad (hence multiplicative) reduction at q^ and the
specialization Z/N/p is not contained in the connected component of the identity (E/p )°.
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Proof. — IfE/p were an elliptic curve, and Z/NCE/p , then by the (< Riemann
hypothesis35 N<^i+?+2^^, which is impossible for ^=2,3. Therefore, E has
bad reduction at q (=2, 3) necessarily of multiplicative type, by step i. But, by Tate's
theory ([63], IV, A . I . I ) , (E/p,)° is isomorphic to G^/p. which has q2—! points.
Again, we cannot have Z/NC G^/p., for y=2, 3, by virtue of our hypotheses on N.

Step 3. — If q is any prime of bad (hence multiplicative) reduction for E, then the special-
ization Z/N/p is not contained in the connected component of the identity^ (E/p )°.

Proof. — Let q be a prime of multiplicative reduction such that Z/N/p C (E/p )°.
By steps i and 2 we may assume ?=t=2, 3 or N. Consider the base T=Spec Z[i/2.N]
and let x be the T-valued point of Xo(N)/rr determined by the couple (E/y, Z/N/rp).
That is, A:=J'(E/T, Z/N/T,). It is illuminating to draw the scheme-theoretic diagram:

oo

Xo(N)

T

where oo and o are the cuspidal sections over T. We are justified in drawing the
intersections: ^=oo/p^, ^==o/p^ because, by ([7], VI, § 5), the modular interpret-
ation of oo/p is the " generalized elliptic curve 53:

(G,xZ/N,Z/N)p^

[i.e. the cyclic subgroup of order N which gives the F^N) -structure is not contained
in the connected component containing the identity) while the interpretation of o/p
is the "generalized elliptic curve'5:

(G^xZ/N,^)^

{i.e. the cyclic subgroup of order N which gives the F^N) -structure is contained in
the connected component containing the identity).

Now consider the natural projection to the Eisenstein quotient XO(N)/T->TT.
By (3.1) we know that J(QJ==G. For the present proof, however, it suffices to know
that J(Q,) is a torsion group. Thus J(T)===J(QJ is a torsion group. Let ^ denote
the image of sections ofXo(N) inj. Since T is an open subscheme of Spec Z over which
2 is invertible, if A is any abelian scheme over T, and i any rational prime representing
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a closed point ofT, the specialization map A(T)^ -> A(F^) is injective (1). Applying
this fact to A==J, one sees that J(T)-»J(F^) is injective. But the equations ^=55^,
and ^='0^, then imply that '5=%. Since '5—-55 is of order n in J, this can only
be true if n=i, or equivalently, if N^7 or N=13. Since N is constrained to be > 7
and 4=13, we obtain the contradiction that we seek.

Step 4. — L/K is unramified.

Proof. — (i) q a rational prime of good reduction for E; y=t=N: Since E[N]/z is an
^tale, finite flat group scheme, L/K is unramified over all places of K lying over q.

(ii) y==N; E has good reduction at N: Again E[N]/^ is a finite flat group scheme.
Applying the "connected component of the identity95 functor to (4.4) one sees that
(K/ZN)0-^ and therefore we get a splitting: E[N]/^=Z/N/^Xp.N/z^ which ̂ m

shows that L/K is unramified at all places of K lying above N.
(iii) q a rational prime of bad reduction for E: Since Z/N/p 4: (E/p )° by step 3,

one obtains, as in (ii), E[N]^^ Z/N/^X(AN/Z^ giving us the same conclusion: that
all places of K above q are unramified in L/K.

^

6. Rational points on Xgp^(N).

Keeping to the terminology of the Introduction (cf. discussion preceding Theorem 9)
elliptic curves with a normalizer-of-split-Cartan structure on their N-division points
are classified by noncuspidal rational points on X^N^X^N2)/^..

Theorem (6.1). — ^ N+2, 3, 5, 7 and 13, then Xgp^(N) has only a finite number
of rational points.

Note. — If N^7, then Xgp^(N) is isomorphic to P/^ and therefore its set of
rational points form a rationally parametrized infinite set. The curve X 1^(13) is
of genus 3. It is to be expected that Xgp^(i3) has only a finite number of rational
points, but my methods have not been able to establish this.

Proof of theorem (6.1). — Consider the two natural morphisms:
f,g: Xo(N^Xo(N).

The map/is defined by the prescription /: (E, G^.) l-> (E, CJ where, ifE is an elliptic
curve, and G^ is a subgroup of E of order N2, then CN=N.CN«CE. It induces a
map from parabolic modular forms (of weight 2) on F^N) to parabolic modular forms
on Fo(N2) with the same ^-expansion.

The map g is defined by the prescription g : (E, C^) h> (E', C^) where E'==E/CN
and C^=G^/C^.

(1) This is a standard application of the Oort-Tate classification theorem [54] to the group scheme over T
generated by an element of order p in the kernel of the above specialization map. If A is an elliptic curve, then
this result is due to Nagel-Lutz.
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If co is a parabolic modular form (of weight 2) and S(^) denotes its y-expansion
at oo, then (/g^){y)=='^{^)' We denote the canonical involution (chap. II, § 6) of
X()(N) by Wy to distinguish it from the canonical involution of Xo(N2), denoted w^.
As usual, J is the jacobian of Xg(N). Let h : Xo(N2)->J be the map which associates
to x the divisor class of f{x)—g{x). A straightforward calculation yields the formula
h.w^==—w^.h (and the minus sign will be of importance to our proof). It follows
from this formula that the composition Xg(N2) —>J—>J -=J7( I+^N)•J factors

h proj.
through Xo(N2) -> X^N^/^^^piitOT and thereby induces a map:

h- : X^(N) ->J-.

The map X^N2)-^ induces a surjection on the jacobian J^N2)—^ as can
be seen as follows. The induced map from parabolic modular forms of weight 2
under Fo(N) to parabolic modular forms under Fo(N2) is injective. This latter assertion
is true since a modular form of weight 2 under F^N) which is sent to zero by the map
in question must have its first N (/-expansion coefficients equal to zero. Hence it is zero.

It follows that the map h~ : Xgp^(N)-^J~ induces a surjection from the jacobian
of Xgp^(N) to J~. Let h :Xgp^(N)->J denote the composition of h~ with the
projection map to the Eisenstein quotient (chap. II (17.10)). Since N=n or N^17,
it follows that Xo(N) is of positive genus, and that J is nontrivial. Letting Xgp^(N) Cj
denote the image of Xgp^(N) under A, one sees that Xgp^(N) must be a curve, and
Xgp^(N) ->Xgp^(N) a finite morphism. Since J(QJ==C is a finite group, the proof
of Theorem (6.1) is completed.

Remark. — We have made essential use of the fact that J factors through J~ (chap. II
(17.10)). This fact (when N= i mod 8) seems to depend on some of the more delicate
aspects of the theory developed in chapter II.

7. Factors of the Eisenstein quotient.

Consider a surjective morphism defined over Q, J->A where A/Q is a Q^-simple
(equivalently: C-simple) abelian variety.

Let p \ n be a prime number such that this morphism factors through the ̂ -Eisenstein
quotient (such a prime number^ must exist, but may not be unique) and let a==dim A.

Replacing A by an abelian variety isogenous to it, if necessary, we may suppose
that the Hecke algebra T leaves the kernel of J-^A stable, and consequently that we
can induce a natural action of T on A. Since the Eisenstein prime ^5 associated to p
is contained in the irreducible component of Spec T which corresponds to A (chap. II
(10.1)) it follows that A [̂ 5] (the kernel of ^B in A) is nontrivial. Consequently, by
admissibility of the kernel of ^ (chap. II (14.1)) it follows that there is an abelian
variety A/'Q isogenous to A over Q^such that A' possesses a point of order p in its Mordell-
Weil group. (More precisely, we may take A/'g to contain a subgroup scheme isomorphic
to Z/p/g.)
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Using the criterion of Neron-Ogg-Shafarevich, one sees that A->A' extends to
an isogeny of abelian schemes over S'. Reduce to characteristic 2 and obtain an
isogeny A^->A^ of abelian varieties where A^Fg) contains a point of order p.
Standard estimates for the number of rational point of an abelian variety over a finite
field (the Well conjectures) give:

j^AW^i+v^)20

or:
logp

(7.1) a
—̂2.1og(l+'\/2)'

We obtain:

Proposition (7.2). — Every simple factor of the p-Eisenstein quotient J^ has dimension
log?

>
2.^(1+^/2)

Corollary (7.3). — There are absolutely simple abelian varieties of arbitrarily high dimension,
defined over Q^ whose Mordell-Weil group is finite.

Proof. — For any positive integer ^o, find a prime number j^5 such that
logp^2aQ.log{i-{--\/2) and, by Dirichlet's theorem, choose a prime number N such
that N= i mod p. Then (7.2) every simple factor of the ^-Eisenstein quotient of
J==J^(N) has dimension ^OQ and (4.1) has finite Mordell-Weil group.

What are the elliptic curve factors of the Eisenstein quotient J ? If E/Q is a quotient
elliptic curve of J^, then E has (prime) conductor N, and by the above discussion,
after modification of E by Q^-isogeny if necessary, we may suppose that the Mordell-Weil
group of E possesses a point of order p. There has been some recent work ([68], [46],
[42], [i6]) on elliptic curves of prime conductor N possessing a torsion point of order p
over Q^. In particular, one has that J^5 (using the Well estimates to the reduction
of E in characteristic 2) and by [42] one has, further, if j^=5, then N = = I I and E is
isogenous to Xo(n)$ if p==^ then N=19, or 37 and E is isogenous to Xo(i9) or to
the Eisenstein quotient ofjo(37).

Thus we are reduced to the case p=2. In this case, either N==17 and E is
isogenous to Xo(i7), or it is a Neumann-Set zer curve (which, by definition, is an elliptic
curve over Q^ of prime conductor N =t= 17 possessing a point of order 2 in its Mordell-
Weil group). The facts concerning Neumann-Setzer curves are these ([68], [46]):

A Neumann-Setzer curve of conductor N exists if and only ifN is of the form 64 4- u2

{u an integer). If N is of the above form there are precisely two isomorphism classes
of Neumann-Setzer curves of conductor N, given by the equations:

J)i2==x3-}-ux2--I6x

y == x3— wx2 + NX.
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One may pass from one curve to the other by the 2-isogeny obtained by division
by the rational point of order 2.

Proposition (7.4). — i) Let p>2. The p-Eisenstein quotient has no elliptic curve factor
unless p=^ N==n or p==3 and N=19^37.

ii) The 2-Eisenstein quotient J^ has no elliptic curve factor unless N==17, or N == 64 + u2

with u an integer. If the 2-Eisenstein quotient has an elliptic curve factor, then this factor is unique
up to isogeny and if N 4= 17 its isogeny class is that of the Neumann-Set zer curves of conductor N.
If the (two) Neumann-Set zer curves of conductor N are parametrized by modular functions for Fo(N)
(i.e. if they occur as quotients of], a special case of the conjecture of Weil) then they are quotients

of]^

Proof, — This combines the work of [68], [46] as in the discussion above, and
chapter II (14. i).

The following gives (granted conjectures of Weil and Hardy-Littlewood) an infinite
number of values of N for which the estimate of (7.2) is sharp for the 2-Eisenstein
quotient.

Proposition (7.5).—Let'N be a prime number of'the form 64+^2 such that N^i mod 16.
Suppose that the (two) Neumann-Set zer curves are parametrized by modular functions for Fo(N).
Then J^ is of dimension i, and is a Neumann-Set zer curve of conductor N.

Proof. — Let ^} be the Eisenstein prime associated to 2. By our hypothesis on N,
2 \\n. Therefore, by chapter II (19.1), T^ is a discrete valuation ring. Since the
irreducible components of Spec T<p map surjectively to the (isogeny classes of) factors
ofj^, it follows that J^ is a simple abelian variety. But, by the hypothesis of (7.5)
and by (7.4) ii) the Neumann-Setzer curves are factors ofj^. Our proposition follows.

Remark. — Let N be a prime number of the form 64 -}-u2 such that N= i mod 16.
The 2-Eisenstein quotient contains a point of order 4 (at least). It must have dimension
greater than i, for if it were an elliptic curve, it would be a Neumann-Setzer curve
and a Neumann-Setzer curve does not possess a point of order 4 [68].

Suppose, further, that the Neumann-Setzer curves of conductor N are parametrized
by modular functions for ro(N). It then follows thatj^ is not a simple abelian variety,
since it has a Neumann-Setzer curve as a proper factor. Consequently the completion
of the Hecke algebra T^ is not an integral domain. Conjectures of Weil and of Hardy-
Littlewood would give that this occurs for infinitely many values of N.

The only case of a pair (N,j&) where N<250 and T<n is not a discrete valuation
ring, for ^3 the Eisenstein prime associated to p, is: N==113, p==2. This is the first
instance of the (conjecturally infinite) family of examples described in the paragraph
above.
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8. The ^P-adic L-series.

Fix ^P an Eisenstein prime associated to a prime number ^4=2.
In this section and the next we shall examine the analytically-defined ^(5-adic

L series [39] and the arithmetically-defined ^?-adic characteristic polynomial [34].
We recall terminology and results from the papers cited.

Since both p and ^p=i+^—Ty ar^ in the ideal ^5, we have Ty==i mod ̂  (1)
and therefore Tp is a unit in T<p.

The standard recursive process {e.g., p. 47 of [39]) gives two roots of the quadratic
equation:

X^-T,.X+p=o

in T<p. Call the unit root n and the other one TT to be consistent with the terminology
of [39]. Let { } : Q^Z'-^H^H^X^^N), Z) denote the modular symbol, where
Q^/Z' means rationals with denominator prime to N5 modulo i ([22], [29]). Let
/:QyZ'-^H(p be the composition of { } with H-^H^^T^®^11- For ^Y ^xed

choice of integer Ay prime to p, set A^^AQ.J^ and Z^==limZ/Ay, regarded as topological
ring. Z^ is then the topological group of its units. n

We now wish to use the construction of [39], § 8, to obtain an H<p-valued measure
on TL\ from the function f. This may be done, for f is an eigenfunction for the Hecke
operator Ty with eigenvalue a unit in T<p. One remark, however, must be made: in
the terminology of [39], § 8, we take T(p=D, H(?=W. Note, however, that in [39]
(8. i) the hypothesis on D is that it be the ring of integers in a finite extension of Q^,.
This is not needed. All that is used is that D is a local ring with maximal ideal m
containing the prime p and that D is radically complete.

Let [L^, then, denote the H(p-valued measure associated to the eigenfunction f
([39] (8- 1 ) ) - ^et (Ghap. II (18.1)) o->H^-^H<p-^H^^-o be the decomposition
of H<p into — and + eigen (sub- and quotient-) spaces. Let ^ be a continuous multi-
plicative character on Z^ whose values lie in (and generate) the T<p-algebra T<p[^].
We consider the Fourier transform of the measure ^A:

L<p(x)=J^X.^^H<p[x]=T,pM®^H<p.

If the formula %(—i)==(s ign^) . i defines sign 7, L<p(7) lies in the (sign 7)-
eigenspace of the complex conjugation involution and, if 7 is even, it is natural to let
L(p(x) ^^ lts Y^^ m H^[^], by projection.

We refer to L(? as the ^-adic 'L-series, and the general theory of [39] applies to it.
In particular we have its various developments as analytic function in the s- and T-planes,
keeping the conventions of [39].

(1) We think of this relation as expressing the fact that Eisenstein primes are anomalous, in the spirit of the
notion introduced for elliptic curves in [34].
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Let ^A'+ be the projection of the measure ̂  to H^. Then the ^B-adic L-series
restricted to even characters is the Fourier transform of ̂  +.

Proposition (8.1) (divisibility). — ^+ takes its values in S.H^CH^.

Proof. — By chapter II (18.8), /(6/AJ depends only on A^modS.H^, if b
is prime to A^. By formula (2) of (8.1) of [39], ^+ evaluated on the fundamental
open set a+A^Z^CZ^ (for a prime to A) is given by:

lim ^-m S /(6/AJ,
m^n S^amodA/' / mh

m->oo

from which our proposition is seen to follow.

Corollary (8.2). — If ̂  is an even character, L(p(^)e3.H^[yJ.
The proposition also implies that if we develop L^ in a power series expansion

about an even character ^ in either the s- or the T-plane (cf. [39], § 9) then every
coefficient of these power series will lie in 3.H<n[xo].

To evaluate the constant term L<p(^o) of the ^3-adic L-series, where 70 is the principal
character of conductor p, we use [39] (8.2).

Take AQ= i. We work in the ring D=T\p. The proposition of [39] (8.2) gives:

T ( \— ~~ ^P' ^l-p(Xo)-^_^_^

P-l

where S is S {afp} projected to H^.

If e^ denotes the image of the winding element in H^®Q^ (chap. II, § 18),
formula (8) of page 35 of [39] yields 7^.4=:-S, giving:

((>-3) ^'^(t^11'
(compare with the formula at top of page 55 of [39]).

To analyze this constant term more closely, fix t a good prime number (relative
to p, N) as in chapter II, § 16. For convenience, ifp itself is good {i.e. ifp is not a
p-th power modulo N), take f=p. Let T]=T^, which is a generator in T<p of the
ideal 3<p by chapter II (16.6). Write T ,̂ = S. T]. Therefore SeT^p and 8 is a unit (= i)
if and only ifp is good. Since T], Y] ,̂ are units in the ring T<p®Q, {e.g., as in chap. II,
proof of (16.10)) so is S.

Corollary (8.4). — There is a suitable generator y of the T^-module H^ such that:
L^Xo)^2.-/].^

where S is a unit in Tq3®Q^. Furthermore, 8 is a unit in T^ if and only ifp is not a p-th power
modN.
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Proof. — This follows from the above discussion, and (8.3), by taking:

J-^/^2-^1-^2-

Now make a choice of a i-unit y^Z^==Z; and form ([39], § 9) the ^-adic L-series
in the T-plane about /o:

L(T)=L.p(^,T)^eH^®^T^[[T]].

The constant term is just L,p(^), and by (8.2) each of its coefficients is divisible
by T], and therefore we may write L(T)=^(T). 73.^, where ^(T)eT^[[T]] is a power
series whose constant term is 82. Thus

Corollary (8.5). — Identify T,p with H^ by the map TH-T.^. Then:
Yr'.L^T^ET^rr]]

is a power series with constant term 82. It is a unit in 1\p[[T]] if and only if p is not a p-th power
modulo N.

Remark. — When p is a p-th power modulo N, we have then a (c secondary "
analogue to the phenomenon of anomalous primes studied in [34], [39]. Namely,
either L<p(^, T)(^ is divisible by more than T], or it has at least one zero in the open
unit T^p-disc (or both).

9. Behavior in cyclotomic towers.

Guided by conjectures made in [39], the results concerning the ^3-adic L-series (§ 6)
suggest that the following proposition is true. We prove it below (independent of any
conjectures). We shall also take the opportunity to correct an erroneous assertion
made in [34].

Proposition (9 .1) . — Let p^2 be a divisor of n. Let Q^/Q, denote the unique Galois
extension with Galois group isomorphic to Z,y (the p-cyclotomic ^-extension). The group J^Q^)
of rational points of the p-Eisenstein quotient with values in the p-cyclotomic Y-extension is a finitely
generated group. If p is not a p-th power modulo N, then it is a finite group.

One has an accompanying assertion about the ^-primary component of the
Shafarevich-Tate group. Namely, let F== Ga^Q^/QJ, and for every positive integer m,
let I^C F be the subgroup of index j^. Set Qj^C Q^ to be the fixed field of 1 ,̂
and III^ the ^-primary component of the Shafarevich-Tate group of J^ (or of J: it
is the same) over Qj^.

Set A=limT,p[r/rj (the projective limit of topological rings, where T^[r/rj
is given the natural topology) and III^= lim III regarded as A-module.

m->ao

Proposition (9.2). — The kernel and cokernel of the natural map:

ni^Oiij^
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are finite groups whose orders are bounded (independent of n). That is, the above sequence is
controlled in the sense of [24], [34].

The A-module III^ is isomorphic, modulo finite groups, to the Pontrjagin dual of the A-module
A/3<p.A^T(p/3(p[[T]]. There is a constant CQ>O such that if pf\\n, then:

|log/ordermj--/.r|^o
for all m>o.

Remarks. — Guided by the same conjectures of [39] (6.5)3 one would expect that
if p (+2) is ajMh power modulo N, then either J^Q^) is a finitely generated group
of positive rank, or III^ grows more rapidly than the bound of (9.2).

The proof of these propositions may be regarded as a " generalization 35 of the
case N = I I , treated in [34]. It proceeds closely along the lines of argument used
for the case N==n, but incorporates work we have already done concerning Eisenstein
primes, and uses a recent result:

Theorem {Imai [21]). — Let K be a number field [a finite extension of QJ and L/K the
p-cyclotomic extension (L==UK(^)). Let A^ be an abelian variety. Then the torsion sub-
group A(L)^,g of the group of rational points of A over L is a finite group.

Correction. — I am thankful to Ito for pointing out that an assertion I made in [34]
(labelled (6.18)) is incorrect (for abelian varieties of GM-type of dimension greater
than i). Therefore, my proof that A (L)^g is finite when A is ofCM-type ([34] (6.12 (i)))
is incomplete. The theorem of Imai [21] shows, however, that the result is valid for
all abelian varieties.

Discussion. — Imai proves a local result based on Sen's analysis of the structure
of the Lie algebra of a Galois group acting on a Hodge-Tate module [59]. Serre has
communicated to me a proof along rather different (global) lines by means of which
he obtains finiteness of the group of rational torsion points of the abelian variety A with
values in many F-extensions over K not only the j^-cyclotomic F-extension.

We now prepare to prove (9.1) and (9.2) by the method of [34].
Let Y^ denote the spectrum of the ring of integers in Q^ and let Y be the spectrum

of the ring of integers in Q^. Thus Yo=S=Spec(Z).
IfJ/Y^ is the base change of the N^ron model J/g then it is the Neron model of

thejacobian ofXo(N)/qy since p is the only ramified prime, andj has good reduction 3.1 p.
Let T] (as in § 6) be a generator of the ideal 3<pCT<p (chap. II (16.6)). So:

j^iimj^Tn/s
r

is represented in this way as an inductive limit of quasi-finite group schemes over S,
and is naturally endowed with the structure of T(n-module.
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We have the analogue of diagram (6.6) of [34], which may be written:

(9-3) o o

I I
hWr^———YCT——>^

I I "̂
o-^ H^,^) —> H^-^,^) -^ H;(Y,^,J,p) -> H^Y,,^)

-I i I
o -^ H^Y, J^- -> H^Y-^, J^ -^ H^Y^, J,?)1"

I I
0 0

where p^ is the unique closed point of characteristic p in Y^, p^ is the unique closed
point of characteristic p in Y; Y^^ is the completion of Y^ at j&^, and Yp is the
completion of Y at p ^ ; the superscript 1̂  means invariants under the action of F^
and the subscript mean coinvariants; H2 denotes cohomology with supports at the closed
point. We view the above diagram, whose horizontal and vertical lines are exact,
as a diagram of T^-modules.

There are three necessary calculations that must be made, in order to prove (9.1)
and (9.2) and we collect them in the following lemma:

Lemma (9.4):
I- J^Q^) is isomorphic to T<p/3<p.
2. Hl(Spec(Z),J<p)==o.
3. For any m, the T^-module E^ is (noncanonically) isomorphic to (T(p/3(p)®(T(p/3<p).

Granted the lemma, we shall prove our propositions. Let H denote H^Y.JU
regarded as A-module. The lemma enables us to cc evaluate 5? the above diagram
for m = o:

o o

I I
T,p/3,p -^ (T,pAp)©(T,p/3,p)

\ \
o—^ H^Yo-A,,;,,) -^ H^Yo^J,,)

o —> H1' —> H^Y-p^,]^ -^ H2(Y„,J.p)^

0 0
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Note that 1^/3^ is a cyclic group of order p^ From the above diagram, it follows
that H11 is a cyclic abelian group, hence, as T^-module, a quotient of T<? by some ideal
a C 1\p. It also follows from the above diagram that 3<p C a.

From this, we obtain the analogous information about H*, the Pontrjagin dual.
Namely, H*®^!^ is isomorphic to T<p/a, as T(p-module.

Now consider the c< descent sequence ":

(9.5)

which is a sequence of sheaves of T(p-modules for the fppf topology over Spec(Z)=Yo,
or, after base change, over the schemes Y^, and Y. Here G ^^.|pf is the ^-primary
component of the cuspidal subgroup and S ,̂ (^p-^/ noncanonically) is the ^-primary
component of the Shimura subgroup (chap. II (16.4)). The sheaf 0 is representable
by a nonseparated but finite etale group (pre-) scheme whose support is concentrated at
the prime of characteristic N, and whose fiber at N is a free T(n/3^-module of rank i.

Noting that by (i) of the lemma the group H°(Y,J^) is generated by the appro-
priate multiple of the point (o)—(oo), and as T,p-module is isomorphic to T<p/3<n, one
obtains that H°(Y,J^)==o. A consequence of the above diagram is, then, that:
(9.6) H^Y.G^^-^H

is an injection of A-modules.
By a result of Iwasawa, the j^-primary components of the ideal class group of the

fields Q^ vanish. It follows that:

H^Y.Z/j^o

and, by <( Kummer theory":

-"• ( ^ w ? ^pH^^ml^^ (all these cohomology groups being
^(Xn. M=== o ^/-cohomology)

where U^ is the group of units in the ring of integers of Q .̂ By the Dirichlet unit
theorem, VJU^ is a free (Z/^)-module of rank j^—i. Replacing A by (JL^,/ in the
diagram (7.3) and evaluating (using that (^/(Q^^o, H^Y^, (J^/)=o and that
"W.̂  M is dual to H^^Z/^O). one finds that:

H^^^H^Y,^)1-

is injective, for each m, with cokernel cyclic of order p^ It follows that H^Y, (JL,/)1^"
is a free (Z/j^) -module of rank ^w. An application of Nakayama's lemma gives that
the Pontrjagin dual ofH^Y, (JL^/) is a free module of rank one over Z/^ITJ^A/TJ.A.

Taking the Pontrjagin dual of (9.6), one gets a surjective map of A-modules:
IP-^A/TJ.A.
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Let R denote the kernel of the above homomorphism. Form the long exact sequence:
Tor^A/^.A, 1\p) -^ R®AT<p -> H^1\p -> T\p/3<p -^ o.

By the resolution O->A->A—^A/T]A->O, one sees that the Tor1 term in the above
sequence vanishes. Since H^^^T^p is isomorphic to T<p/a where a contains 3<p, it
follows that R®T<p vanishes as well. By Nakayama's lemma one has R==o, and
therefore:

H^A/73.A^Z/^[[r]]

as A-module.
Proposition (9.2) is an immediate consequence of this, and Proposition (9.1)

follows from Proposition (6.11) of [39] and the theorem oflmai and Serre quoted above.

Proof of Lemma (9.4). — Part 1: Consider the filtration ofj^p over the base Spec(Zy)
(chap. II (8.4)):

o^J^^^Lp-^Jl^o.

We show that the specialization map J^Q^) —^J^(Fy) is injective by noting
that J^Q^) ^J^'^^Qp) vanishes. But the kernel of 3 in the latter intersection
is just I^Q^) by chapter II (16.4). It is zero, since S is a (i-type group, and Q;̂  does
not contain the p-th roots of i. Since J^Q^) nJ^'^Qp) is also killed by a
power of 3, it must vanish. We shall conclude Part i by noting that J(p(F^)==G^,,
the j^-primary component of the cuspidal subgroup.

Since p is not aj^-th power mod N (and p 4= 2), •/]? is a generator of 3<pC T<p (chap. II
(18.10)). I f r r i s the unit root of X2—T^X+^=o in T(? and TT is the non-unit root,
using the Eichler-Shimura relations and well known arguments (repeated in [39], § 4 d )
and e ) ) one deduces that J<p(Fp) is the kernel of i — T T inJ<p(F^). But 7 ] p = ( i — 7 r ) ( i — T c )
and therefore J ^ ( F p ) is the kernel of 3^ in J<p(F^).

Part 2: Write out the descent sequence [39] (3.3) for the isogeny r^ onj:

o—^Jh;]-^J -^J°—^o

P^ 1t \to—^r—^j—^o—^o
and the related long exact sequences for fppf cohomology. These latter we regard as
exact sequences of T-modules and we tensor them with T^p, which preserves exactness.
We get:

o^C^M®,T.^MO®TT^^Hl(SJ^7);])^Hl(SJ)^^Hl(S,JO)^^H2(S,J^

M X l 1X1
o^M°®TT,p^M®,T<p—^H°(S, 0) -^H^S,]0)^-^.^,])^
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By (3-3)5 M®TT<p and M0®^^ are finite, and therefore by (1.2) we may
evaluate them as follows: M®TT^==C^ and M°®TT<p==o.

By chapter II (16.4), we have J(p[^]==(Cp©Sy)/s. Using the facts:

H^G^H^S.I^-o for z = i , 2
and: H°(S, 0) is free of rank i over T,p/3<p,

we may evaluate the above diagram for r == i and obtain the fact that T) induces an
isomorphism H^S, J) 33 -^ ?(8, J°) m (from the top line) and the kernel of r\ in H^S, J) <n
is zero (from the bottom line). Consequently, H l(S,J)(p=H l(S,JO)<p=o.

If we now consider the top line for general r, we have that H^S,^^]) is flanked
by groups which vanish and hence must vanish itself.

Had [39] (5.7) been written in appropriate generality we would apply it directly
to obtain what we wish.

Part 3: As it is, we reconsider its proof. Let /^ denote the formal completion
of J/spec(z,,)- Since /^ is naturally a Tp==T®Zy-module, we have the decomposition
(chap. II (7.1)) /p=/^X/^ using the idempotent decomposition i = £ < p + £ ; p .

We now prepare to copy the exact sequence of [39], Corollary (4.6). To convert
to the notation of that Corollary, set A==J, L^= the completion of Q^ at the primer,
D^==the ring of integers in L^, and, for some fixed m^ set K==L^, D=D^. Then,
for m=mQ-{-h (A^o), Corollary (4.6) of [39] reads:

^(D)/N^^(DJ ^J(K)/N^J(LJ -^J(F,)/J(F^->o

which is an exact sequence of T-modules. Tensoring with T<p gives:

(9.7) ^(D)/N^/K^(DJ-J(K)/N^KJ(LJ®TT^
->J(F,)/J(F^®,T^->o

But /w, is a formal group of multiplicative type to which Corollary (4.33) of [39] applies,
giving:

The subgroups N^/K^CDJ C ^p(D) stabilize for large m, and:

(9.8) ^(D)/N^^(DJ^[r/rj®^T^/(i-7r).[r/rj®^T^
where I^^Ga^O^/O^) and n is the unit root (which is the twist matrix [39],
§ 4 for /^).

Since the ideal in T^ generated by (1—71) is just 3<p, the above isomorphism
yields that the left-hand T(p-module of (9.8) is free of rank i over T<p/3<p for large
enough m. Also, by the discussion of Part i, JKF^/J^Fp)^®,!,1^ is a free ^/S^-
module of rank i, if h is large enough.

We now check that the left-hand map of exact sequence (9.7) is injective. This
is as in Proposition (4.42) of [39]. Form the short exact sequence of r^/F^-modules:

(9.9) o->^(DJ->J(LJ®TT<p->J(F,)®TT.p-^o
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and note that J(Tp)®^T^ is generated by the specialization of Gp which is contained
in J(K)®TT<pCj(LJ(^T<p.

It follows that (9.9) splits as an exact sequence of T^r^/FyJ-modules. But
the left-hand map of the exact sequence (9.7) is the map induced on o-dimensional
Tate cohomology by the map of F^/r^-modules ^(DJ®^ -> J^LJ®^
appearing in the split exact sequence (9.9). Putting all the information we now have
into the exact sequence (9. 7) we obtain the following split exact sequence of T^-modules:

o -^ T\p/3<p ->J(K)/N^KJ(LJ®iT<p -^ T\p/3<p -. o

for m large.
We now apply Corollary (5.4) (p. 225 of [39]) and the discussion on page 226

to conclude that the kernel of:
H^,J^H!(Y,J.p)

is a free module over T^/3^ of rank 2.

Added in proof (August 1977):

1. Using results of the present paper, and some new techniques, the (Q^-) rational
points ofXo(N) can be completely determined for all prime numbers N. One finds that
there are no noncuspidal rational points on Xo(N), and hence no ^-rational N-isogenies,
when N is a prime number ^23, such that N+37, 43, 67, and 163. In particular the
question-marks occuring in the TABLE of the introduction have been resolved. See:
Rational isogenies of prime degree to appear in Invent, math.

2. An incorrect entry in a previous table of mine ([38], § 4) is corrected in the
TABLE of the introduction to the present paper. Namely, when N===199, the data for g_
(in the table at the end of [38]) should read: 2+10 and not: 2 +10. In particular, when
N===199, J is not equal to J"~. Therefore, remark 2 of [38], 2.5 should be amended to
read:J=J~ for N<250, except when N==67, 109, 139, 151, 179, 221 and 199.
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APPENDIX

Behavior of the Neron model of the jacobian of X()(N) at bad primes

by B. MAZUR and M. RAPOPORT

Throughout this appendix we depart from the convention of the rest of this paper
and let N denote a square free number not divisible by 2 or 3, andj& a prime divisor ofN.

The connected component of the fibre at p of the Neron model J of the jacobian
of the modular curve M()(N) (chap. II, § i) was determined in [9]. Our purpose here
is to get somewhat finer information about J, in particular about the finite abelian group:

0-0,

of the connected components of the fibre at p of J.
The following theorem, which is the main result of this appendix, is due to

P. Deligne:

Theorem (A.i). — Let N==p be a prime number.

a) The connected component J^ of the fibre at fy of J is a group of multiplicative type;

considering it over Fp, the Frobenius endomorphism acts on the p-adic Tate module:

W)
as: 'F*==—p.Wy

where w is induced from the canonical involution {z^->—ijpz).
b) We have a canonical decomposition of the fibre at p of J:

J,=Jp°xG

where C is a cyclic group of order num((^—i) / i2) generated by the class of the divisor (o) —(oo).
More generally, write:

N=^i, . . . ,^

(allowing for v = o to include the case N ==p). The connected component of the fibre
at^ ofj is an extension of J°(yi, . . ., q^)p xj°(yi, . .., q^)p by a group of multiplicative
type (cf. [9] and section i below).

As for the group 0 = Oy of connected components of the fibre at p of J one has
table 2 below:
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TABLE 2

(u, v)

(0,0)

(1,0)

(0,1)

(I, I)

Order of
(o)—(oo)

in €>

Q..

0,.

Q,.

Q,.

p——1

12

p—1

6

p—1

4

p—i
2

z^-^z

Structure
$/(0)-(

trivial

Z/32'-1:

Z/G^-^

of
00)

z

r

Order
ofO

a^-1
^ 12

0 ^""^ rr//^ ^ — I \ ^ ^ . , . .
^' 12

0 / ? — — I o2^ r r l i r ^ P——^^ ^ . . . .
^' 12 '-3

0 r ^2^ r » ? / / ~ v . \«-» ^ . — —

12

Structure of 0

z/fa^-tz
/ \ 12 /

"/^- 3 ^"
©Z/a2"-^

"/^- 4 r
©z/s^-iz

^/^SZ-^——I^

©Z^^-^
©z/s^-^

Relations satisfied
by ii standard " elements ofO

Z — (o) (oo) is a generator

y^ is generated by the E^
^'=1, • • • , 2 ' ) ;
relations:

2;E,=—S /.Z
i

Z==2E, ( t = l , . . . , 2 ^ )

^P is generated by the G^
(^I, . . . ,2^;
relations:

20,=—^.^
i

F,==2G,)
- - ( i = i , . . . , 2 - )z =3Gtj

(P is generated by the E^,|Gj
( Z , J = I , . . . ,2^) ;
relations:

2E,+2G,=—S'Z
i 3

Z =2E,( i=i , . . . , 2 ^ )

1,:S)<—....-'
Notation:
^ Set u == i if:

p==j or 11 (mod 12)
and: all q^ =. i (mod 4) i = i, .

otherwise set z/=o.
6; Set y= i if:

j&^5 or 11 (mod 12)
and: all ^.=E i (mod 3) z= i , . .

otherwise set v = o.
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V

c ) Set Q=n(y.+i) (=i if v=o).
i=l

d ) The last column gives information about " standard elements ^ in O
(cf. section 2). In particular Z==(o)—(oo).

Remarks. — i) In table 2, Z is an element (but not necessarily a generator)
of the first cyclic group occurring in the column labelled <( structure of 0 ". Z is a
generator of this cyclic group if v == o or if (u, v) is (o, o) or (o, i). In all other cases Z
is twice a generator.

2) The table shows that, ignoring 2- and ^-primary components, Oy is a cyclic group
generated by the image of the divisor class (o) —(oo). Its order (again ignoring products
of powers of 2 and 3) equals Q .̂ {p—i).

The order of (o)—(oo) in J is divisible by the l.c.m. of the orders of Op, for all p
dividing N. G. Ligozat has computed this order (as yet unpublished).

The plan of exposition is the following.
In section i we recall relevant results from [9] about the moduli schemes of interest.

After recalling results of Raynaud [56] about the relation between the jacobian of the
minimal model of a smooth curve over a discretely valued field and the Neron model
of its jacobian, we reduce our problem to a computation.

This computation is outlined in section 2.
The final section 3 proves a) of Theorem i.

i. Relation between minimal model and Neron model.

The following is a somewhat simplified version of ([9], VI (5.9)). Set N'==N/j&.

Theorem ( 1 . 1 ) . — a) M()(N) is smooth over Z[i/N'] outside the super singular points
in characteristic p.

b) Mo(N)®Fy is the union of two copies of Mo(N')®Fy crossing transversally at the
supersingular points. If x=j(E, H) is a super singular point of Mo(N')®Fp (i.e. E==super-
singular elliptic curve and HC E[N'] a cyclic subgroup of order precisely N'), then x on the second
copy is glued to the point x^ of the first copy of Mo(N')®Fp.

c) Let x=j(E,H) be a supersingular point of Mo(N')®F^ and set:

^|Aut(E,H)|.

At the corresponding point of Mg(N)®Fp the scheme Mg(N) has a singularity whose strict
localization is isomorphic to:

W(F,)[[X,Y]]/(X.Y-^)

(i.e. is of type A^_i).
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d) In particular, the reduction modulo p of the minimal model Xo(N) o/Mo(N) {over Z[i /N'])
is obtained by glueing two copies of Mo(N')®Fp at corresponding super singular points, and then
replacing a crossing point by a chain ofk—i protective lines. If j&4=2, 3 (which we will always
assume), then:

k>i
implies either:

j(x) = o, and then k == 3
or: j\x)==ij28, and then k=2.

Those projective lines, considered as divisors on the minimal model, have self-intersection —2.
Our next task is to determine the number of supersingular points explicitly.
Let:

S^the number of supersingular curves E over Fy with j(E)=t=o, 1728.

T — I 1 ^ there exists a supersingular curve E over F with j(E)=i728.
| o otherwise.

p—J 1 ^ tnere ^ists a supersingular curve E over Fp with j(E)==o.
(o otherwise.

Recall [i, VI (4.9)] that:

S'+l.I+l.R^^ll.
2 3 12

v
Recall from the introduction that Q^== II ( f t+i) .

1=1

Proposition (1.2). — (i) The number of points in MJN)®Fp lying above a supersingular
point xeMo{p)®Tp is:

Q. if J'W+o, 1728

^Q. if JW==I728 but not all ^==1 (mod 4)

^(Q,—2V) if j{x)=I^28 and all ^=i(mod4)

-Q- if yW==° but not all ^=i (mod 3)
o

-(Q^—s^ z/" j{x)=o and all q,==i(mod^).

Hence:

(ii) y= number of supersingular points x in Mg(N)® F with J\x)^o, 1728

^-Zl-2-(u+v-\
12 \2 2/

f/or u, v consult the introduction to this appendix).
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Proof. — (i) is a consequence of the following facts:

a) The morphism MQ^N) ®fp—^ M^p) ®Fy is a covering of degree Q.
^ Let j(E)==i728 and let (E, H) correspond to a point in Xo(N')®F^. If

Aut(E, H) 4={±i} , there is a primitive 4-th root of unity in (Z/^)* (the automorphism
group of the ^-primary component of H) for each i=i, . . ., v, z.^.:

f t = i (mod 4) i==i, . . . , v .

^ Similarly, if (E, H) corresponds to a point in M^N')®^ with j(E)==o, and
if Aut(E, H)+{±i} , then there is a primitive 6-th root of unity in (Z/^)* for each
i=i, . . . , v , i.e.:

q,=:i (rnodg) i==i, . . . , v .

(ii) follows from (i) by taking into account the formula recalled shortly before
the statement of the proposition and the fact that:

j = o is supersingular if p = i (mod 6)

j==ij^8 is supersingular if p=i (mod 4). Q.E.D.

We obtain the following picture for the reduction modulo p of Xg(N):

Z^Xo(N')®F,

these present
•v=i

Z^Xo(N')®F

^ these are present
\ if and only if u== i

^ these are present
I if and only if y== i

G } J
^ ]

We now recall results of Raynaud [56] which will allow us to pass from The-
orem (1.1) to Theorem (A.i) and its variants.
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Let:
K == discretely valued field, complete for the valuation.
R=ring of integers in K, k ==R/(7r)= residue field (assumed algebraically closed).
S =Spec(R), T] and s its generic and closed points respectively.
C == a curve, smooth, geometrically irreducible and proper over K.
f : ̂ -> S == minimal model of G over R. (Recall that ^ is the (unique) regular scheme,

proper and flat over R, with generic fibre ^==0 such that for any other regular
scheme c g ' flat over R with generic fibre ^==C, the birational map ^'—^ is
a morphism.)

^==jacobian variety of G=Pic°(G).
J == Neron model of / . (Recall that J is the (unique) group scheme smooth over R

such that for every other smooth group scheme J' smooth over R, any K-morphism
J^^JT] comes from a unique R-morphism J'-^J.)

The following result of Raynaud gives the connection between ^ and J:

Theorem (1.3). — With the above notations^ assume that d=g.cA. of all multiplicities d^
of the irreducible components C^ of ̂  is equal to i.

Then:
J^Pic^/E,

where:
'Pic^==kernel of the morphism "degree^ deg : Pic^/g->Z

and: E == scheme-theoretic closure of the unit section in Pic^/g.

(This result is not stated in this form in [56]; it is a consequence of the results
in that paper (we adhere to the terminology of [56]):

a) f verifies condition (N) and we have:

fW==^

hence f is cohomologically flat in dimension o ([56] (7.2.1)) .
b) Pic^/g is representable by a formally smooth algebraic space in groups; and

Pic^/g is represented by a separated smooth group scheme ([54] (8.2. i)). The quotient:

Q-Pic^/E

is representable by a separated smooth group scheme over S ([56] (8.o.i)).
c ) The group scheme:

QJ == inverse image in Q^ of the torsion part of Q7Q°

is the Neron model of ^==Pic^ /^.
d ) The morphism:

Pic^Q:
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is surjective, with kernel E (cf. [56] (8.1.2)); hence Pic^g/E^C^ is the Neron model
of^.)

We extract from [56] (8.1.2) the following additional information:

Proposition (1.4). — Let D^Z71 be the free abelian group generated by the irreducible
components C^ of ̂ . Let D*==Hom(D,Z) be the dual group. Define:

a : D -> D*

Ch> S ^-(G.C,).G,
i-lfl,

and: (B : D*->Z

Sa,.C;^S^.
i i

Then [Boa=o; and, sending ^ePic(^) to ^ldeg{^\C,).C^ identifies:
i fl,

JJJ^ker(|B)/Im(a).

To apply these results in our case we note that we may pass to the algebraic
closure F of F ,̂ since formation of Neron models (respectively of minimal models of
curves) commutes with etale base change (Fy is perfect).

2. Calculation of the table.

We use the Proposition (1.4) of section i.
The irreducible components of the reduction modulo p of Xo(N), the minimal

model of Mo(N), are Z, Z', E,, F,, G, (z=i , . .., 2^) (with the convention that E,,
respectively F^ and G,, are missing if u==o, respectively y==o) . They all have multi-
plicities equal to one.

Hence:

(2.1) D=free abelian group generated by Z, Z', E,, F^, G,.

Let Do =ker(jB)= elements in D of degree o (cf. section i, Proposition (1.4)).
Let D* and D^ be their respective dual groups.

Then:

(2.2) A basis of D^ is given by:

Z =Z+-Z /+

E^E^-Z^
F,=F;-Z'*
G^G^-Z".
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The intersection products, as read off from the configuration of divisors given
in section i, determine the self-intersection numbers:
(2.3) Z.Z ==-^+2\U+2\V)

Z'.Z'^-^S'+s^+s^).
Hence, since 0=D^/Im(a):

(2.4) 0= Do /modulo the relations
m. SE, +n. i;F,—(S'+ ̂ m + ̂ n) .Z =o

i i

m.SE.+Tz.SG.+S'.ZEEO

Z—2.E,=o
n.Z—2nF^nGi=o

2nG^—nF^=o.

(2.5) The order of 0 equals the absolute value of the determinant of the intersection
matrix of Z', E,, F,, G,.

To fill in the table we distinguish cases:

1st case: {u, v) == (o, o)
— — p—i

Here 0=Z.Z/S'Z, hence its order is S'==Q.-——; 0 is generated by Z.

2nd case: (u, v)==[o, i)
The order of 0 equals the absolute value of the determinant of the following

intersection matrix:

T

Fi

Gi

F2

G,

F^v

G^v

Z7

-(^4-2^

0

I

0

I

0

I

FI

0

—2

'

0

0

0

0

G!

I

I

—2

0

0

0

0

Fa

0

0

0

—2

•

0

0

G, .

I

0

0

I

—2

0

0

• • F,v

0

0

0

0

0

0

0

0

—2

I

G^v

I

0

0

0

0

0

0

0

.
—2
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Adding to the Z'-row:

-(sum over F^-rows) + - (sum over G,-rows)
0 0

gives as new Z'-row:

S f V ^

— —2 . , 0, 0, . . ., 0;
0

hence the determinant equals:

det=-(s'+l.2v\32''=-^-l(3.S'+2v).
\ 0 /

The relations (2.4) allow us to eliminate F^, and the E^ are absent:
/ - 2V - \ / _ _ _

$=^Z.Z®^®Z.G,)J/(SG,+S'.Z,Z-3.G,).

Hence ^/(cyclic subgroup generated by Z^Z^-^Z. The order of Z in $ is thus:
3.a(^-i)/i2;

since this number is prime to 3 (because, if v=i, then j&=5 or 7 (mod 12) and
^SEI (mod 3), z=i , . . . ,2^ , the cyclic subgroup of 0 generated by Z is a direct
summand.

3rd case: (u^ v) = (i, o)

The order of 0 equals the absolute value of the determinant of the following
intersection matrix:

T

EI

£2

^

7/

-(S'+s^)

i

i

i

EI

i

—2

0

0

E2

I

0

—2

0

. . . E,v

i

0

0

—2

Adding the Z'-row to -.(sum of the E,-rows) one obtains as new Z'-row:

-S'-^^o.o, ...,o,

hence: det=-22' S^-^
\ 2
'(s.^4

7^2
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The relations (2.4) become in this case:
SE^S'+a^.Z^o

SE,+S'.Z =o

-2E,+Z

Hence O/(cyclic subgroup generated by Z^Z/s^^Z. The order of Z is thus
^Q.'C^—1)/^. If v^i, then the cyclic subgroup generated by Z is not a direct
summand of 0 but is of index 2 in a direct summand.

4th case: {u, u)={i, i)

The order of 0 equals the absolute value of the determinant of the following
intersection matrix:

Z'

EI

E^v

FI

GI

^

G,.

Z'

-(S'+s^i)

i

i

0

1

0

I

El

I

—2

0

0

0

0

0

0

E^v

. . . i

0 . . . 0

—2 0

. . . —2

. . . 0

0

0

0

FI

0

0

0

0

—2

I

0

0

GI

i

0

0

0

I

—2

0

0

. . . F^v

. . . 0

. . . 0

. . . 0

. . . 0

. . . 0

0

—2

I

G^v

I

0

0

0

0

0

I

—2

Add to the Z'-row:

- (sum of E^-rows) + - (sum of F^-rows) + - (sum of G,-rows)
0 0

to get as new Z'-row:

-S'+|2V=-S'-2V+1+-2V+-2V, 0,0,...,0.
o

^ ' - l -5oV—_Q'___o v + l - l - l o ^ - l 2 ^
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Hence:

det^-G^S'+II.A
\ 6 7

The relations (2.4) become:

ZE=2.E,=s.G,
SE,+SG^.=-S'.Z (ij=i, ...,2').

Hence O/(cyclic subgroup generated by Z^Z/G^^Z. The order of Z in 0
is thus 6.Q^.(^—i)/ i2. If v^i , the cyclic subgroup of 0 generated by Z is not a
direct summand of <& but is of index 2 in a direct summand.

In conclusion, we have filled in all entries of the table; sections i and 2 also prove
Theorem (A.i) except for the statement about the action of Frobenius on J°®Fp.

3. The Frobenius action*

Let N=p be a prime number. Denote by F the following graph:
vertices = components Z, Z'

edges = supersingular points (joining Z and Z')

r:z

There is a canonical isomorphism (cf. [9]):
J°®r^H\^Z)®G^

The action of the Frobenius endomorphism of J°®Fp may be identified with:
a®F^: H^^G^H^^G,

where a : r->r is the map which fixes the vertices and which sends a supersingular
point x (corresponding to an c( edge " of F) to the unique supersingular point x'=y.{x)
such that j^^^j^xy. But the map a induces the endomorphism —w on H^F, Z),
because a is the composition of w with the automorphism of F which interchanges the
vertices and keeps the edges fixed. Hence:

F=a®F^=-^.

This proves part a) of Theorem (A.i).
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