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GROUPS OF SIMPLE ALGEBRAS
by Moss E. SWEEDLER (1)

This paper is dedicated to George Rinehart.
I often feel he is still next door.

Foreword

This paper may be read from three different points of view. The first point of
view is that we are presenting a generalization of the relative Brauer Group and associated
theory.

The second point of view is that we are studying and constructing simple algebras.
The third point of view is homological. The introduction is divided into three parts.
One for each point of view.

Introduction

Relative Brauer Group

Here is the realization of the relative Brauer Group generalized in this paper.
A is a field and A is a finite degree field extension of k. One can consider A as

being contained in End^A since A acts on itself by translation. Suppose U and V are
k algebras each of which contains a copy of A. Write V/^U if there is an algebra
isomorphism V^U which is the identity on the copy of A. Let < V > denote the <c /^ "
equivalence class of V.

Form U®^V with respect to A acting on the left of both U and V (so that
au®v==u®av). Let Ux^V denote the A-subspace of U®^V consisting of

{S^®^eU®^V[ S^<2®^==S^®y^, aeA}.
i i i

Ux^V has an algebra structure with unit i® i and with product determined by
(S^.®y,)(S^®^) ==S^^®^^.i ' - r3 3 l r r t j

Let € denote the set of < c ̂  " equivalence classes of algebras U where U^ End^A
as an A.-bimodule. For <U>, <V>e<? one has (Ux^Vye^ and c( x^ " defines a

(1) Supported in part by NSF GP 23102.
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80 M O S S E . S W E E D L E R

commutative associative product on € with unit <End^A>. For <U>e<?, U is a
central simple ^-algebra if and only if < U > is invertible in the monoid €. The group
of units in € is naturally isomorphic to Br(A/^), the subgroup of the Brauer group of k
consisting of classes split by A.

Let U°P denote the opposite algebra to U. Another realization of U^X^U
is the following:

Form U^^U with the "slip by3 5 indicated by ua^u'^u^au'.

Take the supspace

{S^0^eU®AU[S^®^=S^®^^ aeA}.
i i i

The product is determined by (S^®^)(Sy,®y-)=Sy.^®^y-.
i J », j

Suppose A is its own centralizer in U, as is the case if < U > e<?. Then A is naturally
a right U^X^U-module. In terms of the second realization of U^PX^U, for
^u^u'eU^X^U and aeA one can form, * i A

^u^au[ (product in U).
i

The element is in the centralizer of A, i.e. A itself, and so the right module structure
is defined.

For < U > e < ^ the following three statements are equivalent:

(i) A is a faithful right V^X^U-module;
(ii) < U > is invertible in S\
(iii) U is a central simple A-algebra.

For invertible < U > e < ? the right U^X^U-module structure provides an algebra
isomorphism U^X^U^EndfeA)^ which is the identity on A; in other words

(*) <U°P><U>=<(End,A)°P>.

It is true that < (End^A)op>= <End^A> and so (*) gives the classical result that the
equivalence class of an algebra and the equivalence class of its opposite algebra are
inverse. However notice that (*) is a natural equivalence, but the equivalence
< (End^A)op>= <End^A> is not natural. This latter equivalence depends upon A
being Frobenius over k. Therefore when we start (< generalizing " and A is no longer
Frobenius over k the equivalence < (End^A)01" > = < End^A > no longer holds.

Since A is finite dimensional over k there is a natural isomorphism End^A ̂  A@^A*,
where A*=Hom^(A, k). Since A* is the dual to a finite dimensional A-algebra it is
a ^-coalgebra. Thus End^A=A®^A* is naturally an A-coalgebra. The coalgebra
diagonalization A : End^A^(End^A)®^(End^A) has image in (End^A) x^End^A)
and provides the natural equivalence End^A^(End^A)XA(End^A) or

< End^A > < End^A > = < End^A >.
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GROUPS OF SIMPLE ALGEBRAS 81

In the above End^A is the model for the identity class < End^A> in <?. In the
generalization developed herein we deal with a commutative ^-algebra A over a com-
mutative ring k. The generalization of End^A is a c< x^-bialgebra 5? E where < E > is
the model of the identity class in S <( E )> which is the generalization of S above.

Homology Theory

Suppose A is a ring and M and N are A-bimodules. The <( product " M X^N
is defined as the additive subgroup of M®^N consisting of

{S^®^eM®AN|S^^®^==S^0^ff, aeA}.
i i i

Here the tensor product M®^N is with respect to M^ and ^N. Some properties of/^/ /^/
the functor Mx^N are derived, properties which are needed in studying Mx^N
when M and N are rings. Suppose M and N are rings and i : A—^M, j : A->-N are
ring maps. These maps give M and N A-bimodule structures, permitting the formation/^/ /'>•'
of Mx^N. However, now Mx^N has a ring structure with unit i ® i and with
product

(Sm^®^) (ST/ZJ®^) ==S^77^®7^

for S m^ ® ̂ , S wj ® n. e M X ̂  N C M ®^ N. With this ring structure M X ̂  N is naturally
i 3

isomorphic to Endj^^ ^(^^A^) where N is the opposite ring to N.
If M is an A-bimodule or ring over A then the symbol " M " is not defined when

A is not commutative. It needs the rest, the " X^N ". When A is commutative and
M is an A-bimodule, then M is defined as the opposite A-bimodule, where amb == bma.
If A is commutative and i : A -> M a ring map, then M is the opposite ring to M and

^, f>j
i : A->M, a\-^i(a). We identify M with M. We define Mx^N as

(%x^N
when A is commutative.

In this case Mx^N may be thought of as being contained in .M®^.N, the
tensor product with respect to ^M. and ^N. (See the definition of Ux^V in the
beginning of the previous section, Relative Brauer Group.) If M and N are simply
A-bimodules, then MX^N is an A-bimodule, where

a(Sm^®nJ b = S (fl^i) ® (n^b)

for a, beA, S^®^eMXANc.M®^.N. If M and N are rings over A with respect
i

to maps z, j as before then Mx^N is a ring over A with respect to
A -^Mx^N, a\->i{a)®i == i®j{a),

aeA. Thus, when A is commutative, cc XA 3? gives a product on the category of
A-bimodules and a product on the category of rings over A.

81
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82 M O S S E . S W E E D L E R

Even when A is commutative the " X^ " product of rings over A is defined more
generally than the tensor product. If i : A->M and j : A->N do not have images
in the centers of the respective rings then M®^N is not a well defined ring. Never-
theless MX^N is a well defined ring. If i and j have central images then Mx^N
is naturally isomorphic to M®^N as a ring.

Two rings over A are considered equivalent if they are isomorphic by an isomorphism
preserving the maps from A to each of them. When A is commutative " X^ 3? induces
a product on equivalence classes of rings over A. The product is commutative. Certain
equivalence classes are idempotent and hence are candidates for playing the role of
identity element in a group. For a given A there may be several groups built around
different identity elements. Each of these groups is essentially the H2 in a cohomology
theory. The cohomology theory is determined by the identity element or a representative
of it.

Among the main difficulties that arise with the < c x^ " product is lack of associ-
ativity. Suppose M, N and P are A-bimodules. There are natural maps from
MX^NX^P) and (Mx^N^X^P to a third A-bimodule, Y. When the maps to Y
are injective and have the same image they induce a natural isomorphism

(Mx^N)x^Mx^(Nx^P).

This isomorphism is automatically an isomorphism of rings over A if M, N and P happen
to be rings over A. A fair amount of technical detail is developed to establish when
MX^NX^P) is naturally isomorphic to (Mx^N)x^P as above. For example the
natural isomorphism holds if both M and P are the directed union of subbimodules
which are projective as left A-modules. Other conditions are presented.

The notion of x^-bialgebra is introduced. These are rings over A which are
like Hopf algebras but with respect to the product c < X^ "5 rather than tensor product.
X^-bialgebras or rather their equivalence classes are good candidates for being the
identity of a group as mentioned two paragraphs above, x^-bialgebras also determine
a cohomology theory which is akin to the Hopf algebra cohomology of [i].

However, in particular cases, it is shown that the x^-bialgebra cohomology is
naturally isomorphic to some other cohomology. For example if A is a commutative
R-algebra and is a finite projective R-module, then End^A is a x^-bialgebra and the
X^-bialgebra cohomology is isomorphic to Amitsur cohomology. Another important
example is rings of differential operators.

Let 9Jl=Ker(A®A -mu^ A). We say A has almost finite projective differentials if there
is a collection of ideals of A® A which is cofinal with {SO^^Lo and where for each
ideal I in the collection (A®A)/I is a finite projective left A-module. When A has
almost finite projective differentials, then D^, the ring of differential operators on A, is
a x^-bialgebra. A is said to have finite projective differentials when (A®A)/90fln is a
finite projective A-module for each n. In this case, when the ground ring contains Q,
the x^-bialgebra cohomology is naturally isomorphic to the algebraic De Rham cohom-
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GROUPS OF SIMPLE ALGEBRAS 83

ology of A from degree two onward. This leads to an interpretation of H^an^)
as classifying a certain Brauer-type group.

Some examples of rings with almost finite projective differentials. Suppose A is
an algebra which is a finite projective module over the ground ring. A is called purely
inseparable over the ground ring if Ker(A®A mu}^ A) consists of nilpotent elements.
In this case A has almost finite projective differentials although A is not necessarily
differentially smooth [8, (i6.10. i)]. Suppose A is a localization of a finitely generated
algebra over a field. If A is regular then A has finite projective differentials. The
tensor product of two algebras with almost finite projective differentials again has
almost finite projective differentials.

Our investigations lead us to consider the following type of cohomology theory.
Say A is a commutative algebra and {LJ is a collection of ideals in A®A. Let
e : A®A^A®A®A, a®b\-^a®i®b. Assume that {LJhas the following properties:

1) Given L^ and Lp there is Ly with L^cL^nLp.
2) Given L^ and Lp there is Ly with e(L^) cA®I^+Lp®A.

In the Tz-fold tensor product A® . . . 0 A form the collection of ideals of the form

L^®A®.. .®A+A®L^®A®. . .®A+. . .+A®. . .®A®I^

Let A ® . . . 0 A be the completion of the yz-fold tensor product with respect to the
family of ideals. (In degree o, A == A.) The second condition, e{L^ CA®!^ + Lp®A,
insures that the Amitsur complex maps

n n+i

e, : A® . . . ®A -> A® . . . ®A

^l® . . .®^h-> ^® . . . ® ^ ® I ® ^ ^ ^ ® . . . ®^

are continuous and induce maps ^ : A® . . . ®A —^ A® . . . ®A, raising degree by one.
The ^ are algebra maps. There are two natural cohomologies to consider at this point:
with respect to the functor (( underlying additive group " and with respect to the functor
" multiplicative group of invertible elements ". (In some cases there is an exponential
map relating the two. This happens in the theory about De Rham cohomology.)

Suppose that {L^} has the additional property:
3) (A®A)/L^ is a finite projective left A-module for each L^ and there is an L^

contained in Ker(A®A mul^ A). In this case {L^} gives rise to a X^-bialgebra which
lies in End A. End A is naturally an A® A-module where

((a®b).f){c)=af(bc)

a, b, ceA, /eEnd A. The X^-bialgebra C arising from {L^} is

{/eEndA|L^./=o for some LJ.
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The X^-bialgebra cohomology is isomorphic to the cohomology of the complex

{ A ® . . .®A, {^.}} with respect to the functor "multiplicative group of invertible

elements59. The cohomology of the complex {A® . . . ®A, {?.}} with respect to the
functor (< underlying additive group 5? is naturally isomorphic to Ext^(A, A) when A is
protective over the ground ring.

Simple Algebras

Let twist: A®A ~^A®A, a®b\->b®a. {L^} may have the property:
4) Given L^ there is Lp with twist (Lp) CL^.
Suppose {UJ satisfies properties i), 2), 3) and 4) and G is the associated

X^-bialgebra. We identify A with A^CEndA where Af is A acting on itself by left
translation. Since some L^CKer(A®A mul^ A) it follows that A^CC.

Theorem. — The following statements are equivalent:

1. G is a simple ring.
2. A is a simple C-module.
3. For each ideal ICA there is an L^ where A®l4:I®A+L^.
4. Suppose U and V are rings over A where U^V^C as A-bimodules and lIx^V^C

as a ring over A. Then U and V are simple rings.

This is one of the main simplicity theorems. It is used to establish the simplicity
of C as well as the simplicity of the rings in the equivalence classes which form the
Brauer-type group determined by G. One of the main applications is to establish
simplicity of rings of differential operators. In a moment we state our main theorem
concerning simplicity of rings of differential operators.

Definition. — An element o ̂ =ae A has the strong intersection property if for each
commutative algebra B the elements xeB®J^ are such that i+x is invertible in B®A.
Here Ja^J^Ajj^^o}. The algebra A has the strong intersection property if each
o+aeA has the strong intersection property.

A has the strong intersection property for example if J^ consists of nilpotent
elements for each o=t=aeA. In the section on homology some examples of algebras
with almost finite projective differentials were given. These examples also have the
strong intersection property. Hence the following theorem applies:

Theorem. — Suppose A has the strong intersection property and almost finite projective
differentials. Furthermore suppose that for each ideal O+ICA both I and A/I are flat over
the ground ring and (A/I)® A is a Noetherian ring. Then the ring of differential operators
on A is a simple ring.
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GROUPS OF SIMPLE ALGEBRAS 85

The center of the ring of differential operators is characterized by:

Theorem. — Suppose the ground ring is a field with algebraic closure S. If S®A®A
is Noetherian, then the center of the ring of differential operators on A is (Sep A/; i.e. Sep A
acting on A as left translation operators. (Sep A is the subalgebra of A consisting of elements
satisfying non-zero separable polynomials over the ground ring.) Moreover Sep A is
finite dimensional.

In the beginning of the section on Homology the product M X^N is described.
This product without much other theory is used to give a criterion for simplicity of
a ring. Here we are no longer assuming that A is commutative. Let i : A->M be
a map of rings and let L denote the centralizer ofz'(A) in M. Then L is a right Mx^M-
module where

^.(S^®^)=S77^;,
i i

^eL, I;m,®w,'eMxAMcM®^M.
i

Theorem. — Suppose L is a faithful right Mx^M-module, M is flat as a left A-module
and o =(= I X^M for non-zero two-sided ideals I C M. Then M is a simple ring ifL is a simple
M x^M.-module.

This is result (3.7). All the other results on simplicity eventually come down
to this theorem

o. Conventions

Throughout we are working over a commutative ring R with identity.
We use unadorned ®, Horn and End to denote ®R, Hom^ and End^. All

algebras are R-algebras. They have unit and subalgebras have the same unit. All
modules are unitary. Our typical algebra A is assumed to be commutative in all
sections except o, i and 3.

For an algebra A let A denote the (( opposite " algebra where

A ̂  A

is an algebra ^^-isomorphism.
If M is a left A-module, also consider M as a right A-module by setting ma==am,

aeA, meM. Similarly, right A-modules are made into left A-modules.
If M is simultaneously a right and left A-module and satisfies {am)b-=a{mb)

a, be A, m eM and the right and left R-module actions on M are the same then M is
called an A-bimodule. In this case M is also an A-bimodule (< switching both sides 5?.
A bimodule map is one which is both a left and right module map. An A-bimodule M
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can be viewed as a left A®A-module where (a®~b) .m=amb, a, beA, meM. This
gives an equivalence between the category of A-bimodules and the category of left
A®A-modules.

If we write M®^N this indicates the tensor product with respect to the right
A-module structure ofM and left A-module structure ofN even ifM or N are A-bimodules.

If we write Hom^(M, N) this indicates the " horn " with respect to the left
A-module structure of M and left A-module structure of N even if M and N are
A-bimodules. Thus if M and N are A-bimodules the set of bimodule maps from M
to N is the same as Hom^^(M, N).

Let M be an R-module. Giving an A-module structure of M is the same as giving
a representation p : A->End M where p is an algebra homomorphism if M is a left
A-module, and p is an algebra anti-homomorphism if M is a right A-module. (Of
course p is determined by a.m= p(^)(m), aeA, TTzeM.) When discussing several
A-module structures on M it will sometimes be convenient to use the associated represen-
tations. For example if M has two A-module structures with representations p^ and
pg we say that the A-module structures (or actions) commute if for all a, be A

Pl(^P2W=P2WPl(^EEndM•

Suppose M has several A-module structures with representations {p^^r The
Vi-module equalizer of the A-module structures denotes

{meM\^(a){m)=^{a){m), ijel, aeA}.

This is only an R-submodule of M in general. However, if M has an A-module
structure " * 3 9 which commutes with all the A-module structures used in forming the
R-module equalizer, then the R-module equalizer is a sub *-A-module of M.

The ^-module coequalizer of the A-module structures (with representations {pi}^i)
denotes M/N where N is the R-submodule of N generated by

{p^)(w)-p^)(m)eM[z,jeI, aeA, meM}.

This is only an R-quotient module of M in general. However, if M has an A-module
structure (< * " which commutes with all the A-module structures used in forming the
R-module coequalizer, then the R-module coequalizer is a quotient "-A-module of M.

We only deal with R-module equalizers and R-module coequalizers to define the
symbols < c J" " and (< J ".

Many R-modules have several A-module structures indicated by (c position 3?.
For example ifM and N are A-bimodules then ^M®^N^ has/" and r A-module structures.
A more complicated example: Suppose F is an n variable additive functor from the
category of R-modules to the category of R-modules and M^, . . ., M^ are A-bimodules.
The A-module structure ^M, induces an A-module structure on F (Mi , . . . ,MJ
indicated by the symbol F(Mi, . . ., M,_i, ^M,, M^^, . . ., MJ where x is an indeter-
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GROUPS OF SIMPLE ALGEBRAS 87

minate. Similarly the A-module structure M^ induces an A-module structure on
F(Mi, ..., MJ indicated by the symbol F(Mi, . . . , M,_i, M^, M,+i, ..., MJ.

Now say that M is an R-module which has several A-module structures indicated
by positions. Following Mac Lane we denote the R-module equalizer of those A-module
structures by the symbol

(M with x placed in the appropriate positions).

The R-module coequalizer of those A-module structures is denoted by the symbol

(M with x placed in the appropriate positions).

For example, if M and N are A-bimodules then

M®^N==f M^N
J x

Hom^M, ̂ ^HomQM, ̂ N)

{meM.\am=ma, aeA}= f^M^.

The x is merely a place holder and may be replaced by other letters, especially
in iterated integrals. For example, if M, N and P are A-bimodules then

M^N^P-f f M^N® P = f f M^®N®JP.
J y J x J x J y

One of the main concerns of this paper is studying

J^M,®,N,=J>[®^N,.

As another example the set ofA-bimodule maps from M to N may be described as

JfHornQM,, ̂ )=fx ̂ Hom^M,, ̂ ).

When A is commutative we shall have to consider

f ^M®^N®^P
J x

which is the triple tensor product over A of M, N and P with respect to A acting on
the left. In general

J ^M®^®^]^®^®^-! J M^®^Ny®^P.

One of the reasons for introducing the (< I ... " notation is to easily distinguish different
tensor products of bimodules.

Suppose A is a commutative algebra and M is an A-bimodule. Let M denote
the A-bimodule where

(w ̂  m) ^
M ——> M

is an R-module isomorphism and amb=bma a, 6eA, meM.
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If A is an algebra then an algebra over A is a pair (U, i} where U is an algebra and
i : A->U is an algebra map. Notice that this does not make U into an A-algebra. For U
to be an A-algebra, A would have to be commutative and Im i would have to be in
the center of U.

If? is injective we may then identify A with its image in U so that i is the inclusion
map. If (U, i) and (U', z') are algebras over A, then /: U->U' is a map of algebras
over A if/is an algebra map and fi-=i'. If/is bijective it is called an isomorphism
of algebras over A. In this case/""1 is also an isomorphism of algebras over A and (U, z)
and (U', z') are called isomorphic algebras over A.

If (U, i) is an algebra over A, the canonical A-bimodule structure on U is given
by aub=i{a)ui(b), a, beA, ueU. A map of algebras over A is an A-bimodule map.

If (U, i) is an algebra over A, then a subalgebra VCU is called a subalgebra
over A if Im i C V. In this case (V, i with its range restricted to V) is an algebra over A.
Usually it will be written (V, z).

Let t\ A— End A be the injective algebra homomorphism determined by
cf(V}=ab, a, beA. For aeA the element of is sometimes called a as a left translation
operator. The pair (End A, f) is an algebra over A and defines the canonical A-bimodule
structure of End A. Thus {qfb){c)==af{bc), a, b, ceA, /eEnd A.

If (U, i) is an algebra over A then i denotes the map A ^'^ U, making (U, T)
an algebra over A. If A is commutative and (U, i) is an algebra over A, let U denote

(u »->•?<') ^
the opposite algebra to U considered as an algebra over A. Thus U——" U is an algebra

/^/
^^-isomorphism and i : A a-—^ U is an algebra map giving (U, T) the structure of
algebra over A.

If M is a module with a family of submodules {M^} then M is the directed union
of{M^} if each finite subset of M is contained in an M^.

The term (( finite projective module5? is used interchangeably with the term
(< finitely generated projective module " .

i. Mx^N as a module

M and N are bimodules for the algebra A.

Definition (1.1). — Mx^N denotes the R-submodule (\M®AN^ of M®^N.

Since A may not be commutative " M " is not defined, it needs the rest of the
symbol " X^N ". The natural equivalences M®A A ==M=A®^M induce

Mx^A=J\M,=Ax^M.
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If/:M->M', g : N->N' are maps of A-bimodules then f®g : M®^N -» M'®^N'
satisfies {f®g)(f\M®^) cJ^M'^AK.

Definition (1.2). — fxg : M x^N — M' x^N' is the R-module map induced by
f®g'

The following properties hold:

i. If f and ^ are A-bimodule isomorphisms then fxg is an R-module isomor-
phism with inverse f~~lXg~l.

, , 2 . If/is injective and N is flat as a left A-module then f"x I : M x^N -> M' x^N
is injective.

3. If Mis flat as a right A-module and g is injective then Ixg : Mx^N -> Mx^N'
is injective.

Suppose X is a right A-module and C is a left A-submodule of End A. There
is the map

(1 .4) A : X®^C->Hom(A,X)

A(x®c){a)=xc{a), xeX, ceC, aeA.

Proposition (1.5):

1. If X is aflat right A-module and is the directed union of finitely presented submodules
then A : X®^C -> Horn (A, X) is injective.

2. If X is the directed union of submodules {X^} and each X^®^G^Hom(A, XJ
is injective then A : X®^G — Horn (A, X) is injective.

3. If X®^C ̂  Horn (A, X) is injective then Y®^G -^ Horn (A, Y) is injective if Y
is an A-submodule of X which is an A-direct summand.

4. If X is a projective right A-module then A : X®^G —^ Horn (A, X) is injective.

Proof:

i. Let F->A be a surjective R-module map where F is a free R-module. This
induces injections

Hom(A, X) -i Hom(F, X) and Hom(A, A) ̂  Hom(F, A).

IfHom(F,^.A) has the left x A-module structure, then y is an A-module map. The
diagram

X®^G 1®^ X®^Hom(A,A) I@^ X®^Hom(F, A)

Hom(A, X) -———————3———————> Hom(F, X)

89
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90 M O S S E. S W E E D L E R

commutes, where a is the injection C-^ Horn (A, A) and p is determined by
P^^K/) =^CA -^X, /eF, ^eHom(F, A). By flatness of X the top row consists
of injections. Thus it suffices to prove that p is injective.

If Y is a submodule of X the diagram

Y®^Hom(F,A) -"-> Hom(F, Y)

X®^Hom(F,A) Hom(F, X)

commutes, where the vertical arrows are induced by Y->X. By left exactness of Horn
the right vertical arrow is injective. By the directed union hypothesis each element of
X®^Hom(F, A) is in the image of the left vertical arrow for some finitely presented
submodule Y of X. Thus it suffices to prove that p is injective when X is finitely
presented.

Let o—^K-^L—^X—^o be an exact sequence of A-modules where K is finitely
generated and L is free and finitely generated. The diagram

K®^Hom(F,A) —> L®^Hom(F, A) —> X®^Hom(F, A) —> o

Hom(F, K) Hom(F, L) Hom(F, X)

commutes. The top row is exact by right exactness of cc ® ". The bottom row is exact
because F is a free R-module. The left p is surjective because K is a finitely generated
A-module and F is a free R-module. The center p is bijective because L is a finitely
generated free A-module. Thus by the 5-lemma the right p is injective and Part i is
proved.

2. The diagram
X,®.GSx^A Hom(A, XJ

X0^G Horn (A, X)

commutes, where the vertical arrows are induced by X^—X. By left exactness of Horn
the right vertical arrow is injective. By the directed union hypothesis each element of
X®^G is in the image of the left vertical arrow for some a. This proves part 2.
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3. The diagram
Y®^G X®^G

Hom(A,Y) —> Hom(A.X)

commutes. By the direct summand hypothesis the top horizontal arrow is injective.
Also by hypothesis the right vertical arrow is injective. This proves the left vertical
arrow is injective and Part 3.

4. A free A-module is the directed union of finitely generated free submodules.
Hence, Part 4 follows from Part i and 3. Q.E.D.

Proposition (1.6). — Let M be an A-bimodule and G a sub-A-bimodule ofEnd A.
1. There is an R-module map ^Q : Mx^C->M determined by

^m^c, -^> Sm^(i), S^®^ef\M®^C^=MXAC.
i i i J

2. ~6 is injective if A : M®^G -> Horn (A, M) is injective.

Proof. — A( (^M^G^) cHom^(A, M) which as usual is identified with M.
The diagram

^ r-x A|J-^M®AC^
Mx^C^j ^M®^C, —————> Hom^(A,M)=M

M®^G -> Horn (A, M)

commutes, where the vertical arrows are natural inclusions. The top horizontal map
from Mx^C to M is ^6. Q..E.D.

2. Mx^N for Commutative A

Throughout this section A is a commutative algebra. Thus ifMis an A-bimodule M
is defined as the <( opposite 3) A-bimodule.

For A-bimodules M and N the R-module f ^My®yM^ has the set {x,^, z}

of A-module structures. F t yMy®J^y is an x, y and z A-submodule of f yMy®j^^ and

the y and z A-module structures on | j yMy®yNy^ are the same.
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Definition (2.1). — Mx^N is the R-module J^J^My®^. As an A-bimodule
the left A-module structure is the x A-module structure and the right A-module
structure is the y A-module structure.

Since A is commutative, ifMis an A-bimodule, M is defined. Thus, ifN is another
A-bimodule, the symbol Mx^N has meaning in terms of (1.1) and (2.1). The two
definitions are related by the commutative diagram

J^M^.N^Mx.N^J-J^M^^

(2.2) n n
M®^N ^ m 0 0 n ^ m ® n ^ f ^M®^N

Notice that Mx^N is also naturally identified with F t ^My®^Ny, with the

left A-module structure on Mx^N being the y A-module structure, and the right

A-module structure on Mx^N being the x A-module structure. In a later section

we shall deal with Mx^N. By (1.1) Mx^N is J^M®^Ny. Mx^N may also

be identified with J\M^N^, where the right A-module structure on Mx^N is

the x A-module structure and the left A-module structure on Mx^N is they A-module
structure. Thus the natural inclusion

Mx^N^M^N,

is a right A-module map if the right A-module structure on M^N is the x A-module
structure. The natural inclusion is a left A-module map if the left A-module structure
on yM®^Ng is either they or z A-module structure.

If /: M->M' and g : N->N' are maps of A-bimodules, then

f®g : f ^M®^N->J JM'^N'

carries Mx^N to M'x^N'.

Definition (2.3). — fxg : Mx^N -> M'x^N' is the R-module map induced
by f®g.

~ '̂ '̂
fxg is an A-bimodule map. If/ is the A-bimodule map defined by M m H > ^ M'

then fxg makes sense in terms of (1.2) or (2.3). That the two definitions agree
follows from (2.2). Thus (1.3) gives the following properties for fxg:
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i. If/and g are A-bimodule isomorphisms then fxg is an A-bimodule isomor-
phism with inverse f~lXg~l.

f^ x 2. If/is injective and N is flat as a left A-module then /xl: Mx^N -> M'x^N
is injective.

3. If M is flat as a left A-module and g is injective then I xg : M x^N -> M x^N'
is injective.

Proposition (2.5). — M, N and P are A-bimodules.
'-r^r . i • r - C -» if ̂  -i».-r (w®ni->n®w) /* _ _1. The natural isomorphism J^M®^N—————> j ^N®JV[ induces an A-bimodule

isomorphism MX^N-^NX^M which is denoted " twist".

2. There is an R.-module map (Mx^^x^P a> ̂  j^x^y^x^y^x^y induced by the

composite (M x^N) X^P c^ ̂ M x^N) ®^P - l̂ f ^M®^N®^P.

3. The map a ^ injective when P ̂ //^ ̂  ^ left A-module. If in addition A is of finite
presentation as an A® A-module then a is bijective.

4. The map a is bijective when P is projective as a left A-module.
5. The map a is bijective if Mx^N is flat as a left A-module and P is the directed union

of projective left sub-A-modules.

Proof. — Parts i and 2 are left to the reader. (The i. maps in part 2 are the natural
inclusions.)

It is clear in part 3 that a is injective if P is flat as a left A-module.
Let L be an A-bimodule. There are identifications

[JA^= H o mA®A(A5L). ^^^x corresponds to (a\->at=ia\

(*) l*x
n (^^^-^(^^(A, L®^P) where L®^P is an A®A-module by
[ {a®b).^®x)==afb®x for a, beA, ^eL, xeP.

The map (J^L^®^P -> L®^P has image in J^QL^P) and induces a map

^L^®AP^J^QL,®AP). In terms of the identifications (*)

z : Hom (̂A, L)®^P -> Hom^A, L®^P)

is given by W®x)){a)=f(a)0x, feHom^^A, L), ^eP, aeA.
IfU and V are rings and there are modules yX, yYy, yZ then there is a natural map

Homu(X, Y)®yZ -"> Homu(X, Y®yZ)

[3, Prop. 10, p. 38]. This is our z map in the case U=A®A, V==A, X=A, Y==L,
Z=P. By [3, Prop. 10, p. 38] z is a bijection if X is a finitely presented U-module
and Z is a flat left V-module. It is easily checked that z is bijective if X is a finitely
generated left U-module and Z is a projective left V-module. Thus the map z is bijective
under the hypothesis of parts 3 or 4.
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IfL is flat as a right A-module and P is the directed union of left sub A-modules { P }
then L®^P = L^lim P-r) = lim (L^Py) ^d the right hand limit is a directed union.
If for each y the map (J\L^(8^P^ -"J^ (A^Py) is an isomorphism then

(J^L,)®AP=(J%L,)®A(limP,)=lim((f,L,)®^

^InnJ'QLAP^^lnnHom^^A, L®^)

= = Hom^(A, Inn L®^ P^) = Hom^ (A, L®^lm P^)

=Hom^(A, L®AP)=J'CL^P)

where the doubled equality (= ==) follows from the facts that the direct limit is mono-
morphic, i.e. a directed union, and A is a finitely generated A®A-module.

Thus the map Q\:4)®^P -> L®^? maps { [ x ̂ \®^P isomorphically
to J^OL^P) when

(i) P is flat as a left A-module and A is a finitely presented A®A-module,,
or

(^) \ (ii) P is projective as a left A-module,
or

(iii) L is a flat right A-module and P is the directed union of left sub-

modules {P^} where for each y, (J^L^^Py -> L^Py maps (J\LJ®^
isomorphically to [ x {yL^^P^).

Thus if the hypothesis of parts 3 or 4 or 5 hold, then, by (^), the L®I map in part 2-
maps J^(M:XAN)®JP isomorphically to J^J^M^N^P. Thus L®I maps
(MX^N)XAP isomorphically to

J2 I' £ ̂ ^A, ̂ A -J' J, My®^y®^y . Q..E.D.

Similarly to a in (2.5, 2) there is a map

a' : MxA(NxAP)->fJ^M^N,®,P,.

And (2.5, parts 3, 4, 5) with suitable modifications gives conditions for a' to be injective
and bijective.

Definition (2.6). — An ordered triple (M, N, P) of A-bimodules is said to associate
if the maps a and a' are injective and have the same image.
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(MXAN)XAP MXA(NXAP)

fJ^M,®^®^

In this case the induced isomorphism (Mx^N) X^P^ MX^NX^P) is called the
association isomorphism.

The association isomorphism is an A-bimodule isomorphism. Sometimes (M, N, P)
associate because a and a' are isomorphisms. For example by (2.5), (M, N, P) associate
when M and P are projective left A-modules or when M and P are flat left A-modules
and A is of finite presentation as on A®A-module.

Definition (2.7). — An A-bimodule M is an associative bimodule if (M, M, M)
.associates.

By symmetry M is an associative bimodule if

a : (MXAM)XAM^J'J^M,®,M,®,M,

is an isomorphism.
Let M be an A-bimodule and C a sub A-bimodule of End A.

Definition (2.8). — 6 is the composite Mx^C^ Mx^C^ M {m^ M, where ^6
is defined in (1.6).

For Sm,®^eMxAGcJ^M®^G, e(Sm,®^)=S^(i)^. The map 6 is an

A-bimodule map. Conditions for 6 to be injective are provided by (1.6) and (1.5).
Suppose M and M' are A-bimodules and N and N' are left A-modules. 9 denotes

the map

(2.9) J,(MXAM')^N®^N' ̂ J^M®^®^'®^'

•determined by (S^®^)®^®^' H- S (w,®^)®^®^) for Sm,®^eMxAM', %eN,
.n'eN'.

If N and N' are also A-bimodules then the composite

(M x^M7) ®^(N x^N') -^> J^ (M x^M'^®^®^-' ̂  f ^M®^®^'®^'

has image in (M®^N) x^M'®^') cJ^M®^®^!'®^'. Let ^ denote the
induced map

{2.10) (MXAM')®^(NXAN') -i (M®^N)XA(M'®^N').
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^ is an A-bimodule map. The various module structures preserved by cp and ^ will be
mentioned as needed.

We conclude the section with final results on A-bimodules:

Proposition (2.11). — Let M, N, P be A-bimodules where M is the directed union of
subbimodules {My} and P is the directed union of subbimodules {Pp}. Moreover assume each M
and Pp zj- projective as a left A-module. Assume N is flat as a left A-module. Then (M, N, P)
associates as A-bimodules. Moreover the a and a' maps are isomorphisms.

Proof. — For each y and P there is a commutative diagram

(M^N)x^PpM^(Nx^Pp)

L X (I X l) ^r f M ® N ® p
J Ja; rt; T?/ x V x (

(^ X I) X I

Mx^(NxJ>) (MXAN)XAP

TL^A®.^ .P.

where F is induced by

f J, ̂ y^yWy —> J, -M.0.N@.P3 ̂  L .M@.N@.P•

Since M and P are the directed union of projective left A-modules they are flat. Therefore
all the vertical maps in the diagram are injections. Moreover the range modules of
the vertical maps are the directed union of the images of the vertical maps as y and (B
vary. By (2.5, 4) the upper a is an isomorphism and similarly the upper a' is an
isomorphism. Hence the lower a and a' are isomorphisms. Q.E.D.

Since End A is an A-bimodule it is an A®A-module where {a®b)f==afb, a, beA,
/eEndA. Consider ,A®A as a left A-module by the x A-module structure. Let
{L^} be a set of left sub A-modules of A®A with the properties:

(i) For each L^, (A®A)/L^ is a finite projective (left) A-module.
(ii) Given L^ and Lp there is Ly with L^DL cLo.

Let G^=={feEndA\x.f==o, xeL^}. Let C = U G ^ . By property (ii) above
oc

it easily follows that given G^ and Gp there is Gy with G^CG^Cp. Hence G is the
directed union of{GgJ.

Theorem (2.12). — a) C^ is naturally isomorphic to Hom^((A®A)/L^ A). The
isomorphism is given as follows: for /eG^cEnd A and ^e(A®A)/L<, let I;^®^eA®A

lie in the coset of z. Then if F is the element of Hom^((A®A)/L^, A) corresponding to f
F(.)=SV^).
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b) Each G^ is a finite projective A-module and G is flat as a left A-module.

c) If M is any right A-module then M®^G -> Horn (A, M) is injective. I.e. « all
A-maps are injective for C ».

d) If L^ is an ideal then C^ is a sub-A-bimodule of End A. If all (LJ'J are ideals
of A®A then G is a sub-A-bimodule of End A. (This result does not use the finite projec-
tivity of (A®A)/I^.) n

e) If C is a sub-A-bimodule of End A end M is any A-bimodule, then Mx^C -> M
is injective. I.e. « all Q-maps are injective for C! ».

f) If each L^ is an ideal in A® A, then C is associative as an A-bimodule, in fact the a
and a' maps are isomorphisms.

Proof. — a) There is a natural identification Hom^(A®A, A) ==Hom(A, A) =End A.
Under the identification C^ corresponds to tie image of

Hom^((A®A)/L^ A) <-^ Hom^A^A, A).

This is the duality given in a).
b) Since (A®A)/L^ is finite projective so is its A-dual C^. And C the directed

union of (CJ's is flat.
c ) For each C^ there is the commutative diagram

M®^C —^-Hom(A, M)

M^^CO

Since C is the directed union of the (CJ's it suffices to prove that each
M®^G^Hom(A,M)

is injective.
M®^G^M®^B.om^{A®A)IL^ A)

^Hom^A^A)/!^, M^A)
=Hom^((A®A)/L^ M) -> Hom^(A®A, M)==Hom(A, M).

The first isomorphism follows from the identification of C^ with the A-module
dual of (A®A)/L^. The second isomorphism results from the fact that (A®A)/La
is a finite projective left A-module. It is left to the reader to show that the resulting
injection M^G^-^Hon^A, M) coincides with A.

d ) is an easy calculation and is left to the reader.
e ) follows from (1.6).
f) follows from parts b) and d ) and (2.11). Q,.E.D.
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3. U X/V as an Algebra, Simplicity

Suppose U and V are algebras over the algebra A. U®^V has the left U®^V-
module structure determined by

{u®u) {uf®vf)=(uuf)®{vfv), u, u'eV, v, y'eV.

Proposition (3.1). — i. There is an VL-module isomorphism

N: Ux^V^End^v(U^V)

determined by N(S^®y,) {u®v)==^uu,®v,v, i;^®y,eU X^VCU^V, ueU, yeV.
i i i

2. Ux^V has an R-algebra structure determined by

(S^®y,) (S^®^)=Z;^^®y^., S^0y,, S^®^.eUXAV.
i J t,j z ^

3. N is an algebra isomorphism.

4. Let U <- A -> V ^ ̂  m^j&j making U <zW V mto algebras over A fl^rf fe^ Z ̂  ^A^
^n r̂ o/' A. Then Ux^V ^ a/x algebra over Z wz7A respect to the map Z—^Ux^V,
-2; 1-> i{z)®I = I ®J{z).

Proof. — UOOfiV is a left U®RV-module, the structure defined by letting A=R
in the paragraph above (3. i). As a U^^V-module, U^^V is free with basis { i ®i }.
For each left U^V-module M identify Homu^v(U®RV, M) with M by /<->/(i ®i),
/eHomu^y(U®RV, M). Thus U®^ and H:omu®Bv(u0RV. U^Y) a^ identi-
fied. The natural map U^RV^U®^^ is a surjective U®RV-module map and
induces the injection Endu^vO^A^ -> Homu®Bv(U®RV, U®^V)=U®^V. The
image of this injection in U®^V is [xy®^^=VX^V. This proves Part i.

Parts 2, 3 and 4 are left to the reader. Q.E.D.

The canonical R-algebra structure on U X^V is that given in the proposition.

Example (3.2). — Suppose R is a field and A is a field extension where
[A : R] == n<oo. In the Brauer group over R let x andj^ be elements split by A. Let U
be a central simple R-algebra of dimension n2 which contains A and is a representative
of A:. Similarly V forj/. By (3.1) and [10, bottom p. 486, top p. 487] it follows that
U XA.V is a central simple R-algebra of dimension n2 which contains A and represents
x~^y.

Previous theory applies to Ux^V as follows:
1. Iff: U—^U' and g : V->V' are maps of algebras over A then

| 7xg: Ux^V-^U'x^V
(3-3) is an algebra map.

2. If E is a subalgebra over A of End A then -^6 : U x^E-^U (defined in (1.6))
is an algebra aw^'-homomorphism.
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Throughout the rest of this section A is an algebra and (U, i) an algebra over A.
Let L denote the centralizer ofz(A) in U, (L = j\UJ and let k denote the center of U.

Proposition (3.4). — ^ ; Ux/U -> End^L determined by

S(S^®^) (^)=S^, S^^eUXAUCU^U, leL
i 'i i

is an R.-algebra SLnti-homomorphism. If Z is the center of A then z(Z)CL and End^L is an
algebra over Z. ^ is an anti-homomorphism of algebras over Z.

Proof. — For feL the map f{ : U®^U-^U is determined by f((u®v)=ufv,
u, ve\J. Since f{ is an A-bimodule map it carries V X^V = ( x JJ®^U^ to t^U^L.
Forj /eUXAU, ^)W=f/(y)eL. The rest is left to the reader. Q.E.D.

^ gives L a n^ Ox^U-module structure.

Definition (3.5). — The pair, (U, i) is called Jake i f^ is injective, i.e. L is a faithful
right Ux^U-module.

Lemma (3.6). — Assume (U, i) is Jake and M is a sub-A-bimodule of U.

1. IfU is flat as a left A-module and o+Mx^U, then o+MUnL.
2. IfU is flat as a right A-module and o+Ux^M, ^^ o+UMnL.
3. Ifl is a 2-sided ideal in U, then InL is a U X^U-submodule of L.

Proof. — Let L denote the inclusion M->U. By (1.3)3 7x1 : Mx^U-^ Ux^U
is injective. Since O + M X A U there is o4=S^®^eIm(TxI), {mJCM, {^}CU.

i

Since (U, i) is Jake there is ^eL with o+Sm^eL. This proves Part i. Part 2 is
proved similarly.

If Z^^^eUx^U then S^Iy^Cl for a 2-sided ideal I. This proves Part 3.

Q.E.D.

Theorem (3.7). — Suppose U z'j /^ flat as a left (right) A-module and c^Ix^U
(Vx^I) for non-zero 2-sided ideals ICU. Then U is a simple algebra if L is a simple
U X^V-module.

Proof. — If I is a non-zero 2-sided ideal in U then, o 4= I n L by Part 13 2) of (3.6).
By part 3 of (3.6) InL is a U X^U submodule of L. If L is a simple U X^U-module
then L==InL, which implies that ie! and I==U. Thus U is a simple algebra.

Q.E.D.
(EndA^) is an algebra over A. Let r :A-^EndA be the injective algebra

anti-homomorphism determined by ar{b)==ba, a, be A. The element a!' is called " a as
a right translation operator ". The centralizer of A^ in End A is A^ Suppose U is
a subalgebra of End A and A^CUDA^ Thus (U^) is an algebra over A and Ar is
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the centralizer of A1 in U. Furthermore, if k={aeA\ u{a)=au{i), ueV} then k lies
in the center of A, so yf-=xT for xek. Furthermore k1 =1^ is the center of U.

Lemma (3.8). — The diagram

UxJJ -^> End^A^EndfcA

U ———> End A

commutes, where the two maps to End A are the natural inclusions and the equality End^A" = End^A
is induced by r.

Proof. — Let S^®y,eU X/U CU^U. For aeA
i

~e(SK.®p,).(a)=S^,(I)a)=SM.ar^(I)=(S«.ar^)(I)=(^:(2:Mi®^',)(<^r))(I). Q.E.D.
l i i i i

Thus ^6 being injective is equivalent to ^ being injective. Hence (1.5) and
(1.6) provide conditions for U to be Jake. The lemma also shows that the image of ^
is in U.

In the next lemma, we still assume that U is a subalgebra of End A and Af C\j3 A".

Lemma (3.9). — If U is a simple algebra^ then A is a simple U'-module.
Proof. — Assume that U is a simple algebra. Then for o^aeA, U^U^U and

so the identity I of End A can be written I=2^fl r^, {^}u{^}CU. Thus for be A,
i

b=^u,arv^){b)==1Lu^{Vi{b)a)=(^u,(Vi{by)){a). This proves that A=U(a). O.E.D.
i i i

When A is commutative A^=A r and the condition on U is simply that U is a
subalgebra over A of End A.

Lemma (3.10). — Assume that A is afield (and still an 'R.-algebra), M is an A-bimodule
and G a left A-submodule of End A.

1. If {^}CG is a finite A-linearly independent set of s elements, then there exists
{aij}u{bij}CA satisfying S^(^.)=8^ with z, A==i, . . ., s.

2. If C is a sub-A-bimodule of End A {so that ^6 : Mx^C-^M is defined), then

me—6((AwA)XAC) if mer^Q{Mx^C).
Proof. — i. Let N==SA^ the span of{cj, a finite dimensional vector space

i

over A. For aeA let y^eHom^N, A) be determined by ^n)=n{a), ne'N. If
o4=^eN there is aeA with o^n(a)==^{n). Thus Im y spans Hom^(N, A) and, given
the basis {^} for N, there is {^.}u{^.}CA where {S^YS.JK^S ls a d^l basis in
Hom^(N,A). Thus {^}u{^.} is the desired set.
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2. Suppose m==—6(Z;^®^), 2^®^eMxACCM®^C, assuming that {c,}C^C

is an ^ A-linearly independent set. Let {^}u{^,}CA be as in Part i.

S^m^==2^^.m^(i)^.

=2:^/c^/c(^)^]

=m,.

Thus {mJCA^A. Since A is a field the inclusion AmAcM induces an inclusion

(^mA)x^CcMx^C. Then S^®^G(A^A)XAC. Q.E.D.

The following corollary is immediate:

Corollary (3 .11) . — Let A ̂  a^af, M an A-bimodule and G a sub-A-bimodule of End A.
TA^ m<2j& ^6 : Mx^C—^M zj surjective if and only Z/' /^6 : Nx^C-^N ^ surjective for all
sub-A-bimodules NcM. In this case o^Nx^O for a non-zero sub-A-bimodule N.

Theorem (3.12). — Let A be a field and E a subalgebra over A of End A. If
^6 : Ex^E-^E is surjective, then E is a simple algebra. The center of E is

{afeE\aeA and e{a)==ae(i), eeE}.

Proof. — By (1.5) and (1.6), ^6 is injective so that by (3.8) E is Jake. Since
A is a field E is a flat left A-module. Since A^CE, A is a simple E-module. The
remaining hypothesis of (3.7) is satisfied by (3.11). Q.E.D.

4. U X^V for commutative A

Throughout this section A is a commutative algebra. Thus if (U, i) is an algebra
over A so is the opposite algebra (U, T).

If U and V are algebras over A then Ux^V^Vx^V is an algebra. In terms
of the realization "LIx/VCl JJ®yV the product is given by

(S;M,®y,)(2;^.®^.)= ̂ u,w^v,Xj, S^®^, S^®^.eUXAV.

If (U, i) and (V^j) are algebras over A there is an algebra map j3 : A-^UX^V
determined by

a^i®j{a)=i{a)®ieVx^Vcf JLJ(^V.
J x
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Definition (4.1). — (Ux^V, (B) is the canonical structure on Ux^V as an algebra
over A.

1. If U or V is flat as a left A-module and both i andj are injective, then so is (B.
2. If /: U->U' and g : V-^V are maps of algebras over A, then

fXg : UX^V-^U'XAV

is a map of algebras over A.
3. The A-bimodule structure on Ux^V defined in (2.1) is the same as the

A-bimodule structure on U x^V as an algebra over A. The above algebra
over A structure on U X^V agrees with the algebra over Z = A structure

on Ux^V in (3.1, 4).
4. The isomorphism twist : Ux^V—VXjJJ, defined in (2.5), part i, is an

isomorphism of algebras over A.
5. If U, V and W are algebras over A, where (U, V, W) associates in the sense

of (2.6), then the association isomorphism (Ux^V^X^W^ U X^Vx^W)
is an isomorphism of algebras over A.

6. If E is a subalgebra over A of End A and U is an algebra over A, then
6 : Ux^E-^U is a map of algebras over A, where 6 is defined in (2.8).

With the exception of number 5 these results are easily verified. Number 5 is
proved in the following manner, f ^ f ^U^V^Wy has an algebra structure where
{^u^v^w^^u^v'^w'^^^u^u^v^v^w^w^ In fact, with this algebra structure

^j^xvy0xvy0x^fy is isomorphic to Endu®v®wJ ^U®^V®^W and the details are
similar to the proof of (3.1). It is easily verified that the maps a and a' in (2.6)
are maps of algebras over A for (U, V, W). This gives number 5 above.

We may put a product structure on isomorphism classes of algebras over A by
means of <( X^3 5 .

Remarks (4.3). — If (U, i) is an algebra over A then <U> denotes the class of
algebras over A which are isomorphic to U as algebras over A. From (4.2)3 if U and V
are algebras over A, then the product <U> <V> is well-defined as <UXAV>. This
is the canonical product on isomorphism classes of algebras over A. By (4.2) the product
is commutative, and if U, V and W are algebras over A, where (U, V, W) associates,
then « U > < V » < W > = < U > « V > < W » .

Example (4.4). — Suppose that R is a field and A is an overfield of R. Let k
be an intermediate field, A3^3R, where [A:A]<oo. Both (End^A,^) and (End,,A,7)

are algebras over A. As A-algebras End^A^End^A, by the transpose map for example.
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Thus by Skolem-Noether < End/, A > = < End^ A >. Let n == [A : k]. End^ A is the unique
^-dimensional (over k) representative containing A of the identity class of the Brauer
group ofK. By (3.2) it follows that <End^A><End^A>=<End^A>. Thus <End^A>
is idempotent with respect to the product on isomorphism classes. Suppose A' is another
field intermediate between A and R and <End^A>==<End^A>. Then there is an
algebra isomorphism /: End^ A -> End^ A which is the identity on A (actually A1).
Since/must carry k, the center of End^ A, to k ' , the center of End^/A, and k CAD A', it
follows that k==k'. Thus if k ^ k ' we have that <End^A>+<End^A> are both
idempotent classes.

Since the only idempotent in a group is the identity, the example demonstrates
one problem in using < c x^ " to put a group structure on isomorphism classes of algebras
over A. Lack of associativity is a second problem and a third problem is that the
equivalence classes of algebras over A don't form a set.

For an A-bimodule M, define S^ by

(4-5) <S'ys.= {isomorphism classes <U> of algebias over A
where U^M as an A-bimodule.}

If M and N are A-bimodules and ee^, f^=^ then rf^^x N -

Definition (4.6). — An A-bimodule M is idempotent as a bimodule if M^Mx^M
as A-bimodules. An algebra (U, i) over A is idempotent as an algebra over A if U^UXAU
is an algebra over A, i.e. < U > = < U > < U > .

Remark. — Suppose M is idempotent as an A-bimodule and M is the directed
union of projective left sub-A-modules. Then M is flat as a left A-module, being the
direct limit of flat left A-modules. Thus Mx^M^M is flat as a left A-module. By
(2.5)3 part 5 and the lines following (2.7) it follows that M is associative as an A-bimodule.

IfM is an idempotent A-bimodule, then, for ^,/e<^, the product efe^. Thus
Sy has a commutative product. If M is also an associative bimodule, then the
commutative product in ^ is associative by (4.2), part 5.

Lemma (4.7). — Let S be a set with associative product. For each idempotent eeS let
S{e)=={se^\se-==s=es}. Then S{e) is the unique maximal (c submonoid" of S with identity e
and the group of invertible elements in S(<?) is the unique maximal (c subgroup 55 ofS with identity e.

Proof. — Left to reader.

Definition (4.8). — If (U, i) is an algebra over A which is idempotent as an algebra
over A (4.6), and associative as an A-bimodule (2.7), let <?<U> denote the monoid
of equivalence classes Ge^y where G<U>=C. Let ^<U> denote the group of
invertible elements in ^<U>.
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It will be shown that for certain U the group ^<U> is (isomorphic to) a relative
Brauer group. We shall also consider such matters as:

a) I fV is an algebra over A with <V>e^<U>, is V a simple algebra?
b) Is <V>-1 equal to < V > ? (Recall that V is the opposite algebra to U still

considered as an algebra over A.)
c ) How are ^y, <?<U> and ^<U> classified by cohomology?

Proposition (4.9). — Suppose E is a subalgebra over A of End A where Ex^E-^E
is an isomorphism of algebras over A (so that E is idempotent as an algebra over A) and assume
E is associative as an A-bimodule. Then, ifV is an algebra over A with U^E as an A-bimodule
i.e. <U>e<?E, it follows that

Ux^E^U

is an isomorphism of algebras over A, i.e. <U>e^<E>. Thus ^<E>==^.

Proof. — If M is any A-bimodule Mx^E-^M is defined (2.8) and depends
upon the bimodule structure of M. Since by hypothesis Ex^E-^E is bijective it
follows that for any A-bimodule M which is bimodule isomorphic to E the map
Mx^E-^M is bijective. In case M happens to be an algebra over A the map 6 is
also a map of algebras over A. Q.E.D.

5. X^-Coalgebras and Bialgebras

Throughout this section A is a commutative algebra.

Definition (5.1).— Let G be an associative A-bimodule (2.7). Let A : C->C X^C
be an A-bimodule map and let J> : G->End A be an A-bimodule map. Then (C, A, J^)
is a x^-coalgebra if the following diagrams commute:

G —————A————> Cx^C

I x A

A
Cx^Gx^G)

Gx^C ̂  (Cx^G)x^G

where the isomorphism is the association isomorphism (2.6)
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G -̂ > Gx^C

'! I1"^ ^
C <-°- Gx^EndA

C -^> Cx^C

L^xi
Y

EndAx^C

twist

G G X x E n d A

105

Definition (5.2). — For a right A-module G and an R-module map /: C->A, let
f : G^EndA be defined by f\c){a)=f{cd) ceC, aeA. Let e : End A—A, /h>/(i).

It is easily verified that/^ is a right A-module map, e is a left A-module map,
^/O^/ ^d if g : G-^EndA is a right A-module map then (egY==g. Moreover,
ifG happens to be an A-bimodule and / : C->A a left A-module map then f1: C-^End A
is an A-bimodule map. If g : G-^EndA is an A-bimodule map then eg : G->A
is a left A-module map.

We may use ( )1 and e to show the following diagram commutes

End A x^End A —^End A

twist /Q

T /EndAxAEndA^

It suffices to show that e6 =€6 (twist) since then
Q^ee^^cO^wist^^twist).

Viewing End A X^End A c t ^End A®^End A for an element

z = S^®^eEnd A x^End A
i

it is easily verified that
€e^)=s<(i)^(i)=s^(i)^(i)=ee(twist)^).

i i

Proposition (5.3). — Let G be an A-bimodule, A : C-^Cx^C an A-bimodule map,
^ : C->EndA an A-bimodule map and let z=e^ so that J^^.

105
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a) The diagram

G —> Gx.C

\ I x ^

C <— Cx^EndA

commutes if and only if the diagram

C -^ f ,GOO,G
•/ x

I®e

G J>®,A

commutes. L is the natural inclusion Cx^C-^ f ^G®jC.
J 3C

b) The diagram

C —^ Cx^C

^ X I^
End A x^C

twist

Y

C ^- CxAEndA

commutes if and only if the diagram

G iA

E®I

G J^A®,G

commutes.
Proof. — Left to the reader.

Corollary (5.4). — a) If (C, A, <^) is a x^-coalgebra then (G, iA, e=€^) ^y^ G
^ structure of an A-coalgebra [17, Definition p. 4, where (< vector space 5? should be read
as "module"].

b) Conversely, if C is an associative A-bimodule, e : G->A a left A-module map and
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A : G->GXAG an A-bimodule map, where (G, iA, s) gives G the structure of an A-coalgebra,
then (G, A, e^== sf) is a x^-coalgebra.

Proof. — Left to the reader.
If (G, A, ^) is a X A-coalgebra then the underlying coalgebra structure on C refers to

the A-coalgebra (G, lA, e==€^).

Proposition (5.5). — Suppose C is an A-bimodule, s : G->A a left A-module map
and A : G->CXAC an A-bimodule map where (C, tA, s) gives C the structure of an A-coalgebra.
If A ^ an isomorphism then C ^ associative as an A-bimodule and by (5.4), b), (C, A, ^'=£t)
is a X^-coalgebra.

Proof. — It is easily verified that the following two diagrams commute:

(A x I)A

(CXAC)XAC

fJ^C,®,C,®,C

( iA®I) iA

a . y — a:̂ / — x^'y

\ T

^C®,C®,C
J x f^C®JC®^C

where a is defined in (2.5), 2) and a' is defined just above (2.6). By coassociativity
of coalgebras ( tA®I)LA==(I®iA)tA. By the counit condition of coalgebras it is easily
shown that (LA®I)iA is injective. Thus the two diagrams may be pushed together
as a commutative diagram:

( A x I ) A

(GXAC)XAG

fJ^G^G^C,

^,G®,G®,G

If A is an A-bimodule isomorphism then so are (A X I) A and (I X A) A. When
(IxA)A and (Ax I) A are isomorphisms the above diagram shows that a and a' are
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both injective and have the same image. In other words C is associative as an
A-bimodule. Q.E.D.

Suppose (C, A, J^) is a x^-coalgebra. The map A is called the diagonalization
of G and ^ is called the co-unit of C. (G, A, J^) is cocommutative if (twist) A == A
where twist is defined in (2.5), part i. This is the same as (C, lA, s) being a cocommuta-
tive coalgebra [17, Def. p. 63].

Definition (5.6). — Let B be an algebra over A. The triple (B, A, ^) is a
X^-bialgebra if (B, A, ^) is a x^ -coalgebra (where the bi module structure on B is
determined by B being an algebra over A), and the maps A : B->B x^B, ^ : B-^End A
are maps of algebras over A.

A x^-bialgebra is cocommutative if the underlying x^-coalgebra structure is.

Definition (5.7). — If B is a X^-bialgebra the natural K-module structure on A is that
given by ^. Thus b.a==^(b){a), &GB, aeA.

If B is an algebra over A and ^ : B-^EndA an A-bimodule map and e=€^,
then ^ is a map of algebras over A if and only if e{bc) = z(bz(c)), s(i)= i for i, b, ^eB.
In this case the B-module structure on A with representation ^ is given by b.a==z(ba)
for 6eB, aeA.

By definition a X^-bialgebra is associative as an A-bimodule. If B is a X^-bialgebra
and A : B^Bx^B is an isomorphism, then B is idempotent as an algebra over A (4.6).
In this case <?<B> and ^<B> are defined. In a later section we give a cohomology
theory arising from B where the H2 is naturally isomorphic to ^<B>.

Proposition (5.8). — Suppose GcEndA is a sub-A-bimodule and (G, A, i) gives G
a X ̂ -coalgebra structure, where L : C—^EndA is the natural inclusion,

a) The composites G -^ G X^C -^ G and G 4- G X^C (twlsi) G X^C 4. G are the identity.
b) If A is surjective or Q is injective, then both are isomorphisms and A=6~1.
c) Suppose that D is a x ̂ -coalgebra except that co associativity of A .'D-^Dx^D is

not assumed. If deD and ^d^^d^d^eDx^DC f ^D®^D then, for a, beA,
i v Vi

i) ^^W{a))d,=da=^Wd,){a))d,

ii) 2:(^(^)^))(^«)(&))==(^(rf)(^)).

Proof. — a) follows from the second and third commutative diagrams in (5.1).
b) follows from a).
c ) Let d and Srf,®^ be as in part c ) . Since A is an A-bimodule map,

A(^)==S^®rf/(2. Applying 6(1 x^) to both sides (and using the second diagram
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in (5.1) and the fact that ^ is a right A-module map) gives da= S (^«)(<z))^.
i

Similarly applying 6(twist)(^x I) to both sides of A(rfa)=S^a®rf/ gives

da^^^Wdi.i

For (ii) J^(rf) (^) == ̂ (^) (&) = ̂ (S(^) (^))<) (&) = S (^(rf,) M) (J )̂ (&)).

Q.E.D.

Proposition (5.9). — Suppose (C, A, J )̂ ^ a x^-coalgebra where J is infective and A
^ surjective. Then C is cocommutative. In fact twist: Cx^C->Cx^C is the identity map.

Proof. — In the diagram below region I commutes by the co-unit condition
for x^-coalgebras. Regions II and III are directly verified to commute. Region IV
commutes by the remarks between (5.2) and (5.3).

(

A

)

C)

)
c>

n l cL> ————————————— \m

Q / '
^ GxJ&ndA (

I x.^/"
f -<x^
X^C——^-^-EndA

twist (m)
f )

f Y f

X^C > End A

X^End A-

twist (l

f

X^End A

^
I I ,

-End A

IV

Thus the composites 6(J^XJ^)A and 6(
injective and A surjective it follows that
it follows that 6 (J^ x J^) == Q (^ X J^) (twist).
that twist is the identity.

^XJ^) (twist) A both equal J^. Since ^ is
(J^XJ^) is injective. Since A is surjective
This with the injectivity of 6(J^XJ^) shows

Q..E.D.

Suppose M is a left A-module and D is a left sub-A-module of End A. Let A'
denote the map A' :J^M®J) -> Hom(A, M) where Af{m®d){a)==d{a)m, meM,

rfeD, aeA. It is easily shown that A' : f aJV[®J) -> Hom(A, M) is injective if and
only if A : M®^D — Hom(A, M) is injective. Thus all A'-maps for D are injective
if and only if all A-maps are injective for D.

If D is actually a sub-A-bimodule of End A and A' : f ^M®^D -> Hom(A, M)
A

is injective then Mx^D-^M is injective. This follows from (1.6).
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Proposition (5.10). — Let CcEndA be a sub-A-bimodule, where (C, A, i) is a
X^-coalgebra.

a) If A' :J^G®^G-^Hom(A, G) is injective, then 6 : Cx^C^G is infective.

b) If Cx^C->G is injective, then G is cocommutative. In fact twist: GX^G->GX^G
is the identity map.

c) Ifds actually a subalgebra over A o/End A and C X^G-> G is injective, then (C, A, i)
makes C into a x^-bialgebra.

Proof. — a) follows from the remark just before (5.10).
b) By (5.8), b) A must be surjective. Hence, (5.9) gives part b).
c ) By (5.8), b) A=6~1. The map CXAC->C is a map (isomorphism) of

algebras over A. Hence, A is also. Clearly L :C->EndA is a map of algebras
over A. Q,.E.D.

In the next section we study when 6 (actually 6~1) can be used to induce a
X^-coalgebra structure on a sub-A-bimodule of End A.

6. x^-Coalgebras

In a later example we show that End A is a x^-bialgebra when A is a finite
projective R-module. To present this and other examples we must first develop some
X^-coalgebra theory.

Definition (6.1). — For a x^-coalgebra (G, A, J^) let Eg (or E) denote Im ^
a sub-A-bimodule of End A.

.^ x For DC End A a sub-R-module let c : D^A denote the R-module map
determined by e{d)=d(i). This € is really the € in (5.2) restricted to D.

Suppose G and D are x^-coalgebras and /: G-^D is an A-bimodule map. /is
called a map of X^-coalgebras if (/X/)AC=AD/ and ^f==^c' It Is easily shown
that / is a x^-coalgebra map if and only if / is a coalgebra map of the underlying
coalgebras.

If G and D are x^-bialgebras then /: C-^D is a map of x^-bialgebras if/is
a X^-coalgebra map and a map of algebras over A.

Proposition (6.3). — Let G be a X^-coalgebra and assume that 6 : Ex^E^E is injective
(6 is defined in (2.8)). Then 6 is an A-bimodule isomorphism. Moreover if L : E->EndA
is the natural inclusion, then (E, O"1, i) gives E the structure of a x^-coalgebra and ^ : G-^E
is a x^coalgebra map.
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Proof. — From the second x^-coalgebra diagram 6(Ix^)==I and so
9(^XJ^)A=^.

Since ^ : CS—^E is surjective it follows that 6 : Ex^E-^E is surjective and hence
an A-bimodule isomorphism. Applying O"1 to both sides of 6(^x^)A==^ yields
(^x^)A=e-1^.

It is left to the reader to show that (E, i6~1, €) gives E the structure of an A-coalgebra
and ^ is a coalgebra map. Then by (5.5) E is associative as an A-bimodule and
(E, 6~1, i) is a x^-coalgebra. Since ^ is a coalgebra map it is a map of x^-coalgebras.

Q.E.D.

Lemma (6.4). — Let G and D be sub-A-bimodules of End A.

i. The diagram
_ _ (twist) _ _Cx^D —-—-—> Dx^C

G —> End A —— D

commutes, where the (i)5^ are the natural inclusions. In particular Im6cGnD.

2. Suppose Dx^D-^D is an isomorphism and

L(J^D®,D)®,D ̂  Hom(A, ̂  ,D6,D)

is infective. Then i6~1 is coassociative. I.e. (I®L6~l)Le~l==(l.6-l®I)l6~l.

3. Suppose f ^D®^D A^ Hom(A, D) is infective and u ==S^®rf/e f a.D®^D.

TA^ ^eDx^D if and only if T^d^a)d^{bc)==Jjdi{ab)di{c), a, b, ceA.
i i

Proof. — Let z= ̂ c^d.eCx^Dcf JC®,D. Then 16^) = S^(i)^eEnd A
and L6(twist)(-2')==S^(i)^eEndA. For aeAi

S</.(i)^)=S,(</.(i))(^(i))
i i

^(^(l))^!))^^)^!).
1 t

This proves Part i.
By injectivity of A' in Part 2 it suffices to show that for deD, aeA

(*) A'((I®^- l)Le- l(rf))(a)=A'((le- l®I)le- l))(fl)6f ^D®^D.
J x

Clearly OO""^! and by Part i 6 (twist) e""^ I. Thus we may use the formulae in
(5.8), c) to evaluate (*). The reader may verify that the left hand side is S^®(^'a

i
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and the right hand side is lO"1^) where S^®rf/ == LQ~l{a). Since 9~1 is an A-bimodule
map both sides are equal.

By injectivity of A' in part 3 it follows that z/eDx^D if and only if

A'(S^®rf,)=A'(S^®^), beA.
?' i

This exactly reduces to the condition given in part 3. Q^.E.D.

Theorem (6.5). — Suppose DC End A is a sub-A-bimodule where Dx^D-^D is

an isomorphism and A! : f f t ^yD®yD\®J) -> Hom^A, f yD®yD\ is injective. Then

D is associative as an A-bimodule and (D, Q~1, i) gives D the structure of cocommutative x^-coalgebra.
If A .-D-^Dx^D is an A-bimodule map where (D, A, i) gives D the structure of

X^-coalgebra, then A == Q~1. If in addition D is a subalgebra over A of End A ^x (D, 6~1, t.)
zj a x^-bialgebra.

Proof. — By (6.4), 2) i.O"1 is coassociative. Clearly ee"1^! and by (6.4), i)
Q^is^e"^!. Thus the formulae in (5.8), c ) hold and it easily follows that (D, iQ~1, e)
is an A-coalgebra. By (5.5) D is associative as an A-bimodule and (D, 6~1, i^c^)
is a x^-coalgebra. Gocommutativity follows from (5.10), b) and (5.10), c ) shows
that D is a x^-bialgebra when it is a subalgebra over A of End A.

By (5.8), b) it follows that A==6~1 if (D, A, i) gives D the structure of X^-coalgebra.
Q..E.D.

Consider End A as an A®A-module where {a®b) .f^a^fb^ a, beA, /eEndA.
Let {L^} be a collection of ideals in A® A with the properties:

(i) QA®A)/L^ is a finite projective x A-module for each oc.
(ii) Given L^ and Lp there is an Ly with LyCL^nLp.

Let C^={/eEndA[ z.f=o, zeL^}, and let G = = U C a . Some results about G
a

can be found in (2 .12) such as each C^ is an A-bimodule and projective as a left A-module.
Let e : A®A-^A®A®A, a®b->a®\®b.

Theorem (6.6). — a) If e{L^ cL^®A+A®Lp then G^GpCC^. If for each L^
and Lp there is Ly with c(Ly) cL^OA+AOOLp and there is an L^ contained in the kernel of
the map A®A —°-> A, then C is a subalgebra over A ofEnd A. (This result does not require
the condition that (AOOA)/L^ be a finite projective A-module for the (LJ's.)

b) Let N be an A-bimodule and hence an A® A-module. Suppose there is an L^ with
L^.N==o. Then the maps Nx^C^-^N and Nx^C-^N are isomorphisms.

c) The map Gx^C-^G is an isomorphism, G is associative as an A-bimodule, in fact
a and a' are isomorphisms, and (C, 6~1, i) makes C into a X^-coalgebra which is cocommutative.

d) IfG is a subalgebra over A o/'EndA, then (G, O""1, i) makes C into a x^-bialgebra.

Proof. — a) Let comp: G^A^ -> End A, c^c^—c^. Consider C^OO^Cp as
an A® A® A-module where (^00^®^). (q®^) =^c^®a^a^=a^a^®c^. It is easily
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shown that for ^eL^®A+A®LpCA®A®A, ^. (^®^)==o, c^eC^ c^eC^. It is also
easily shown that for j;eAOOA

y . (comp(q®^)) =comp(<?(j/). (^®^))-

Thus if j^eLy and ^)eL^®A+A®Lp it follows that j/ .(G^Gp)=o. This gives the
assertion about CadpCGy.

If for each L^ and Lp there is an Ly with ^(Ly) cL^®A+A®Lp it follows that
G is closed under product. If there is L^cKe^A^A-""^ A) then A=A^CG^ and
C is a subalgebra over A of End A.

b) Assume L^.N==o.

Nx^fJ^N,®^

^fJ^®Hom^A®A^/L,, A)

^HomA((A®A,)/L,,N^

^Hom^((A®A)/L,,N)

^Hom(^A)/L«((A®A)/L^N)

^N.

The first equality follows from the definition of X^. The second equality follows
from the identification of G^ with the dual of (A®A) /L^ in (2.12), a). The isomorphism
is the natural isomorphism which exists because (A®A)/La is a finite projective left

rvA-module. The third equality follows from the definition of (< ". Since L^.N==o
it follows that N is naturally an (A®A)/L^-module and the fourth equality is immediate.
Equality number five is the usual identification. It is left to the reader to verify that
the resulting isomorphism Nx^C^N is given by 6.

Consider the commutative diagram:

NxAC——i-N

Nx^C

By (2.12), e ) the bottom 6 is injective. The top 6 we have just shown to be an iso-
morphism. Hence the bottom 6 is surjective. This proves Part b)., c ) and d ) . By
(2.12), f) the a and a' maps for C are isomorphisms. By (2.12), c ) all A-maps for C
are injective and hence all A'-maps are injective. Hence by (6.5) we will have proved c )

n
and d ) once we have shown Gx^G-^G is an isomorphism.

By (2.12), e ) Gx^G-^C is injective. For each CpCG it follows from the
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definition of Cp that Lp. Gp = o. Thus by part b) the top 6 in the diagram below is
an isomorphism.

G^x^C -̂  Gp

Cx^C ——> C

Since G is the union of the (Cp)'s letting p vary shows that the bottom 6 is surjective.
Q.E.D.

7. A a field and A#H

Throughout the first part of this section A is assumed to be a field and an algebra
over the subfield R.

Suppose E is a left sub-A-module of End A. By (1.5), 4) all A-maps for E are
injective. If E is a sub-A-bimodule of End A then by ( i . 6) all 6-maps for E are injective.
By (2.5), 4) all triples ofA-bimodules associate and thus each A-bimodule is associative.

Suppose EC End A is a sub-A-bimodule and (E, A, (.) gives E the structure of
X^-coalgebra. By (5.8), b) 6 : Ex^E-^E is an isomorphism and A=6~"1. By (5.9)
E is cocommutative and (twist) : EXA^ -> Ex^E is the identity map. By (5.10), c )
(E, A, i) makes E into a X^-bialgebra if E is a subalgebra over A of End A.

Suppose E is a sub-A-bimodule of End A and 6 : Ex^E->E is surjective and
hence bijective. By (6.5) (E, 6~1, i) gives E the structure of cocommutative X^-coalgebra.

Suppose BC End A where (B, A, i) is a x^-bialgebra and 8:BxAB-^B is
surjective. In a later section we prove that for <U>e^<B>, U is a simple algebra
with A as a maximal commutative subring. Moreover U has the same center as B
(viewed as a subring of A).

***

A is still assumed to be a field and an algebra over the subfield R.
Let B denote the image of 6 : End A X^End A —»• End A. Since 6 is a map of

algebras over A, B is a subalgebra over A of End A.

Theorem (7.1). — 6 rBx^B-^B is bijective and (B, 6~1, i) is the unique maximal
X^-coalgebra in End A with co-unit L.

Proof. — Since B is a sub-A-bimodule of End A it follows that A6ACB for &eB.
Thus by (3.10), part 2, the map 6 : Bx^EndA -> B is surjective. By (6.4), part i,
6 : End A XA.B -> End A has the same image B as 6 : B X^End A -> B. Thus by (3.10),
part 2, the map 6 : Bx^B -> B is surjective. By the opening remarks of this section
6 is bijective and (B, 9~1, i) is a x^-coalgebra.
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If GcEndA and (G, A', i) is a x^-coalgebra then Cx^C-^O is bijective with
se A'. In particular G Clm(G X^End A -i G) Clm(End A x^End A 4. End A) =B.

Q.E.D.

ft ft
inverse A'. In particular G Clm(G X^End A -> G) Clm(End A x^End A -> End A) =B.

By the opening remarks B is actually a cocommutative x^-bialgebra.

Lemma (7.2). — Let M be an A-bimodule and B as in (7.1).
I x i

1. The inclusion M x^B —> M x^End A ^ an isomorphism of A-bimodules.
2. 6 : M X^B —> M ^W 6 : M X^End A -> M have the same image, namely {me M LA^A

has finite ^ A-dimension}.
3. 7^ N==Im(Mx^End A -> M) then N is a sub-A-bimodule of M and

N x^End A -^ M X^End A

is an A-bimodule isomorphism. Moreover 6 : N X^End A -> N is an A-bimodule isomorphism.
i x l4. The map N X^B —> M x^End A is an A-bimodule isomorphism. Moreover

6 : Nx^B-^N
is an A-bimodule isomorphism.

Proof.— I X L , ^ x l and ( . X L are injective A-bimodule maps by (2.3) and (2.4), i).
Since A' : f JM®^End A-^Hom(A, M) isinjective by (i .6), e^X^EndA-^M

J x "

is injective. Suppose ^=6(2^®^) where STTi^^eMx^End AC ^M®3JEnd A.i t •/^
Then m=Sj^(i)^ and for ^eA, m^=S^(i)^^=S^^(i)^=Sj^(^)^. Thus

i i i i

^A^A has finite ^ A-dimension. Conversely suppose meM and a-AmA has finite
x A-dimension. Choose a finite x A basis {m^of ̂ AmA. Then there exists {^}CEnd A
where ma=^g^d)m^ aeA. Consider the two elements

S^a®&, SmO^ael ^M.®^EndA

for fixed aeA. The map A' : ( ^M®^EndA -> Hom(A, M) is injective; so to prove
the two elements equal, it suffices to apply A' and evaluate at be A. This gives
^gi(b)m^a==(mb)a==m(ba)=^g^ab)m^. Thus
i i

Sm,®^eMx^End A and 6(S^®^)==S^( 1)^=7721 ==m.
i i i

6This proves that Im(MxAEndA-> M.)=={meM.^AmA has finite x A-dimension}.
Since 6 is an A-bimodule map N is a sub-A-bimodule of M. The diagram

commutes

N XAEnd A—^>- M x^End A
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Both 6 maps are injective and by choice ofN the right hand 6 is bijective. By (3. lo),
part 2 the left hand 6 is bijective. Hence, the top map is bijective and part 3 is proved.

Let {n^} be an x A basis for ^N. By the property of N=Im 6, for each n^ there
exists a set {/^p}pCEndA where {/a,p}p is a fim^ set; i.e. for fixed a, /a, 3=° for

all but a finite number of ((B)^ and
n^a-=^f^a)n^, aeA.

3

Suppose ^eMx^EndAf ^M®^EndA. By part 3, z can be regarded as lying
in |j>J®JSndA. So z can be expressed: z=T^n^f^ where {/^JcEndA and

J x ^

f^==o for all but a finite number of (a)'s. For aeA
s^®/^=s^®/,
a a

=S/,,p(a)np®A
a, 3

=S»B®/»,p(a)/».
a, 3

Since the tensor product is over a field and the {riy} is linearly independent it follows
that f^a= 2/0,3(^/01 which is a finite sum since almost all /a==o. Thus ^A/pA has

a

finite A: A-dimension. By the part of part 2 which has been proved it follows that
n

/peIm(EndAxAEndA->- EndA)=B. This proves part i. The remaining part of
part 2 follows from part i. Part 4 follows from parts i and 3. Q^.E.D.

Part 3 characterizes B as {/eEndA[^A/A has finite x A-dimension}.
Let D =={/eEnd A| A/Ay has finite y A-dimension}. By (7.2), part 2 D CEnd A

is the image of (End A) x^B -> End A. Since 6 is a map of algebras over A it follows

that D is a subalgebra over A of End A. By (7.2) , part 4 the map 6 : Dx^B-^D is
an equivalence of algebras over A. Let 8 : D-^Dx^B denote the inverse to 6. Let
A : B—^Bx^B denote the diagonalization of B (which makes B into a X^-coalgebra).

Let E denote the sum of all A-bimodules X C End A which satisfy
(i) XcBnD.
(ii) AXCXx^XCBxAB.
(iii) SXCXX^XCDXAB.

E again has properties (i), (ii), (iii), and is maximal with respect to these properties.
Since B and D are algebras over A, A and 8 are maps of algebras over A and A^ satisfies
properties (i)-(iii), E must be a subalgebra over A of End A. By property (ii), (E, A|E, i}
is a X^-coalgebra. By the opening remarks E is a X^-bialgebra. By property (iii),
f^ 6 r^i

Ex^E-^E is surjective, hence bijective. This proves that

Theorem (7.3). — E is the unique maximal x^-bialgebra (with ^=i) in End A
which satisfies: Ex^E—^ E is surjective (or bijective).
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As a consequence of this theorem it will follow that E is a simple algebra. The
result on simplicity appears in a later section.

Example (7.4). — Suppose g : A->A is an R-algebra homomorphism. Then
gc/ ==g(a)g and ^AgA has x A-dimension i. Thus ^eB. Ifgis an automorphism then
ag=gg~l{ay ^d geD. Actually AgA satisfies properties (i)-(iii), since

A^-^eJ^®^ and 8g ^g^g-^D®^.

Thus E3Aut(A/R). It can be shown that a sequence of higher derivations [i i, p. 195]
must lie in E.

Example (7.5). — Suppose o+/eD; i.e. AfAy has finite^ A-dimension. Then
there exists a finite y A basis {a{f} for AfAy and {/}CEndA where af== S^j^(<^/.

Then A=AIm/=A/(A)=SV(^(A)A)CSV(A). If Im/ is a subfield of A this
i i

shows that A is a finite degree extension of Im/. Let g : A->A be an R-algebra
homomorphism where A is not a finite extension of the subfield Img. By (7.4), ^eB.
By what we have just shown ^D. Thus g^E and in general ECB.

Example (7.6). — Suppose /eEndA where /(i)=i and i=codimKer/;
i.e. dimR(A/Ker/)== i. Suppose /eB and {fa[} is a finite x A basis for ^A/A. There
exists {/JCEndA where fb1=^f^(b)fa[. Since a{ is an isomorphism of End A,

Ker(/^f) has codimension i and D Ker(/af) has finite codimension in A. If dim^A
i

is not finite then o+ D Ker(/2f) and there exists o+ce fl Ker(/^). fc-1^ S/(c-1)/^.
1 ^ i

Applying both sides to c yields a contradiction. Hence A must be a finite extension
ofR. This shows that if [A : R]==oo then BcEndA.

It will follow from our study of End A when A is a finite projective R-module
that if A is a finite degree field extension of R then B == E == End A.

We no longer assume that A and R are fields. A is merely a commutative
R-algebra.

Example A#ti.
Familiarity with standard coalgebra, bialgebra and Hopf algebra theory is assumed

in this example. Suppose H is a cocommutative bialgebra over R and A is an H-module
algebra [17, § 7.2, p. 153]. The smash (semi-direct) product A#VL is A®H as

an R-module and left A-module. Define A : A#B. -> f QA#H)®QA^H) by
J x

a#h^^[a#h^®{i#h,^.
W v "

117



n8 M O S S E . S W E E D L E R

For be A

S (a # h^ b ® (i # h^ = S {a{h^. 6) # h^ ®{i# h^
W {h)

= S {a # h^) ® ((Ap). 6) # AO)) = S (a # h^ ® (i # h^ b.w w

Thus Im AC(A#H)XA(A#H) and we consider A as a map from A#H to
(A#H) XA(A#H). A is an A-bimodule map; in fact A is a map of algebras over A.

A is naturally an A # H-module where (a # h) . b =a(h. b). Let ^ be the associated
representation. J^ is a map of algebras over A. If e=€^ then s :AT^H->A,
<2^A-XZ(A.l) .

It is easily verified that (A#H, iA, s) is a coalgebra over A. Hence by (5.4)3 b}
(AT^H,A,^) is a X^-coalgebra (and so a x^-bialgebra) if A#H is associative as
an A-bimodule. By (2.5), 4) A#H is associative as an A-bimodule if A #13. is a
projective left A-module. As a left A-module A#H^A®H. Thus if H is a projective
R-module A#H is a x^-bialgebra.

Even if H is not projective as an R-module A^H may be associative as an
A-bimodule. For example by (5.5) if A is an isomorphism then A#H. is associative
as in A-bimodule.

We shall be interested in when A is an isomorphism for other reasons. Among
them is that A#fi is idempotent as an algebra over A (4.6) when A is an isomorphism.

The question of when A : A#VL —> {A#H) X^(AT^H) is an isomorphism is
partially answered by (5.8). If ^ : A#H^End A is injective we may identify
A#H with Im J and let this be G in (5.8). Then by (5.8) A is an isomorphism if
(A # H) X^(A # H) -^ A # H is injective. By ( i . 5) and ( i . 6) it follows that 6 is injective
if A#}i is projective as a left A-module. As we pointed out before A#J-i is projec-
tive as a left A-module if H is a projective R-module.

8. Differentials and differential operators and End A

Throughout this section A is a commutative algebra. For left A-modules M and
N, /eHom(M, N) and aeA let [^/]eHom(M, N) where [a,f] {m) = af(m)—f{am).

Hom(M, N) has a left A-module structure arising from N and a right A-module
structure arising from M. This makes Hom(M, N) into an A-bimodule and A®A-
module. Then for fe Horn (M, N), \a,f}=[a®i—i®a).f, aeA.

Let 9JI denote the kernel of A® A —> A. 9JI is an x and^ A submodule of ^A®A ,
and is spanned by elements of the form { ^ ® i — i ® a } ^ ^ as an x or y A module.

As in [9, § 2, p. 21 o] the differential operators from M to N are defined induc-
tively by:
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Diff^M.N^o

DifQ(M, N)={/eHom(M, N) | [aj]=o, aeA}==Hom^(M, N)

Diffj;(M, N)={/eHom(M, N) | [^/leDif^-^M, N), ^eA},

and

Diff^M, N) = U Diff^M, N).

Diff;(M, N)={/eHom(M, N) [ar+V^o} and Diff;(M, N) is a sub-A-bimodule
of Hom(M, N) for all n. Elements of DiffJ^M, N) are the n^ order differential operators
from M to N. A differential operator from M to N is an element ofDiff^(M, N).

Incase A= M we write D^(N) and D^(N) in place ofDiff^(A, N) and Diff^A, N).
In case both M=A==N we write D^ and D^ in place of D^(A) and D^(A).

For a left A-module M the elements in DJ^(M) which vanish on i are exactly
the derivations from A to M. This and other results can be found in [9, § 2, pp. 210-220].
In particular it is shown that D^D^CD^^. Also, A^=D^ since D^==Hom^(A, A).
Thus D^ is a subalgebra over A of End A.

Definition (8.1). — An algebra of differential operators of A is a subalgebra over A
of D^; i.e. a subalgebra of D^ which contains A^. The full algebra of differential
operators of A is D^.

Lemma (8.2). — If o+M is a sub-A-bimodule of D^ then MnA^==I^ for 04= I
an ideal in A. Hence D^ is an essential extension of A1 as an A® A-module.

Proof.— MnA^=I^ for an ideal IcA and the problem is to show that o+MnA^
if 04= M. Say o+meM. If meA{ done. Otherwise there is i<_teZ where Sff.m4=o
and SJ^^.m^o. Choose yeyff where ^.7724=0. Then o^jy.meM and <St.{Jy.m)=o
so that y.meA^ Q.E.D.

By [9, p. 215, (2.2.6)] for a left A-module M there is a left A-module J^(M) and
^eDiff^(M,J^(M)) with the following universal property: If N is a left A-module
and /eDiff^M, N), then there is a unique J(/)EHom^(M), N) where f=J{f)j^
In other words there is a natural equivalence (adjointness relation)

(8.3)
-Diff^M, N) ̂  Hom^JJM), N)

gjn^g'

The explicit construction ofJ^(M) appears in [9, p. 214, between (2 .2 .4) and (2.2.5)].
The construction ofJ^(A) is restated here.

^A®Ay has an A-bimodule structure, the x A structure being the left and the
v A structure being the.right. SJl^1 is a sub-A-bimodule; hence, (A^A)/^4"1 is an
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A-bimodule. LetJ^(A) denote (A®A)/9Jln+l which is an A-bimodule and an algebra.
Let j^ : A->J^(A) be the composite

A (a^0^ A®A —> (A^A)/^4-1^^).

With respect to the left A-module structure of J^(A), JnSD^(J^(A)) and the
pair CL(A),j^) has the universal property described in (8.3).

The algebra map A^A^A induces an algebra map J^(A)->A with
kernel <m|mn+l. This ideal in J^(A) is denoted J^-(A). The composite

A (a^a0t) A0A —> (A®^/^^^^)

is a left A-module map, an algebra map and a splitting for J^(A) —^A. Thus A->J^(A)
is given by a\->a. i, <zeA, i the unit ofJ^(A), and the image is denoted A. i. By the
splitting property,

(8.4) J^(A)==A.i©J^(A), a direct sum of left A-modules.
Let j^ : A-^J^(A) be the composite

A -A. J,(A)=A.i©J^(A) PM J^-(A).

Then for aeA, j^ {a) ==j^{a) —a.j^i). (J^- (A), j^~) has the same universal property
for n^ order differential operators from A which vanish at 1 as CL(A),jJ has for all
differential operators from A. Since a derivation from A (to M) is the same as a first
order differential operator which vanishes at i it follows that (Ji^A),^") is the Kaehler
module of A (and the universal derivation).

Definition (8.5). — A has finite projective differentials if for each neZ there is meZ.
with m>_n and J^(A) is a finitely generated projective left A-module. A has almost
finite projective differentials if there is a collection {L^} of ideals of A®A which is cofinal
with {9J?} and where (A®A)/L^ is a finite projective left A-module for each L^.

If A has finite projective differentials, then considering
{9?^n+ lcA®A|J^(A) is a finite projective left A-module}

shows that A has almost finite projective differentials.
By (8.4) it follows thatJ^(A) is finitely generated and projective as a left A-module

if and only ifJ^(A) is finitely generated and projective as a left A-module. Thus J^ (A)
is finitely generated and projective as a left A-module if and only if the Kaehler module
is. The next example shows that A having finite projective differentials does not imply
that the Kaehler module of A is projective and hence A is not necessarily differentially
smooth in the sense of Grothendieck [83 p. 51, (i6.io)].

Example (8.6). — Let A be an R-algebra which is finitely generated and projective
as an R-module. Furthermore assume that A is purely inseparable over R in the sense
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of (13.14). By (13.16) there is NeZ where J^(A)=A®A for w^N. This is a
finitely generated projective left A-module since A is a finite project! ve R-module. Thus
A has finite projective differentials. Consider the specific case A^RRCj^X2) and
let R be a field of characteristic different from 2. A is purely inseparable over R so A
has finite projective differentials. Let X denote the coset (image) ofXin A. In A(x)A,
TOhasanR-basisconsistingof{i®X—X®i, X0X}. Since ( I0X—X®I) 2 =—2X®X
and the characteristic is not 2, X®Xe9Jl2. Thus 9JI/9J12 has R-dimension i and is
c < too small3? to be pifree A-module. Since A is local, <3R|<3Jl2=J^{A) is not a projective
A-module.

Suppose A has almost finite projective differentials and let {L^} be as in (8.5).
Then {L^} satisfy (i) and (ii) above (6.6). The intersection property follows from
the fact that {LgJ is cofinal with {W}. The cofinal property also shows that
G==UC^=D^. The e map in (6.6), a) carries i®a—a®i to

(X

i ® i ® a — ^ ® i ® i = ( i ® i ® ( 2 — i ® ^ ® i ) + ( i ® ^ ® i — < z ® i ® i ) e A ® 9 K + 9 J l ® A .

Thus e(yX) CA^SJI+SR^A. Since e is an algebra homomorphism
e(mi)c{A®m+m®A)icA®mr+ms®A

where r-{-s<_i-{-i. Thus part a) of (6.6) shows that D^ is a subalgebra over A of
End A. Theorem (6.6) restated for differential operators becomes:

Theorem (8.7). — Suppose A has almost finite projective differentials:
(\

a) DA-X^D^—^D^ is an isomorphism, the a and a' maps for D^ are isomorphisms so
that D^ is associative as an A-bimodule and (D^, O""1, i.) makes D^ into a x^-bialgebra which
is cocommutative.

b) D^ is flat as a left A-module and idempotent as an algebra over A.

c) If M is any right A-module and N any left A-module then M®^D^ -> Horn (A, M)
r A'

and y!^®yD^—> Hom(A, N) are injective.

Proof. — Part c ) follows from (2.12), c)\ (2.12), b) gives flatness of D^.
Part a) follows from (6.6).
The isomorphism 6 shows that D^ is idempotent as an algebra over A. Q.E.D.

In later sections we study <^<D^> and ^<D^> showing that they are often equal
and giving a cohomological interpretation. We also present some answers to the question
of when does A have finite projective differentials.

** *

Suppose A is a finite projective R-module. Let {0} be the single element set
of ideals in A®A. This set has the desired properties stated above (6.6) and the (c C 5?

which arises is End A. Thus by (6.6) we have
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Theorem (8.8). — Suppose A is a finite projective ^.-module.

a) End A XA End A-> End A is an isomorphism, the a and a' maps for End A are
isomorphisms so that End A is associative as an K-bimodule and (End A, 6~1, I) makes End A
into a X^-bialgebra which is cocommutative.

b) IfM is any right A-module and N any left ^.-module, then M®^End A 4- Horn (A, M)

and j ^N®J£,nd A -> Horn (A, N) are injective.

Proof. — Part b) follows from (2.12). Part a) follows from (6.6). Q..E.D.

Since End A is a x^-bialgebra it is associative as an A-bimodule. Since End A
is idempotent as an algebra over A the monoid <f< End A > and the group ^< End A >
are defined (4.8).

In a later section we prove that ^< End A > is isomorphic to the second Amitsur
cohomology group of A over R with respect to the functor <( units ".

9. The y map

Motivation

X^-coalgebras and X^-bialgebras have been defined. The next object of interest
is derived from the notion of x^-Hopf algebra.

Suppose B is a cocommutative X^-bialgebra. An x^-antipode would be an anti-
isomorphism S : B^B of algebras over A where S2^! and S has some additional

Q

properties. If^S is the composite B —^ B ^> B then ^S is an isomorphism of algebras
over A. Using /^S one can form the composite y

B ^ B ^ B^B^lg^B

which would be an isomorphism of algebras over A and have some additional properties.
The map S is not recoverable from the composite e99. For our purposes the map y

is all that is needed. Furthermore, for the X^-bialgebra End A when R is a field and
A is a finite dimensional commutative R-algebra there is no x^-antipode S when A is
not a Frobenius R-algebra. But there is always a suitable V map. (This result will
appear in a later section.)

The Ess

Lemma (9.1). — Suppose U, V, W and X are A-bimodules.

a) Consider the composite
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(UXAV)XA(WXAX) ̂  (UXAV)®A(WXAX)

^(U®AW)XA(V®,_X)
^J/(/U®AW)®GV®^X)

where the first natural inclusion is defined above (2.3), ^ M defined in (2.10) a»rf the final natural
inclusion follows by definition (2 .1) . TAc ma^c 0/'^ composite is in

fJU WW)®(^v,®^).
Z^ ^ denote the induced map

(u~^)x,(Wx^x) 4-fJ^ (,A®AW,)®(^V,®^X,).
b) Consider the composite

(UXAW)XA(VXAX) ^ J^(UXAW)®,(VXAX)

^^(UX^W^^XAX)/
-^^(/U®/W)®GV®^X)

wAerc the first inclusion results from the definition (2. i) and the (i)'^ m i®i are each the inclusion

above (2.3). The image of the composite is in f f" f^ {y{V,®^'Wy)®{y/V,®^Xy). Let V
denote the induced map

(UXAW)XA(VXAX) ̂ J7U WW)®^®^).
Proof. — The proof is straightforward and left to the reader.

Definition (9.2). — Suppose (B, A, ^) is a x^-bialgebra, an Ess is a map of algebras
over A

y : B->BXAB
which makes the following diagrams commute:

Bx^B y'<y > (B^B)XA(B^B)
\ IA rI ^

B JrJ!/J/^®AB,)®(,A®AB,)
I 4

"I t"

Bx^B — A X A > (B^B)XA(BXAB)

J23
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y r^/
B ————> Bx^B

I \ I x y

B==B <-6- Bx^EndA

To make use of the Ess we must study algebras over A, (U, i) where i is injective
and Im i=j JJ^. In this case if we identified A with Im i we would have that A is
a maximal commutative subalgebra of U.

Lemma (9.3). — Suppose (U, i) and (V,^) are algebras over A.

a) If j is infective, y yV^== 1m j and there is an A-bimodule isomorphism cr : U-^V, then

1. There is a unique invertible element be A where ai^jb1.
f*x

2. i is injective and yU^==Imi.

3. U and V have the same center in the sense that ifZ is the center ofV, then Z Cimj and
z/'^Z) is the center of U. Moreover j~~l{Z)=={aeA\av==va, yeV}.

^
b) If A -> U X^V ^ injective then both i and j are injective.
c) ff A -> U X^V zj injective and Im(A -> U X^V) == F JJ X^V^ then there is a map

Q : JT.L (^®^)®^V,®^V,) ->EndA

^^/or S^®^®^®^eJrJ^/^^U,®^U,)®(^V,®^V,) W ^eA

A(^(Sze;,®^®^®^)(^))=S(^^)®(^^)

=2(w^)®(^^)eUxAV.

d) Suppose A-^U, A -^ V W A -> U X^V <z^ injective,

Imz=J\U,, Imj=J\V, ^rf Im(A^UXAV)-J\Ux^V,.

£/^ z to identify A with L in (3.4) ^0 ^^ ^ : U X^U -^ End A is an antihomomorphism of

algebras over A. Thus ^ : U x^U — End A is a map of algebras over A. Similarly

^ : v XAV -> End A and ̂  '- (U X^V) X^CU X^V) -> End A are homomorphisms of algebras
over A. The following diagram commutes:
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(U^IV)XA(UX^V)

^1 ^Y'
J7U WW) ® {y^W Q >End A

_ '_ r
(UXAU)XA(VXAV) ^^> EndAx^EndA

e) Suppose A -'> U, A 4- V ^ infective and Im z = F ̂ U ,̂ Im^ == f^ ̂  aW

Y : U-^V is a map of algebras over A. Then the following diagram commutes:

UxJJ ^^ f^V

Proq/'. — ^ Let y==cr( i )eV. Since a is an A-bimodule map yer\V^=Im^
and v=j\b) for some &eA. Then m^b^ and A is the unique element of A with
this property. Let ^o-^^eJ^U^. Then bu==bG~l{I)=G~l{b.l)==G~\v)= i.

Since uef JJ^ also ^eJ^U^ and ^(^ef^V^Imj. Thus

6(7(^/2)=0(^2)=(T(^/)=I.

This implies that ceA is the inverse to b where c is determined by j[c)==a(u2). This
proves Part i.

Injectivity of i follows from ai =jb1 with b invertible in A. This also implies
that CT(Imi)=Imj== ^Vp. Since cr is an A-bimodule isomorphism it follows that
(^U^Im i. This proves Part 2.

Certainly the center of V centralizes Imj. Thus Zc f^V^Imj. For aeA,
j(a) eZ if and only if av = va for all yeV. By Part 2 the center of U is characterized
similarly. Then the fact that U^V as A-bimodules gives Part 3.

b) The composite A -> Ux/V <->- f ^U®a.V is given by a |-> i{a)® i == i ®j'(^). If
this map is injective so are i and j.

c ) The map

J^U®,U)®GV<^V) aaw J^u®/v
carries J'J/^U®^,)®^®^,) to

f J/ (./U,®,/V.,) cj2 J^ WW) = U X^V.

J2,?
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As a submodule of Ux/V, f" ^ (^Uy®^Vy) is J^Vx/^. By hypothesis

J%UxAV,=Im(A-^UxAV) and A-tu-x/V is injective. (The map A-tux^Y
is given by A^AXAA -^ Ux^V.)

This implies the existence of a unique map d making the diagram commute:

^ (,U®,U)00(/V®,V) ̂ ^^ ̂ u®/V

t
U,x^V

J^ (,/U®^)OO^V®^) —————»-A

From ^Wy®Xy®yy®Zyef f ^(y/V,®^Vy)®{y{V,®^\) and aeA it follows that

the element t denned as t==TiWga®Xy®_yy®z^=^w ®x ®jy a®z lies in
i s
f J^U®^)®(^V®^).

Thus d{t)eA and this element is ^ ( S W ® A : ® ^ ® ^ ) ( ^ ) .
?

rf^ Verification of the commutativity of the upper triangle and lower rectangle
in the diagram is straightforward and left to the reader.

e ) As between (2 .2) and (2.3) we identify U X^U with ( y yU®^Vy and

Vx^V with j y V ® ^ V y . With this identification ^ X y corresponds to the map

induced by y^y For -^=S^®<eJy yU®^Uy and aeA, the element ^{z) {a)

is the unique element b in A such that i(b) == ̂ u^i(a) <elm i == |\U^CU. ^ for V X^V

works similarly. Thus (07 Xy) (^)) (<z) is the unique element c in A with

JM=SY(^)J(^Y«).
a

We have
j(b) = yz(6) = y( S ̂ i(^) ̂ ) = SY(^) TZ(^) yK)

a a

=W^WfW
a

which proves that b == c, O.E.D.

The significance of the Ess is captured in part c) of the following proposition:

Proposition (9.4). — Suppose (B, A, J ,̂ ̂ ) is a x^-bialgebra with Ess where

A : B-^Bx^B and y : B->Bx^B
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-are isomorphisms. Furthermore suppose that A->B is infective and Im(A->B)= [ x B .
Let (U, i) and (V,j) be algebras over A which are A-bimodule isomorphic to B. Then

a) i : A -^U, j : A —V, A 4. Ux/V ^ m^^, ^W Im z= f^U^, Imj= f^V^,

Im(A^Ux^V)=J\Ux^V,.

b) The diagram commutes

B——f—^Bx.B

c) &^o^ A zj a faithful ^-module (5.7), i.e. J^ is infective, then there is an A-bimodule

isomorphism (Ux/V) X^'Ux^V)^(V X^U) X^Vx^V) making the diagram commute:

(Ux^V) XA(UX^V)^ (Ux^U) x^(Vx^V)

?:- x ̂

End A <- End A x. End A

Proof. — a) By (9.3), a) i : A->U and j : A->V are injective and the images
are J^^ and J^^ ^^^ti^Y- Since by hypothesis B^Bx^B as an algebra
over A and B X^B^ U X^V as an A-bimodule it follows from (9.3), a) that A -^ U X^V
has the desired properties.

b) The second diagram in (9. s) may be added to the upper left of the commutative
'diagram:

B=B

End A = End A
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to give the commutative diagram

<y /^ a v s •' ^
B > B x^B —>- End A x^End A

\ ^/
End A = End A

By (3.8) the ? : End A x^End A -> EndA may be replaced by X~ and then
by (9-3); e ) the right side triangle commutes in the commutative diagram:

—^—»-B XAB —^> EndA XAEnd A

^Y L~ ^

The remaining left side triangle is exactly what we wish to show.
c ) Consider the first commutative diagram in (9.2). By the present hypotheses

A and y are isomorphisms. Thus y ^ y and Ax A are also isomorphisms. Hence,
^ and S8 have the same image and if we prove that ^ is injective then so is SS.

Consider the composite map from S8 to End A
^f(^X^)A.

By (9.3), d ) the composite is the same as the composite
6(^xa(^x^)A-6((^^)x(^^))A

which by (9.4), b) equals
6(^x^)A.

By the co-unit condition for x^-coalgebras e^xJ^) A==J^. Since A is assumed to
be a faithful B-module ^ is injective and hence V is injective.

Since S8 and ^ are determined by A-bimodule structure alone the preceding
paragraph shows that if L, M, N, P are A-bimodules which are A-bimodule isomorphic
to B then the maps

(L^M) x^(N x^P) -^ f f ^ (,/L^N,) ® (,/M,®^)

(f^N) XA (^Fx^P) ̂  J' J' J/ (,A®ANJ ® (,/M,®^)

are injective and have the same image. They induce the isomorphism in the diagram
of part c ) where U=L=N and V==M=P. The diagram commutes by (9.3), d ) .

Q.E.D.
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io. Simplicity of algebras in ^<93>

The purpose of this section is to prove that if (23, A, ̂ , e957) is a cocommutative
Xj^-bialgebra with Ess where ^ is injective and A and y are isomorphisms, then for U
an algebra over A with <U>e ^<33 >, the map U X^U -> End A is injective and has
image <^(B). This will induce an isomorphism Ux^U^B of algebras over A. As
a consequence such algebras U must be simple algebras when B is simple and satisfies
some module theoretic properties.

Lemma (10.1). — Suppose (G, A, ^) is a X^-coalgebra and E==Im eVcEnd A.

a) Iff9. C->EndA is an A-bimodule map then Im^cE.
In fact there is an A-bimodule map f°: C -> C with ^f° =f. If ̂  is injective then of

course f° is uniquely determined by f.
b) Suppose C is cocommutatiue, A is an isomorphism and g, h : C->C are A-bimodule

maps. Then gh==hg : G—»-C. Moreover gh=hg is the same as the composite
g xh A-1

Cx^C—>Cx^GC C.

c) Suppose C is cocommutative, A is an isomorphism and M, N, R, S are A-bimodules
isomorphic to G. Let a : M->-R and y : N->S be A-bimodule maps. Then

a X y ; MXAN-^Rx^S

is an isomorphism if and only if both a and y are isomorphisms.

Proof. — a) Let f° be the composite

G -^ Cx^C -^ Cx^End^ -^ C.

Since all the maps in the composite are A-bimodule maps so is f°. Then ^f° is the
same as the top row in the diagram:

129
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In the diagram triangle i commutes by the co-unit condition for x^-algebras.
Rectangle 2 obviously commutes. Triangle 3 commutes by the remarks between (5.2)
and (5.3). It is a straightforward computation to show that region 4 commutes.
Therefore the outer diagram commutes and since the top row is the same as ^f° we
have proved part a).

b) In (2.5) the A-bimodule isomorphism twist : Cx^G -> Cx^C is defined.
Since A is cocommutative (twist) A == A. Since A is an isomorphism it follows that
twist is the identity map from Cx^C to Cx^C. This gives the third equality in:

,A-l{gXh)A==A-l{gxI){lxh)^=
(*) ^A- l(^xI)(twist)(AxI)(twist)A=

A-^xIKAx^A-A-^x^A.
Similarly

IA-^X^A^A-^IX^X^A^:
(^) ) A-^twist^AxIKtwistK^X^A^

^A-^x^X^A^A-^x^A.

The map Cx^C —> Cx^EndA-^C is easily checked to be A~1 using the co-unit
condition for C. If I : C->C is an A-bimodule map then

[A- l (^xI)A=e(Ix^)( / 'x I )A
(***) \ =e(^xJQA==^e(ix^)A

f =f^-l^={.

Putting together (*), (^) and (^* ̂ ) gives part b ) .
c ) The <c if55 follows from (2.4), i). To prove the <( only if", M, N, R and S

may all be replaced by C since they are assumed to be A-bimodule isomorphic to G.
Thus we may assume that cr, y '' C->G are A-bimodule maps with oXy : Cx^C -> Gx^C
an isomorphism. Then the composite of isomorphisms A - l(orXY)A is an isomorphism
and by part b) it follows that (7Y=YG^ ls an isomorphism. This implies that both c
and Y are isomorphisms. Q.E.D.

It follows from part a) that if M is an A-bimodule which is isomorphic to C and
f : M — ^ E n d A is an A-bimodule map then there is an A-bimodule map f° : M-^C
with ^f° ==/. And of course^0 is uniquely determined by^if ^ is injective. We apply
this to the following situation:

Theorem (10.2). — Let (SB, A, ̂ , c97) be a X^-bialgebra with Ess where ^ is infective
and y is an isomorphism.

a) Suppose U is an algebra over A which is A-bimodule isomorphic to B. Then U X^U

is A-bimodule isomorphic to SB. If ^ : U X A U ~ ^ E n d A is as defined in (9.3), d) then

(^)° : UXAU->93 is a map of algebras over A where ^(^)°=^.
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b) Suppose A is an isomorphism and U and V are algebras over A which are A-bimodule

isomorphic to B and where Ux^V^B as an algebra over A. Then (^)° : UX^U-^B is
an isomorphism of algebras over A.

Proof. — a) Since U is A-bimodule isomorphic to B, U X^U is A-bimodule

isomorphic to B X^B which is A-bimodule isomorphic to B since y is an isomorphism.
Thus by the lines just above (10.2) there is a unique A-bimodule map (^)° making
the diagram commute.

Ux.U

End A

Since ^ and X^ are maps of algebras over A and <^is injective it follows that (^)° is
a map of algebras over A.

b) Since A is an isomorphism and ^ is injective B is cocommutative by (6.9).
r<^ f>j

As observed in part a), Ux^U^B as an A-bimodule. Similarly Vx^V^B as an

A-bimodule. Thus by (10. i), c ) it follows that {^)° : Ux^U->B is an isomorphism
if the map

(O^U)XA(^IV) " '̂̂  Bx,B

is an isomorphism. Since A is an isomorphism it suffices to prove that

(^IU)XA(^V) ̂ ^l Bx^B ̂  B

is an isomorphism. Since ^ is injective it suffices to proves that the map

(*) (C^U)XA(^IV) (^)ox(^o Bx^B -̂  B -^ End A

is injective with image Im ^. As mentioned between (^) and (4;*^) in the proof
of (10.1) A'^O^XJO. From this it is easily shown that J^A'^O^XJQ. Thus
the composite (*) above becomes

(U XAU)XA(^XAV) "^^"^ ©X^B ̂  EndAXAEndA -e^ End A

=(UX^U)XA(VX^V) ^(g~)o)x(•"(^);) EndAx^EndA -^ End A.

Since J^(^)°=^ by part a ) y what we must prove is that

(UXAU)XA(VXAV) ^ x S EndAx^EndA -^ End A

is injective and has image Im ̂ .
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By (9-4)3 c ) it suffices to prove that

(GX^V)X^VX^V) -̂ > End A

is injective and has image Im J^. By hypothesis Ux^V^B as an algebra over A so
that it suffices to prove that

Bx^B -^> End A

is injective and has image Im J^. This follows from (9.4), b). Q^.E.D.

We conclude the section by studying the consequences of (10.2), b ) . Notice
that the composite

Ux^U -^> Ux^U ^X B

is an anti-homomorphism of algebras over A. And if we denote this composite by ^
then the diagram:

UXAU——^-B

\ /
End A

commutes.
If ^ is an isomorphism then ^ is injective if ^ is injective. In other words U is

Jake (3.5). Moreover A is a simple U X^U-module if and only if A is a simple B-module.

Theorem (10.3). — Let (93, A, J ,̂ y} be a x^-bialgebra with Ess where ^ is infective
and A and y are isomorphisms. Furthermore assume that B is flat as a left (right) h-module
and o+Mx^B (o+Bx^M) for any h-bimodule McB. The following statements are
equivalent:

a) A is a simple "S-module-,
b) B is a simple algebra',
c) ifU is any algebra over A with <U>e^<B>, then U is a simple algebra.

Proof. — By (10.2), b} and the lines just above this theorem A is a simple U X^U-
module if and only if A is a simple B-module. Since U^B as an A-bimodule it follows
from (3.7) that a) implies c ) .

Since we may choose U==B in c ) it follows that c ) implies b ) . By (3.9) b)
implies a). Q,.E.D.

Notice that (9.3), a) shows that the centers of the algebras in ^<B> are all the same.
When the map ^ just above (10.3) is an anti-isomorphism of algebras over A it
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follows that U X^U^B as an algebra over A. When e^is an isomorphism it follows that

B X A B = B X A B ^ B as algebras over A. And in fact from the second commutative
diagram in (9.2) it follows that

Bx^B ̂  Bx^EndA -^ B

is an isomorphism of algebras over A.

Proposition (10.4). — Suppose B is a sub algebra over A of End A and B is idempotent
and associative as an algebra over A. Suppose (B, B, B) associates as A-bimodules and B x^B -°^ B
is an isomorphism of algebras over A. Let U be an algebra over A where Ux^U^B as an
algebra over A.

1. If <U^e^<B>, then V^x^J-1 as algebras over A.
2. If B^B as an algebra over A and U^B as A-bimodules, then both <U> and < U >

/^ m ^<B> <zW <U>=<U>- 1 .
3. Suppose (B, A, i., ̂ ) ^ a x^-bialgebra with Ess wA^ y and A ̂  isomorphisms

and B^B ^ algebras over A. 77^ <W>=<W>~ l /or <W>e^<B>.

Proo/1 — U~1 in part i denotes an algebra over A where U'^^U^B as algebras
over A and U-^B as A-bimodule. By (4.9) U-^^B^U-1 as algebras over A
automatically holds. Applying (< X^U-155 to both sides of Ux^U^B yields

(UxAU-^x^U^BxAU-1

as algebras over A. By the associativity isomorphism (2.6) the left hand side is isomorphic
to UX^U-'XAU^UXAB as algebras over A. The map Ux^B-^U is a map of
algebras over A. Bijectivity of 6 depends on the A-bimodule structure of U and not
on the algebra structure. Thus the assumption that Bx^B-^B is bijective implies that
6 : Ux^B-^U is an equivalence of algebras over A. This proves part i.

The assumption B^B as algebras over A implies that U^B as A-bimodules.
Hence by (4.9) <U><B>=<U> and < U > < B > = < U > . By assumption

< U > < U > = < B > = < B > .

This proves part 2. Part 3 follows from part 2 and (10.2), b). Q.E.D.

Notice that part 3 gives the usual Brauer Group relation between opposite algebras
and inverse classes. See (12.4), b).

133



i34 M O S S E. S W E E D L E R

ii« Existence of the Ess

Some results are developed which can be used to ascertain when a x^-bialgebra
has an Ess.

Lemma (n. i). — Suppose C is a x^-coalgebra and D is an A-coalgebra. Then G®^D
has an A-coalgebra structure with diagonal

GOO^D ^^(Cx^C)AD®,D

-̂ > J ^C^D^C^A0

where 9 is defined in (2.9). The co-unit of G®^D is given by

G®^D ̂  EndA®^A=EndA -^ A.

7/' G and D ar^ cocommutative then so is G®^D. ^D is actually a x^-coalgebra then
the diagonal map on C®^D actually has image in (G®^D) x^COs^D).

Proof. — Left to the reader.
Note. — The coalgebra structure on G®^D actually uses the fact that G is a

X ̂ coalgebra. The coalgebra structure on G®^D is not the usual tensor product
coalgebra structure as defined in [17, page 49].

Proposition (11 .2 ) . — Let (B, A, i) be a x^-bialgebra. We consider B as an A-coalgebra

as in (or just after) (5.4), and consider B ®^B as an A-coalgebra by ( 1 1 . i). Let y : B -> B x^B
be a map of algebras over A. Then y is an JLssfor B if and only if ^y : B ->B®^B is a map

of A-coalgebras^ where L is the inclusion Bx^B->B®^B defined above (2.3).

Proof. — In the diagram below the outer diamond, <^, is the second diagram
in (9.2). The left triangle, 0, expresses the fact that ic^ preserves the co-units. It is
left to the reader to show that the right triangle, (>, commutes. Thus preserving co-units
is equivalent to the second diagram in (9.2) commuting.
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In the diagram below the outer rectangle, a, is the first diagram in (9.2). The
inner diamond, 0, expresses the fact that ̂  preserves diagonalizations. It is left to
the reader to show that the side regions I, II, III, IV commute. Thus y preserving
diagonalization is equivalent to the first diagram in (9.2) commuting. (The maps S9
and %7 are defined in (9.1).)

^(BXAB)XA(BX^B)

Q.E.D.

Lemma (11 .3) . — Let D and D' be sub-A-bimodules of End A where

A : D®AD'->Hom(A,D)

is infective (1.4). Consider Dx^D'CD^^D' as above (2.3).

a) For ^=S;^®^eD0^D', x lies in Dx^D' if and only if

SH«M)=S^«(^))

for all a, b, ceA.

b) D x^D' -^ D = D is infective.
Proof. — Part b) follows from (1.6), 2). The proof of part a) is similar to the

proof of (6.4), 3) and is left to the reader. CL.E.D.

As observed previously, when D is a subalgebra over A of End A then
^ r^———" W

6 : D X A D - > D = D
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is a map of algebras over A. Hence if '6 is an isomorphism, then '6~1 is an isomorphism
of algebras over A. This raises the question of when t ) " 1 is an Ess.

If DC End A is a subalgebra over A and (D, A, i) is a x^-bialgebra with y
as Ess then 6^=1. This follows from the second diagram in the definition of Ess (9.2).
If 6 is injective it follows from 6^=1 that 6^ is an isomorphism and y is uniquely determined
as \j •

Proposition (11.5). — Suppose C is a sub-A.-bimodule of End A where (G, A, i) is a

X^-coalgebra and 6 : C X^C -> C = G is an A-bimodule isomorphism. Then the composite

G ^> Cx^C —> C®^C

is a coalgebra map if and only if C X^C is a subcoalgebra of G^G- V C ls actually a

X^-bialgebra, then O"1 is an Ess if and only if C X^C is a subcoalgebra of C®^C.
Remark. — Generally speaking there are difficulties in dealing with subcoalgebras

when working over rings. However the map C®^ -I0^ C satisfies (I® c) [ C X^C =='6.

Since 6 is assumed to be an isomorphism it follows that C^G^Ker^e^C X^G
as a direct sum of left A-modules. This gives injectivity of the map

J^(Cx^C)®,(6^C) ^J^G^G)®QG(x^C).

If this map is taken for an identification then C X^C is considered a subcoalgebra

of C®^G if under the diagonalization of G®^C the submodule Gx^C is carried

to J^GXAG^CCXAC!). This induces the subcoalgebra diagonalization on 0x^0.

The co-unit of G X^C is the restriction of the co-unit of G®^.
Proof. — Suppose C is a x^-bialgebra. As observed above 'O"1 is a map of algebras

over A. By (11.2) (?~1 is an Ess if and only if i6~1 a map of A-coalgebras.
Now assume that G is merely a x^-coalgebra. Clearly if i.6~1 is a coalgebra map

then Im L6'~ 1 ==CXAC is a subcoalgebra of C®^G. Conversely suppose Cx^C is a
subcoalgebra of G®^- It ^ easily checked that C®^C -I^ C is a coalgebra map.

This map restricted to C X^C is '6. Then'6 is a coalgebra map and so is e"1 : G->G X^C.
Hence 16 ~1 is a coalgebra map. Q.E.D.

Suppose G is merely a sub-A-bimodule of End A. Let

a: J^G®AC®^C®AG->Hom(A®A®A®A,A)
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be determined by

Q^i®^0^0^) {a^a^a^a^)

=0-1(^2(^2))) ^3(^4(^4))). for {^c^ W^A.

Lemma (n.6). — Suppose G is a sub-A-bimodule of'End A,

i. If s : C->Cx^G is an A-bimodule map with 6^=1, then, for ceC with

J^)=2;^®<eGxACcG®AC and a.beA,

(i) ^c^aV^ac

(ii) ^bci{a))==ac{b).

2. Suppose (G, A, i) is a x^-coalgebra and 6^ : C X^G -> G==C is an isomorphism.
If 0. is injective then l6~~ l :G->G®^G is a coalgebra map.

3. Suppose G is a sub algebra over A of End A <27zrf (C, A, i) ma ĵ G m^o a x^-bialgebra.

If £1 is injective and 6 : C X A C - > C = C is an isomorphism then Q~1 is an Ess for G.
Proof. — i. With the notation of part i

S^(<z/ = S^^'(i/ == aOj(^) = a^.
i i

The first equality follows from the fact that S^^'e ( v yC®^Cy. The last equality
follows from the assumption 6j==I. This proves i), (i). 1)5 (ii) follows immediately
from i), (i).

2. Suppose ceG and ^^^^^c^c^eCx^CcG^C. Then

^==6(S6',®^)==S^€(^) and so €(<:)= Se^e^).
i i i

This shows that S~1 preserves co-units. Thus it remains to verify commutativity of
the diagram

C ——^——> C^C

lA (p(A ® A)

J^G®,G ̂ ^ J^G®^G)®QC0^G)

where the right hand vertical map is the coalgebra structure on C®^C, see (11.1).
By injectivity of 0. it suffices to show that for ceC

Q(L<e-l®le/-l)LAM=09(A®A)l6/-l(^.
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This is done by applying each side to a^a^®a^®a^eA®A®A®A. The result in each
case is a^c{a^a^). The calculation uses part i and (5.8), c ) and is left to the reader.

3. Since 9 is a map of algebras over A so is 6-1. Then by part 2 and (11.2) it
follows that 6~1 is an Ess for G. Q..E.D.

The map Q admits many different factorings. Here is one:
Let^ be the A-map

J^C^G®,G®^G=^(J^G®^C(S),C,)®,G

4. Hom(A, ̂  JC ®A C ®^C).

Let^ be the A'-map

f ^C^C^G -> Hom(A, C^C).
J x

Let^ be the A-map
G®Ac4.Hom(A,C).

Letj^ be the inclusion
G-^ Horn (A, A).

Note A is defined in (1.4) and A' is defined in (6.2).
Then 0. admits the factorization

f ^G®^G®^G®AG -t Hom(A, f ^C^C^C)
Jx \ Jx I

Hom(I^ Hom(A, Hom(A, G^C))

Hom(I>Hom(u3P Hom(A,Hom(A,Hom(A,C)))

Hom(i,Hom(i,Hom(i,^)n Hom(A, Hom(A, Hom(A, Hom(A, A))))

^ Hom(A®A®A®A, A)

where the last isomorphism is the appropriate adjointness, resulting from the relation
Hom(X®Y, Z)=Hom(X, Hom(Y, Z)).

By left exactness of Horn it follows that Q. is injective if^,^?^ andy4 are injective.
Of courser is injective. Conditions for f^f^ and^ to be injective are given by (1.5).

Lemma (11 .7) . — Suppose G is a left sub-A-module of'End A. IfC is a sub-A-bimodule
of End A and A : M®^G -> Horn (A, M) is injective for all right A-modules M then

01 : J ^G®AG0:.C0AG^HOm(A®A®A®A,A)

is injective.

Proof, — If all A-maps for G are injective then so are all A'-maps. Thus by the
factoring of 0. above this lemma it follows that 0. is injective. Q.E.D.
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12. Examples of X^-bialgebras with Ess

Consider End A as an A®A-module and let {L^}, {C^}, G be as above (6.6).
In (6.6) it is shown that G is a x^-coalgebra and G is a x^-bialgebra if it happens to
be a subalgebra over A of End A.

Let twist : A®A -> A®A, a^a^ [-> a^a^.

Theorem (12.1). — a) Lei N be an A-bimodule and hence an A®A-module. Suppose
there is L^ with (twist (LJ) .N=0. Then the maps Nx^C^-^N and Nx^G->N are
isomorphisms.

Assume that for each L^ there is an Lp where twist (Lp) CL^.

b) Then C X^Cl -> G==G is an isomorphism and lO""1 is a coalgebra map. If G is a
subalgebra over A of End A and hence a x^-bialgebra, then 6~1 is an Ess/or G.

c) If M is any sub-A-bimodule of G, then M x^ G -> M is an isomorphism. Hence
Mx^C+o if M+o.

d) If C is a x^-bialgebra, then the following statements are equivalent:

(i) A is a simple C-module.
(ii) C is a simple algebra.
(iii) IfU is any algebra over A with <U>e^<G>, then U is a simple algebra.

e) If C is a x^-bialgebra and for each ideal o4=ICA there is an L^ with

A®I4:I0A+L^

then A is a simple C-module.
f) The center of G lies in A1 and is

{{aeA\i®a-a®ienL^}y.

Proof. — a) Since L^.N=o is equivalent to (twist (L J) .N===0, part a follows
from (6.6), b).

c) By (2.12), e ) the map Mx^C—- M is injective and it suffices to prove that
6 is surjective. Consider the diagram

(M^^GJ x^C -̂ > M"̂ TC

T x I T

^ \
Mx^G ——'——> M
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Since G is the union of the (CJ's it follows that M is the union of the (M n CJ's. Thus

the above diagram shows that it suffices to prove that the map (M n GJ X^G 4- M n C^
is surjective.

Choose Lp where twist (Lp) CL^. Then (twist (Lp)) .C^==o and so

(twist(Lp)).(MnGJ=o.

By part a) this implies that the top 6 in the diagram below is an isomorphism

(MnGJx^Cp

I X I

(MnCJx^C

(MnCJ

Hence the bottom 6 is surjective and part c ) is proved.
r>^ Q /^/ ^/

b) By part c ) the map Cx^C->C is an isomorphism. Hence 6 is an isomorphism.
Since all A-maps for C are injective, (11.7) and (i i .6), 2) imply that L'6~1 is a coalgebra
map. Moreover if G is a subalgebra over A of End A then by (i i .6), 3) (?~~1 is an Ess
for C.

d ) Follows from (10.3).
e ) Let I be an ideal in A with A®I4 :I®A+L^. Let p be the composite

A ® I — A ® A — ( A ® A ) / I ^ . Then Im p4:I. ((A®A)/LJ. Since (A®A)/I^ is a pro-
jective left A-module there is a left A-module map F : (A®A)/L^—^A with F(Im p) 4:1.
By (2.12), a ) , F arises from an feC^ and it is left to the reader to show that /(I) 4= I.
Thus no proper ideal of A is G-stable. Since A^ C C any C-submodule of A must
be an ideal. This proves part e ) .

f) Since A^ is a maximal commutative subring of G or End A, the center of G
lies in A^. If i®a—a®ieL^ for each L^, then {i®a—a®i).c==o for all ceC. This
means that cf c = caf and a1 lies in the center ofG. Conversely suppose that for some L^,
i®^—-^OOi(^L^. Then the image z of i®a—a€)i under A®A-^(A®A)/L^ is not
zero. Since (A0A)/L^ is a projective left A-module there is a left A-module map
G : (A®A)/L^A with G(^)+o. By (2.12), a) G arises from geC^ and it is left
to the reader to show that (i®a—a®i).g+o. Thus of'g+ ga1 and cf does not lie in
the center of G. Q.E.D.

Remark (12.2). — Suppose A has almost finite projective differentials, and let {LgJ
be as in (8.5). As explained above (8.7) the G which arises from {L^} is equal to D^
and is a x^-bialgebra. Since twist (i®a—a®i)==—(i®a—a®i) it follows that
twist (ajl^cgjr. Since {L^} is cofinal with {SJl^ it follows that given L^ there is Lp
with twist (Lp) CL^. Thus (12.1) applies with D^=G.
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Remark (12.3). — End A arises as C in (12.1) as shown above (8.8). The one
element set of ideals {0} satisfies twist (o) Co. Thus (12.1) applies to End A when A
is a finite projective R-module. Suppose for convenience that A is a faithful R-module.
Then A is a simple End A-module if and only if R is a field. The center of End A is R.

In the beginning of Section 9 it is shown how an Ess may arise from a X^-antipode.
Such an y is given for A#VL at the end of this section. What we show now is that

" often " End A has no X^-antipode since (c often '3 End A^End A as algebras over A.

Theorem (12.4). — Suppose A is a commutative R-algebra which is a finite projective
^-module.

a) 7/^R is afield and End A^End A as algebras over A, then A is a Frobenius V^-algebra.

b) If A is a Frobenius R'algebra, then End A ̂  End A as algebras over A. Moreover
for <W>e^<EndA>, <W> also lies in ^<EndA> and <W>=<W>- 1 .

Proof. — a) If R is a field then minimal left ideals in End A are isomorphic
to A as End A-modules; hence as A^-modules. Minimal right ideals in End A are
isomorphic to A* as End A-modules; hence as right A^-modules. An anti-automorphism
cr : End A-> End A carries minimal left ideals to minimal right ideals. If a fixes A1

then it induces an isomorphism between a minimal left ideal with the left A{ action
and cr of that ideal with the right A1 action; hence A* is a free rank one A-module and A

is Frobenius. Certainly End A^End A as algebras over A is equivalent to there being
an anti-isomorphism cr fixing A^.

b) If A is a Frobenius R-algebra there is an element feA* which induces a
bijectivemap (^A-^A*, determined by a{a){b)=f(ab). Thus A®A —^ A®A'lt=EndA
is an A-bimodule isomorphism denoted F. It is left to the reader to verify that the
composition

T : End A ^> A®A ^ls^ A®A -F^ End A

is an anti A-bimodule isomorphism which is anti-multiplicative; i.e.

^W == ̂ M^)? T^) == b^g)a,

g, AeEnd A, a, beA. Since T is bijective it must preserve the unit. Thus End A->End A,

g-^^(g), is an algebra isomorphism and an A-bimodule isomorphism. Hence, the map
must be an isomorphism of algebras over A.

Since End A is a Xj^-bialgebra it is associative as an A-bimodule. Since

End A ̂  End A

as algebras over A it follows that (End A, End A, End A) associates as A-bimodules.

By (12.3) End A X^End A -> End A is an isomorphism and ^~1 == y is an isomorphism.
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By (8.8) the O'^A is an isomorphism. Hence by (10.4), 3) if <W>=^<EndA>
then < W > e ^ < E n d A > and <W>=<W>-1 . Q..E.D.

In Section 7 the situation where A is a field and R is a subfield is studied. It is
shown in (7.1) that there is a unique maximal x^-coalgebra or x^-bialgebra BCEnd A.
In (7.3) it is shown that there is a unique maximal x^-bialgebra EC End A such that
E X^E ->• E is an isomorphism.

_ /^/ ^/ /^/
Theorem (12.5). — a) In the above setting 6 : Ex^E—^E==E is an isomorphism and

6~~1 is an }Lss for E.

b) If FCEndE is a x^-bialgebra with Ess then Fx^F-^F is an isomorphism and
the Ess is 6~1.

c) E is the unique maximal x^-bialgebra with Ess in End A.

Proof. — Suppose G is any left A-submodule of End A. By (1.5)3 4) all A-maps
for G are injective.

a) By (11.6)3 3) and (11.7) (T"1 is an Ess for E.
/'«h/ /^ ^

b) By (1.6) the map 6 : F X A F - > F = = F is injective. Thus by the remark
above (11.5) 9 is an isomorphism and 6~1 is the Ess of F.

c) If F is a x^-bialgebra with Ess, then, by part b ) , 9 is an isomorphism and
hence F X^F —>• F is an isomorphism. By the defining property of E it follows that
FCE. Q,.E.D.

At the end of section 5 the example A # H is given. Suppose H happens to
be a Hopf algebra with antipode s. Then A#H has what would be considered a
X^-antipode. (See the beginning of Section 9.) This is the map S : A#Ii->A#1ri
given by

a#h-^{i#s{h)){a#i)=^(s{h^.a)#s{h^.
w

(Recall H is assumed cocommutative.) As in the beginning of Section 9 we use S to
define e99 as the composite

A#H ̂  A^H -^ (A^H)^(A^H) ^i (A^H)x^(A#H).

This composite y maps a # h to S (a # h^) ® (i # S (A/aO) e (A # H) ®^ (A # H). Here
__ W

we are considering (A # H) x^ (A # H) C (A # H) ®^ (A # H) as indicated between (2.2)
and (2.3). It is left to the reader to show that y is an Ess for A#H.

142



GROUPS OF SIMPLE ALGEBRAS 143

i3. The module of differentials

In view of (12.2) one wishes to know when A has almost finite projective differentials.
The purpose of this section is to study the module of differentials and arrive at some
classes of algebras which have almost finite projective differentials.

The construction ofJ^(A), the module ofn-th order differentials, and j^ the universal
72-th order differential operator, appear after (8.3).

We begin the section by proving a number of " extension " results about modules
of differential operators.

Uniqueness lemma (13.1) . — Suppose B is a commutative algebra, M a left 1&-module
and f : A->B an algebra homomorphism. M is considered an A-module by means- off. Suppose
that:

if d : B—»-M is a ^-derivation with df==o then d==o.
Then if d^ d^ :B—»-M are ̂ -differential operators of any order with d^f==d^f then d^==d^.

Proof. — Let 9t=Ker(B®^B mul^ B). Then 91/912 is the Kaehler module of B
over A. If 8 : B^-91/912 is the universal derivation then 91/9l2 is generated as a left
B-module by Im <). Moreover, c)f== o. Hence by hypothesis S == o and so 91/9l2 == o.
This implies that 91 =91^ for o<^eZ.

By considering e=d^—d^ it suffices to prove that if e : B—^M is a B-differential
operator of any order with ^f== o then e == o. If e has order smaller than or equal
to one (and e{i)=o since ^(i)==o) then e is a derivation and by hypothesis ^==0.
Suppose e has order n (with n > i) and the result has been proved for lower order than n.

For a, a ' e A

E/(^ e]{f{af))=f(a)ef{at)-ef(aaf)=o

where [f[a)y e] is defined in the beginning of section eight. The differential oper-
ator [f(a), e] has order less than n, and we have just shown [f{a), e]f==o. Hence
by induction [f{a), ^]==o. This shows that e : B->M is an A-module map. Thus
^Hom^(B, M).

Hom^(B, M) is a B®^ B-module in the following manner: For ^®&2eBOO^B,
^eHom^(B,M), ^eB

((^®^).^3)=^®^A))-

Since e is an n-th order differential operator ^T^.^^o. Since 91 ̂ ^l'14'1, it follows
91. ̂ =o. Thus e is actually a zero order differential operator. Q.E.D.

Local extension lemma (13.2). — Let S be a multiplicative system in A and 9 : A->Ag
the natural algebra map. IfM is a left A^-module and /eD^(M) then there is unique /geD^(M)
where f^=f.
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Proof. — Uniqueness: Suppose r f :Ag-^M is a derivation with rf<p==o. The
usual " quotient rule 9?

^(^-^(pM^M-p^^M)\" / "
shows that d==o. By (13.1) this gives uniqueness of extensions.

Existence: The proof goes by induction on n. For n == o,
D^(M)=HoniA(A, M)=M=:Hom^(Ag, M)=D^(M).

This gives existence (and uniqueness) when n=o.
Suppose by induction that the lemma is true for n—i, and /eD^(M). For

x.yeA, {x®i){jy®i—i®jy)+{i®y){x®i—i®x)==xy®i—i®xy.

Thus for ge Horn (A, N) the identity holds

(*) (^i) • \J. ̂ ]+(i^). [̂  g]=[xy, g],
where N is any left A-module.

The idea is to define/g inductively by

(^•S) fs^lb)=={ilb){[bJUalb)+f{a))

aeA, beS. For specific aeA, beS the right hand side of (13.3) makes sense since
[^/JeD^-^M) and by induction [^/]g is uniquely defined. Let/'(^) denote the
right hand side of (13.3).

Suppose ^eAg has representations alb=z=cjd, a, ceA, b, rfeS. There is seS
with sad==sbc.

Wf],{z) +f{sad) = [sdbJW - [sdj] {a) + sdf{a)

(**) < ==WfUz)-[sdJU^a))+sdf{a)
= [sbdJW - K/]g(9(&) {alb)) + sdf{a).

Using sd for x, b forjy and/for g in (*) yields {sd® i) [b,f] == [sbd,f] —( i ®b) [sd,f\.
By induction this implies that (^®i)[^/]g==[^,/]g—(i®9(^))[^,/]g. Applying
both sides to z and substituting in the right hand side of (**) yields

(***) <VL(<)+<(^)=^/W).
The left hand side of (**) equals [sbd,f]^{z)+f{sbc). In the same manner as

above this equals

(****) sbdf^cid).

Since sbdeS it follows from the right hand side of (***) and from (****) that
/ ' ( a l b ) =ff{c|d). Thus/' is a well-defined map from Ag to M. Notice that if/is actually
an (%—i)-th order differential operator, i.e. /eD^-^M), then by the induction/g is
defined and (13.3) is an identity. In this case /'=/g.

That f{d)==f^{a), aeA is left to the reader. That/' is additive is immediate
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once the two elements being added are expressed with common denominator. That
/' commutes with scalars (from R) is immediate. Thus /'eHom(Ag, M). Next to
show that /'eD^(M).

By the definition (13.3) off it is easily verified that for aeA, f, ̂ eD^(M)

(y(a)®i)/'=((a®i)/)',
(i ®y(a) )/'=((i ®a)f)',

{f+gY=f'+g'.
For aeA, l>eS apply both sides of

((a/^®i-i®(a/^)=(i®(i/^)(y(a)®i_i®(p(a))_(^^)®(i^))((p(^0i_i®y(^)

to /' to obtain

(**^) E(aW'/']=(I®(I/^)[y(a),/'J-((^)®(I^))[<p(&),/']
=(i®(i/^))K/;r-((a/&)®(i/&))[V]'.

Since [a,f] and [b,f] are (n-i)-th order differential operators the right hand side
of (*****) equals

(i®(iW)k/L--((^)®(i/6))[VL
which lies in D^-^M). Thus /'eD^(M) and the induction is completed by setting
fs=^'- d.E.D.

Localization theorem (13.4). — The pair (AS®A,L(A), (i®j,,)g) ^ the same universal
property/or Ag as (JJAg),^). ^CTce J»(As)^Ag®Aj«(A) a^ left ^-modules.

Note.— (i®^) :A-^Ag®Al(A), (a^i®^(a)) is an element of D^(Ag®A,L(A))
and (i®;«)g is as defined in (13.2).

Proof. — By (13.2) (Ag®,J,,(A), (i®^)s) has the desired universal property.
As the universal property characterizes (J»(Ag),j,.) so the second assertion holds. Q,.E.D.

Base extension lemma (13.5). — Suppose S is a commutative R-algebra, and M is a left
S®A-module. Let X : A-^S®A, (a^>i®a). Then for fe-D^M) the canonical extension
S®/:S®A->M, {s®a^>sf(a)) gives the unique element geHom^S® A, M) where

^eD^A,s(M) and g-X=f.

Note. — Dgg,^ g(M) denotes yz-th order differential operators with respect to the
base ring S. There are inclusions

Ds®A(M) CHom(S®A, M) 3 Homg(S®A, M) => Dg^^, s(M).

It is directly verified that

Dy^(M)nHomg(S®A, M)=Dg"^,s(M).

Proof. — Left to the reader.
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Base change theorem (13.6). — The pair (S®J^(A), S®^') has the same universal
property/or S0A as (J^sC^A),^). Hence S®J^(A)^J^ g(S®A) as left S®A-modules.

Note. — j^ :A-»S®J^(A), (<ZI->I®^(A)) is an element of D^(S®JJA)) and
S®^ is as defined in (13.5). Also, (Jn,s(S®A),^) is the J^ module of S®A as an
algebra over the base ring S.

Proof. — Left to the reader.

Lemma (13.7). — Let A and B be commutative algebras, a : A->B an algebra map,
I an ideal of A and M a left A-module.

1 . If /eD^(M) ̂  F(P+W)CIWM:/or o<_meZ.
2. J^(A) ^ generated by J^(A) ^j a /^ A-module.
3. J^(A) ^ generated by j^{A) as a left A-module.
4. 7/' o<^^meZ ^r^ ^ ^ unique left A-module map J^(A) —^J^(B) making the

diagram

A ———> B

Um \3n

J»(A) ̂  J.(B)

commute, J((T) ^ (2^ algebra homomorphism.
5. TA^ maj& J((r) is surjective if a is surjective.
6. If a is surjective and J^(A) is a finitely generated A-module, then J^(B) is a finitely

generated ^-module.

Proof. — Suppose n==o. Then /eHom^(A, M) and f(d)=af(i). Thus

/(I^ry^cpM.
Suppose by induction on n that for geD^-\M), ^(P-1^) Cl^M. Let /eD^(M).

Induct on w. For m=o, /(P4'0) CM=AM==I°M since I°==A. Suppose that
/(P+^-^CP-1]^. For ^eI,^eIn+w-l,/(^)==^/(J/)-[^/](^). Since f{y) CP^M,
^/'(j;)ePM. Since [^/JeD^-^M), by the induction on n, [x.f^e^M. Thus
/(^eI^M and part i is proved.

Part 2 follows from the construction of(J^(A),^) or the observation that (J^(A),j^)
could be replaced by (A;^(A),^). Part 3 follows from part 2 and (8.4).

The composite A ->B -^J^(B) is an element of D^(J^(B)). Thus there is a unique
element

J{a)eHom^UA),W)

making the diagram commute. The map A® A —> B®B is an algebra map and
induces a unique algebra map y : J^(A) —\J^(B) making the diagram:
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JJA)=(A®A)/TOr1 -^ (B^/a^^B)

A®A ——°^°——^ B®B

commute. The map y satisfies YJm^n0' ^d YeHom^(J^(A),J^(B)). Thus y must
equal J(cr) and J(cr) is an algebra map. This proves part 4.

Part 5 follows from the explicit description ofj(c) as y. Part 6 follows from part 5
since the quotient of a finitely generated A-module is again such, and ifJ^(B) is finitely
generated as an A-module it is finitely generated as a B-module. Q.E.D.

Complete extension lemma (13.8). — Let I be an ideal of A and A the completion of A
in the 1-adic topology. Let \ : A->A be the natural algebra map. Let I denote the closure
of X(I) in A. Suppose M is a left A-module and M is complete in the 1-adic topology. Then
for yeD^(M) there is a unique feD^(M.) where f : A->M is continuous and y^=/.

Proof. — By (13.7), part i, f: A—^M is continuous where A has the I-adic topology
and M has the I-adic topology. Thus there is a unique continuous map f : A->M.
where /X=/. That /eD|(M) is left to the reader. Q..E.D.

(13.8) does not imply that J^(A)==J^(A) since not all A-modules are complete
in the I-adic topology.

Let ^ be a commutative algebra with ideal 3 and suppose s^ is complete in the
3-adic topology. There is a left ^-module <^(^) which is complete in the 3-adic
topology and a " universal5? element ^eD^(^(j^)) such that for any left ^-module M
which is complete in the 3-adic topology and for any yeD^(M) there is a unique
(continuous) J(/)eHom^(^(j^), M) where f==J{f)Jn' In &ct the construction of
(^(e^),^) is easy since by (13.7), part i, differential operators are continuous in the
3-adic topology and e^-module maps are automatically continuous in the 3-adic topology.
^(A) is just the completion ofJ^(A) with respect to the 3-adic topology andj,^ is the
composite

^-^>1(^) ——>Jn(^)-A(^).

Completion theorem (13.9). — Let I be an ideal of A and ^ the completion of A in the
1-adic topology. Let \ : A->^/ be the natural algebra map and let 3 be the closure of X(I).

Let J^(A) be the completion ofJ^(A) in the 1-adic topology with the natural ^/-module structure.

The pair (JJA),^'7) has the same universal property for s^ as (A^)?^)- Hence

KA)^XW
as left ^-modules.
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Note^— j^ :A->]JA) is the composite A^(A)^J^A) and is an element
^OICUA)). Since J^(A) is a complete j^-module in the 3-adic topology,^ is defined
in (13.8).

Proof. — Left to the reader.

Definition (13.10). — Suppose A and B are commutative algebras and 9 : A->B
is an algebra map, making B into an A-algebra. B is called a finite separable extension
of A if B is finitely generated and projective as an A-module and B is a projective
B®^B-module.

This usage of finite separable is a special case of [2, p. 369], and when A and B
are fields, finite separable in the sense of (13.10) is equivalent to the classical notion
of a finite degree separable extension.

Lemma (13.11). — Suppose B is a finite separable extension of A, D is a commutative
A-algebra and TT : D-»B a surjective A-algebra map where (Ker 7^=0 for some neZ.. Then
there is a unique A-algebra map B->D splitting TT.

Proof. — The proof is a standard application of (relative) homological algebra
and is included for the reader's convenience.

Uniqueness. — Suppose G is a splitting of TT. Then a : B-^D is an A-algebra
map and gives D and Ker TT a B-bimodule structure. Let y be another splitting.
Y determines a projection P: D^Ker TT, {d[->d—^n{d)) and the composite B-^D-^Ker n
is a Hochschild i-cocycle. Since B is a projective B®^B-module Ext^g(B, Ker 71) = o
and by [5, Proposition (4.1), p. 170] P(T is inner. Thus there is xeKer n where
'Pa(b)=bx—xb for 6eB. Since D is commutative this implies that P(T=O and hence
Im CT C Ker P. This implies that G-=Y.

Existence. — The proof goes by induction on n where (Ker 7^=0. Say n=2.
Then Ker n has a natural B-bimodule (or B®^B-module) structure. Since B is projective
as an A-module there is an A-module splitting s : B-^D ofjc. The map X : BxB -> Ker TC,
((61, b^) H- [s(b^—s(b^s{b^)) is a Hochschild 2-cocycle. Since B is a projective
B®^B-module, Ext^^B, Ker 71;) =o and by [5, p. 175, last sentence], X is a coboundary
of say t:B^Kern. Then s+t : B-^D is the desired A-algebra splitting. Next
suppose n>2 and the result is true for values less than n. The map D^B factors

D^D^KerTry1-1-^.

By the induction Tig admits an A-algebra splitting cyg so that ^(B) is an A-subalgebra
ofD/(Ker n^-1 which is isomorphic to B as an A-algebra. Let E be Trf^a^B)). Then
E "—> ^(B) ̂ B is a surjective A-algebra map and (Ker(7i:i | E)^-1 = o. Again by the
induction this map has an A-algebra splitting ^ and the composite G^ is the desired
A-algebra splitting of TT. O.E.D.

148



GROUPS OF SIMPLE ALGEBRAS 149

Separable extension theorem (13.12). — Suppose B is a finite separable extension of A..
The natural surjective algebra map J^(A)->A (mentioned above (8.4)) is an A-bimodule map
and induces a surjective algebra map B®^J^(A) •"> B®^A==B.

1. (Ker^+^o.
2. A->B®AJn(A), {a^i®j^(a)) is an algebra map making B®^(A) into an

A-algebra and n into an A-algebra map.
3. If a : B-^B®^(A) is the unique splitting of n guaranteed by (13.11) then

(B^AJ^)? CT) has tlle same universal property for B as CL(B),^).
4- B®^I(A) ^J,(B) as left ^-modules.
5' ffM. is a left ^'module and rfeD^(M) then there is a unique rf'eD^(M) where

<f<p==rf, (<p : A->B being the map making B an extension of A).
Proof. — Parts 2 and 5 are left to the reader. Since the kernel of J^(A) ->A is

J^-(A) and J^A)^^, part i is proved.
For 6eB, b®i—a{b)eK®^{A) isinKerTr. This implies that CT : B->B®^(A)

is in D^(B®^(A)). Thus there is unique ^GHomeJ^B), B®^(A)) such that1 the
diagram

J,(B) ———?-B®^I(A)

(*)

commutes. The algebra map A-^B induces an algebra map J^(A) ^J^(B), (13.7),
part 4. Thus v : B®,J»(A) ^JJB), (6®z ̂  6(J(y)(z))) is an algebra map. The
diagram

B®Al(A)————^J,(B)

(**) K /

commutes. This is because the maps j^ va : B-^J^(B) are A-algebra maps where 9
makes B an A-algebra and ^ makes J^(B) an A-algebra. Moreover, both split the
natural A-algebra map J^(B)->B. The kernel of this map is J^(B) and J^B^+^o.
Thus by uniqueness in (13.11) j^==va.

From the two commutative diagrams (*), (**), vueHom^{]^'K),J^'B)) and
jn=v^jn9 By the universal property of CL(B),j^) it follows that vu=I.

The map B®B-> B®^J^(B), (6®ph->^c7(p)) is an algebra map which carries 9JI
to Ker TT. Thus 9Jln+l maps to zero and B®B -> B®^J^(A) factors to an algebra map

(B^^/aR^^K^^B^^J^A), where u^=a and z^Hom^KB), B®^(A)).
By the universal property of {JnWJn) h follows that u=u1. As a left A-module J^(A)
is generated by j^(A), (13.7), part 2. Since 09=^ it follows that u' is surjective.
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With vu = I it follows that v and u are inverse isomorphisms. From the commutative
diagram (*), a corresponds toj^ under the isomorphism and part 3 is proved. Q.E.D.

Corollary (13.13). — The map B®B -> B®^(B), (6®(Bh>6a( (B) ) factors to an
isomorphism J^(B) -> B®,JJA).

Pro^. — This is the map u' in the proof of (13.12). Q^.E.D.

Definition (13.14). — A is a purely inseparable R-algebra if the kernel of A®A —> A
consists of nilpotent elements.

In case A and R are fields the notion of purely inseparable in (13.14) coincides
with the usual definition. If 9Jl=Ker(A®A—^ A) is finitely generated as an ideal
and consists of nilpotent elements then there is an neZ. with 9[)fln==o.

Example (13.15). — Suppose A contains an ideal I where P=o and A=R+I.
Then 9JI is generated by elements i®x—x®i with xel. Hence SdcAO^I+^A
and yR2n~l==o. This implies that A is a purely inseparable R-algebra. Thus for
example R[^, . . ., ^J/<{X^'}> with o<^eZ is a purely inseparable R-algebra.
Even if R is a field of characteristic zero.

Purely inseparable theorem (13.16) . — Suppose A is a purely inseparable ^-algebra and
is a finite projective ^.-module. Then A has finite protective differentials. In fact there is an n
where JJA)=A®A, D^=D^=End A for all m>n.

Proof. — Since A is a finitely generated R-module, SO? is a finitely generated ideal.
Hence there is an n with SJl^o. Clearly for this n, D^=D^==EndA. For m>n
J^(A)==A®A which is a finite projective left A-module since A is a finite projective
R-module. Q..E.D.

Tensor product theorem (13.17). — Let A and B be commutative ^-algebras. Suppose
both A and B have almost finite projective differentials (8.5). Then A®B has almost finite
projective differentials. Moreover the natural map

D^®DB->End(A®B)
d®e h-> {a®b -> d{a) ®e(b}}

induces an isomorphism between D^®Dg and D^g.

proof. — Let t : A®A®B®B ̂  A®B®A®B, ^®^®^®^ h-> ^®^®^®^..
Then

multA (^ B
^^g=Ker((A®B)®(A®B) ——-> A®B)

= t(m^®B®B +A®A®9^B)-

(Thus 9?^^B::)(?@B®B+A®A@^S)
"(and aR^B^a^^B+A^A®^) for r+s=n+i.
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Let {L^} be as in (8.5) for A and {My} as in (8.5) for B. Since {LgJ is cofinal
-with {90^} and {My} is cofinal with {9?l^} it follows from (*) that

{^(H,®B®B+A®A®My)}^y

is cofinal with {SRI^}-
Since t is an isomorphism it induces an isomorphism

A®A®B®B A®B®A®B_____________ />>/ ______________
L^®B®B +A®A®My = ^(L^®B®B +A®A®My)

and the left hand side is isomorphic to

A®A B®B———®——.
La My

has the x A®B-module structure, then the isomorphism

/A®A\ /B®B\ A®B®A®B{**) — — — ® — — — c ^ — — — — — — — — — — — — — — —v / \ L ^ f \M^] ^®B®B+A®A®My)

is as A®B-modules. Since (A®A)/L^ is a finite projective A-module and (B®B)/My
is a finite projective B-module it follows that

A®B®A®B
^L<,®B®B+A®A®My)

is a finite projective A®B-module. Thus A®B has almost finite projective differentials.
/ A®B®A®B \

""/A^A'B'SB""" T"'7 "''""•('(L^BeBTAaAC^,-A8B) ''•"•
-Hom^^B(———®——3 A®B). There is a natural map

\ ^y. My ]

/A®A \ /B®B \ /A®A B®B \
HomJ———, A ®HomJ———, B -> Hom^J———®——, A®B

,(^*^) \ ^a / \ ^Y / \ ^a ^ /

c®d\-> {x®y-^c[x)®d{y))
for

/A®A \ , /B®B \ A®A B®B
^Hom^——,AL r f e H o m B , — , B , xe——, J^ . ,—.

\ -"a / \ —'-Y / a 1V-1-Y

This map is an isomorphism since (A®A)/L^ is a finite projective A-module and
(B®B)/My is a finite projective B-module. In view of (2.12), a) (^*^) induces the
desired isomorphism D^Dg^D^?. Q^.E.D.
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For a commutative algebra A the algebra J^(A) is filtered by powers of the
ideal J^(A). As pointed out earlier A^J^(A)/J^(A). It is easily verified that the
Kaehler module of A, Ji^A) is isomorphic to Jn^A^J^A)2.

Definition (13.18). —Jn(A) is of graded type if J^(A)^grJ^(A) as an A-algebra.
Jyi(A) is of (finite) projective graded type if it is of graded type and (finite) projective
as a left A-module.

IfJ^(A) is of graded type there is a left A-module VCJ^(A) where
^(^^V^l^A)^1, 1=1,...^.

In this case J^(A) is projective as a left A-module if and only if each V1 is projective
as a left A-module.

Graded type theorem (13.19). — Suppose B is a commutative algebra and A is a commutative
algebra where J^(A) is of graded type.

1. J^(B®A)^© (Jz(B)®grJ^(A)^_,) ^ ^ /<^ B® A-module, where grJ^(A), ^ ̂
i==0

z-th graded part of grJ^{A).
2. 7/'Jo(B), . . .,J^(B) are finite projective ^-modules and J^(A) is a finite projective

A-module^ then J^(B®A) is a finite projective B® A-module.
3. Suppose R ^ a ym? o/' characteristic p., i.e. rî r j^ z'j a prime and p. i==o in R or

^==0. 7yz what follows t is assumed to be zero if p=o. Let C be the algebra

R[X,, ..., X,, Y,, ..., YJ/<{Yf}> o<^ ..., ^eZ.

jR^^ ^^/or ceC, j^{c)=j^c)—cj^i). Let V ^ the left G-submodule of]^{G) spanned
by B^O^X^uO^Y,)}. Then V zj a free G-module with basis B. Moreover V1 ^ a
free G-module with basis consisting of monomials

^(X^ .. ..̂ (X^UW1 .. .^(Y,)^

n r̂c /i +•••+/, +gi +...+gt=i and g^ < p"1, ...,gt< p'1. Finally
J^C^V^J^C)^1,

so that J^(C) ij of finite projective (actually free) graded type.
4. Suppose R zj ^y^/rf ^z^rf L is afield extension of R which is finitely and separably generated

as a field over R; i.e. L is a finite separable extension of R(X^, . .., Xg). Then J^(L) is of
finite projective graded type.

Proof. — Part 2 follows immediately from part i.
For part 3 observe that the algebra map C[Ui, . . . , U,, V^, . . ., Vj -> G®G

determined by c\->c®i, U^i®X,—X^i, V^I®Y,—Y,®I induces an algebra
isomorphism

^C[U,,...,U^...,V^^

<{vn>
2,52
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and this isomorphism is a left C-module map. Under the isomorphism, SOTcd^G
corresponds to the ideal in D generated by {UJu{V,}. Thus J^(C) corresponds to
a truncation of D, factoring out degree n +1 and higher ones. The specific assertions of
part 3 now follow easily and are left to the reader.

For part i identify (B®A)®(B®A) with (B®B)®(A®A) by

(6®a®(B®a) <-> (&®(B®^®a), b, (BeB, a, aeA.

Let
9[»B=Ker(B®B -mult B), 9?^=Ker(A®A mul1l A),

aRB^A-Ker^B^A^B^A) mul^ B®A).

Then 9?lB®A corresponds to B®B®9J^A+9^B0A0A and S l̂ corresponds to

K==B®B®9Jll+ l+S9[RB0^1+l~^+9KS+10A®A.lQ9l5^yJ(*-L+ 2. WWi= i

This gives an isomorphism between J^(B®A) and (B®B®A®A)/K as algebras and
left B®A-modules. The surjection B®B0A®A-^ (B®B®A®A)/K factors

B®B0A®A —> (B®B®A®A)/K

(B®B®A®A)/(B®B®9?^1+1)==B®B®J^(A)

This induces a surjection B®B®J^(A) -> (B®B®A®A)/K which is a left B®A-module
map. The kernel is T^1 if T is the ideal 9JlB0Jn(A)+B®B®J^(A) CB®B®J^(A).
Since J^(A) is of graded type there is a left A-module VcJ^(A) where

J^A^V-ej^A)^1.

This gives J^(A) the grading A®V®V2®. . . OV". V certainly generates J^(A) as
an ideal. Thus T is generated by 9JlB0A+B0B0V as an ideal. The grading
on J^(A) induces a grading on B®B®J^(A) and T is a homogeneous ideal, since it
is generated by homogeneous components. Thus ^"^ is homogeneous and in fact
is the direct sum of graded components

Tn+ l==(9?^B+ 1 0A)®(9?^S@V)@•••@(^B0Vn)•

Thus (B®B®JJA))/Tn+l is isomorphic to

n

(D((B®B)/9JlS+l~^)0V^
i=o
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as a left B®A-module, where V° denotes A. By choice of V, V^grJ^(A), and by
definition (B®^/^1"^!-^). This proves part i.

Now part 4. Choose indeterminates Xi , . . . ,X ,eL so that L is a finite
separable extension of R(Xi, . . . ,X , )CL. By (13.13) it suffices to prove the result
for R(Xi, . . ., XJ. The map R[X,, . . ., XJ -> R(X,, . .., XJ induces an algebra
map

J(0 : J,(R[X,, . . . , XJ) ->J,(R(X,, . . . , X,)),

(13.2). By (13.4)

R(X,, . . . , X,)®^,^J,(R[X,, . . . , XJ) ->I(R(X,, . . . , XJ)

^^(J(0(z/))

Z/(=R(XI, . . ., XJ, yeJ^(R[Xi, . . ., XJ), is an algebra isomorphism. Thus is suffices
to prove the result for R[X^ . . ., XJ and this is done in part 3. Q.E.D.

Corollary (13.20). — i. If A is a localization of a finitely generated ^.-algebra then J^(A)
is finitely generated as a left A-module for all n.

2. Suppose R is afield and K is afield extension o/R which is finitely generated as a field
over R. Then J^(K) is a finite projective left K-module for all n.

Proof. — i. Suppose A is finitely generated as an R-algebra. Then for some
o<77zeZ there is an algebra surjection

R[X,, . . . ,XJ->A.

BY (13-19). 3)Jn(R[Xi, . . ., XJ) is finitely generated as a left R[X^, . . ., XJ-module.
^ ^S-?). 6) Jn(A) is finitely generated as a left A-module. By (13.4), if S is any
multiplicative system in A, then J^(Ag) is finitely generated as a left Ag-module. This
proves part i.

2. The projectivity is clear and the finiteness follows from part i. Q^.E.D.

Proposition (13.21). — Suppose R is a field of characteristic p and K is a field extension
of R which is finitely generated as a field. Let

^_K[X, , . . . ,X^Y^. . . ,YJ

<{Yf}>

o<e,eZ. Note, t is assumed to be zero if p==o. Then J^(A) is a finite projective A'module
for all n.

Proof. - Let A,=R[X,, . . . , X,, Y,, ..., YJ/<{Yf}> and B,=K. By
(13.20), 2), J^(B^) is a finite projective B^-module for all n. By (13.19), 3), J^(Ai)
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is of finite projective graded type for all n. By (13.19), 2), J^(B^®A^) is a finite
projective B^A^-module for all n. Since A^Bi®Ai we are done. Q.E.D.

Proposition (13.22). — Suppose R is afield of characteristic p and K is afield extension
of R which is finitely generated as a field. Let

A^K-[XI , .. ., Xg, Y^, . . ., YJ

<{Yf}>

o<^eZ, z^r^ ^ ^ assumed to be zero if p==o. Let I be the maximal ideal in A generated by
the cosets 0/' {X^}u{YJ. ^ denotes the completion of A in the I-adic topology, X the natural
map \->^/ and 3 the closure of \(T) in ^.

1. j^K[[Xi, . . . , X , , Y i , . . ..Y^/^Yf1}) as an algebra, \ corresponds to the
natural map

K[X,,. . .^Y^.. . ,YJ _^ K[[X^.. .^Y^.. . ,YJ]
<{Yf'}> " <{Yf'}>

and 3 corresponds to the ideal generated by the cosets of {XJu{YJ in

K[[X,,...,X,,Y,,...,YJ]/<{Yf'}>.

2. ̂ (^) is finitely generated and projective as a left ^/-module for all n, where ^(e^)
is defined just above (13.9).

3. D^=Hom^C/,(0, ̂ ) for all n.

Proof. — Part i is left to the reader. By (13.21), J^(A) is a finite projective
A-module for all n. By (13.9)3 ^(^) is isomorphic to the I-adic completion ofJ^(A)
as left e^-modules. Since Jyi(A) is finitely generated as a left A-module it follows [4,
Th. 3, p. 68] that /^{^)^^®^J^{A) as left e^-modules. This proves part 2.

Part 3 is implied by the definition of <^(<^) since ^/ is complete in the 3-adic
topology. Q.E.D.

Definition (13.23). — Suppose ^ is a commutative local algebra with maximal
ideal 3. Assume that for each o<_neZ., /n^} is a finite projective left ^-module,
where ^(^) is defined above (13.9). Then s^ is called ^.formal algebra.

The ^ in (13.22), i) is a formal algebra by (13.22), 2).

Proposition (13.24). — Let R be a field and A an algebra which is a localization of a
finitely generated R-algebra. Assume that for each maximal ideal ?l of A the completion of A
in the yi-adic topology is a formal algebra. Then for each n J^(A) is a finite projective left
A-module.
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Proof. —J^(A) is a finitely generated left A-module by (13.20).
To prove that JJA) is projective as a left A-module it suffices to do so locally.

I.e. to show that for each maximal ideal 91 C A, A^0J^(A) is a projective (free) left
A^-module. By (13.4) it suffices to show that JJA^Ag^J^A) is a projective
left A^-module. Note that J^(A^) is a finitely generated left A^-module. Let ̂
3-n^ Jn(A^) denote the completions of A^ and J^(A^) in the 9t-adic topology. Since
J^(A^) is a finitely generated left A^-module, X(A^) ̂ A^®^Jn(Asn) as left A^-modules.
Since A^ is noetherian and J^(A^) is finitely generated as an A^-module it suffices to
prove thatJ^(A^) is flat as an A^-module [3, Cor. 2, p. 140]. By [4, Prop. 9, p. 72]
and [3, Prop. 6, p. 48], it suffices to prove that A^®^J^(A^)^J^(A^) is flat as a left

A-module. By (13.9), Jn(A^)^^(A^) as left A^-modules. By the assumption
on A^ being a formal algebra it follows that ^(A^) is a projective hence flat left
Asjrmodule. Q.E.D.

Proposition (13.25). — Suppose R is a field, A a localization of a finitely generated
R-algebra and for each maximal ideal 91 of A, A^ is a regular local ring. Then for each n, J^(A)
is a finite projective left A-module.

Proof. — In view of (13.22), 2) this is a special case of (13.24). Q,.E.D.

Proposition (13.26). — Suppose R is noetherian, S is a commutative R.-algebra and A
is a localization of a finitely generated R.-algebra.

1. S®A is a localization of a finitely generated ^-algebra.
2. Let J^g(S®A) denote J^ of S®A as an S-algebra. If J^g(S®A) is flat as

a left S® A-module and S is faithfully flat as an ^.-module then J^(A) is a finite projective left
A-module.

3. 7/'R and S are fields and for each maximal ideal 91 in S®A, the completion of S®A
in the yi-adic topology is a formal ^-algebra then J^(A) is a finite projective left A-module.

Proof. -— Part i is left to the reader.
The finiteness in part 2 follows from (13.20). Since A is noetherian, by [3, Cor. 2,

p. 140], it suffices to prove that J^ (A) is a flat left A-module. This is implied by S®J^(A)
being a flat left S®A-module. By (13.6), S®J^A)^g(S®A) as S®A-modules.
This proves part 2.

Part 3 is implied by parts i and 2 and (13.24). Q.E.D.

(13.26) permits passage to the perfect closure or algebraic closure of R.
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14. Simplicity and the center of D^

In view of (12. i), d ) and (12.2) one wishes to know when A is a simple D^-module.
In view of (9.3), a) one wishes to know the center ofD^ since then one knows the centers
of the algebras U over A with <U>e^<D^>. These questions are partially answered
in this section. Throughout the section A is a commutative R-algebra.

For a commutative ring S and seS we let J , denote the ideal {A:eS[xy=o}. If
T is a subset of S we let J(T) denote U L-^ \ / o + f e T " 1

Lemma (14 .1 ) . — Let S be a commutative ring with subset T.

a) For x e j g , if i -\-x is invertible in S, then the inverse is of the form i +y with y ^ ] s '
CO

b) For x e J ( T ) , let I be the ideal S(i +x). Then there is o4=^=Tn( D P).
U =• 1

oo

c) If S is Noetherian and I is an ideal of S where o+^eTn ( fl P), then I contains an
element of the form i+x with xe](T). ^

d) If, for each proper ideal KCS, the intersection D K" is zero, then i+d is invertible
n == 1

for each zero divisor deS. If S is Noetherian and i +d is invertible for each zero divisor deS,
00

then for each ideal KCS the intersection fl K.̂  is zero.
+ n=l

e) Suppose B is a commutative ^.-algebra which is flat as an R.-module. Then in B®A,
J^,=B®L.

Proof. — a) Suppose i+x has inverse z. Multiply {i+x)s==s on both sides
by z to obtain s==zs. Then z—iej^.

b) Given xeJ(T) let o^teT with xt==o. Then ^=(1 +x)nteln for all ^. Thus
o+^Tr^nP).

n

c ) By the Krull intersection theorem there is a yel with yt=t. Then j-ieJ(T).
^ The first statement follows from part b) with T == S. The second statement

follows from part c) with T=S.

e ) Let I =A.a. The sequence o-^-^A-^I-^o is exact. Tensoring by the
flat R-module B gives the exact sequence

o —> B®^ —> B®A 1@{^ B®I —> o

Since I®(</)=(i®^/ it follows that Jl®a==B®Ja• d.E.D.

Definition (14.2). — An element o+^eA has the strong intersection property if for
each commutative R-algebra B the elements A:£B®J^ are such that i +x is invertible in
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B®A. The algebra A has the strong intersection property if each o^aeA has the
strong intersection property.

Suppose o^aeA has the strong intersection property, B is a commutative flat
R-algebra where B®A is Noetherian and I is an ideal in B®A. Furthermore suppose

00

that o+i®^^?. Applying (14.1), c ) with T = = { i ® a } it follows that there is
xe3l®a with i+^I. By (14.1), e ) ^eB®J^ and hence, by definition of the strong
intersection property, i+x is invertible. This implies that I==B®A and gives part a) in:

Lemma (14.3). — Let B be a commutative flat ^-algebra where B®A is Noetherian.
and I is an ideal in B®A.

00

a) If aeA has the strong intersection property and i®ae fl P, then either i®a=o

or I=B®A.

b) If A has the strong intersection property and we let A denote Im(A a ̂ 1 @? B®A), then
00

either Ar^fll^o or I==B®A.\=i j

Proof. — Part a) is proved just above (14.3). Part b) follows from part a). Q^.E.D.

Proposition (14.4). — a) An element o^aeA has the strong intersection property if Ja
consists of nilpotent elements.

b) Suppose R is an algebraically closed field and o^aeA. Assume that for each xej^
the element i -\- x is invertible in A and that J^ is contained in a finitely generated sub algebra of A.
Then a has the strong intersection property.

Proof, — a) Suppose B is a commutative R-algebra. Since J^ consists of nilpotent
elements the image of B®J^->B®A consists of nilpotent elements. Thus xeB®]^
is nilpotent and i -\-x is invertible. This proves part a ) ,

b) Let C be any subalgebra of A containing ]^ For xej^, i +x is invertible
in A by hypothesis. By (14.1), a) the inverse actually lies in C.

Let B be a commutative R-algebra and 2'eB®J^. If z=^b^®a^ then there
i

is a finitely generated subalgebra D of B with {6,} CD. Since by hypothesis J^ lies
in a finitely generated subalgebra of A, there is a finitely generated subalgebra G of A
with aeC, J^CG and {a,}CG. We shall show that i +z is an invertible element
of D®C.

If i + z is not invertible in D®G it lies in some maximal ideal. Since D®G
is a finitely generated R-algebra and R is algebraically closed, we can apply the Hilbert
Nullstellensatz to conclude that there is an R-algebra homomorphism / :D®C->R
with /(i +z)=o. Clearly/is of the form D®C ̂  R®R=R where a : D—R and
p : G—^R are R-algebra homomorphisms.
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Let 3" :D®G->C, d®c[->a{d)c. This is an R-algebra homomorphism and ^5=f-
Since z{i®a)==o, V{i®a)==aeG we have '5{z)a=/S{z)/S{l®a)==/5{z{I®a))==o. Hence
" S ( ^ z ) e J ^ and by hypothesis i-{-^{z) is invertible. This implies p(i+3'(^)) 4=o. But
p(i +$'(2'))== pS^i -{-z)==f(i + z)==o. The contradiction shows that i-\-z must be
invertible and aeA has the strong intersection property. Q^.E.D.

Corollary (14.5). — a) A has the strong intersection property if all zero divisors in A are
nilpotent. In particular integral domains have the strong intersection property.

b) If R is an algebraically closed field, A is a finitely generated V^-algebra and for each
proper ideal ICA the intersection dP is zero, then A has the strong intersection property.

n

Proof. — a) Since J^ consists of zero divisors for o+aeA part a) follows from
{14.4), a).

b) By (14.1), d ) , for each zero divisor deA, the element i-\-d is invertible.
Hence by (14.4), b) A has the strong intersection property. Q^.E.D.

Proposition (14.6). — Suppose A has the strong intersection property and let

mult9?l=Ker(A®A—>A).

If o 4= I is a proper ideal of A where I and A/I are flat ^-modules and (A/I) ®A is a Noetherian
ring, then there is o<7zeZ such that

<*) A^I^I^A+SJ^.
Proof.—Let n : A->A/I be the natural map. In (A/I)®A let 9t==(7T;®I)(9K).

Since 91 lies in the kernel of the composite

(A/I) ®A I@? (A/I) ® (A/I) mul^ A/I, 9t+ (A/I) ®A.

To verify (*) it suffices to prove that for some o<^eZ

(TT®!) (A®I) 4= (TT®I) (I®A + ajr)
-which reduces to showing

(A/I) ®I4=9T.

for some o<7zeZ.
By flatness of I and A/I the following composite is injective

I==R®I -> (A/I)®I -> (A/I)®A.

Thus for o+xel, it follows that o=(= i®;ce(A/I)®A. By (14.3), ^ there is o<neZ
-with 10^4=^. Q..E.D.
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Theorem (14.7). — Suppose A has the strong intersection property and almost finite projective
differentials (8.5). Furthermore suppose that for each ideal o=t=ICA both I and A/I are flat

1^-modules and (A/I)® A is a Noetherian ring. Then A is a simple 'D ̂ -module.

Note.—If A®A is Noetherian then (A/I)®A is Noetherian for any ideal ICA.

Proof. — By (12.2) we may apply (12.1). Let {L^} be as in (8.5). Suppose
o+I is a proper ideal of A. By (14.6) there is o<neZ where A®I4:I®A+9[)y\
Since {LJ is cofinal with {W} there is L^ with A®I4=I®A+L^. By (12. i), e ) A is
a simple D^-module. Q^.E.D.

Now we wish to study the center of D^. In A® A let 9K°° = H 93 .̂ Let/and g
H

denote the composites:

f: A a^1-^ A®A —> (A®A)/9Jl°°

g : A ^°-̂  A®A —> (A®A)/9K°°.

Definition (14.8). — Let Z^[A)=={aeA\f{a)=g{a)}.

Clearly Z^(A) is a subalgebra of A. Often we write Z(A) for Z^(A).

Theorem (14-9). — Suppose A has almost finite projective differentials. Then Z(A) is
the center ofD^. {Here we are identifying Z(A) with Z(A/ and considering Z(A/CA^CD^.)

Proof. — Let {LgJ be as in (8.5). By (12.2) we may characterize the center
ofD^ by (12. i),/^. Since {L^} is cofinal with {9J11}, (12. i),f) implies that the center
of DA is ({aeA\l®a—a®le<Sli for all z}/. Thus the center of D^ is

({aeAI^^-^ieajl^/^^A/. QJE.D.

Lemma (14.10). — a) Suppose A and B are commutative R-algebras and 9 : A->B.
Then cp(Z(A)) CZ(B).

b) Suppose G is an ^.-algebra which is a finite separable extension of R (13 .10) . Then
G==Z(G).

c) Suppose A is a commutative R-algebra with subalgebra C where C is a finite separable
extension of R. Then G C Z (A).

d) Suppose R is afield and S is a commutative V^-algebra. We can consider S®A as
an ^-algebra and so Zg(S®A) is defined. The natural map S®Z^(A) -> S®A carries
S®^Z(A) isomorphically to Zg(S®A).

e) Suppose R is an algebraically closed field, A® A is Noetherian and aeA where a
is transcendental over R. Then flr^Z(A).

Proof.—Let m^Ker^A^ A) and 9KB=Ker(B®B mul^ B). Then

(P^W^B
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so that (9®9)(9K^)C9K^. Clearly the diagrams

CD CD

A ————> B A ———-> B

f f

A®A ̂  B®B A®A ̂  B®B

commute.
Thus for aeA, if (f-g) {a)em^, then {f-g) <p(^)e9J^ and it follows that

cp(Z(A))CZ(B).

^ Since G is a projective C®C-module the map C®C —> C has a G®C-module
splitting. Then G®C is the direct sum of 9J?c and the ideal which is the image of
the splitting. The component of i in 9Jl̂ ; is an idempotent which generates 90^. Thus
ar^=9Jlc ^d 9K?==9Jlc- For all ceG, [f-g) (<:)=i®^-^®ie9Kc and so C=Z(G).

^ follows from a) and &^ when we consider the inclusion map C«->A.
d ) There is a natural isomorphism (S®A)®g(S®A)^S®A®A. Under this

isomorphism SJIg^A corresponds to S®9(R^. Then 9Jl§0A corresponds to S^SO?^.
00 00

Since R is a field D (S09K1)==S®( Q Wl). Thus SR^^ corresponds to S®9Jl^.

Finally under the isomorphism the f and g maps from S®A to (S®A)®g(S®A)
correspond to SOOA ——> S®A®A and S®A —i S®A®A respectively. Thus

{xeS®A\{f-g){x)Em^^}

equals the kernel of the composite

S®A I0(f"^ S®A®A —> S®((A®A)/9[R^).

The kernel of this map is S®Z(A).
e ) Let T be the multiplicative system in A generated by {a—r}^^^. If a is

transcendental over R then no product {a — r^) . . . [a — rj is equal to zero. Otherwise
a would be a zero of the polynomial (X —T\) . . . (X —rj. Hence o^T and there is an
ideal ^ CA which is maximal with respect to ^3 n T == 0. As is well known ̂  is prime.
Let TT : A-^A/^p. By part a) it suffices to prove that 7r(^)<^Z(A/^). By choice of
the multiplicative system T we know that 7r(<z)^R. Hence

O+I^T^—TTC^^A^^A/^)).

Since R is algebraically closed and A/^3 is an integral domain we have that (A/^5) 0 (A/^3)
is an integral domain. Since A®A is Noetherian so is (AI^)®(AI^)==(n®n) (A®A).
Hence by (14.1), d ) , W^=o and i®n(a)-n(a)® i^9Jl^. Thus TT(^Z(A/^).

Q..E.D.
To further characterize Z(A) we must assume that R is a field.
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Definition (14.11). — For a commutative algebra A over a field R, Sep^A denotes
{aeA | there is a separable polynomial o=|=/eR[X] with f(a)=o}.

We often write Sep A for Sep^A.
Sep A has the following properties:

1. Sep A is a subalgebra of A.
2. If B is another commutative algebra, then the inclusion

SepA®SepB -^A®B

has image Sep(A®B). Thus Sep A® Sep B is naturally isomorphic
to Sep(A®B).

3. If B is another commutative algebra, then the inclusion
SepA®SepB—A®B

has image Sep(A®B). Thus Sep A® Sep B is naturally isomorphic
to Sep(A®B).

4. If S is a field extension of R and Sepg(S®A) is the Sep of S®A as an
S-algebra, then the map S0SepA-^S®A maps S®SepA isomorphically
to Sepg(S®A).

5. If R is algebraically closed, then Sep A is spanned by idempotents.
6. If Sep A is spanned by idempotents and A is Noetherian, then Sep A is

finite dimensional.
7. If Sep A is spanned by idempotents and is finite dimensional, then there

is a unique set { ^ , . . ., ^J of minimal orthogonal idempotents in Sep A
which is a basis for Sep A and any idempotent in Sep A is of the form
eh+ • " +e^ for a set ^l5 • • • ^ m } ^ 1 . ...^}-

8. Suppose or : A->B is an algebra map where B is a commutative algebra.
Then (y(Sep A) CSep B. If G is surjective and Ker a consists of nilpotent
elements, then a maps Sep A isomorphically to Sep B.

Theorem (14.13). — Suppose A is a commutative algebra over afield R and S is the algebraic
closure of R. If S0A0A is Noetherian then Z(A) == Sep A and Sep A is finite dimensional.

Proof. — By (14.10), d ) and (14.12), 4) it suffices to prove that

Zg(S®A)=Seps(S®A).

Since S0A0A is Noetherian we have that (S®A)®g(S®A) is Noetherian. Thus
we may assume that R is algebraically closed and A® A is Noetherian.

Let 7xeZ(A). If n is invertible it is not nilpotent. Suppose n is not invertible
and yi=A.n. Let TT : A->A/?l.

Since A®A is Noetherian and i®y2—w®ie9J l^ it follows from the Krull
intersection theorem that there is z/eSJl^ with u(i®n—n®i)=i®n—n®i. Hence
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(u — i) (i®n—n®i)==o

and o== ((71:01) (u--i))(n®I{i®n—n®i))={{n®I) {u — i)) (i ®?z).

Thus by (14.1), ^ (TT®I) (z/—i)e(A/9t)®J^ and so u — ie?l®A+A®J^.
Since ^eSQ^? mult(z/)=o and m u l t ( ^ — i ) = = — i . Thus — i^A+AJn^^+Jn

and A==9l+Jn- Say i = = ^ + ^ with <2%e9l, &eJ^. Since nb==o this proves that
an is idempotent. Since an is idempotent ?z cannot be nilpotent.

Thus far we have shown that Z(A) contains no nilpotent elements. By (14.10)5 e )
Z(A) contains no transcendental elements. Let -zeZ(A). Since z is not transcendental
it generates a finite dimensional subalgebra GcZ(A). Since C contains no nilpotent
elements it is semi-simple over R. Since R is algebraically closed G is the direct sum
of copies ofR. Hence G is spanned by idempotents which are separable and CcSep A.
Thus Z(A)CSepA.

Since A®A is Noetherian so is the homomorphic image A = mult (A (8) A). Thus
by (14.12)5 5) and 6), Sep A is finite dimensional.

It can be shown that Sep A is a finite separable extension ofR in the sense of (13. lo).
In which case SepAcZ(A) by (14.10), c ) . Alternatively, by (14.12, 5)3 Sep A is
spanned by idempotents. If e is an idempotent in A, then direct calculation proves
that ( i ® ^ — ^ ® ! ) 3 ^ ! ® ^ — ^ ® ! . Thus l®e—e®l={l®e—e®l)3ne<Sl^ for all n and
i0e—^®ie9Jt^. This shows that ^eZ(A). Since Sep A is spanned by idempotents
SepAcZ(A). Q.E.D.

15. Cohomology of a x^-bialgebra

Throughout this section A is a commutative algebra and (B, A, ^) is a cocom-
mutative x^-bialgebra. If G is a x^-coalgebra and D is an A-coalgebra then C®^D
has an A-coalgebra structure described in (11. i). This coalgebra structure shall be
used frequently. If D is an A-coalgebra and K an A-algebra then Hom^(D, K) has

an A-algebra structure [17, p. 69-70]. The unit is the composite D -> A ——-> K for
f, ̂ eHom^(D, K) the product f^g is given by

D -^ J>®,D -^ L,KOO,K mn^ K.

When D is cocommutative and K is commutative then Hom^(D, K) is a com-
mutative A-algebra.

Definition (15.1). — Reg^(D, K) denotes the group of invertible elements in
Hom^D.K).

When D is cocommutative and K is commutative then Reg^(D, K) is an abelian
group.
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When E is another A-coalgebra and D->E is a coalgebra map, the induced
map Hom^(E, K) -> Hom^(D, K) is an algebra map. Hence it induces a group
map Reg^E, K) -> Reg^D, K).

Lemma (15.2). — a) Suppose G is a x^-coalgebra, D and E are A-coalgebras and
y:D->E is a coalgebra map. Then I®/: G®^D -> C®^E is a coalgebra map.

b) Suppose D is an A-coalgebra and C^y . . . 3 Cy are x^-coalgebras. Then

G^G^...(^C^D

is an A-coalgebra by (11.1) iterated.
c) Suppose Ci and Gg are x^-coalgebras, f : G^^C.^ —^ C^ is a coalgebra map and an

A-bimodule map and D is an A-coalgebra. Then /®I : C^^Gg^D —>• C^®^D is a coalgebra
map.

d) For the x^-bialgebra B the map B®^B —> B is an A-bimodule map and a coalgebra
map. The map B -> A is a coalgebra map.

e) The following two maps CQ and e^ from A to Hom^(B, A) are algebra maps. For
aeA, beB

e,(a){b)^b.a

e,{a){b)==ae{b).

Note. — In e {andf), b.a or 6o-/(^i0 • • • ®^n) ls tne natural action ofB on A (5.7).
Also Hom^(B®A.. .®AB,A) denotes f^Hom^B®^ • • • ̂ B, yA).

f) For o</zeZ the following n-\-2 maps from

n n-\-1

Hom^^B®^^!3^ A) to Hom^(B^7^ -^A^ A)

n
are algebra maps: for /eHom^(B®^ . . . ®^B, A), {&J^CB

^(/)(^.•• (X )^)=V(^®•••®^)
.,(/) (&o® . . . ®b^=f{b,b,®b,® .. . ®&J

^(/) (^o® • • • ®b,)=f{b,®b,b^b,® . .. ®^)

^(/)(^...®y==/(^...®^-2®^-l^)

^n-.l(/) (^O® • • • (x)^) =/^0® • • . ®^-2®^-1^(^)).

Proof. — a) and ^ are left to the reader.
b) This is obvious once C^®^. . . ®^G^®^D is viewed as

Gi®A(CWC3... ®A(C,_,®^G^D)) . . . ) ) .
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d) For any A-coalgebra D, e : D->A is a coalgebra map. Hence s : B-^A
is a coalgebra map. For b®ceB®^ e(b®c)=e(bs{c)) by definition of the coalgebra
structure on B®^B (11.1) . By the remark following (5.7), ^bz(c))=^{bc). Hence
mult:B®^B-^B preserves co-unit. Since B is a X^-bialgebra, A.-B-^Bx^B is
multiplicative. It is left to the reader to show that the multiplicativity of A implies
that mult : B®^B-^B preserves diagonalization.

e ) The ^ map is simply A -> Hom^B, A), [a\->a. i) and hence is an A-algebra
map. For a, a'eA, beB let ^{b)=^b,®b,e'Kx^Bc ( JB®^B. Then

i J x

(^(a)^o(a'))W=S(6..fl)(6(.a')
i

which equals b{aa') by (5.8), c ) and b[aa;}=e^aa'} (6). Thus ^ is multiplicative.
For 6eB, e^i){b)==b. i=^(6)(i)=€J^(&)==e(6). Hence ^(i) is the unit in Hom^(B, A).

V) I fD is an A-coalgebra and K and L are A-algebras and K-^L is an algebra
map, then the induced map Hom^(D, K) -> Hom^(D, L) is an algebra map. We
apply this where K==A, L==Hom^(B,A) and A-^ Hom^(B, A) with ^ as in part e).
This gives the algebra map

n n
(*) Hom^B®^ . T^B, A) -^ HomA(B®7^^AB, Hom^(B, A)).

n n+ i
Identify Hom^B®^. .. ®^B, Hom^(B, A)) with HomA(B®7^^AB, A) by the
usual adjointness relation; the map (*) becomes ̂  in part/). Thus ̂  is an algebra map.

By parts b) and d ) the map

B®7^B "•••t01 .̂1 B^'^B

is a coalgebra map. Thus by part a) the map

n+ i n
B®7::.̂ B ^-^^-^^-^ B®7:?^B

is a coalgebra map. This shows that ^, . . ., ^ are algebra maps.
By parts d ) and ^ the map

n+ i TZ n
B®^.. . (^B I 0"'0 I®>£ B®7-^AB®AA-B®7-..^AB

is a coalgebra map. Thus ^^^ is an algebra map. Q..E.D.
It is left to the reader to verify that

n

(^•S) {Hom^(B®7^^AB, A), e,, . . .^^J^o
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forms a semi-co-simplicial complex.
o

Note. — B®^ . . . (x)^B denotes A.

Definition (15.4). — The homology of the above semi-co-simplicial complex with
respect to the c < units " functor is denoted H*(B).

H° theorem (15.5). — Suppose ^ : B-^EndA is injective and [L : A—B, a\->a.i.
Then [L maps H°(B) isomorphieally to the group of units in the center of B.

Proof. — Since ^ is a map of algebras over A the diagram

.A————B

\\ /-
cf End A

commutes.
This shows that (JL is injective, and since ^ is injective, [i(A) is a maximal com-

mutative subring of B and thus contains the center of B.
For 6eB a, a ' e A

{baf).a=^(b)af)(af)

^(^')=^(6)(<|.

Hence ^(a)==^(a) is equivalent to of lying in the center of J^(B). Since ^ is injective

(*) ^W=e,(a)

is equivalent to ^(cz) lying in the center of B.
Applying the units functor to (*) concludes the proof. Q.E.D.

Lemma (15. 6). — Suppose C is a x^-bialgebra, E = E^ as in (6. i) and ,;G®^ . . . ®^G
is considered as an \-bimodule with the x left ^-module structure and the y right A-module structure.

a) V f '' C®A • • • ®AG-^A is a ^ft ^-module map and f1 : C®^ • • • ̂ G -> End A

as in (5.2), then Im/^cE. In fact for c, ...,deG with

^c==^c,®c^ . . . ,Ar f==S^.®r f /eCxACcf ^G®^G

define f10 : C®^ . . . ®^ C -> C by

f10^® . . . ®d) == S . . . 2/(^® . . . (x)^. . .rf,.
i j

Then f^^f10, f10 is an A-bimodule map.

b) If g '- C®A • • • ®A^ ̂  End A is any A-bimodule map, then IrngCE.
Proof. — b) follows from a) by the remark below (5.2). a) is ajazzed-up version

of (10.1), a) and is proved as follows:
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For c, .. ., d as in a) and aeA

/'(c® ... ®d}{a)=j\c® ... ®da)

=S ... 2/(J^)(. . .^(rf,)(a). . .)c;® . .. ®4')

= S . .. 2^)(. . .J^.)(a). . .)/(,;®.. . ®d,')

-I,...2/«®...®^')^(c.....rf,)(<2)

^^/"'(c®...®^)^).
The first equality follows from the definition of/'. The second equality follows

from (5.8), c) iterated. The third equality follows from/being a left A-module map.
The fourth equality follows from ^ :C->EndA being an algebra homomorphism.
The last equality follows from the definition of/'". Q.E.D.

Lemma (15.7). — a) Suppose Hom^A, A) is identified with A in. the usual way and
/eHom^A, A) corresponds to aeA where /(i)=a. Then a^y'eEnd A.

Suppose B is a X^-bialgebra and E=EB.
b) For aeA, be'B

^'(^^(^eE
^(a^Wj^^eE.

n
c) For /6HomA(B®7 Î̂ B, A), {^CB,

^o(/)U® • • • ̂ J^W^i® • • • ®y
^(/V^o® ... ®^)=/'(V,®^® . .. ®^)

^(/y^O® - • • ®^) =/'(^®M2^3® • • • ®^)

^(/)'(^® • • • ®bn)=f\b,®.. . ®^®^._^)
^+l(/)^0® • • • ®y=/U® • • • ®^n-l)^J.

d) For f, geHom^B, A), b, ceB

(^(/) * ̂ g))t{b®c)=gt[b)ft{c) eE.

e) For / ^eHomA(B, A)

(/^W^Hom^^B).

A^ofc. — In parts d ) and g; the *-product refers to the product discussed at the
beginning of this section. The ( y" in part e ) is defined in (15.6), a ) .

Proof. — Parts a ) , b) and c ) are left to the reader.
d ) By the remark below (5.2) it suffices to prove that

^(f)*e^g))t{b®c)=€(gt(b)f\c))eA.
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Hence by the same remark it suffices to prove that

(^o(/)*^))(^)=€teW^)).

By definition of e

<S\b)f\c))=g\b)f\c){i)
=gtW{eft{c))

which equals

(*) ^WW)
by the remark below (5.2).

Suppose A&=S;^®^, ^c=^c^CjEBx^c[ ^B®^B. Then
;', j J X

^(/)*^(^)(^^=S.^./(^Ws(^)

which equals ^b,.f{c)g{b^) since e is the co-unit ofB. Since g is a left A-module map
we have the first equality in

^^.f{c)g(bi)==^g^.f{c)W
(**)

=gW(c)),

the second equality following from (5.8),^. By (5. s) (*)=(**) and part d ) is proved.
For part e ) , direct computation shows that for &eB with A6==S^®^ef JB® B

and (I^A^Sp^lB^pj'ef ^B®^B®JB thenj •/a;

(+) (/^^(^-^/(p^dB;')?,
and ^)-S^)^

Then f10 ̂ W^g^f10^). By coassociativity (A®I) A(A)=2^.®p;®p; / so that

(++) ^gWf^b^^g^f^) .̂.

Comparing (= f=) and (++) gives e ) . Q.E.D.

H1 theorem (15.8). — a) If /eHom^B, A) ^ a i-cocycle, then f^Hom^^B, E)
is a homomorphism of algebras over A.

Suppose ^ : B-^EndA is injective. Then:
b) /eHom^(B, A) is a i-cocycle if and only if /^eHom^^B, B) is an isomorphism

of algebras over A.
c) /eHom^(B, A) is a i-coboundary if and only if /^Hom^^B, B) is an inner

automorphism of B induced by an invertible element of A.
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d) The correspondence f^f10 induces an isomorphism between H^B) and the group of
automorphisms ofB as an algebra over A modulo the subgroup of inner automorphisms of B induced
by invertible elements of A.

Note by (10.1), b) the group of automorphisms of B as an algebra over A is a
commutative group.

Proof. — a) If/is a i-cocycle then e^f) * ̂ {f)=^[f). Thus

^(/)*^(/))<=^l(/)<.

By (15.7), c ) and d)., this proves that f1 : B—^E is multiplicative. Since f is an
A-bimodule map it remains to prove that /(i) = i. Applying the identity /*/~"1 == s®e
to i ® i e f a;B®JB shows that /(i00i) and /"^(i®!) are inverse elements of each

J x

other in A. Then applying the i-cocycle identity e^f) * ̂ i(/~1) *^(y)==£®e®e
to i ® i ® i e f ^B®_B®^B shows tha t / ( i®i )== i.

J x

b) When ^ : B->EndA is injective, then ^ gives an isomorphism between B
and E. For /eHom^B, A) J^f10 =f. Thus, by part a ) , if/is a i-cocycle, then /"B-^B
is a homomorphism of algebras over A. When/is a i-cocycle so is/""1. Thus by
(15.7), e)^f10 is an automorphism with inverse (/'~1)<0.

Conversely suppose /eHom(B, A) and f10 is an automorphism of B as an
algebra over A. Let G be the inverse automorphism to f10 and let g === €^G. Then
G==g10 and by (15.7)5 e ) , g is inverse to/in Hom^(B, A). Thus/is invertible in the
A-algebra Hom^(B, A).

Since/<0 is multiplicative so is Jf10 ̂ f1. Thus for b^, ^eB

/W/W-AVi).
^(^•P).^ and^ ^^P^^8111^ ^oC/)*^./))^^/)^ Hence ^C/)*^/)^^/)-
Together with invertibility of/this proves that/is a i-cocycle.

c ) Follows from (15.7), b ) .
d) Follows from b) and c ) . d.E.D.

16. H^B)

In this section we show when H^B^^B) as abelian groups. Throughout
the section A is a commutative algebra and (B, A, ^) is a cocommutative x^-bialgebra.

Definition (16.1). — Suppose M, N are A-bimodules /eHom^(g^(M®^M, M),
^eHom^^(N®^N, N). We call (M,/) and (N, g) equivalent and write (M,/)^(N, g)
if there is an A-bimodule isomorphism a : M->N such that /= a^^g^a^a).

Definition (16.2). — Suppose M is an A-bimodule and /eHom^^M^M, M).
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We call (M,/) a non-associative algebra over A if there is an A-bimodule map y : A—^M
making the diagrams below commute:

,-,,.- (a®mf->a.m)AOOM ————> M

y ® I

M®M M^M
,.,--,. (w®a -»-w.a)
M®A ———————> M

I ® Y

M®M M®^M

The proof of the next lemma is left to the reader:

Lemma (16.3). — Suppose M, N are A-bimodules,

/eHom^(M(x^M, M), ^eHom^(N(^N, N).

Let AeHom^^((MxAN)®^(MxAN), Mx^N) be the composite:

(Mx^N^Mx^N) -^ (M®^M)XA(N®^N) f^ Mx^N

where ^ is defined in (2.10). Let hreHom^^{{Nx^M)®^{Nx^M),Nx^M) be the
composite:

(NXAM^NX^M) -^> (N®AN)XA(M®^M) ̂  Nx^M.

1. c( '̂ / " in ( 1 6 . 1 ) is an equivalence relation.
2. If M^B as an A-bimodule, then there is reHom^^^A1^ B) w^th (M^f)^^ r ) '
3. For r, ^eHom^^^(B®^B, B), (B, r)~(B, s) if and only if there is an A-bimodule

isomorphism or : B—^B where r((7®(r)= as.
4. (M,/) is a non-associative algebra over A if and only if there is ee f^MLp which is

a 2-sided unit for (M,/); i.e. for all meM, f{e®m)=m=f{m®e). In this case y (^ in
(16.2)) is uniquely determined as the map

A—^M {a'->a.e==e.a).

5. Suppose (M,/)^(N,^) and (M,/) is a non-associative algebra over A. Then
(N, g) is a non-associative algebra over A.

6. If (M,/) and (N, g) are non-associative algebras over A, then so is (Mx^N, A). If

e is the unit of M and e' the unit of N, then e^e'e [y f ^My®j^y=Mx^'N is the unit of
Mx^N.
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7. Suppose M and N are algebras over A (associative) and

f: M®^M-^M, ^ : N®^N-^N

are the multiplication maps. Then h : (Mx^)®^{Mx^) -> Mx^N is the multiplication
map.

8. The (< -/ " equivalence class of (Mx^N, A) rf^^j- only upon the (( ~ 5? equivalence
classes of (M,/) ^W (N,^).

9. 7/' M, N a^ algebras over A (associative) and f and g are the multiplication maps, then
(M,/)^(N,^) if and only if M^N as algebras over A.

10. Suppose (M,/)~(B,r), (N,^)—(B,^) and A:B^Bx^B is an isomorphism',
then (Mx^N,h)^{B,t) where ^Hom^^B^B, B) is the composite

BOO^B^ (Bx^B)O^(Bx^B) -^ (B®^B)x^(BO^B) ̂ BxJ^B.

n. Suppose the products on M <W N induced by f and g respectively are associative. Then
the product on Mx^N induced by h is associative.

12. Suppose N=B aW ^=mult : B®^B-^B. The composite map

Mx^N^Mx^B I-̂  Mx^End A -^ M

is multiplicative if Mx^N Aaj the h product and M has the f product. (6 ^ rf^rf in (2.8),
<2/j-o j-^ (4-2).)

ig. Suppose (M,/)^(N, ^) ^rf/ zW^^ ̂  associative product on M. TA^ ^ zWzz^j
fl72 associative product on N.

14. (MxAN^^Nx^M').

Lemma (16.4). — Suppose M is an A-bimodule, /eHom^^(M(x^M, M) W ̂
product induced on M ^/z'j- associative. For m, neM denote the f'pro duct f{m®n) by mon.

1. Suppose there is me ̂  yMy such that the map M-^M, {x^mox) is an isomorphism.

Then there is ze^ yMy which is a left tc o 9 ? identity. I.e. for all neM, zon=n.

2. Suppose there is mej\My such. that the map M-.M, (x^xom) is an isomorphism.

Then there is ze^My which is a right " o 9? identity.

3. Suppose A r B - ^ B x ^ B is an isomorphism, Im(A -> B)=F y K y , N is an A-bimodule,

^eHom^^^(N®AN, N) and M^B^N as K-bimodules. For u, yeN denote the g-product
g(u®v} by unv. Form (Mx^N.^) ^ m (16.3).

^ (Mx^N, A) Aaj ^ A z/Tz^ in J^^Mx^N),, ^^ M A^ a " o 5? ^^ m f^M^
jy^^ ^ (16.3), 4) (M,/) is a non-associative algebra over A and since f is assumed associative
there is a unique algebra map y : A^M making ((M,/), y) into an algebra over A.

Proof. — i. Choose zeM with mo z== m. For aeA

m o (az) == (ma) oz== {am) o z== a(m oz)=am, m o (za) == (m o z)a== ma.
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These calculations use that me^ yMy and f^=tiom^^M®^M, M). Hence

772 o (az) == am = ma = m o (za).

Since " mo 5? is an isomorphism it follows that az==za and ze^ M .

For neM, mo{zo n)= {mo z) on==mon, here we have used associativity of c < o ".
Again since (< m o " is an isomorphism we conclude that z o n = n and z is a left <( o " unit.

2) is proved similarly to i).
3. Let (y :B-^M and T : B->N be A-bimodule isomorphisms. Then

B -^ Bx^B ̂  Mx^N

is an A-bimodule isomorphism. Let m=a^l)(=(y yMy and n^-u^e^ y N y . Since

A ( i ) = = i ® i it follows that ( c rXT)A( i )=w®7z. Since Im(A->B)== [!/ ySy it follows
that A.i=j\By. Hence A. {m^n)^^ y{Mx^)y. Suppose w is the h unit of

Mx^N in J y{Mx^'N)y. Then ^ can be written a. (m®n)=m®an for some aeA.
Let r : M -> M, (^ ̂  m o ̂ ) and s : N -^ N, (^ h-^ (^) o A;) . Both r and j are A-bimodule

maps. The map rxs : Mx^N—Mx^N is left multiplication by w and hence is the
identity. Thus rxs is an isomorphism and by (10. i), c ) r is an isomorphism. Hence
by part i), M has a left unit in [ M .

Let r' : M->M, {x\->xom) and s ' : N->N, {x^->xo{an)). Both r' and / are
A-bimodule maps and r ' x s ' : Mx^N^Mx^N is right multiplication by w, the identity.
Thus by (10. i), c) r ' is an isomorphism and part 2) M has a right unit in F M . As
usual left and right unit must be the same. Q.E.D.

Definition (16.5). — For (M,/) — as in (16. i) — let <(M,/)> denote the (c -/ "
equivalence class. Let ffi denote the set of equivalence classes <(M,/)> where M^B
as an A-bimodule. Let

j^=={<(M,/)>e^[/induces an associative product on M}
3S ={<(M,/)>e^|(M,/) is a non-associative algebra over A}

Note. — That ^ is a set follows from (16.3)3 2); that ^ and 3S are well defined
follows from (16.3), 13) and (16.3), 5).

Lemma (16.6). — Suppose A : B-^Bx^B is an isomorphism and Im(A -> B)= [y B .
a) For <M,/>, <N,^>e^ one may define the product <M,/><N,^> as

<MxAN,A>e^

with has in (16.3). This defines an associative commutative product on Sft which has <(B, mult) >
as unit.

b) ^ and S8 are submonoids of ^ and ^n^=<?<B> which is defined in (4.8).

172



GROUPS OF SIMPLE ALGEBRAS 173

c) The subgroup of invertible elements of s^ coincides with the subgroup of invertible elements
of ^<B>. They equal ^<B> defined in (4.8).

Proof. — a) (16.3), 8) implies that the product on 8ft is well defined. (16.3), 14)
gives that the product on 8ft is commutative. We only outline the proof that the product
on ^ is associative. Suppose <(L, rf)>, <(M,/)>, <(N,^)>e^. Since B is a XA-bial-
gebra, B is associative as an A-bimodule (2.7). Since L^M^N^B as A-bimodules
it follows that (L, M, N) associates (2.6). Ft ^Ly®^My®yNy has a product where

for x==^®m,®n^ j/=I;^®^®7zJeP f ^Ly®^My®^Ny the product xy is defined as

2; d{^)®f(m,®m^®g{n,®n^.

With this product the maps a and a' ((2.5), 2) and just above (2.6)) are multiplicative.
Thus the association isomorphism is multiplicative as well as an A-bimodule isomorphism.
Hence «(L, ^)><(M,/)»<(N, ^)>-<(L, rf)>«(M,/)><(N, ̂ )» and the product
on 8ft is associative.

Since B->BX^B is an isomorphism the composite

Bx^B ̂  Bx^EndA -"-> B

must be the inverse isomorphism (see (5.1)). If <(M,/)>e^, then M^B as an
A-bimodule and so the composite

Mx^B 1-^ Mx^EndA -^ M

is an isomorphism. By (16.3), 12) it follows that <(M,y)><(B, mult)>^<(M,/)>.
Hence <(B, mult) > is a right unit for the product on 8ft. Since the product is commutative
<(B, mult)) is the unit.

^ ) ^S^)? n) implies that ^ is a submonoid and (16.3), 6) implies that 3S is
a submonoid. That j^n^?==<?<B> is a matter of definition.

c) (16.4), 3) implies that the subgroup of invertible elements of ^ all lie in 88.
Hence the subgroup of invertible elements of ̂ / coincides with the subgroup of invertible
elements of <^<B>. This group equals ^<B> by definition. Q^.E.D.

Lemma (16.7). — Suppose /, ̂ eHom^BO^B, A), a, y^Hom^B, A) and b, c, deB.
In what follows the ^-product refers to the product defined at the beginning of Section 15. The
( ^ is defined in (15.6, a). E=EB.

a) W^e^g))t{b®c®d)==g\b®ft\c®d)).
b) W^e^g))t{b®c®d)=f\gt\b®c)®d).
c) If A is an isomorphism, then {f^g)1 is equal to the composite

(^) B®^B A®^ (Bx^B^Bx^B) -^ (B^B) x^B^B) ^^ Bx^B -^ B.

d) ^(^^o(Y)*/)<(&(x)^=/<(^W(x)Y toM).
e) ^e^^c^^^f^b^c)).
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Proof. — The proofs of a ) , b ) , d ) and e) are similar to the proofs of (15. 7), d ) et e )
and are left to the reader.

c ) By (5.1) A-^O^XJ^). Hence eA-1 equals the composite

(**) BxAB^EndXAEndAc-^J ^End A®J£nd A ̂  f ^A®^A=A.

By the remark below (5.2) it suffices to prove that e(f^gy=eC where C is the
composite (*) in part c ) . By the same remark e{f*gy=f*g. By (**) eC is equal to

BO^B^BxJB^Bx^B) -A> (B®^B) x^(B^B) f-^ Bx^B
J^x /

End A x^End A ̂  f JEnd A®^End A ̂  f _,A® A = A.
v x J X

Using J^0^ and ^°=^ this equals:

B®^B ̂  (Bx^OO^Bx^B) ̂  (B®^B) x^(B®^B)

^ End A x^End A ̂  ̂  ,A®,A == A.

Using ef^f and eg^g this equals:

BOs^B^ (BxAB)0(Bx^B) ^> (B®^B) x^(B®^B)

-^J^(B(x)^B)®,(B®^B) -^J^AOO,A=A.

Since the composite of the first three maps t.^(A®A) equals the diagonalization in
B(x)^B, the entire composite equals f*g. O.E.D.

H2 theorem (16.8). — Suppose ^ :B-^EndA is injective and, A :B->BXAB is

an isomorphism. Note that injectivity of ^ implies that Im(A->B)== [v B .

a) For /, ^GHom^(B®^B, A) write f—^g if there is a ^-invertible element

creHom^(B, A)

with ^(c) *^(o) */=^((T) *g. Then ^~ is an equivalence relation. Let [f] denote the
lt ̂ ^ " equivalence class of f and let (^denote the set of equivalence classes {[/]}. The ^-product
on Hom^(B®^B, A) induces a commutative associative product on Q^ with unit [eg.. gj.
There is a bijective product preserving correspondence

^^Q.
((B,^0))^^].

b) For /——^eHomA(B^B,A) if

^fW)=^{fW)

then ^{g)^) -^ite)^)-
Thus X={[/]eQ .o(/)^(/)=^(/')€,{/)}
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is a well defined subset of Q .̂ X is actually a submonoid of Q^ and the correspondence in part a)
induces an isomorphism between X and ^.

c) Let /^~^eHom^(B®^B, A) and suppose there is aeA satisfying

(**) f(a.i®b)=eJ^(b)==f{b®a.i), beB.

Then a is an invertible element of A with inverse /(i®i). There is an element a'eA satisfying

g(af.l®b)==€^(b)==g(b®af.l)

for all beB. Thus

Y=={[/]}eQ^ there is aeA satisfying (**)}

is a well defined subset of Q,. Y is actually a submonoid of Q^ and the correspondence in part a)
induces an isomorphism between Y and 38.

d) For /^^^eHom^BO^B, A), iffis ^-invertible, then so is g. A class [/j^Q,
is invertible in Q^ if and only if each member of the class is ^-invertible.

e) The correspondence in part a) induces an isomorphism between XnY and <^<B>.
The invertible elements in XnY coincide with the invertible elements of X. The correspondence
in part a) induces a (group) isomorphism between the subgroup of invertible elements of^K and ^(B).
The subgroup of invertible elements of X is naturally isomorphic to H^B).

Proof. — By (15.6) and the hypothesis that ^ : B-^End A is injective, it follows
that the correspondence

n n

Hom^^(B®7^^B. B) ̂  Hom^(B®7^~^AB. A)

f^f
g -^eJ^g

is bijective. This is used throughout the proof.
a) For/, g, a as in part a) it follows from (16.7), d ) and^, (16.3), 3), (15.7), e )

that f^^g if and only if (B, €^/)—(B, eJ^g) with « — 55 as in (16. i). Since £c — "
is an equivalence relation (< ^/^ 5? must also be. Moreover with (16.2), 2) we have
established the bijection ^<-^Q, of part a ) . By (16.7), c ) and (16.3), 10) the product
induced on Q, by the bijection is the same as the product arising from " * ".

b) This follows from (16.7), a) and b ) , and (16.3), 13).
c ) The condition on a.i and/is equivalent to a.i being the unit forf10. Hence

by (16.3), 4) and 5), it follows that a suitable a' exists. Using that a.i is the unit
for/"0,

a^I®!)^/^.!®!)^!.

Clearly /^(i® i)e ( y yBy==Im{A->B). Hence a is invertible with inverse

ejy^i®!)^/^®!).
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That Y is a submonoid of Q, follows from (16.3), 6) or the fact that 3S is a submonoid
of^.

rf,) Follows from (16.7), c ) and the fact that e^ e^ ^ are multiplicative.
e ) Follows from the preceding four parts. Q.E.D.

Invertibility corollary (16.9). — Suppose ^ : B-^End A is injective and A : B-^Bx^B
is an isomorphism. In addition suppose that for /eHom^(B®^B, A), if /(i ® i) is an invertible
element of A., then f is an ^-invertible element of Hom^(B®^B, A). Then <?<B>==^<B>.

Proof. — The condition on elements of Hom^(B®^B, A) implies that Y consists
of invertible elements. Hence XnY consists of invertible elements. By (16.8), e )
this gives <^<B>==^<B>. Q^.E.D.

17. Examples of X^-bialgebras and their cohomology

The example A#ti of a x^-bialgebra is presented toward the end of section 7.
As a left A-module A#H^A®H. Hence, as a left A-module,

( A # H ) ® A • • • 0 A ( A # H ) ^ A ® H ® . . . ® H

and Hom^(A#H®A • • • ®AA#H. A)^Hom(H® . .. ®H, A).

This isomorphism induces an isomorphism of complexes between the complex (15.4)
and the complex used to compute the Hopf algebra cohomology [16, § 2, p. 209]. The
details are left to the reader. Hence we have:

Theorem (17.1). — Suppose A#H is a X^-bialgebra; then the cohomology H*{A#H)
as in (15.4) is naturally isomorphic to the Hopf algebra cohomology of H in A [163 § 2, p. 208].

Corollary (17.2). — Suppose H=RG, the group algebra of a group G which acts as
automorphisms of A. Then H*(A#H) is naturally isomorphic to the group cohomology of cc G
acting on the group of invertible elements of A ".

Proof. — Follows from (17.1) and the result [16, Theorem (3. i), p. 211] on Hopf
algebra cohomology. Q^.E.D.

Corollary (17.3). — Suppose H=UL the enveloping algebra of a Lie algebra which
acts as derivations of A. Then, for i>_2, rf(A # H) is naturally isomorphic to the Lie cohomology
of" L acting on A ". H°(A^H) is the group of invertible elements in P^, the subalgebra of A
consisting of ^-constants.

Proof. — Follows from (17.1) and the result [16, Theorem (4.3), p. 214] on Hopf
algebra cohomology. Q^.E.D.
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* *

Consider End A as an A®A-module and let {LJ, {C^}, C be as above (6.6).
In (6.6) it is shown that G is a X^-bialgebra if it happens to be a subalgebra over A
of End A. In (6.6), a) it is shown that C is a subalgebra over A of End A when:

, J (i) there is an L, contained in Ker(A®A mul^ A);
[ (ii) for each L^ and Lp there is Ly with e(L^) Cl^®A+A®Lp,

e : A®A->A®A®A, a®b[->a®i®b.

Theorem (17.5).—Assume that {^satisfy (17.4) in addition to the conditions above (6.6).
n+i

a) For i<neZ and L^, ...,L^G{L^}, let L^ , ^^ ^ ̂  ̂ fl/ m A^?7^A
which is the kernel of the composite

n +1 _____(A® A) n times

A®...®A=(A®A)®^(A®A)(^. . . (^(A®An A0A A®A A®A

^®.. .®^=(^®^i)®( i®^)®.. .®( i®^) j ~^ La, X A La, X A ' " X A L^

TA^TZ

^ — 1 7 2 — 2 72—I

L^_^=L^®A® .. .®A+A®L^®A^7^A+... +A^7^A®L^.

b) ^or i<_ne7. and L^, .. ., L^ e{L^}, the map

_J^__

A® ... ®A ̂  Hom^C^ ... ®^G^, A),

^o® ... ®^ ̂  (^® ... ®^ h> <vi(.. • ̂ -i^(^n) • • •))

is surjective with kernel Lg^ „ . TAzj induces an isomorphism between

Hom^(G®^ . . . ®^G, A) ayzrf A® .. . ®A,

n+i

the completion of A® .. . ®A with respect to {!.„ „ }^A l/ r I »!,..., ̂  J a^,..., a^ •
C) TA^ 772^

n 72+1

^ : A® ... ®A -> A® ... ®A,
^® . . .®^ h> ^® . . . ®^®I®^^_ i® . . .®^, Z = = 0 , . . . , 7 Z
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m

are continuous when A® . . . ® A has the {L^ ..., o^_J topology. Let {^} ̂  ̂  zWz/^rf TTZ^

072 ^ completions. {A® ... ®A, ?o, . . ., ̂ +i}^=o is a semi-cosimplicial complex. The
isomorphism in part b) induces an isomorphism of complexes between this complex and the
complex (15.3).

d) H^C) (15.4) is naturally isomorphic to the homology of the complex in part c) with
respect to the units functor.

n n

e) The map A®. . .®A—> A, ^®. . .®^h->^.. . . .a^ is continuous when A®. . .®A
has the {L^ .. . ,<^_i} topology and A has the discrete topology. Hence it induces a map

A®. . .®A^ IA (==A).

For each i the diagram below commutes'.

A® ... ®A—^>-A® ... ®A

f) Suppose that the ground ring contains a copy of the rational numbers and for
multxem = Ker(A®A —> A)

and any Lp there is o<ne2. {depending on x and Lp) such that ^"eLp and hence higher powers
of x lie in Lo. Then from degree two onward the cohomology of the complex

{A^T^X, ?e , . . . ,Q^o
with respect to the functor c( units 5 ? is naturally isomorphic to the cohomology of the same complex
with respect to the functor (< underlying additive group ".

g) Suppose G is projective as a left ^.-module (C==UG^ as above (6.6)). Let A
a

have the natural ^-module structure (5.7). The homology of the complex

{A®. . .®A,?o, ...,0^0

with respect to the functor (( underlying additive group" is naturally isomorphic to Ext^(A, A).
h) Suppose there is a countable set {MJ^ of sets M^CA®A where {L^} and{M^}^^

are cojinal. Then G is projective as a left A-module.

Proof. — a) By the standard result for cc ® 53 the kernel of

(A® A) n times

(A®^7^^r?®A) -> ̂ A®^ ... ®AA0A
T -A • • • -A T

1̂ ^n

178



GROUPS OF SIMPLE ALGEBRAS 179

(A®A) i — i times (A®A) n — i times

is 2 (A®A)®^.7®7^A)0A]La,®A(A^t^A'. . .®Ti"^®A).

It is left to the reader to show that this corresponds to

i — i n — i

SA®.. .®A®L^.®A® .. .®A
z l

under the first map (==) in the composite.
b) For n==i the result about 9 follows from (2.12) , ^ and b). Suppose by

induction that the result about <p has been proved for n—i and n^_2. To proceed
we use the adjointness relation:

Homg(sN, HomR(RMs,RP))=HomR(RMg®ssN,RP),

with C^==M, C^®^. . .®AC^==N, A = P and both R and S are A. Then

Hom^C^C,®^ .. . OO^CJ = Hom,(G^ . .. ®^, Hom^, A))

=Hom^(G^®^ . . . ®^C^, (A®A)/L^)

= (^^AHom^G^®^ .. . ®^, A)
V a! /

n

/A®A\ A®^?7^A
"La" '^a————7ai / ag , . . . ,»„

^JL^
A®. . .®A

î,...,^

The first equality is the adjointness. The second and fourth equality rely on the induction.
By (2.12), b) each Gg^. is a finite projective left A-module. It is easily shown that this
implies that C ^ ® ^ . . . ® ^ G ^ is a finite projective left A-module. This gives the
third equality. For the fifth equality we use part a) to identify (A® . . . ®A)/L^ „
with

A®A A®A
———®^. . .®^-_—.
^ 1^

Then the term to the left of the fifth equality becomes

/A®A\ /A®A\(̂ h-̂ hd
and by part a) this equals (A®. . . ®A)/L^ . . . a * This concludes the induction.
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The second part of b) follows from

n

Hom^(C®7^AC, A) - Hom^Hm G^. . . ®^, A)

-Hm Hom^G^... ®^, A)

^J^JL^
/A®A®. . .®A\

==lim — — — — — — — — — = A ® . . .®A.
< — \ L^...^ /

c ) , d ) , e ) The continuity of the maps ^ is assured by (17.4), (ii). The continuity
of the map c< mult " is assured by (17.4), (i). The diagram in part e ) without the hats
is easily checked to commute. Hence by continuity the diagram in part e ) commutes.
The rest of part c ) as well as part d ) is left to the reader.

^'+i i+i

f) Let G,=Ker(A®.. .®A mul^ A) and D,=={xeA®. . . ®A|muTt(;c)= i} for
i>_i. In degree zero let CQ=A and Do==unitsofA. For i>_i, the elements of D,
are invertible being of the form i —z where z lies in C,, so the inverse is i +^+^+ . . .
By part e ) it is a routine calculation to verify that the complex { G,, {e, \ GJ} is a <c normal "

subcomplex of {A® . . . ® A, {^.}} and has the same homology with respect to the functor
"underlying additive group". Similarly the complex {D^{^ |DJ}is a <e normal53

subcomplex of {A® . . . ®A, {^.}} and has the same homology with respect to the
functor (< units ".

00 ^
For i>_ i there is the map exp : C,->D^ z^ S — . This map is bijective with

oo ^ ^oz!
inverse log : D,-^G,, i —z\->— S -7. It is left to the reader to verify that exp, log

i==i i
induce an isomorphism of complexes. Since the complexes are isomorphic from degree
one onward, the cohomology is isomorphic from degree two onward.

g ) For each i let ®^C denote a;C®^.. .®^G, z-times, considered as a (left)
x G-module. By assumption that G is a projective left A-module it follows that ®\C
is projective as a left C-module.

Since G is a x^-bialgebra the map e=End : G->A is a left C-module map.
Denote this map by d^. For i^_i the maps d^^ r®^4'^-^®^ determined by

^+i^o0 . . . ®^) = S (~)%® . . . ®^+i® . . . ®^ + (-)^o0 • • . ̂ -î i)
n==0

make {®A^ ^} mto a projective resolution of A as a C-module. (The details are
left to the reader.) Apply Honic(—, A) to this projective resolution to obtain a
complex E*. The homology of E is Ext^(A, A) by definition of Ext.
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The complex E* is the cosimplicial complex resulting from the complex (15.3)
with respect to the functor c( underlying additive group ". Thus, by part c ) , E' is
isomorphic to the cosimplicial complex resulting from the complex

{A^ l̂, ?„..., Q^o

with respect to the functor " underlying additive group ".
h) Choose Nie{L^} where N^CM^. Inductively choose N, according to the

rule: N,e{LJ and N.cN^nM,. Then actually N , lies in N^, . . . ,N ,_ , and in
Mi, . . ., M,. Thus {NJ^i is a countable subcollection of{L^} which is cofinal and
which is nested decreasing. Replacing {L^} with {NJ^ does not alter C.

The sequence
N^ A®A A®A

0"N^"N^~>-N7~>0

splits since (A®A)/N^ is a projective left A-module. By (2.12), a) this proves that
G^-i ls a direct summand of G^ as a left A-module. Say C^=G^_^®D^. Since C^
is a projective left A-module it follows that D^ is projective. It is easily verified that
G==Ci®D2®D3® . . . Hence G is projective as a left A-module. Q..E.D.

The exp-log technique used in the proof of part f) may be milked somewhat more.
As in the following proposition:

Proposition (17.6). — Suppose the ground ring contains a copy of the rational numbers,
A contains an ideal I such that A=I+Ker(?o—^ : A ->A^A) and I consists of nilpotent
elements or A is complete in the I-adic topology. Furthermore assume that for A:e9Jl and any Lo there

is o<neZ such that ^eLp. Then the cohomology of the complex {A® . .. ®A, {^.}} withrespect
to the functor (c units33 is naturally isomorphic to the cohomology of the same complex with respect
to the functor " underlying additive group " in degree one.

Proof. — The proof of part f) established an isomorphism of normal subcomplexes
from degree one onward. Since A=I+Ker(?o—^) it follows that if x is a degree
one additive coboundary, then it is the coboundary of an element ael. By the nilpotence
or completion assumption we may form exp aeA. The multiplicative coboundary
of exp a is the same as exp x. Using the log map shows that we have established a
bijective correspondence between the additive one coboundaries and the multiplicative
one coboundaries. O.E.D.

In degree zero, there is a simple relation between the additive and multiplicative
cohomologies.

Proposition (17.7). — The degree zero cohomology of the complex {A®. . .®A,{? .}}
with respect to the functor c( underlying additive group " is the sub algebra of A

(*) Ker(?o-^ :A->A®A).
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The degree zero cohomology of the same complex with respect to the functor " units9? is the group"
of units in the subalgebra (*).

Proof. — Left to the reader.

18. Applications to Differential Operators

Theorem (18 .1 ) . — Suppose A has almost finite projective differentials (8.5).

a) D^ is a projective left A-module and hence the cohomology of the complex {A® . . . ®A, {e'.}}
with respect to the functor " underlying additive group 3 ? is naturally isomorphic to Extj^(A, A).

b) <?<D^> ==^<D^>, i.e. ifU is an algebra over A such that U^ D^ as an A-bimodule,
then <U> is automatically invertible in <^<D^>.

Proof. — a) Suppose A has almost finite projective differentials and {LgJ is as
in (8.5). Since {LgJ is cofinal with {9JP} which is countable, by (17.5)3 h) D^ is
projective as a left A-module. By (17.5)3 g ) the result follows.

b) Since {L^} is cofinal in {9311} the completion of A®A with respect to {L^}
is the same as llm(A®A)/9Jln. Hence by (17.5)3 b)

Hom^D^A. A)^lim(A®A)/9jr=A®A.

It is easily shown that under this isomorphism the elements yeHom^(D^®^D^, A)
for which f{i0i)=i correspond to the elements ^eA®A with mult(^)==i. The
element x can be written x == i — z with ze^R and has inverse i -}-z -\-z2 + . . . Hence
by (16.9) the result follows. Q.E.D.

The filtration D^D^CD^C . . . has such properties as D^D^CD^ and for
/eD^, ^D^, J^—^/^D^"1 [9, ( 2 . 1 . 1 ) 3 b ) , p. 210]. Thus the associated graded
algebra gr D^ is a commutative algebra. The zeroth graded component gr °D^ is
D^=A^ which is identified with A. Thus gr D^ is an A-algebra. Let Der A denote
the left A-module consisting of R-algebra derivations of A. It is easily verified that
DerA®A^=D^. Thus g^D^ is naturally isomorphic to Der A as a left A-module
if gr1 D^ has the module structure induced by gr D^ being an A-algebra.

Since D^==DerA®A^ is a direct sum of left A-modules it follows that Der A
is a projective left A-module if and only if D^ is. Let M be Der A considered only
as a left A-module and let S^M denote the symmetric A-algebra on M. Since gr1 D^ =M
there is a natural graded A-algebra homomorphism

S^M->grD^

induced by the (identity) map of M to Der A.
In the next theorem it is not assumed that A has projective differentials.
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Theorem (18.2). — Suppose that R is a ring containing a copy of Q, the rational numbers,
nnd A is a commutative R-algebra such that J^A) is a finitely presented left ^-module for all n and
Ji(A) is a projective left ^-module. Then:

i. D^=Di. . .Dl (n-times) for all n.
2- ]nW and D! are finite projective left A-modules for all n. Hence A does have finite

projective differentials.
3. The natural map S^M-^grD^ is an isomorphism.

Proof. — Suppose 91 is a maximal ideal of A. By (13.4), Ji(A^)^ A^®^(A)
as a left A^-module. Thus Ji(A^) is a projective left A^-module. Since

JiCA^A^J^A^

•as left A^-modules it follows that Ji^A^) is a projective left A^-module. Since A^ is
a local ringJ^A^) is a free A^-module. Since R has characteristic zero [8, (i 6. 12.2),
P- 55] applies (since Grothendieck's ^/g is the same as our J^A^) in this case). Thus
Spec Ag^ is differentially smooth over Spec R (the morphism induced by the canonical
map R-^) in the sense of [8, (16.10. i), p. 51] and for all n (by the sentence after
[8, ( i6 . io . i ) , p. 51]) J^(A^) is a free A^-module (since Grothendieck's P$/g here
coincides with our J^(A^)).

Since I(A^A^®^(A) as a left A-module by (13.4), it follows that J^(A)
is a finite projective left A-module for all n. Since D^=Hom^(J^(A), A) as left
A-modules part 2 is proved.

Using the isomorphism Jn(A^) ^A^®^(A), (13.4), it follows that
D^ - Hom^(AAJ,(A), A.,) = Hom^(J,(A), A^)

=A^Hom^CL(A), A)=A^D^,

where the next to last equality uses the fact that J^ (A) is a finite projective left A-module
(part 2). This map is given more explicitly as follows: for rfeDJ; the map A -^ A — A^

-is in D^(A^) and by (13.2) has a unique " lifting'5 to ^D^(A^)=D^. Then the
above isomorphism between D^ and A^®^D^ is given by

A^D^D^

z®d\->zd'

^eA^, rfeD^. Let D^ denote {rfeD^JrfeD^}. Then D^=A^D^. Moreover if
rfeD^, ^eD{ with i+j<_n, then afeeD^, and by uniqueness of the lifting (( ̂  5? it
follows that de==d'7.

To prove that D^=Di . . . D^ (n times) it suffices to prove that for all maximal
ideals 91 C A, A^D^A^Di .. . D^. Under the isomorphism A^D^D^
the right hand side maps to

A^DT l̂) (^ times)
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which equals A^D^ . . . D^ because of the multiplicative property of <( ̂  3? mentioned
above.

When n==i the isomorphism A^®^D^D^ shows that A^Di==D^ . Clearly
D^=D^A^ and thus

n n—i n—i n —2

A^Br?^-D^BT?^=Dl^B^^

_^j2_ n-3

D^Dl^Dl...Dl=D^D^D^Dl...Di-...^D^...D^ (.times).

As observed in the first paragraph of the proof Spec A^ is differentially smooth
over SpecR andJ^A^) is a free left A^-module. Thus [8, (16.11.2), p. 54] applies.
Using the notation in [8, (16.11.2), p. 54], since D^eD^ when \q\<_i, and by
(16.11.2.2) and the fact that the characteristic is zero, D^eD^ . . . D^ {n times)
if \q\=n. Thus by the lines following (16.11.2.2), D^ = Dĵ  . . . DJ^ (. times).
Thus part i is proved.

By part i it follows that the natural map S^M-^grD^ is surjective and injectivity
must be established. Again it suffices to prove that for each maximal ideal 91 C A
the map

(*) A^SAM -> A^gr D^

is injective.
From the isomorphisms A^^D^-^Dj; for all n it follows that

A^DA-^D^, z ^ d ^ z ^ d

is an isomorphism. The left hand side at (*) is naturally isomorphic to S^ (A^®^M).

Forjy.zeA^ deD^ eeD^, {yd/){z7)==yzd/7-Jy[z^]?. The element \d, z]eD^-1

and so y\d, z^e'D^-1. This shows that A^^BA ^ naturally isomorphic to
grD^ . (*) corresponds to the natural isomorphism

SA^A^M)->grD^.

Note A^®^M is naturally isomorphic to DerA^, the isomorphism being induced by
r^

the isomorphism A^®^D^ -^> D^ .
Again the differential smoothness of A^ and [8, (16.11.2), p. 54] will give the

desired result. In the notation of [8, (16.11.2), p. 54] the operators {DJ form an
A^-basis for the free A^-module D^. Thus {q\ DJ is also an A^-basis since the charac-
teristic is zero. Since D^DJ^l the images {?!DJ form an A^-basis for grD^ . By
(16.11.2.2) the images {^!DJ are the usual polynomial monomials. This proves
injectivity of SA^(A^M) -> gr D^ and part 3. Q,.E.D.
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Proposition (18.3). — Suppose A is an algebra such that Jyi(A) is a finite protective left
A-module for all n and the natural map S^M-^grD^ is an isomorphism^ where M==DerA
as a left ^-module. Let I be an ideal of A, let ^/ be the completion of A in the I-adic topology
and let N = Der s^ as a left s^-module. Then

1. D^==D^. . .D^r (n times) for all n.
2. D^ is a finite projective left s/-module for all n.
3. The natural map S^N-^grD^ is an isomorphism.
4. D^ is a projective left ^/-module.

Proof. — By (13.9) ^n(^) is isomorphic to the completion ofJ^(A) in the I-adic
topology. Since J^ (A) is a finitely generated module this is isomorphic to J^®^J^(A).
Thus

D^Hom^AW, ̂ Hom^®^l(A), ̂ )
=Hom^(I(A), ^)=^(^Hom^L(A), A)
=^00^.

The first equality holds by definition of^(^) and the fact that s^ is complete in the
I-topology. The next to last equality holds because J^(A) is a finite projective A-module.
The above isomorphism is now displayed explicitly: for deD^ the map A — ^ A — ^ j a /
is in D^(J^) and by (13.8) has a unique "lifting" to an element rfeD^(^)==D^.
The above isomorphism is then given by

^®A^A ̂  D^

x®d I—> xd

for xe^y rfeD^. The map at (*) yields the isomorphism J^®^D^->D^, (x®d\->xd)y
xes/, afeD^.

For n=i the map at (*) induces an isomorphism between J^®^M and N.
For x,jye^, deD^ eeD^, {xd'){ye'}=xy'd7—x[y^}7. Since [jy,d]eD^~1 the

term x[y^ d]7eT)ym~l. Thus the isomorphism J^^D^-^ D^r induces an algebra

isomorphism j^®^grD^ —^> grD^. This proves part 3.
Since the map in part 3 is a graded algebra map it follows that S^N maps onto

g^D^ for all TZ. By an easy induction left to the reader this proves part i.
Since Ji (A) is a finite projective A-module so is D^==Hom^(J\(A), A). Thus

Der A is a finite projective left A-module since Dj^A^Der A as left A-modules.
Thus N==j^®^DerA is a finite projective left j^-module. Then for all n

D n lT\n-l^ qi -vr
^/-u^ =^^1N

is a finite projective left j^-module. Hence there exist finite projective left c^-modules
P,CD^ where D^==P,®D^-1 for ^i. Let Po=^=D^. Then

D^©p.
185
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which proves part 2. And part 4 follows from

D^©P.
t=0

Q.E.D.

Corollary (18.4). — Let B be a commutative algebra such that L == Der B, L is a (finite)
projective left B-module and the natural map SBL-^grDg is an isomorphism. Then

1 . D^=Dg. . .Dg (n times) for all n.
2. D^ is a (finite) left ^-module for all n.
3. Dg is a projective left ^-module.

Proof. — The steps needed to prove the corollary are contained in the proof
of (18.3). Q.E.D.

When B and Dg satisfy the hypotheses of (18.4) it is possible to characterize Dg
as a certain universal enveloping algebra. In [14, § 2, p. 197] (K, R)-Lie algebras
are introduced. If B is a commutative R-algebra then L==DerB is an (R, B)-Lie
algebra. L has an enveloping algebra V(B, L) [14, § 2, p. 197]. There is a canonical
algebra map B->V(B, L) which is injective. There is a map L->V(B, L) which
is a Lie algebra map to V(B, L)~. Let L denote the image of L—^V(B, L) and identify
B with its image in V(B, L). There is a filtration on V(B, L) such that

Vo(B,L)=B

V,(B,L)=B+L

V , ( B , L ) = B + L + . . . + L . . . L .

Note that V(B, L) is not the usual universal enveloping algebra of L as a Lie algebra
but is the enveloping algebra ofL as an (R, B)-Lie algebra. See [14, § 2-3, p. 197-200].

By the universal property ofV(B, L) there is a natural algebra map V(B, L)->DB
which is a map of algebras over B. It is induced by the natural inclusion L==Der B^Dg.

Proposition (18.5). — Suppose B is a commutative ^.-algebra such that L=DerB is
projective as a left ^-module and the natural algebra map Sj^L-^gr Dg is an isomorphism. Then
the natural map of algebras over B, V(B, L)->Dg is an isomorphism.

Proof. — By (18.4), part i, VJB, L) maps onto D^ so that V(B,L)-^DB is
surjective and preserves filtration. Thus it suffices to prove that the natural map
grV(B, L)->grDg is injective. This is true by [14, (3.1), p. 198] and the assumption
that SpL^grDg is an isomorphism. Q.E.D.

The algebraic DeRham complex of a commutative algebra is the exterior algebra
of the Kaehler module together with the unique exterior derivation. More precisely,
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for a commutative algebra B let K denote the Kaehler module J^ (B). Then j^ : B->K
is the universal derivation of B. Let Eg(K) be the B-exterior algebra on K. It is
shown in [13, Lemma (9.2), p. 155] that E^K) has a unique degree i derivation 8
satisfying 88=0 and 8|B=j\+. Explicitly 8 is determined by

(z8 6) I W=^o)
[ 8(&o 8^A . . . A 86 J - Sb^ Sb, A . . . A 8^

for {6JCB.
If M is a finite projective left B-module and N—Hom^M, B), then in each

degree Eg(M) is a finite projective left B-module. Moreover Hon^E^M), B) is
naturally isomorphic to Eg(N). The isomorphism is given as follows: say n^ . . 3, ^eN
and m i , . . . , 7 ^ e M . The element ^A . . . A^eEgN corresponds to a function/
on EgM which vanishes on E^M for i^t. For i=t, /is determined by

(^(mj . . .^(m^

(18.7) /(^A...A<)=det :

HI (m^) . . . Tit {nit) ^

Proposition (18.8). — Let K be a commutative algebra such that K=J^+(B) is a finite
projective left ^-module. Let L=Der B^Hom^K, B) and assume the natural algebra map
SpL-^grDp is an isomorphism. Then the cohomology Ext^(B, B) is naturally isomorphic
to the algebraic DeRham cohomology H^B) of B.

Proof. — By (18.5) Ext^(B, B)= Ext^(B, B). In [14, (4.2) and (4.3),
p. 202] it is shown that Ext^B,L)(B. B) is the cohomology of the R-module of strongly
alternating B multilinear maps from L to B under the formal differentiation

(18.9)
(D/) (^ .. .,<J= S M1-^/^ .. .,?„.. .,^))

4- y, (—\3-{•k f ( [ / / ~\ / ? T p \
I .^ \ ) JWj^ki^l^ ' • • ? fj, • • •,^, • • .,^J

J '\ K

where/is a strongly alternating B (n— i) -linear map from L to B.
The strongly alternating B z-linear maps from L to B are the same as the

maps from EgL to B. Thus the cohomology of Ext^,L)(B, B) is computed from
Hom^EpL.B). Since L=HomB(K,B) and K is a finite projective B-module, L is
also, and Hoi-n^E^L, B) is naturally isomorphic to EgK.

Suppose / in (18.9) corresponds to the element ^8^A . . . A8^eES~lK. Using
the duality (18.7) and the formula (18.9) it is a straightforward but lengthy calculation
to verify that

/ î)... îr
(D/ ) (^A. . .AO=det : :

\w...w,
which implies that Df=Sb^8b^ ... A 8^. Thus the cohomology of Ext^)(B, B)
is computed from the algebraic DeRham complex of B. Q.E.D.
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Theorem (18.10). — Suppose that R contains a copy ofQ^and A is a commutative ^-algebra
such thatJ^A) is a finitely presented left A-module for all n and Ji(A) is a projective left A-module.
Then the cohomology I-T(D^) (15.4) is naturally isomorphic to the algebraic DeRham cohomology
of A from degree two onward,

Proof, — By (18.2), 4) and (18.1) D^ is a projective left A-module. Thus by
(^^ g ) . f ) and d ) it follows that H'(DJ is actually isomorphic to Ext^(A, A) from
degree two onward. By (18.2), 3) and (18.5) it follows that H'(DJ \s naturally
isomorphic to Ext^^(A, A) from degree two onward, where M==DerA. By (18.8)
the theorem is proved. Q.E.D.

The results (13.20), 2), (13.21) and (13.25) provide a supply of algebras A
where J^(A) is a finitely presented (actually finite projective) left A-module for all n
and where Ji(A) is a projective left A-module.

Corollary (18. n). — Suppose R is afield of characteristic zero and A===R[Xi, . . . , XJ.
IfU is an algebra over A and U^D^ as an A-bimodule, then U^D^ as an algebra over A;
i.e. <^={<D^}.

Proof, — By (13.19), part 3, J^(A) is a finitely generated free A-module for all n,
Hence (18.10) applies and H^D^H^A). Since the DeRham cohomology of the
polynomial ring is zero in positive degree, it follows that H^DJ^o}. By (18.10)
^<D^> thus consists of only the identity and by (18. i), b) <?<D^> consists of only <D^>.
By (4.9), ^<D^>==^. Q.E.D.
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Manuscrit regu Ie 18 avril 1973.

It has come to my attention that the work of Lieberman in [Generalizations of the DeRham complex with
applications to duality theory and the cohomology of singular varieties, LIEBERMAN, Rice University Studies, 59 (1973),
57-7°L gives an alternative proof to parts of our theory relating X^-bialgebra cohomology and algebraic DeRham
cohomology.
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