JEAN-PIERRE SERRE

On a functorial property of power residue symbols. Erratum : Solution of the congruence subgroup problem for $SL_n (n \ge 3)$ and $Sp_{2n} (n \ge 2)$

Publications mathématiques de l'I.H.É.S., tome 44 (1974), p. 241-244 http://www.numdam.org/item?id=PMIHES_1974_44_241_0

© Publications mathématiques de l'I.H.É.S., 1974, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON A FUNCTORIAL PROPERTY OF POWER RESIDUE SYMBOLS

Erratum to: Solution of the congruence subgroup problem for SL_n $(n \ge 3)$ and Sp_{2n} $(n \ge 2)$, by Hyman Bass, John Milnor and Jean-Pierre Serre (Publ. Math. I.H.E.S., 33, 1967, p. 59-137).

1. Statement of results

This concerns part (A.23) of the Appendix of the above paper (p. 90-92).

Let $k_1 \supset k$ be a finite extension of number fields, of degree $d = [k_1 : k]$. Denote by μ_k (resp. μ_{k_1}) the group of all roots of unity in k (resp. k_1), and by m (resp. m_1) the order of μ_k (resp. μ_{k_1}). We have

$$\mathbf{N}_{k_1\!/\!k}(\boldsymbol{\mu}_{k_1}) \subset \boldsymbol{\mu}_k \subset \boldsymbol{\mu}_{k_1}$$

and m divides m_1 .

It is easy to see (cf. (A.23, a)) that there is a unique endomorphism φ of μ_k such that

$$\varphi(z^{m_1/m}) = \mathbf{N}_{k_1/k}(z) \quad \text{for all} \quad z \in \mu_{k_1}$$

Since μ_k is cyclic of order *m*, there is a well-defined element *e* of $\mathbb{Z}/m\mathbb{Z}$ such that $\varphi(z) = z^e$. for all $z \in \mu_k$. Two assertions about *e* are made in (A.23):

(A.23), b) We have $e = (1 + m/2 + m_1/2) dm/m_1$; this makes sense because dm/m_1 has denominator prime to m.

(A.23), c) Let a be an algebraic integer of k, and let b be an ideal of k prime to m_1a ; identify b with the corresponding ideal of k_1 . Then

$$\binom{a}{b}_{m_1} = \left(\binom{a}{b}_m \right)^e,$$

where the left subscript denotes the field in which the symbol is defined.

Both assertions are proved in (A.23) by a "dévissage" argument which is incorrect (the mistake occurs on p. 91 where it is wrongly claimed that one can break up the extension $k(\mu_{k_1})/k$ into layers such that the order of μ_k increases by a prime factor in each one).

The actual situation is:

Theorem 1. — Assertion (A.23), b) is false and assertion (A.23), c) is true.

To get a counter-example to (A.23), b), take for k_1 the field $\mathbf{Q}(\sqrt{2}, \sqrt{-1})$ of 8th-roots of unity, and for k either $\mathbf{Q}(\sqrt{2})$ or $\mathbf{Q}(\sqrt{-2})$. In both cases, we have

241

31

m=2, $m_1=8$, d=2; this shows that the denominator of dm/m_1 need not be prime to m. Moreover, a simple calculation shows that $e \in \mathbb{Z}/2\mathbb{Z}$ is equal to 0 in the first case and to 1 in the second case; hence, *there is no formula for e* involving only d, m and m_1 .

The truth of (A.23), c) will be proved in § 3 below.

Remark. — The reader can check that (A.23), b) was not used at any place in the original paper, except for a harmless quotation on p. 81.

2. A transfer property of Kummer theory

We generalize the notations of \S I as follows:

 k_1/k is a finite separable extension of commutative fields, $d = [k_1 : k]$,

 μ (resp. μ_1) is a finite subgroup of k^* (resp. k_1^*), $m = [\mu : I]$ and $m_1 = [\mu_1 : I]$.

We make the following assumption:

$$\mathbf{N}_{k,k}(\mu_1) \subset \mu \subset \mu_1.$$

As in § 1, this implies that m divides m_1 and that there is a well-defined element $e \in \mathbb{Z}/m\mathbb{Z}$ such that

$$N_{k,k}(z) = z^{em_1/m}$$
 for all $z \in \mu_1$.

Let now \overline{k} be a separable closure of k_1 , and put

$$G_1 = \operatorname{Gal}(\overline{k}/k_1)$$
 and $G = \operatorname{Gal}(\overline{k}/k)$,

so that G_1 is an open subgroup of index d of G. Denote by G^{ab} (resp. G_1^{ab}) the quotient of G (resp. G_1) by the closure of its commutator group; this group is the Galois group of the maximal abelian extension k^{ab} (resp. k_1^{ab}) of k (resp. k_1) in \overline{k} . The transfer map (Verlagerung) is a continuous homomorphism

Ver :
$$G^{ab} \rightarrow G_1^{ab}$$
.

Let $a \in k^*$. Kummer theory attaches to a the continuous character

$$\chi^a_{k,m}: \mathbf{G}^{\mathrm{ab}} \to \mu$$

defined by:

$$\chi^k_{a,m}(s) = s(\alpha) \alpha^{-1}$$
 for $s \in \mathbf{G}^{ab}$ and $\alpha \in k^{ab}$ with $\alpha^m = a$

Similarly, every element b of k_1^* defines a character

$$\chi^b_{k_1, m_1}: \mathbf{G}^{\mathrm{ab}}_1 \to \mu_1,$$

and this applies in particular when b = a.

Theorem 2. — If a belongs to k^* , the map

$$\chi^a_{k_1, m_1} \circ \operatorname{Ver} : \operatorname{Gab} \to \operatorname{Gab} \to \operatorname{Gab} \to \mu_1$$

takes values in μ , and is equal to the e-th-power of $\chi^a_{k,m}$. 242

242

(*)

Proof. — [In what follows, we write χ_a (resp. ψ_a) instead of $\chi^a_{k,m}$ (resp. $\chi^a_{k_1,m_1}$); we view it indifferently as a character of G or G^{ab} (resp. of G_1 or G^{ab}_1).]

Let $(s_i)_{i \in I}$ be a system of representatives of the left cosets of G mod. G₁; we have $G = \prod_{i \in I} s_i G_1$. If $s \in G$ and $i \in I$, we write ss_i as $ss_i = s_j t_i$, with $j \in I$, $t_i \in G_1$, and Ver(s) is the image of $\prod_{i \in I} t_i$ in G_1^{ab} .

Let now $w: G \rightarrow \mu_1$ be the 1-cocycle defined by

 $w(s) = s(\lambda)\lambda^{-1}$, where $\lambda^{m_1} = a$.

The restriction of w to G_1 is ψ_a . Hence we have

$$\psi_a(\operatorname{Ver}(s)) = \prod_{i \in I} \psi_a(t_i) = \prod_{i \in I} w(t_i).$$

Since $t_i = s_j^{-1} ss_i$ and w is a cocycle, we get:

$$w(t_i) = w(s_j^{-1}) \cdot s_j^{-1}(w(s)) \cdot s_j^{-1}s(w(s_i)),$$

hence

$$\psi_a(\operatorname{Ver}(s)) = h_1 h_2 h_3,$$

with $h_1 = \prod_{i \in I} w(s_j^{-1}), h_2 = \prod_{i \in I} s_j^{-1}(w(s))$ and $h_3 = \prod_{i \in I} s_j^{-1}s(w(s_i)).$

When *i* runs through I, the same is true for *j*, hence h_1 can be rewritten as $\Pi w(s_i^{-1})$; on the other hand, since t_i acts trivially on μ_1 , we have $s_j^{-1}s(z) = t_i s_i^{-1}(z) = s_i^{-1}(z)$ for all $z \in \mu_1$, hence $h_3 = \prod s_i^{-1}(w(s_i)) = \prod w(s_i)^{-1}$ since *w* is a cocycle. This shows that $h_1 h_3 = I$, hence

$$\psi_a(\operatorname{Ver}(s)) = h_2 = \operatorname{N}_{k_1/k}(w(s)) = w(s)^{em_1/m}.$$

Put now $\alpha = \lambda^{m_1/m}$. We have $\alpha^m = a$, hence

 $\chi_a(s) = s(\alpha) \alpha^{-1} = w(s)^{m_1/m}$ for all $s \in \mathbf{G}$.

This shows that

$$\psi_a(\operatorname{Ver}(s)) = \chi_a(s)^e$$
, q.e.d.

Remark. — When $m = m_1$, we have e = d and the 2 reduces to a special case of the well-known formula

$$\chi^b_{k_1, m} \circ \operatorname{Ver} = \chi^a_{k, m},$$

valid for $b \in k_1^*$ and $a = N_{k,k}(b) \in k^*$.

3. The number field case

We keep the notations of § 2, and assume that k is a number field. If **b** is an idèle of k, we denote by $s_k^{\mathbf{b}}$ the element of \mathbf{G}^{ab} attached to **b** by class field theory; for every $a \in k^*$, we define an element $\binom{a}{k}_{k} \stackrel{\frown}{\mathbf{b}}_{m}$ of μ by: $\binom{a}{\mathbf{b}}_{m} = \chi_{k,m}^{a}(s_k^{\mathbf{b}}).$

Similar definitions apply to k_1 and m_1 .

243

Theorem 3. — If a (resp. b) is an element of k^* (resp. an idèle of k), we have

$$\binom{a}{b}_{m_1} = \left(\binom{a}{b}_m \right)^e.$$

This follows from th. 2 and the known fact that $s_{k_1}^{b} = \operatorname{Ver}(s_k^{b})$.

Proof of (A.23), c). — Assume now a to be an integer of k, and let b be an ideal of k prime to $m_1 a$. Choose for **b** an idèle with the following properties:

(i) the v-th component of **b** is I if the place v is archimedean, or is ultrametric and divides $m_1 a$;

(ii) the ideal associated to **b** is **b**.

It is then easy to check that

$$\binom{a}{b}_{m} = \binom{a}{b}_{m}$$
 and $\binom{a}{b}_{m} = \binom{a}{b}_{m}$

Hence (A.23), c) follows from th. 3.

4. The local case

We keep the notations of § 2, and assume that k is a local field, i.e. is complete with respect to a discrete valuation with finite residue field. If $b \in k^*$, we denote by s_k^b the element of G^{ab} attached to b by local class field theory; if $a \in k^*$, the Hilbert symbol

 $\left(\frac{a, b}{k}\right)_m \in \mu$ is defined by

$$\left(\frac{a, b}{k}\right)_m = \chi^a_{k, m}(s^b_k).$$

Theorem 4. — If a, b are elements of k^* , we have:

$$\left(\frac{a, b}{k_1}\right)_{m_1} = \left(\left(\frac{a, b}{k}\right)_m\right)^e.$$

This follows from th. 2 and the known fact that $s_{k_1}^b = \operatorname{Ver}(s_k^b)$.

Remark. — It would have been possible to prove th. 4 first, and deduce th. 3 and (A.23), c) from it.

Manuscrit reçu le 7 mai 1974.

244