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ON A FUNCTORIAL PROPERTY
OF POWER RESIDUE SYMBOLS

Erratum to: Solution of the congruence subgroup problem for SL^ (^^3) and Sp^ (^2),
by Hyman BASS, John MILNOR and Jean-Pierre SERRE {Publ. Math. LH.E.S., 33, 1967,
P- 59-137)-

i. Statement of results

This concerns part (A. 23) of the Appendix of the above paper (p. 90-92).
Let k^Dk be a finite extension of number fields, of degree d==[k^: k]. Denote

by ^ (resp. ^) the group of all roots of unity in k (resp. k^), and by m (resp. m^) the
order of ^ (resp. pi^). We have

N^(^)c^c^
and m divides m^.

It is easy to see (cf. (A. 23, a)) that there is a unique endomorphism 9 of^ such that
y^^N^) for all ^e^.

Since \L^ is cyclic of order m, there is a well-defined element e of Z/mZ such that 9(2') =z€

for all ze^. Two assertions about e are made in (A.23):
(A. 23), b) We have e={i 4-^/2+^1/2) dmfm^ this makes sense because dmfm^ has

denominator prime to m.
(A.23), c) Let a be an algebraic integer ofk, and let b be an ideal of k prime tom^a, identify

b with the corresponding ideal of k^. Then

h 4 MY.M, iwj'
where the left subscript denotes the field in which the symbol is defined.

Both assertions are proved in (A.23) by a "devissage" argument which is incorrect
(the mistake occurs on p. 91 where it is wrongly claimed that one can break up the
extension k{[Lj^)lk into layers such that the order of ^ increases by a prime factor in
each one).

The actual situation is:

Theorem 1. — Assertion (A. 23)3 b) is false and assertion (A.23), c) is true.
To get a counter-example to (A.23), b), take for k^ the field Q^V^V""1) °^

Sth-roots of unity, and for k either Q,(-\/2) or Q^V^—s). In both cases, we have
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242 ON A FUNCTORIAL PROPERTY OF POWER RESIDUE SYMBOLS

m == 2, m^ == 8, d==2; this shows that the denominator of dmfm^ need not be prime to m.
Moreover, a simple calculation shows that ^eZ/2Z is equal to o in the first case and
to i in the second case; hence, there is no formula for e involving only d, m and m^.

The truth of (A. 23), c) will be proved in § 3 below.

Remark. — The reader can check that (A. 23), b) was not used at any place in
the original paper, except for a harmless quotation on p. 81.

2. A transfer property of Kummer theory

We generalize the notations of § i as follows:

k^k is a finite separable extension of commutative fields, d==[k^ : k],
[L (resp. [j4) is a finite subgroup of A* (resp. k\), m=[[L : i] and m^{^\ i].

We make the following assumption:

(*) N^(^)CptC^.
As in § i, this implies that m divides m^ and that there is a well-defined element eeZfmZ
such that

^^^)=^ml/m for all ,̂.

Let now k be a separable closure of k^, and put

GI = Gal(^) and G = Gal(^>),

so that GI is an open subgroup of index d of G. Denote by G^ (resp. Gf) the quotient
of G (resp. G^) by the closure of its commutator group; this group is the Galois group
of the maximal abelian extension k^ (resp. kf) of k (resp. k^) in k. The transfer map
(Verlagerung) is a continuous homomorphism

Ver : G^->Gf.

Let aek*. Kummer theory attaches to a the continuous character

X^: G^
defined by:

^jj)==j(a)a-1 for seG^ and ae^ with 0^=0.

Similarly, every element b of k\ defines a character

^ '' G^,,

and this applies in particular when b == a.

Theorem 2. — If a belongs to k*, the map

X^oVer: G^Gl'5-^

takes values in (JL, and is equal to the e'th-power of ^ ^.
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ON A FUNCTORIAL PROPERTY OF POWER RESIDUE SYMBOLS 243

Proof. — [In what follows, we write ^ (resp. ^) instead of ^ ^ (resp. /^ ^ ) ;
we view it indifferently as a character of G or G^ (resp. of G^ or G^).]

Let (^)^ci be a system of representatives of the left cosets of G mod-G^; we have
G==II^Gi. If seG and zei, we write ss^ as ^==j^., with j el, ^eG^, and Ver(j)
is the image of H ^ in G^.

Let now w : G—^ be the i-cocycle defined by
w(j)==j(X)X-1, where ^-^a.

The restriction of w to G^ is ^. Hence we have
^(Ver(.))=:n^,(^)-n^^).

Since ^==j~1^ and w is a cocycle, we get:
wW==w{s^).s^{w{s)).s^s{w(s,)),

hence
^(Ver(.))-W3,

with h,=n^1), f^^B^^w^) and ^^n^^1^^^)).

When i runs through I, the same is true for^*, hence A^can be rewritten as Ylw(s^1);
on the other hand, since ^ acts trivially on [L^, we have s^ls{z)=^s^~l{z)==s^l(z) for
all z^^, hence h^==Ils^l{w{s^)=Tlw(Si)~l since w is a cocycle. This shows that
h^h^==i, hence

^(Ver(.)) = h, = N^(^(.)) = w^s)^

Put now a == X^^. We have a^ = fl, hence
^(^^^(^a-1—^^)^1^ for all seG.

This shows that
^(Ver(.))=^)6, q.e.d.

Remark. — When m^-m^ we have ^==rf and th. 2 reduces to a special case of
the well-known formula

xLm0^-^,^

valid for bek\ and a==N^;(A)eA*.

3. The number field case

We keep the notations of § 2, and assume that k is a number field. If b is an idele
of A, we denote by s^ the element of G^ attached to b by class field theory; for every

aek*, we define an element (-( of pi by:
Wm

-zU^)-Wm
Similar definitions apply to k^ and m^.
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Theorem 3. — If a (resp. b) is an element ofk* (resp. an idele of k), we have

i ° } -(W-^Wn. WJ
This follows from th. 2 and the known fact that s^ ==Ver(^).
Proof of (A. 23), c). — Assume now a to be an integer of k, and let b be an ideal

of k prime to m^a. Choose for b an idele with the following properties:
(i) the y-th component of b is i if the place v is archimedean, or is ultrametric

and divides m^a\
(ii) the ideal associated to b is b.

It is then easy to check that

(a\ la\ (a\ (a\
- == - and - == - .

AWm Wm fcA6L kWm,

Hence (A. 23), c) follows from th. 3.

4. The local case

We keep the notations of § 2, and assume that A is a local field, i.e. is complete with
respect to a discrete valuation with finite residue field. If bek*, we denote by ^ the
element of G^ attached to b by local class field theory; if aek*, the Hilbert symbol

I ——) e [L is defined by

^ -.a ^
1 7> I ~^m{sk)'
\ R Im

Theorem 4. — If a, b are elements of A*, we have:

lajA ila^ V

l^iL [ [ k U
This follows from th. 2 and the known fact that ^ =Ver(^).

Remark. — It would have been possible to prove th. 4 first, and deduce th. 3 and
(A. 23), c) from it.

Manuscrit recu Ie 7 mai 1974.


