Publications mathématiques de l'I.H.É.S.

Jean-Pierre Serre

On a functorial property of power residue symbols. Erratum : Solution of the congruence subgroup problem for $S L_{n}(n \geq 3)$ and $S p_{2 n}(n \geq 2)$

Publications mathématiques de l'I.H.É.S., tome 44 (1974), p. 241-244
http://www.numdam.org/item?id=PMIHES_1974_44_241_0
© Publications mathématiques de l'I.H.É.S., 1974, tous droits réservés.
L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON A FUNCTORIAL PROPERTY
 OF POWER RESIDUE SYMBOLS

Erratum to: Solution of the congruence subgroup problem for $\mathrm{SL}_{n}(n \geqslant 3)$ and $\mathrm{Sp}_{2 n}(n \geqslant 2)$, by Hyman Bass, John Milnor and Jean-Pierre Serre (Publ. Math. I.H.E.S., 33, 1967, p. 59-137).

1. Statement of results

This concerns part (A.23) of the Appendix of the above paper (p. 90-92).
Let $k_{1} \supset k$ be a finite extension of number fields, of degree $d=\left[k_{1}: k\right]$. Denote by μ_{k} (resp. $\mu_{k_{1}}$) the group of all roots of unity in k (resp. k_{1}), and by m (resp. m_{1}) the order of μ_{k} (resp. $\mu_{k_{1}}$). We have

$$
\mathbf{N}_{k_{1} / k}\left(\mu_{k_{1}}\right) \subset \mu_{k} \subset \mu_{k_{1}}
$$

and m divides m_{1}.
It is easy to see (cf. (A.23, a)) that there is a unique endomorphism φ of μ_{k} such that

$$
\varphi\left(z^{m_{1} / m}\right)=\mathbf{N}_{k_{1} / k}(z) \quad \text { for all } \quad z \in \mu_{k_{1}} .
$$

Since μ_{k} is cyclic of order m, there is a well-defined element e of $\mathbf{Z} / m \mathbf{Z}$ such that $\varphi(z)=z^{e}$. for all $z \in \mu_{k}$. Two assertions about e are made in (A.23):
(A.23), b) We have $e=\left(\mathrm{I}+m / 2+m_{1} / 2\right) d m / m_{1}$; this makes sense because $d m / m_{1}$ has denominator prime to m.
(A.23), c) Let a be an algebraic integer of k, and let \mathfrak{b} be an ideal of k prime to $m_{1} a$; identify \mathfrak{b} with the corresponding ideal of k_{1}. Then

$$
\left(\frac{a}{k_{1}}\right)_{m_{1}}=\left(\left(_{k} \frac{a}{\mathfrak{b}}\right)_{m}\right)^{e}
$$

where the left subscript denotes the field in which the symbol is defined.
Both assertions are proved in (A.23) by a "dévissage" argument which is incorrect (the mistake occurs on p. 9i where it is wrongly claimed that one can break up the extension $k\left(\mu_{k_{1}}\right) / k$ into layers such that the order of μ_{k} increases by a prime factor in each one).

The actual situation is:
Theorem 1. - Assertion (A.23), b) is false and assertion (A.23), c) is true.
To get a counter-example to (A.23), b), take for k_{1} the field $\boldsymbol{Q}(\sqrt{2}, \sqrt{-\mathrm{I}})$ of 8th-roots of unity, and for k either $\mathbf{Q}(\sqrt{2})$ or $\mathbf{Q}(\sqrt{-2})$. In both cases, we have
$m=2, m_{1}=8, d=2$; this shows that the denominator of $d m / m_{1}$ need not be prime to m. Moreover, a simple calculation shows that $e \in \mathbf{Z} / 2 \mathbf{Z}$ is equal to o in the first case and to I in the second case; hence, there is no formula for e involving only d, m and m_{1}.

The truth of (A.23), c) will be proved in § 3 below.
Remark. - The reader can check that (A.23), b) was not used at any place in the original paper, except for a harmless quotation on p .8 r .

2. A transfer property of Kummer theory

We generalize the notations of § I as follows:
k_{1} / k is a finite separable extension of commutative fields, $d=\left[k_{1}: k\right]$,
μ (resp. μ_{1}) is a finite subgroup of k^{*} (resp. k_{1}^{*}), $m=[\mu: \mathrm{I}]$ and $m_{1}=\left[\mu_{1}: \mathrm{I}\right]$.
We make the following assumption:

$$
\begin{equation*}
\mathrm{N}_{k_{1} / k}\left(\mu_{1}\right) \subset \mu \subset \mu_{1} . \tag{*}
\end{equation*}
$$

As in § I, this implies that m divides m_{1} and that there is a well-defined element $e \in \mathbf{Z} / m \mathbf{Z}$ such that

$$
\mathrm{N}_{k_{1} / k}(z)=z^{e m_{1} / m} \quad \text { for all } \quad z \in \mu_{1} .
$$

Let now \bar{k} be a separable closure of k_{1}, and put

$$
\mathrm{G}_{1}=\operatorname{Gal}\left(\bar{k} / k_{1}\right) \quad \text { and } \quad \mathrm{G}=\operatorname{Gal}(\bar{k} / k),
$$

so that G_{1} is an open subgroup of index d of G . Denote by $\mathrm{G}^{\text {ab }}$ (resp. $\mathrm{G}_{1}^{\text {ab }}$) the quotient of G (resp. G_{1}) by the closure of its commutator group; this group is the Galois group of the maximal abelian extension $k^{\text {ab }}$ (resp. $k_{1}^{\text {ab) }}$) of k (resp. k_{1}) in \bar{k}. The transfer map (Verlagerung) is a continuous homomorphism

$$
\text { Ver : } \mathrm{G}^{\mathrm{ab}} \rightarrow \mathrm{G}_{1}^{\mathrm{ab}} .
$$

Let $a \in k^{*}$. Kummer theory attaches to a the continuous character

$$
\chi_{k, m}^{a}: \mathrm{G}^{\mathrm{ab}} \rightarrow \mu
$$

defined by:

$$
\chi_{a, m}^{k}(s)=s(\alpha) \alpha^{-1} \quad \text { for } s \in \mathrm{G}^{\text {ab }} \text { and } \alpha \in k^{\text {ab }} \text { with } \alpha^{m}=a .
$$

Similarly, every element b of k_{1}^{*} defines a character

$$
\chi_{k_{1}, m_{1}}^{b}: \mathrm{G}_{1}^{\mathrm{ab}} \rightarrow \mu_{1},
$$

and this applies in particular when $b=a$.
Theorem 2. - If a belongs to k^{*}, the map

$$
\chi_{k_{1}, m_{1}}^{a} \circ \text { Ver }: \quad \mathrm{G}^{\mathrm{ab}} \rightarrow \mathrm{G}_{1}^{a^{a j}} \rightarrow \mu_{1}
$$

takes values in μ, and is equal to the e-th-power of $\chi_{k, m}^{a}$.

Proof. - [In what follows, we write χ_{a} (resp. ψ_{a}) instead of $\chi_{k_{1}, m}^{a}$ (resp. $\chi_{k_{1}, m_{1}}^{a}$); we view it indifferently as a character of G or $G^{a b}$ (resp. of G_{1} or $\left.G_{1}^{a b}\right)$.]

Let $\left(s_{i}\right)_{i \in I}$ be a system of representatives of the left cosets of $G \bmod . \mathrm{G}_{1}$; we have $\mathrm{G}=\operatorname{UI}_{i \in \mathrm{I}} s_{i} \mathrm{G}_{1}$. If $s \in \mathrm{G}$ and $i \in \mathrm{I}$, we write $s s_{i}$ as $s s_{i}=s_{j} t_{i}$, with $j \in \mathrm{I}, t_{i} \in \mathrm{G}_{1}$, and $\operatorname{Ver}(s)$ is the image of $\prod_{i \in \mathrm{I}} t_{i}$ in $\mathrm{G}_{1}^{\mathrm{ab}}$.

Let now $w: \mathrm{G} \rightarrow \mu_{1}$ be the r -cocycle defined by

$$
w(s)=s(\lambda) \lambda^{-1}, \quad \text { where } \quad \lambda^{m_{1}}=a .
$$

The restriction of w to G_{1} is ψ_{a}. Hence we have

$$
\psi_{a}(\operatorname{Ver}(s))=\prod_{i \in \mathrm{I}} \psi_{a}\left(t_{i}\right)=\prod_{i \in \mathrm{I}} w\left(t_{i}\right) .
$$

Since $t_{i}=s_{j}^{-1} s s_{i}$ and w is a cocycle, we get:

$$
w\left(t_{i}\right)=w\left(s_{j}^{-1}\right) \cdot s_{j}^{-1}(w(s)) \cdot s_{j}^{-1} s\left(w\left(s_{i}\right)\right),
$$

hence

$$
\psi_{a}(\operatorname{Ver}(s))=h_{1} h_{2} h_{3},
$$

with $h_{1}=\prod_{i \in \mathrm{I}} w\left(s_{j}^{-1}\right), \quad h_{2}=\prod_{i \in \mathrm{I}} s_{j}^{-1}(w(s))$ and $h_{3}=\prod_{i \in \mathrm{I}} s_{j}^{-1} s\left(w\left(s_{i}\right)\right)$.
When i runs through I , the same is true for j, hence h_{1} can be rewritten as $\Pi w\left(s_{i}^{-1}\right)$; on the other hand, since t_{i} acts trivially on μ_{1}, we have $s_{j}^{-1} s(z)=t_{i} s_{i}^{-1}(z)=s_{i}^{-1}(z)$ for all $z \in \mu_{1}$, hence $h_{3}=\Pi s_{i}^{-1}\left(w\left(s_{i}\right)\right)=\Pi w\left(s_{i}\right)^{-1}$ since w is a cocycle. This shows that $h_{1} h_{3}=1$, hence

$$
\psi_{a}(\operatorname{Ver}(s))=h_{2}=\mathrm{N}_{k_{1} / k}(w(s))=w(s)^{e m_{1} / m} .
$$

Put now $\alpha=\lambda^{m / m}$. We have $\alpha^{m}=a$, hence

$$
\chi_{a}(s)=s(\alpha) \alpha^{-1}=w(s)^{m_{1} / m} \quad \text { for all } \quad s \in \mathrm{G} .
$$

This shows that

$$
\psi_{a}(\operatorname{Ver}(s))=\chi_{a}(s)^{e}, \quad \text { q.e.d. }
$$

Remark. - When $m=m_{1}$, we have $e=d$ and th. 2 reduces to a special case of the well-known formula

$$
\chi_{k_{1}, m}^{b} \circ \mathrm{Ver}=\chi_{k, m}^{a},
$$

valid for $b \in k_{1}^{*}$ and $a=\mathrm{N}_{k_{2} / k}(b) \in k^{*}$.

3. The number field case

We keep the notations of $\S 2$, and assume that k is a number field. If \boldsymbol{b} is an idele of k, we denote by $s_{k}^{\boldsymbol{b}}$ the element of $\mathrm{G}^{\text {ab }}$ attached to \boldsymbol{b} by class field theory; for every $a \in k^{*}$, we define an element $\left(\frac{a}{k}\right)_{m}$ of μ by:

$$
{ }_{k}\left(\frac{a}{\mathbf{b}}\right)_{m}=\chi_{k, m}^{a}\left(s_{k}^{\mathbf{b}}\right) .
$$

Similar definitions apply to k_{1} and m_{1}.

Theorem 3. - If $a(\operatorname{resp} . \boldsymbol{b})$ is an element of k^{*} (resp. an idèle of k), we have

$$
{ }_{k_{1}}\left(\frac{a}{\boldsymbol{b}}\right)_{m_{1}}=\left({ }_{k}\left(\frac{a}{\boldsymbol{b}}\right)_{m}\right)^{e} .
$$

This follows from th. 2 and the known fact that $s_{k_{1}}^{\boldsymbol{b}}=\operatorname{Ver}\left(s_{k}^{\boldsymbol{b}}\right)$.
Proof of (A.23), c). - Assume now a to be an integer of k, and let \mathfrak{b} be an ideal of k prime to $m_{1} a$. Choose for b an idèle with the following properties:
(i) the v-th component of \boldsymbol{b} is I if the place v is archimedean, or is ultrametric and divides $m_{1} a$;
(ii) the ideal associated to \boldsymbol{b} is \mathfrak{b}.

It is then easy to check that

$$
{ }_{k}\left(\frac{a}{\mathfrak{b}}\right)_{m}={ }_{k}\left(\frac{a}{b}\right)_{m} \quad \text { and } \quad{ }_{k_{1}}\left(\frac{a}{\mathfrak{b}}\right)_{m_{1}}={ }_{k_{1}}\left(\frac{a}{\boldsymbol{b}}\right)_{m_{1}}
$$

Hence (A.23), c) follows from th. 3 .

4. The local case

We keep the notations of $\S 2$, and assume that k is a local field, i.e. is complete with respect to a discrete valuation with finite residue field. If $b \in k^{*}$, we denote by s_{k}^{b} the element of G^{ab} attached to b by local class field theory; if $a \in k^{*}$, the Hilbert symbol $\left(\frac{a, b}{k}\right)_{m} \in \mu$ is defined by

$$
\left(\frac{a, b}{k}\right)_{m}=\chi_{k, m}^{a}\left(s_{k}^{b}\right) .
$$

Theorem 4. - If a, b are elements of k^{*}, we have:

$$
\left(\frac{a, b}{k_{1}}\right)_{m_{1}}=\left(\left(\frac{a, b}{k}\right)_{m}\right)^{e} .
$$

This follows from th. 2 and the known fact that $s_{k_{1}}^{b}=\operatorname{Ver}\left(s_{k}^{b}\right)$.
Remark. - It would have been possible to prove th. 4 first, and deduce th. 3 and (A.23), c) from it.

