GILLES CHATELET HAROLD ROSENBERG DANIEL WEIL A classification of the topological types of R²-actions on closed orientable 3-manifolds

Publications mathématiques de l'I.H.É.S., tome 43 (1974), p. 261-272 http://www.numdam.org/item?id=PMIHES_1974_43_261_0

© Publications mathématiques de l'I.H.É.S., 1974, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A CLASSIFICATION OF THE TOPOLOGICAL TYPES OF R²-ACTIONS ON CLOSED ORIENTABLE 3-MANIFOLDS by G. CHATELET, H. ROSENBERG, D. WEIL

In this paper we shall classify the topological type of non singular actions of \mathbb{R}^2 on closed orientable 3-manifolds. If φ is a non singular action of \mathbb{R}^2 on V then we denote by $\mathscr{F}(\varphi)$ the foliation of V defined by the orbits of φ ; φ non singular means the orbits are of dimension two, therefore $\mathscr{F}(\varphi)$ is a 2-dimensional foliation of V whose leaves are planes, cylinders and tori. V is assumed orientable, therefore $\mathscr{F}(\varphi)$ is a transversally orientable foliation. We consider two non singular actions φ and ψ to be equivalent if there is a homeomorphism $h: V \to V$ which sends leaves of $\mathscr{F}(\varphi)$ to leaves of $\mathscr{F}(\psi)$. We assume throughout this paper that the actions are at least of class \mathbb{C}^2 .

In [7], it is shown that if V admits a non singular action of \mathbb{R}^2 and if V is a closed orientable 3-manifold, then V is a fibre bundle over the circle S^1 with fibre the 2-torus \mathbb{T}^2 . Therefore V is diffeomorphic to $(\mathbb{T}^2 \times \mathbb{I})/\mathbb{F}$ where F is a diffeomorphism $\mathbb{T}^2 \to \mathbb{T}^2$ induced by an element of $\mathbf{GL}(2, \mathbb{Z})$; $(\mathbb{T}^2 \times \mathbb{I})/\mathbb{F}$ denotes the quotient space of $\mathbb{T}^2 \times \mathbb{I}$ where (x, 1)is identified with $(\mathbb{F}(x), 0)$ for $x \in \mathbb{T}^2$. Since V is orientable, we have det $\mathbb{F} = +1$. We can now annonce the main results; naturally we assume φ is a non singular action on the closed orientable 3-manifold $\mathbb{V} \approx (\mathbb{T}^2 \times \mathbb{I})/\mathbb{F}$:

Theorem 1. — If all the orbits of φ are planes, then V is diffeomorphic to \mathbf{T}^3 and $\mathscr{F}(\varphi)$ is equivalent to a linear action.

Theorem 2. — If φ has no compact orbits and not all the orbits of φ are planes, then all the orbits of φ are cylinders, F has eigenvalues equal to +1 and φ is equivalent to the suspension of a non singular action of the circle on \mathbf{T}^2 .

Theorem 3. — If φ has a compact orbit T, then the manifold obtained by cutting V along T is diffeomorphic to $\mathbf{T}^2 \times \mathbf{I}$. All the compact orbits of φ are isotopic in V, and if T_1 and T_2 are compact orbits of φ which bound a submanifold W of V whose interior contains no compact orbits, then $W \approx \mathbf{T}^2 \times \mathbf{I}$ and all the orbits of φ in W are either planes or cylinders (but there is no mixture of the two) which spiral in a precise manner towards T_1 and T_2 (this will be made precise in the sequel).

Theorem 1 is not new: in [4] it is shown that a closed orientable 3-manifold foliated by planes is diffeomorphic to T^3 , and in [6] it is shown that such foliations

of \mathbf{T}^3 are equivalent to linear foliations. Part of the interest of theorem 2 is the existence of compact orbits when F has no eigenvalue equal to +1.

Some notation. — Let $p: \mathbf{T}^2 \times \mathbf{I} \to \mathbf{V}$ be the natural projection and $\mathbf{T}_0 = p(\mathbf{T}^2 \times \{0\})$. If $\mathbf{T} \subset \mathbf{V}$ is an embedded surface, we say T is incompressible if the inclusion $i: \mathbf{T} \subset \mathbf{V}$ induces a monomorphism $i_*: \pi_1(\mathbf{T}) \to \pi_1(\mathbf{V})$. We denote by $\mathbf{M}(\mathbf{T})$ the 3-manifold with boundary obtained by cutting V along T. Notice that $\mathbf{M}(\mathbf{T}_0)$ is diffeomorphic to $\mathbf{T}^2 \times \mathbf{I}$; when there is no fear of confusion, we shall identify these two manifolds and call the components of the boundary of $\mathbf{M}(\mathbf{T}_0)$, \mathbf{T}_0 and \mathbf{T}_1 . We note $\mathbf{T}^2 = \mathbf{R}^2/\mathbf{Z}^2$ and if $p \in \mathbf{R}^2$, [p] denotes the coset of p in \mathbf{T}^2 . Let * = p([0, 0], 0) be the base point in V; we write $\pi_1(\mathbf{V})$ and $\pi_1(\mathbf{T}_0)$ to mean $\pi_1(\mathbf{V}, *)$ and $\pi_1(\mathbf{T}_0, *)$ respectively. Let

$$\mu(t) = p([0, 0], t) \quad \text{for} \quad t \in \mathbf{I},$$

and define ε to be the homotopy class of μ in $\pi_1(V)$. Let *a* and *b* be a basis of $\pi_1(T_0)$. Then $\pi_1(V)$ is the free group on *a*, *b* and *c* with the relations:

$$ab = ba$$

$$cac^{-1} = \mathbf{F}_{*}(a)$$

$$cbc^{-1} = \mathbf{F}_{*}(b).$$

1. In this section we shall study the manner in which the compact orbits of φ are embedded in V. We prove that $M(T) = T^2 \times I$ for any compact orbit T, and if F has an eigenvalue equal to -1, then there exist compact orbits and they are isotopic to T_0 .

 $(\mathbf{I} \cdot \mathbf{I})$ Let T be a compact orbit of φ . Then T does not separate V and T is incompressible.

Proof. — First we remark the foliation $\mathscr{F}(\varphi)$ contains no Reeb components, i.e. invariant submanifolds homeomorphic to $\mathbf{D}^2 \times \mathbf{S}^1$ such that $\partial(\mathbf{D}^2 \times \mathbf{S}^1)$ is a leaf; this is proved in [3]. Also, it is known that if \mathscr{F} is a transversally oriented foliation of a closed 3-manifold W which contains no Reeb components, then each leaf of \mathscr{F} is incompressible [5]. Therefore, if T is a compact orbit of φ , T is incompressible.

Now suppose that T does separate V; let W be one of the connected components of V-T; W is a closed 3-manifold and φ acts on W so that $\partial W = T$ is an orbit. If there are no compact orbits of φ in Int W then the proof of theorem (5.3) of [5] shows that all the orbits of φ in Int W are \mathbb{R}^2 . But then W is diffeomorphic to $\mathbb{D}^2 \times \mathbb{S}^1$ by theorem I of [5], which is impossible since an action has no Reeb components. Thus there exist compact orbits of φ in Int W. By lemma (5.3) of [7], there exist K compact orbits of φ in Int W, T_1, \ldots, T_K , such that $A = \bigcup_{i=1}^{K} T_i$ does not separate W but for every other compact orbit T' of φ , T' \cup A does separate W. We remark that in order to apply (5.3), one must know that not every compact orbit of φ in Int W separates W. This is indeed the case (cf. remark at end of the proof of theorem 3 of [5]). Let W₁ be the manifold obtained by cutting W along T₁, ..., T_K; W₁ has 2K+1 tori in its

boundary, each an orbit of φ , and every other compact orbit of φ in W_1 separates W_1 . But it is proved in [7] (page 462) that a compact orientable 3-manifold with non empty boundary, that admits a non singular action of \mathbf{R}^2 such that every compact orbit in the interior separates, is necessarily $\mathbf{T}^2 \times \mathbf{I}$. Thus $W_1 \approx \mathbf{T}^2 \times \mathbf{I}$ which contradicts the fact that W_1 has an odd number of boundary components. Therefore no compact orbit of the action φ on V can separate V.

(1.2) Let T be a torus embedded in V which is incompressible and does not separate V. Then $M(T) \approx T^2 \times I$.

Before proving (1.2), we need:

Lemma $(\mathbf{I} \cdot \mathbf{3})$. — Let T be a torus embedded in $\operatorname{Int}(\mathbf{T}^2 \times \mathbf{I})$ such that T is incompressible and separates $\mathbf{T}^2 \times \mathbf{I}$ into two components A and B such that $\mathbf{T}^2 \times \{0\} \subset A$ and $\mathbf{T}^2 \times \{1\} \subset B$. Then $A \approx \mathbf{T}^2 \times \mathbf{I}$ and $B \approx \mathbf{T}^2 \times \mathbf{I}$ (in fact, T is necessarily incompressible if the other hypotheses are satisfied).

Proof. — Let \mathscr{F} be a Reeb foliation of $\mathbf{T}^2 \times \mathbf{I}$, i.e. a \mathbf{C}^2 -foliation such that each leaf of \mathscr{F} in $\operatorname{Int}(\mathbf{T}^2 \times \mathbf{I})$ is \mathbf{R}^2 and the boundary components of $\mathbf{T}^2 \times \mathbf{I}$ are leaves [cf. 5]. Since T is incompressible, T is isotopic to a torus $\mathbf{T}' \subset \operatorname{Int}(\mathbf{T}^2 \times \mathbf{I})$ such that T' is transverse to \mathscr{F} and the foliation of T' defined by the intersection of the leaves of \mathscr{F} with T' is an irrational flow (Theorem (1.1) of [6]). Therefore we can assume T is transverse to \mathscr{F} and $\mathscr{F} \cap \mathbf{T}$ is an irrational flow. Let \mathbf{T}_0 be a torus embedded in int A such that $\mathbf{T}_0 + (\mathbf{T}^2 \times \{0\})$ bound a product cobordism in A and \mathbf{T}_0 is transverse to \mathscr{F} with $\mathscr{F} \cap \mathbf{T}_0$ an irrational flow. Such a torus \mathbf{T}_0 is constructed in exemple 3 of [5]. Let \mathbf{A}_0 be the manifold with boundary $\mathbf{T}_0 + \mathbf{T}$; clearly $\mathbf{A}_0 \cong \mathbf{A}$. Now each leaf of \mathscr{F} in the interior of \mathbf{A}_0 is homeomorphic to \mathbf{R}^2 since every closed submanifold of \mathbf{R}^2 diffeomorphic to \mathbf{R} separates \mathbf{R}^2 into two components, each homeomorphic to \mathbf{R}^2 . Now the proof of theorem (3.5) of [5] shows that $\mathbf{A}_0 \approx \mathbf{T}^2 \times \mathbf{I}$, hence A as well. Clearly the same reasoning applies to B.

Proof of $(\mathbf{I}.\mathbf{2})$. — Let $\mathbf{T} \subset \mathbf{V}$ be an incompressible torus which does not separate V. Suppose that $\mathbf{T} \subset \operatorname{Int} M(\mathbf{T}_0)$. Clearly T then separates $M(\mathbf{T}_0)$ into two connected components A and B, each of which contains one of the boundary components of $M(\mathbf{T}_0)$. Thus A and B are both homeomorphic to $\mathbf{T}^2 \times \mathbf{I}$ by lemma (1.3). Since $M(\mathbf{T})$ is obtained by glueing one end of A to an end of B, it follows easily that $M(\mathbf{T}) \approx \mathbf{T}^2 \times \mathbf{I}$.

In general we proceed by putting T into general position with respect to T_0 and mimic the argument which proves that a simple closed curve C on T^2 which is incompressible in T^2 has the property that $M(C) \approx S^1 \times I$.

To be precise, let T intersect T_0 transversally so that $T \cap T_0 = \emptyset$ or $T \cap T_0$ is a 1-manifold. We have just considered the case $T \cap T_0 = \emptyset$, therefore we may assume

$$T \cap T_0 = C_1 \cup \ldots \cup C_n$$

where each $C_i \approx S^1$ and $C_i \cap C_j = \sigma$ if $i \neq j$. First we modify T by an isotopy, to remove those C_i which are null homotopic. Suppose C_i is null homotopic on T_0 . Then $C_i = \partial D_i$ where $D_i \subset T_0$ and $D_i \approx D^2$. By choosing C_i minimal, we can suppose Int D_i contains no C_j , for j = 1, ..., n. Since $C_i \subset T$ and T is incompressible we know that C_i is null homotopic on T. Let $D \subset T$ satisfy $\partial D = C_i$ and $D \approx D^2$. Then $S = D \cup D_i$ is a 2-sphere embedded in V which is smooth except along the corner C_i . Since V is covered by \mathbb{R}^3 , V is irreducible (cf. [4]), therefore S bounds a ball $B \subset V$. Now by an isotopy of D to D_i across the ball B, one removes the intersection curve C_i from $T \cap T_0$; this isotopy is described in detail in [10].

Thus we can assume $T \cap T_0 = C_1 \cup \ldots \cup C_n$, where each C_i is a generator of $\pi_1(T)$ and $\pi_1(T_0)$. Two simple closed curves on a torus, which are disjoint and not null homotopic, separate the torus into two cylinders which have the curves as their common boundary. Therefore, we can label the C_i so that, for each *i*, C_i and C_{i+1} bound a cylinder A_i on T, whose interior contains no C_j . Choose a simple closed curve *b* on T which meets each C_i in exactly one point x_i . We fix an orientation of *b* and an orientation of the normal bundle of $T_0 \subset V$, and to each x_i we associate a + or - dependingon whether the orientation of*b* $at <math>x_i$ coincides with the orientation of the normal bundle of T_0 at x_i .

Now suppose x_i and x_{i+1} have opposite signs. Then A_i can be considered as a cylinder embedded in $M(T_0) \approx T^2 \times I$, which intersects $\partial(T^2 \times I)$ in $C_i + C_{i+1}$, both of which are contained in $T^2 \times \{0\}$. Let B_1 , B_2 be the cylinders in $T^2 \times \{0\}$, satisfying $\partial B_1 = \partial B_2 = C_i + C_{i+1}$, $B_1 \cap B_2 = C_i + C_{i+1}$. One of the B_i , B_1 say, has the property that $A_i \cup B_1$ bounds a solid torus in $T^2 \times I$ and is isotopic to B_1 across this solid torus, relative to $C_i + C_{i+1}$. This is proved explicitly in [10], or one can apply theorem (5.5) of [9]. Using this isotopy one removes C_i and C_{i+1} from $T \cap T_0$. Therefore we may suppose all the x_i have the same sign, and each A_i can be considered as embedded in $T^2 \times I$, having one boundary in $T^2 \times \{0\}$ and the other in $T^2 \times \{1\}$. Here we regard $T^2 \times \{0\}$ and $T^2 \times \{1\}$ as the two boundary components of a tubular neighborhood of T_0 in V.

Let a_1, \ldots, a_n denote the circles of intersection of T with $\mathbf{T}^2 \times \{0\}$, labelled so that $a_i \cup a_{i+1}$ bound a cylinder \mathbf{E}_i on $\mathbf{T}^2 \times \{0\}$ whose interior is disjoint from each a_j , and $a_{n+1} = a_1$. Similarly, let b_1, \ldots, b_n be the circles of $\mathbf{T} \cap (\mathbf{T}^2 \times \{1\})$, labelled so that $a_i + b_i$ bound a cylinder \mathbf{A}_i on T such that $\mathrm{Int} \mathbf{A}_i \subset \mathbf{T}^2 \times \{0, 1\}$. Let \mathbf{H}_i be the cylinder on $\mathbf{T}^2 \times \{1\}$ with boundary $b_i + b_{i+1}$ whose interior contains no b_j .

Now $E_i \cup H_i \cup A_i \cup A_{i+1}$ separates V into two connected components; let M(i) be the component whose interior is disjoint from T_0 . It is not hard to see that M(i) is homeomorphic to $S^1 \times I \times I$ by a map sending $S^1 \times I \times \{0\}$ to E_i and $S^1 \times I \times \{1\}$ to H_i . This can be proved directly (e.g. by using the theory of Reeb foliations) or one can apply [9].

Now V is the quotient space of $\mathbf{T}^2 \times \mathbf{I}$ where (x, 1) is identified with $(\mathbf{F}(x), 0)$, for each $x \in \mathbf{T}^2$. T is embedded in V, therefore for each *i* there exists $\psi(i) \in \mathbf{I}$ such that \mathbf{H}_i is identified with $\mathbf{E}_{\psi(i)}$ (via F).

Now suppose n=1, so that $\psi(1)=1$. Then M(T) is the quotient space of $\mathbf{S}^1 \times \mathbf{I} \times \mathbf{I}$ where $(\theta, t, 1)$ is identified with $(\mathbf{F}_1(\theta, t), \mathbf{0})$, for each $(\theta, t) \in \mathbf{S}^1 \times \mathbf{I}$;

$$F_1: S^1 \times I \rightarrow S^1 \times I$$
,

the diffeomorphism induced by F. Since T has a trivial normal bundle in V, $\partial \mathbf{M}(T)$ has two connected components; therefore $F_1(\mathbf{S}^1 \times \mathbf{0}) = \mathbf{S}^1 \times \mathbf{0}$ and $F_1(\mathbf{S}^1 \times \mathbf{1}) = \mathbf{S}^1 \times \mathbf{1}$. V is orientable so F_1 is orientation preserving. Thus F_1 is homotopic to the identity map $\mathbf{S}^1 \times \mathbf{I} \to \mathbf{S}^1 \times \mathbf{I}$, therefore, F_1 is isotopic to the identity map. Hence

$$\mathbf{M}(\mathbf{T}) \approx \mathbf{S}^1 \times \mathbf{I} \times \mathbf{S}^1 \approx \mathbf{T}^2 \times \mathbf{I}.$$

Now suppose n > 1. Then $\psi(1) \neq 1$, since if $\psi(1) = 1$, M(T) would have two connected components, contradicting the hypothesis that T does not separate V. Then $M(1) \bigcup_{n} M(\psi(1))$ is homeomorphic to $S^1 \times I \times I$ since it is obtained from

$$(\mathbf{S}^1 \times \mathbf{I} \times \mathbf{I}) + (\mathbf{S}^1 \times \mathbf{I} \times \mathbf{I})$$

where a point (x, 1) in the first factor is identified with (F(x), 0) in the second factor, for $x \in S^1 \times I$. We observe that the numbers $I, \psi(I), \psi^2(I), \ldots, \psi^{n-1}(I)$, are distinct and $\psi^n(I) = I$, since T does not separate V. Therefore

$$\mathbf{M}(\mathbf{I}) \bigcup_{F} \mathbf{M}(\psi(\mathbf{I})) \bigcup_{F} \dots \bigcup_{F} \mathbf{M}(\psi^{n-1}(\mathbf{I}))$$

is homeomorphic to $\mathbf{S}^1 \times \mathbf{I} \times \mathbf{I}$ and $\mathbf{M}(\mathbf{T})$ is homeomorphic to the quotient space of $\mathbf{S}^1 \times \mathbf{I} \times \mathbf{I}$ where a point (x, \mathbf{I}) is identified with $(h(x), \mathbf{0})$, for $x \in \mathbf{S}^1 \times \mathbf{I}$; $h : \mathbf{S}^1 \times \mathbf{I} \to \mathbf{S}^1 \times \mathbf{I}$ a diffeomorphism. Just as in the case $n = \mathbf{I}$, we have $h(\mathbf{S}^1 \times \mathbf{0}) = \mathbf{S}^1 \times \mathbf{0}$ and $h(\mathbf{S}^1 \times \mathbf{I}) = \mathbf{S}^1 \times \mathbf{I}$ since $\partial \mathbf{M}(\mathbf{T})$ has two components. Also h preserves orientation since $\mathbf{M}(\mathbf{T})$ is orientable, therefore h is isotopic to the identity map and $\mathbf{M}(\mathbf{T}) \approx \mathbf{T}^2 \times \mathbf{I}$.

(1.4) Let T be an incompressible torus in V which does not separate V. If F has no eigenvalue equal to +1 or -1, then T is isotopic to T_0 .

Proof. — Suppose T is not isotopic to T_0 . As in the proof of (1.2), we put T into general position with respect to T_0 . Clearly T is not disjoint from T_0 , since we proved in (1.3) that this implies T is isotopic to T_0 . As before, we remove all the circles of intersection from $T \cap T_0$ which are null homotopic, and then we remove the circles C_i and C_{i+1} which have opposite sign. Thus $T \cap (T^2 \times \{0\}) = a_1 \cup \ldots \cup a_n$ and $T \cap (T^2 \times \{1\}) = b_1 \cup \ldots \cup b_n$ where a_i and b_i bound a cylinder A_i on T whose interior is contained in Int $M(T_0)$. By construction, we have $F(b_1) = a_j$ for some j, $1 \le j \le n$.

The cylinder A_1 in $\mathbf{T}^2 \times \mathbf{I}$ is isotopic to $a_1 \times \mathbf{I}$ in $\mathbf{T}^2 \times \mathbf{I}$; one can prove this using Reeb foliation theory or [9]. Therefore, on \mathbf{T}^2 , a_1 is isotopic to b_1 and since a_j is isotopic to a_1 we have a_1 isotopic to $\mathbf{F}(a_1)$. Let \mathbf{C} be a (linear) simple closed curve through the base point (0, 0) of \mathbf{T}^2 which is isotopic to a_1 . We have $\mathbf{F}(\mathbf{C})$ isotopic to \mathbf{C} . Let $f: \mathbf{T}^2 \to \mathbf{T}^2$ be a diffeomorphism such that $f(\mathbf{F}(\mathbf{C})) = \mathbf{C}$, f(0, 0) = (0, 0), and f isotopic to the identity. Then $(f \circ \mathbf{F})_* = \mathbf{F}_*$ and $(f \circ \mathbf{F})_* [\mathbf{C}] = \pm [\mathbf{C}]$ where $[\mathbf{C}]$ denotes the homotopy class of \mathbf{C} in $\pi_1(\mathbf{T}^2)$. Therefore \mathbf{F}_* has an eigenvalue equal to $+\mathbf{I}$ or $-\mathbf{I}$.

265

(1.5) If F has an eigenvalue equal to -1 and T is an incompressible torus in V which does not separate V, then T is isotopic to T_0 .

Proof. — Suppose, on the contrary, that T is not isotopic to T_0 . As in (1.4), we put T into general position with respect to T_0 so that $T \cap T_0 = a_1 \cup \ldots \cup a_n$. Let a be the homotopy class of a_1 in $\pi_1(T_0)$ and choose $b \in \pi_1(T_0)$ so that a and b form a basis of $\pi_1(T_0)$. Let c be the third generator of $\pi_1(V)$ as defined in the introduction. We know $\pi_1(V)$ is the group generated by a, b and c with the relations:

$$ab = ba$$
$$cac^{-1} = a^{-1}$$
$$cbc^{-1} = a^{K}b^{-1}$$

This follows from the fact that $F_*(a) = a^{\pm 1}$ and since det F = +1 both eigenvalues of F must be -1; therefore $F_*(a) = a^{-1}$. Choose a basis of $\pi_1(T)$ of the form $a, b^m c^{\gamma}$. We know that $M(T) \approx T^2 \times I$ by (1.2), so T is a fibre of a fibration of V over S¹. Hence $\pi_1(T)$ is an invariant subgroup of $\pi_1(V)$ with quotient Z.

First we remark that γ is even since *a* and $b^m c^{\gamma}$ commute. Next observe that $b^{2m} \in \pi_1(T)$, since $\pi_1(T)$ is invariant, for:

$$cb^{m}c^{\gamma}c^{-1} \in \pi_{1}(\mathbf{T}),$$

$$cb^{m}c^{\gamma}c^{-1} = a^{mk}b^{-m}c^{\gamma} \quad \text{hence} \quad b^{-m}c^{\gamma} \in \pi_{1}(\mathbf{T}),$$

$$b^{2m} = b^{m}c^{\gamma}(b^{-m}c^{\gamma})^{-1}.$$

Also $c^{2\gamma} \in \pi_1(T)$:

 $(b^m c^{\gamma})(b^{-m} c^{\gamma}) \in \pi_1(\mathbf{T})$

 $b^m c^{\gamma} b^{-m} c^{\gamma} = a^{Km} c^{2\gamma}$ since γ is even.

Now a, b^{2m} and $c^{2\gamma}$ belong to $\pi_1(T)$. We know that $\pi_1(V)/\pi_1(T)$ is isomorphic to **Z**. The case $\gamma \neq 0$, $m \neq 0$ is therefore impossible. If $\gamma \neq 0$ and m = 0 then $\gamma = I$ which is impossible (a and c do not commute).

The only remaining possibility is $\gamma = 0$ and m = 1, hence $\pi_1(T)$ is generated by (a, b) and T is isotopic to T_0 .

(1.6) Suppose F has an eigenvalue equal to -1 and φ is a non singular action of \mathbb{R}^2 on V. Then φ has a compact orbit, and all the compact orbits are isotopic to T_0 .

Proof. — Assume, on the contrary, that φ has no compact orbits. Then by theorem 9 of [8], all the orbits of φ are cylinders and each orbit is dense in V; the orbits cannot all be planes since this would imply $V \approx T^3$. Let X and Y be commuting, linearly independent vector fields on V which are tangent to the orbits of φ and such that all the orbits of Y are closed, of the same period [7]. Let C be a Y-orbit and L the φ -orbit which contains C. Let A be a cylinder transverse to $\mathscr{F}(\varphi)$ which is the union of Y-orbits and such that CCInt A [cf. 7]. It is proved in [7] that $(L-C) \cap A \neq \emptyset$.

Let D be a first circle of return of $L \cap A$; i.e. $D \subset L \cap A$ and D+C bound a cylinder $E \subset L$ such that $(Int E) \cap A = \emptyset$. Let B be the cylinder on A bounded by C+D. Then the topological torus $E \cup B$ can be smoothed in a neighborhood of A to obtain a torus T which is an orbit of a non singular \mathbb{R}^2 action φ_1 on V (theorem (3.1) of [7]). By (1.1) and (1.5), we know that T is isotopic to T_0 . Now T is isotopic to a torus T' such that X is transverse to T' and Y is tangent to T'. This is a slight modification of the construction of lemma (4.3) of [7]; lemma (4.3) gives a T' isotopic to T such that X is transverse to T'. To ensure that Y is tangent to T', we define T' to be the $M(\theta_0)$ of lemma (4.3), saturated by the orbits of Y, union the annulus in A(C) bounded by $(\mathbb{S}^1 \times I \times \{0\}) + (\mathbb{S}^1 \times I \times \{1\})$ (cf. (4.3) of [7]). Thus we can suppose X is transverse to T_0 and Y is tangent to T_0 .

Now consider the torus T which is a smoothing of $E \cup B$, where $C \subset T_0$ is a Y-orbit and E and B are the cylinders defined above. Each orbit of φ in $M(T_0)$ is a cylinder with one boundary in $\mathbf{T}^2 \times \{0\}$ and the other in $\mathbf{T}^2 \times \{1\}$. Therefore $\pi_1(T)$ contains an element of the form $b^m c^{\gamma}$ where $\gamma =$ the number of circles in $E \cap T_0$, and $\gamma > 0$. Consequently $\pi_1(T) \neq \pi_1(T_0)$. But T is an orbit of a non singular \mathbf{R}^2 action φ_1 on V, so by (1.1) and (1.5), T is isotopic to T_0 . This is a contradiction, therefore φ has at least one compact orbit.

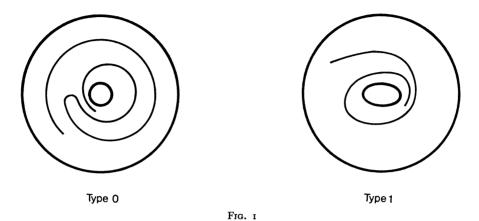
Proof of Theorem 2. — Suppose φ is an action of \mathbb{R}^2 on V with all the orbits cylinders. In the proof of (1.6), we showed that φ can be approximated by an \mathbb{R}^2 action φ_1 such that φ_1 has a compact orbit T and T is not isotopic to T_0 . By (1.4), we know that F has an eigenvalue equal to +1 or -1. Since the eigenvalues of F are of the same sign, we know from (1.6) that both eigenvalues of F are +1. Therefore, if F has no eigenvalue equal to +1, every \mathbb{R}^2 action on V has at least one compact orbit.

Now consider the action φ with all orbits cylinders. After composing φ with a diffeomorphism of V we may assume φ is transverse to \mathbf{T}_0 and the orbits of φ in $\mathbf{M}(\mathbf{T}_0)$ are homeomorphic to $\mathbf{S}^1 \times \mathbf{I}$, with one component of the boundary in \mathbf{T}_0 and the other in \mathbf{T}_1 (see the proof of (1.6)). Let \mathscr{F}_0 be the foliation of $\mathbf{M}(\mathbf{T}_0) \cong \mathbf{T}^2 \times \mathbf{I}$ induced by the orbits of φ . The foliation \mathscr{F}_0 has no holonomy since $\mathscr{F}_0 \cap (\mathbf{T}^2 \times \{0\})$ is topologically equivalent to the foliation of \mathbf{T}^2 given by $\mathbf{S}^1 \times \{0\}$, $\theta \in \mathbf{S}^1$. Thus, by the Reeb Stability theorem, \mathscr{F}_0 is topologically equivalent to the foliation $\mathbf{S}^1 \times \{0\} \times \mathbf{I}$, $\theta \in \mathbf{S}^1$, of $\mathbf{T}^2 \times \mathbf{I}$. Clearly V is then homeomorphic to $(\mathbf{T}^2 \times \mathbf{I})/\mathbf{H}$ where $\mathbf{H} : \mathbf{T}^2 \to \mathbf{T}^2$ is a diffeomorphism which leaves the foliation $\mathbf{S}^1 \times \{0\}$, of \mathbf{T}^2 invariant. The manifold $(\mathbf{T}^2 \times \mathbf{I})/\mathbf{H}$ is foliated by the cylinders $p(\mathbf{S}^1 \times \{0\} \times \mathbf{I})$ where $p: \mathbf{T}^2 \times \mathbf{I} \to (\mathbf{T}^2 \times \mathbf{I})/\mathbf{H}$ is the projection. Thus, the foliation of V defined by φ is topologically equivalent to this suspension.

2. The models.

In this section we shall explain theorem 3. We start with a non singular action φ of \mathbf{R}^2 on V which has a compact orbit T. We know that cutting V along T we obtain $\mathbf{T}^2 \times \mathbf{I}$; therefore we shall classify the foliations of $\mathbf{T}^2 \times \mathbf{I}$ induced by actions tangent

to the boundary. We denote by \mathscr{F} the foliation of $\mathbf{T}^2 \times \mathbf{I}$ induced by φ . The classification is analogous to the classification of foliations of $\mathbf{S}^1 \times \mathbf{I}$ which are tangent to the boundary: each compact leaf is a circle isotopic to $\mathbf{S}^1 \times \{0\}$, and the complement of the set of compact leaves is the union of a countable family of open sets W_i with $\overline{W}_i \cong \mathbf{S}^1 \times \mathbf{I}$ and the foliation of \overline{W}_i is of type 0 or 1 of figure 1.



(2.1) Definition of $\mathscr{F}(\alpha, o)$ and $\mathscr{F}(C, o)$. Let X, Y and Z be the vector fields on $\mathbb{R}^2 \times I$;

X = $(\cos \pi x, 0, \sin 2\pi x(1-x))$ Y = $(1, \alpha, 0)$ Z = (0, 1, 0),

(the foliation of figure 1, type 0, are the orbits of X), where $0 \le x \le 1$ and α is irrational. These vector fields are linearly independent and pairwise commute. Moreover the fields are invariant by the translations $(x_1, x_2) \mapsto (x_1 + 1, x_2)$ and $(x_1, x_2) \mapsto (x_1, x_2 + 1)$. Therefore (X, Y) and (X, Z) induce actions of \mathbf{R}^2 on $\mathbf{T}^2 \times \mathbf{I}$. It is easy to check that $\mathbf{T}^2 \times \{0\}$ and $\mathbf{T}^2 \times \{1\}$ are the compact orbits of these actions; the other orbits of the (X, Y) action are planes and the other orbits of the (X, Z) action are cylinders. We denote the corresponding foliations by $\mathscr{F}(\alpha, 0)$ and $\mathscr{F}(\mathbf{C}, 0)$ respectively. Notice that no transversal arc joins $\mathbf{T}^2 \times \{0\}$ to $\mathbf{T}^2 \times \{1\}$ for these foliations.

(2.2) Definition of $\mathcal{F}(\chi)$.

Let \mathscr{G} be the group of diffeomorphisms of the interval [0, 1] which leave 0 and 1 fixed. Let χ be a representation of $\pi_1(\mathbf{T}^2)$ in \mathscr{G} . We associate an action of \mathbf{R}^2 to χ as follows. Let $f, g \in \mathscr{G}$ be the images of the standard basis of \mathbf{T}^2 by χ . Then $\mathbf{T}^2 \times \mathbf{I}$ is diffeomorphic to the quotient of $\mathbf{I} \times \mathbf{I} \times \mathbf{I}$ where $(x, 0, \lambda) \sim (x, 1, g(\lambda))$ and $(0, y, \lambda) \sim (1, y, f(\lambda))$. Since f and g commute, the vector fields (1, 0, 0) and (0, 1, 0)on \mathbf{I}^3 project to commuting vector fields X and Y on $\mathbf{T}^2 \times \mathbf{I}$. We denote the foliation

induced by this \mathbb{R}^2 -action on $\mathbb{T}^2 \times \mathbb{I}$ by $\mathscr{F}(\chi)$. The holonomy of this foliation on $\mathbb{T}^2 \times \{0\}$ is precisely χ . $\mathscr{F}(\chi)$ is transverse to the segments $\{\Theta\} \times \{\Theta'\} \times \mathbb{I}$ and can have compact leaves in int $\mathbb{T}^2 \times \mathbb{I}$. One can consider $\mathscr{F}(\chi)$ is the foliation canonically associated to the fibration $(\mathbb{T}^2 \times \mathbb{I}, \mathbb{I}, \mathbb{T}^2, \mathscr{G})$, \mathbb{I} the fibre, \mathbb{T}^2 the base and \mathscr{G} with the discrete topology [6]. Two such foliations $\mathscr{F}(\chi_1)$ and $\mathscr{F}(\chi_2)$ are equivalent if and only if χ_1 is conjugate to χ_2 .

(2.3) Definition of $\mathscr{F}((1, i_1), (2, i_2), \ldots, (n, i_n)).$

This is a foliation of $\mathbf{T}^2 \times \mathbf{I}$ obtained by gluing together the preceding models (for each K, $\mathbf{I} \leq \mathbf{K} \leq n$, we have $i_{\mathbf{K}} = \mathbf{0}$ or 1). For $i_{\mathbf{K}} = \mathbf{I}$, and $\chi_{\mathbf{K}} : \pi_1(\mathbf{T}^2) \rightarrow \mathscr{G}$ a homomorphism, we define $\mathscr{F}(\mathbf{K}, i_{\mathbf{K}}) = \mathscr{F}(\chi_{\mathbf{K}})$, the foliation defined in (2.2). For $i_{\mathbf{K}} = \mathbf{0}$, we define $\mathscr{F}(\mathbf{K}, i_{\mathbf{K}})$ to be $\mathscr{F}(\alpha, \mathbf{0})$ or $\mathscr{F}(\mathbf{C}, \mathbf{0})$, the foliations defined in (2.1). Then $\mathscr{F}((\mathbf{I}, i_1), \ldots, (n, i_n))$ is the foliation of $\mathbf{T}^2 \times \mathbf{I}$ obtained by gluing the leaf $\mathbf{T}^2 \times \{\mathbf{I}\}$ of $\mathscr{F}(\mathbf{K}, i_{\mathbf{K}})$ to the leaf $\mathbf{T}^2 \times \{\mathbf{0}\}$ of $\mathscr{F}(\mathbf{K}+\mathbf{I}, i_{\mathbf{K}+1})$, for each K, $\mathbf{I} \leq \mathbf{K} \leq n-\mathbf{I}$. Notice that for $i_{\mathbf{K}} = \mathbf{0}$, no transversal of the foliation $\mathscr{F}(\mathbf{K}, i_{\mathbf{K}})$ goes from $\mathbf{T}^2 \times \{\mathbf{0}\}$ to $\mathbf{T}^2 \times \{\mathbf{I}\}$; whereas, for $i_{\mathbf{K}} = \mathbf{I}$, the segments $\{(\Theta, \Theta')\} \times \mathbf{I}$ are transversal to $\mathscr{F}(\mathbf{K}, i_{\mathbf{K}})$.

Theorem 3. — Let φ be a non singular action of \mathbf{R}^2 on $\mathbf{T}^2 \times \mathbf{I}$, with $\mathbf{T}^2 \times \{0\}$ and $\mathbf{T}^2 \times \{\mathbf{I}\}$ orbits of φ . Then $\mathscr{F}(\varphi)$ is equivalent to $\mathscr{F}((\mathbf{I}, i_1), \ldots, (n, i_n))$, for some choice of $(\mathbf{K}, i_{\mathbf{K}})$, $\mathbf{I} \leq \mathbf{K} \leq n$.

The proof will be proceeded by several lemmas.

(2.4) (Nancy Kopell [2]). Let f and g be germs of commuting C²-diffeomorphisms of $\mathbf{R}^+ = \{x \ge 0\}$, such that f(0) = g(0) = 0. If f is a contraction (i.e. $f(x) \le x$ for $x \ge 0$), and $g \neq id$ then 0 is the only fixed point of g.

(2.5) Let φ be a non singular action of \mathbf{R}^2 on $\mathbf{T}^2 \times \mathbf{I}$ such that $\mathbf{T}^2 \times \{\mathbf{o}\}$ and $\mathbf{T}^2 \times \{\mathbf{I}\}$ are the only compact orbits. There exist embedded tori T' and T'' satisfying:

a) T' and T'' can be chosen transverse to $\mathscr{F}(\varphi)$.

b) T' is isotopic to $\mathbf{T}^2 \times \{0\}$ and can be chosen inside any tubular neighborhood of $\mathbf{T}^2 \times \{0\}$; in particular, one can suppose the segments $\{(\Theta, \Theta')\} \times \mathbf{I}$ are transverse to $\mathscr{F}(\varphi)$ inside the region \mathscr{U}' bounded by $\mathbf{T}^2 \times \{0\}$ and T'. The same property holds for T'', $\mathbf{T}^2 \times \{1\}$ and \mathscr{U}'' .

c) If L is an orbit of φ , then $L \cap T'(\text{resp. } L \cap T'')$ is a circle if $L \cong S^1 \times \mathbb{R}$ and is the union of copies of \mathbb{R} if $L \cong \mathbb{R}^2$.

d) There exists a vector field Y on $\mathbf{T}^2 \times (0, 1)$, tangent to the (open) φ orbits, such that $Y(T', (-\infty, 0)) \subset \mathcal{U}'$, $Y(T'', (0, \infty)) \subset \mathcal{U}''$, and Y(T', 1) = T'' (hence the foliations of T' and T'', induced by $\mathscr{F}(\varphi)$, are conjugate by the orbits of Y). By Y(x, t) we mean the integral curve of the vector field Y at time t, which passes by x at t = 0.

Proof of (2.5). — If φ has a cylindrical orbit then (2.5) follows from (4.3), (4.5) and (4.6) of [7]. If all open φ orbits are planes, then (2.5) follows from the classification of Reeb foliations of $\mathbf{T}^2 \times \mathbf{I}$ given in [1].

Corollary (2.6). — If φ is an action of \mathbb{R}^2 on $\mathbb{T}^2 \times \mathbb{I}$ such that $\mathbb{T}^2 \times \{0\}$ and $\mathbb{T}^2 \times \{1\}$ are the only compact leaves, then the open leaves are planes or cylinders but there is no mixture of the two types.

Proof. — This follows from (2.4) and (2.5) where (2.4) is applied to the germs obtained by the representation $\pi_1(\mathbf{T}^2 \times \{0\}) \to g$, given by the holonomy of the foliation $\mathscr{F}(\varphi)$. Since there are no compact leaves in a neighborhood of $\mathbf{T}^2 \times \{0\}$ (other than $\mathbf{T}^2 \times \{0\}$), the generators of $\pi_1(\mathbf{T}^2 \times \{0\})$ can be chosen so that the associated germs are contractions or the identity and a contraction.

Proof of theorem 3. — Now consider the foliation $\mathscr{F} = \mathscr{F}(\varphi)$ of $\mathbf{T}^2 \times \mathbf{I}$, tangent to the boundary. We know each compact orbit of \mathscr{F} is isotopic to $\mathbf{T}^2 \times \{\mathbf{o}\}$. Let K be the union of the set of compact orbits. We have $\overline{(\mathbf{T}^2 \times \mathbf{I}) - \mathbf{K}} = \bigcup_{i=1}^{\infty} W_i$ where each $W_i \cong \mathbf{T}^2 \times \mathbf{I}$, W_i is invariant by φ and the open leaves of W_i are all planes or cylinders. We fix once and for all an orientation of \mathscr{F} . Let W_1^0, \ldots, W_r^0 denote those W_i such that the orientations induced on the boundary of W_i are opposite, i.e. if on one component of ∂W_i , the normal field points to the interior of W_i (respectively the exterior) the normal field points to the interior (the exterior) on the other component. By continuity, there are at most a finite number of such W_i . Let $\mathbf{C}_1, \ldots, \mathbf{C}_s$ be the connected components of the closure of the complement of $W_1^0 \cup \ldots \cup W_r^0$ in $\mathbf{T}^2 \times \mathbf{I}$. Let $p_K^{i_K}$ be a family of embeddings of $\mathbf{T}^2 \times \mathbf{I}$ into $\mathbf{T}^2 \times \mathbf{I}$, $\mathbf{I} \leq \mathbf{K} \leq n$ satisfying:

- 1) if $i_{\rm K} = 0$, $p_{\rm K}^{i_{\rm K}}({\mathbf T}^2 \times {\mathbf I})$ is some ${\rm W}_j^0$, for $1 \le j \le r$;
- 2) if $i_{\mathrm{K}} = 1$, $p_{\mathrm{K}}^{i_{\mathrm{K}}}(\mathbf{T}^{2} \times \mathbf{I})$ is some \mathbf{C}_{j} , for $1 \leq j \leq s$, and
- 3) $p_{\mathrm{K}}^{i_1}(\mathbf{T}^2 \times \{0\}) = \mathbf{T}^2 \times \{0\},$
- $p_{\mathbf{K}}^{i_{\mathbf{K}}}(\mathbf{T}^{2} \times \{\mathbf{I}\}) = p_{\mathbf{K}+1}^{i_{\mathbf{K}+1}}(\mathbf{T}^{2} \times \{\mathbf{0}\}) \text{ for } \mathbf{I} \leq \mathbf{K} \leq n-1;$ $p_{n}^{i_{n}}(\mathbf{T}^{2} \times \{\mathbf{I}\}) = \mathbf{T}^{2} \times \{\mathbf{I}\}.$

We have sketched a cross section of this indexation in figure

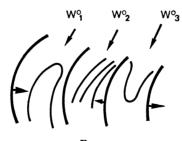


FIG. 2

We shall first construct the conjugation on the C_j and then on the W_k^0 ; the C_j are conjugate to the models of type $\mathscr{F}(\chi)$ for some representation χ ; and the W_K^0 to the models of type $\mathscr{F}(\alpha, 0)$ or $\mathscr{F}(C, 0)$.

(2.7) Let C_j be one of the manifolds defined above and denote by N the normal vector field to \mathscr{F} . Let K be the integer such that $p_{K}^{1}(\mathbf{T}^{2} \times \mathbf{I}) = C_{j}$. There exists a vector field X_{j} on C_{j} which is transverse to \mathscr{F} satisfying:

I) $X_i = N$ on the compact orbits of C_i , and

2) each orbit of X_j starting at a point of $p_K^1(\mathbf{T}^2 \times \{0\})$ goes to a point of $p_K^1(\mathbf{T}^2 \times \{1\})$.

Proof of (2.7). — We may suppose N points into C_j on $p_K^1(\mathbb{T}^2 \times \{o\})$. As before,

we write the complement of the compact leaves in C_j as $\bigcup_{n=1}^{\infty} W_{j,n}$ where the $W_{j,n}$ are diffeomorphic to $\mathbf{T}^2 \times \mathbf{I}$, invariant by φ , and φ has no compact orbits in the interior of $W_{j,n}$.

We construct a vector field $X_{j,n}$ in each $W_{j,n}$ which is equal to N in a neighborhood of $\partial W_{j,n}$ as follows. Let T' and T'' be transverse tori embedded in Int $W_{j,n}$ given by (2.5), and denote by Y the vector field given by (2.5). The foliations of T' and T'' induced by \mathscr{F} are conjugate by the orbits of Y and this foliation is equivalent to an irrational flow on \mathbf{T}^2 or the product foliation $\mathbf{S}^1 \times \{\Theta\}$ of \mathbf{T}^2 . Now T' and T'' bound a submanifold W of $W_{j,n}$ such that the foliation of W induced by \mathscr{F} is equivalent to the product of the induced foliation on T' by I; the orbits of Y define the conjugation. Thus in W we can construct a vector field X_0 , transverse to \mathscr{F} such that X_0 points into W on T' and each orbit of X_0 starting at a point of T' goes to a point of T''. Since each orbit of N starting at $\partial W_{j,n}$ intersects T' or T'', we can extend X_0 to $W_{j,n}$ to coincide with N in a neighborhood of $\partial W_{j,n}$ and to be transverse to \mathscr{F} . Denote this extension by $X_{j,n}$. Now we define X_j on C_j to equal $X_{j,n}$ on $W_{j,n}$ and N on the compact orbits of \mathscr{F} . Each orbit of X_j starting at a point of $p_{K}^1(\mathbf{T}^2 \times \{0\})$ goes to a point of $p_{K}^1(\mathbf{T}^2 \times \{1\})$; after reparametrizing the orbits of X_j we can assume the orbits take a time 1 to go from one boundary component of C_i to the other. This completes the proof of (2.7).

(2.8) The foliation \mathscr{F} on C_j is equivalent to a foliation $\mathscr{F}(\chi)$ of $T^2 \times I$, for some representation χ .

Proof. — By identifying the orbits of X_j to a point we define a fibration $C_j \rightarrow T^2$ with fibre I and \mathscr{F} is transverse to the fibres. Such foliations are determined by a representation $\chi : \pi_1(T^2) \rightarrow \mathscr{G}$. The conjugation $H_j : C_j \rightarrow (T^2 \times I, \mathscr{F}(\chi))$ can be constructed so that $H_j \circ p_K^1 = \text{identity}$ on $\partial(T^2 \times I)$ (see [1]).

(2.9) The foliation \mathscr{F} on W^0_K , for K between 1 and r, is equivalent to a foliation $\mathscr{F}(\alpha, 0)$ or $\mathscr{F}(\mathbf{C}, 0)$.

Proof. — If all the leaves of \mathscr{F} in the interior of W_{K}^{0} are planes, then we have proved in [1] that \mathscr{F} is equivalent to a foliation $\mathscr{F}(\alpha, 0)$ for some irrational α . We construct

in [I] a conjugation $H^0_K : (W^0_K, \mathscr{F}) \to (\mathbf{T}^2 \times \mathbf{I}, \mathscr{F}(\alpha, 0))$ such that $H^0_K p^0_K = \text{identity}$ on $\partial(\mathbf{T}^2 \times \mathbf{I})$.

Now suppose the leaves of \mathscr{F} in Int W_K^0 are cylinders. This case is much easier to deal with than the planar case because of the existence of the vector field Y given by (2.5). Let T' and T'' be the transverse tori given by (2.5). Between T' and T'' in W_K^0 we have a manifold W and the foliation \mathscr{F} on W is equivalent to the foliation $\mathbf{S}^1 \times \{\Theta\} \times \mathbf{I}$ of $\mathbf{T}^2 \times \mathbf{I}$; the equivalence is defined using the orbits of Y. Let A and B be the closure of the connected components of W_K^0 —W. The conjugation H_K^0 is defined in $A \cup B$ by the holonomy of the compact leaves, i.e., the boundary components of W_K^0 . We do this precisely in [1]; H_K^0 is defined so that $H_K^0 p_K^0$ =identity on $\partial(\mathbf{T}^2 \times \mathbf{I})$. Now this gives H_K^0 on $A \cup W$ and B. The construction above might give two different values for H_K^0 on \mathbf{T}'' (for, on $A \cup W_K^0$ its value is determined as soon as it is determined on $p_K^0(\mathbf{T}^2 \times (0))$ and, on B, it is determined by its value on $p_K^0(\mathbf{T}^2 \times (1))$.

Let H' and H'' be the restrictions of H^0_K on T'' resulting from the two different definitions. Then $H = H'^{-1}H''$ is homotopic and hence isotopic to the identity and sends the leaves of the induced foliation $\mathscr{F} \cap T''$ onto themselves. Let then F be the diffeomorphism from T' onto T'' associated with the orbits of Y. It is clear that Y may be modified into a field Y' (tangent to the leaves) in such a way that F' = HF(F' obviously means the diffeomorphism associated with the orbits of Y'). Extension of H^0_K using the orbits of Y' gives them the same value for the definitions of H^0_K on $A \cup W$ and B.

Now piecing together the conjugations H_j of (2.8) and H_K^0 of (2.9), theorem 3 is proved.

BIBLIOGRAPHY

- [1] G. CHATELET et H. ROSENBERG, Un théorème de conjugaison de feuilletage, to appear in Ann. de l'Inst. Fourier.
- [2] N. KOPPELL, Thesis, Berkeley.
- [3] E. LIMA, Commuting vector fields on S³, Ann. of Math., 81 (1965), 70-81.
- [4] H. ROSENBERG, Foliations by Planes, Topology, 7 (1968), 131-141.
- [5] H. ROSENBERG and R. ROUSSARIE, Reeb Foliations, Ann. of Math., 91 (1970), 1-24.
- [6] H. ROSENBERG and R. ROUSSARIE, Topological equivalence of Reeb foliations, *Topology*, 9 (1970), 231-242.
 [7] H. ROSENBERG, R. ROUSSARIE and D. WEIL, A classification of closed orientable 3-manifolds of rank two,
- Ann. of Math., 91 (1970), 449-464. [8] R. SACKSTEDER, Foliations and pseudo-groups, Amer. J. of Math., 87 (1965), 79-102.
- [9] F. WALDHAUSEN, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88.
- [10] D. WEIL, Thesis (Orsay) (to appear).

Manuscrit reçu le 14 juin 1973.