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A CLASSIFICATION OF THE TOPOLOGICAL TYPES
OF REACTIONS ON CLOSED ORIENTABLE 3-MANIFOLDS

by G. GHATELET, H. ROSENBERG, D. WEIL

In this paper we shall classify the topological type of non singular actions of R2

on closed orientable 3-manifolds. If 9 is a non singular action of R2 on V then we
denote by ^"(9) the foliation ofV defined by the orbits of 9; 9 non singular means the
orbits are of dimension two, therefore ^(9) is a 2-dimensional foliation of V whose
leaves are planes, cylinders and tori. V is assumed orientable, therefore ^(9) is a
transversally orientable foliation. We consider two non singular actions 9 and ^ to be
equivalent if there is a homeomorphism h : V->V which sends leaves of ^(9) to leaves
of^(^). We assume throughout this paper that the actions are at least of class C2.

In [7], it is shown that ifV admits a non singular action ofR2 and if V is a closed
orientable 3-manifold, then V is a fibre bundle over the circle S1 with fibre the 2-torus T2.
Therefore V is diffeomorphic to (T^I)/? where F is a diffeomorphism ^2—^^2 induced
by an element ofGL(2, Z); (T^I)/? denotes the quotient space of ^2xI where [x, i)
is identified with (F(^), o) for ^eT2. Since V is orientable, we have det F=+i. We
can now annonce the main results; naturally we assume 9 is a non singular action on
the closed orientable 3-manifold V^^xl)/?:

Theorem 2. — If all the orbits of 9 are planes, then V is diffeomorphic to T3 and ^"(9)
is equivalent to a linear action.

Theorem 2. — If 9 has no compact orbits and not all the orbits of 9 are planes, then all the
orbits of 9 are cylinders, F has eigenvalues equal to +1 tt^d 9 is equivalent to the suspension of
a non singular action of the circle on T2.

Theorem 3. — If^ has a compact orbit T, then the manifold obtained by cutting V along T
is diffeomorphic to T^xl. All the compact orbits of 9 are isotopic in V, and ifT^ and Tg are
compact orbits of 9 which bound a submanifold W of V whose interior contains no compact orbits,
then W w T2 X I and all the orbits of 9 in W are either planes or cylinders (but there is no mixture
of the two) which spiral in a precise manner towards T^ and Tg (this will be made precise in the
sequel).

Theorem i is not new: in [4] it is shown that a closed orientable 3-manifold
foliated by planes is diffeomorphic to T3, and in [6] it is shown that such foliations
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of T3 are equivalent to linear foliations. Part of the interest of theorem 2 is the existence
of compact orbits when F has no eigenvalue equal to +1 •

Some notation. — Let p : ̂ 2xl-^V be the natural projection and To^j^T^o}).
If TcV is an embedded surface, we say T is incompressible if the inclusion i : TcV
induces a monomorphism ^ : 7ri(T)-^(V). We denote by M(T) the 3-manifold
with boundary obtained by cutting V along T. Notice that M(T()) is diffeomorphic
to T2 X I $ when there is no fear of confusion, we shall identify these two manifolds and
call the components of the boundary of M(To), TQ and T^. We note T2=R2|Z2 and
if j&eR2, [p] denotes the coset ofp in T2. Let * ==j^([o, o], o) be the base point in V;
we write T^(V) and ^(Tg) to mean TT^V, *) and ^(Ty, *) respectively. Let

^)=^([o,o],^) for tel,

and define s to be the homotopy class of (JL in TT^(V). Let a and b be a basis of ^(T^).
Then TT^V) is the free group on a, b and c with the relations:

ab =ba
cac-1^^)
cbo-^V^b).

i. In this section we shall study the manner in which the compact orbits of <p
are embedded in V. We prove that M^T^T^I for any compact orbit T, and if
F has an eigenvalue equal to — i , then there exist compact orbits and they are isotopic
to To.

(i. i) Let T be a compact orbit of 9. Then T does not separate V and T is incompressible.
Proof. — First we remark the foliation ^(9) contains no Reeb components,

i.e. invariant submanifolds homeomorphic to D^S1 such that ^(D^S1) is a leaf;
this is proved in [3]. Also, it is known that if y is a transversally oriented foliation
of a closed 3-manifold W which contains no Reeb components, then each leaf of y is
incompressible [5]. Therefore, if T is a compact orbit of 9, T is incompressible.

Now suppose that T does separate V; let W be one of the connected components
of V—T$ W is a closed 3-manifold and 9 acts on W so that ^W=T is an orbit. If
there are no compact orbits of 9 in Int W then the proof of theorem (5.3) of [5] shows
that all the orbits of 9 in Int W are R2. But then W is diffeomorphic to D2 x S1 by
theorem i of [5], which is impossible since an action has no Reeb components. Thus
there exist compact orbits of 9 in Int W. By lemma (5.3) of [7], there exist K compact

K
orbits of 9 in Int W, T^, . . ., T^, such that A= U T^ does not separate W but for every
other compact orbit T' of 9, T 'uA does separate W. We remark that in order to
apply (5.3)5 one must know that not every compact orbit of 9 in Int W separates W.
This is indeed the case (cf. remark at end of the proof of theorem 3 of [5]). Let W^
be the manifold obtained by cutting W along T^, . . . , T^; W^ has 2K+i tori in its
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A CLASSIFICATION OF THE TOPOLOGICAL TYPES OF REACTIONS 263

boundary, each an orbit of <p, and every other compact orbit of 9 in W^ separates W^.
But it is proved in [7] (page 462) that a compact orientable g-manifold with non empty
boundary, that admits a non singular action of R2 such that every compact orbit in
the interior separates, is necessarily T^xl. Thus W^T^xI which contradicts the
fact that W^ has an odd number of boundary components. Therefore no compact
orbit of the action 9 on V can separate V.

(1.2) Let T be a torus embedded in V which is incompressible and does not separate V.
Then M^^T^I.

Before proving (1.2), we need:

Lemma (1.3). — Let T be a torus embedded in Int(^2xI) such that T is incompressible
and separates T^I into two components A and B such that T^x^cA and T2x{l}c'B.
Then A w T2 X I and B w T2 X I [in fact, T is necessarily incompressible if the other hypotheses
are satisfied).

Proof. — Let ^ be a Reeb foliation of T2xI, i.e. a exfoliation such that each
leaf of y in Int^xl) is R2 and the boundary components of ^2xI are leaves [cf. 5].
Since T is incompressible, T is isotopic to a torus T' dm^T^I) such that T' is transverse
to y and the foliation of T' defined by the intersection of the leaves of y with T' is
an irrational flow (Theorem (1.1) of [6]). Therefore we can assume T is transverse
to y and ei^nT is an irrational flow. Let To be a torus embedded in int A such that
TQ+CI^X^}) bound a product cobordism in A and To is transverse to ^ with ^"nTo
an irrational flow. Such a torus To is constructed in exemple 3 of [5]. Let AQ be
the manifold with boundary TQ+T; clearly AQ^A. Now each leaf of y in the interior
of AQ is homeomorphic to R2 since every closed submanifold of R2 diffeomorphic to R
separates R2 into two components, each homeomorphic to R2. Now the proof of
theorem (3.5) of [5] shows that A() w T2 x I, hence A as well. Clearly the same reasoning
applies to B.

Proof of (1.2). — Let T cV be an incompressible torus which does not separate V.
Suppose that TcIntM(To). Clearly T then separates M(To) into two connected
components A and B, each of which contains one of the boundary components ofM(Tg).
Thus A and B are both homeomorphic to ^2xl by lemma (1.3). Since M(T) is
obtained by glueing one end of A to an end of B, it follows easily that M(T) w^2xI.

In general we proceed by putting T into general position with respect to To and
mimic the argument which proves that a simple closed curve G on T2 which is
incompressible in T2 has the property that M(G)»S lxI.

To be precise, let T intersect To transversally so that T n To == 0 or T n To is a
i-manifold. We have just considered the case TnTo=0, therefore we may assume

TnTo-GiU...uG,,
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where each G, w S1 and G, n G^ = 0 if i+j. First we modify T by an isotopy, to remove
those G, which are null homotopic. Suppose G, is null homotopic on T^. Then
G,=BD, where D^cT^ and D,»D2. By choosing G, minimal, we can suppose Int D,
contains no Gp for j=i, . . ., n. Since C^cT and T is incompressible we know that
G, is null homotopic on T. Let DcT satisfy BD=C, and D»D2. Then S==DuD,
is a 2-sphere embedded in V which is smooth except along the corner G^. Since V is
covered by R3, V is irreducible (cf. [4]), therefore S bounds a ball BcV. Now by an
isotopy ofD to D^ across the ball B, one removes the intersection curve C, from TnTo;
this isotopy is described in detail in [10].

Thus we can assume T nT^ =C^u . . . u C^, where each C, is a generator of T^(T)
and TTi(To). Two simple closed curves on a torus, which are disjoint and not null
homotopic, separate the torus into two cylinders which have the curves as their common
boundary. Therefore, we can label the G^ so that, for each z, C^ and G^^ bound a
cylinder A^ on T, whose interior contains no G . Choose a simple closed curve b on T
which meets each C^ in exactly one point x^. We fix an orientation of b and an orien-
tation of the normal bundle of T()CV, and to each ^ we associate a + or — depending
on whether the orientation of b at ^ coincides with the orientation of the normal bundle
of To at ^.

Now suppose ^ and x^^ have opposite signs. Then A^ can be considered as a
cylinder embedded in M^^wT^xI, which intersects B^xl) in C,+G^^ both
of which are contained in T^x-j^o}. Let B^, Bg be the cylinders in T^-j^}, satisfying
£BI = BBg == G, + G, +1, BI n Bg == C, + C,+1. One of the B,, B^ say, has the property that
A^uB^ bounds a solid torus in T^xl and is isotopic to B^ across this solid torus, relative
to C^+C^+i. This is proved explicitly in [10], or one can apply theorem (5.5) of [9].
Using this isotopy one removes C^ and C^i from TnTg. Therefore we may suppose
all the ^ have the same sign, and each A^ can be considered as embedded in T^I,
having one boundary in T^-^} and the other in T^-}^}. Here we regard T^-^o}
and T^-j^} as the two boundary components of a tubular neighborhood of To in V.

Let a^ . . ., a^ denote the circles of intersection of T with T^-^}, labelled so
that a^ua^^ bound a cylinder E^ on T^-^} whose interior is disjoint from each ^,
and ^4-1=^1. Similarly, let b^, . . . ,^ be the circles of Tn^x-^}), labelled so
that <^+^ bound a cylinder A^ on T such that IntA^cT^^, i). Let H^ be the
cylinder on T^-j^} with boundary ^+^+1 whose interior contains no b^

Now E^uH^uA^uA^^ separates V into two connected components; let M(z) be
the component whose interior is disjoint from Tg. It is not hard to see that M(z) is
homeomorphic to S1 X I X I by a map sending S1 X I X {0} to E, and S1 X I X { i} to H,.
This can be proved directly (e.g. by using the theory of Reeb foliations) or one can
^y [9]-

Now V is the quotient space of T^I where {x, i) is identified with (F(A;), o),
for each xeT2. T is embedded in V, therefore for each i there exists ^(i)el such that
H^ is identified with E^) (via F).

264



A CLASSIFICATION OF THE TOPOLOGICAL TYPES OF REACTIONS 265

Now suppose n==i, so that ^( i)==i . Then M(T) is the quotient space of
S^IxI where (6, t, i) is identified with (Fi(6, t), o), for each (6, ̂ eS^I;

F, : S^I-^xI,

the diffeomorphism induced by F. Since T has a trivial normal bundle in V, ^M(T)
has two connected components; therefore Fi(S1 X o) == S1 X o and F^(S1 X i) == S1 X i.
V is orientable so F^ is orientation preserving. Thus F^ is homotopic to the identity
map S^I-^S^I, therefore, F^ is isotopic to the identity map. Hence

M^^xIxS^T^L

Now suppose TZ>I. Then ^( i )= t= i , since if ^ ( i )==i , M(T) would have two
connected components, contradicting the hypothesis that T does not separate V. Then
M(i) UM(^(i)) is homeomorphic to S^IxI since it is obtained from

(S lxIxI)+(S lxIxI)
where a point {x, i) in the first factor is identified with (F(^), o) in the second factor,
for ^eS^I. We observe that the numbers i, ^(i) , ^(i), . . . , ^"^(i), are distinct
and 4'n(I) :=I^ since T does not separate V. Therefore

M(I)UM(^I))U...UM(^-1(I))

is homeomorphic to S^IxI and M(T) is homeomorphic to the quotient space of
S^IxI where a point (^, i) is identified with {h{x), o), for x^xl; A : S^I -> S^I
a diffeomorphism. Just as in the case n==i, we have /?(SlXo)==SlXo and A(S1XI)=S1XI
since ^M(T) has two components. Also h preserves orientation since M(T) is orientable,
therefore h is isotopic to the identity map and M^T^T^I.

(1.4) Let T be an incompressible torus in V which does not separate V. If F has no
eigenvalue equal to +i of —15 then T is isotopic to To.

Proof. — Suppose T is not isotopic to To. As in the proof of (1.2), we put T
into general position with respect to TQ. Clearly T is not disjoint from To, since we
proved in (1.3) that this implies T is isotopic to To. As before, we remove all the
circles of intersection from T n To which are null homotopic, and then we remove the
circles C^ and C,.̂  which have opposite sign. Thus T n (T2 X {o}) == <^ u . . . u^ and
TuCI^X-^^^^u . .. u^ where ^ and ^ bound a cylinder A^ on T whose interior
is contained in IntM(To). By construction, we have F(^)==^. for somej, i^J.^^.

The cylinder A^ in T^I is isotopic to a^xl in T^I; one can prove this using
Reeb foliation theory or [9]. Therefore, on T2, a^ is isotopic to b^ and since ^ is isotopic
to a^ we have a^ isotopic to F(^). Let G be a (linear) simple closed curve through
the base point (o, o) of T2 which is isotopic to <^. We have F(G) isotopic to G. Let
/: T^T2 be a diffeomorphism such that /(F(C))==G, /(o, o)==(o, o), and/isotopic
to the identity. Then (/oF),==F, and (/oF)JG]=±[G] where [G] denotes the
homotopy class of G in 7r^(T2). Therefore F, hag an eigenvalue equal to +1 or — I -

265
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(1.5) If F has an eigenvalue equal to — i and T ij an incompressible torus in V which does
not separate V, then T ^ isotopic to To.

Proo/'. — Suppose, on the contrary, that T is not isotopic to To. As in (i .4)3 we
put T into general position with respect to TQ so that TnTo==^u . .. u^. Let a be
the homotopy class of ^ in ^(To) and choose &e7Ti(To) so that a and 6 form a basis
of TCi(To). Let c be the third generator of ^(V) as defined in the introduction. We
know 71:1 (V) is the group generated by a, b and c with the relations:

ab==-ba
cac~l==a~l

cbc-^a^b^.

This follows from the fact that F^(a) == a^1 and since det F= +1 both eigenvalues of F
must be — i ; therefore F^a)=a~1. Choose a basis of ^{T) of the form a, bmcr. We
know that M(T) wT^xI by (i .2), so T is a fibre of a fibration of V over S1. Hence
7Ti(T) is an invariant subgroup of TT^V) with quotient Z.

First we remark that y is even since a and V^c^ commute. Next observe that
b^en^T), since ^(T) is invariant, for:

cbmccc-leT:^),

^c^c-1 === a^b^c^ hence ^-^e^T),

b2m=bmc^(b~mcc)~l.

Also ^GTC^T):
(^Y) (6-^)67^)

Vc^b^c^^^c^ since y is even.
Now a, b^ and ^ belong to 7Ti(T). We know that 7Ti(V)/7ri(T) is isomorphic

to Z. The case y^0? ^+o is therefore impossible. If y+o ^d m=o then ^==1
which is impossible {a and c do not commute).

The only remaining possibility is y""^ ^d ^=i? hence ^(T) is generated by
{a, b) and T is isotopic to To.

(1.6) Suppose F has an eigenvalue equal to — i and 9 is a non singular action of R2 on V.
Then 9 A^ a compact orbit, and all the compact orbits are isotopic to To.

Proof. — Assume, on the contrary, that 9 has no compact orbits. Then by theorem 9
of [8], all the orbits of 9 are cylinders and each orbit is dense in V; the orbits can-
not all be planes since this would imply V w T3. Let X and Y be commuting, linearly
independent vector fields on V which are tangent to the orbits of 9 and such that all
the orbits of Y are closed, of the same period [7]. Let G be a Y-orbit and L the
9-orbit which contains C. Let A be a cylinder transverse to ^(9) which is the union
of Y-orbits and such that GdntA [cf. 7]. It is proved in [7] that (L—G)nA4=0.
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A CLASSIFICATION OF THE TOPOLOGICAL TYPES OF REACTIONS 267

Let D be a first circle of return of LnA; i.e. DcLnA and D+C bound a cylinder
E CL such that (Int E) n A = 0. Let B be the cylinder on A bounded by G+D. Then
the topological torus E u B can be smoothed in a neighborhood of A to obtain a torus T
which is an orbit of a non singular R2 action 9^ on V (theorem (3. i) of [7]). By ( i . i)
and (1.5), we know that T is isotopic to To. Now T is isotopic to a torus T' such that
X is transverse to T' and Y is tangent to T'. This is a slight modification of the
construction of lemma (4.3) of [7]; lemma (4.3) gives a T' isotopic to T such that X
is transverse to T'. To ensure that Y is tangent to T', we define T' to be the M(6o)
of lemma (4.3), saturated by the orbits of Y, union the annulus in A(G) bounded by
(S^IX-^o^^^S^IX-j^i}) (cf. (4.3) of [7]). Thus we can suppose X is transverse
to To and Y is tangent to To.

Now consider the torus T which is a smoothing of EuB, where CcTo is a
Y-orbit and E and B are the cylinders defined above. Each orbit of 9 in M(TJ is a
cylinder with one boundary in T^-j^o} and the other in T^^}. Therefore ^(T)
contains an element of the form b^c^ where ^==the number of circles in En To, and
y>o. Consequently TT^(T) =(=7Ti(To). But T is an orbit of a non singular R2 action 9^
on V, so by (i . i) and (1.5), T is isotopic to To. This is a contradiction, therefore 9
has at least one compact orbit.

Proof of Theorem 2. — Suppose 9 is an action of R2 on V with all the orbits cylinders.
In the proof of (1.6), we showed that 9 can be approximated by an R2 action 9^ such
that 91 has a compact orbit T and T is not isotopic to To. By (i .4)3 we know that F
has an eigenvalue equal to +1 or — i. Since the eigenvalues of F are of the same sign,
we know from (1.6) that both eigenvalues ofF are +1. Therefore, ifF has no eigenvalue
equal to +i, every R2 action on V has at least one compact orbit.

Now consider the action 9 with all orbits cylinders. After composing 9 with a
diffeomorphism of V we may assume 9 is transverse to To and the orbits of 9 in M(To)
are homeomorphic to S1 X I, with one component of the boundary in To and the other
in TI (see the proof of (1.6)). Let ̂  be the foliation of M^To^T^I induced by
the orbits of 9. The foliation e^o has no holonomy since ^n^x^o}) is topologically
equivalent to the foliation of T2 given by Slx{6}, 6eS1. Thus, by the Reeb Stability
theorem, ̂  is topologically equivalent to the foliation S lx{6}xI3 6eS1, of T^L
Clearly V is then homeomorphic to (T^l^/H where H :^2->T2 is a diffeomorphism
which leaves the foliation Stx-j^o}, of T2 invariant. The manifold (T2 X I)/H is foliated
by the cylinders ^(S^-^xl) where p : T^xl -> (T^^/H is the projection. Thus,
the foliation of V defined by 9 is topologically equivalent to this suspension.

2. The models.

In this section we shall explain theorem 3. We start with a non singular action 9
ofR2 on V which has a compact orbit T. We know that cutting V along T we obtain
^2xI; therefore we shall classify the foliations of ^2xI induced by actions tangent
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to the boundary. We denote by y the foliation of T2 x I induced by <p. The classi-
fication is analogous to the classification of foliations of S1 X I which are tangent to
the boundary: each compact leaf is a circle isotopic to S^^}, and the complement
of the set of compact leaves is the union of a countable family of open sets W^ with
W^S^I and the foliation of W, is of type o or i of figure i.

Type 0 Type 1
FIG. i

(2 .1) Definition of ^(oc, o) and ^(G, o).
Let X, Y and Z be the vector fields on R^I;

X==(cos nx, o, sin 2nx{i—x))
Y=(i,a,o)
Z==(o, 1,0),

(the foliation of figure i, type o, are the orbits ofX), where O^A:^ i and a is irrational.
These vector fields are linearly independent and pairwise commute. Moreover the
fields are invariant by the translations (^5 x^) [-> {x^-\-i, x^) and {x^y x^) h> (^3 x^-}-i).
Therefore (X, Y) and (X, Z) induce actions of R2 on T^I. It is easy to check that
T2 X {0} and T2 X { i} are the compact orbits of these actions; the other orbits of the
(X, Y) action are planes and the other orbits of the (X, Z) action are cylinders. We
denote the corresponding foliations by ^(a, o) and e^'(G, o) respectively. Notice that
no transversal arc joins T^^} to T^x-^} for these foliations.

(2.2) Definition o/^(x).

Let ^ be the group of difFeomorphisms of the interval [o, i] which leave o and i
fixed. Let ^ be a representation of ^(T2) in ^S. We associate an action of R2

to ^ as follows. Let f^g^ be the images of the standard basis of T2 by ^. Then
T^I is diffeomorphic to the quotient of 1x1x1 where {x, o, \)^{x, i, ^(X)) and
(o,j, X)-^(i3^,/(X)). Since/and g commute, the vector fields (i, o, o) and (o, i, o)
on I3 project to commuting vector fields X and Y on T^L We denote the foliation

268



A CLASSIFICATION OF THE TOPOLOGICAL TYPES OF REACTIONS 269

induced by this Reaction on ^2xI by e^(/). The holonomy of this foliation on
T2x{o} is precisely ^ J^) is transverse to the segments {©}x{© /}xI and can have
compact leaves in intT^I. One can consider ^(^) is the foliation canonically
associated to the fibration (T^I, I, T2, ^), I the fibre, T2 the base and ^ with the
discrete topology [6]. Two such foliations ^()Ci) and ^(/a) are equivalent if and
only if ^ is conjugate to /g.

(2.3) Definition of ̂ -((i, z\), (2, ̂ ), . . ., (n, zj).

This is a foliation of l^xl obtained by gluing together the preceding models
(for each K, i^K^n, we have i^=o or i). For i^=i, and XK : ̂ iC1'2)-^ a
homomorphism, we define ^"(K, ̂ -^(Xic)? the foliation defined in (2.2). For
i^==o, we define ^"(K, ZK:) to be ^(a, o) or ^'(C, o), the foliations defined in (2.1).
Then ^((i, z'i), . . ., (%, zj) is the foliation of T^xl obtained by gluing the leaf T^i}
of^K,^) to the leaf T'x^} of ^(K+i^K+i), for each K, I^K^-I. Notice
that for z'K^0? no transversal of the foliation ^(K, Zg) goes from T^-fo} to T^x-ii};
whereas, for i^==i, the segments {(©, ©')}xl are transversal to e^(K, i^).

Theorem 3. — Let ^ be a non singular action ofIL2 on T Î, with T^-io} and T2x{I}
orbits of 9. Then ^(9) is equivalent to ^"((i, i^), . . ., (n, zj), for some choice of (K, ̂
i^K^%.

The proof will be proceeded by several lemmas.

(2.4) (Nancy Kopell [2]). Let f and g be germs of commuting ff-diffeomorphisms of
R+={^o}, such that /(o)==^(o)=o. Iffis a contraction (i.e. f[x)<x for x>6), and
^=t=id then o ^ ̂  only fixed point of g.

(2.5) Let ^ be a non singular action ofR2 on ^2xI such that T^o} and T2x{I}
are the only compact orbits. There exist embedded tori T' and T" satisfying:

a) T' and T" can be chosen transverse to ^(<p).
b) T' is isotopic to T^-j^o} and can be chosen inside any tubular neighborhood of T^-fo};

in particular, one can suppose the segments {(©, ©')}x I are transverse to ^(9) inside the region W
bounded by T^o} and T'. The same property holds for T", T^-fi} and W.

c) If L is an orbit of 9, then L nT'(resp. L nT") is a circle if L^xR and is the
union of copies of R if L^R2.

d) There exists a vector field Y on T^o, i), tangent to the (open) 9 orbits, such that
Y(T, (-00, o)) c^', Y(T", (o, oo)) c^", and Y(T, i)=T" (A^, ̂  filiations of T'
W T", induced by ^"(9), ̂  conjugate by the orbits ofY). By Y{x, t) we mean the integral
curve of the vector field Y at time t, which passes by x at t = o.
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Proof of (2.5). — If 9 has a cylindrical orbit then (2.5) follows from (4.3), (4.5)
and (4.6) of [7]. If all open cp orbits are planes, then (2.5) follows from the classi-
fication of Reeb foliations of ^2x'l given in [i].

Corollary (2.6). — If ̂  is an action ofR2 on T^xl such that T^o} and T^i}
are the only compact leaves, then the open leaves are planes or cylinders but there is no mixture of
the two types.

Proof. — This follows from (2.4) and (2.5) where (2.4) is applied to the
germs obtained by the representation ^iCI^X-^})—^, given by the holonomy of the
foliation ^(9). Since there are no compact leaves in a neighborhood of l^x-^} (other
than Tx-j^}), the generators of TC^T^^}) can be chosen so that the associated
germs are contractions or the identity and a contraction.

Proof of theorem 3. — Now consider the foliation y-=3F(^) of T^xl, tangent
to the boundary. We know each compact orbit of ^ is isotopic to T^x-^}. Let K

be the union of the set of compact orbits. We have (l^x^—K^.U W, where each
W^T^xI, W^ is invariant by (p and the open leaves of W^ are all planes or cylinders.
We fix once and for all an orientation of^". Let W^, .... W^ denote those W, such that
the orientations induced on the boundary of W^ are opposite, i.e. if on one component
of^W,, the normal field points to the interior ofW^ (respectively the exterior) the normal
field points to the interior (the exterior) on the other component. By continuity, there
are at most a finite number of such W^. Let G^, . . . , Cg be the connected components
of the closure of the complement of W^u ... uW^ in ^2xI. Let p^ be a family of
embeddings of ^2xl into T^I, I ^ K ^ T Z satisfying:

1) if i^==o, p^T^xI) is some W,°, for i<;^r$
2) if Z K = = I , p^T^xI) is some G^, for i^j^s, and
3) j^xH^T^o},

Pt^X^^pW^X^}) for I^K^-I;
^(T^i^T^i}.

We have sketched a cross section of this indexation in figure

W°, W°2 W°3

/ / / /

FIG. 2
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We shall first construct the conjugation on the Gj and then on the W^; the Gj
are conjugate to the models of type ^(/) for some representation ^; and the W^ to
the models of type ^"(a, o) or ^'(G, o).

(2.7) Let G, be one of the manifolds defined above and denote by N the normal vector field
to y. Let K he the integer such that p^T^X^^O^. There exists a vector field X, on Ĝ .
which is transverse to ^ satisfying:

1) X,==N on the compact orbits of Gj, and
2) each orbit ofXj starting at a point of p^T^X^}) goes to a point of p^T^X^}).

Proof of (2.7). — We may suppose N points into Gj on j^KC^^0})- ^ before,
00

we write the complement of the compact leaves in C^ as U Wj „ where the Wy „ are
diffeomorphic to l^xl, invariant by <p, and 9 has no compact orbits in the interior
of W,,,.

We construct a vector field X,^ in each W,^ which is equal to N in a neigh-
borhood of ^W, „ as follows. Let T' and T ' be transverse tori embedded in IntW,^
given by (2.5)3 and denote by Y the vector field given by (2.5). The foliations of T'
and T" induced by y are conjugate by the orbits of Y and this foliation is equivalent
to an irrational flow on T2 or the product foliation S lx{©} of T2. Now T' and T"
bound a submanifold W of Wj „ such that the foliation of W induced by ^ is equivalent
to the product of the induced foliation on T' by I; the orbits ofY define the conjugation.
Thus in W we can construct a vector field X^ transverse to ̂  such that Xo points into W
on T' and each orbit ofXo starting at a point of T' goes to a point of T". Since each
orbit ofN starting at ^W^ intersects T' or T", we can extend Xo to W,^ to coincide
with N in a neighborhood of ^W, „ and to be transverse to 3^'. Denote this extension
by X^. Now we define X, on G. to equal X,^ on W. „ and N on the compact orbits
of^. Each orbit ofX, starting at a point of p^(T2 X {o}) goes to a point of p^(T2 X {i});
after reparametrizing the orbits of X, we can assume the orbits take a time i to go from
one boundary component of Cy to the other. This completes the proof of (2.7).

(2.8) The foliation ^ on G, is equivalent to a foliation ^(%) of T Î, for some
representation %.

Proof. — By identifying the orbits ofX, to a point we define a fibration C^->T2

with fibre I and ^ is transverse to the fibres. Such foliations are determined by a
representation / : ̂ (T2)-^^. The conjugation H, : C^-> (T^xl, ̂ W) can be

constructed so that Hy. op^ == identity on 8^x1) (see [i]).

(2.9) The foliation ̂  on "W^yfor K between i and r, is equivalent to a foliation ^"(a, o)
or ^(G, o).

Proof. — If all the leaves of^'in the interior ofW^ are planes, then we have proved
in [i] that y is equivalent to a foliation ^(a, o) for some irrational a. We construct
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in [i] a conjugation H^ : (W^, ̂ ) -^(T^I, ^'(a, o)) such that H^== identity on
a^xl).

Now suppose the leaves of y in Int W^ are cylinders. This case is much easier
to deal with than the planar case because of the existence of the vector field Y given
by (2.5). Let T and T" be the transverse tori given by (2.5). Between T and T"
in W^ we have a manifold W and the foliation y on W is equivalent to the foliation
S lx{©}xI of T^I; the equivalence is defined using the orbits of Y. Let A and B
be the closure of the connected components of W^—W. The conjugation H^ is defined
in Au B by the holonomy of the compact leaves, i.e., the boundary components of W^.
We do this precisely in [i]$ H^ is defined so that H^= identity on B^xl). Now
this gives H^ on A u W and B. The construction above might give two different values
for H^ on T" (for, on AuW^ its value is determined as soon as it is determined on
^(T^o)) and, on B, it is determined by its value on ^^^(i)).

Let H' and H" be the restrictions of H^ on T" resulting from the two different
definitions. Then VL=W~l}:lff is homotopic and hence isotopie to the identity and
sends the leaves of the induced foliation e^nT" onto themselves. Let then F be the
diffeomorphism from T' onto T" associated with the orbits of Y. It is clear that Y
may be modified into a field Y' (tangent to the leaves) in such a way that F'===HF
(F' obviously means the diffeomorphism associated with the orbits of Y'). Extension
of H^ using the orbits of Y' gives them the same value for the definitions of H^ on
AuW and B.

Now piecing together the conjugations H, of (2.8) and H^ of (2.9), theorem 3
is proved.
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