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INTRODUCTION

The purpose of this paper is to present complete proofs of the results toward
characterizing attractors with hyperbolic structure (see Smale [9]), as announced in [13]
and [14]. The crucial additional assumption (beyond hyperbolic structure) is that
the attractor is expanding (that is, its set-theoretic dimension is equal to the dimension
of the fiber of the unstable bundle). One other (technical) assumption is made that
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des Hautes fitudes Scientifiques and A. Haefliger of the Institut de Mathematique of the University of Geneva
for support.
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170 R. F. W I L L I A M S

the stable manifold foliation {W8^); x is in the attractor} is of class G^ r^i. We
expect that this assumption can be dropped with additional work.

Thus this paper carries out a portion of the program we felt was possible in [15].
In some sections (e.g. the one on periodic points) more detailed proofs are given than
in [15]. In turn, this is a part of a large program evolving from the work of many
authors, with S. Smale being the prime mover. See the important survey paper of
Smale [9], and the volume [10] on Global Analysis.

It is a pleasure to acknowledge the help and encouragement given by many
colleagues, including A. Haefliger, M. Hirsch, S. Narasimhan, S. Smale, R. Thorn,
G. Robinson, S. Newhouse, G. Reeb, H. Rosenberg, and M. Shub.

BASIC CONCEPTS

Suppose /eDiff^M), r>i where M is a compact manifold.

Definition. — For an endomorphism f : M-^M one says that ^eM is a non-wandering
point off (notation: xe0.{f)) provided that for each neighborhood N of x there is a
positive integer n such that /^(N) nN=t= 0. For /eDiff^M), xeM define the (generalized)
stable [resp. unstable] manifold at f relative to x, W8^,/), [resp. W^A:,/)], by

W{x,f)=={yeM : lim dist^ x,fny)=o}

W^,/)^8^,/-1).

A closed invariant subset A of M has a hyperbolic structure E" + E8 provided the
tangent bundle TM restricted to A splits as a direct sum, TMJA^E^+E 8 , which is
invariant under the derivative Tf off and such that T/1 E" is an expansion and Tf \ E8

is a contraction. This last means that there are numbers A, B>o and (JL>I such
that \^fn(v)\<_A[Ln\v\ for ve^ and n>o and | T/^w) [^B^-^ w\ for weE8 and
n>o. The symbols u, s are also used to denote the dimensions of the fibers of the
bundles E^, E8.

Definition. — A subset AcM is an attractor for f provided there is a closed neigh-
borhood N of A such that:

1)/(N)dntN;
2) A=n^(N); and

3) A=D(/[N).
A hyperbolic attractor satisfies i)-3) plus

4) A has a hyperbolic structure, E^+E5*
An expanding attractor satisfies i)"4) plus

5) dim A = u, the dimension of a fibre of E".
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EXPANDING ATTRACTORS 171

Now assume that A is an attractor for f with a hyperbolic structure and use the
notations above. We formulate a part of the Generalized stable manifold theorem as
formulated by Smale [9] and proved by Hirsch-Pugh [5], with addendum by Hirsch-
Palis-Pugh-Shub [4].

Generalized Stable Manifold Theorem (Smale, Hirsch-Pugh). — For xeA, W^^y),
Vfu{x,f) are injectively immersed euclidean spaces of dimensions s and u. {W^^y) $ xeA} is
a filiation of a neighborhood of A {at times G1 as a filiation)

/(WW^W-C/V) and A=Q(/|N).

We proceed to define branched-yz-manifolds in § i and ^-solenoids S as the inverse
limits of a sequence

K<-K^-K<-...
9 g g

in which the same map g : K.—>-K is used repeatedly, g is an immersion of the branched
72-manifold K and satisfies certain axioms. There is the coordinate shift map h : S->-S.
These concepts generalize those of [15]. It is interesting to note that Alekseev's defi-
nition of < ( topological Markov chain " [o; p. 104] is general enough to include such
inverse limits.

STATEMENT OF RESULTS

Theorem A. — Assume A is an expanding attractor for yeDiff(M) and that the filiation
{W8^,/) : xeA} is G1 on some neighborhood of A. Thenf\A is conjugate to the shift map h
of an n-solenoid 2, i.e. there is a homeomorphism <p : A-^S such that f\A===^~lh(f^.

Theorem B. — Assume h : S-^-S is a shift map of an n-solenoid. Then there is a
manifold M and yeDiff^M) having an expanding attractor A such thatf\A is conjugate to h.

Theorem C. — Each point of an n-solenoid has a neighborhood of the firm
(Cantor set) X (n-disk).

Theorem D. — The periodic points of a shift map of an n-solenoid are dense.

Theorem E. — The reduced cohomology over Z (or even R) of an n-solenoid is not o.
This last is all the author has proved at this time toward a very strong
Conjecture. — H^S^+o, H^Z)^, and HP^Z) generates H*(S;Z) as

a ring. If orientable S is a fiber bundle over an ^-manifold with Cantor set as fiber.

§ i. BRANCHED N-MANIFOLDS :
DEFINITIONS, EXAMPLES AND ELEMENTARY PROPERTIES

Smooth branched n-manifolds are perhaps simplest imagined as (< complexes 3?

embedded in some higher dimensional Euclidean space, in such manner that there is
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i?2 R. F. W I L L I A M S

a unique tangent yz-plane at each point. See figures i and 2. We also need an abstract
definition, as our branched ^-manifolds arise quite naturally as quotients of foliations
(see figures 5 and 6), but with no given embedding.

FIG. I FIG. 2

Note that the cc local chart " U^ in figure 2 can be described as the union of three
overlapping 2-disks: a flat one in the middle D^, one branching up to the right D^,
and the third down in a forward direction D^g. The vertical projection of this chart
onto a horizontal R2 would map each of these 2-disks diffeomorphically onto a square
2-disk D^ in R2. (The corners are just for easy visualization). With this in mind, we
give a preliminary version of our definition.

Definition (i.ons). — By a non-singular branched n-manifold of class G^ is meant a
metrizable space K. together with:

(i) a collection {UJ of closed subsets of K;
(ii) for each U^ a finite collection {Dy} of closed subsets ofU^; and
(iii) for each z, a map TT^ : U^DJ1, DJ1 a closed, n-disk of class Ck in R^

subject to the following axioms:
a) UD^=H and UlntU,=K;
bns) TrJDy is a homeomorphism onto DJ1;
c ) there is a cc cocycle " of diffeomorphisms {a^j of class C? such that TT^ =a^o 7^

when defined. The domain of oc^ is 7^(U^nU^).

-No^. — The a^ satisfy the standard identities a^^oc^=a^ and a^==i, as
one can verify.

Note that this definition allows locally infinite branching, as in figure 3. This
is all right for our purposes, at first. Later (§ 8), when we have to carefully imbed
our branched manifolds in Euclidean spaces, we almost literallycc iron oat" this pathology
by the collapsing technique introduced in (2.2) and used in (5.5).
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FIG. 3

But there is a more troublesome anomaly, which occurs in particular in the two-
dimensional example of figure 4. The fully assembled branched 2-manifold is indicated
at the right, embedded in three dimensional space. At the left, we have indicated the
three disks T, M and B of which it is composed. One is to identify T and M along

FIG. 4

the radius a and M and B along the radius |S. Note that 0 (which lies on all three disks)
is singular in that it has no neighborhood which is the union of smooth 2-disks D,. each
of which has ffleIntDy (interior as a a-disk). v

Thus, this example cannot be given the structure of a non-singular branched
2-manifold, because of axiom bns) of 1 .0 ns). " Boundary points" are also singular
by this definition, which suits our purposes, as we will eventually want to rule them
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i74 R. F. W I L L I A M S

both out. However, as our first task is to prove certain spaces are branched ^-manifolds,
we want to begin with a weaker version of this axiom.

Definition (1.0). — A space K is a branched n-manifold if axiom (6ns) of (1.0 ns)
above is replaced \vith:

b) 7^ [ Dy is a homeomorphism onto its image n^ (Dy) which is a closed C^ ^-disk
relative to 8D^.

Note 1. — The phrase "relative to 8D^ " means that 7^(Dy) can have corners
only on the boundary 8D^ of DJ1. Of course, such a c< corner ", say ^[x)e8D^, is not
really a corner point of K itself, because for some different chart, say U^, xeV^, and
7r^)eIntD;?.

Note 2. — Each Dy inherits the structure of a Q6 7?-disk because:
a) TC^ is a homeomorphism into a smooth disk D^; and
b) any other relevant n^, is smoothly related to T^ via the oc^.

To help fix the idea of branched manifolds, and to motivate their introduction,
we will give some examples of:

a) a compact neighborhood N in a foliated manifold; and
b) the quotient space this structure gives rise to.

L

D B

Open neighborhood quotient

^ .̂
Closed neighborhood quotient

FIG. 5

In figure 5, N is a smooth disk in R2 which in turn is foliated by the family /
of all vertical lines. Then one considers the collection ̂  of all (connected) components G
of FnN, for all Fe^". The quotient is formed by collapsing each component Ge^
to a point (i.e. the quotient corresponding to the partition %7 ofN). The branch point
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EXPANDING ATTRAGTORS i75

is formed by the component Cg which is tangent internally to the boundary of N.
Whereas, to the left of Go, each F n N is in a single piece, to the right, each F n N has
two components. These determine different <c branches " of the quotient space. It is
always such special fibers which give rise to branching. Note that both of these branches
are smooth continuations of the left hand line interval, reflecting a similar fact about
the foliation.

Note. — If one takes N to be open, one gets an unbranched manifold (the right
hand side of figure 5) which is not Hausdorff at the two points corresponding to the
branch point. Thus in figure 5, neighborhoods of t and b would intersect along L.

FIG. 6 FIG. 7

Figured 6 and 7 are similar, except N is in R3, which is again foliated by vertical
lines. Figure 6 is quite <c generic " and has a quotient just like figure 3, the branching
lines corresponding to leaves which are tangent (internally) to the boundary of N. Note
that it is natural to have the branch lines in figure 6 intersecting transversely because
this corresponds to the holes in the cube being cut transversely.

In figure 7, the Whitney cusp-singularity is the lower boundary of the neigh-
borhood N. The quotient space has a (< boundary 5?, including the awkward point at
the cusp.

(1.1) Branched manifolds of class G ,̂ k>_i, have tangent bundles (and jet bundles)
defined as follows: one has the induced bundles (7rJ D^TR^ over D^ for all i, j. To
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176 R. F. W I L L I A M S

wit {ni\D^={{x,v)eD^xT'K1 :v is tangent to R" at TCJ. In the disjoint union
U (TrJ D '̂TR71 introduce the equivalence relation {x, y, i,j) ̂  {x\ y', i ' . j ' ) if:

a) x==x'^ and
(B) Ta^W.

In particular, if i==i', (x, v, ij) - {x, v ' , i , j ' ) provided v==v\ Similarly for
higher jets.

Definition (i.a). — If K, L are branched manifolds of class C? and /: K-^L is
a map, one says that f is of class Ck provided:

(i) fh = ".(D,) (^ D, ̂ ^ u/ ̂  R" is of class ff for each j, t and ..
(ii) For each ^eK, setting j/===7r^, the^ for various j have the same germ atj^.

Remark (1.2.1). — Condition (ii) suffices for our purposes as it is very natural
in terms of foliations. But one could contrive a theory in which one replaced (ii) by
the weaker

(ii') The various^ have the same k-]et atj/.

Lemma (1.3). — 7/'y:K-^K/ is of class C, r^i, then there is an induced map
Tf: TK->-TK' covering f (and similarly, an induced map of k-jets).

Proof. — Given {x, v, i , j ) in (TrJD^R^ we define

(T/)^(^^z,j)==(AT^(^)^) if fxeU,.

We must first show that (T/)^= (T/)^. But (1.2) (ii) or even the weaker (1.2) (ii')
says this. Now if (^ y, i,j) ̂  [x, v\ z',j') and if fxeUf, as well, then

Tf^W=Tfl;^T^,{v)

=%^)
=Ta^.T^(.)
=T^,.Tfi,(v)

so that (T/)^(T/)^.

Definition (1.4). — A C^-map / : K->L, k^ i, of one branched manifold to another
is an immersion provided T/is a monomorphism on each fiber.

For example, T .̂ : Uj—^R^1 is an immersion. Thus immersions are not in general
locally one-to-one. However, note that an immersion is a local diffeomorphism on
each smooth gubmanifold—e.g. each smooth sub-disk. (Branched manifolds generally
contain sub-disks which are not smooth.) We need the following corollary of this fact
about smooth submanifolds:

Corollary (1.5). — If f : K->L is an immersion of branched manifolds and K is compact,
then there is an e>o such thatf\D is 1-to-l on each smooth sub disk of diameter <e.

176



EXPANDING ATTRACTORS 177

Proof. — Let SQ be the Lebesgue number of the covering {Uj. Now for each i, j
there is an £y>o such that the corollary is true for K=Dy, by standard results on
manifolds. Then S^SQ and s^Sy for all iy j works.

Lemma (1.6). — IfK is a branched manifold and i^ is an open cover of K, then we may
take the structure (1.0) so that {UJ refines i^.

Proof. — First, we may choose closed sets E,C7^(Int U,) such that {^^(E^)}
covers K. Let A: be a point of K and choose e so that Ng(.y) lies in an element of i^.
Choose i so that n^x) eE, and let r denote the number of disks Dy making up U^. Then
there is a closed disk DcR71 with ^x in its interior such that (TrJD^'^D) has
diameter <s/r for eachj, by uniform continuity. Let V^ be the component of Tr'^D)
which contains x. Then IXg is closed and is the union of at most r disks, each mapping
into D, and each having diameter <s/r. As LTp is connected, it has diameter <s and
hence lies in an element of Y\

Lemma (1.7). — Every branched n-manifold is n-dimensional.
Proof. — Each U^ is ^-dimensional as it is the union of finitely many yz-disks. Thus

each point has an ^-dimensional neighborhood which is enough.

The following result is by no means definitive; it is proved in this weak form because
it suffices for our immediate purposes and is elementary. See below (§ 8).

Lemma (1.8). — If K. is a compact G^ branched manifold, then there is a Ck embedding
of K. in a euclidean space of finite dimension.

Proof. — That is, we seek a finite set ofC? maps K->R which <( distinguish points 3?

of K. To this end, let {U,, TT,, Dy} be a system satisfying (1.0), where {Uj is finite.
Also choose closed disks E.cR" so that TT^E,) cint U, and {^(E,)} covers K.

Lemma (1.8.1). — Suppose U=DiU. . .uD^ and n : U-^R" is a chart for a Q"
branched n-manifold. Let X = D i U . . . u D ^ and Y=D^iU. . .uD^. Then there is a
G^ map g : U->R such that

1) gx=o for ;veX, and
2) gx'>o for xe\ and 7r^^7r(XnY).
Proof. — There is a Gk map go : TT;(U)->R such that go^o on 7r(XnY) and

go>o otherwise. Now define
o, A;eX

g{x) = ^o(^), ̂ Y

This is well defined; to see that it is Ck we must show that ^o(7r|D^)-1 : 7i(D^-^R is
Ck for eachj. First suppose j<i. Then 5o(7T:[D^-'l=o, so this is G^. Next, suppose
j^.i+1. Then go^D^-^g^o^nr^g,
so that this is also C?, and the proof of (1.8.1) is complete.

177
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178 R. F. W I L L I A M S

Lemma (1.8.2). — Under the hypothesis of (1.8.1), there is a 0" embedding

9 : U-^R^R2'1-1,
of the form 9 == n X h.

Proof. — Note that 2^—1 is the number of non-empty subsets o- of {D^, . . ., D3.
For such a a, define X^=^U^D^, Yo=^U D^.. Then let ^ : U-^R be a C^ map

for X,, and Yg as guaranteed by (1.8.1), let h : U—^R2"2"1 be the cartesian product
of all the 9o's, ^d let 9 == TT X A.

Then 9 is G^, so we need only show 9 is i-to-i. So assume x, x'eV, x ^ x ' but
^x=^xf. Then nx^nx'. Then define cr by CT={D^:A:eDj. Then A:eXg and
^'eYg: as no disk containing x can also contain x\ another point which maps onto rcx^-nx',
we must have ^'^(X^nY^. Thus o=g^x=g^xf>o, a contradiction, which
completes the proof of ( i .8.2).

Proof of (1.8) (continued). — (1.8) now follows by the usual partition of unity
argument: let \ : K^R be positive on TT^^E,), and o outside of U,. Define

/=nx^xA,)i
where T^X^ is an embedding of U^ as given by (1.8.2). This is an embedding, but
the image space is of very large dimension.

Corollary (1.9). — Let K be a compact G^ branched manifold, k>_i, and let d be the
metric induced upon K by an embedding as given above. Let E^, Eg be two smooth disks in
some U ,̂ let OeE^nEg, and ^eEj, j=i, 2 be a sequence of points converging to 6, as a->oo.
Then

lin/^^^o.
a-oo ̂ ,6)

Proo/1 — Assume, as case i, that K consists entirely of one U^. Then the metric d
is that induced by the embedding 9 : U.-^xR1^ given in (1.8.2). Let £3 be the
^-space tangent to E^ and Eg at 6. But then the projection RnxRN->Rn maps E^,
Eg and E3 diffeomorphically, and sends x^, x^ and, say, ^, to the same point, sayj^,
a==i , 2, ... Then

lim^-^dim^-^^o
a-°o^,6) ^^(X^e)

by well known properties of tangent planes. Combining these produces the required
result in this case.

General case. — The embedding is given by II X, 9,: K -> IlR^xR^. Now suppose
i i

6eU,. Then case one shows that the appropriate limit is zero for the projection ofU^
onto R^xR^'. Then the general case follows from standard considerations.
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EXPANDING ATTRACTORS 179

§ 2. HOW BRANCHED MANIFOLDS ARISE

The purpose of this section is to prove two lemmas (needed below) which motivate
the introduction of branched manifolds. For the first, see also Haefliger [2].

Haefliger, Reeb and others have considered quotients offoliations but in a slightly
different way. By taking the neighborhood N to be open, the quotient N/~ is
unbranched, but not Hausdorff. These two points of view are of course equivalent.
But as we are primarily concerned with the (c branch set55—i.e. arranging for its simpli-
fication (§§ 2, 5) it seems better to have it (than to speak of <( the points at which N/^
is not Hausdorff95). In addition, in § 8 we are concerned with embedding N/^ in a
manifold. Though this of course has its counterpart in the other point of view, actually
embedding N/~ (which requires Hausdorff) along with cc tubular neighborhoods "
seems simpler to us.

Suppose M is a smooth (m -\-n) -manifold, 3^ is a C? foliation of M of codimension yz,
and X is a compact subset of M. Suppose X has a compact neighborhood No such that

(2.0) Each component of NonF, F a leaf of e "̂, lies in an m-disk lying in F.

For perhaps a smaller neighborhood N of X, introduce the equivalence relation
x ^ y iff x andj/ lie in the same component of N n F for some leafF of^".

Let N/^ be the quotient space and q : N->N/^ the quotient map.

Lemma (2.1). — A compact neighborhood NdntNo can be so chosen that N/^ is a
G^ branched manifold and q : N->N/^ is of class G .̂

Note. — We conjecture that N can be taken to be a smooth manifold with boundary.
The only problem would be to choose N so that (2 .1 .1) (below) is true.

Proof. — Let .reX. Then there is a Gk foliation box D^D^cIntNo having
x in its interior. In particular, x==yxz where j^eint W and zeint D"1 and each
w X D™ is a smooth disk with boundary lying in some leaf of ^r.

Then as X is compact, there is a finite collection {D^xDj"} of such G^ foliation
boxes whose interiors cover X. We let N==UD,nxDW . Then first notej j j

(2.1.1) If C is a component of NonF, Fe^ and Go is the disk guaranteed
by (2.0), then Go intersects only finitely many components G of NnF.

Proof of (2.1.1). — If G is a component of NnF, lying in Go, it contains a set
of the form Y^xD^;. And for distinct G's, the corresponding disks Y^xDj^ are
disjoint. But Go, being bounded, cannot contain infinitely many Y^xD^'s as they
come in only finitely many different (( sizes ", i.e. one for each j.

Now let G be a component of F n N, for some Fe^", and let Go be the disk guaran-
teed by (2. o), so that G c Go C F. Then there is a separation Go n N == G u D, where G
and D are closed and disjoint. Hence there is a compact, G^, bounded m-manifold,
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180 R. F. W I L L I A M S

B^cGo, such that GdntB^, and Bw^nD=0. Then of course, BB^nN^O. As Go
is a disk (thug there is no holonomy near Go) we can extend B^ to a neighborhood Dnx^yn

such that (D^^EF*) nN ==0. Hence by compactness again, there is a finite collection
{D^xB^}, whose interiors cover N, each satisfying
(2.1.2) (D^n BB )̂ nN =0.

As we have room to shrink any of this structure, we may assume certain generic properties.
In particular, that

(2.1.3) (DJ-xD^r^xBn^X,

has only finitely many components, each the closure of its interior.
Next, consider the diagram

(D^xB^nN

^ss^91

.;• U.cN/-

T ^
R^D?'

in which ̂  is the restriction of q, U^ the image of ^ and TT^ is the restriction of the projection
onto its first factor, D^.

(2.1.4) a) 7^==7^o^~1 is well defined.
b) For weN/- and G^"^), and any i such that G n (D^ x B^) 4= 0 we have

Gcj/xIntB^, for some jyeD^.
Proof of (2. i .4). — First note b) implies a), because then q^~l{w)==GcJyxInt B^

so that ^(w)-==y.
To prove part b), let F be the leaf such that G is a component of FnN, and let

yeJY^ be a part with (^xB^) n C=t=0. Then C, being connected and containing a point
of y X B^ but no point of y X 8^ (2.1.2), the boundary of y X B^, relative to the leaf F,
must lie entirely in j/xIntB^.

Though the fact that N/^ is compact and metrizable is geometrically obvious,
we include a proof. It suffices to show that the partition

(^==[q-l{w) : ^eN/-}={G|G is a component of FnN, for some Fe^}

is upper-semi-continuous (see, e.g. Kuratowski [18; p. 42]). That is, for A closed in N,
the ("saturation53) B== U{Ge^[ GnA==0} is also closed. We need only show this
for A small, so we suppose AcIn^D^xB^) for some i. The assumption that B is not
closed leads to the existence of a sequence of C^e^, oc=i, 2, ... such that

a) G,nA+0;
b) G.C^XB^ j,eD? (by ( 2 . 1 . 4 b}));
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c ) A^oeint D,";
d ) G,->D, a closed subset of j^xB"; but
e ) Dc|:B.

Then D is connected by <; and D cN, so that D lies in some C^e^. But by a}
DnA+0 so that BcGoCB, contradicting .;, and finishing the proof that N/~ is
compact, metrizable.

^ Next let X,=(D;xDj-)n(D?xBr), M^(X,), n^n^ .,=^|X,,
9ij—y\'\j and ^ :Xy-^M^ be the restriction of the projection map D^xD^D"•iv
ThenThen 3 3 3 '

Lemma (3.1.5). — There is the commutative diagram
x.

in which a is a C* immersion relative to the induced structures, (3 is onto and (consequently) n:
is locally 1-to-l. i ^/ zj

Proof of (2.1.5). — By (2.1.4 a}), ^(p^xD^cyxIntBr for some j>eD."
andyeD,". Hence ^p^^o^pt) is well defined and, by definition, (3 is onto '

Now since the kernels of the two differentials, TTT, and T^ are the same, to wit
the tangent space of the leafF at any point where they are both defined, it follows that
4 and TC, are submersions and a an immersion. This last together with the fact that
(3 is onto implies ̂  is locally i-to-i, and finishes the proof of (2.1.5).

We now have the ingredients required, K=N/~, U,, 7t,:U.-^D., M^-CU.
needed for a branched manifold, although we still need to subdivide * M,. *to sret the*
disks, " Dy ". - a s

We proceed to verify the axioms:

(iiifl;) As Ulnt(D?xBr)3N, it follows that UlntU^K. Also, as

UXpNr^D^xB^)
it follows that U My. = U,.

(in b)} We have shown n,\My is locally i-to-i, and its image is a C* immersed
manifold with boundary, possibly with " corners ". But these corners occur only because
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we may have an intersection of 8(D^xDJ1) r^D^xB^) which lies in (BD^xB^ by
(2.1.2). Thus the only possible corners are in 8D^.

We can now subdivide M, so that via (B we get a subdivision of M,, into disks {D^*}
satisfying our condition. This uses the fact (2.1.5) that 7rjMy=7Ty is locally i-to-i.

(me)) Now since the maps -K\ are the projections of G^ foliation boxes, it follows
that there is a C? (c cocycle 5?

{a,, : D^D?}

relative to {7^}. But these serve just as well for {rrj, of course.
Thus K is a C? branched ^-manifold. It remains only to remark that q : N->K

is also (?. But this reduces to the statement that {w-a'} is a Ck cocycle for {^}, so that
the proof is complete.

Collapsing lemma (2.2). — Suppose K is a branched manifold^ AcUcK where A is
closed and U open, and that 9 : U—^R" is an immersion. Let K/=K/^ where x^y iff
x ==y or x,yeA and ^x = 9 .̂ Then K' is a branched manifold and the natural map n : K->K'
is an immersion.

Proof. — There is an s>o such that each smooth subdisk DcK. which hits A
lies in U and is embedded by 9 in L. Let {U^, TC,, Dy} be the charts for K, and suppose
(1.5) that the diameter of U, is < s for each i.

Let {U;}={(p(U,) :for all i}. Then define n, : V^W by ^o^-^U;) and
D..==<p(D^.). The axioms are trivially verified, and since 9 is smooth and imbeds
small disks it is an immersion.

Definition (2.3). — We say K' is obtained from K by collapsing the points of A under 9.

§ 3. N-SOLENOmS

Suppose K is a compact branched C ^-manifold and g : K-^K is a CT' immersion.
We note the following.

Axioms (3.0)

1) the nonwandering set of g, ^(^), is all ofK;
2) for each xeK. there is a neighborhood Nof;c and an integer j such that ^(N)

is a subset of a smooth yx-cell;
34') g is an expansion.

Then define 2 to be the inverse limit of the sequence
K^-K^-K<-...

g g

and h : 2—^E to be the shift, i.e.
h[x^x^x^ ...)=(^o,^i,^2, . . . )

=={gXQ,XQ,X^ ...).
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Definition (3.1). — If g : K->K satisfies Axioms i), 2), 34'), one says that S is
an n-solenoid and h a shift map ofS. One calls g : K->K or the pair (K, g) a presentation
of h :S->S.

The name ^-solenoid is justified we feel by the regularity of such S's.
The first part of the proof that ^-solenoids are cc nice " is that branched manifolds

must be (c nice " in order to admit a self immersion satisfying the axioms. Note that
we have allowed branched manifolds to have boundaries and corners. In dimensions ̂ 2
they can have "helical" points—see (3.3) below.

Definition (3.2). — A point p of a branched ^-manifold is said to be a regular point
provided the union of the smooth disks which have p as interior point (as disks) contains
a neighborhood of p. Otherwise p is a singular point. A point ceK is a non-branch
point of K provided it has an open smooth yz-disk as a neighborhood; otherwise it is a
branch point.

Notation. — (BK = set of all branch points of K. A closed disk D c K is said
to be enlargeable provided there is a disk E c K such that D c Interior of E.

Remark (3.2.1). — (BK is closed and of dimension <_n—i (equivalently, nowhere
dense).

Proof. — By definition the non-branch points form an open set so that (BK is closed.
Now if D^ and Dg are two smooth ^-disks in K, then ^D^uDg) C boundary (D^nDg),
which has dimension<^—i. But (BXc U (B(DjnDJ), where the union is over all pairs
which intersect.

Example (3.3). — There is a branched 2-manifold with an isolated singular point.
Proof. — Let K==U^=DjL be the unit disk in the complex plane and let T^ : U^->D^

be defined by z\-> z2. Then K can be written as the union of 3 closed disks D^, i = i, 2, 3
which map i-to-i under rc^. Thus ^induces a differentiable structure in D^, z=i , 2, 3,
which describes K as a branched 2-manifold. Note that the singular set of K consists
of the boundary and the center of the unit disk.

Remark (3.4). — The singular set of a branched manifold is closed.
Proof. — If peK. is regular, it has a neighborhood which is the union of a finite

set of ^-disks, each having p as interior point. Then an open set about p is covered by
these disks; each point of such an open set is regular so that the regular points of K form
an open set.

However, these pathologies do not occur in presentations of ^-solenoids.

Lemma (3.5). — If K is a compact branched manifold and g : K->K is an immersion
- _ - » • ^ ' _ . - • - _ \ -\ -4-\ ^i ti • i i f •vr • , ,which satisfies axioms 1 )5 2), 3"1'), then the singular set ofK. is empty.
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The proof is surprisingly different from the i-dimensional case [14; (3.1)], and
proceeds in two steps. The first is itself often useful below; we assume g : K->K
satisfies axioms i), 2)5 34').

Lemma (3.5.1). — K has a covering by finitely many enlargeable disks.
Proof. — For xeK, there is a neighborhood U^ and an integer m==m^ such that

^(U^Uc? a disk. If i>m, then D^=D^u. . .uD^ where each D .̂ is an open
disk, and ^|D^. is i-to-i. Thus U,==(^| UJ-^D^u . . . u {g\ UJ-^DJ, where
each of these sets is open and maps onto an open disk under ^w+i.

Thus take a finite cover by U^s and let j^all the corresponding (m^+iys. Then
each such U^ is the finite union {U^} of open sets each of which maps onto a disk under ^p.
Thus the U^'s for the finite number of U^'s cover K. We rename them V^, Vg, ..., Vg.
Then ^(V^), ..., ̂ (Vg) is a cover of K by open disks, as g is onto. Thus if we take
D, to be a slightly smaller closed disk than ^(VJ, then {D^, . .., Dj is a covering of K
by enlargeable disks.

Proof of (3.5). — For xeK, U{^(V,) : xeD,} is a neighborhood of x and each
of the disks ^(V,) has ^ in its interior. Hence x is not a singular point.

Definition (3.6). — Given branched manifolds K and L and an immersion g : K->L,
a neighborhood U in K is said to be a disk neighborhood (relative to g) provided there is
an integer p and a smooth closed disk D c L such that U is the union of finitely many
disks EI, . . . , E^, each of which maps diffeomorphically onto D under ^p, and such
that au==UaE,.

Lemma (3.7). — If g : K-^K. satisfies axioms i)-2)-^) and xeK, then there is
a disk neighborhood of x.

Proof. — By axiom 2), there is a disk Do, a neighborhood U"o of x, and an integer^
such that ̂  immerses UQ in D. Then Ug is a subset of the union of finitely many disks
which by (3.5) can be taken so that none has x on its boundary. Let D^, . . . , D denote
the disks which contain x. Then D^u . . . u D is a neighborhood of x and each <^(D.)
contains a neighborhood of ^(^) in Do. Thus there is a disk DcD^, having x in
its interior, such that ^(D,)DD. If we set E^.==(^| D^-^D) we have E i U . . . u E ^
which is a disk neighborhood.

Corollary (3.8). — If g :K-^K satisfies Axioms i)-2)-34'), then there is a finite cover
ofKby disk neighborhoods all having the same (c p " [see (3.6)).

Proof. — First, if xeK, then there is an open set U containing x which is immersed
in a disk by ^p, for some p. But then if i^,p, g'1 immerses a neighborhood of each point
of U in some, perhaps smaller, disk. Thus by compactness, there is a p which works
for all points in K. But in the proof of (3.7)^ was picked at the beginning, with this
requirement above. Thus (3.8) is proved by (3.7).
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§ 4. EXPANDING ATTRACTORS

If A is an attractor with hyperbolic structure E" + E8, then there is the elementary
inequality (u and s are the dimensions of the fibers of E" and E8):

(4.0) dim A^u.

This follows from the

Lemma (4.1). — WU{x)cA for any xeA.
Proof. — A has a neighborhood N such that /(N)cN and A^fl/^N). Let

xeA and j^eW^). Then lim p(/'~ lA<,/-^Jy)==o so that /~^eN for i big enough.
i-> oo

That is j/e/^N) for i big enough so that j/e/^N) for all z>o. Hence jyeA.
If dimA=o, then u==o and it follows that A is a finite set. If dimA==i,

then M + O as then A would be finite so that d imA==^==i . This fact was exploited
in the papers [15], [i6], in which one-dimensional attractors were characterized and
classified.

Definition (4.2). — By an expanding attractor is meant an attractor A with hyperbolic
structure where dim A == u.

(All of the usual definitions of dimension agree on attractors as they are compact
and metric.) It should be pointed out that this is a special case. That is, not all
attractors are expanding. For example, an Anosov map /:M-»M, has M as an
attractor where dim M>^.

Lemma (4.3). — If A is an expanding attractor, then dim (A n W8^)) == o for any xeA.
Proof. — For a neighborhood N such that /(N)cN and .ft /'(I^^A, we may

take local stable manifolds W^), xeA so that N= U W^), by Hirsch-Pugh, as

W^^U/WM),
it suffices to show dim AnW^)==o and AnW^(^) is compact. (In fact AnW^(^)
is a Cantor set as is seen from Theorem G.) Meanwhile, U W^(jQ is homeo-yeAnw^x)
morphic to the abstract product (AnW^(A:))xW^(^o) f^ some fixed j/o, by Hirsch-
Pugh. Thus dim(AnW^))==o as dimension is additive for cartesian products in
which one of the factors is euclidean.

Note that this proves that for attractors in general one has the formula

(4.3.1) dim (A nW8^))^ dim A—u, for each xeA.

The remainder of this section is devoted to the proof of
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Theorem (4.4). — Suppose A is an expanding attr actor of /eDiff(M) and that the
filiation {W8^) : xeA} is of class C1 on some neighborhood of A. Thenf\ A is G1 conjugate
to the shift map of an n-solenoid, where n = dim A.

Proof. — There is a closed neighborhood No of A such that

(*) /(No)dntNo and A= n/^No).
z>017 v u/

In particular we can take No to be a manifold with boundary; let N^ be a slight enlarge-
ment of No. Then condition (*) still holds for any neighborhood N between No and N^.
Notice that condition (2.0) holds so that lemma (2.1) applies, yielding a closed neigh-
borhood N where NoCNcN^ so that N also satisfies (*).

Let K be the quotient given by (2.1) and q : N-^K the natural map. We then
have the commutative diagram (as in [15]):

(4.4.1)

/'(N) ^i
/(N) ^-i

N

4y
V^...

- f^
\f—^

.. . . l

^ -
'

^

?

^ ^

- ^

\
v

Here, each unlabeled vertical map is an inclusion and one defines g = qfq~1. To
see g is well defined, let q~1 (point) ==C, a component of F nN where F is a leaf of the
foliation SF. Then /(G)c/(F), which is also a leaf F' (or in one leaf) of ^ so that
/(G) C G', a component of F' n N. Thus g{pt) ==qf(C) ̂ (C') ==a point. The diagram
is commutative as all the bottom rectangles are the same.

Each vertical inverse limit is just the intersection H /'(N)=A. The horizontal
inverse limit yields 2 with shift map A. The diagram defines a map R : A-^S such that

A ^- A

S^ S

is commutative. R is defined by

RW=(^/-1^/-2^...)
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as one sees from the diagram. Notice the diagonal inverse limit

N^-N^-N^-...

which is also convenient for some purposes. This gives the limit 2^ and shift map h^
and one has the diagram

where R^{x)==={x,f~lx,f~2x,...) and

QXjWi.J^ • • ')={^o, qVi. qy^ • • • ) •

To finish the proof of (4.4) we need to show that g is an immersion satisfying
Axioms i), 2), 3'^) and that R is a homeomorphism.

First suppose x, x ' are distinct points of A such that qx==qx'. Then x'eVf^x)
and moreover x'eC, the component of W5^) nN which contains x. Note that G is in a
local stable manifold of/at x. But there is an integer z, such that/"1^') is so far away
from x, with respect to W{x), that it is not in C, so that qf~\x} ̂ qf~\x'). That is
R(A;) ̂ R^'), so that R is a monomorphism.

But R is not necessarily epic as we have not been able to choose N for this specific
purpose. Rather, we chose N so that the quotient space be a branched manifold. Thus
let Ko-?(A).

(4.4.2) We claim that there is an integer r such that Ko^^K).
Proof. — In [5], Hirsch-Pugh show that local stable manifolds W^(^), xeA can

be chosen so that they are disks, they lie in N, and their union is a neighborhood N'
of A. Hence for each .yeN, there is a neighborhood V ;̂ of x and an integer n==n^
such that /^(VJ CN'. By compactness there is an integer r such that /^(N) cN'. Now
as W^JA:) is connected and lies in W8^), y(W^(A:))=^(A:), for each xeA. Therefore
Ko = y(A) = y(N') = ̂ (N) =^y(N) =^(K).

Thus, as A is invariant under/, it follows that R is onto the inverse limit S, as
the two maps gQ ==g | K.o and g have the same inverse limit. Thus R is a homeomorphism
and similarly, so is R^, and thus also Q .̂ It is gQ which we deal with, as it will satisfy
Axioms i)^)^).

Axiom 1. — Let AreKg and V be a neighborhood of A: in K(). Then (^(V) nN'
is a neighborhood of some point Jeq~l{x)^A. Therefore, for some m, there is a point
^/"(rW nN') n (r^V) nN'). Then

y(.)eVn^M(^l(^)n^N')=Vn^^-l(.)nKo=Vn^(.)nKo

which proves axiom i for gQ.
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Axiom 2. — Let Yo^K and G^"1^). Then there is a box neighborhood D8 x D"
such that for each ^eD^, Wxx lies in a leaf of the foliation {W8^') : .y'eA}, and
CcD^^o. If the unstable factor D^ is taken small enough, then q~l{y) C some W x x '
for eachj/ in some neighborhood V ofj/. (Here V is a neighborhood in K as g itself
will be shown to satisfy axioms 2) and3+).) Now it follows, just as in the proof of (4.4.2)5
that /^xD^cN' for some integer v. That is, each f^D^x) lies in a W^')
for some x ' e A . Hence q~lq{xf)^fv(DSXx) as this last is connected. This says that
each of the stable disks D8 x x is mapped by qf° into a single point of K. That is, if
the unstable factor D1* is taken small enough, ^/^(D^D^) is conjugate to the projection
D5 x D^D^ But qp ==g^ so that y((D8 x D") n N) ==V is a neighborhood ofj^o such
that ^^^/'(D^D^, a smooth/z-disk.

Axiom 34'. — Recall that a Riemannian metric is put on a paracompact space by
putting one on locally and then using a partition of unity to fit these together. The
metric on K is, locally, induced on U^ by the map T^ : U^-^R" which defines the branched
manifold structure on K.

Now if xeAnq~l{'Vi) then W^M is transverse to the foliation {W8^) : xeA}
so that the metric induced on W^e(^) by n^q : U^—^R" is equivalent to the given one.
That is, the metric induced by n^q on U^nA is equivalent to the given one on E^U,.
But f is an expansion relative to E^ so that g is an expansion on U^.

This completes the verification of Axioms I-2-34' for gQ : K.o->K.o and finishes the
proof of (4.4).

§ 5. SHIFT EQUIVALENCE

Definition. — Two immersions g^ : K^-^K^, z = = i , 2 are shift equivalent (see [16])
provided there are immersions r : K^K^, s : K^-^K^ and an integer m such that
S^=rg^ giS==sg^ and sr==g^, rs=g^.

Remark (5.1). — This definition agrees with that given in [i6], where shift equiv-
alence was introduced, except that r and s are required to be immersions; this is no
additional assumption in view of the equation rs == g^.

The following theorem shows that shift equivalence classes are really what concern
us here. Part a) is valid in any category and was proved in [16].

Theorem (5.2). — If g : K-^K and g' : K'-^K' are shift equivalent immersions, then :
a) they present topologically conjugate shift maps;
b) if g satisfies one of the axioms so does g';
c) g and g' have the same zeta function.
Proof. — Let h : S->S and h' : S'—^S' be the shift maps that g and g ' represent,

and let r : K—»-K', s : K'->K, and meN be as in the definitions of shift equivalence.
Now for X=={XQ, A^, .. .)eS, define R{x)=(rxQ, rx^y . . . ) . Then R : S->S', because
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^'^4-i==y^4-i=^. If S : S'->S is the map induced by s, then SR=AM and
RS^h^ so that R is a homeomorphism. Clearly RA==A'R which proves a).

To prove b) suppose first that xeK. is a non-wandering point ofg and let y==rx.
We claim y is a non-wandering point of g\ for if N is a neighborhood ofj/, then r'^N)
is a neighborhood of A:. Thus ^(^(N)) nr'^N) 4=0 for some % so that

rgn{r-l{'N))^N==gfn(N)nN^0.

Thus j/ is a non-wandering point of g\
For Axiom 2, suppose jeK'; let A:==.y/ and let U be a neighborhood of x and

n an integer such that g"' immerses U in a disk. Then rg^ also immerses some perhaps
smaller neighborhood V in a disk. Nowj/ has a neighborhood W such that J(W)cV
and we see that ^'(n+l)w==:^nw s immerses W in a disk, provided V is sufficiently small.

For Axiom 34', note that gfn+m==gfnrs=rgn s for all n. Thus if g is an expansion
so also is g ' ,

To show g and g ' have the same zeta function, suppose gnx==x. Then

rx==rgnx==gfnrx

so that g^^rx^^rx. Furthermore, if x^=y and gnx==x and ^==^^5 then rx^=ry, for
otherwise A<=^w^=(Jr)nA:=J(^)n-l^=J(^)n-l^=^nwJ/=J/. Thus #Fixgn<_#Fixg/n.
By symmetry one has the other inequality so that the zeta functions of g and g ' are equal.

Lemma (5.3). — If g '' K-^-K is a presentation of h : 2-^2, ^TZ ^ ^^ h have the
same zeta function. [See [15, i6].)

Proof. — For xe¥ixg^ let ^A:)^, ̂ -'A:, g^x, ..., ̂  ̂ n-1, ̂ n-2^, . . .) . Then
a{x)e'Fix y'y clearly a : Fix g"-^ Fix A71 is also i-i and onto.

Recall that in (2.3) we introduced the notion of "collapsing" for branched
manifolds.

Lemma (5.4). — If g : K—»-K satisfies Axioms I-2-3'4', AcK is a closed set and m a
positive integer, then collapsing the points of A under ^yields a branched manifold K/ and g induces
g' : K'—^K' which is shift equivalent to g. The given m is the <( m 5? in the definition of shift
equivalence.

Proof. — In (2.2) we showed that K' is a branched manifold. The balance of
(5.4) was proved in [16; (5.3)], so formally as to be valid here (and in most categories).

The balance of this section is devoted to finding, for each g : K—»-K satisfying
Axioms I-2-34', a shift equivalent g ' : K'—^K/ where K' is a smoothly triangulated
yz-complex with {n—i) -dimensional branch set. This requires big ammunition: the
relative triangulation theorem ofj. H. G. Whitehead [12]. However, the result which
we actually need is that which one obtains just before applying Whitehead's Theorem,
so that we state it separately as (5.5).
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Definition (5.5). — By an n-cross is meant a space differentiably equivalent to the
union of the {n—i) -dimensional coordinate planes in R^ We say that a branched
manifold K is normally branched at xeK if A: has a neighborhood U such that the branch
set of U is contained in an across B, which in turn maps diffeomorphically onto TT,(B)
by one of the chart maps TT, of K. Finally, K is normally branched if it is normally branched
at each of its points.

Lemma (5.6). — Given an immersion g : K->K which satisfies Axioms i-2-s'^, there
is a shift equivalent g' : K/->K/ where K' is normally branched.

Proof. — By (3.8) there is a finite set of disk neighborhoods {N,, D,, m}, i== i, ..., a,
covering K. That is, each N, is the union of disks each mapping diffeomorphically
onto D, under ^w. We also take these D, so small that ^w | D, is a diffeomorphism as
well. Then {^Dj is a collection of (n—i) -spheres, and if we slightly vary our disk
neighborhoods, these can be taken to be in general position. That is, they intersect
locally in ^-crosses, or subsets of ^-crosses.

Now define K^ by collapsing the points of N^ under ^w. Then by (5.4) there
are also immersions p^ : K->Ki, ^ : Ki->K, which together with m express the fact
that g ' is shift equivalent to g.

Continuing, form Kg by collapsing the points of ^(N3) under g^, then collapsing
the points of N3, etc., getting, finally, g ' : K'-^K', shift equivalent to g. Note that
we can form K' in one step, by collapsing the N/s all at once under gm. Thus the proof
°^ (5-4) given in [16] shows that there are maps p : K->K', q : K/->K such that
qp^q^ and pq=gm.

For each i, let V,==j&(N,). Then V, is a smooth yz-disk and 8V, its boundary.
Let <^o be the collection of all components of all intersections of the form

V, n...nV, nBV, n...n^V,h \ b+i h

where j, v>_i and all of the indices z\, . . ., ^ are distinct. Now as the V/s are in
general position, each Ee<?o has an interior point, say e. That is <?eInt(V, n . .. nVJ
which is Tz-dimensional and eeInt{8V^ ^n . . . nBVJ which is of dimension n—{s—v).

Define <?C<?o by

^^{Ee^o : E has an interior point in (BK'}.

(Here and below we use (3K' to denote the branch set of K'.) First, note that each
element of S is a smooth manifold with (usually) boundary and that its boundary is
likewise made up of elements of S.

Next, we claim (BK/cU<?. To see this note that in K^, (BK.i lies in the exterior
ofj^(Ni), possibly intersecting its boundary. Similarly

pK,c(K2-A(Ni)uA(N2))uA(^)uA(^),

so that by induction, one proves (BK' C U S as claimed.
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Thus to complete the proof of (5.5), it suffices to prove the

Lemma (5.6.1). — If Ee<^, then Ec(BK'.
Proof. — Let Ee<^ and let j^eE be one of its interior points. Say E is a

component of
V, n...nV, n8V, n...naV,.

^ ^ ^o+l ^

Now suppose xep"1^). Then x has a disk neighborhood W so that j^(W) is a
disk C Int (V^ n ... nV^) . Now ;velnt N^ for some i==^, ..., ,̂ so that we may
suppose that WcIntN^. Hence there are disk neighborhoods W^, ..., W^, such that:

o) r^cUw,;
1) ^(W,) is a disk G^ and G,cInt(V^n ... nV^);
2) if for some i, W^nN^+0, then either

a) i is one of i^y . .., ^ and W^ C Int N^, or
b) i is one o f^+ i , ...,^

3) each N .̂ contains exactly one of the W,, i=^i, . . . , i y .

Parts i) and 2) are clear and 3) can be brought about by amalgamating two
or more Wj's.

Now, the sequence of collapsings, first the points of N^ under g"1, then the points
of N33 etc. flatten the Wj in turn to disks D^, according as to case a) happens in 2) above.
The only further identifications among these disks occur at states where case b) of 2)
applies.

Therefore, ^(UW^) near y can be found by beginning with a set of w ^-disks
and identifying them along one side of (n—i)-cells through x, two or more at a time.
Each of these (n—i)-cells corresponds to one of the 8V^ i==i^_^^y . .., ig. We do not
know that every one of these fs occurs, but this is all right, because this shows that a
neighborhood ofy in a larger intersection than

BV, n . . . n BV,^j+i ^
lies in (BK'. In particular, we have shown that (BK' n Int E is open in Int E. But
obviously (BK' n Int E is closed in Int E so that Int E c [BK/. Again (BK' is closed so
that EC(BK' completing the proof of (5.6.1) and (5.6).

Finally, by using the relative version of the powerful triangulation theorem of
J. H. G. Whitehead [12], we can proceed through the skeleta of (BK' by induction and
obtain

Lemma (5.7). — ̂ K' is as in the proof of (5.5), then K' has a smooth triangulation as
an n-complex, with (BK lying in the [n—i)-skeleton.

Lemma (5.8). — If K' is as in the proof of (5.5), then each point of K' has a neighborhood
which can be smoothly embedded in R^2.
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Proof. — For xeKJ we may take a neighborhood N=D^u ... uD^, the union
of m smooth yz-disks intersecting only along the branch set (3K/ of K', and the (" TT, 59)
map TT : N—^R^*, where TT((BK.') lies in an yz-cross in R^ Choose a smooth function
o^ : D^R so that a^(^)=o if A:epK' and O^(A:)>O otherwise. Note that we may
extend a, to all of N so that oc,(A:)==o if A^D,.

Next choose m distinct unit vectors ^, ..., v^ in R2 and define /: N-^xR2 by

x\->{nx, Sa^)y,).
i

Then f is the required smooth embedding.

§ 6. PERIODIC POINTS; THEOREM D

Lemma (6.1). — If ^ : K->K satisfies Axioms i), 2), g^, then the periodic points
of g are dense in K.

Proof. — We need to show that each non-empty open set U in K contains a periodic
point. Suppose, as case i, that U is a (smooth) open yz-disk. As pointed out above,
there is a positive number A^ such that if E is a smooth yz-disk in K of diameter <A^,
then g\E is i-to-i. There is an integer m>o such that if i>_m, g ' increases all small
distances in smooth yz-disks by a factor ^3. That is, for Ag>o small enough, and
A:,^eD, a smooth disk of diameter <Ag, d^x, g^^d^y), for i>,m, provided ^|D
is i-i for j^i.

Let a be the center of U and let Dg denote the disk centered at a and of radius s
for s^A^Ag, and the radius of U. Let d>o be such that D^, D^, and D^ are
defined; choose r>m so that ^(D^) nD^+0, say ^e^D^nD^.

We claim that ^(DgjDD^. Even more, we claim that Dg^pE, a disk with
D,c^(E)cD3,.

To prove this, introduce polar coordinates with Q as pole and OeS a parameter
(n—i)-sphere.

Define e : S->D^ by specifying that [0, e(Q)] is the maximal arc in direction 6
such that g'^O, ̂ W])cD^. Then e : 8-^3^ is continuous and obviously i-i, so that
E= U[^, e{Q)] is an yz-cell. By induction and the properties of A^ and Ag we find that
g* |E is i -i for all i<r so that in particular ^[E is i-i.

Now QgrW=gr{e{s))c'D^—D^ by choice of e{Q), so that, as ^(E) contains 0,
5^)3 D^. Thus in particular g~T \ D^ is well defined and maps D^ into D^. Hence
g~\ and therefore ^r, has a fixed point in D^cU. Thus in case i, we have shown
that the periodic points are dense in U.

General Case. — Choose aeU and let VcU be a neighborhood of a and m an
integer such that ^w immerses V in some disk, say D. Then <( collapse " the points
ofK under ^w (see (2.2)) getting the shift equivalent g ' : K'->K' and maps r : K->K',
s : K/->K and integer m expressing this shift equivalence.
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Let b ==r{a). Then b has a neighborhood W==r(V) which is a disk so that case i
applies. By case i, the periodic points ofg' are dense in W; by (5.2) the periodic points
of g are dense in s(W), a subdisk of D. Note that s(W) contains sr^aj^g"1^) in its
interior (as a disk), as s is an immersion, and that J(W) is an open subset ofD. As ^w

immerses some neighborhood of a in D, it immerses some (smaller) neighborhood V
of a in J(W). But then as ̂ (V) is a (relative) neighborhood of a in D, it follows that
the periodic points of g are dense in ^(V). Finally, as gm+i(yf)^'V/^0 for some
i>o, V contains a periodic point of g, which completes the proof of (6.1).

Corollary (6.2) (Theorem D). — If h is a shift map of an n-solenoid S, then the periodic
points of h are dense in S.

Proof. — Let g : K-^-K be a presentation of h : S->S and let U be non empty
and open in S. Then there is a V non empty and open in K and an integer n such
that {xeTi :^eV}cU. For ^eV, periodic under g, say gma^•=ay^ we have

(•••^n^r"1^^1"2^ • • • )
is periodic under h and is in U.

§ 7. LOCAL HOMOGENEITY OF n-SOLENOIDS

Theorem. — Each point of an n-solenoid has a neighborhood of the form
(n-disk) X (Cantor set).

Proof. — Let g : K-^-K be a presentation of an Tz-solenoid S. As g^ : K-^-K
presents S also (the shift map presented by ^l is different) for i==i, 2, ..., there are
s>o and an integer TO>I for which we may suppose:

r,

1) K is covered by disk neighborhoods U^== U Dy where g maps Dy diffeo-
morphically onto D^ a disk, where r^rQ\

2) the Lebesgue number of the covering in i) is >e$
3) g is at least 2-to-i;
4) g increases distances ^^s on TZ-disks by a factor >:ro.
To see this note that the s can be chosen last. Next, having picked a finite cover

as in i), the bound r^ obtained can be retained for a finer cover, which may be required
for a bigger power of g needed to obtain 3) and especially 4).

Now choose a== (^03^19 . . . )£S and let No be a disk neighborhood of OQ of
diameter <s so that g maps each disk of No onto a disk EQ.

Lemma, — Each component of g~~l(NQ) is a disk neighborhood of diameter <e/2.
Proof. — Let x^eC, a component of ^"^(No). Choose U^ as in i) with

d{x^y ^Ui)>£. Say Ui=D^u .. .uD^, r;<7"o, where g maps each D .̂ i-to-i onto a
diskDi. Then d{gx^, 8D^2r^ so that CnaU,==0. Thus CcU^ as it is connected.

Now g2 \ D .̂ maps D .̂ onto a disk containing EQ so that <?(D^.) n No == D^ n N() == D[,

JP5
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194 R. F. W I L L I A M S

a disk mapping onto E() under g. Thus let Ej^Q^D^'^Di). Then Ej is a disk
of diameter <£/2ro<s/2^ and as the Ej are connected and cover G, they form a coherent
collection. That is, if j^,yeUEj==G, then there is a sequence of E-'s " chaining " y
to y, so that adjacent elements of the sequence intersect. It follows that

diameter of G<j.(e/2^)==£/2.

This proves the lemma.
Let N^==^"'^N0) for i=i, 2, . . . and consider the diagram

No-^———'————NI^———————N^—•••/\° y^ /^/ \ / \ / \/ \ / \ / \/ \ / \ / \/ \ / \ / \/ \ ^ \ ^ \
Eo^-——— E,xF^"""E2xF2-<-"""E3xF3

The factorization of^|N^ is through E^xF^, where E^ is an yz-disk and F^ is a finite set
having as many points as N^ has components. This factorization was shown to exist
in the proof of the lemma. Note that each component of N^ maps onto E^ under g\ by
induction. Thus each of the disks E^ X (pt) maps onto a disk of the form E^_i X (a point).
The top sequence describes a neighborhood N of aeS. The bottom sequence which
describes N as well, clearly has a limit of the form

(w-disk)xC

where C is the inverse limit of the induced sequence
(**) F^-F,<-F3<-...

Thus to show C is a Cantor set it will suffice to show that the maps in (**) are
at least 2-to-i after some finite stage. But

a) there is a 8>o so that^"1^) contains at least two points with mutual dis-
tance >:S for all ^eK; and

b) by the lemma there is an I such that for z>I, each component of N^ has
diameter < 8.

That is, for i'>_ IQ, there are at least two components ofN^i which map onto each
component ofN^, or the map F^i->-F^ is at least 2-to-i.

§ 8. REALIZATION OF n-SOLENOIDS
AS EXPANDING ATTRACTORS

In order to prove Theorem B we suppose h: S->2 is an Tz-solenoid and choose
a representative g : K->K such that K is normally branched (see (5.5) and following).

Lemma (8.1). — There is a smooth embedding ofK. in some euclidean space.
Proof. — Cover K with neighborhoods {Nj^Li as in (5.7). We suppose the

covering so chosen that it still covers when shrunk slightly to, say, V^cN,. Choose
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an embedding ^ : V^ —^ R^2 which in turn is extended to 9^ : N, -> R^2, so that 9,
sends a neighborhood of 3N^ to oeR^2. Thus we may assume <p^ defined on all of K
by setting ^x)==o, for xeK.—N^. This yields a smooth map

9 i X 9 2 X . . . X 9 ^ : K-^R^2)

which is i-to-1 on each V^ and hence an embedding.

The notion of " tubular neighborhood " of an embedded branched ^-manifold is
unfortunately a bit awkward:

Definition (8.2). — Given a branched Tz-manifold K embedded in a manifold M"^,
a tubular neighborhood of K is a neighborhood N together with a finite ordered covering
N==NiuNgU .. . uNy and diffeomorphisms <p, : DnxDk->N^, z==i , ..., r, such that:

1) There is a system of charts {N^nK; T^, oc^} where
^ N^ n K is a disk neighborhood == U D^; and
^ TT^^ocp^KN.nK) where ^:DnxDJC->Dn is the projection.

2) If two fibers (p^axD^), (p^AxD^) intersect, then one contains the other.
Specifically (p^axD^D ^.(AxD^ if z<j.

Note that for unbranched manifolds, condition 2) would read ^{a X D^ = ̂ {b X D^).

Remark (8.2.1). — In the notation of (8.2) each of the disks Dy making up U,
has the form D^=={<p^(.y, ̂ x) : ̂ eD"), where ^ : Dn-^D fe is a smooth map.

Proof. — For each ^eD^ cp^Dy) n^xD^) is a single point of the form
{x, ^(^))eDnxDfc. We can also write

^=7ro^-io(7rJD,,)-1: D^D^

where TT : D^D^—^D" is the projection onto the second factor. This is well defined
and smooth, as (TrJDy) and <p^ are diffeomorphisms.

The complication of our tubular neighborhood occurs only at the branch set.
We prove next that we may assume that the branch set of K lies in an actual manifold, V.

Lemma (8.3). — Given a normally branched, n-manifold K, there is an n-manifold V
with boundary 8V such that KuV is a branched manifold and V—8V contains the branch
set of KuV.

Proof. — Given any point &epK, the branch set ofK, there is a U, with beU^
such that pKnU, is mapped diffeomorphically onto B^cR^* by TT, : U^-^R^. Let V,
be a neighborhood ofB^ in R". Then we can think of TT^U i as immersing the disjoint
union U^uV, into R^ Thus pinching along (BKuB^ (see (2.2)), we obtain the
conclusion locally, for each coordinate chart.

Next, if U,nU,+0, then jrj ((U,uV,) n (U^.uV^)) immerses this set in R". Thus
pinching along V^uVj puts these pieces together. The resulting quotient V of UV^
is a neighborhood of the branch set, but is apt to have a poor boundary. However,
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IntV is certainly a smooth manifold and contains pK=p(UuV). Thus there is a
compact smooth manifold V with boundary 8V lying in V and containing (BK in its
interior. This proves (8.3).

Lemma (8.4). — Given an embedding h of the branched manifold K uV of (8.3), there
is a nearby embedding (G" topology) of KuVo which has a tubular neighborhood (8.2). VQ is
a (perhaps) smaller version of V.

Proof. — As V is an actual manifold, it has a tubular neighborhood in the standard
sense—that is, a neighborhood Ny along with a projection <py : Ny ->V. By taking V
smaller if necessary but without decreasing the radius of the fibers, we may assume that
(KnV^cpv^pt) lies in the interior of the disk (py^pt). Pick a local chart (U,, TC,)
where V,==U,nNv=t=0 and consider the two maps

q>vNynU, —> V, -^ R"

(*)

NynU, ———"t——> K1.

These agree on V, and are smooth. Thus for each of the disks D,, making up U,, the
map x^^x^^D^-1^^, xeDy, is a G' diffeomorphism near the branch set (BK.

It follows that for the inverse map x[->Q^x, 6^:D^->D^, defined perhaps
only near (3K, is a G' diffeomorphism. As they agree on overlaps, the 6,, define a
diffeomorphism 60 : Wo-^K, where Wo is a neighborhood of (3K in K. 60 is a diffeo-
morphism, is the identity on WonV and G^near the identity on Wo.

Hence there is an isotopy between 60 and the identity on Wo, and using this isotopy
we can define a diffeomorphism 6 : K-^K, where 6== 60 near (BK, say on the neigh-
borhood W of j3K, and 6 == the identity of a small neighborhood of (3K. Now compose
the original embedding of K with 6 and we have a new embedding which is C^near
the original. Next, let V be a smaller version ofV and N'==Ny cut down (as a bundle)
to V, where V is chosen small enough so that N'n(KuV)cW. Let (p^^N'.
Now the maps TT, and 7r,(p' agree on N'nU, as N'nU.cW.

Let {DJ^ be a covering of V by smooth disks and let N^cp'-^N,). Then
there are diffeomorphisms .̂ : D^D^N, sending the center disk ^xO to D,,
(PeD,, in such manner that <p'o^ sends each fiber ax^ to the point <p,(ax^)eD^
One easily checks that NiU. . .uN, . is a tubular neighborhood of a part of KuV;
in particular the inclusion of part 2) of (8.2) is an equality so far.

Furthermore, for each point j/eV, (KL^ny'-^) is finite and lies in the
interior of (p'"^) as pointed out in the first paragraph of this proof. Then

K'^KuV-y'-^IntV)

is an actual manifold, and can be written as D,^u ... uD,, where these D/s overlap
only as in (unbranched) manifolds. Note that the fibers of <p' which intersect D, for
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r+I<.i<is are G'-near the normal bundle of D,. Thus for i=r+i, ..., s we may
choose <p, ^"xD^N, for these disks, to be consistent with one another, and with
the fibers of y'. This is done one disk at a time, and at each stage, the bundle already
chosen over part of D. is so near to the normal bundle of D, as to be trivial and hence
extendable. By cutting down the fibers q^ptxD") if necessary, we may assume
N.nN;^, implies D,nDj.+0, for r+i<^i<j<^s. (See figure 8.)

N;-, i ^ r+1

One easily checks that the N, so described satisfy the definition (8.2).

Lemma (8.5). — There is a diffeomorphism f : N -̂ /(N) cN such that for each xeK,
f sends the fiber at x by a contraction into the fiber at gx.

Proof. — We will use two versions of tubular neighborhoods ofK, one corresponding
to the domain of/, the other to the range. The fibers of the first neighborhood will be
larger, but the " horizontal " disks will be bigger in the second neighborhood. This
corresponds, of course, to the two parts of the hyperbolic structure. These neighborhoods
are easily obtained from the result (8.4) by standard topological devices.

Thus by (8.4) there exists
1) a tubular neighborhood N=N^u ... uN, given by

y.:D»xD^N., i=i,...,r,
where UlntNpK;

2) a tubular neighborhood M= M^u ... u M, given by
e.^xD^M,, j=i,...,s,

such that

a) Each of the fibers, Q^axV) of M, lies in one of the fibers, (p^xD^), ofN.
b) Each of the disks D .̂ making up U,==N,nK is mapped diffeomorphically

by g into g(D^.
c ) Each g(D,j) as in b) lies in a single M/.

Foreach z= i , . . . , r , choose D,^ one of the D^s making up N,nK. We define
inductively /, : N->M as follows. For some/, the box M^g(D^). Using the structure
Qf .-D^xD^M^ there is a diffeomorphism /i :Ni->M^ such that/i extends g\D^
and maps the normal fiber at A: by a contraction into the normal fiber at gx. Now
consider N3. As N3 may intersect N^,/i may already be defined on a portion ofD^.
But/i x is in the same fiber as gx and as this fiber is small, f^x is near gx. Now g(D^) c M
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for some m. Thus it is easy to find a diffeomorphism ^ : D^->M^, so that ,/2==/i
on DginNi andj^ lies in the same fiber as gx. Now/g is defined on D^, which may
be considered for the moment as the <c center " of N3, and agrees with/ on the overlap
N^nD^. Thus it is an easy matter to extend/ to all of N3, so as to send fibers into
fibers by contractions and agree with/ on N^nNg.

Continuing in this manner, one defines/g, ... until one has/,, defined on all ofN.
The crucial fact at each step is that though /_^ has been defined on a portion of IM,,
it must map this into a trivial bundle, as it is a diffeomorphism of a trivial bundle.

Proof of Theorem B (8.6). — We now have KcN, a tubular neighborhood and
a map / :N—^IntN such that:

1) for each xeK, f{x) is in the same fiber as g{x)\ and
2) f sends each fiber into a fiber by a contraction.

Now consider the projection q : N-^K' as in the proof of (4.4) of Theorem A.
As in (4.4) we obtain a commutative diagram

/(N) <— Ni-
N f

'[ „
K' <— K'

9'

where g ' exists by the fact that / preserves fibers (property 2). Thus, as above,
00

A=D(/)=^/l(N) and/[ A is topologically (actually CT) conjugate to the shift map
V : S'->2' determined by g ' : K'-^K'.

But we also have the diagram

K ^ K

where m is chosen via Axiom 2) (see (3.8)). The top triangle does not commute, but
the large rectangle does. Whereas the map q~1 sends a point of K' to a fiber ofN which
intersects finitely many (perhaps more than one) cells in K, ^w collapses all of these
to a single cell, so that gmq~l is well defined. Let r==^-1. Then we have

^ O - ^ I K : K^K', r : K'->K,
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and the integer m giving a shift equivalence between g and g\ Hence f\ A is topo-
logically conjugate to the shift map h : S-^2 presented by g : K->K.

The fibers of N provide f\ A with the stable part of a hyperbolic structure, say E8,
which is defined on the neighborhood N and behaves well under f. The existence of
the unstable part of the hyperbolic structure follows by techniques which are now fairly
well known (see e.g. Smale [n], Alekseev [o; p. 119 (4)] or Hirsch-Pugh [5]).

§ 9. PROOF OF THEOREM E

Theorem (9.0). — For some ^>o, H,(S; R) =)= o, for each n-solenoid (H is Cech-theory).
Proof. — Let g : K->K be a presentation of h : S->S satisfying axioms i), 2),

34') and 4). (Axiom 4) allows us to apply the Lefchetz trace formula. One could,
without Axiom 4), proceed as in [17]). If K (that is, the tangent bundle TK. of K)
is orientable, then there is a formula due to Smale ([9] or [17]):

(9.1) N^)=±S(-i^ tracer,

where N^(^) is the number of points left fixed by g*, and ^ : Hj(K; R) -> H_(K; R)
is the map induced by g. (9.1) applies here, as TK plays the role ofE^ by Axiom 3'1").
But (6.1) we know the periodic points of g are dense in K. Hence the set of num-
bers {tr^J is unbounded, for some j>o, because

tr^o^(the number of components ofK)<oo.

Note that if h : V->'V is an endomorphism of a real finite dimensional vector
space where {tr A1} is unbounded, then the inverse limit of

v<-v<-v<-...
h h h

is non-zero. Hence Hy(S;R)=(=o.
In case K is not orientable, we consider the orienting double cover K-^K and

note that the map g can be lifted so as to preserve a (chosen) orientation. Then the
involution T : K->K exchanging the two points of the fiber, reverses this orientation.
We proved the formula

(9.2) 2TO=±2:(-ip- trace(^,(i-T,,))

in the paper [17]. It follows as before that H^(S :R)=[=o, for some j>o, where S
is the inverse limit of

I^K^K^...
H 0 If

and hence is the oriented double cover of S. It is well known that the covering map
induces an isomorphism

H,(S: F)-^H(S;F)

199



200 R. F. W I L L I A M S

over any field F of characteristic 4= 2 or more directly, either S —>-S is non-trivial, in
which case Hi(2$ R) +o, or 2 =SxZ2, in which case H,(S$ R)=)=o, being cc half" of
H,(S;R).

§ 10. A CRITERION FOR AXIOM i)

In this section we give an alternative way of checking Axiom i), for an immersion
satisfying Axioms 2), 34"), as well as o), 4) which we introduce now. This essentially
repeats a part of [16, § i, pp. 343-344]-

Axiom 0). — g : K->K is indecomposable. That is, K is not the union of two
disjoint closed invariant subsets.

Axiom 4). — K is triangulated as an ^-complex whose (n—i)-skeleton contains its
branch set.

Remark. — Given g : K->K satisfying Axiom 2), 3'1"), one can subdivide K into
finitely many disjoint subsets K^, . . . ,K^ so that each of ^ |K^:K^-^K^ satisfies
Axioms o), 2)5 3'1"). We proved in (5.6) that any g : K-^K. satisfying i), 2), 34'), is
shift equivalent to one satisfying i), 2), 34") and 4).

Criterion (10.1). — If g : K-^-K satisfies Axioms o), 2), 34"), and 4) then it satisfies
Axiom i) if and only if there is an integer m such that ^((T^K for each n-simplex G of K..

Proof. — First, if g satisfies this criterion, and N is a neighborhood of a point p,
then for some i, ̂ (N) contains a simplex (T, by Axiom 3+). Then, applying the criterion,
^"^(N^KDN so that p is a non-wandering point, and Axiom i) is verified.

The other way requires several steps: the first is essentially trivial (see also [16;
p. 344]).

Lemma (10.2). — If g satisfies Axioms i), 2)5 34'), then so does g'for i==2, 3, ...

Lemma (10.3). — If g : K->K satisfies Axioms i), 2)3 34') and D is any n-cell in K,
then there is an integer n such that ^W(D)DD.

Proof. — D is a subset of the union of finitely many %-simplexes, say o^, (Tg, ..., a y .
Choose a periodic point, say ^, in the interior of o,nD, z = = i , 2, .. ., r, and let

X=max p(^, ^)/min(p(^, ^o-^u^D)).

Then X>o and for some integer m, g"1 increases distances by more than X and g"1^) == ̂ .
By an argument as in the proof of case i of (6.1), ^(Dn^Do-^ so that ^W(D)^D.

Lemma (10.4). — Let g:'K.->'K satisfy Axioms o), i), 2), 34"), 4) and let D be an
00

n-disk in K. Then .U ̂ (D) is dense in K.
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Proof. — Assume false, let D° be the interior of D and let A be the closure of
00

U ^(D) and B the closure of K—-A. Note that A is invariant under g. Likewise B,
~ 00

for if beK.—A, gb^\J g\'D°), for otherwise b would be a wandering point. That is

^(K-A)CK^A.
Hence ,?(B)cB.

By Axiom o), there is a point xeA n B. Let E be a small open Tz-disk containing x.
00

Then E intersects both U ^(D0) and K—A. Therefore there is a periodic point
^e^(D°)nE for some i. We may suppose a is not a branch point. If m is a period
of a, then ^e^^D0) so that if m is also sufficiently large, ^""^(D0) contains the closed
^-simplex containing a, which in turn contains x. In particular ^""^(D0) contains a
disk E' having x as interior point.

By Axiom 2)3 there is an integer r and a neighborhood N of x such that ^(N) lies
in a disk. Thus ^(N) C^(E'). There is a point &eNn(K—A); but then

gr{b)egr(Ef)Cgm•}•i+n(DO)cInterior of A.

As this is absurd, this completes the proof of (10.4).

Lemma (10.5). —If g : K-^K satisfies Axioms o), i), 2), 34'), 4) and D is an n-disk
in K, then ^(D) D K for some m.

Proof. — By (10.3) there is an r such that ^"(D^D. Then
DC^(D)C^(D)C...

Now suppose E is an 72-simplex in K. Then there is a periodic point ae(IntE) n^^D)
for some k, by (9.4). Thus if m is a large multiple of rk and of the period of a,
then EC^D). As there are only finitely many yx-simplexes (as E), the lemma follows.

Lemma (10.6). — For lemma (10.4) we need only assume Axioms o), i), 2)3 3"1").
Proof. — For assume g : K->K satisfies Axioms o), i), 2)3 34') and let D be an

TZ-disk in K. By (5.6) there is a shift equivalent ^'K'—^K' which satisfies Axioms o), i),
2)? S"^ 4)- Say r:K->K/, s : K'->K and the integer p give the shift equivalence.
Then r(D) contains a disk, say D', so that, by (10.5), ^'(D^D K', for some m. But then

g^+^^^s^^rWDsg^^^s^^K.

This uses the fact that g is onto, which follows from Axiom i).

§ n. NEIGHBORHOODS OF COMPACTA,
NICE RELATIVE TO A FOLIATION

Such neighborhoods always exist, with various meanings put to (( nice ". In this
section, (c nice " will be given in terms of a triangulation (see also Munkres [6]) though
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we could proceed using < c fbliation boxes " as in Gromov [i; Th. 4]. Such neighborhoods
give insight into the proof of (2.1) above.

Definition (11.0). — If ^ is a €7 foliation of a manifold M and or is a smooth
simplex lying in M, a is said to be transverse to ^ provided there is a chart 9 : U-^R"
defining y locally where cr C U, its vertices lie on distinct fibers, and y [ a is smoothly
conjugate to a linear map. A C7' triangulation of a subset of M is transverse to ^ if each
of its simplexes is.

The principal result of this section is the

Lemma (11 .1 ) . — IfK- is a compact set in a manifold M with a Cr foliation ̂ , then
there is a neighborhood N of K and a Gr triangulation of N which is transverse to y (^i).

Proof. — First triangulate a neighborhood of K so that each simplex lies in an
open set U of a chart giving the foliation. We may assume that N is compact and
that each simplex of N lies in a simplex of (top) dimension m. Linearly order the
m-simplexes, o^, 035 . . ., o-g.

There is an s>o such that any piecewise smooth map within s of the identity
in the Gr metric is a homeomorphism. Let c^CU, <p : Ui—^R" be a chart for the
foliation ^r. We think of VcR^R^^ with <p the vertical projection. Choose a
bump function ^ : N—»-R where ^==1 on a, ^=o outside a small neighborhood N^
of G-i, and |[y]|r<oo.

There is a subdivision a[ of a^ such that :

a) The vertices of each simplex lie on distinct fibers of 9^ : Ui—^R^
b) The natural map (pg : CT->T(, from a simplex Gea[ to the rectilinear simplex T^

spanning its vertices is within £/3[ | (p |[ of the identity in the CY metric.

Part b) requires some explanation. First there is the natural map CT-^T^ given
by their respective barycentric coordinates. As these are G°° functions, this map is CV.
Secondly, this map will be CT-close to the identity provided the tangent spaces of the
various faces of a vary only a little within any one face.

Now define f^ : Ui->Ui by

x^W S ^x)^{x)+{i-^x))x
o£ Oi

where \ is a partition of unity associated with a slight enlargement of the m-simplexes
CT£CTI. Then in the G^metric, | |/—id[[^|[^||. SxJ|<p^—id| |<^£. One needs to note

0

as well that for a face T of several CT, the various <pg agree on T, as their barycentric
coordinates do. Then f^ is well defined. This gives us a new triangulation in which
the simplexes a of a[ are c( straight " relative to U^.

Note that the local projection (pj a, for any simplex aea[, is linear and has distinct
values on distinct vertices of (T. Thus there is an e^>o such that if/is a piecewise
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smooth map CV-within s of the identity, then the local projections ^\f{o) are still
conjugate to <pi | a.

Thus we proceed to Ug, subdivide org to c^ compatibly with the given sub-
division of CTI, and straighten the simplexes of a^, moving nothing further than e^, so
that now the local projections are conjugate to linear ones on all simplexes lying in
cr^u cr^. Continuing in this way, we find the desired triangulated neighborhood, N.
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