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Notational and terminological conventions. — All rings considered are commutative
with unit. Local rings are noetherian, unless otherwise specified. If R is a ring, Q(R)
denotes is total quotient ring. If R is a ring and ^? is an ideal of R, then, for x in R,
v<p(^) denotes the ^}-order of A:, i.e. the highest power of ^5 containing x if this number
exists, oo otherwise; Bl<p(R) denotes the blowing up of Spec (R) with center ^3.

o. INTRODUCTION

The object of this paper is to understand the phenomenon of a local integral
domain 0 of dimension i and characteristic j&, whose completion has nilpotent elements.
As is well known, this is equivalent to saying that the normalization of 0 is not finite
as 0-module, or indeed that the singularity of 0 cannot be resolved by finitely many
quadratic transforms. Thus these rings cannot arise as the local rings of points on
<( standard ?9 geometric objects, i.e. schemes of finite type over Z or over a complete
local ring (in virtue of the famous theorems of Zariski, Nagata, and Grothendieck).
How do they arise, and what is their structure ?

We call such an D as above a ce non-excellent curve singularity ". Some authors
may prefer the terminology <c non-Japanese " or cc non-pseudogeometric " here, since
for local rings of dimension i the global aspects of excellence (in particular those relating
to closedness of the singular loci) do not enter in. However the i-dimensional local
domains play an obvious elemental role in an inductive analysis of the relationship
between any local ring and its completion.

This research was supported in part by NSF GP 23219 at Harvard University.
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130 B R U C E B E N N E T T

We will develop a structure theory for those local domains 0 as above, for which
also Oygd ls ^gular. This extra hypothesis on 6 is required morally by the observations
that:

(i) The phenomenon of non-excellence which we seek to study is unaffected, in
fact is purified by finitely many quadratic transforms, and

(ii) By finitely many such transforms we always arrive at an 0 for which the
hypothesis is satisfied (see § i for details). Here, at least, morality is rewarded: we find
that such D must have a discrete valuation subring R such that 0 is a purely inseparable
extension ofR contained in R, i.e. we have local homomorphisms

Rc^Oc-^R
i 3

with joi== i^ and 0 purely inseparable over R. We call this a presentation of 0 over R$
its existence is proved in § 2, and it is the basic structural element of the theory.

Given a presentation R<->0<-^R, the structure of 6 can be completely described
in terms of (a) the birational equivalence class ofO over R and (b) the (< way " in which
0 fails to be a finite R-module (for although the field of fractions of D may be finite
over that of R, 0 need not be finitely generated as R-algebra). More precisely (say,
for simplicity, in the case of finite fraction field extension) take a finite R-subalgebra S
of 0 such that

{#) 0 and S have the same fraction field and S^O induces a surjection of com-
pletions.

Then we show that 0 is obtained by an infinite sequence of birational operations
on S, for which the kernel of S->D—^o is a precise description, albeit in "coded59

form (§ 3). The theorem of quasi-algebrization of § 6, which a priori is a technique
for construction of rings with given completions, in effect accomplishes the breaking
of this code. In combination with the uniqueness theorem of (6.3) it establishes an
isomorphism between the set of all 0 which satisfy {#) above with respect to a given S,
and the set Hilbgyg(R), i.e. the set of all quotients of S which are flat over R (6.3.2).
This may be viewed as a local description of a <( classifying scheme " of say, all local
R-algebras in a given birational class.

Thus, the results show that in characteristic p, all non-excellence of local rings of
dimension i is due to inseparability in an extension R^R for a suitable discrete valuation
ring R. The interest of this seems enhanced by the fact that there exist examples of
non-excellent local domains of dimension i over the complex numbers, e.g. the recent
work of Ferrand and Raynaud [3]. These examples depend on certain differential
operators, which however turn out to play a role analogous to that of the differential
operator canonically attached to a presentation! This observation, together with some
of the ideas of [3], suggest that a unified treatment may be possible from this point of
view (keeping in mind that the operators arise transcendentally in characteristic o,
as contrasted with their algebraic origin in characteristic^). In any case their examples
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ON THE STRUCTURE OF NON-EXCELLENT CURVES IN CHARACTERISTIC p 131

show that the algebraic approach of this paper cannot apply in characteristic o, without
what would appear at the moment to be very substantial modifications. These questions
are treated in § 4.

In § 5 we indicate how to construct (< geometrically " discrete valuation rings R
with arbitrarily rich inseparability in R<->R; the basic idea here is that ofF. K. Schmidt.
In combination with the results related to quasi-algebrization cited above, this construc-
tion implies that any finite flat R-algebra C with a section and connected fibres over R is
the completion of a local domain 0, in such a way that the R-structure of G is induced
by an R-presentation structure of 0 for suitable R (everything in char. p, of course).

In § 7 we give an example of a pathological 0, whose fraction field is infinite over
a maximal presentation.

I would like to mention that M. Nagata's beautiful and basic example in
Appendix 3 of [2] provided me with many fundamental insights into this theory. It
is my pleasure to thank H. Hironaka, with whom I have had numerous useful and
encouraging conversations on this subject. I am also indebted to him for the proof
of (2.1). I am grateful to R. Rasala for several helpful and pleasant discussions.
Finally, I would thank the referee whose identity is unknown to me, but who, in observing
a basic defect in an earlier manuscript of mine on this subject, played an indispensable
role in the development of the theory.

i. PRELIMINARIES: THE EFFECT OF QUADRATIC TRANSFORMS

Let 0 be a local domain of Krull dimension one, and of characteristic ?>o.
Let m denote the maximal ideal of 0. We want to study the " formal fibre " of 0
i.e. the scheme-theoretic inverse image of the generic point by the natural morphism

Spec(6)->Spec(0)

where 6 denotes the m-adic completion. Thus the formal fibre may be expressed as
Spec(6®oQ(0))

(where Q denotes field of quotients), or equivalently as

(1.0) Aspec(C^)

where the ̂  are the minimal primes of 6. Thus we are reduced to study £)<n..
Since 0 is of dimension i, Bl^(O) has finitely many closed points, corresponding

to the distinct points of Proj(Gr^(0)). Thus Bl^(0)=Spec(B) is affine, where B is
a semi-local 0-algebra, finite over 0 (since it is of finite type over 0, and is contained in
the normalization of£)). Now since blowing up is compatible with flat base extension,
we find that Bl^(6)=Spec(B®o6). Therefore B1JO) and Bl^(6) are topologically
identical; if£>' and 0" are the local rings of corresponding (closed) points, then

o'^o'^o'^o.
407



132 B R U C E B E N N E T T

(Note that the last equality holds even though 0' may not be finite over 0.) These
local rings are called the "quadratic transforms" of 0 (or 63 as the case may be).

Let ^} be a minimal prime of 6 and let 0' and 6' be as above. We have the " car-
tesian 9? diagram

o' —> 6'(D) t t
o —»a

where the vertical arrows are quadratic transforms and the horizontal arrows are
completions. Let ^3' denote the strict transform of ^3 in 0'. We recall that if t is an
element of 6 such that m6' == ̂ 6 then we may describe (letting m == m6):

^=={x^\xe^ and v,n(^v}.

^P' has the property that D'/^P' ls a quadratic transform of 6/^3 ([i], o, § 3). We note :

(1.1) If ^P' is not the unit ideal then £)->£)' induces an isomorphism O^r^O^.
In fact, ^y+6'^^. Therefore 6(p=(A)<p and ^'^W)^' But since

£)'c6< ( .̂ a^, and since obviously ^'O^^fij, we get the result.
Now take a quadratic sequence along }̂, i.e. a sequence

6(o)=6-^6(i)=o'->6(2)^6(3)_^o(4)_^^ ^ ^
of quadratic transforms such that, if ^^ == }̂, and ^) denotes the strict transform
of ^-i) in o^, then ^^C^. This corresponds uniquely to a sequence

OW^o^^O^O^O^D^...,

such that all the diagrams
^)(i+i) _^ 0(^+1)
^ ^

o^ _> c^
have the same properties as the diagram (D) above (loc. cit.).

We now want to prove:

(i.a) For i sufficiently large, ^P^ is the unique minimal prime ideal of 6^ and 6^/^P^
is a regular local ring.

This fact, in combination with ( i . i) reduces our study of the formal fibre to the
following situation:

(1.3) 0 is a local domain of dimension one such that 6 has a unique minimal prime ^
and 6/^5 is regular.

408



ON THE STRUCTURE OF NON-EXCELLENT CURVES IN CHARACTERISTIC p 133

The proof of (1.2) will follow from the considerations below.
Let 0 be a reduced, complete local ring of dimension i. IfN denotes the normal-

n
ization of0, then N may be written in the form II R^, where the R^ are complete

discrete valuation rings. On the other hand, we know Spec(N) may be realized as
a succession of quadratic transformations beginning with Spec(D). Hence Spec(N)
and Spec(O) are isomorphic outside the fibre above the closed point of Spec(O). It
is therefore clear that the R^ are in i-i correspondence with the minimal primes ^
of0, so that R^ is the normalization of O/^. In particular

(1.4) If 0 =£)(0)->0(1)->.. . is any sequence of quadratic transforms beginning
with 0, then there exists a j such that for all k^-j O^ is regular, i.e. the quadratic sequence
separates the branches of Spec(O) and resolves the singularity of each branch.

Now if 0 is an arbitrary (not necessarily reduced) complete local ring of dimen-
sion i, let 3 be its nilradical. If 0' is a quadratic transform ofD, let 3' denote the strict
transform of 3 in 0'. Then 3' is the nilradical of0'. In fact, let ^em=max(0) such
that ^D'==m0', and let/be an element of the nilradical of 0'. Write f=x\f with
^em^. Since O'CD(, ^==0 implies that t^xn=o in D for some j, and we may
assume that j==n. Thus tx is in 3nmv + l^ so that txjt^^^^f is an element of 3'.
Thus Nil(O') c3', and since the other inclusion is obvious, we get the result.

Hence if X=Spec(0), and prime ( /) denotes blowing up with the closed point
as center, (X') ̂  == (X^)'. Thus, applying (1.4) to ©red? we obtain

(1.5) If 0 =0^->£)^->. .. is any sequence of quadratic transforms^ then there is
a j such that for all k^j, O^ is unibranch and 0^ is regular.

In particular let ^3 be any minimal prime ofO, and let
o^o^-^o^...

be a quadratic sequence along ^5. (We can easily obtain such a sequence by choosing
a quadratic sequence beginning with D/^5 — which is necessarily unique by the above
remarks — and taking the unique quadratic sequence beginning with 0 to which it
corresponds.) (1.2) now follows by applying (1.5) to this sequence, remembering that
the 0 in the discussion immediately preceding is actually 6 in our application.

2. THE EXISTENCE OF A PRESENTATION

(2.0) We begin with the hypotheses of (1 .3) : 0 is a local domain of dimen-
sion ly char. j^>o, and 6 has a unique minimal prime ^P. Moreover^ 0/^P is regular. Our
goal in this section if to prove the following theorem:

Theorem 1. — With 0 as above there exists a regular local ring R of dimension 1 such that
Rc^Oc^R
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134 B R U C E B E N N E T T

where the inclusions are local homomorphisms, the composition is the canonical map R^R,
and 0^ c R for some q == p\

Note that in view o f § i , this theorem has the following variant:

Theorem 2'. — Let 0 be a local domain of dimension 1, char. p^>o and let

o-o^-^ow^...
be a sequence of quadratic transforms. Then there exists a discrete valuation ring R such that for
all j sufficiently large,

Rc-.O^R

where the inclusions are local homomorphisms and the composition is the canonical map,
and (O^cR for some q=p^ (For Theorem i', use Theorem i and (1.2) to get
the result for some 0^. The same R then works for k>j since R is normal and O^
is contained in the normalization ofO^.)

To prove Theorem i, we begin by showing that under the hypotheses of (1.3),
0 contains a discrete valuation ring. This fact follows immediately from the lemma
below, whose proof was suggested by Hironaka.

Lemma (2.1). — Suppose 0 is a local ring of characteristic p>o, and Oy^ is normal.
Then 0 contains a normal local subring N of the same dimension as 0 with O3' cN (0^ denotes
the image of a suitably high iterate of the Frobenius endomorphism).

Proof. — Let ^5 denote the nilradical of 6. Then for a sufficiently high power q
of the characteristic^, ̂  is the kernel of the Frobenius map fi—^C^. Hence

6^(6/^-(6^.
Therefore, since 6^—^(0^)^ is a ring isomorphism, 63 is normal.

Note that the Frobenius induces an injective local homomorphism O^^D^ which
factors

03c^o?->6?
since 6^ is complete. Now let N denote the normalization of0^. Since 6^ is normal
we have

o <=—> 6
u u
O^N^fi^.

We claim that NcO. In fact, let afb be an element of N, with a, b in 0^. Hence
ajb is also in 6^ and afortiori in 6, i.e. b divides a in 6. But both a and b are also in
0, so b divides a in 0 by the faithful flatness of D over £). Q.E.D.

Of course in our situation where dim (0) == i, Oyed? ^ ̂ d N are discrete valua-
tion rings, and we can obtain more precise information about the structure ofN relative
to that of 0 :

410



ON THE STRUCTURE OF NON-EXCELLENT CURVES IN CHARACTERISTIC p 135

(2.2) Let K afeyzo^ ̂  residue field of 0, aW /^ ^ 6^ any element of 0 zc^A V^(A:)= i.

TA^ (i) O^K^O]
^a? (ii) TA^ local inclusion N^O3

induces an isomorphism N^O3.

Proof. — Given x in D with V^(A?)==I , choose an isomorphism ^^•^^[[A:]].
Then, since £^==(6^, we have:

O^K^EM],

which fits into a commutative diagram:

6,ed -̂ > K[M]

Frob Frob
Y V

Off _^> K^M]

n n
^ed -̂  K[M].

For (ii), first note that since D^N^S)3 the residue field ofN is K^. Now since N is
a discrete valuation ring and 69' is a domain, O3 is Hat over N, so 6^ == 6s is flat over ,̂
so N^fi3 is injective. Moreover, since x is in 0, ^? is in C^cNcNf, so N-^C^ is
surjective in view of (i). Q^.E.D.

(2.3) We now want to fatten N to obtain R as in Theorem i. We first fix x
in 0 which becomes a regular parameter of €)^ as above. Let X be an indeterminate,
and let

N^Npq^-^).
Then Xh>^ defines a map

5:N'-^0.

Let 3=ker(^). Tensoring with N over N, we obtain an exact sequence:

(o) ->3®N N->N'®N N->O®N N.

Now since N^K^^J], N'^NN.^K^I^]]. On the other hand, since N' is finite
over N, N^^N^N'. Hence N' is regular, and N' is isomorphic to ^[[A:]]. Consider
now the composition

K?[M]=N /®NN-N'^0®NN-^6^6,ed^K[M],

where 6 is induced by the natural maps D->6 and N—>-6. Since this composition
takes x to itself, it is injective, so also g* is injective. Therefore 3®NN=(o), so 3==(o)

411



'36 B R U C E B E N N E T T

by faithful flatness. Thus.^N' =N[x] is a regular local subring of 0, and the inclusion
induces an injective map N'^6^ which fits into a commutative diagram

KTO] -^ K[M]
t( t(
N '^6^6^
^ ^
N' <->0

Now let {^JagA be a />-base for K over KP. Then the ^ are also a y-base for
K over K'1, i.e. the set of all monomials of the form

{%%... ~U | jeZ+, o^n^-i}

is a free^ase for K over K1. In particular K == K'({^}), and the irreducible equation
of each ^ over K" is X"—^.

Let {^} be a set of representatives of the \ in 0, i.e. ?„ = ̂  (mod m) for all a, and
let ca=bq, in O^cN'. Now define

R=N'[{Xj,eJ/{Xi-.J

where the X^ are a system of indeterminates over N' indexed by A. We first note:
R is regular, and R^-K[[.)c]], where the isomorphism is in the sense of N'-algebras.
In fact, R==limRg where the limit is taken over the inductive system of finite subsets S
of A, and Rg=N'[{X^gg]/{X^—cJ. Now each Rg is regular with parameter x:

Rg ̂  Rg®N'N' ̂  K»({U6s)[M].

Hence R is also regular. Namely, pick jyemax(R). Then y is in max(Rg) for some S,
so x divides y in Rg and hence also in R. Moreover the residue field of

R = Umres(Rg) = Inn K^({^g g) = K.

Hence R -^ K[[^]] as asserted.

Now let h : R—0 be the N'-algebra homomorphism defined by X,l-+^. We
claim that h is injective. To see this, simply observe that the above argument shows that

the composition R -> 6 -> Q^ is an isomorphism, so that h is injective.
Hence we may view R as a local subring of 0, and the induced map R->-6^ is an iso-

morphism; both are K[[x]]. Now the composition

Oc6->6^
412



ON THE STRUCTURE OF NON-EXCELLENT CURVES IN CHARACTERISTIC p 137

is injective since 0 is a domain. Hence, in view of the commutativity of the diagram
»

R ^ 6 -> -6^
t ^ /
R ^ o ^

we may view RcO cR^K^]] in the sense of Theorem i.

Definition (2.3.1). — We will call the situation
Rc-^Oc^R

as above a presentation of 0 over R.

Remark (2.4). — If we want to give a theory only up to finitely many quadratic
transforms, then we can make even stronger hypotheses on the presentation R^O^R:
If ̂  denotes the minimal prime ofO (the kernel of the induced map O—^R), then we
can assume that Gr^(O) is free over 0/^}=R. (That this is achieved after finitely many
quadratic transforms is an immeditae consequence of [i], chapter II (3.2).) In the
terminology ofHironaka, this is expressed by saying that Spec(O) is normally flat along
the subscheme defined by ^P, i.e. along the section (ofSpec(D) -^Spec(R)). If we think
of Spec (6) as a family of (o-dimensional) singularities parametrized by Spec(R), it
means that these singularities are numerically equivalent, i.e. they have the same Hilbert
function.

We will not use this fact in the sequel, since our analysis has as its natural realm of
application the class of those 0 for which it is merely assumed that a presentation exists;
their structure theory is not hampered by lack of such a normal flatness hypothesis.
Thus we will not touch further on this point, except to suggest that any space which
parametrizes the rings with presentation over R in a given birational equivalence class
should be expected to have singularities at those points corresponding to those finite
R-algebras which fail to satisfy the normal flatness hypothesis. The idea is that for
generic S finite over R, the minimal number of generators of S as R-algebra should be
no larger than the minimal number of generators of Q(S)/Q^(R); however if S fails
to satisfy the normal flatness hypothesis this need not be so.

3. BIRATIONAL STRUCTURE THEORY OVER A PRESENTATION

(3.0) We henceforth assume we are in the situation of a presentation:

(3.0.1) Rc->0<-^R

where of course 0 is a local noetherian domain of dimension i, R is a discrete valuation
ring with D purely inseparable smdflat over R, and j oils the canonical homomorphism
R->R. Moreover we assume 0 has a unique minimal prime ideal ^3, with 6/^)S regular.

413
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138 B R U C E B E N N E T T

Upon completion, we obtain

R^O-^R
» ?

with j°i=^^ then ^P=ker(j). We may also view ^5 as the inverse image of the
generic point of Spec (R) by the morphism Spec (6) -> Spec(R) induced by i, i.e.

(3.0.2) 6<p=6®gQ(R)
where as usual, Q^ denotes passage to the field of fractions. Consider for a moment the
simplest case, when 0 is finite over R so that 6 =O®RR. Combining this with (3.0.2)
we obtain:

(3.0.3) When 0 is a finite R-algebra

O<P=Q(O)®Q(B)Q.(R).

Thus in the case of finite R-algebras the formal fibre is a birational invariant.
Our technique for analyzing the general case (when 0 is not necessarily finite

over R) is to approximate D by a certain sequence SoCS^c. . . of birationally equivalent
finite R-subalgebras of0. The fact that the formal fibres do not change in this sequence
will enable us to get a good hold on the whole situation: we will be able to express 0 as
a quotient of any of the S^ by an ideal which may be described precisely (3.4); this
will also serve us in the quasi-algebri^ation procedure of § 6, as an essential part of the
technique to construct 0 with a given completion and presentation. The point is that
the sequence (S^) above may be defined in a canonical fashion, so that in the case
when [Q,(0) '' QX^)]^00 it characterizes 0 uniquely (as well as 0); and in case
[Q/0) : Q,(R)]==oo (which may happen even when R is a maximal presentation^ cf. § 4
and example of § 7) the technique of the sequence shows us at least how to construct
R-subalgebras A ofD such that [Q,(A) : Q(R)]<oo and A =6 (3.2).

(3.1) Beginning with (3.0.1)5 let m=max(0), 9Jl=max(R). Choose a finite
set of elements/i, . . .,/ in m such that (9K,/i, .. ../JO ==m. Let

So-RE/i, ...,/JcO.

It is clear that So is a local R-subalgebra ofO with maximal ideal

^o-W/i, ...,/JSo,

SQ^O induces an isomorphism of residue fields, and 9lo^ ==m. Moreover, since Sg is
integral over R, dim So = i. We will need the following simple result:

Lemma (3 .1 .1 ) . — Let A->B be a local homomorphism which induces an isomorphism
of residue fields. Let 9?l==max(A), S^nw^B), and suppose 9?lB=9l. Then, for every
integer v>o, A—^B/SR^ is surjective, and moreover Grg^(A)-^Gr^(B) is surjective.
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ON THE STRUCTURE OF NON-EXCELLENT CURVES IN CHARACTERISTIC p 139

Proof. — Since the residue fields are the same, if we let A denote the image of
A in B, we have:

B^A+9l=A+9KB
== A + 9K(A + 9KB) = A + S^B = A + ̂ B

=A+9TB, etc.

Hence A/(9TnA) ^ B/9TB and A-^A/^nA) is surjective.
For the second assertion, first note that since A-»-B/9l2 is surjective, aR/SK2-^/^2

is surjective, so that if A: denotes the common residue field:

Sym^mim2) -> Sym^/912)

is surjective. But then, since in the commutative diagram

Sym^an/an2) -^ Sym^/SR2)

T T

Gr^(A) ————^ Gr^(B)

the vertical arrows are surjective, we get the result.
Note that as an immediate corollary to the lemma, we get:

(3.1.2) With the hypotheses of (3.1.1), A->B is surjective. In particular in
our situation, ifT is any local subalgebra of D containing So, then both T->6 and

Gr^T)(T)^Gr,(0)
are surjective.

Remark (3.1.3). — Suppose 0 is a local domain of characteristic o, containing
a discrete valuation ring R (with R<->0 a local homomorphism) such that R and 0
have the same residue class field, and the maximal ideal ofD is generated by elements /i, . . . 5/5
which are integral over R. Then 0 has dimension i, and 6 is reduced (equivalently 0
has finite normalization). Namely, let S==R[/i, .. .,/J c0. Then S->6 is surjective
by (3.1.1). Thus, since dimO is at least i by hypothesis, it must be precisely i
(dim S == i because S is integral over R). Moreover, the formal fibre ofSisQ(S) ®Q/R)Q(R) ,
since S is finite over R. But this is a direct sum of fields (because we are in char. o).
Thus by surjectivity, the same is true of the formal fibre of0.

(3.1.4) Returning to our situation (3. i), we observe that since So is a finite purely
inseparable extension ofR, its formal fibre (3.0.3) is a local ring, so that SQ has a unique
minimal prime ideal ̂ ; of course, just as for 0, (So) red ̂ K-
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140 B R U C E B E N N E T T

(3.2) We are going to use So to construct a local R-subalgebra A o f O with the
properties: A-^6 and [Q(A) : Q(R)]<oo. This will be accomplished by taking the
normalization of So and intersecting this with 0. Moreover, by interpreting things
in terms of the successive quadratic transforms of So, we will also express A as the limit
of a sequence: SoCSiC. . . , which will prove to be an important invariant of the
structure of 0 relative to that of 0.

First observe that 0 has a unique quadratic transform O^, i.e. the exceptional
fibre of BVO^Spec^)^ has a unique closed point. In fact, this fibre is the same
for 0 as for 6, and 0^ is regular. Moreover, if A: is a regular parameter of R, then
it is^also one for O^^R. It follows that if O^ is the unique quadratic transform
of 6, mO^^O^, and hence also m0^==(^)0(1). This is the same as saying
that O^DIm/^], i.e. the 0-subalgebra of 0^ generated by all f/x, fin m. Now
by (3. i .4) exactly the same argument applies to So, so that S^=So[No/A:] is its unique
quadratic transform. Clearly

S^=So[No^]cO[m/^=0(1).

Applying the same argument inductively we obtain a diagram of quadratic sequences:

So —> So1) -^ . .. —> So1) —> . ..

n n n
o —> o(1) —^ . . .—^ QW —^ ...

such that, if ̂  denotes IT^S^), then for all i we have SR^S^ (x)S^ (and
the analogous statement is of course true for the 0^'s).

Now let S,=S^nO, and let 3l,==max(S,). Let

(3 .2 .1) ^J -̂
oo

Note that if we let S == U S ,̂ we may also express

(3-2.2) A=SnO,

and S is a discrete valuation ring with parameter x (the normalization of So).
Let us first check that A<-^0 induces an isomorphism A-^6. Let 9t=max(A)."

Since So^A^O, by lemma (3.1.2) all the maps

A-^O/T^

are surjective, and hence for every v

A/Oi^nA) SD/W.

(*) Bltn(O) denotes the blowing up of Spec(O) with center TTt.

416



ON THE STRUCTURE OF NON-EXCELLENT CURVES IN CHARACTERISTIC p 141

Therefore it suffices to show that the topology on A defined by the ideals m^ n A is equi-
valent to the 91-adic topology, i.e. that for every v there exists a [L such that

(*) m^nAc^T.

To see this, choose j>o such that iTl^c^O (dim 0==i, so (^)O is m-primary).
Then it is obvious that iffem^yfis divisible by x^. Thus if we can prove

(**) feA,x\fm 0 implies x\f in A,

then (*) follows, letting (JL=JV. But from (3.2.2) we see that iffeA, 3indf=xg with
g in 0, then geS (since S is a discrete valuation ring with parameter x), so that also^eA.
This completes the verification of the fact that A^-0.

To show A is noetherian, we use a similar device: Let the integer j be as above.
Then

^j C n^ n A c (;c)0 n A c MA

where the last inclusion is in virtue of (**). Now since A==6, A/SR^O/m^, so that
^(^/i. ...,/s)A (modS^') (because m===(^,/i, ...,/JO). Butthensince Wc{x)A,
91= (A:,/i, . . .,/JA, i.e. the maximal ideal of A is finitely generated. On the other hand,
yi is the only non-zero prime ideal of A (since for example A is integral over the discrete
valuation ring R). Thus we can conclude by the following result of Cohen
([2], Chapter i, Theorem (3.4)) : A ring is noetherian if and only if every prime ideal has a
finite basis.

We finally note that Q/A) is finite over Q,(R), simply because Q^(A)==Q/So).

(3.2.3) Suppose, with the notation as above, that the f^ ..., fg (of (3.1)^ generate Q,(0)
ozwQ/R). 7%^A==0. In fact, in this case Q,(A)==Q^(So)==Q,(0), and by the above
results A==0. Now take ^ in 0, say ^=gfh with g and h in A. Thus h divides g
in 6= A. But then h divides g in A (by faithful flatness), i.e. ^ is in A.

(3.3) The heart of the matter is now to interpret the structure of 0 in the case
when 0 is not necessarily finite over R (although Q/0)/Q^R) may be finite). The
problem is to understand how the ring theoretic structure ofO/R in this case modifies what
would be expected from merely the birational data Q^(0)/Q^(R). When the latter is a
finite extension, for example, by (3.0.3) the <( birationally expected" formal fibre is
just Q,(O)®Q(R)Q,(R)? but the actual formal fibre ofD will be a quotient of this by an
ideal which expresses the way in which D fails to be a finite R-algebra; of course,
this is just the generic version of a similar statement about the relationship of 0®g,R
and 0. For the rest of this section, we will retain the notations and hypotheses of (3. i)
and (3.2).

We first observe that since for all i SoCS^cO, the induced maps S^-^A==6
are surjective (3.1.3).
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Lemma (3.3.1). — Let {Sj be an inductive system of local rings whose limit is a local
ring A. Let 9t,==max(S,), and 9l==max(A). Suppose that the induced maps of graded

P» ŝ. Y'
algebras Gr^(S^) -> Gr^(A) are all surjective (or equivalently that all the maps S, -> A are
surjective). Then

(1) Let G==limGr^(S,). Then the maps p, induce an (obviously surjective) map
p : G -> Gr^(A) which is an isomorphism.

(2) Let L==limS^. Then the maps ^ induce an (obviously surjective) map y : L-^A,
which in turn induces an isomorphism Gr^(L) ^> Gr^(A), where Q==max(L).

Proof. — For (i), let ^ be a homogeneous element of G such that p(<e)==o, and
let ^eGr^.(S^) (for a suitable i) represent ^. Say v==deg(^)=deg(^). Let /eS,
such that In^.(/)=^. Since p(^)=o, the image of ^ in Gr^(A) by p^ is o. This
means that ^(/^^^v^/). But then since A==limS^, for some 7>z, ^n^/).^^ so
that the image ^ of ^ in Gr^.(Sj) is o. Hence also ^=o, which completes the proof.
(Note that the inverse map p~1: Gr^(A)->G may be obtained as follows: Let ^eGr^(A).
Let VeA such that w == In^f), and choose an S^ such that fe^. Then p"^) ==image
of In^(/) in G.)

For (2), let Q=max(L), and let a denote the map of graded algebras induced
by Y, i.e.

a : Gr^L)^G^(A).
We will prove a is injective:

Choose ^ in Gr^(L), say deg(-s)==v, and ^==InQ(jf), fe'L. Choose a represen-
tative fi of fin some S,, so that also v^. (f^) === v. In fact, write f in L as a sum of products
gx^. .. x^ with all the ^Q{^k)== !• Choose an i such that all the g^s and Xj^s are repre-
sented by elements g^ and x^ of S^, and let^ denote the corresponding sum of the
products ^)^i(t) • • • ^v(t). Then ^ represents j^ and since S^-^L is a local homo-
morphism (so that the v^.(^)) are all ^ i ) we have v^.(^)^v, and hence is equal
to v.

Then a(^) is the image of/, in ^/^+1 (via S,-^A). Now by (i) ^/^v+l

= lim^/^4'1. Hence if a(^)=o, we must have v^.(/)>v for some ^'>z, which is
a contradiction since then V.Q(/)>V. Q.E.D.

We remark that the ring L need not be noetherian.

Corollary (3.3.2). — With notations and hypotheses of (3 .3 .1) :
00

Kerv= (I Q\^==0
00 00

Proof. — Suppose fe Q Q\ Then y(/)e fl 9r. But this ideal is (o), since A is

noetherian. Thus /eKer y. Conversely, if/eKer y? then In^(/)=o since y induces
00

an isomorphism of graded algebras by (3.3.1), so that fe f l Q\
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We are now in a good position to analyze the structure of the surjective R-algebra
homomorphisms S^-^A in our situation. We first observe that since the S, are flat
and finite over R, and the maps S^->S^(j>z) are injective, the same is true after passing
to completions, i.e.

(3-3-3) The Si are flat and finite over R, and the maps [By : S,—^S.(j>z) are
injective. Moreover, by (3.0.3), we get:

(3 •3 -4 ) The (B^ induce isomorphisms

S.®6Q(R)^S,®gQ(R).

In fact we can express S,®gQ/R) as S,®RR®gQ,(R)=Q(S,)®Q(R)Q(R). But
the S/s are birational, so that all these are just F^E where F=Q(S,) for any i, K==Q/R),
E==Q^(R). In other words, all the S, have the same formal fibre. It follows that also

(3.3.5) L®gQ(R)=F®KE.

Namely, L=limS,, so L®gQ(R)== lim(S,®gQ(R)).
The key technical result is now

oo

(3.3.6) In our situation, ker(y)== Q (̂ L, where t is any regular parameter ofR {or R).

Proof. — Let ^ denote the minimal prime ideal of L (if ^ == the minimal prime
of §„ % == U ̂ ). Then L$ = L®£Q(R) = F^E by (3.3.5). Thus although L may

not be noetherian, L^ is noetherian, so that ^L^p^o) for some n. Now L is flat
over R, being the union of the flat S/s. Hence if t is a regular parameter of R (or R),
L->L( is injective. But clearly L^=L^. Hence ^"=(0) in L. Now

Q==max(L)=(^)L+^.

Hence for v>o, ^C^-^L, so that HI Q^= H (^L. Combining this with (3.3.2)
we get the result.

(3-4) ^e now summarize the main results of this § 3:
Let R^O^R with the hypotheses of (3.0.3). Let t be a regular parameter

of R, and let f\-> ' ' "»fs be any elements ofO which along with t generate max(O).
Let SQ==R [/i, .. .,/J c0, and let S, denote the intersection with 0 of the (unique) Ith

iterated quadratic transform S^ of So. If A=.US, then A is noetherian,
[Q(A):^(R)]<O), A=6 (and A=£) if Q(0) =Q°(R)(/,, ...,/J). Moreover,
let Yi : S,^A==6 be the map induced by the inclusion S^cO. Then y^ is surjective
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for all i. Let 3»==ker(Y,), and let [By : S,-̂ . be the (injective) map of completions
induced by S,<-> S,. Then (by (3.3.6)):

3^=={/eS,|given v there is a j>i such that ^|Py(/).}

R[/n ...,/J=SoCSzC...cS,cS,c.?.cAcO (over R)

-A

^

(3.4.1) For the sequel, we need to note that all that is required for this analysis
is the sequence (S^)^ of local R-algebra homomorphisms with the properties:

(i) The S, are finite and flat over R and are all birationally equivalent.
(ii) For every j the map S,->limS^ induces a surjection of completions.

i

In other words, the hypothesis that there exists an £>, given a priori, with S^S^nD,
plays no role. Thus if we are given any sequence (S^) as above satisfying (i) and (ii),
then we can define D==limS,, and the same conclusions hold: For every i 6==§J3,
(with notations as above).

4. d-THEORY AND MAXIMAL PRESENTATIONS

(4.1) We consider the general situation of a presentation (3.0.1) :

R<-^0 <-^ R ( j o z is the canonical map)

which yields upon completion the commutative diagram

R c!> 6 ^> R=6^ (J^-ig)
(D) f ^ t- . I I

R c^ 0 4. R

where the vertical arrows are the canonical inclusions. In particular we have two local
homomorphisms a and (B from 0 to 6, where p===ioj . Let d==(x.—^ :0->0.
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Proposition (4.1.1). — (i) Im(rf) cKer(j)===^.
(ii) ^^(/W+P^W).
(in) rf(R)=o.
(iv) d is 'R.-linear.
(v) Let R'==ker(^). 7%^ R' ^ a discrete valuation ring and RcR' induces an isomor-

phism of completions.

Proof. — (i) follows from the commutativity of the diagram (D) above, remembering
that joi is the identity of R.

(ii) is a simple computation based solely on the fact that d is the difference of the
two ring homomorphisms a and P.

(iii) results also from the commutativity of (D), remembering that joi is the cano-
nical inclusion.

(iv) follows immediately from (ii) and (iii).
(v) We first note that (ii) and (iii) imply that R' is an R-subalgebra ofO. More-

over R' is local: to see this, suppose g is in R' and is also a unit in 0. Then
o W(i) = d{g.g-1) == ̂ g)d(g-1) + PQTW == oWQT1).

But then d(g'~l)=o (because 6 is flat over 0), so g~1 is in R'.
Now let g be an element of max(R')=mnR', where m==max(0). Then

a(^)==P(^). Let t be a regular parameter of R. Now t\j[g) in &, so t\^(g)
in 0, hence also t\aL(g) in 0. Then by faithful flatness t\g in0, say g==tf, fmD.
We claim/is in R'. For this, note o==d{g)===d{tf)==td(f) (by (iv)); hence, since 0
is flat over R, d{f)=o. Thus we have shown: the maximal ideal of R' is generated
by t. This concludes the proof.

(4.2) Suppose now that R^O^R and R'^D^R' ==R are two presentations,
with RcR'. Then we get a commutative diagram

which is compatible with the identification ofR and R'. We conclude that the operator d '
defined for R' just as d was defined for R in (4.1) coincides with d. Thus the operator d
is really an invariant of the lattice of presentations ofQ containing the given R. By (v) of the
proposition (4.1.1) we find that this lattice contains a maximal element, say R', charac-
terized simply as the kernel of d. Such an R' is called a maximal presentation of 0; its
existence of course follows from the existence of a presentation (§2) as well as the above
proposition. The question of whether there exists a minimal R which induces the given d
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is interesting; I don't know the answer, however it is easy to see (as shown below) that
every maximal presentation contains 0^ where q is some sufficiently high power of the
characteristic p.

Remark (4.2.1). — Suppose we are given R<-^0<->R with the usual hypotheses,
except that we do not assume a priori any inseparability. Since the definition of d above
does not depend on inseparability, it makes sense in this more general situation, and
we can find a maximal R/ D R as above. But then 0 is automatically purely inseparable
over R'. In fact, choose a power q of p {== the characteristic) sufficiently large that
^==0 for all ^ in ^} (the nilpotent prime ideal ofO). Now if x is in 0,

d^) = (a— (B) (^) = d[xy === o

(since Im(rf)c^ by (i) of (4.1.1)). Hence ^ is in R'.

(4.3) The operator d is closely related to the universal differential operator of
0/R of order ^oo. To see this, recall (3.3.6) that there is a canonical surjective
homomorphism ^ ^

L=O®RR-^O->O

whose kernel is the cc non-noetherian part5? of L. Let
V :O-^O®RR

be the R-module homomorphism defined by V(x)==x®i—i®x (to make sense of i®x
we use the fact that 0 <-^ &). Then d=^o^. In fact, we may write L in the form
(0®RO)(x)joR; via this identification, for any x in 0,

Y(^®i®i)==a(^) , and y(i ®A;®i)==z'oj(^)==p(^)

(with the notations of the diagram (D) above). In other words, we may view the
map Y as induced by

Y(pO®RO->0

with YoW == ̂ W PW 5 Y l s then obtained from yo by viewing 0 as R-module via i, which
is compatible with the structure of 0 as module over the £) in the right hand factor via a.

Let 3 denote the diagonal ideal of 0(8)^0; 3 is generated by all x®i—i®x^
x in 0. Since Yo(3)c^}, and 0 is trivially ^-adically complete, yo factors naturally
through the 3-adic completion of 0(8)^0, denoted Pg/R ([5], (16.3) ft). Consequently
we get a factorization y o f y through PS/R^O^? ^d a commutative diagram
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where fl?°°(A:)=A:®i—i®xeP^^ ("universal differential operator of order ^oo 5 9 (loc.
cit.)); we thus obtain the canonical expression of d as a differential operator:

rf^y0^00®1)-

We remark that the only reason for having to use P^/R here (rather than P§/R,
N<oo) is the possibility that Q,(0) is infinite over Q,(R), which can happen even if R<-^0
is a maximal presentation. (We will give an example of this, but since it requires quasi-
algebrization it is postponed until § 7.) For suppose Q,(D) is finite over Q,(R), say
generated by ^i, . .., x^ in 0. Then every u in 0 satisfies ^^=F(.v) for some integer
m and some polynomial F in the x^ with coefficients in R, where tis a parameter of R (this
follows from (3.2.3)). In particular,

tmdw{u)==dco{'F{x))= 2 l 1 ^ !^ } ̂ {x)y
v==(vi, ...,v^) \V ! /

Vi>0

(the usual Taylor expansion; since we are in characteristic p we must be careful to inter-

pret (—(^F/cy) to mean that we first divide formally by v! as though we were over Z,
\v ! /

and then reduce modulo p). Hence since 3==P3S/R ls generated by the rf°°(^), u in 0,
we get:

(*) 3cU((rfoo(^),...,rfoo(^))Ps/R:n.
Now there is a power q of p such that x^ is in R for all i== i, . . ., n. Hence ^°°(^)9

(=rf°°(^)) is o for all i. Hence, for N>^, (rf^i), ..., ̂ J) PS/R=(O). It follows
from (*) above that also S^^^o), since 00^0 is flat over R (because 0 is). Hence

PS/R-PS/R^^^O/^^-O^O.

Thus in this case we could equally well describe d as y0^®^ where ^O—'PS/R
is the universal differential operator ofO over R of order ^N. Note that if 0 is a
finite R-module, the map y ls an isomorphism, so that we may regard 6==P§/R®^R
and then d = dn® i R .

(4.4) We now want to study the relationship of the operator d with the normal-
ization of 0. The ideas here are inspired by the recent work of Ferrand and Ray-
naud [3]; in fact we include here a free presentation of a certain part of the contents
of § 2 of that work which are relevant to our situation. They show that (regardless
of characteristic and independent of questions of presentation) there is a differentia
operator d ' defined on the normalization of0, which determines 0 completely. This
operator depends on a choice of a section O^d-^-O? which may of course be very <( non-
algebraic ??. However if the section arises from a presentation (i.e. the map i of the dia-
gram (D) at the beginning of§4), we will show that the resulting d ' induces our operator d,
and so in particular the maximal presentation R corresponding to d is the kernel of d ' .
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In this regard it is interesting to note that frequently the normalization of a non-excellent
0 is an excellent discrete valuation ring. This will be the case, for example, when in the
situation of a presentation R^>O^R, Q/Q) is the inseparable closure of Q(R) in Q^(R).

We begin with the following hypotheses:

(4 -4- 1 ) 0 is a local domain of dimension 1, 'B=the normalisation of 0. We will
assume B is local (i.e. 0 is unibranch) and 6^ ^ regular. Denote m=max(0) and
n==max(B).

Since 0->6^d is injective and 6^ is regular and hence normal, we may view
0<-^B<->6^. From this we deduce:

(4.4.2) 0<-^B induces an isomorphism of residue fields, and mB=n. In par-
ticular there is an element t of0 such that (^)B=n, and this t has the property: every
iterated quadratic transform of 0 is obtained by suitable divisions by t.

Let a:0-^6 be the canonical homomorphism, and y:B-»B®^6 be v{b)==b®i.
Then

(4.4.3) The diagram

0 —> B•i i-
6 —> B®^6

is cartesian, ̂ i.e. it identifies 0 with the ring-theoretic fibre product of 6 and B
over B®^6.

Proof. — It suffices to check that a and v induce an isomorphism B/o5-(B®^6)/6.
For this, first note that the term on the right is just (B/0)®^6, and B/0 is a Morsion
0-module. Hence B/0 is the union of a family of finite length 0-modules B. each
of which is of course already complete. Hence

(B/0)®^6=(UBJ®^6=U(B,®^6)=UB,=B/0.

Now by the structure theorems of Cohen we can choose a subring R of 6 such
that the composition R«-^6->0^ is an isomorphism. (We remark that if 0 is of
characteristic p we can take the R of a presentation of 0.) This gives a section a of
the natural projection 6->6^d; use it to get a decomposition T : O^R®^, where
^ is the nilpotent prime ideal of 6 (R-module decomposition) (1). We also identify B
with R, in view of the fact that O^ed^3 is obviously an isomorphism.

(1) The ring operations are of course given by the multiplicative structure of ^ together with its R-module
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(4.4.4) Let ^P'==^®oQ.GC>)* Then there is an isomorphism

6 : B®^)O^R®^'
such that the diagram

6 ——> B®^6

W Q

R®^ R®^}'

is commutative, where the upper map is just x^->i®x, and the lower one is induced
by the natural map ^-^' (1).

Proof. — We can write B=lim0^, where the 0^ are the successive quadratic
transforms of 0. Hence B ® ̂  0 == limO^, where 0^ = 0^ 0 ̂  0 are the successive
quadratic transforms of 0. Let ^ denote the nilpotent ideal of 0^ (so that ^P=^Po)*
Then since the discrete valuation subring R of 6 is invariant under quadratic transform,
we get compatible decompositions

6.4-1 ̂  K®^
^ ^

o, —^ Re<p,
where the right-hand homomorphism is induced by ig and the natural map ̂ -^i+r
Hence it suffices to show that lim^==^y. Let t be as in (4.4.2). Since Q^(0)==0^
if we denote ^P^^P^oO^ what we want is that

lim^=^.

Note that since 0 is a domain and 0^+iC(OJ(=0<, by applying ®^6 we find that
6^<-^6^i is injective and O^cC^ for all i. Now since ̂  and ^+1 are the nilpotent
ideals of 6^ and 6^+i, ^+1 is the ^n^ transform of ̂  in £\-+i (§ i), and in particular
^c(^)^+i. By iteration, we get

(*) ^C(^)^.

On the other hand, the image of ̂  in £^ by the composition ^cO^cO^ is clearly
contained in the image of the inclusion ^c6< (obtained by applying ®o0< to ^3c6).
Thus we have:
(**) ^c^.

The result follows immediately from (*) and (**).

(1) Note ^P —> ̂ / is injective, since 0 is torsion-free over 0.
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In view of (4.4.3) and (4.4.4) we have a cartesian diagram

0 <=_^ B

(E) a Q v=u+d'

R®^P c=__^ R®^}'

Viewing R^>B, we may write y r ^ M + r f ' , where u : B->B=R is the canonical map,
and d' is a differential operator from B to ̂ ' (the difference of two ring homomorphisms).
It follows from (E) that

(4-4-5) D=={xm'B\d/{x) is in ^}.

(4.5) The above discussion is valid with no hypothesis on the characteristic ofD,
and it is clear that the differential operator d ' depends only on the choice of the section
Gr : ^red"^^ i-e- on the choice ofR; of course, since this section may be chosen arbi-
trarily, it might have nothing to do with the arithmetic structure of 0. However,
suppose we start with a presentation R<-^0<->R, which we may as well assume to be
maximal. We can use this to get a section o, i.e. a==i (of the diagram (D) of (4. i)),
and also a differential operator d : D->^ as in (4.1), canonically associated to the
presentation. Let d ' denote the operator B-^' arising from a as in (E). Then an
inspection of (E) reveals that d is the restriction of d ' to 0. Thus in characteristic p we
can summarize as follows:

(4.5. i) Let 0 be a local (noetherian) domain, of dimension -Z, char. p, unibranch, with 6^
regular. Let B denote the normalisation o/X), ̂  the nilpotent prime ideal 0/6, and ̂ ' =^ ®^ Q,(0).
Then there is a maximal presentation R<-^D<->R with the associated differential operator d : 0->^B
of (4.1), and a differential operator d' : B-^', such that the diagrams

R c_> 0 c_^ B

| a \d a k
v y y

(o) <—> ^ ̂  <?'

are cartesian.

Remark (4.6). — The problem of finding a local domain 0 with a given completion
may be posed as a <( converse " of the above results (neglecting questions of presentation)
in the following way: Let R be a complete discrete valuation ring. Let G be a flat,
augmented R-algebra of finite type, of the form R©^5 where ̂  is a nilpotent ideal (flat
as R-module). Let ^'==^®gQ^(R), and let B'==R®^' (with its natural ring struc-
ture). Then we ask: does there exist a discrete valuation subring B ofR, with completion
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isomorphic to R, and a homomorphism v : B->B' such that if 0 denotes the fibre
product in the cartesian diagram

GXB-B=D ^ B

^l 1'
C c-» B'

(where the bottom map is the natural inclusion R©^<-^R®^P'), thenO is a local ring
with normalisation B and completion G (via pr^ and prg)? This is the approach ofFerrand
and Raynaud (loc. dt.)\ they give an affirmative answer in the special case ^={0)
in characteristic o and over certain fields of characteristic p. The technique involves
the existence of the differential operator d ' (actually a derivation in this case). One
would hope that the same approach, suitably extended, would yield the general result
(for arbitrary ^5) in characteristic o. In characteristic p, however, the problem is solved
by quasi-algebrization: the idea is to view the map G->G,.ed=R as being induced
by a formal p-section ofaffine space over a suitable discrete valuation ring R (§ 4 and 6);
the procedure has the structure of a (purely inseparable) presentation built in.

5. SOME EXAMPLES OF FORMALLY IMPERFECT
DISCRETE VALUATION RINGS; SCHMIDT RINGS

As we have seen, in characteristic p all non-excellent curve singularities arise from
inseparability in an extension R<-^R, for some discrete valuation ring R; in this case
we say that R informally imperfect. We want to describe an easy method of constructing
these R, beginning with any (< geometric 3? discrete valuation ring Rg. In fact, the
construction itself is of a geometric nature, and in particular it is unrelated to any question
of <( ground-field " structure. In a certain sense it generalizes the example of
F. K. Schmidt (e.g. as reported by Zariski in [4]); hence the name Schmidt ring for those
rings which arise in this manner. We will not consider here problems of classification
of formally imperfect R; our purpose is only to indicate their relative abundance and
in particular to insure that we have enough raw material for the quasi-algebrization of§ 6.
In contrast to the Schmidt rings, we will also recall a classic example of Nagata and a
more recent one of Hironaka, in which the formal imperfectness depends on ground
field structure in an essential way.

(5.1) Let Ro be a discrete valuation ring of char. p such that RQ has infinite trans-
cendence degree over Ro. This is not always true; in fact in the example of Nagata
below the completion is even integral over the original ring. However it holds when R()
is geometric, i.e. the local ring of a point (of codimension i) on an algebraic scheme over
a field L (To see this we first note that card(Q,(Ro))==card(A;) if k is infinite, or Ko
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if k iŝ  finite, and the cardinality of the algebraic closure of Q(Ro) is the same. But
card(Ro) is at least card^0, which gives the result.)

Now, given n>o, choose elements /i, ...,/„ in R^ which are algebraically inde-
pendent over RQ; let ^, . . . ,^ be any positive integers, and let gi=fpei in R^,
i== i, . . ., n. We view these ^, . . ., ̂  as defining a /om^ w^m <y of affine Tz-space
over Ro (which we call a "formal p-section " for obvious reasons):

Spec(Ro[X,, . . . ,XJ)=A^ .————— Ai

a o: x, • > g,

Spec(Ro) ^— Spec(Ro)

We then define a discrete valuation ring R, called the Schmidt ring of (RQ, (?) in any
of the following equivalent ways:

(i) Via the composition

RoEXi , . . . , xj —> R^x,,..., xj ̂  R,
the formal section o- induces a discrete valuation of the function field ofA^; let R be
its valuation ring.

(ii) There is a unique infinite sequence

(*) Ag, = ZW ̂  Z^) ̂  ... <- Z^-1) 2- Z^ ̂ - ...

of iterated quadratic transforms with the following property: let ^ be the point
(^i(o), . . -^n(o)) in the closed fibre of Z^. If ^EZ0'-^ is the center of .̂, then
the strict transform of (the image of) a in Z^'"^ passes through ^._^. Let

{TT, : Z^->Z(^ l);ZW=AgJ

be the unique sequence of quadratic transforms from which (*) is deduced by the base
extension Spec (Ro)-> Spec (R.o). Since the exceptional fibres in either sequence are
identical, each point ^ in Z^ corresponds to a unique point ^ in Z^ (so that the
sequence TT, could equally well be described as that obtained by blowing up the successive
points ^.). Then

R=U^o^..
(R = the local ring of the closed point on the c< Zariski-Riemann space " of A^ deter-
mined by the sequence TT..)

(in) Write

g-^
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where the a^ are units in RQ and t is a regular parameter; then for every m^o let

Am-2^-J^W "

Then R may be described as the Ro-subalgebra of RQ generated by all elements of the
form

ot oim
^m+1

for z == i, . . . , n and all m^ o.
It is clear that t is also a regular parameter of R, and that Ro and R have the same

residue field. Hence RgCR induces an isomorphism of completions. It follows that
R is formally imperfect; in fact we have f^ in R, ff' in R, but /, is not in R (since
Q(R)=Q(Ro)(^ . . . ,&)).

The following will be a convenient way of expressing the consequences of our
construction of Schmidt rings:

(5.1.1) Let Ro be a discrete valuation ring of char. p, such that RQ has infinite
transcendence degree over Ro. Then for any integers n,e^ . . ., ̂  there exists a discrete
valuation ring RD Ro with Ro-^R, and elements/i, .. .,f^ in R, such that, if we denote

S=R[/i,...,/JcR,

then S is R-isomorphic (via X^l->^) to

R[X,,...,X,]/(Xf^),^,.

Moreover Q(R) ==Q^(Ro) (^, . . . ,&), with the g, algebraically independent over Q,(Ro).

(5.1.2) Note that with the terminology above, S is a finite R-algebra, so that

S=S®^R=R[Y,, ...,YJ/(Yf1^,^

(letting Y,=X,-/, in R[X]).

(5.2) We now give two examples, which, in contrast to the Schmidt rings, show
how formal imperfectness can arise from specific properties of a ground field.

(1) Nagata (cf. [2], Appendix E g . i for details). — Let A; be a field such that
\k lA^oo, and let ^=kp\\t^\k}ck\\t}'\. R may be described as the subring of
^[M] consisting of all those power series whose coefficients generate a finite extension
ofkp. It is not hard to check that R== A; [[(]], so that R^cR.

(2) Hironaka. — Let F denote the prime field, and let M={^}, i== i, 2, . .. be
a countable system of algebraically independent elements over F. Let k denote the
algebraic closure ofF(^). For every TZ^O, let F(^ denote the subfield

F(.)(.w,.r-1,...,^)
429
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of ky and let k^ be the separable closure of F(^. It is clear that A^cA^i, and that
UA^==A:. Then let RC^[[^]] be the subring consisting of all those power series whose
w

coefficients lie in some k^ (the n may be different for different power series in R). As
in example (i), R== A; [[<(]]. Now let (^) be a sequence of integers all of which are
bounded by some integer No, and let f^^u^f in R. Thenj^ is in R for some

N^ No; but if infinitely many of the ^ are positive, fis not in R. In fact, the inseparable
closure of R in R may be described as the ring of all power series whose coefficients
generate an extension of F(z/) whose inseparable part is of bounded height over F(^).
Notice that in this example R still has infinite transcendence degree over R.

6. QUASI-ALGEBRIZATION

(6.0) Suppose G is the completion of a local domain 0 of dimension i which
comes with a presentation R^CX-^R, as in (3.0.1). The "abstract" hypotheses
satisfied by G are then

(6.0.1) R is a complete discrete valuation ring of char. p and C is a flat finite
R-algebra with nilpotent ideal ^ such that G/^S-R.

It is clear that (6.0.1) is equivalent to either of the following:

(6.0.2) R as in ( G . O . I ) , and G==R[Yi, ...,YJ/3, flat over R, and 3 contains
the ideal (Y)N for some N.

(6.0.3) R the same, Spec(G) -^ Spec(R) is flat of relative dimension o, with
connected fibres, and has a section cr.

A converse to the above is the following result:

Theorem (6.0.4). — Given C and R satisfying (6.0. i), there exists a local (noetherian)

domain 0, with a presentation R^O^R, and an isomorphism 6 : 6^-G such that the diagram
i 3

R _^> G -°-> R

e j %
.̂ s /"s ^\

R —> 0 —^ R
» 3

is commutative., where n and a correspond to the ones in (6.0.3) and i , j arise from the presentation
as in (3.0. i).

Quasi-algebrUation is a canonical procedure for constructing rings with a given
completion; we have not attempted in this paper to describe the limits of its domain
of application, but rather have restricted ourselves to giving a treatment in a setting
appropriate to the situation at hand: purely inseparable R-subalgebras of R, where R
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is a discrete valuation ring. In particular, we will get a proof of Theorem (6.0.4).
For this, given the data (6.0.1) and a (< sufficiently^ formally imperfect discrete valuation
ring R (whose completion is R), we construct 0/R satisfying the conclusions of (6.0.4)
by starting with a suitable finite R-subalgebra S of R, purely inseparable over R, and
then realize D by an infinite sequence of birational operations on S (in such a way, however,
that the result is noetherian), using the results of § 3 (especially (3.7.1)) as our guide.
Thus, although the resulting 0 is not a finite R-algebra, Q,(0) is nevertheless a finite
(purely inseparable) extension ofQ(R), so that Spec(O) is a <( quasi-algebraic59 Spec(R)"
scheme. For the Theorem (6.0.4) the point is that we can always find R as above, for
example in the form of a suitable Schmidt ring (§ 5).

(6. i) Preparation.

Suppose R is a discrete valuation ring with regular parameter t, and letj^, . . .,f^
be elements of R which are purely inseparable over R, say f^^gi in R. Let
S==R[/i, ...,^]cR. Then via X^l->/^ we have an isomorphism

( 6 . 1 . 1 ) SS.R[Xi,...,XJ/3

where 3 is an ideal ofR[X] containing the ideal § generated by the X^1—g^ i== i, .. ., n.
By subtracting a unit in R if necessary from each of the f^, we may suppose that the
f^ and gi are non units (in R and R respectively). Now write, for each i

(6.1.2) /—S^8
8=1

where the a^ are units in R. Then of course

^=s^<
We will use the following terminology in the sequel: for every v^o, and z== i , . . . ,% let

vf^^aist8-
and ^)^(&^)/^=(&-^<i^^

Note that the g^ are in (^')R.

(6.1.3) With notations and assumptions as above, the Vth iterated quadratic
transform S^ of S is of the form

S^=R[X^, ...,X^]/3^,
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where

^^X^^a^lt^iX^f^lt-

and 3^ contains the ideal ^(v) generated by (X^)^—^, z== i, . . ., n.
(We note that these successive quadratic transforms are unique, since S is uni-

branch; namely, as usual, the inseparability of S over R implies that S=S®RR has
a unique minimal prime ideal.)

Proof of (6. i . 3). -Setting S=SW, X—X^, g,==gf\ 3=3W, and §>^^°\
the assertion is trivial for ^ == o. Now assume it is true for v^o. Since 3^ contains ^{v},
it is clear that the only maximal ideal of R[X^, . . ., X^] which contains 3^ is the
one generated by t and the X^; we denote this maximal ideal by SOl^. Let
G=Gr^(v)(R[XM, . . ., X^]). No power of ln^w(t) (the SJl^-initial form of t in G)
is in Ingj^O^) (the ideal of G generated by the initial forms of all elements in ^)).
Otherwise, since this ideal contains the initial forms of elements of ^(v), we would get:

dim(S^) - dim(Gr^)(S^)) = dim(G/In^)(3M)) = o,

a contradiction, since S^, being integral over R, has dimension i. It follows from
the elementary local theory ofmonoidal transforms (cf. [i], Chapter o, § 3 for a summary)
that

(*) s^^Rpc^, .. . , x^/d/3^
where R[X^, . .., X^ft] is the affine ring of the open piece of the blowing up of SR^
in Spec(R[X^, ....X^]) corresponding to those tangential directions where ^+o,
and 3(v+l) denotes the ideal of the strict transform of3(v) on this piece (loc. cit.).

Note that by definition X^^^X^/^)—^. ̂ i. Hence we may use these as
coordinates, and express (*) equally well in the form
(**) S^^REX^, ..., X^W-^.

It remains to show that 3(v+l) contains $(v+l). For this, since 3^3 ̂ \ if ^
denotes the strict transform of^ in R[X^, . . ., X^], then of course 3(v+l)^§(v)'.
Hence it suffices to show that ^'D^^ (actually, it is even true that $M/=§(V+1)).
To see this, we first note that each of the polynomials X^1—g^ which generate
^(v) is of order p^ with respect to SD^; in fact, g^ has order at least p^ in t. Hence
^{y}f contains the elements (X^^—g^) ft^. But if we express this in terms of
the coordinates X^"^ (as in (**)), we get the right thing, namely:

(X^1--^) /^ = Xi-+ ̂ ei + < ,̂- (^/^)
=xtv+l)^i—^v+l).

(The first equality is because X^^^X^/^—^v+i? and the second because

g^^g^l^-a^). Q..E.D.
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Corollary (6.1.4). —Le t R, /i, ...,j^ and S be as above. Then for every v>o ^?r<?
m^ elements /^, ... ,^ o/^R j-^A that:

^ v1™^^^ ^ R) Jror ^ z-

(ii) £^ Y^=X,—j^ (m ̂  ^7zj<? o/ (6. i. i) and (6. i .2)).
TA^ Y^) ^ divisible by r z% ̂  (unique) Vth iterated quadratic transform of S.

v

Proo/. — Let ^== S a^t8 as in (6.1.2). Then (i) is true by definition, and

Y^^^X^, for X^ as in (6.1.3). Thus the assertion (ii) is proved.

Remark. — It is helpful to think of the Y^) as elements of S which approximate
the differentials df^ in S, i.e. the generators of the nilpotent prime ideal of S [d is the
differential operator of § 4).

Quasi-algebri^ation (6.2). — A quasi-algebrization requires two data:
(1) A; is any field of characteristic p, R==k[[f]] a formal power series ring, and

C is a flat R-algebra of the form

C=R[Yi,...,YJ/fi

with fic(Y)R[Y] and (Y^cSl for some N (i.e. G satisfies the hypotheses (6.0.1)).
(2) R is a discrete valuation ring with completion R, and S is an R-subalgebra

of R of the form R[/i, . . .,/J where ft=g, in R for some e, (in particular S is a
finite, purely inseparable R-algebra). We further suppose that via X,l-^, S is
R-isomorphic to R[Xi, .... XJ/3, where 3 of course contains the ideal § generated
by the Xf1—g^ and moreover the following condition is satisfied:

(6.2.1) Identify R[Y] and R[X] by Y,=X,-/,. Let 3 denote the ideal
generated by 3 m this ring. Then 3 C S. (This enables us to view G as a quotient
of S, which is crucial for the sequel.)

Remark (6.2.2). — Given the datum (i), we can always find R, S as in (2). In
fact, by the techniques of § 5 we can find a Schmidt ring R and elements /i, ... ,y^ in
the completion of R (which may be identified with R), so that if S ==R[/i, . . . ,j^], in
the terminology of (2) 3 is actually equal to the ideal § in this case, with each j^>N.
Hence 3=(Yf) (^Y)^.

Given the data (i) and (2), we are now going to construct a local domain 0 such
that RcScOcR, Q^—Q/S) (so that we get a presentation Rc^Qc^R)^ and the
conclusions of the Theorem (6.0.4) are satisfied for R and 0 with respect to G. This 0
is called a quasi-algebrization ofC over R along (/i, . . ., f^) (1). Note that in view of the
remark (6.2.2) we will then have proved (6.0.4). However since our interest lies
not merely in the existence theorem, but also in the analysis of a given 0, we want to

(1) In (6.3) we will show that there is a unique one of these.
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reserve from the outset the right to start with a given R, S. We will see that in this
case, quasi-algebrization determines 0 uniquely (6.3).

We begin our quasi-algebrization: choose a set of generators u^, . . ., ̂  of the
ideal fi of ( i) ; each u is in the ideal generated by the Y,, say

(6.,.3) .,=^S ̂ Y', ,-=,,...,,
Kl>o

where Y^ denotes the monomial Y^1..^, \l\ =^+^+. . . +^, the ̂  are in R, and
the sum is finite for eachj.

We are going to construct an infinite sequence

S=SoCSiC.. .

of (finite) R-algebras, with S^ contained in the Vth iterated quadratic transform S^
ofS, with the following property: upon completion, in the resulting sequence

S=SoC§iC. . .

it is precisely the ^ which generate the ideal of S consisting of all those elements which
become^ divisible by arbitrarily high powers of t (the regular parameter of R) in suc-
cessive S^. Then if we let 0 = U S^ we will find, essentially by (3.4), that 6 is a quotient

ofS by the ideal generated by the u^ so that OS"G as desired.
To do this, we first take elements Y,^ of S as in (6. i .4) for i= i, . . ., n, and

all v^o; we will use these to construct elements u^ of S for j==i , . .., r and v^o as
follows: for each Cy in the expression (6.2.3) for ^ take any sequence c^ of elements
of R which converges to Cy in R, in such a way that Cy — c^ is divisible by f in R.
Then define, for each j and v,

(S-2^) u^= S ^)Y^...Y^.
l^ l>o

Via the identification of (6.2.1), we will view the u as elements of S, and the u^ as
elements of S which approximate the u,. Now let

C6-2^) s,=S[(^/r),...,(^/r)]
viewed in the following sense: since each Y^) is divisible by f in the ^th iterated qua-
dratic transform S^ of S (by (6. i .4)), and since |^|>o, S, is an S-subalgebra of S^.
Moreover, since ScR, each S^ is contained in R, so that we may also regard S^cR.
This could also be seen directly if we identify X, with /, in R, and recall the definition
of the Y^) in terms of these.

(6.2.6) To analyze this situation it will be convenient to introduce new
variables: for each v let W^, .. . , W^ be independent variables over S, and let P^ denote
the polynomial ring S[Wi,, ..., W,J. For each v we have a natural map ^ : P^->S,
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defined by W,, ̂  {u^f), j = = i , . . . , r. Let (p^==fW,-,—M^). Then the <p,, are
in the kernel of b^. Note that the induced map b^i^y,

Pv/({<pjJiw)®RQ.(R) ̂  S,®E^(R)
is an isomorphism. Hence if ̂  denotes the kernel of b^, since S,, is flat over R,

C6 -2 -?) ^=U(({^,},)Pv:^.
Now let ^ denote the S-homomorphism P^->P^^_i defined by

W,̂ W,̂ I+(M,(,)-M^))/̂ , for j = = i , . . . , r .

To justify this, we need to show

(6.2.8) "j(v)—",(„+!) " divisible by f in S.

Proof. — Remembering that Y^='X,—f^ ( (6.1) ff) we have

^•M-^+D- l/2„^MCXl-/lM)/l... ̂ n-fnwY"

(*) -|/s/^+l)(Xl-/l(^l))/l...(x„-X^l))/"
=|/so(^v'zfl•••z^-^+l)(zl-al•v+lr+l)/l•••(z"-a».-+^''+l)/'')

v

where Z,=X,—^, recalling that ^)= S ̂ f. Now

^+l)(zl-^v+l^+l)'l. . •(Zn-^v+l^y——^v-^Zf1. . . Z^+D^

with Dj^ divisible by ^+1 in S. Thus from the equality (*) we find that

u^)- ̂ (v+1)= i^.^M-^+i))^1 • • •z^- D^

which is divisible by f in S, in virtue of the definition of the c^. Note that the proof
shows that (^(v)—^+i))/^ is in max(S). Q.E.D.

Hence the maps h^ are well-defined, and it is obvious that for all v the diagrams
p &v+l Q
^v+l ——^ °v+l

1 u
&v

Py ———^ S^

commute, where the homomorphism on the right is the natural inclusion. Moreover,
observe that h^{^) is by definition

^W^^+^-^+i))/^)-^)-^^
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Hence the h^ induce commutative diagrams

PV+I/U^V+IJI^J^PV+I ~>l~> ^v+1

h4 . ut
^/({^K^PV ————^ S,

(we preserve the notations h^ and ^ for the induced maps). Passing to completions,
we get corresponding diagrams of exact sequences :

0 ——> ^+l ——> Pv+l-Pv+l/({VA.+l}l^X+l ̂  S^, -^ 0
def

(6-«.») f i.t ^ J

o —— ^ ——-P. ^K{^}w^ ———6——— S,———. o

(where we may interpret P^ to mean the completion of P^ with respect to the ideal
generated by max(S)^ and the W^, and ̂  is the Morsion ideal of P^ (by (6.2.7))).

Let h^ : P^->P^ be the composition ^-io...o^, with notations as in the
diagram (6.2.9) above. Then let

3^=={A:ePJfor every integer M>o, there is an m such that t^ divides h^{x) in P^}.

X^ is clearly an ideal of P^. We first claim

(6.2.10) W^+(^.-^^)/^ is in Z^forJ==i, . . . ,r . (Note that a priori ^
is viewed as an element of S, so it makes sense in F\, insofar as the latter is an S-algebra,
i.e. a quotient of S[[Wi,, . . ., WJ]. Similarly u^ as an element on S also makes
sense in P^ and in this way it is of course still true that \imu'^=u-.)

v

Proof of (6.2.10). — We first show that h^ (W,, +(",(„) -u^fC) is divisible
by t " ' " i-n. P^ (this makes sense because by iteration of (6.2.8), we see that u;^—u-^
is divisible by f in S). In fact, we will show that

(*) (̂w,, + ("̂  - ̂ ,) in == t"1-^.
Namely, this is true for O T = V + I by definition of h^. By induction, suppose true
for m. Then

^m +1, v(Wj, + (M,̂  +1) — M,(,)) If)

==hm+1, v(W^ + (%,(„ +1) - M )̂ + y,̂  - y,̂ ) /^)

=^+l,»^-VW,„+(fTO-v/f'»)(^^)-^))
=<'"-v^+^^(W,,+(^+l)-^))/f'»)

=tm-^,^-fm+l-^^,
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which completes the verification of (•). Now, note that for any TTZ^V we can write

w,,+(^-^)/r=w,,+(^)-^))/r+(^
Hence by (*), we get

(6.2.11) ^(w^+^,-^)/r)=^-vw,,+^-^)^.
To conclude the proof of (6.2.10) it suffices to show that u^—u^ is divisible by ^
in S. For this, recall

«,=2^,Y^...Y^

where Y^=X(—J^, and f^ and the Cy are in R; and

1 1 —Y,r V^1 V^"J'N — ̂ ^(w) ^(w) • • ' ^nN

with Y,^=X,-/^). Let v^ denote fi-f^. Then Y^==Y,+z^, and we
can write

^-^=s^1- • •Y^-W^^)'1- • • (Yn+ynJ'n•

But then, since each v^ is divisible by F1 in R, as is <y—^?(m)5 a computation analogous
to that in the proof of (6.2.8) gives the result. Q.E.D.

We will write 2^==W^+ (^.—^)/^. We have just shown then that ^
is in 3^ for all v; more precisely, the formula (6.2.11) shows that ^(i^-J^r1"^^).
Hence the h^ induce maps

-"w/dSjwJI^j^r) ^m

- t^wv

Pv/({Ul<^r)Pv

(6.2.12) T^r ^y^ v we have a natural ^.-isomorphism

Pv/({Ul^r)Pv^-C

(compatible with the ~h^).

Proof. — In view of the definition of the P^ and the expression of S in the form
R[Xi, . . . , XJ/3 (see (6.2.1)), we can write

P./({Ui^<r)Pv=R[Xi,.... x,, w,,.... wj/({y,, {cp,̂  3).
Now since the Sjv are o, for each v, W^=—(^—u^jt^. Then, substituting in
the expression ^W^—^ for 9^, we find that 9^==—^. Thus

^/({Ui^Pv-RtXi, • • . , Xn]/({"jL, 3).
But now if we use the Y^=X^—f^ as coordinates, and recall that by hypothesis (6.2.1)
3cfi==(^i, . . . , ^), we get the result. d.E.D.
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Thus all the maps A^ are R-isomorphisms; in fact we have commutative diagrams

^/({U^m -^ G
A

^ U

Pv/({Uj)I\ -^ G
It is now easy to see that

(6.2.13) For each v, 2:,=({^)I\ {so_that PJ2:,=G). In fact, if A: is in 3:,,
then afortiori, if x denotes x (mod({^Jj) PJ, ^(^) becomes arbitrarily highly divisible
by t as m gets large. But since all the A^ are isomorphisms as we have just seen, this
means that x=o (mod({^.)PJ. Q,.E.D.

Now let us return to our situation (6.2.9):

i ^ i
o —> ^+i —> P^+i —^ S^i —> o

t - ^ ^T "4 ^ J
o —^ ^ —> P, -^ S, —^ o

1 J

where ̂  is the Morsion ideal of P^. Observe that since (by (6.2.13)) PJ2^==G is
//^ over R, ^c^. Let

^JA: in SJfor every integer M^o there is an m\
v ^such that ^M divides the image of x in S^|

i.e. 3^ is defined for Sjust as Z^ is for P^. It is clear that b^(Z^)cZ^ We claim that
in fact

(6.2.14) SJ2;=I\/3;,(=G).

Proo/'. — Since K^cZ^ SJb^Z^) ==P^Z^=C for all v. Now suppose A: is an
element of 3^. Afortiori, the image ^ o f ^ i n SJ^(2J becomes divisible by arbitrarily
high powers of t in the successive S^/^(2J, 772 ̂ v. But all these are isomorphic (to C),
so that x must be o, i.e. x is in ^(2J. Q.E.D.

Now let £>=US^ (cR). 0 is of course an integral domain, and has Krull
dimension i since it is integral, indeed purely inseparable, over R. Moreover since
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R<->0<-^R, R-^0 induces an isomorphism of residue fields. Let m=max(0). We
claim that m==max(S)C>. For this, note that 0 can be described as

(6.2.15) 0=S[{^}, j=i , . . . , r , v = i , 2 , . . . ] C R .

But we can write

^-^•(v+l)/^1) + (^v)-^+l))/^

and the last summand is in max(S) (see the proof of (6.2.8)). This shows that 0 is
noetherian (since every prime ideal is finitely generated, by [2], Chap. I, Theorem (3.4)),
and moreover that S^->6 is surjective for all v. Hence we can apply (3.4.1) to deduce
that C = S^/2^ (for any v) so that by (6.2.14) we have an R-isomorphism D^C arising
from the natural structure of R-presentation of0 (i.e. such that we have the commutative
diagram of (6.0.4)). Thus 0 is the desired quasi-algebrization of G.

Remark (6.2.16). — Suppose we had begun with an R-algebra G as above which
is not necessarily/lot over R, but which satifies all the other hypotheses of (i) at the
beginning of (6.2). Let G=G (modulo its torsion ideal over R) (so that C is flat
over R). Proceeding as above for C, we can construct the S. and D=US . Then

^ _ v
we find that 0=C. To see this, first recall that the flatness of G was not used in the proof
of the existence of quasi-algebrization until (6.2.14); at that point it was used in the
form: K^cZ^ (with notations as above). For non-flat G, we replace (6.2.14) by the
following argument (preserving all the notations and other assumptions of the proof
above):

(6.2.14) There exists a quotient ring G' of C, between C and G (i.e. we have surjections
G->G' and C'-^C) such that for all v sufficiently large

C^P^+^SJS;.

Proof. — For each v, we know that PJ3^=G, so that, since ̂  is the torsion
ideal ofP^ over R, if we denote PJ(2^+^J by G^, then G->C factors through G^.
Thus we have a commutative diagram

t _ t _
+1 ^ ^v+l/C^v+l+^v+l)

G- ^ ^/(a^v) ^•
t t
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where the vertical maps are induced by the h^y and the maps emanating from G are
all surjective, as are the ones terminating at C. Now since each G->G^ is surjective,
the maps G^->C^^.i are also surjective, so by the noetherianness of C, for sufficiently
large v the G^,->G^i are isomorphisms, i.e. all the C^ are equal to the same G' with
G->G'->C both surjective. On the other hand, for any v we have

PV^+^J-WSJ.

Hence, for all v sufficiently large, the SJ^(3;J are all isomorphic (to G'). It then
follows by definition of 2^, and by virtue of the obvious inclusion ^(2Jc3^, that
in fact 2^ W,). Hence SJ2;;=C'. Q.E.D.

Now it follows just as in the theorem that 0 is noetherian and 6 =G'. However
0 is the limit of the S^,, which are flat over R, so that also 0 is flat over R. Hence 0 is
flat over R (e.g. by Grothendieck's "local criterion" for flatness). Hence C/=C,
which gives the desired result.

Remark (6.2.17). — The quasi-algebrization procedure appears to depend on
the following choices:

(i) The choice of the approximations f^ of the f^ by elements of R.
(ii) The choice of the generators u^ of the ideal fi, and the approximations of these

by the elements u^ in S, i.e. the choice of the Cy^y
However, we will see in (6.3) that the quasi-algebrization of C over R along

(A? ' ' -)fn) ls unique, i.e. it is independent of any such choices.
We note the following consequences of Theorem (6.0.4):

(6.2.18) Let k be any field of characteristic p, and let C be any artinian local
A-algebra with residue field k. Then G can be deformed flatly over a discrete valuation ring R
to a purely inseparable field extension F of Q/R). In fact, let R==A;[[^]], and let, for
example, G=R®^C (actually, any G over R as in (6.0.1) with C®^k==C will do).
Then, for a suitable discrete valuation ring R with completion isomorphic to R, and
elements fi, . - -,fn i11 R? purely inseparable over R, we can form the quasi-
algebrization 0 of G over R along (/i, . . . ,j^). The generic fibre of 0 over R
is then F==Q/R)(/i, . . .,/J and the special fibre is 0/^0 =6^6=G/^G=C. Of
course, 0 is not necessarily a finite type R-algebra.

(6.2.19) Let E denote the field of Laurent series in one variable t over any field
k of characteristic p. Let G be an artinian local E-algebra with residue field E.
Then C is the formal fibre of a local domain 0. Namely, in view of quasi-algebrization,
this amounts to the following:

Lemma. — Any G as above has flat reduction G mod(^), such that G satisfies (6.0.1).

Proof. — The hypotheses on G imply that we can write it in the form

G=E[Yi, . . . ,YJ/fi,
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where fi is an ideal such that (Y)^^] cS c(Y)E[Y] for some N. Choose generators
^i, ..., u.for & which are in R[Y], where R==k[[t]] (so that Q(R)=E). Let &o be
the ideal of R[Y] generated by the z/i, . ..,^ and (Y)^ Let 2= U (fio ̂ ') R[Y]-

Then if we let G=R[Y]/fi, C is torsion free over R, and is finite over R (since (Y)^^).
Hence G is flat over R. It is clear that C®RQ^(R)==G. Moreover, if we let ^==(Y)C,
then G/^P=R, so (6.0.1) is satisfied. d.E.D.

(6.2.20) At this point an example seems desirable. Let R be a discrete valuation
ring of characteristic 5, and let /eR—R, with f^^geR. Let S=R[/JcR. Then
S=R[Y]/(Y5), where Y=^==/®I-I®/ (view S as S^R). Let 0=1^]^),
where i^7^5. Then we can view G as a quotient ofS, and we can describe the ring 0

00

which is the quasi-algebrization of G over R along f as follows: write f= S a^, with
the a^ in R, as an element of R. Then

0=S[{I/f(/-|^(•)"},OILJ,
i==l

viewed as an S-subalgebra of S, the normalization of S. Note that when n= i, 0 is
a discrete valuation ring — in fact in the terminology of § 5 it is the Schmidt ring over R
corresponding to the formal ^-section defined by/. For n==2, 3, 4 O is not regular;
its maximal ideal is generated by/ and t. When ^==5, 0=S because ./^eR, so

v

/5— ( S ̂ /)5 is divisible by f in R and hence in S.
i==i

(6.3) Uniqueness of quasi-algebrization, and some questions a/classification.

(6 .3 .1) Let 0 be a ring together with a presentation R<->0<-^R satisfying the usual
hypotheses (3.0.1). We will suppose in addition that Q/0) is finite over Q/R). Choose
/i? • • - 3 fn m m = max(O) such that m = (/i, . . ., f^, t) 0 (where t is a regular parameter
ofR), and Q,(C>) = d(R) (/i, ...,/„). Then 0 is the quasi-algebri^ation of 6 over R along
(fi 3 • - • 3/n)? ma ̂  procedure which results from any choices as in (i) and (ii) of (6.2.17).

Proof. — Before we consider the question of quasi-algebrization, we first analyze 0
using the techniques of § 3: let S =R[/i. .., /J c0, and let S^ denote the (unique)
[i-th iterated quadratic transform of S. Write S^ == S^ n0. Then we know by (3.2.4)
that 0=US^« Moreover, by (3.4.1) 6 is naturally a quotient of S by the ideal 3;
consisting of all those elements whose images in successive terms of the sequence

S-So->Si->...^->...

become divisible by arbitrarily high powers of t (the regular parameter of R). Ghoose
generators u-^, . . . , ^ of Z in S. For each v, let [ji(v) be an integer such that C\u^ in
S^) for each j==i , . . . , r. Identifying S with R[Xi, . . . , XJ/3 (as in (6. i . i)) and
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S with R[Yi, . . . ,YJ/3 (as in (6.2.1)) with Y,=X,-/,, we know that 3:c(Y)S,
so that for each j== i , . .., r we can write

u,.= S c,^,3 KIX)^

where the sum is finite for each^', and Y^ denotes Y{1 . . . Y^" as usual, with ^= (^i, . . . , ̂ )
and |^[ =^i+• • •+^n- Nowforeach z = = i , . . . , 7 z (resp. j= i, . . . , r and those/'for
which ^=)=o), choose a sequence of elements j^ (resp. c^^) in R such that l im^v==^
and ^|(/,-/y in R (resp. lim^=^ and ^1^-^)). Write

f^ -fi -fiW > ^ = Cy - C^ .

Now for each j'= i, .. ., r and each v>o (suppressing the indices i in conformity
with the usual multi-index notation) we have :

^=S^Y^S^(X-/)^S(^+^)(X^^

where A^,=S^(X-/(,))^ and B,,=^-A^.

Note that A^ is actually an element of S, so also an element of S^ for all [L. Now in
view of the definition of the f^ and the c^, one checks easily that f | B^ in S (and
afortioriin S^ for any pi). On the other hand, we know f|^ in S^. Hence ^|A^
in S^ for all j. Then, since A^ is in S^, also ^|A^ in S^ by faithful flatness
of the completion, i.e. A^/^ is in S^. Hence A^/^ ^ ZTZ 0.

Now suppose we were to quasi-algebrize 0 over R along [f^ .. . ,^), using the
procedure that results from the choices of the generators ^ of the ideal fi of (6.2) (which
corresponds to the ideal 2 above in virtue of (6.2.1)), and the approximations f^
and c^ in the terminology of (6.2). Then A^ is what was called u^ in (6.2),
and hence if £/ denotes the quasi-algebrization, by (6.2.17) we get

D'=S[{A^}J.

Thus O'CO. But then O'cO is birational and induces an isomorphism of completions,
so by the standard argument (see e.g. the proof of (3.2.4)) O^O. This completes
the proof of (6.3.1). Q,.E.D.

The existence and uniqueness theorems have as an immediate consequence the
following result, in the direction of classification:

(6.3.2) Let R be a discrete valuation ring, and let S be a finite R-subalgebra o/^R, purely
inseparable over R. Let S denote the normalisation of S, and let [ S | be the class of all local
(noetherian) S-subalgebras 0 of S such that S<-^0 induces a surjection of completions (equiva-
lently such that max(S)0=max(0)). Then the assignment 0^6 is an isomorphism
of sets

|S | -^ Hilb^g(R)
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(the latter denotes the set of sub schemes ofSpec (S) flat over R); 0~~1 is given by quasi-algebrization
over R along (/i, .. ., ̂ ), where f^, . . . , f^ are any set of elements of S which generate max(S)
along with max(R), and which also generate Q,(S) over Q,(R).

Proof. — Any element of Hilbg/g(R) is of the form Spec(C), where G is of the
form S/a for an ideal a. Let ^ denote the nilpotent prime ideal of S. Then ac^5,
since C is flat over R. Hence G satisfies (6.0.1). Therefore there exists a quasi-
algebrization 0 in | S [ as indicated, such that

(*) ScO induces a surjection of completions which identifies 6 with G.
Moreover, by the uniqueness Theorem (6.3.1), this condition (*) uniquely

determines 0 in [S|. Thus the map Hilbg/g(R)->| S | given by quasi-algebrization
is well defined and is an inverse to 0. Q.E.D.

Example (6.3.3). — To illustrate these ideas, take a discrete valuation ring R of
characteristic 3, and an element /eR—R with f3==g in R. Let S=R[/J, so that
S==R[Y]/(Y3) (V^df). Then Hilbg/g(R) is the same as a set of certain ideals ac(Y)S;
in this case the Hilb has three components corresponding to the flat coverings of R of
degree i, 2, or 3 contained in Spec(S). There is a unique covering of degree i, corre-
sponding to the ideal (Y)S. Via quasi-algebrization, this is associated to the discrete
valuation ring S. The distinct ideals which give rise to coverings of R of degree 2 are
of the form (Y^S, or (FY+Y^S for distinct n>o. Via quasi-algebrization these
are associated to the rings

^^[{il^f^-^)2}^]

and 0, =S[{i/r(r(/-S^^1) 4-(/-2^/)2)}^] (1).

Note that this component is not <c connected ". As for the coverings of degree 3, there
is again a unique one corresponding to the ideal (o), which is associated by quasi-alge-
brization to the ring S itself. The situation is summarized in the diagram below:

completion
|S=R[/]| < Hilbg,g(R)

quasi-algebrization

ISIi^S} deg. i /R:{S/(Y)^R}
[^-{Ojnez^oo} deg. 2/R : (S/^Y+Y^) \^^}
|S|3={S} deg.3/R:{S}

Remark (6.3.4). — For the purpose of classification, say, of all those 0 with a
presentation over R and a given field of fractions, the classes [S|, parametrized by all
those S finite over R, are not sufficiently precise. In fact, if S 4= S', [ S| n [ S' | is not empty

00

(1) As usual we take an expression /= S a^ for/in ^, ^, teR.
i=l
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in general. The simplest example of this is the fact that ifS' is any one between S and S,
then S elS'|. This does not really pose a problem, however, because S is isolated in
any such | S'[; it corresponds to the unique point in the <c deg. i over R 5 ? part ofHilbg,/g(R),
i.e. [S'li. The analysis of the intersection of | S |^ and [S'[^ for n>i is much more
serious, and in view of the existence of the "local" description afforded by (6.3.2)
is a crucial part of general birational classification; we will not treat this question here,
except to say that the germs of many of the essential difficulties are present even in the
simplest cases, e.g. the previous example (6.3.3).

7. AN EXAMPLE

Given a maximal presentation R<-^0<-^R (see § 4 for definitions) the question arises:
is Q,(0) necessarily a finite extension o/'Q/R)? (We know that 0 is not necessarily a finitely
generated R-algebra.) Since O^cR for some q=p\ this question obviously has an
affirmative answer whenever the following condition on R is satisfied:

(*) CKR^nQ^R) is a finite extension of Q(R).
One would conjecture that (*) holds for example when R is a Schmidt ring over

an excellent discrete valuation ring RQ (§ 5). The example of this section shows,
however, that if (*) does not hold for R, then the answer to our question above
is negative in general: we will construct an 0 with maximal presentation over R
such that Q/0) is infinite over Q,(R). The point is that if (*) fails, there exist 0 for
which there will be too many differential forms with coefficients in R which are not integrable
over 0.

To begin, suppose we have an R for which

[(Q/R^nQ^R)) :Q(R)]-oo.

For example, we can take R to be as in the examples of Nagata or Hironaka at the end
of § 5, or the discrete valuation ring associated to a formal ^-section of infinite dimensional
affine space over an arbitrary discrete valuation ring. Let {f, g^ o^ (i==i, 2, . . .)} be
elements of R^ n R which are ^-independent over R (so that all monomials in the /,
gi and a, of degree < p in each factor are linearly independent over Q(R)). For each
n>o define S^=R[/, ^i, . . ., ^J cR (so that S^ is a finite R-algebra) and let £„ denote
the ideal ofS^ generated by {dg.—^df}^^. Then we can form the quasi-algebrization
0^ of SJ&^ over R along (/, ^, ..., ̂ ): 0^ is contained in the normalization of S^,
and the inclusion S^<->0^ induces a surjective map of completions whose kernel is fi^
(6.2). Now if i^n, according to the quasi-algebrization procedure the element
^Si—^f occurs in the kernel of S^->6^ because of the presence in 0^ of a certain
infinite sequence of elements in the subfield Q^(R)(/, ^); for a given i this sequence of
elements is the same, regardless of n (provided of course that n^i). Hence O^cO^+i
for all n.
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Now if we set Y,=^ and X==^ in S^, we may identify S^ with

R[X,Yi, . . . ,YJ/(X^,Yf, . . . ,Y^) .
;e for all n,Hence for all 72,

6,=SJ({Y,-a,X}^^J=R[X]/(X^).

Hence the inclusions O^cD^i induce isomorphisms of completions. Let
000=.^-

We first verify that 0 is noetherian: it is easy to check that in general if

•••-^Ar-^n+i-^...

is any inductive system of local rings (with n^=max(OJ), and if 0 is its limit (with
Tn== max (£>)), then the natural map

l^G^OJ^GrJO)
n

is surjective. However in our case all the Gr^(OJ are isomorphic, so that for all n,
^ni^OJ-^Gr^O) is surjective. Thus we can apply (3.3.2) to obtain: if L==UD^

00 n

with yi = max(L), then 0 = L/JT^. However all the 6^ are isomorphic and noethe-
00

rian. Hence ^^==(0), and 6^6 is an isomorphism for all 72. In particular 6
is noetherian; hence so is 0 (since 0 is a one-dimensional domain, we only have to
check that its maximal ideal is finitely generated, by the theorem of Gohen cited at the
end of (3.2.2)) .

Now it is clear that [Q(0): Q/R)]=oo by construction, and that R^O^R.
We want to show that this is a maximal presentation, i.e. if^eO and dx==o in 6 then xeR.
(where d : 0^6 is the differential operator attached to the presentation; see § 4).
To see this, take any element x of 0, so in particular x is in 0^ for some TZ. Now
Q,(OJ ==Q,(SJ ==S^®RQ(R). Hence, if t is a regular parameter of R, ^x is in S,, for
some m, and since d is R-linear, dx==o if and only if d{tmx)==o. Moreover, since
^eC^cR, fx is in R if and only ifx is in R. Hence, replacing x by f\r, we may assume
x is actually in S^. Then we can write

^= S ^/Y,1...^
v == (vo, ..., vn)

with ^ in R, and the sum is taken over those v such that o^ v.<p for j == o, . . . . n. Then

dx==^{^a^gY-^[df,dgY in 6,
(A V

where [L = (^, . . ., ^) with each ^.<j& and [LQ + ̂  + . . . + ̂ >o;
n

KJ = ̂ j^—— T) • • • (^-- ̂  + l) ; V- ̂  = (Vo- ̂ 0^1- ^1, . • . , \- ̂ ),L^-l ""^o'^^' ^ ' ' ' ̂  ^
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and (/^<^~'lA (resp. {df, dg)^) denotes the monomial in/and the ̂  (resp. ^and the dg^)
in which the factors appear to the power indicated by the multi-index v — [L (resp. p.) (*).
But in 0, dg^ == o^ df. Hence we may write

dx = S (S [y a,(/, ̂ - •1) (<//, a. dfY
[L V

with notational conventions as above, i.e.

dx=^(^a^f,gY-^^df^
(A V

with |p, = [jio + (Jii 4- . . . + ̂  and o^ == a^. . . a^. Now, since 6 == R[X] /(X^) with
yi==df (so that 6 is a free R-module on the 0th through^— Ist powers of df), dx==o
implies that for each non-negative integer ^<j&,

^(SEya^y'-^a^o
in R. Since [LQ plays no role in a^, it is possible that two distinct (JL'S give the same a^.
However if we restrict our attention to those pi with | [L [ =f, [L is uniquely determined
by p4, . .., ^. Hence the a^ in the sum above are distinct monomials in the o^ and so
they are linearly independent over R[/,^i, . . . ,&J . Thus we find that: for each
[i with \[L\<R,

S Wf,gY--=o
M'>. tL

in R (where V > [ A means that Vj^^- for j==o, . . . , % ) . Now for fixed (JL, the (/, ̂ ^"^
(with v ̂  [i) are distinct monomials in / and the g^, so they are linearly independent
over R. Hence for all [JL such that [ [L\<p, and all V>[JL, [y^==o- Now each y, and
[jij is less than p, and hence, for V^(JL, [y+o. Thus we find: provided there is some [L
with [pi|<^ for which V^|JL, ^==0. And since the only v for which v ̂  [L for any pi
is v == (o, . . ., o) (we restricted [L to [ [L \ >o), we get: all the a^ are o except possible for
v== (o, . . ., o). But this means precisely that x is in R. Q.E.D.
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