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C^ALGEBRAS OF OPERATORS ON A HALF-SPACE I
by L. A. COBURN (1) and R. G. DOUGLAS (2)

z« Introduction.

An equation of the form

(*) fW+^k{x-t)f{t)dt=g{x)

is known as a Wiener-Hopf equation. Such equations occur not only in diverse areas
of mathematics but are also important in applications. An immense literature is devoted
to all aspects of their study (cf. [13]) and much is known concerning their solution for
various function space domains and classes of kernels. A related equation, namely the
discrete analogue of (*)

00

(**) ^^n-k^^h

gives rise to what are called Toeplitz operators.
If {^}^L_oo are tibe Fourier coefficients of a continuous function on the unit circle,

then the equation (**) is pretty well understood. In [7] a study of this equation was
made, based on the structure of the C*-algebra generated by the corresponding class
of Toeplitz operators [3]. In [4] results of a similar study were announced for the
class of Wiener-Hopf operators with cc almost periodic symbol " on the reals based on
the structure of the analogous C*-algebra and a real-valued topological index.

In this paper, we give the proofs of some of those results, using the more general
setting of locally compact abelian groups. A semi-group is chosen in the dual group
and the half-space taken to be the functions whose Fourier transforms are supported on
this semigroup. The compression to the half-space of the multiplication operators with
almost periodic symbol are the Wiener-Hopf operators and the C*-algebra which they
generate is the principal object of study in this paper. Our main results are that this
G*-algebra modulo its commutator ideal is isomorphic to the algebra of almost periodic
functions on the group, that the commutant of this G*-algebra is the weak closure of its
center, and that this center is generated by the " translations 9? which leave the semigroup
invariant. Thus the question of the irreducibility of this C^-algebra depends entirely
on the geometry of the semigroup.

(1) Research supported under N.S.F. GP-9654.
(2) Alfred P. Sloan, Fellow and research supported by a grant from N.S.F.
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60 L. A. C O B U R N A N D R . G . D O U G L A S

Under certain additional assumptions one can complete the analysis of this
Cr-algebra by considering certain of its representations and introducing both an analytical
and a topological index on the algebra. This will be done in the paper [5] which includes
D. G. Schaeffer and I. M. Singer as co-authors.

a. Preliminaries.

Let G be a locally compact abelian group with dual group G and let S denote
a fixed sub-semigroup of G which is, in addition, a Borel subset of G. Let (JL and [L
denote the normalized Haar measures on G and 6, respectively, and let L^G) and L^G)
denote the usual Hilbert spaces of square-integrable complex functions. The Plancherel
transform ^ is an isometry from L^G) onto L^G). We denote by H^S) the subspace
of L^G) consisting of the functions f for which e^/is in L^S), that is, for which ^f
is supported on S. Let P(=P^) denote the (orthogonal) projection ofL^G) onto H^S)
and P(==Ps) the projection of L^G) onto L^S).

If 9 is a bounded measurable function on G, then there are (bounded, linear)
operators L^ and W^ defined on L^G) and H^S) by

Ap/- 9/ and WJ=. P^f) == PL^

respectively. We shall call W^ a Wiener-Hopf operator. Note that Wy + ̂  == W^ + W^
and W^==W^. If <p is a character y m S, then the projection is unnecessary and
W^f=^f. In this paper we want to analyze the G*-algebra J^=J^(G, S) generated
by {W,:YCS}.

In case G is the circle group T, 6 is the integers Z, and 2 is the semigroup Z+

of non-negative integers, the problem reduces to the study of the C*-algebra generated
by the simple unilateral shift. The latter algebra ^(T, Z"4') was studied in [3], where
it was shown that ^(T, Z4') contains the space of compact operators ^ as a two-sided
ideal and that the quotient algebra ^(l^Z"1')/.^ is naturally *-isometrically isomorphic
to the algebra C(T) of continuous complex functions on T with the supremum norm.
In fact, it is shown that every operator in ^(T, Z'1') has a unique representation of the
form W^K,

where K is compact and <p is in C(T). Further, the natural isomorphism between
^(T.Z^/^ and G(T) is given by

M^+^^cp.

We show under a rather mild restriction on the semigroup 2, that analogous
results hold for ^(G, S). In particular, we assume throughout the paper that [Z(S)>o
and that S generates G.

The following consequence of this assumption will be used in the sequel. For E
a subset of G and a in G we define CTE=={(TT : reE}.
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C*-ALGEBRAS OF OPERATORS ON A HALF-SPACE I 61

Lemma. — For each compact subset E of G there exists <j in S such that <rE c S.
Proof. — Since jl(2)>o it follows ([14], Cor. (20.17)) that S-S contains an open

set U. Since S is a semigroup, S-S cS and hence S contains U. Ify is in U, then e
(the identity in G) is in y^U. Let E be a compact subset of G. Since {KY^U : KeE}

n
is an open cover of E, there are iq, . . ., K^ in E such that Ec.U K.Y^U. Since 2

generates G, there exist {o,}^ and {rj^ in S such that G^^K, for z=i , 2, . . . , % .
n

If we set T=TiTa. . .T^y, then TEC^U^TT^Y-^UCS since each TT^y"1 is in S.

If we don't assume jl(S)>o, then the space H^S) consists of just the zero function.
If G is connected, then the assumption that 2 generate G is not needed since S would
already have to generate G. If G is discrete, then the lemma implies any semigroup 2
satisfying p. (2) > o and generating G would have to be all of G so that this case is trivial.

Let (£(G, S) denote the closed two-sided ideal in e^(G, S) generated by the
commutators of elements in J^(G, S). We shall prove that every element in J^(G, S)
has a unique representation of the form

W^K,

where K is in £ and cp is an almost periodic function on G. Moreover, the mapping

^+(£^9
induces a *-isometrical isomorphism between e^(G, S)/(£(G, S) and the algebra AP(G)
of almost periodic functions on G with the supremum norm. Since for compact G we
have AP(G)==C(G) these results generalize those of [3].

We adopt [12] as our reference for facts about topological groups and harmonic
analysis and [6] for facts about G^-algebras. Although all groups under consideration
are abelian, we shall adhere to multiplicative notation throughout.

3. The Spectral Inclusion Theorem.

For the case of Toeplitz or Wiener-Hopf operators it is well-known (cf. [2]) that
for 9 in L°°(T) the spectrum cr(Z^p) of the normal operator Ly is contained in the
approximate point spectrum of W^. We extend this result to out context. In [2] it
is further shown that such a result implies many things about the relationship between
the operators L^ and M<p. We shall state only those results which we shall need and
refer the interested reader to that paper for the others.

Before proceeding we need to adopt the following conventions. If A is an operator
on L^G), then we let A denote the operator yA^~1 on L^G). Similarly, since ^
takes H^S) onto L^S), we can define for each B on H^S) the corresponding operator
2==^B^'-1 on L^S). We use J^G, 2) to denote the transformed algebra e^(G, 2).
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62 L. A. C O B U R N A N D R . G . D O U G L A S

Clearly, for y in 2 we have {W^f} (0) ̂ (y-^). For the bounded measurable function <p
let R((p) denote the essential range of 9, that is, the set of complex \ for which the
function i / ( c p — X ) fails to be bounded a.e. Lastly, recall that the semigroup S induces
a partial order _< on G in which a^(B if pa-1 is in S and that G is a directed set with
respect to this partial order.

We can now state and prove our first Theorem.

Theorem 1. — If <p is in L°°(G), then

<r(Ap)=R(9)C(rTO and \\W,\\ == [|£J| == |<p||,.

Proof. — For the normal multiplication operator L^ on L^G) the relations
(T(ZJ = R(<p) and | [ L^ \ \ == 119 [ |^ are well-known. Further, since W^ is the compression
PZJH^S) of£^ to the subspace H^S), we have \\W^\\<, |[£J[. Moreover, since the
norm of an operator majorizes its spectral radius with equality holding for normal
operators (cf. [11]), the theorem will be completely proved when we establish that
^(^C^M^p). Lastly, since the spectrum of the normal operator Ly consists entirely
of approximate eigenvalues (cf. [n]), it suffices to show that if o is an approximate
eigenvalue ofJLy, then o is also an approximate eigenvalue for W .

To that end consider the net of operators {^J^^ on L^G) defined for a in S
^ B^==^^^PL^. From the definition of W^ and the fact that L^ is unitary on L^G)
we have

^=(Z;PZJ^(£;P£J.

Using the Fourier transform we have

y^PL^-^U^

where {L^f){a)==f(w-1) for/in L\G) and c- in G. If/is a function in L\G) with
compact support E, then by the Lemma in § 2 there exists ̂  in 2 so that oc.> o^ implies
aEcS and hence L\PL^f=f. Thus the net of contractions {£;p£j^ converges in
the strong operator topology to the identity 7, since the functions with compact support
are dense in L^G). Therefore the net {5j^^ converges strongly to £ and hence
||£j^mj|2y^||^||.

Now suppose o is an approximate eigenvalue of L^, s>o and/is a unit vector

in L^G) such that |[Z^/||<J. Choose ao and ^ in S such that oc;>ao implies

\\^PLJ\\=\\BJ\\<^ andsuchthat ̂ , implies \\PL^f\\^\\L^PL^f\\>1-. Then

for y^ocoPo we have

||^(PZ,/)||<J<c||PZ,/||.

Thus o is an approximate eigenvalue for W^ and the proof if complete.
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C*-ALGEBRAS OF OPERATORS ON A HALF-SPACE I 63

In recent work the second author has shown (cf. [9]) that the preceding result can
be <( explained 5? in the case of Toeplitz operators as follows: Let ^° be the G*-algebra
generated by all of the operators {Wy [ (peL^T)} and C be the commutator ideal of^".
Then ^/(£ is isometrically isomorphic to L^T) with the map M^-l-C^?- Whether
the corresponding statement is true in our context we do not know(1). The proof for the
case of the circle group T depends on some relatively deep properties of the collection
of inner functions [10]. No corresponding results are known in the more general group
context.

4. Perturbations by Commutators.

Consider the mapping from AP(G) into J^(G, S)/C(G, S) defined by

cp^I^+(£(G,2).

From the preceding theorem it follows that this map is a contractive mapping between
the two Banach algebras AP(G) and J3^(G, S)/(£(G, 2). In this section we show, in
fact, that this map is an isometrical isomorphism. To do this we need the following

Lemma. — If ^ is in L^G) and K is in C(G, S), then [|W<p+^||^ | |?| |oo-
Proof. — Observe first that for a in S, the semigroup a2 satisfies our fundamental

hypotheses. Thus, it follows from Theorem i that for £>o and a in 2, there exists f
in L^G) such that J^/is in L^aS) and |lPas(?/)H>(||^|l-^)ll/ll.

Secondly, we need some information concerning the operators in (£(G, S). For
04, . . . , ON in 2, W^W^^.W^ is in J^(G, S), and the set Q of finite linear
combinations of operators of this form is dense in ^{G, S). If we choose operators
A^ A,, . . ., A^, B^ ^,..., 5^, Ci, Cg, .. ., CN, A. A. • • • and Dy in Q), then the

N

operator K== S A^B^—C^D^ is in £(G, S) and the set S of operators of this form
i=i

is dense in £(G, S). Let K be such an operator with a particular presentation, and
let C be the operator on L^G) obtained by replacing each W^ or W^ in the given presen-
tation for K, by the corresponding £p or Z^. If 04, Og, . . ., a^ is a list of the elements
of S (counted multiply) which occur in the given presentation for K, then a = 0402 . . . a^
is in 2 and for y in L^G) such that ^fis in L^ocS), we have Kf==Cf==o since the Zp
are commuting normal operators. Thus K has the property that Kf= o for every f
in L^G) such that ^fis in L^aS). But this argument can be reversed to prove that
given K in S there exists a in S with the property that Kf=o for every f in L^G) such
that ^fis in L^ocS).

We now prove the lemma. Let 9 be in L^G) and K be in (£(G, S). For £>o

choose K ' in <^ such that H^—K'I^-, choose a in S such that ^fin L^aS) implies
o

(1) Added in proof : A proof that ^"/(£ is isometrically isomorphic to L°°(G) can be given based on a recent
result ofj. Bunce in ft The joint spectrum of commuting non-normal operators " (to appear).
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64 L. A. C O B U R N A N D R , G . D O U G L A S

K'f=Q, and lastly choose such an/such that ll^as^ll^ll^JI—2)!!/!!. Then
WF» Tnavp^ x ' J /we have

\\^+K)f\\>.\\^+K/)f[\-^\f\\

^HHVII-JH/H

^||-PaE(y/)||-||l/||^(||^J|-c)||/||

so that H M ^ + ^ I I ^ I I M ^ H and the lemma is proved.

We next use the preceding lemma to characterize the operators in e^(G, 2).

Theorem 2. — The algebra J^(G, 2) consists precisely of all operators of the form W -\-K,
where 9 is an almost periodic function on G and K is in C(G, 2). Moreover^ this representation
is unique.

Proof. — If 9 is an almost periodic function on G and s>o, then there exist [i]
characters YI? Y23 • • • ? YN m G- and complex scalars \, \, . . ., X^ such that

|lJ|^-9||oo<^.

Since 2 generates G, it follows that there exists oc^ and (3, in 2 such that ^==^1^.
N

Therefore, it follows from Theorem i that || S \W^-i^—W\\< s and since

^^^/0,=:=^a71p, we have ̂  is in ^(G? S). Moreover, if^ is also an almost periodic
function on G, then a similar approximation of W^ and a simple computation shows
that the difference W^W^—W^ is in (£(G, S). Thus, the closure of the set of sums
of the form W^+K is seen to be a G^-algebra which must equal J^(G, 2). Moreover,
from the lemma we have ||M^+X||^: [ | (p | | which implies the representation is unique.
Lastly, if {M^cpn+^n}^! is a Cauchy sequence, then the preceding norm inequality
shows that {M^pJ is also a Cauchy sequence. Hence, lim W^-==W^ for some almost
periodic function 9 and also lim K^=K for some K in £(G, 2). This completes the
proof.

Corollary. — The mapping M^p+(£(G, 2) ̂ 9 ^ a ^-isometrical isomorphism between
^(G, S)/(£(G, 2) W AP(G).

5. Commutant of ^(G, 2).

In the classical case ^(T, Z^ is an irreducible algebra or equivalently the only
operators that commute with ^(T, Z^) are the scalar operators. In the general case
we show that the commutant e^(G, 2)'of^(G, 2) is the von Neumann algebra generated
by the operators W^ for y in G that happen to be unitary. This latter result depends
on a Theorem due to Calderon on spectral synthesis. As a corollary we obtain that the
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C*-ALGEBRAS OF OPERATORS ON A HALF-SPACE I 65

irreducibility ofj^(G, S) is equivalent to there existing no y m G satisfying yS=S a.e.
We begin by considering the relationship between the isometric representation

o- \-> Wy of S and the unitary representation a !->• Ly. Since Wy == Ly \ H^S) for cr in S,
the latter unitary representation is an extension of the isometric representation. It is
known (cf. [8]) that a unitary extension of an isometric representation always exists
and that, moreover, if the extension is minimal, then it is uniquely determined. By
minimality is meant that the smallest subspace of L^G) containing HP(S) and reducing
all of the Ly is the space L^G) itself.

Lemma. — The representation a l-> Ly of S is the minimal unitary extension of the isometric
representation (5\->Wy of S.

Proof. — A subspace reduces Ly if and only if it is invariant for Ly and Ly_^=L*y.
Since the semigroup generated by the collection SuS~1 is G itself, the proof reduces
to showing that the smallest closed translation invariant subspace of L^G) containing
L^S) is L^G) itself. Since S contains an open set U, then L^S) contains the collection
of all continuous functions which vanish outside of U. Using a partition of unity
argument, the smallest translation invariant subspace containing L^S) must contain
all continuous functions with compact support. Since the latter set is dense in L^G),
the proof is complete.

We next recall a special case of a theorem in [8].
Lemma. — If A is an operator on H^S) that commutes with the collection {Wy : creS},

then there exists a unique operator B on L^G) that commutes with the collection fLy : creS}
and such that A^B^2^).

Proof. — See Theorem 2 of [8].
We state our preliminary characterization of the commutant of J^(G, S) after

introducing some terminology. Let H°°(S) denote the weak*-closed subalgebra ofL°°(G)
consisting of those functions <p for which Z^H2^)) cH^S). Moreover, let R^S)
denote the largest self-adjoint subalgebra of H°°(S), that is, R^^^H00^) oH^S).
Lastly, let Z(G, S) denote the commutant of J3^(G, S).

Theorem 3. — The algebra Z(G, 2) is an abelian von Neumann algebra and equals
{Wy : (peR^S)}. Moreover, Z(G, S) is the center of the von Neumann algebra generated
by ^(G, 2).

Proof. — We begin by observing that the commutant of the collection [Ly : oe2}
is the operators {L^ : yeL^G)}. To prove this we observe that as in the proof of the
first lemma, if an operator B commutes with each Ly for a in S, then B commutes with
each Ly for o in G. Since the weak*-closed subspace of L°°(G) generated by the
characters is L°°(G), and the weak*-topology on L°°(G) coincides with the weak
operator topology on {£q, : (peL°°(G)}, we obtain the fact that B commutes with the
algebra {Zy : cpeL°°(G)}. Moreover, the latter algebra is maximal abelian and hence B
must belong to it.

65
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66 L. A. C O B U R N A N D R . G . D O U G L A S

Combining this fact with the preceding lemma we see that each operator A
on H^S) that commutes with {Wy : (reS) can be written uniquely A==L JH^S)
for some (p in L°°(G). Since ^(H^S)) c H^S) it follows that 9 is in H°°(S). Therefore,
if A commutes with e^(G, 2), then A =L^ H^S) for some 9 in H°°(I:). Since J^(G, 2)
is self-adjoint, ^4* also commutes with J^(G, S) and Z^==Z^ must leave H^S) invariant.
Hence 9 is in R°°(S) and the identification Z(G, 2)=={H<p : 9eR°°(2)} is complete.
The remaining results follow immediately.

In order to obtain our final characterization ofZ(G, S) we need to study the spaces
H°°(S) and R°°(S) a little more deeply. We begin with a lemma which puts our problem
in the context of harmonic analysis.

Lemma. — The space H°°(S) is a weak^closed translation invariant subalgebra (/L°°(G).
Proof. — Since we already know that H°°(S) is a weak*-closed subalgebra ofL°°(G),

the only thing remaining to prove is that it is translation invariant and this will follow
if we knew that H^S) were translation invariant. This, however, is obvious since if/
is in H^S), x is in G, and /p denotes the translate of/by x, then fxM^^Wf^) for y
in G. Since f is supported on S, it follows that /p is also and hence/ is in H^S).

The algebra H^S) seems to merit further study. Although it is defined in a
manner analogous to the classical Hardy space it can, for example, contain non scalar
real functions. Some trace, however, of analyticity should remain. One question one
might ask is whether the maximal ideal space of L^G) is the Silov boundary for H°°(S).

The spectrum ofH°°(S) is a closed subsemigroup 2^ ofG which contains S. It is
reasonable to expect that 2^ admits spectral synthesis and hence that the weak^-closed
subspace spanned by 2^ is H°°(S) itself. This follows from a result in [14],
Theorem (7.5.6), when the identity is in the closure of the interior ofS^. While this
is true in many examples, it is not true in general.

Lemma. — The spectrum U^^GnR^S) of R°°(S) is a closed subgroup of G.
Proof. — Since R^S) is a subalgebra ofL°°(S) we see that U(S) is a subsemigroup

of G. Moreover, U(S) is a subgroup since R°°(2) is self-adjoint. Lastly, U(S) is a
closed subgroup since the spectrum of a weak^-closed translation invariant subspace is
always closed ([14], Th. (7.8.2)).

We next determine "geometrically55 which y ar^ in U(S).
Lemma. — The character y is in U(S) if and only if yS==2^ a.e.
Proof. — (In case the Haar measure on G is not c-finite the relation y2; == 2 a.e.

is interpreted to mean (yS) n E = 2 n E a.e. for every measurable c-finite subset E of G.)
A character y is in U(S) if and only if both y and y are in H°°(S), and the latter

happens if and only if H^S;) is a reducing subspace for the operator L^. Therefore,

Y is in U(S) if and only ifW^ is unitary. If/is in H^S), then W^f=L^f and L^f
is the translate (/)^ of/by y. Since Z^/is in H^S) it follows that the support of (/)y
is contained in S. From this the result follows.
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Theorem 4. — The commutant Z(G, S) of J^(G, S) ^ ̂  von Neumann algebra generated

by the group {W '. ̂ e\J{^)\ of unitary operators.

Proof. — The von Neumann algebra generated by the group {W^ : YeU(2)} is
just the von Neumann algebra of multiplications by functions in the weak'-closed subspace
of L°°(G) generated by U(2). Since U(S) is a closed subgroup ofG, it admits spectral
synthesis by a result ofCalderon ([14], Th. (7.5.2)) , and hence this subspace is R°°(2).

Corollary 1. — The algebra ̂ (G, S) is irreducible if and only if for no y in G is yS == S a.e.

except Y = e.

Corollary 2. — The center of the von Neumann algebra generated by <^(G, S) is the weak

closure of the center of ̂ (G, S).

We consider the special case where {^}^i is a basis (not necessarily orthogonal)
n

in K1 and S =={ S \x^: X^ o}. Such a semigroup will be called a proper cone. Clearly

for no x in K1 is x + S == S a.e. and hence we obtain
Corollary 3. — The algebra ^(R^ 2) is irreducible for S a proper cone in R^
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