Publications mathématiques de l'I.H.É.S.

Nicholatas H. Kuiper

 Algebraic equations for nonsmoothable 8-manifolds

 Algebraic equations for nonsmoothable 8-manifolds}

Publications mathématiques de l'I.H.É.S., tome 33 (1967), p. 139-155
http://www.numdam.org/item?id=PMIHES_1967__33__139_0
© Publications mathématiques de l'I.H.É.S., 1967, tous droits réservés.
L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http:// www.hes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ALGEBRAIC EQUATIONS
 FOR NONSMOOTHABLE 8 -MANIFOLDS

by Nicolaas H. KUIPER (${ }^{1}$)

SUMMARY

The singularities of Brieskorn and Hirzebruch are used in order to obtain examples of algebraic varieties of complex dimension four in $\mathrm{P}^{5}(\mathbf{C})$, which are homeomorphic to closed combinatorial 8-manifolds, but not homeomorphic to any differentiable manifold. Analogous nonorientable real algebraic varieties of dimension 8 in $\mathrm{P}^{10}(\mathbf{R})$ are also given. The main theorem states that every closed combinatorial 8 -manifold is homeomorphic to a Nash-component with at most one singularity of some real algebraic variety. This generalizes the theorem of Nash for differentiable manifolds.

§ I. Introduction. The theorem of Wall.

From the smoothing theory of Thom [1], Munkres [2] and others and the knowledge of the groups of differential structures on spheres due to Kervaire, Milnor [3], Smale and Cerf [4] follows a.o. that closed combinatorial n-manifolds for $n \leq 7$ are smoothable. That is, they admit a combinatorially compatible differential structure. This structure is unique up to equivalence for $n \leq 6$. By a manifold we mean a connected closed combinatorial manifold. We will consider manifolds of dimension eight. In § 1, 2, and 3 all manifolds will be oriented. Let X be an oriented 8 -manifold and X^{k} the k-skeleton of some triangulation of X . If the number of vertices is N , then let X^{0} be the set of end-points of N orthonormal unitvectors in euclidean vector N -space E^{N}. The simplices of X^{k} are then fixed and X lies embedded in $\mathrm{E}^{\mathbb{N}}$. For any $\mathrm{W} \subset \mathrm{X} \subset \mathrm{E}^{\mathbb{N}}$ and $\delta>0$ we define the neighbourhood $\mathrm{U}(\mathrm{W}, \delta)=\{x \in \mathrm{X} \mid$ distance $(x, \mathrm{~W})<\delta\}$ of W in X .

For small δ, say $\delta<\mathrm{N}^{-1}, \mathrm{U}\left(\mathrm{X}^{6}, \delta\right)$ can be given a differential structure \mathscr{D} and this is unique up to equivalence. Next we construct a differential structure on $U\left(X^{7}, \delta^{2}\right)$ which equals the first structure \mathscr{D} on $\mathrm{U}\left(\mathrm{X}^{6}, \delta^{2}\right)$. For that we have to define for every 7 -simplex Δ_{7} of X^{7} some differential structure on $\mathrm{U}\left(\Delta_{7}, \delta^{2}\right)$ which agrees with \mathscr{D} on $\mathrm{U}\left(\mathrm{X}^{6}, \delta^{2}\right) \cap \mathrm{U}\left(\Delta_{7}, \delta^{2}\right)=\mathrm{U}\left(\partial \Delta_{7}, \delta^{2}\right)$. This is possible in essentially 28 different ways, because the difference between two such smoothings corresponds with a smoothing

[^0]of $S^{7} \times(0,1)$ or of S^{7}, hence with an element of the group $\Gamma_{7} \simeq \mathbf{Z}_{28}$ of differential structures on S^{7} modulo those that can be extended to the 8 -ball.

For each oriented 8 -simplex Δ_{8} of X^{8} we have now smoothed some neighbourhood of the boundary $\mathrm{U}\left(\partial \Delta_{8}, \delta^{2}\right) \cap \Delta_{8}$. If this smoothing, restricted to $\mathrm{U}\left(\mathrm{X}^{7}, \delta^{3}\right) \cap \Delta_{8}$, can be extended over Δ_{8}, then we assign to Δ_{8} the element $o \in \Gamma_{7}$. More generally, following M. Hirsch [5], we observe that any smooth oriented 7 -manifold in $\mathrm{U}\left(\partial \Delta_{8}, \delta^{2}\right) \cap \Delta_{8}$, which is combinatorially isotopic to $\partial \Delta_{8}$, will have the same structure of an exotic 7 -sphere, and so it determines an element $\gamma\left(\Delta_{8}\right) \in \Gamma_{7}$. Indeed any two such manifolds are h-cobordant with some third that bounds a combinatorial 8-disc containing both, and hence all three are diffeomorphic.

In the top dimensional case the sheaf of coefficients (local coefficients of Munkres) is constant and it can be identified with $\Gamma_{n-1}=\Gamma_{7}$. This is the case for X orientable as well as X nonorientable.

The function γ on oriented simplices in X^{8} :

$$
\gamma: \Delta_{8}^{(i)} \rightarrow \gamma\left(\Delta_{8}^{(i)}\right) \in \Gamma_{7}
$$

is a cochain, which is a cocycle as there are no 9 -simplices in X. So the value of γ on the fundamental cycle of the oriented X is

$$
\gamma([\mathrm{X}])=\sum_{i} \gamma\left(\Delta_{8}^{(i)}\right) \in \Gamma_{7} .
$$

If we change our choice of differential structure at one of the 7 -simplices by $\xi \in \Gamma_{7}$, then the cochain value in the two adjacent 8 -simplices alters by ξ and $-\xi$ respectively, and we obtain a cohomologous cochain with unaltered value $\gamma([X]) \in \Gamma_{7}$. This element represents a cohomology-class $\bar{\gamma}(\mathrm{X}) \in \mathrm{H}^{8}\left(\mathrm{X}, \Gamma_{7}\right)=\Gamma_{7}$ which is an invariant of the combinatorial 8-manifold.

As X is connected, there is one choice of differential structures in the 7 -simplices such that $\gamma\left(\Delta_{8}^{(i)}\right)=0$ for all except at most one of the 8 -simplices. We transport all obstruction to smoothing to one 8 -simplex. Then on that 8 -simplex the value of the cochain is $\bar{\gamma}(X)$. We see that the nonsmoothability of an 8 -manifold can be concentrated in an arbitrarily small neighbourhood $N(p)$ of any point p. Any subdivision of the given triangulation, for which $\mathrm{N}(p)$ is interior to an 8 -simplex therefore gives the same value for $\bar{\gamma}(\mathrm{X})$, which is then an invariant not only of the triangulation but of the combinatorial structure of X . From the above procedure follows :

Lemma 1. - The 8-manifold X has a compatible smoothing if and only if the combinatorial invariant $\bar{\gamma}(X) \in \Gamma_{7} \simeq \mathbf{Z}_{28}$ vanishes.

If X and Y are 8 -manifolds, then the connected sum $\mathrm{X} \# \mathrm{Y}$ is the oriented 8-manifold obtained by deleting from X and Y each one 8 -simplex and identifying the boundaries, say linear on each 7 -simplex of this boundary, so that a connected manifold is obtained and the injections of the remaining parts of X and Y are imbedded in $\mathrm{X} \# \mathrm{Y}$ with preservation of orientation. The negative of X is the same non-oriented manifold with the other orientation.

Lemma 2. - For any 8-manifold $\mathrm{X}, \mathrm{X} \#(-\mathrm{X})$ is smoothable.
Proof. - Let Δ and Δ^{\prime} be two 8 -simplices of a triangulation of X, p an interior point of Δ^{\prime} with neighbourhood $\mathrm{U}(p, \delta) \subset \Delta^{\prime}$. Take a smoothing of $\mathrm{X}-\mathrm{U}(p, \delta)$, in which $\partial \Delta$ is a smooth usual 7 -sphere. Take the smooth connected sum of X and -X along $\partial \Delta \subset X$ and $-\partial \Delta \subset-X$. The combinatorial manifold $X \#(-X)$ has then a natural smoothing, except in $\mathrm{U}(p, \delta) \subset \mathrm{X}-(\Delta)$ and in the corresponding neighbourhood in $(-X)-(-\Delta)$.

The cochain on the triangulation of $X \neq(-X)$ has values $\gamma([X])$ and $-\gamma([X])$ on the two exceptional 8-simplices and zero elsewhere. Hence $\bar{\gamma}(X \neq(-X))=0$ and lemma 2 follows from lemma I .

The 8-manifolds X and Y are called equi-smoothable or equal modulo smooth manifolds, $\mathrm{X} \sim \mathrm{Y}$, if $\mathrm{X} \#(-\mathrm{Y})$ is smoothable.

Lemma 3. - Equi-smoothability is an equivalence relation.
Proof. - Applying the above procedure of concentrating the essential contribution of the cochain γ into one 8 -simplex, to the 8 -manifolds X and Y , it follows immediately from lemma I that

$$
\mathrm{X} \sim \mathrm{Y} \Leftrightarrow \bar{\gamma}(\mathrm{X})=\bar{\gamma}(\mathrm{Y}) .
$$

The Theorem of C. T. C. Wall [6]. - The equi-smoothability classes of oriented 8-manifolds (also called the combinatorial modulo smoothable 8 -manifold classes) form a group isomorphic with $\Gamma_{7} \simeq\left(\mathbf{Z}_{28},+\right)$ under connected sum $\#$.

Proof. - Again by the choice of special cochains for X and Y one sees:

$$
\bar{\gamma}(\mathrm{X} \# \mathrm{Y})=\bar{\gamma}(\mathrm{X})+\bar{\gamma}(\mathrm{Y}) .
$$

Then $\bar{\gamma}$ defines a homomorphism of the associative semi-group of oriented 8 -manifolds with connected sum, onto $\Gamma_{7} \simeq \mathbf{Z}_{28}$. By the proof of lemma 3 the equivalence classes are the 28 fibres of this map.

§ 2. Topological invariance of $\bar{\gamma}$.

D. Sullivan [20] proved that any two combinatorial structures on a simply connected closed topological manifold of dimension ≥ 6 without 2-torsion in $\mathrm{H}^{3}(-, \mathbf{Z})$, are combinatorially equivalent (Hauptvermutung). Hence $\bar{\gamma}$ is a topological invariant for such manifolds.
C. T. C. Wall kindly brought to my attention that the topological invariance of the rational Pontrjagin classes, obtained by Novikov [I2], implies that $\bar{\gamma}$ is a topological invariant for an even larger class of 8 -manifolds. This can be seen as follows.

Borel and Hirzebruch proved in [7], p. 494, that for a smooth closed oriented manifold X

$$
\widehat{\mathrm{A}}(\mathbf{X}, d / 2)=e^{d / 2} \sum_{j=0}^{\infty} \widehat{\mathrm{A}}_{j}\left(p_{1}, \ldots, p_{j}\right)[\mathrm{X}]
$$

is an integer. Here $d \in \mathrm{H}^{2}(\mathrm{X}, \mathbf{Z})$ is any element which reduces in $\mathrm{H}^{2}\left(\mathrm{X}, \mathbf{Z}_{2}\right)$ to the
second Whitney-class $w_{2}(\mathrm{X})$. So we have to assume the existence of d. For complex manifolds d exists and can be taken to be the first Chern class c_{1}.

One finds, with

$$
\hat{\mathrm{A}}_{1}=\frac{\mathrm{I}}{24} p_{1}, \quad \hat{\mathrm{~A}}_{2}=\frac{2^{-7}}{45}\left(-4 p_{2}+7 p_{1}^{2}\right),
$$

and with the formula for the signature:
that

$$
\begin{gathered}
\sigma(\mathrm{X})=\frac{\mathrm{I}}{45}\left(7 p_{2}-p_{1}^{2}\right)[\mathrm{X}], \\
\hat{\mathrm{A}}\left(\mathrm{X}, \frac{d}{2}\right)=\left(\frac{p_{1}^{2}-4 \sigma}{896}-\frac{d^{2} p_{1}}{192}+\frac{d^{4}}{384}\right)[\mathrm{X}] .
\end{gathered}
$$

We now prove the formula

$$
\begin{equation*}
\bar{\gamma}(\mathrm{X}) \equiv-28 \hat{\mathrm{~A}}\left(\mathrm{X}, \frac{d}{2}\right) \bmod 28 . \tag{*}
\end{equation*}
$$

Proof. - Let W be Milnor's example of a parallelisable 8-manifold with as boundary the exotic 7 -sphere $\partial \mathrm{W}$ that represents the generator of $\Gamma_{7} . \mathrm{M}$ is the closed combinatorial manifold obtained by closing W with an 8 -ball. Then $\sigma(\mathrm{M})=8$. $\mathrm{Y}=\mathrm{X} \# \mathrm{M} \# \ldots \# \mathrm{M}$ is the connected sum of X and m copies of M .

One obtains, because X and Y have p_{1}^{2} and d in common,

$$
\hat{\mathrm{A}}\left(\mathrm{Y}, \frac{d}{2}\right)=\hat{\mathrm{A}}\left(\mathrm{X}, \frac{d}{2}\right)-\frac{4^{m}}{896} \sigma(\mathrm{M})=\hat{\mathrm{A}}\left(\mathrm{X}, \frac{d}{2}\right)-\frac{m}{28} .
$$

By § I, Y has a smoothing compatible with the given combinatorial structure for exactly one value of $m \bmod 28$. This value is given by

$$
\mathrm{o}=\bar{\gamma}(\mathrm{Y})=\bar{\gamma}(\mathrm{X})+m \bmod 28 .
$$

For that value of m we also have

$$
\mathrm{o}=\hat{\mathrm{A}}\left(\mathrm{Y}, \frac{d}{2}\right)=\hat{\mathrm{A}}\left(\mathrm{X}, \frac{d}{2}\right)-\frac{m}{28}=\mathrm{omod} \mathrm{I},
$$

and the formula follows.
Consequently the right hand side of (*) is mod 28 independent of the choice of d, as long as d reduces to $w_{2}(\mathrm{X})$. Then it depends only on the rational Pontrjagin class p_{1}, on the signature σ and on $w_{2}(\mathrm{X})$, which are all topological invariants.

Finally $\bar{\gamma}(\mathrm{X})$, the left hand side of $(*)$, is therefore also a topological invariant. We summarize:

Theorem 1. - If the oriented closed 8-manifold X is simply connected and has no 2-torsion in $\mathbf{H}^{3}(\mathrm{X}, \mathbf{Z})$, or if $w_{2}(\mathrm{X})$ is the reduction of a \mathbf{Z}-cohomology class d, and $\bar{\gamma}(\mathrm{X}) \neq 0$, then X has no smoothing. $\bar{\gamma}$ is a topological invariant for such spaces \mathbf{X}.

§ 3. Complex algebraic varieties as examples.

Brieskorn [8], Milnor [9] and Hirzebruch [io], using Pham [II], have studied isolated singularities of complex algebraic varieties, for which some neighbourhood of the singular point has the natural topological and combinatorial structure of a cone over a smooth possibly exotic 7 -sphere which bounds it. In particular this is the case for the singularity at $\mathrm{o} \in \mathbf{C}^{5}$ of the affine variety ([io])

$$
\left.\begin{array}{r}
f_{1}\left(z_{1}, \ldots, z_{5}\right)=z_{1}^{n-1}+z_{2}^{3}+z_{3}^{2}+z_{4}^{2}+z_{5}^{2}=0 \tag{I}\\
n=6 k>0
\end{array}\right\} .
$$

The intersection of (1) with $|z|=\sqrt{\sum_{i=1}^{5} z_{i}} \overline{z_{i}} \leq 9 c$, is for small $c>0$ homeomorphic with an 8 -ball, and its boundary, obtained as intersection of (I) and
(2)

$$
|z|=c
$$

is the exotic sphere with value

(3)

$$
k . \mathrm{I} \in \mathbf{Z}_{28} \simeq \Gamma_{7} .
$$

For $k=\mathrm{I}$ the generator with value $\mathrm{I} \in \mathbf{Z}_{28} \simeq \Gamma_{7}$ is found.
If we embed \mathbf{C}^{5} as the complement of a hyperplane, the so called " hyperplane at infinity " in $\mathrm{P}^{5}(\mathbf{C})$, then (I) can be considered as the affine equation of an algebraic variety in $\mathrm{P}^{5}(\mathbf{C})$.

In homogeneous coordinates z_{1}, \ldots, z_{5}, w, it has the equation

$$
z_{1}^{n-1}+z_{2}^{3} w^{n-4}+\left(z_{0}^{2}+z_{4}^{2}+z_{5}^{2}\right) w^{n-3}=\mathrm{o}
$$

This algebraic variety has, apart from the old singularity, many more singularities namely at infinity ($w=0$). In order to avoid new extra singularities we modify our function f_{1} and choose the new function f as follows:

$$
\begin{gather*}
f=z_{1}^{n-1}+z_{2}^{3}+\sum_{i=3}^{5} z_{i}^{2}+\sum_{j=1}^{5} \lambda^{j-1} z_{j}^{n} \tag{4}\\
\lambda \in \mathbf{R} \subset \mathbf{C}, n=6 k
\end{gather*}
$$

This function is locally near $o \in \mathbf{C}^{5}$ equivalent to f_{1} by a holomorphic change of coordinates of the kind

$$
z_{j}^{\prime}=\Phi_{j}\left(z_{j}\right) \quad(j=\mathrm{I}, \ldots, 5)
$$

with

$$
\begin{aligned}
& \left(\Phi_{1}(u)\right)^{n-1}=u^{n-1}+u^{n} \\
& \left(\Phi_{2}(u)\right)^{3}=u^{3} \quad+\lambda u^{n} \\
& \left(\Phi_{i}(u)\right)^{2}=u^{2} \quad+\lambda^{i-1} u^{n} \quad(i=3,4,5)
\end{aligned}
$$

Therefore the affine variety $f=0$ has near $o \in \mathbf{C}^{5}$ a singularity with the same local properties as mentioned for $f_{1}=0$ (take c small). We now search for the singularities on the variety $f=0$. They obey the equations:

$$
\begin{equation*}
\partial_{1} f=\partial_{2} f=\partial_{3} f=\partial_{4} f=\partial_{5} f=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f=0 \tag{6}
\end{equation*}
$$

Solution of z_{1}, \ldots, z_{5} from (5) and substitution in (6) yields for

$$
\left(z_{1}, \ldots, z_{5}\right) \neq(0, \ldots, o)=0 \in \mathbf{C}^{5}
$$

and for different choices of the solutions, rational algebraic equations, which can be combined into one rational algebraic equation. It expresses a necessary condition on λ, for having at least one more singular point on (6). So for only a finite number of values of λ there are other singularities. In particular for $\lambda=e$, an arbitrary transcendental number, the only singularity on the affine variety is $o \in \mathbf{C}^{5}$.

We imbed \mathbf{C}^{5} as the complement of the hyperplane $w=0$ in the complex projective 5 -space $\mathrm{P}^{5}(\mathbf{C})$ and close the image of the affine variety. Then we obtain the algebraic variety $\mathrm{V}_{k} \subset \mathrm{P}^{5}(\mathbf{C})$ with equation in homogeneous coordinates $\left(z_{1}, \ldots, z_{5}, w\right)$:

$$
\begin{equation*}
\mathrm{V}_{k}: z_{1}^{n-1} w+z_{2}^{3} w^{n-3}+\sum_{i=3}^{5} z_{i}^{2} w^{n-2}+\sum_{j=1}^{5} e^{j-1} z_{j}^{n}=0 \tag{7}
\end{equation*}
$$

V_{k} has clearly no singularities at infinity $(w=0)$. It has exactly one singular point $p=(\mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{I})$, and $\mathrm{V}_{k}-\{p\}$ is a smooth 8 -manifold. Then by the result of Brieskorn V_{k} is a topological manifold at p, as well as all over. However, it also has its natural triangulation as an algebraic real 8-dimensional variety, where near p the triangulation is obtained by triangulating the cone on the (possibly) exotic 7 -sphere described above. We compute the invariant $\bar{\gamma}\left(\mathrm{V}_{k}\right)$ as follows. Take a triangulation such that p is interior point of some 8 -simplex. Take in $\mathrm{V}_{k}-\{p\}$ the differential structure from the (there!) differential manifold V_{k}. Then the cochain γ so obtained has value zero on all simplices outside p. At p the value is therefore $\bar{\gamma}\left(\mathrm{V}_{k}\right)=k . \mathrm{I} \in \mathbf{Z}_{28}$.

Theorem 2. - Every class of combinatorial modulo smoothable 8-manifolds can be represented by a complex algebraic hypersurface $\mathrm{V}_{k} \subset \mathrm{P}^{5}(\mathbf{C}), k=\mathrm{I}, 2, \ldots, 28$. Among these, only V_{28} is homeomorphic to a smooth manifold. In particular the algebraic variety $\mathrm{V}_{1} \in \mathrm{P}^{5}(\mathbf{C})$ with affine equation

$$
\begin{equation*}
z_{1}^{5}+z_{2}^{3}+z_{3}^{2}+z_{4}^{2}+z_{5}^{2}+\sum_{j=1}^{5} e^{j-1} z_{j}^{6}=0 \tag{8}
\end{equation*}
$$

is a topological 8-manifold without any smoothing.
Proof. - By theorem I it is sufficient to prove the existence of $d \in \mathrm{H}^{2}\left(\mathrm{~V}_{k}, \mathbf{Z}\right)$ reducing to $w_{2}\left(\mathrm{~V}_{k}\right) \in \mathrm{H}^{2}\left(\mathrm{~V}_{k}, \mathbf{Z}_{2}\right)$. For a sufficiently close approximation of equation (8) we can obtain a complex manifold without singularity Y with the following properties.

There exists a manifold with boundary V_{k}^{0} obtained from V_{k} by deleting a small disc containing the singularity. $i: \mathrm{V}_{k}^{0} \rightarrow \mathrm{~V}_{k}$ is the inclusion. There is an embedding $j: \mathrm{V}_{k}^{0} \rightarrow \mathrm{Y}$, because outside some neighbourhood of the singularity, V_{k} and Y are near to each other with first derivatives included and hence diffeomorphic. Now the first Chern class $\left.c_{1}{ }^{\prime} \mathrm{Y}\right) \in \mathrm{H}^{2}(\mathbf{Y}, \mathbf{Z})$ reduces to $w_{1}(\mathrm{Y}) \in \mathrm{H}^{2}\left(\mathrm{Y}, \mathbf{Z}_{2}\right)$. Hence $d=\left(i^{*}\right)^{-1} j^{*} c_{1}(\mathrm{Y}) \in \mathrm{H}^{2}\left(\mathrm{~V}_{k}, \mathbf{Z}\right)$ reduces to $w_{1}\left(\mathrm{~V}_{k}\right)=\left(i^{*}\right)^{-1} j^{*} w_{1}(\mathrm{Y}) \in \mathrm{H}^{2}\left(\mathrm{~V}_{k}, \mathbf{Z}_{2}\right)$.

§ 4. Nonorientable 8-manifolds

We first recall the nonorientable version of Wall's theorem.
Theorem. - The connected nonorientable closed combinatorial 8-manifolds modulo smooth manifolds form a group of two elements.

Proof. - Let X be a nonorientable connected 8-manifold with k-skeleton X^{k}. We smooth some neighbourhood of X^{7} as before, such that the non-smoothability of X is concentrated in one 8 -simplex Δ. On this oriented 8 -simplex let it be given by $x \in \Gamma_{7}$. As X is nonorientable, there exists (assuming the triangulation of X fine enough) a sequence of 8 -simplices $\Delta^{(i)}, i=\mathrm{I}, \ldots, \mathrm{N}+\mathrm{I}$ with $\Delta^{(1)}=\Delta^{(\mathrm{N}+1)}=\Delta, \Delta_{7}^{(i)}=\Delta^{(i)} \cap \Delta^{(i+1)}$ is a common face, such that the union $\bigcup_{i=1}^{N} \Delta^{(i)}$ is a nonorientable neighbourhood of a closed curve in X. Any element $y \in \Gamma_{7}$ can be represented by a change of smoothing in the oriented face $\Delta_{7}^{(1)}$ of Δ, which can be neutralized with respect to smoothability of $\Delta^{(2)}$ by a suitable change of smoothing in $\Delta_{7}^{(2)}$. Etc. After coming back to $\Delta^{(\mathrm{N}+1)}=\Delta$ the non-smoothability is again completely concentrated in the oriented 8 -simplex Δ, but represented with value $x-y+(-y)=x-2 y \in \Gamma_{7}$.

In the nonorientable case the 8 -simplices of $\mathrm{X}^{(8)}$ have no preferred orientation. Then reducing the constant local coefficient sheaf $\Gamma_{7} \simeq \mathbf{Z}_{28}$, modulo 2, there remains from the theory in \S_{1}, a \mathbf{Z}_{2}-cocycle $\gamma\left(\mathrm{X}, \mathbf{Z}_{2}\right)$ in $\mathrm{H}^{8}\left(\mathrm{X}, \mathbf{Z}_{2}\right)$ which is an invariant of the nonorientable manifold X. In order to be able to smooth X, it is necessary that $\gamma\left(X, \mathbf{Z}_{2}\right)$ vanishes. But above we have seen that it is also sufficient: Take y such that $2 y=x \in \Gamma_{7}$. From the construction as in $\oint \mathrm{I}$ it is seen that $\gamma\left(\mathbf{X} \# \mathrm{Y}, \mathbf{Z}_{2}\right)=\gamma\left(\mathrm{X}, \mathbf{Z}_{2}\right)+\gamma\left(\mathrm{Y}, \mathbf{Z}_{2}\right) \in \mathbf{Z}_{2}$, for X and Y orientable or not. Then the theorem follows. Formally the obstruction to smoothing lies in $H^{8}\left(X, \Gamma_{7}\right)=H_{0}\left(X\right.$, orientation $\left.\otimes \Gamma_{7}\right)=H_{0}\left(X, \mathbf{Z}_{2}\right)=\mathbf{Z}_{2}$.

Theorem 2. - The real algebraic 8-variety $\mathrm{W}_{1} \in \mathrm{P}^{10}(\mathbf{R})$ in real projective 10-space with affine equations in $x_{1}, y_{1}, \ldots, x_{5}, y_{5}$:

$$
\begin{gather*}
z_{1}^{5}+z_{2}^{3}+z_{3}^{2}+z_{4}^{2}+z_{5}^{2}+\sum_{j=1}^{5} e^{j-1} z_{j}^{6}=0 \tag{9}\\
z_{j}=x_{j}+i y_{j}
\end{gather*}
$$

is a closed nonorientable combinatorial 8-manifold without compatible smoothing. It represents the nonsmoothable class.
$\mathcal{N} . B$. - In this nonorientable case we cannot decide that the manifold is not homeomorphic to any smooth manifold (with a different combinatorial structure).

Proof. - W_{1} is an algebraic real variety with exactly one singularity of type $\pm \mathrm{I} \in \Gamma_{7}$. At this singularity W_{1} is a combinatorial manifold and not smooth. There remains to prove that W_{1} is nonorientable.

Take a suitable diffeomorphism of $\mathbf{C}^{5}=\mathbf{R}^{10}$ onto the open ball $|z|<{ }_{1}$, which
commutes with rotations, leaves each real half ray from o invariant, and is the identity near $o \in \mathbf{C}^{5}$. Let W be the image of $W \cap \mathbf{R}^{10}$. $W \circ$ can be closed by the 7 -manifold $\partial{ }^{\circ}$:

$$
\left(\sum_{j} e^{j-1} z_{j}^{6}=\mathrm{o}\right) \cap\left(\sum_{j} z_{j} \bar{z}_{j}\right)=\mathrm{I}
$$

The diametrical map $\delta:\left(z_{1}, \ldots, z_{5}\right) \rightarrow\left(-z_{1}, \ldots,-z_{5}\right)$ leaves \dot{W} invariant and preserves orientation in W as well as in \mathbf{R}^{10}. Now W is essentially obtained from $\dot{W} \cup \partial W$ by identifying diametrical points in $\partial \mathrm{W}$. [This is analogous to obtaining $\mathrm{P}^{10}(\mathbf{R})$ from $\sum_{j} z_{j} \bar{z}_{j} \leq_{\mathrm{I}}$ by identifying diametrical points on $\sum_{j} z_{j} \bar{z}_{j}=\mathrm{I}$.] Hence W is nonorientable.

Remark. - If a manifold with one singularity is " exotic " at that singularity, then it still may globally admit some smoothing. For example this is the case with the variety $\mathrm{W}_{2} \subset \mathrm{P}^{10}(\mathbf{R})$ with real affine equations

$$
\left.\begin{array}{l}
z_{1}^{11}+z_{2}^{3}+z_{3}^{2}+z_{4}^{2}+z_{5}^{2}+\sum_{j=1}^{5} e^{j-1} z_{j}^{12}=0 \\
z_{j}=x_{j}+i y_{j}
\end{array}\right\}
$$

It has the same exotic singularity at o as V_{2}. The same bolds for any nonorientable 8 -manifold with one singularity, in case that singularity is like that of V_{k} for some even $k \neq 0 \bmod 28$.

Exercise. - If the oriented 8-manifold X admits an orientation reversing combinatorial involution without fixed point, then it has a smoothing.

§ 5. Formulation of the main theorem. A lemma on polynomial approximation.

A closed connected, C^{∞}-manifold $\mathrm{X}, \mathrm{C}^{\infty}$-embedded in \mathbf{R}^{n}, is called a \mathcal{N} ash manifold, if there exists a polynomial map $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}$ for some q, and $\mathrm{X} \subset g^{-1}(\mathbf{o}) \subset \mathbf{R}^{r}$ with $\operatorname{dim} \mathrm{X}=\operatorname{dim} g^{-1}(o) . \quad \mathrm{A} \mathrm{C}^{\infty}-\operatorname{map} f: \mathrm{X} \rightarrow \mathrm{Y}$ between Nash manifolds $\mathrm{X} \subset \mathbf{R}^{m}$ and $\mathrm{Y} \subset \mathbf{R}^{n}$ is called a morphism, if its graph $\{(x, f(x)): x \in \mathrm{X}\} \subset \mathbf{R}^{m} \times \mathbf{R}^{n}=\mathbf{R}^{m+n}$ is a Nash manifold. We now recall the classical

Theorem of Nash [13, I4]. - Every closed C^{∞}-manifold X admits the structure of a Nash manifold and this structure is unique up to isomorphism.

As every closed combinatorial manifold of dimension $k \leq 7$ has a compatible C^{∞}-manifold structure (unique for $k \leq 6$), it also has a Nash-manifold structure (unique for $k \leq 6$). On the 7 -sphere S^{7} there are 28 Nash-manifold structures as there are 28 differential structures.

If $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}$ is a polynomial map and X is a real analytic closed subset of $g^{-1}(\mathrm{o})$ of the same dimension as $g^{-1}(o)$, then X is called a Nash space and also a Nash component of $g^{-1}(\mathrm{o})$. A Nash space X which is a topological manifold, and except at one point x_{0} a C^{∞}-manifold, will be called a \mathcal{N} ash manifold with one singularity at x_{0}. Examples are described in theorems 2 and 3 above. (In order to meet the definition strictly we have to embed $\mathrm{P}^{5}(\mathbf{C})$ and $\mathrm{P}^{10}(\mathbf{R})$ as real algebraic varieties in \mathbf{R}^{N} for some N.)

In the remaining part of this paper we prove an analogue of Nash's theorem:

Main theorem 4. - Every closed combinatorial 8-manifold X has the structure of a Nash manifold with one singularity, embedded in \mathbf{R}^{16}. It is a Nash component of the algebraic set g^{-1} (o) for some polynomial map $g: \mathbf{R}^{16} \rightarrow \mathbf{R}^{q}$.

We first prove an important lemma which we need later. For any \mathbf{C}^{∞}-function $f: \mathrm{W} \rightarrow \mathbf{R}^{q}$, defined on a neighbourhood W of o in \mathbf{R}^{n}, and for any natural number s, we denote by f_{s} the polynomial function of degree s, which at $o \in \mathbf{R}^{n}$ has all derivatives of orders $\leq s$ in common with $f . f_{s}$ is therefore the Taylor series off at $o, u p$ to and included terms of degree s.

Lemma 4. - Let W , with closure $\overline{\mathrm{W}}$, and W^{\prime} be bounded open sets in \mathbf{R}^{n} and $\mathrm{o} \in \mathrm{W} \subset \overline{\mathrm{W}} \subset \mathrm{W}^{\prime} ; s \geq 0 ; \varepsilon>0 ;|x|=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$.

For any C^{∞}-function $f: \mathrm{W}^{\prime} \rightarrow \mathbf{R}^{q}$, there exists a polynomial function $\psi: \mathrm{W} \rightarrow \mathbf{R}^{q}$ with the same Taylor-s-part at o :

$$
\psi_{s}=f_{s}
$$

and ε-near to f on W in the C^{s}-metric:

$$
\left|\left(\partial_{\alpha} \psi\right)(x)-\left(\partial_{\alpha} f\right)(x)\right|<\varepsilon \quad \text { for } \quad|\alpha| \leq s, x \in \mathrm{~W}
$$

Here, if α is the multiindex $\alpha=i_{1}, \ldots, i_{r}$, then

$$
\partial_{\alpha}=\partial_{i_{1}} \ldots \partial_{i_{r}} \quad \text { and } \quad|\alpha|=r \geq 0
$$

Proof. - Because we can C^{∞}-extend the restriction of f to W over \mathbf{R}^{n}, we may just as well assume that W and W^{\prime} are bounded open balls with centre in $o \in \mathbf{R}^{n}$. It is well known that given f and $\delta>0$, there exists a polynomial function Φ, for which

$$
\begin{equation*}
\left|\partial_{\alpha}(f-\Phi)(x)\right|<\delta \quad \text { for } \quad|\alpha| \leq s, x \in \mathrm{~W} . \tag{10}
\end{equation*}
$$

We refer to Graves [i6] and only recall that Φ can be obtained for example for a sufficiently large integer m, and

$$
c_{m}^{-1}=\int_{|u| \leqslant m}\left(\mathrm{I}-u^{2} / m^{2}\right)^{m^{4}} d u, \quad u^{2}=<u, u>
$$

as the convolution (an averaging process):

$$
\Phi(x)=\int_{\mathbf{R}^{m}} f(u) \cdot c_{m} \cdot\left[\mathrm{I}-(x-u)^{2} / m^{2}\right]^{m^{4}} d u
$$

with $f(x)=0$ by definition for $x \notin \mathrm{~W}^{\prime}$.
Φ is then a polynomial function of highest degree $\leq 2 m^{4}$.
From (io) we obtain in particular at $o \in \mathbf{R}^{n}$:

$$
\left|\partial_{\alpha}(f-\Phi)(o)\right|=\left|\partial_{\alpha}\left(f_{s}-\Phi_{s}\right)(o)\right|<\delta \quad \text { for } \quad|\alpha| \leq s
$$

By integrating along half rays starting at $0 \in \mathbf{R}^{m}$ we see that a constant $\mathrm{G}>0$ exists, such that

$$
\left|\partial_{\alpha}\left(f_{s}-\Phi_{s}\right)(x)\right|<\mathrm{C} \delta \quad \text { for } \quad|\alpha|<s, x \in \overline{\mathrm{~W}}
$$

C depends only on $\overline{\mathbf{W}}$, and not on f or Φ.

Let δ be so small that $(\mathrm{I}+\mathrm{C}) \delta<\varepsilon$. The required function is then

$$
\begin{equation*}
\psi=\Phi+\left(f_{s}-\Phi_{s}\right) . \tag{II}
\end{equation*}
$$

It has the properties:

$$
\left(\partial_{\alpha} \psi\right)(\mathrm{o})=\left(\partial_{\alpha} f_{s}\right)(\mathrm{o})=\left(\partial_{\alpha} f\right)(\mathrm{o}) \quad \text { for } \quad|\alpha| \leq s
$$

and
$\left|\left(\partial_{\alpha} \psi\right)(x)-\left(\partial_{\alpha} f\right)(x)\right| \leq \mid\left(\partial_{\alpha}(\Phi-f)(x)\left|+\left|\partial_{\alpha}\left(f_{s}-\Phi_{s}\right)(x)\right| \leq \delta+\mathrm{C} \delta \leq \varepsilon \quad\right.\right.$ for $\left.\quad\right| \alpha \mid \leq s, x \in \mathrm{~W}$.

§ 6. Construction of an embedding of the closed combinatorial 8-manifold X in \mathbf{R}^{16} as a C^{∞}-manifold with one specific singularity at $o \in \mathbf{R}^{16}$.

This construction follows completely the proof of Whitney's embedding theorem for C^{∞}-manifolds. We smooth (see § i) the complement $\mathrm{X}-\mathrm{U}_{0}$ of an open 8-ball U_{0} in X. The boundary $\partial \mathrm{U}_{0}$ is an exotic 7 -sphere representing $\bar{\gamma}(\mathrm{X}) \in \Gamma_{7}=\mathbf{Z}_{28}$. Let $k=\bar{\gamma}(\mathrm{X}) \bmod 28$ and $o<k<28$. (In the case $k=0, \mathrm{X}$ is smoothable and we are done by Nash's theorem.) The closed 8 -ball $\overline{\mathrm{U}}_{0}$ is embedded by a map i_{0} onto the standard model with $n=6 k$:

$$
\begin{equation*}
i_{0}\left(\overline{\mathrm{U}}_{0}\right)=\left\{z \mid f_{1}(z)=z_{1}^{n-1}+z_{2}^{3}+z_{3}^{2}+z_{4}^{2}+z_{5}^{2}=\mathrm{o} \quad \text { and } \quad|z| \leq 9 c\right\} \subset \mathbf{C}^{5}=\mathbf{R}^{10} \tag{12}
\end{equation*}
$$

For later use we define

$$
\begin{equation*}
\mathrm{U}_{0}(t)=i_{0}(\{z|\quad| z \mid<t\}), \quad 0<t \leq 9 c ; \tag{13}
\end{equation*}
$$

$\partial \mathrm{U}_{\mathbf{0}}$ has by virtue of i_{0} an induced differential structure, which represents $\bar{\gamma}(\mathrm{X})$ by the choice of $n=6 k$.

We can assume the two smoothings of $\partial \mathrm{U}_{0}$ to be equal, and \bar{U}_{0} and $X-U_{0}$ can be glued along their common boundary to obtain a C^{∞}-manifold with one singularity (I2) at x_{0}. From now on we assume this structure in the symbol X . Next we construct an embedding of X in some euclidean space.

It is easy to see that a C^{∞}-map

$$
\kappa_{0}^{\prime}: \mathbf{C}^{5} \rightarrow \mathbf{C}^{5} \times \mathbf{R}=\mathbf{R}^{11}
$$

exists with $\quad \begin{cases}\kappa_{0}^{\prime}(z)=(z, \mathrm{o}) & \text { for }|z| \leq 8 c, \\ \kappa_{0}^{\prime}(z)=(\mathrm{o}, \mathrm{I}) & \text { for }|z| \geq 9 c, \\ \kappa_{0}^{\prime} \text { is a } \mathrm{C}^{\infty} \text {-embedding } & \text { for }|z|<9 c .\end{cases}$
The composition $\kappa_{0}^{\prime} \circ i_{0}$, extended by the constant map $\kappa_{0}(x)=(\mathrm{o}, \mathrm{I})$ for $x \notin \mathrm{U}_{0}(9 c)$, determines a map

$$
\kappa_{0}: \mathrm{X} \rightarrow \mathbf{R}^{11}
$$

which is C^{∞} on $\mathrm{X}-\left\{x_{0}\right\}, \quad \mathrm{C}^{\infty}$-embedding on $\mathrm{U}_{0}(9 c)-\left\{x_{0}\right\}$, and " standard " (see (12)) on $\mathrm{U}_{0}(8 c)$.

For any point $x \in \mathrm{X}-\mathrm{U}_{0}(9 c)$ there is an 8-ball neighbourhood $\mathrm{U}_{x} \subset \mathrm{X}-\mathrm{U}_{0}(8 c)$ and a C^{∞}-map

$$
\kappa_{x}: \mathrm{X} \rightarrow \mathbf{R}^{9}
$$

onto the 8 -sphere

$$
\mathrm{S}^{8}=\left\{\left(u_{1}, \ldots, u_{9}\right) \in \mathbf{R}^{9}: \sum_{j=1}^{9} u_{j}^{2}=2 u_{9}\right\}
$$

such that the restriction $\kappa_{x} \mid \mathrm{U}_{x}$ is a C^{∞}-diffeomorphism onto $\mathrm{S}^{8}-\{0\}$, and $\kappa_{x}(y)=\mathbf{0} \in \mathbf{R}^{9}$ for $y \notin \mathrm{U}_{x}$.

A finite number of the neighbourhoods U_{0} and U_{x}, say $\mathrm{U}_{0}, \mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{L}}$ cover X . Then we obtain a map

$$
\kappa: \mathrm{X} \rightarrow \mathbf{R}^{11+9 \mathrm{~L}}
$$

defined by $\kappa(x)=\left(\kappa_{0}(x), \kappa_{1}(x), \ldots, \kappa_{\mathrm{L}}(x)\right) . \quad \mathrm{\kappa}$ is an embedding of X onto a C^{∞}-manifold with one standard singularity $\kappa\left(U_{0}(8 c)\right) \subset \mathbf{R}^{10} \times o \subset \mathbf{R}^{11+9 \mathrm{~L}}$ near $\mathrm{\kappa}\left(x_{0}\right)=0$.

Finally we decrease the dimension of the target space in the usual manner as follows. The set of chords and tangents of $\kappa\left(\mathrm{X}-\left\{x_{0}\right\}\right)$ is the C^{∞}-image of a ${ }_{17}$-manifold. It is nowhere dense for $11+9 \mathbf{L}>{ }_{17}$ by Sard's theorem. We then can project $\kappa(X)$ from some point into that linear subspace of $\mathbf{R}^{11+9 \mathrm{~L}}$ on which the last coordinate vanishes, and we obtain an analogous embedding. This process can be repeated until we get an embedding in \mathbf{R}^{17}. One more projection yields an immersion with isolated transversal self-intersections in \mathbf{R}^{16}. The self intersections can be removed by Whitney's method [${ }^{15}$], to obtain the required embedding. Observe that during this process the embedding of $\mathrm{U}_{0}(8 c)$ remains unchanged.

From now on we identify X with $\mathrm{k}(\mathrm{X}) \subset \mathbf{R}^{16}$, the embedded manifold with standard part $\mathrm{U}_{0}(8 c)=\kappa\left(\mathrm{U}_{0}(8 c)\right) \subset \mathbf{R}^{10} \times \mathrm{o}$. So we have a diagram of inclusions:

§ 7. C^{∞}-equations for $\mathrm{X} \subset \mathbf{R}^{16}\left({ }^{1}\right)$.
In this paragraph we define a diagram of C^{∞}-maps
(I5)

$$
\begin{aligned}
& \mathrm{W} \xrightarrow{\bar{\alpha}} \mathrm{~A}_{8} \subset \mathrm{G}_{8} \times \mathbf{R}^{16} \xrightarrow{p_{2}} \mathbf{R}^{16} \\
& \downarrow^{p} \\
& \mathrm{X}^{8}-\mathrm{U}_{0}(c) \stackrel{\xrightarrow{\alpha} \mathrm{G}_{8}}{ }
\end{aligned}
$$

W an open neighbourhood of $\mathrm{X} \subset \mathbf{R}^{16}$, such that

$$
\begin{equation*}
\mathrm{X}^{8}=\left(p_{2} \bar{\alpha}\right)^{-1}(\mathrm{o}) \cap \mathrm{W} \tag{16}
\end{equation*}
$$

${ }^{(1)}$ The constructions in § 7 and $\S 8$ are analogous to those of Thom [14] concerning smooth manifolds.

The map $p_{2} \bar{\alpha}$ therefore determines a set of 16 equations for $\mathrm{X}^{8} . \bar{\alpha}$ has a singularity at o , and it is transversal to $\mathrm{G}_{8} \subset \mathrm{~A}_{8}$ at all other points of W .

We first define $\bar{\alpha}$ on certain parts $\mathrm{W}(t)$ of W .
Consider the normal bundle of $\mathrm{X}-\mathrm{U}_{0}(c)$ in \mathbf{R}^{16}. The normal exponential map nexp : $(x, v) \mapsto x+v \in \mathbf{R}^{16}$ is a \mathbf{C}^{∞}-map of its total space into \mathbf{R}^{16}. Here v is a normal vector at $x \in \mathrm{X}-\mathrm{U}_{\mathbf{0}}(c)$.

There is a constant ε_{1} such that the restriction of nexp to the space of normal vectors of length smaller than ε_{1}, is a diffeomorphism, with image the tubular neighbourhood ($=$ total ε_{1}-ball bundle space):

$$
\mathrm{W}(t)=\operatorname{nexp}\left\{(x, \nu)\left|x \in \mathrm{X}-\mathrm{U}_{0}(t),|\nu|<\varepsilon_{1}\right\} \quad c \leq t \leq 9 c .\right.
$$

The projection of the ε_{1}-ball bundle is called

$$
\mu: \mathrm{W}(t) \rightarrow \mathrm{X}^{8}-\mathrm{U}_{0}(t) .
$$

Let G_{8} be the Grassmann manifold of all 8-dimensional vector subspaces of \mathbf{R}^{16}, and A_{8} the total space of the corresponding open ε_{1}-ball bundle p :

$$
\begin{aligned}
& \mathrm{A}_{8}=\left\{(g, v) \in \mathrm{G}_{8} \times \mathbf{R}^{16}\left|\nu \in g,|\nu|<\varepsilon_{1}\right\} \subset \mathrm{G}_{8} \times \mathbf{R}^{16}\right. \\
& \downarrow p \\
& \boldsymbol{G}_{8}=\mathrm{G}_{8} \times \mathrm{o} .
\end{aligned}
$$

The tangent vector spaces at different points of \mathbf{R}^{16} are all identified with \mathbf{R}^{16}. μ is induced from p by the natural bundle map

where $\beta(x)$ is the normal vector space at x in \mathbf{R}^{16} with respect to X^{8}, and

$$
\bar{\beta}(\operatorname{nexp}(x, \nu))=(\beta(x), \nu) .
$$

G_{8} is identified with the o-section of p.
We will modify the map β and obtain a map α which is constant near $\partial \mathrm{U}_{\mathbf{0}}(5 c)$.
The space $\overline{\mathrm{U}_{0}(8 c)}-\mathrm{U}_{0}(5 c)$ is diffeomorphic with $\Sigma^{7} \times \mathrm{I}$, the product space of the exotic 7 -sphere Σ^{7} and a segment. Because $\mathrm{U}_{0}(8 c)$ is contained in $\mathbf{R}^{10} \times o \subset \mathbf{R}^{16}$, the normal bundle of this product-space part of X is the direct sum of a trivialized 6 -plane bundle and a orientable trivial 2-plane bundle. Then by fibre-bundle theory $\left[\pi_{7}\left(\mathrm{G}_{2,8}\right)=0\right.$ for $\mathrm{G}_{2,8}$ the Grassmann space of 2-planes in $\left.\mathbf{R}^{10}\right]$ there is a C^{∞}-map α, whose restriction to $\overline{\mathrm{U}_{0}(8 c)}-\mathrm{U}_{0}(5 c)$ is a homotopy:

$$
\mathrm{X}^{8}-\mathrm{U}_{0}(5 c) \xrightarrow{\alpha} \mathrm{G}_{8}
$$

such that: $\quad \alpha(x)=\left\{\begin{array}{lll}\beta(x) & \text { for } & x \in \mathrm{X}-\mathrm{U}_{0}(7 c) \\ g_{0} & \text { for } & x \in \mathrm{U}_{0}(6 c)-\mathrm{U}_{0}(5 c) .\end{array}\right.$
g_{0} is the 8-plane $\mathbf{o} \times \mathbf{R}^{2} \times \mathbf{R}^{6} \subset \mathbf{R}^{16}$;
$\alpha(x)$ is an 8-plane containing the 6-plane, $0 \times o \times \mathbf{R}^{6} \subset \mathbf{R}^{16}$ for all $x \in \mathrm{U}_{0}(8 c)-\mathrm{U}_{0}(5 c)$.
The bundle induced from p by α is equivalent to that induced from p by β. Hence we may identify both induced bundles and we have an orthogonal ε_{1}-ball bundle map, which is a C^{∞}-map of pairs,

and

$$
\alpha\left(\mathrm{U}_{0}(6 c)-\mathrm{U}_{0}(5 c)\right)=g_{0}, \quad \bar{\alpha}(w)=\bar{\beta}(w) \quad \text { for } \quad w \in \mathrm{~W}(7 c) .
$$

A_{8} contains the fibre $p^{-1}\left(g_{0}\right)$ which is an ε-ball in \mathbf{R}^{8}. We will in the sequel extend the fibre-bundle map over the base space $\mathrm{U}_{0}(5 c)-\mathrm{U}_{0}(3 c)$ by a map $(\bar{\alpha}, \alpha)$ for which α takes the constant value g_{0}. We will further extend $\bar{\alpha}$ over some neighbourhood of $\mathrm{U}_{0}(3 c)$ in \mathbf{R}^{16}, by a map with all values in the ε-ball $p^{-1}\left(g_{0}\right) \mathbf{R}^{8}$.

In order to define $\bar{\alpha}$ near the singularity, we start from the map

$$
f_{1}: \mathbf{R}^{10} \rightarrow \mathbf{R}^{2},
$$

which was defined in terms of complex variables by (1) in §3. Observe that for $t \leq 8 c$:

$$
f_{1}^{-1}(\mathrm{o}) \cap\{z| | z \mid<t\}=\mathrm{U}_{0}(t) \subset \mathbf{R}^{10}=\mathbf{R}^{10} \times \mathrm{o} \subset \mathbf{R}^{16} .
$$

Near to the singularity, that is for some small enough neighbourhood of $U_{0}(c)$ in \mathbf{R}^{16}, we define

$$
\begin{equation*}
\bar{\alpha}=f_{1} \times \mathrm{id}: \mathbf{R}^{10} \times \mathbf{R}^{6} \rightarrow \mathbf{R}^{2} \times \mathbf{R}^{6} . \tag{ㄷ}
\end{equation*}
$$

Here id is the identity map of \mathbf{R}^{6}.
For small $\varepsilon>0$ and $\mathrm{B}(\varepsilon)=\left\{y \in \mathbf{R}^{2}| | y \mid<\varepsilon\right\}, f_{1}$ determines a framing and a trivial fibre bundle with fibres diffeomorphic to $\mathrm{B}(\varepsilon)$, group the group of diffeomorphisms of $\mathrm{B}(\varepsilon)$, base space $\overline{\mathrm{U}_{0}(4 c)}-\mathrm{U}_{0}(c)$, and fibre over x :

$$
\mathrm{F}_{x}=f_{1}^{-1}(\mathrm{~B}(\varepsilon)) \cap\{\operatorname{nexp}(x, \nu) \mid \nu \text { normal vector at } x\} .
$$

F_{x} is contained in a unique linear two-dimensional variety $\mathrm{L}_{x} \subset \mathbf{R}^{10}$. Let the framing map $\pi_{x}: \mathbf{B}(\varepsilon) \rightarrow \mathrm{L}_{x}$ be defined as the inverse of

$$
\left(f_{1} \mid \mathrm{F}_{x}\right): \mathrm{F}_{x} \rightarrow \mathrm{~B}(\varepsilon) .
$$

We want to modify π_{x} (hence f_{1}) to obtain isometries for $x \in \mathrm{U}_{0}(4 c)-\mathrm{U}_{0}(3 c)$. Because the oriented differentiable embeduings of $\mathrm{B}(\varepsilon)$ in \mathbf{R}^{2} with fixed origin, retract
by deformation into the orthogonal group $\mathrm{SO}(2)$, there is for each x a homotopy of C^{∞}-embeddings

$$
\pi_{x, t}: \mathrm{B}(\varepsilon) \rightarrow \mathrm{L}_{x}, \quad \pi_{x, t}(\mathrm{o})=x
$$

starting with $\pi_{x, 0}=\pi_{x}$ and ending with an isometry $\pi_{x, 1}$. We can choose it such that the mapping $\pi_{x, t}$ depends C^{∞} on x and t, and $\pi_{x, t}$ is constant with respect to t for $0<t<\frac{\mathrm{I}}{3}$ and for $\frac{2}{3}<t \leq \mathrm{I}$.

Now we are ready to replace f_{1} by a new map α_{0}. For $x \in \overline{\mathrm{U}_{0}(4 c)}-\mathrm{U}_{0}(c)$ let t implicitly be given by

$$
x \in \partial \mathrm{U}_{0}(c+3 t c), \quad 0 \leq t \leq \mathrm{I} .
$$

Let $y \in \pi_{x, t}(\mathbf{B}(\varepsilon)) \subset \mathrm{L}_{x} \subset \mathbf{R}^{10}$.
Now put

$$
\alpha_{0}(y)=\left(\pi_{x, t}\right)^{-1}(y) \in \mathbf{R}^{2} .
$$

We continue the definition of $\bar{\alpha}$. In some neighbourhood of $\mathrm{U}_{0}(4 c)-\mathrm{U}_{0}(\mathrm{o})$ in its tubular normal bundle space in \mathbf{R}^{16}, we put

$$
\begin{equation*}
\bar{\alpha}=\alpha_{0} \times \mathrm{id} . \tag{19}
\end{equation*}
$$

Here again id is the identity map of \mathbf{R}^{6}. Observe that (19) agrees with (i8).
Over the part $\overline{\mathrm{U}_{0}(4 c)}-\mathrm{U}_{0}(3 c)$ and over the part $\overline{\mathrm{U}_{0}(6 c)}-\mathrm{U}_{0}(5 c)$ the mapping $\bar{\alpha}$ into $\mathbf{R}^{8}=\mathbf{R}^{2} \times \mathbf{R}^{6}=p^{-1}\left(g_{0}\right)$ determines orthogonal trivializations of the normal tangent bundle, each splitting of the same trivial trivialization in the vector spaces parallel to $\mathrm{o} \times \mathbf{R}^{6} \subset \mathbf{R}^{16}$. Recall for this that $\overline{\mathrm{U}_{0}(8 c)} \subset \mathbf{R}^{10} \times o \subset \mathbf{R}^{16}$. These trivializations therefore reduce to trivializations of 2-plane bundles essentially over seven-spheres. They are homotopic.

The trivializations of the tubular neighbourhoods over $\overline{\mathrm{U}_{0}(4 c)}-\mathrm{U}_{0}(3 c)$ and over $\overline{\mathrm{U}_{0}(6 c)}-\mathrm{U}_{0}(5 c)$ as orthogonal ε_{1}-ball bundles (for ε_{1} small enough), correspond one-to-one to the orthogonal trivializations of the normal tangent bundles. Therefore $\bar{\alpha}$ can be extended over the normal tubular bundle over $\overline{\mathrm{U}_{0}(5 c)}-\mathrm{U}_{0}(4 c)$ in \mathbf{R}^{16} by a map into \mathbf{R}^{8}, which is also isometric on each fibre.

Taking the map $\bar{\alpha}$ of differentiability class C^{∞} we have obtained, with (17), (18) and (19), for some neighbourhood W of X in \mathbf{R}^{16}, the map

$$
\begin{equation*}
w \xrightarrow{\bar{\alpha}} \mathrm{~A}_{8} . \tag{ㄷ5}
\end{equation*}
$$

The restriction to $\mathrm{W}(3 c)$ is an orthogonal bundle map:

The restriction to $\mathrm{W}-\mathrm{W}(6 c)$ is into $p^{-1}\left(g_{0}\right) \subset \mathbf{R}^{8}$:

$$
\begin{equation*}
\mathrm{W}-\mathrm{W}(6 c) \xrightarrow{\bar{\alpha}} p^{-1}\left(g_{0}\right) \subset \mathbf{R}^{8} \tag{15b}
\end{equation*}
$$

The restriction to $W-W(c)$ is:
($15 c$)

$$
f_{1} \times \mathrm{id}
$$

Now the diagram (I5) and the properties mentioned after (I5) follow immediately.

§ 8. Algebraic equations for \mathbf{X}.

We consider again diagram (15). Let G_{8} be embedded as an algebraic submanifold in some euclidean space \mathbf{R}^{M}. The normal exponential map defines a tubular neighbourhood Y with radius ε (sufficiently small) of G_{8}, and with an algebraic orthogonal projection (a retraction)

$$
\begin{equation*}
\rho: Y \rightarrow G_{8} \subset Y^{M} \tag{20}
\end{equation*}
$$

$\rho(y)$ is the point in G_{8} that is nearest to $y \in \mathrm{Y}$. We now extend diagram (15) by natural inclusions

The retraction ρ in (20) can be covered by a retraction $\bar{\rho}$, which is also algebraic:
(22)

It is defined by the condition that $\bar{\rho}(y, z)$ is the orthogonal projection of the point $(\rho(y), z) \in \mathbf{Y} \times \mathbf{R}^{16}$ which lies in the euclidean ${ }_{1} 6$-space $p_{1}^{-1}(\rho(y))$, into the euclidean sub-8-space $p^{-1}(\rho(y)) \subset \mathrm{A}_{8}$.

We now call $\mathrm{W}: \mathrm{W}^{\prime}$, and let $\mathrm{W} \subset \overline{\mathrm{W}} \subset \mathrm{W}^{\prime}$ be a smaller analogous neighbourhood of $\mathrm{X} \subset \mathbf{R}^{16}$. Then we apply lemma 4 to the map

$$
\mathrm{W}^{\prime} \xrightarrow{i \bar{\alpha}} \mathrm{Y} \times \mathbf{R}^{16} \subset \mathbf{R}^{\mathrm{M}} \times \mathbf{R}^{16}
$$

We obtain a polynomial map ψ, arbitrary C^{S}-near to $i \bar{\alpha}$ on W and with the
same s-jet at $\quad 0 \in W \in \mathbf{R}^{16}$. The image of this s-jet therefore lies in $\mathrm{A}_{\mathbf{8}}$! We now have the noncommutative diagram

Let g be the algebraic map $\quad g=p_{2} i \bar{\rho} \psi: W \rightarrow \mathbf{R}^{16}$.
Then $\mathrm{X}_{1}=(\bar{\sigma} \psi)^{-1}\left(\mathrm{G}_{8}\right)=g^{-1}(o) \subset \mathrm{W}$ is the required Nash-manifold with one singularity. It is a real analytic manifold with one singularity, locally defined by algebraic equations. (It is an open problem also for smoothable n-manifolds, whether X_{1} can be a topological component, or even the whole, of the set of zeros of a set of polynomials. See [13]. If X_{1} has a trivial tangent bundle then it can be a topological component.)

The maps $\bar{\alpha}$ and $\bar{\rho} \psi: W \rightarrow \mathrm{~A}_{8}$ have the same s-jet at o. From Malgrange's preparation theorem [17], as applied to ideals of C^{∞}-functions by Tougeron [18] and Mather [19], it follows that there exists for s large enough a C^{∞}-diffeomorphism $\zeta: U \rightarrow \zeta(\mathrm{U})$, defined on some neighborhood U of o in \mathbf{R}^{16}, as C^{2}-near as we please to the identity map, such that $\zeta\left[\left(p_{2} \bar{\alpha}\right)^{-1}(0) \cap \mathrm{U}\right]=g^{-1}(0) \cap \zeta(\mathrm{U})$. The singularities of X and X_{1} at o are therefore of the same exotic kind. The restriction $\bar{\alpha} \mid(W-\{0\})$ is transversal to $G_{8} \subset A_{8}$. Hence for any choice of neighborhood U^{\prime} of o in \mathbf{R}^{16} also the restriction $\bar{\rho} \psi \mid\left(W-U^{\prime}\right)$ is transversal to G_{8} in case ψ is C^{1}-near enough to $i \bar{\alpha}$.

The map which assigns to any point of $\mathrm{X}-\mathrm{U}_{\mathbf{0}}\left(c^{\prime}\right)$ (c^{\prime} small) the unique nearest point of X_{1}, defines a diffeomorphism, C^{2}-near to the identity map restricted to $\mathrm{X}-\mathrm{U}_{\mathbf{0}}\left(c^{\prime}\right)$. This diffeomorphism can be extended over $\mathrm{X}-\{0\}$ such that it equals ζ near o.

Consequently X and X_{1} are combinatorially equivalent, and g is the polynomia ${ }_{1}$ map required in theorem 4 .

We conclude with the formulation of two problems:
Problem. - Which combinatorial 8-manifolds admit a complex manifold structure with one Hirzebruch singularity?

Problem. - Which combinatorial 8-manifolds can be embedded as Nash manifold with one Hirzebruch singularity in a low dimensional euclidean space?

REFERENGES

[1] R. Thom, Des variétés triangulées aux variétés différentiables, Proc. Int. Congr. Math. Edinburgh, 1958, 248-255.
[2] J. Munkres, Obstructions to imposing differentiable structures, Ill. 7. Math., 8 (1964), 361-376.
[3] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres I, Ann. Math., 77 (1963), 504-537.
[4] J. Cerf, La nullité de π_{0} (diff. S^{3}), Sém. H. Cartan, 15 (1962-63).
[5] M. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. A.M.S., 69 (1963), 352-356.
[6] C. T. C. Wall, Cobordism of combinatorial n manifolds for $n \leq 8$, Proc. Cambridge Phil. Soc., 60 (1964), 807-8ıi.
[7] A. Borel-F. Hirzebruch, Characteristic classes and homogeneous spaces, A. 7. Math., 81 (1959), 315-382 (Part. II) and 82 (1960), 491-504 (Part. III).
[8] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Inv. Math., 2 (1966), i-i4.
[9] F. Hirzebruch, Singularities and exotic spheres, Séminaire Bourbaki, 314 (November 1966).
[io] J. W. Milnor, On isolated singularities of hypersurfaces, Mimeographed, Princeton, 1966.
[iI] F. Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. de France, 9.3 (1965), 333-367.
[12] S. P. Novikov, Topological invariance of rational Pontrjagin classes, Doklady, 163 (1965), 298-300.
[13] J. Nash, Real algebraic manifolds, Ann. Math., 56 (1952), 405-42 i.
[14] R. Tном, Approximation algébrique des applications différentiables, Colloque de topologie de Strasbourg, décembre 1954, 5 pages.
[15] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. Math., 4.5 (1944), 220-246.
[16] L. M. Graves, Some general approximation theorems, Ann. Math., 42 (194i), 28i-292.
[17] B. Malgrange, Séminaire Cartan, 1962-63, No. 11, 12, 13, 22. See also: Ideals of differentiable functions, Tata Institute, Bombay and Oxford University Press, and Théorie locale des fonctions différentiables, Int. Math. Congress Moscow, 1966.
[18] J. C. Tougeron, Thèse à Rennes. Compare C. R. Acad. Sc. Paris, 262 (A et B) (1966), 563-565.
[19] J. Mather, Thesis, Work to appear in Ann. of Math., Princeton.
[20] O. Sullivan, On the Hauptvermutung for manifolds, Bull. A.M.S., 73 (1967), 598-600.

Manuscrit reçu le 30 juin 1967.

[^1]
[^0]: ${ }^{(1)}$ Institut des Hautes Etudes Scientifiques and University of Amsterdam.

[^1]: 1968. - Imprimerie des Presses Universitaires de France. - Vendôme (France)

 Medit. No 30134 imprimé en france
 IMP. No 20668

