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ALGEBRAIC EQUATIONS
FOR NONSMOOTHABLE 8-MANIFOLDS

by NICOLAAS H. KUIPER (1)

SUMMARY

The singularities of Brieskorn and Hirzebruch are used in order to obtain
examples of algebraic varieties of complex dimension four in P^C), which are homeo-
morphic to closed combinatorial 8-manifolds, but not homeomorphic to any differentiable
manifold. Analogous nonorientable real algebraic varieties of dimension 8 in P^R)
are also given. The main theorem states that every closed combinatorial 8-manifbld
is homeomorphic to a Nash-component with at most one singularity of some real algebraic
variety. This generalizes the theorem of Nash for differentiable manifolds.

§ i. Introduction. The theorem of Wall.

From the smoothing theory of Thorn [i], Munkres [2] and others and the knowledge
of the groups of differential structures on spheres due to Kervaire, Milnor [3], Smale
and Gerf [4] follows a.o. that closed combinatorial Tz-manifolds for n<,j are smoothable.
That is, they admit a combinatorially compatible differential structure. This structure
is unique up to equivalence for %^6. By a manifold we mean a connected closed
combinatorial manifold. We will consider manifolds of dimension eight. In § i, 2,
and 3 all manifolds will be oriented. Let X be an oriented 8-manifold and X^ the
^-skeleton of some triangulation of X. If the number of vertices is N, then let X° be
the set of end-points of N orthonormal unitvectors in euclidean vector N-space E^ The
simplices of X^ are then fixed and X lies embedded in E^ For any WcXcEN and
8>o we define the neighbourhood U(W, 8)= {xe'X.\ distance {x, W)< 8} of W in X.

For small 8, say 8<N~1, U(X6, 8) can be given a differential structure Q and
this is unique up to equivalence. Next we construct a differential structure on U(X7, 82)
which equals the first structure 2 on U(X6, 82). For that we have to define for every
7-simplex Ay of X7 some differential structure on IJ^Ay, 82) which agrees with Qs on
^X^nl^A^^U^Ay^2). This is possible in essentially 28 different ways,
because the difference between two such smoothings corresponds with a smoothing
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140 N I G O L A A S H . K U I P E R

of S7x{o, i) or of S7, hence with an element of the group Fy^Zgg of differential
structures on S7 modulo those that can be extended to the 8-ball.

For each oriented 8-simplex Ag of X8 we have now smoothed some neighbourhood
of the boundary U(^Ag, S^nAg. If this smoothing, restricted to U(X7, S3) nAg, can
be extended over Ag, then we assign to Ag the element oel^. More generally, following
M. Hirsch [5], we observe that any smooth oriented 7-manifold in U(c?Ag, S2) nAg,
which is combinatorially isotopic to ^Ag, will have the same structure of an exotic 7-sphere,
and so it determines an element y^s)^?- Indeed any two such manifolds are
A-cobordant with some third that bounds a combinatorial 8-disc containing both, and
hence all three are diffeomorphic.

In the top dimensional case the sheaf of coefficients (local coefficients of Munkres)
is constant and it can be identified with r^_^===r^ This is the case for X orientable
as well as X nonorientable.

The function y on oriented simplices in X8:

Y:A^->Y(A^)er ,

is a cochain, which is a cocycle as there are no g-simplices in X. So the value of y
on the fundamental cycle of the oriented X is

r([X])-Sy(A|?)Elv

If we change our choice of differential structure at one of the 7-simplices by ^el^,
then the cochain value in the two adjacent 8-simplices alters by ^ and —S respectively,
and we obtain a cohomologous cochain with unaltered value y([X])er7. This element
represents a cohomology-class Y(X)eH8(X, F^==r^ which is an invariant of the combi-
natorial 8-manifold,

As X is connected, there is one choice of differential structures in the 7-simplices
such that ^{^)==o for all except at most one of the 8-simplices. We transport all
obstruction to smoothing to one 8-simplex. Then on that 8-simplex the value of the
cochain is y(X). We see that the nonsmoothability of an 8-manifold can be concen-
trated in an arbitrarily small neighbourhood N(^) of any point p. Any subdivision
of the given triangulation, for which N(^) is interior to an 8-simplex therefore gives the
same value for y(X), which is then an invariant not only of the triangulation but of the
combinatorial structure of X. From the above procedure follows :

Lemma 1. — The 8-manifold X has a compatible smoothing if and only if the combi-
natorial invariant y(X) e 1^ ̂  Zgg vanishes.

IfX and Y are 8-manifolds, then the connected sum X#Y is the oriented 8-manifold
obtained by deleting from X and Y each one 8-simplex and identifying the boundaries,
say linear on each 7-simplex of this boundary, so that a connected manifold is obtained
and the injections of the remaining parts of X and Y are imbedded in X^Y with
preservation of orientation. The negative of X is the same non-oriented manifold with
the other orientation.
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ALGEBRAIC EQUATIONS FOR NONSMOOTHABLE 8-MANIFOLDS 141

Lemma 2. — For any Q-manifold X, X^—X) is smoothable.
Proof. — Let A and A' be two 8-simplices of a triangulation of X, p an interior

point of A' with neighbourhood U(j&, 8)cA'. Take a smoothing of X—U(^, 8), in
which ^A is a smooth usual 7-sphere. Take the smooth connected sum of X and —X
along McX and —^Ac—X. The combinatorial manifold X#(—X) has then a
natural smoothing, except in U(^, 8) cX—(A) and in the corresponding neighbourhood
in (-X)-(-A).

The cochain on the triangulation of X^(--X) has values y([X]) and —-Y([X])
on the two exceptional 8-simplices and zero elsewhere. Hence y (X#(—X))==o and
lemma 2 follows from lemma i.

The 8-manifolds X and Y are called equi-smoothable or equal modulo smooth manifolds^
X—Y, if X#(-Y) is smoothable.

Lemma 3. — Equi-smoothability is an equivalence relation.
Proof. — Applying the above procedure of concentrating the essential contribution

of the cochain y into one 8-simplex, to the 8-manifolds X and Y, it follows immediately
from lemma i that

X-Yoy(X)==y(Y).

The Theorem ofC. T. C. Wall [6]. — The equi-smoothability classes of oriented 8-manifolds
(also called the combinatorial modulo smoothable 8-manifold classes) form a group isomorphic
with ^^(Zgg, +) under connected sum #.

Proof. — Again by the choice of special cochains for X and Y one sees:
Y(X#Y)=y(X)+y(Y).

Then y defines a homomorphism of the associative semi-group of oriented
8-manifolds with connected sum, onto r^Zgg. By the proof of lemma 3 the equi-
valence classes are the 28 fibres of this map.

§ a. Topological invariance of y.

D. Sullivan [20] proved that any two combinatorial structures on a simply
connected closed topological manifold of dimension J>6 without 2-torsion in H^—, Z).
are combinatorial ly equivalent (Hauptvermutung). Hence y is a topological invariant
for such manifolds.

C. T. C. Wall kindly brought to my attention that the topological invariance of
the rational Pontrjagin classes, obtained by Novikov [12], implies that y is a topological
invariant for an even larger class of 8-manifolds. This can be seen as follows.

Borel and Hirzebruch proved in [7], p. 494, that for a smooth closed oriented
manifold X

A(X,rf/2)=^A,(A,...^,)[X]

is an integer. Here rfeH^X, Z) is any element which reduces in H^X, Zg) to the
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^2 N I C O L A A S H . K U I P E R

second Whitney-class ^(X). So we have to assume the existence of d. For complex
manifolds d exists and can be taken to be the first Chern class ^.

One finds, with
/ . i - 2-7

A I - A , ^=——(-4^+7^),
^4 45

and with the formula for the signature:

^(X)——(7A--^)[X],
45

that Ak'U^-^+^|[X]
[ '2; ^ 896 iga^;^-1-

We now prove the formula

(*) T(X) =-28 A^X, ^mod 28.
\ 2/

Proof. — Let W be Milnor's example of a parallel]'sable 8-manifold with as
boundary the exotic 7-sphere BW that represents the generator of Fy. M is the closed
combinatorial manifold obtained by closing W with an 8-ball. Then a(M)==8.
Y==X#M# . . . #M is the connected sum of X and m copies of M.

One obtains, because X and Y have p\ and d in common,

^A^A-f.w^A-'-.
\ 2; \ 2/ 896 \ 2; 28

BY § i, Y has a smoothing compatible with the given combinatorial structure for
exactly one value of m mod 28. This value is given by

o = y(Y) = y(X) + m mod 28.

For that value of m we also have

^,i)^,i)-^^,,
and the formula follows.

Consequently the right hand side of (*) is mod 28 independent of the choice of d,
as long as d reduces to z^(X). Then it depends only on the rational Pontrjagin class p^
on the signature or and on w^(X), which are all topological invariants.

Finally y(X), the left hand side of (*), is therefore also a topological invariant.
We summarize:

Theorem 1. — If the oriented closed 8-manifold X is simply connected and has no 2-torsion
in H^X, Z), or if w^X) is the reduction of a Z-cohomology class d, and y(X)=|=o, then X has
no smoothing, y is a topological invariant for such spaces X.
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ALGEBRAIC EQUATIONS FOR NONSMOOTHABLE 8-MANIFOLDS 143

§ 3. Complex algebraic varieties as examples.

Brieskorn [8], Milnor [9] and Hirzebruch [10], using Pham [n], have studied
isolated singularities of complex algebraic varieties, for which some neighbourhood of
the singular point has the natural topological and combinatorial structure of a cone
over a smooth possibly exotic 7-sphere which bounds it. In particular this is the case
for the singularity at oeC5 of the affine variety ([10])

/î i, ...^^r'+^+^+^+^o)
(I) n==6k>o[

The intersection of f i ) with [^ ==VS^^^.^9(;, is for small c>o homeomorphic with
an 8-ball, and its boundary, obtained as intersection of ( i) and

(2) Z\=C

is the exotic sphere with value
(3) A.ieZ^IV

For k == i the generator with value i eZgg ̂  F^ is found.
If we embed C5 as the complement of a hyperplane, the so called < c hyperplane

at infinity 5? in P^C), then ( i ) can be considered as the affine equation of an algebraic
variety in P^C).

In homogeneous coordinates ^, . . ., ^5, w, it has the equation
^r'+^-'+^+^+^^-o.

This algebraic variety has, apart from the old singularity, many more singularities
namely at infinity (w==o). In order to avoid new extra singularities we modify our
function^ and choose the new function f as follows:

5 5

(4) f==z^l+4+.? ̂ + s y-1^
i — 3 j — 1

XeRcC, n==6k

This function is locally near oeC5 equivalent to ̂  by a holomorphic change of coor-
dinates of the kind

^-^(^ U=^ • • • . 5 )
with

((D^)^-^^-1^-^
(O^))3 ==u3 +\un

(O,^))2 =u2 +r-lun (z=3,4,5).

Therefore the affine variety f==o has near oeC5 a singularity with the same
local properties as mentioned for j^=o (take c small). We now search for the singu-
larities on the variety f~=o. They obey the equations:

(5) V- V- V- V- V- o
505



144 N I C O L A A S H . K U I P E R

and

(6) /=o.

Solution of ^, . . ., ̂  from (5) and substitution in (6) yields for

Gei, • • . , - % ) = f = ( o . . . . ,o)==oeC 5

and for different choices of the solutions, rational algebraic equations, which can be
combined into one rational algebraic equation. It expresses a necessary condition on X,
for having at least one more singular point on (6). So for only a finite number of values
of X there are other singularities. In particular for X == e, an arbitrary transcendental
number, the only singularity on the affine variety is oeC5.

We imbed C5 as the complement of the hyperplane w==o in the complex projective
5-space P^C) and close the image of the affine variety. Then we obtain the algebraic
variety V^cP^C) with equation in homogeneous coordinates f^, . . ., ^5, w):

5 5

(7) v,: ̂ w+^w—3 + s ̂ -^ s ̂ -^o
i=3 j = l

Vfc has clearly no singularities at infinity (w==o). It has exactly one singular point
j&==(o, o, o, o, o, i), and V^;—{p} is a smooth 8-manifold. Then by the result of
Brieskorn V^ is a topological manifold at p, as well as all over. However, it also has its
natural triangulation as an algebraic real 8-dimensional variety, where near p the
triangulation is obtained by triangulating the cone on the (possibly) exotic 7-sphere
described above. We compute the invariant Y(V^) as follows. Take a triangulation
such that p is interior point of some 8-simplex. Take in V^—[p} the differential
structure from the (there!) differential manifold V^;. Then the cochain y so obtained
has value zero on all simplices outside p. At p the value is therefore Y(V^)==A:. leZgg.

Theorem 2. — Every class of combinatorial modulo smoothable 8-manifolds can be repre-
sented by a complex algebraic hypersurface V^cP^C), k= i, 2, . . ., 28. Among these, only V^g
is homeomorphic to a smooth manifold. In particular the algebraic variety V^eP^d) with affine
equation

(8) 4+^+^+^+4+.S^- l^=o

is a topological 8-manifold without any smoothing.
Proof. — By theorem i it is sufficient to prove the existence of rfeH^V^, Z)

reducing to ^(V^eH^V^, Zg). For a sufficiently close approximation of equation (8)
we can obtain a complex manifold without singularity Y with the following properties.

There exists a manifold with boundary V^ obtained from V ;̂ by deleting a small
disc containing the singularity, i: V^-^V^; is the inclusion. There is an embedding
j : V^-^Y, because outside some neighbourhood of the singularity, V ;̂ and Y are near to
each other with first derivatives included and hence diffeomorphic. Now the first Ghern
class ^(Y^H^Y.Z) reduces to ^(^eH^Y, Z^). Hence ^-(^-^(^eH^V,, Z)
reduces to wW^^fw^eH2^ Z,).
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ALGEBRAIC EQUATIONS FOR NONSMOOTHABLE 8-MANIFOLDS 145

§ 4. Nonorientable 8-manifolds

We first recall the nonorientable version of Wall's theorem.
Theorem. — The connected nonorientable closed combinatorial 8-manifolds modulo smooth

manifolds form a group of two elements.
Proof. — Let X be a nonorientable connected 8-manifold with A-skeleton X^.

We smooth some neighbourhood of X7 as before, such that the non-smoothability of X
is concentrated in one 8-simplex A. On this oriented 8-simplex let it be given by xeTr^.
As X is nonorientable, there exists (assuming the triangulation of X fine enough) a
sequence of 8-simplices A^, i==i , . . ., N + i with A^A^^A, A^-A^nA^ is

N
a common face, such that the union U A^ is a nonorientable neighbourhood of a

1=1
closed curve in X. Any element jyeF^ can be represented by a change of smoothing
in the oriented face A^ of A, which can be neutralized with respect to smoothability
of A^ by a suitable change of smoothing in A^. Etc. After coming back to
A^^^A the non-smoothability is again completely concentrated in the oriented
8-simplex A, but represented with value x—y-\-(^—y)==x—s^el^.

In the nonorientable case the 8-simplices of X^ have no preferred orientation.
Then reducing the constant local coefficient sheaf r^Zgg, modulo 2, there remains
from the theory in § i, a Zg-cocycle y(^3 ^2) ln H^X, Zg) which is an invariant of the
nonorientable manifold X. In order to be able to smooth X, it is necessary that y(X, Zg)
vanishes. But above we have seen that it is also sufficient: Takej/ such that 2y = xeF^.
From the construction as in § i it is seen that ^(K#Y, Z,^)==^(K, Z^)-\-^(Y, Z^eZg,
for X and Y orientable or not. Then the theorem follows. Formally the obstruction
to smoothing lies in H^X, F7)==Ho(X, orientation® F7)=Ho(X, Z^)=Z^

Theorem 2. — The real algebraic 8-variety W^eP^R) in real projective 10-space with
of fine equations in ^,j^, . . ., ^5,^5:

^ ^+4+4+^+%2+s/'-14=o
^=x,+i^

is a closed nonorientable combinatorial 8-manifold without compatible smoothing. It represents
the nonsmoothable class.

N.B. — In this nonorientable case we cannot decide that the manifold
is not homeomorphic to any smooth manifold (with a different combinatorial
structure).

Proof. — W^ is an algebraic real variety with exactly one singularity of type ± i e I\.
At this singularity W^ is a combinatorial manifold and not smooth. There remains
to prove that W^ is nonorientable.

Take a suitable diffeomorphism of C^R10 onto the open ball |^|<i, which

507
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146 N I C O L A A S H . K U I P E R

commutes with rotations, leaves each real half ray from o invariant, and is the identity
near oeC5. Let W be the image of Wn R10. W can be closed by the 7-manifold 8W:

(S^-14=o)n(S^)==I.j'-i^
J " 3

The diametrical map S : (^, . . . 3 ^ 5 ) -> (—^, . . ., —^5) leaves W invariant and
preserves orientation in W as well as in R10. Now W is essentially obtained from W u ^W

o _

by identifying diametrical points in 8W. [This is analogous to obtaining P^R) from
^^j^1 by identifying diametrical points on S^.^-== i.] Hence W is nonorientable.

3 J

Remark. — If a manifold with one singularity is <( exotic ?? at that singularity,
then it still may globally admit some smoothing. For example this is the case with
the variety WgCP^R) with real affine equations

41+^+4+^+^2+.t/'-1^2==o
^=^•+^

It has the same exotic singularity at o as Vg. The same holds for any nonorientable
8-manifold with one singularity, in case that singularity is like that of V ;̂ for some even
A;=t=o mod 28.

Exercise. — If the oriented 8-manifold X admits an orientation reversing combi-
natorial involution without fixed point, then it has a smoothing.

§ 5. Formulation of the main theorem* A lemma on polynomial approximation.

A closed connected, C^-manifold X, C^-embedded in R^ is called a Nash manifold.,
if there exists a polynomial map g : RW->R? for some q, and Xc^'^o) cR^ with
dimX^dim^-^o). A C'-rnap / : X-.Y between Nash manifolds XcR^ and YcRn

is called a morphism, if its graph {{x,f(x)) : .yeX^R^xR^R^^ is a Nash manifold.
We now recall the classical

Theorem of Mash [13, 14]. — Every closed C'0-manifold X admits the structure of a Nash
manifold and this structure is unique up to isomorphism.

As every closed combinatorial manifold of dimension k^j has a compatible
C^-manifold structure (unique for k<^6), it also has a Nash-manifold structure (unique
for k<^6). On the 7-sphere S7 there are 28 Nash-manifold structures as there are 28 diffe-
rential structures.

If g : Rn-^R^ is a polynomial map and X is a real analytic closed subset of^'^o)
of the same dimension as ^^(o), then X is called a Nash space and also a Nash
component of^"1^). A Nash space X which is a topological manifold, and except at one
point XQ a G^-manifold, will be called a Nash manifold with one singularity at XQ. Examples
are described in theorems 2 and 3 above. (In order to meet the definition strictly we
have to embed P^Cl) and P^R) as real algebraic varieties in RN for some N.)

In the remaining part of this paper we prove an analogue of Nash's theorem:
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ALGEBRAIC EQUATIONS FOR NONSMOOTHABLE 8-MANIFOLDS 147

Main theorem 4. — Every closed combinatorial 8-manifold X has the structure of a Nash
manifold with one singularity, embedded in R16. It is a Mash component of the algebraic set
g~l{o) for some polynomial map g : R^-^R9'.

We first prove an important lemma which we need later. For any C00 -function
/: W->R^ defined on a neighbourhood W of o in R71, and for any natural number s^
we denote by/ the polynomial function of degree s, which at oeR^ has all derivatives
of orders <^s in common withy, / is therefore the Taylor series of fat o, up to and included
terms of degree s.

Lemma 4. — Let W, with closure W, and W be bounded open sets in V^ and
/ n

oeWcWcW';^o;e>o;|A:|=./ S (x,)2 for x={x^, ...,^)eR".
i=l

For any 0°°'-function f: W'—^R9, there exists a polynomial function ^ : W-^R^ with
the same Taylor-s-part at o:

^=fs

and s-near to f on W in the Ci"-metric:

\{8^)(x)-^f)(x)\<s for a^,xeW.

Here, if a is the multiindex a ==^3 . . . y i y , then
^=^.. .a^ and |a|==r^o.

Proof. — Because we can C^-extend the restriction of/to W over R", we may
just as well assume that W and W are bounded open balls with centre in oeR". It is
well known that given/and 8>o, there exists a polynomial function 0, for which

(10) |^Cf-°)WI<8 for |a[^,^eW.

We refer to Graves [16] and only recall that 0 can be obtained for example for a
sufficiently large integer m, and

^Jl 1 < (I-^2)'"1^ U•S=<U,U>,J \u \ ̂ m '•

as the convolution (an averaging process):

w-S^fw'^^-^-^i^rdu
with /(^)=o by definition for x^W.

0 is then a polynomial function of highest degree ^27n4.
From (10) we obtain in particular at oeR^

IW--^)(o)|= W.-<^)(o)|<8 tor ]al^.

By integrating along half rays starting at oeRm we see that a constant Oo exists,
such that

\^-^(x)\<CS for a|<^eW.

C depends only on W, and not on / or 0.

509
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Let 8 be so small that ( i+G)S<£. The required function is then

( T I ) ^=^+{fs-^)'

It has the properties:

(a^)(o)=(a,/J(o)=(a,/)(o) for |a[^,
and

|(a^)(^-(^^)M|.<|(^((D-/)(^|+|a,(^-OJM[^8+G8^c for a|:Q, ^W.

§ 6. Construction of an embedding of the closed combinatorial 8-manifold X
in R16 as a C00 -manifold with one specific singularity at oeR16.

This construction follows completely the proof of Whitney's embedding theorem
for G^-manifolds. We smooth (see § i) the complement X—Ug of an open 8-ball Uo
in X. The boundary BU^ is an exotic 7-sphere representing ^(X)er^==Z^. Let

k==^(X.)mod 28 and o<A<28. (In the case k==o, X is smoothable and we are done by
Nash's theorem.) The closed 8-ball Ug is embedded by a map ^ onto the standard
model with n=6k:

(12) ^Uo)=^|/l(^=^- l+^+4+4+^==o and l^^cC^R10.

For later use we define

(13) . UoW-^l k|<0), 0<t^QC;

()VQ has by virtue of z'o an induced differential structure, which represents y(X) by the
choice of n == 6A:.

We can assume the two smoothings of WQ to be equal, and U^ and X—UQ can
be glued along their common boundary to obtain a G^-manifold with one singularity (12)
at XQ. From now on we assume this structure in the symbol X. Next we construct
an embedding of X in some euclidean space.

It is easy to see that a C°°-map

K^C^C^R^R11

Ko^)={^o) for \^\<,8c,
exists with Ko(^)=(o, i) for \^\>_QC,

KO is a G°°-embedding for |^|<9^.

The composition K^o^, extended by the constant map Ko(A;)==(o, i) for X^VQ^QC),
determines a map ^

KQ : X-^R ,

which is C00 on X—{^}, C^-embedding on Vo{gc)—[xo}, and " standard 5 ?

(see (12)) on Uo(8<:).
For any point xeX—Vo{Qc) there is an 8-ball neighbourhood U^cX—U^)

and a C-.map ^ , ̂ ^
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onto the 8-sphere

S8={(^, , . . ,^)ER9 :S^^},
i-i

such that the restriction K^ Up is a G^-diffeomorphism onto S8—^}, and K^(>')=oeR9

for j^LLp.
A finite number of the neighbourhoods U^ and U^, say U^, U^, . . ., U^ cover X.

Then we obtain a map
KrX-^R11^

defined by K(;v)==(Ko(A:), iq(^), . . ., K^M). K is an embedding of X onto a C^-manifold
with one standard singularity K(Uo(&)) cR^XocR11'^91' near K(^)==O.

Finally we decrease the dimension of the target space in the usual manner as
follows. The set of chords and tangents of K(X—{A;o}) is the C00-image of a
17-manifold. It is nowhere dense for n +9L>i7 by Sard's theorem. We then can
project K(X) from some point into that linear subspace of R1^^ on which the last
coordinate vanishes, and we obtain an analogous embedding. This process can be
repeated until we get an embedding in R17. One more projection yields an immersion
with isolated transversal self-intersections in R16. The self intersections can be removed
by Whitney's method [15], to obtain the required embedding. Observe that during
this process the embedding of Uo{8c) remains unchanged.

From now on we identify X with i^X^R16, the embedded manifold with
standard part L^S^i^L^S^cR^Xo. So we have a diagram of inclusions:

Uo(8^) —.- R^xo

(14)

1 i
X ————-> R16

§ 7. G^-equations for XcR16 (1).

In this paragraph we define a diagram of C^-maps

W ^> A^cGgXR16 ̂  R16

(i5) |.^
v8 T T (r\ a ^ r"A ——UQ[C) ————> (jTg

W an open neighbourhood of XcR16, such that

W X^Q^oO-^nW.

(1) The constructions in § 7 and § 8 are analogous to those of Thorn [14] concerning smooth manifolds.
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The map j&goc therefore determines a set of 16 equations for X8. a has a singularity
at o, and it is transversal to GgCAg at all other points of W.

We first define a on certain parts W(^) of W.
Consider the normal bundle of X—Vo{c) in R16. The normal exponential map

nexp : {x, v) h> ^+veR16 is a C°°-map of its total space into R16. Here v is a normal
vector at xeX.—Vo{c).

There is a constant £1 such that the restriction of nexp to the space of normal
vectors of length smaller than s^, is a diffeomorphism, with image the tubular
neighbourhood (== total e^-ball bundle space):

W{t)=nexp{(x, v)|^eX-Uo(<), |^ <^} c^t^Qc.

The projection of the £i-ball bundle is called

^WW-^X8-^).

Let Gg be the Grassmann manifold of all 8-dimensional vector subspaces of R16, and Ao
the total space of the corresponding open s^-ball bundle p:

A^Q^EGgXR16!^ H^JcGgXR11116

Gg^GgXo.

The tangent vector spaces at different points of R16 are all identified with R16.
|i is induced from p by the natural bundle map

W(^) -^ \

^ p
^ ^

^-^(^ -^ Gs

where [B(^) is the normal vector space at x in R16 with respect to X8, and

P(nexp(^v))-((BM,v).

Gg is identified with the o-section of p.
We will modify the map p and obtain a map a which is constant near SUo{y).
The space Uo(8<:)—Uo(5^) is diffeomorphic with Z^xl, the product space of

the exotic 7-sphere S7 and a segment. Because VoW is contained in R^XocR16,
the normal bundle of this product-space part ofX is the direct sum of a trivialized 6-plane
bundle and a orientable trivial 2-plane bundle. Then by fibre-bundle theory
[^(G^s)^0 ft^ G^ 8 the Grassmann space of 2-planes in R10] there is a C°°-map a,
whose restriction to Vo{8c) —Uo(5^) is a homotopy:

X^U^)-^,
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, , , , ^(x) for xeX-VoWsuch that: a(A;)= ow /

go for ^eUo(6<;)-Uo(5^).

^o is the 8-plane oxR^R^R16;
a(^) is an 8-plane containing the 6-plane, oxoxR^R16 for all xeVo(6c)—Vo(5c)'

The bundle induced fromp by a is equivalent to that induced fromp by p. Hence
we may identify both induced bundles and we have an orthogonal s^-ball bundle map,
which is a C^-map of pairs,

W(5.) -^ As

( I?) u p

X8-!^) -^> G,
and

(17') a(Uo(6,)-Uo(5,))=^, a(w)=p(^) for ^eW(7^).

Ag contains the fibre p~l{go) which is an s-ball in R8. We will in the sequel extend
the fibre-bundle map over the base space Vo{y)—Vo{y) by a map (a, a) for which a
takes the constant value go. We will further extend oc over some neighbourhood ofVo(y)
in R16, by a map with all values in the e-ball ^(^R8.

In order to define oc near the singularity., we start from the map
r . -nIO __. -p2

Jl • K -> K ?

which was defined in terms of complex variables by ( i ) in § 3. Observe that for t^Qc:

/r'^n^l I^^Uo^cR^R^xocR16.

Near to the singularity, that is for some small enough neighbourhood of Vo(c)
in R16, we define

(18) a==/ iXid : R^xR'-^R'xR6.

Here id is the identity map of R6.
For small s>o and B(£)={^eR2! \y\ <s}, f^ determines a framing and a trivial

fibre bundle with fibres diffeomorphic to B(s), group the group of diffeomorphisms
of B(s), base space Uo(4c) —Uo(^), and fibre over x:

F^^/r^Bfe)) n{nexp(^, v) |v normal vector at x}.

F ;̂ is contained in a unique linear two-dimensional variety L^cR10. Let the
framing map T^ : B(s)-^L^ be defined as the inverse of

CA[FJ:F,->B(e).

We want to modify TT^ (hence f^) to obtain isometrics for xeUQ(^c)—Vo(y).
Because the oriented differentiable embeddings of B(s) in R2 with fixed origin, retract
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by deformation into the orthogonal group 80(2), there is for each x a homotopy of
C^-embeddings

^t ^(s)-^, 7^(0)=^

starting with ^Q==^ and ending with an isometry n^ ^. We can choose it such that
the mapping n^ ̂  depends G00 on x and t, and TT^ is constant with respect to t for

1 2o<t<- and for -<^<i.
3 3 ~ ___

Now we are ready to replace^ by a new map o^. For X^UQ^C) —U^) let ^
implicitly be given by

^Uo(^+3^), o^^i.

Let ^E^(B(s))c4cR10.

Now put aoO^TTj-^eR2.

We continue the definition of oc. In some neighbourhood of Uo(4c)—Uo(o) in
its tubular normal bundle space in R16, we put

(19) oc==aoXid. - ,

Here again id is the identity map of R6. Observe that (19) agrees with (18).
Over the part VQ^C) —Uo(3^) and over the part U^Bc) —UQ^C) the mapping a

into R8 == R2 X R6 ==p~1 {go) determines orthogonal trivializations of the normal tangent
bundle, each splitting of the same trivial trivialization in the vector spaces parallel to
o X R6 C R16. Recall for this that Vo{8c) C R10 X o c R16. These trivializations therefore
reduce to trivializations of 2-plane bundles essentially over seven-spheres. They are
homotopic.

The trivializations of the tubular neighbourhoods over Uo(4^)—Uo(3^) and
over Uo(6c) —V^y) as orthogonal s^-ball bundles (for s^ small enough), correspond one-
to-one to the orthogonal trivializations of the normal tangent bundles. Therefore a can
be extended over the normal tubular bundle over Uo(5^) —Uo(4c) in R16 by a map
into R8, which is also isometric on each fibre.

Taking the map ~d of differentiability class G00 we have obtained, with (17),
(18) and (19), for some neighbourhood W o f X in R16, the map

(15) w-^Ag.

The restriction to W(3^) is an orthogonal bundle map:

W(3^) -^ Ag

d5^) I
^

X-Uo(3.) -^> G,
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The restriction to W~W(6^) is into p~1 (^) c R8:

( i5^) W-^G^^-^cR8.

The restriction to W—W(^) is:

^5^ /iXid.

Now the diagram (15) and the properties mentioned after (15) follow immediately.

§ 8. Algebraic equations for X.

We consider again diagram (15). Let Gg be embedded as an algebraic sub-
manifold in some euclidean space R^ The normal exponential map defines a tubular
neighbourhood Y with radius s (sufficiently small) ofGg, and with an algebraic orthogonal
projection (a retraction)

(.20) P:Y-^G3CY^

p(^) is the point in Gg that is nearest to j/eY. We now extend diagram (15) by natural
inclusions

W AgCGgXR^cYxR^cR^1 6

21]

The retraction p in (20) can be covered by a retraction p', which is also
algebraic:

YxR16 -̂ > A,

(22) pi

Y Go

It is defined by the condition that p^(j/, ^) is the orthogonal projection of the
point (p(jQ, ^) eY xR16 which lies in the euclidean i6-space ̂ (pC^))?into Ae euclidean
sub-8-space ^(pC^)) cAg.

We now call W : W', and let WcWcW' be a smaller analogous neighbourhood
of XcR16. Then we apply lemma 4 to the map

W' ̂  YxR^cR^R16.

We obtain a polynomial map ^, arbitrary C^near to ioc on W and with the
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same j-jet at oeWeR16. The image of this j-jet therefore lies in Ag! We now have
the noncommutative diagram

Let g be the algebraic map g==P2^9^ : W->R16.

Then Xl=('a^)-l(G8)=^•-l(o) cW is the required Nash-manifold with one
singularity. It is a real analytic manifold with one singularity, locally defined by
algebraic equations. (It is an open problem also for smoothable ^-manifolds, whether
Xi can be a topological component, or even the whole, of the set of zeros of a set of
polynomials. See [13]. If X^ has a trivial tangent bundle then it can be a topological
component.)

The maps oc and p"^ : W->Ag have the same j-jet at o. From Malgrange's
preparation theorem [17], as applied to ideals of C"°-functions by Tougeron [18] and
Mather [19], it follows that there exists for s large enough a G^-diffeomorphism
^ : U->^(U), defined on some neighborhood U of o in R16, as G^near as we please
to the identity map, such that ^[{p2a)~l{o)^V]=g~l{o) r\^(\J). The singularities ofX
and Xi at o are therefore of the same exotic kind. The restriction oc[(W—{o}) is
transversal to GgCAg. Hence for any choice of neighborhood U' of o in R18 also the
restriction p'^|(W—U') is transversal to Gg in case ^ is C^-near enough to KX..

The map which assigns to any point of X—Uo^) {c' small) the unique nearest
point of Xi, defines a diffeomorphism, C^near to the identity map restricted to
X—Uo(^). This diffeomorphism C9.n be extended over X—{o} such that it equals ^
near o.

Consequently X and Xi are combinatorially equivalent, and g is the polynomial
map required in theorem 4.

We conclude with the formulation of two problems:
Problem. — Which combinatorial 8-manifolds admit a complex manifold structure

with one Hirzebruch singularity?
Problem. — Which combinatorial 8-manifolds can be embedded as Nash manifold

with one Hirzebruch singularity in a low dimensional euclidean space?
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