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RATIONAL POINTS
IN HENSELIAN DISCRETE VALUATION RINGS

by MARVIN J. GREENBERG

i.
Let R be a Henselian discrete valuation ring, with t a generator of the maximal

ideal, k the residue field, and K the field of fractions. Let R* be the completion
of R, K* its field of fractions. If F= (F^, . . ., F,.) is a system of r polynomials
in n variables with coefficients in R, and x is an n-tuple with coordinates in R,
set ~F{x) = (Fi(^), . . ., F^(^)). If F' is another system of r ' polynomials, let FF' denote
the system of rr1 products. By the ideal FR[X] generated by F is meant the ideal
in R[X] generated by F^, . . ., F,.

Theorem 1. — Assume, in case K has characteristic p>o, that K* is separable over K.
Then there are integers N>i, c>i, s>o depending on FR[X] such that for any v>N and
any x in R such that

V{x) =o (modr)
there exists y in R such that y == x (mod ̂ -s)

F(jQ=o

Corollary 1. — Let Z be a prescheme of finite type over R. Then there are integers N^i,
c^1^ S^.Q depending on Z such that for v^N and for any point x ofZ in R/f, the image ofx
in Z(R/^-8) lifts to a point of Z in R.

Proof. — We can take a finite covering of Z by affine opens Z,. We have
Z(S) == LJZ,(S) for any local R-algebra S, hence the maxima of the integers for the Z,
will do for Z.

Corollary 2. — Z has a point in R if and only ifZ has a point in R/F/or all v^i.
Let V be the algebraic set in affine yz-space over K which is the locus of zeros of F.

In the special case that R is complete and V is K-irreducible, non-singular, with a sepa-
rably generated function field over K, Neron [4; Prop. 20, p. 38] has proved this theorem,
showing that in this case one can take c ==-1. However, in the general case we may
have c>i (consider the polynomial Y2—X3 and for any even integer 2v the point
x=={f, r)). Theorem i implies that the hypothesis of non-singularity in [4; Prop. 22]
can be dropped, so that the sets in that proposition are always constructible.

Theorem i is proved by induction on the dimension mofV. If m=—i, i.e., the
ideal FR[X] contains a non-zero constant, it is clear. Suppose m>o.

We may assume the ideal FR[X] is equal to its own radical (i.e., the scheme over R
defined by F is reduced): For let E generate its radical. Then some power E^ is
in FR[X]. From F ( ^ ) = o ( m o d r )
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60 M A R V I N J . G R E E N B E R G

we conclude f divides E3^), so that
E{x)=ao (mod^)

IfN', c ' , s ' are integers for E, we see that N=^N', c==qc', s=s' are integers for F.
We may further assume V is K-irreducible: For if V = W u W, where W, W

are algebraic sets defined respectively by systems of polynomials G, G' with coefficients
in R, let N', c1\ s ' (resp. N", c " , s " ) be integers for G (resp. for G'). If x in R satisfies

F{x) = o (mod t^
then either G{x) = o or G\x) == o (mod ^/2])

since GG' is in the ideal FR[X]. Thus
N=2max(N / ,N / /)

c ==2max(^'5 c")
s==mo.x{s', s " )

will work for F.
Then there are two cases:
Case 1. — V is separable over K.
Let J be the Jacobian matrix of F, and let D be the system of minors of order

n —m taken from detj. The the locus of common zeros ofD and F is a proper K-closed W
in V. By inductive hypothesis there are integers N', c\ s ' for the system (D, F).

For each system F^) of n—m polynomials out ofF, (z) a system of n—m indices,
let V(,) be the locus over K of zeros of F^), and let \^ be the union of the K-irreducible
components of V^ which have dimension m and are different from V; let G/^ be a
system of generators for the ideal of V^ in R[X]. By inductive assumption there
are integers N^, ^, s^ for the system (G(^, F).

If x is a point of V^ in some extension of K such that for some (j)

^wW^0

then the tangent hyperplanes of F^, . . ., F^_^ at x are transversal, and x lies on exactly
one component of V^, that component having dimension m.

We now invoke (see Lemma 2, n° 3)
Newton's Lemma. — If x in R is such that

T^{x)=o (mod^+1)
D^^[x)^o (mod ^) for some (j)

then there exists y m R such that
F(z)00==o

y ^ x (mod^)
Hence D^(j)+o
If we knew also G/^(^)4=o

we could deduce thatj/ is a point ofV.
Take v so large that

• (JL=[(v-I)/2]>max(N /,allN^
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RATIONAL POINTS IN HENSELIAN DISCRETE VALUATION RINGS 61

Let x in R be a zero mod t^ of F. If
D{x)==o (mod^)

our inductive hypothesis gives us y in R such that y is a singular point of V and
V=EX (mod^-8')

If for some (i) G^{x)==o (mod t^)

then again by induction there isj/in R which is a point of VnV^ such that
y=x (mod^^-^))

Otherwise we use Newton's Lemma to find y in R which is a point of V such that
y == x mod t^)

Thus as integers for F we can take
N=2+2max(N',allN^)

c == 2 max(^, all c^)
s== i +max(J/, all s^)

Case 2. — V is inseparable over K.
In this case we need two facts.
Fact 1. — 7/'K' is a finite extension o/K, then the integral closure R' ofR. in K' is a finite

f^-module.
This follows from our assumption K* separable over K (7; O^y, 23. i. 7 (ii)]. For

the convenience of the reader, we sketch the proof, valid also when R is a higher dimen-
sional local domain: K^^K* is a finite extension field ofK*, because of our assumption.
R'O^R* is a subring of this field, integral over the complete local domain R*, hence
finite over R*. Since R* is faithfully flat over R, R' is a finite R-module. (The assump-
tion that R* is a domain, implicit in this argument, can be eliminated (loc. cit.)}.

Fact 2. — There is a functor y from the category of affine schemes of finite type over R'
to affine schemes of finite type over R such that y is right adjoint to the change of base functor
from R to R'. Thus we have an isomorphism of bifunctors

MorR(Y, ̂ Z) ̂  Mor^YR,, Z)

[for Y/R, Z/R'). Moreover, 3^ preserves closed immersions.
This follows from Fact i, and can also be established in greater generality (see

[8; p. 195-13] where the notation ^'Z==T:^^Z is used).
Choose a basis &i, . . . , b^ for the R-module R'. Every element ofR' has uniquely

determined coordinates in R with respect to this basis, and the addition and multipli-
cation in R' are given by polynomial functions in these coordinates. Hence there is
a commutative ring scheme S over R, whose underlying scheme is affine rf-space over R,
such that for any R-algebra A,

MorR(Spec A, S)==A®RR'
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Now the same arguments as in [9$ pp. 638-9] can be repeated word for word.
The point is that by using the basis &i, . . ., ̂ , if P is a polynomial in n variables with
coefficients in R', the problem of finding a zero ofPin A®^7 is replaced by the problem
of finding a common zero in A of d polynomials in nd variables with coefficients in R.

Let Y be the affine scheme over R defined by the polynomial system F
(Y==SpecR[X]/FR[X]). Since the scheme Y^ over K obtained from Y by change
of base is inseparable over K, there is a purely inseparable finite extension K' of K such
that the scheme Ygy is not reduced, afortiori Y^ is not reduced [5; 4.6.3].

Consider the affine scheme ^"Y^ over R. There is a canonical R-morphism
6 : Y->^YR, which corresponds by adjointness to the identity morphism of Y^,.
Now ^((YR,)^) is a closed subscheme of ^YR, ; let W be its pre-image under 6.
Then W is a proper closed subcheme of Y, otherwise the identity morphism of YR, would
factor through (Y^,)^, i.e., YR, would be reduced, contradicting the choice of R'.
By inductive assumption, there are integers N', c\ s ' for W.

Supposej/ is a point ofY in R/r. Let e be the ramification index of the discrete
valuation ring R' over R, u a generator of its maximal ideal. Thenj/ induces a point
of YR. in R'/zz^. By a previous argument, there is an integer q (independent ofy)
such that the image of this point mod ^[cw?] is actually a point of (Y^)^. By
adjointness, the image ofjy mod t1^ is actually a point of W. Hence N = yN', c = qc ' ,
s==s' are integers for F.

Remark. — Theorem i is false without the separability assumption. For there
exists a discrete valuation ring R whose completion R* is a purely inseparable integral
extension of R [6; o. 207]. R must therefore be its own Henselization. The minimal
polynomial of an element of R* not in R gives a counter-example to Corollary 2.

a. Applications to C, questions.
Recall that a domain R is called C^ if any form with coefficients in R of degree d

in n variables with n>d^ has a non-trivial zero in R. Co means that the field of fractions
of R is algebraically closed.

Theorem 2. — If k is a C^ field, then the field k{{1)) of formal power series in one variable t
over k is C^_^.

This generalizes some results of Lang [3], who did the cases i= i, k finite, and
z==o. Note that [ k : k^^p' (take a basis).

It suffices to prove that R =/;[[(]] is G^. By Lang [3], k[t] is C,+i. Hence
the hypersurface H in projective {n—i)-space defined by the given form has a point
in the ring R/^ for all v. By Corollary 2, H has a point in R.

Note 1. — The same type of argument yields a short proof of Lang's theorem that
if R is a Henselian discrete valuation ring with algebraically closed residue field, such
that K* is separable over K, then R is C^. For by Corollary 2, we may assume R
complete, and since C^ is inherited by finite extensions, we may also assume R unramified.
Then the argument given in [35 p. 384] shows H has a point in R/^ for all v.
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RATIONAL POINTS IN HENSELIAN DISCRETE VALUATION RINGS 63

Note 2. — In the definition ofG^, replace the word (< form 3? by " polynomial without
constant term 3 ?; a ring with this property is called strongly C,. For example, finite
fields are strongly C^. A theorem of Lang-Nagata states that an algebraic function
field in one variable over a strongly G^ field is strongly C^^. It is natural to ask
whether the same statement holds for the power series field in one variable. Ax-Kochen
confirm this in characteristic o by showing that the Henselization ofA;[^] at the origin
is elementarily equivalent to ^[[^]].

Note 3. — In the definition of strongly C^, suppose we take the expression <( non-
trivial " to mean (< some coordinate is a unit in R 95, instead of c( some coordinate is
non-zero ". Call this property strongly C^. If R is a strongly C^ discrete valuation
ring, then the completion ofR is also strongly C^, by Theorem i. It is therefore natural
to ask: If a field k is strongly C^, is the localization ofA:[<] at the origin strongly C^?

3. Newton's Lemma.

In this section, R will be an analytically irreducible Henselian local domain with
maximal ideal m, F will be a system ofr polynomials in n variables with coefficients in R,
i^r^n, J the Jacobian matrix of this system.

Lemma 1. — Assume r=n. Given x in R such that

F(A:)==O (mod m)
det J (x) ̂  o (mod m)

Then there is y in R such that

(i) y •=. x (mod m)
(ii) F(j)=o

Proof. — There is y in the completion R* satisfying (i) and (ii), by [2; 11.13.3].
Since r==n and det J(jQ=)=o, the domain R[^] is separably algebraic over R. But R
is separably algebraically closed in R*, hence y is in R.

Lemma 2. — Let x in R be such that
F(A:)=O (modern)

where e=D{x), D being a sub determinant of order r of detj. Then there is y in R such that
y = x (mod cm)

F(j.)=o

proof. — We may assume ^4= o. We may assume x == o and that D is the subdeter-
minant obtained from the first r variables. If r<72, setting

F,(X)=X, j = r+ i , . . . , T Z

shows we can assume r==n, hence D==detJ. Let J' be the adjoint matrix to J, so
that JJ'=DI===JJ, with I the identity matrix. By Taylor's formula,

F(^X) ==F(o)+d(o)X+^G(X)
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where G(X) is a vector of polynomials each beginning with terms of degree at least 2.
Using ,=^(0)^(0)

and the hypothesis on F(o), we can factor out ^J(o):

F(.X)=.J(o)H(X)

where H is a system whose Jacobian matrix at o is I, and

H(o)==o (mod m)

By lemma i, there isj/' in m such that H(y)=o, whence y = e y ' does the trick.
Note. — The following argument (due to M. Artin) should eliminate the

assumption that R is analytically irreducible, used in the proof of Lemma i: Let
Y=Spec R[X]/FR[X], /: Y -> Spec R the canonical morphism. The hypothesis of
Lemma i gives us a point ~x of Y lying over the closed point of Spec R, such that ~x is
isolated in its fibre and/is smooth at ~x. Hence the local ring 0 of x on Y is ^tale over R
[5; ii, 1.4] with the same residue field. Since R is Henselian, R-^o is an isomor-
phism [i], hence we have a section Spec R->Y passing through ' x .
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