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CARLEMAN ESTIMATES
FOR THE LAPLACE-BELTRAMI EQUATION
ON COMPLEX MANIFOLDS

by ALpo ANDREOTTI and Epoarpo VESENTINI (%)

Let P(x, D) be a differential operator defined in an open set Q of R", with C* coeffi-
cients. Let u be a G function such that P(x, D)u has compact support in Q. Assume
that for any such function # we have an inequality of the type

[e® ul2dx < C [ P(x, D)u|?dx

for any t>1, and where ® is a positive C” function on Q. Then it follows that, on the
support of u, ® does not exceed the maximum of ® on the support of P(x, D)u. An
inequality of the above type is an inequality of Carleman’s type [8]; its essential feature
is in the presence of the exponential weight factor which permits to give information
on the support of « in terms of the support of P(x, D)u. This remark which we learned
from a paper of L. Hormander [13] is at the origin of the present paper.

In the first part we establish a general criterion for the vanishing of cohomology
with compact support on a complex manifold X, the coefficients being chosen in a
locally free sheaf, &, i.e. in the sheaf of germs of holomorphic sections of a holomorphic
vector bundle E on X.

This is done by the study of the Laplace-Beltrami operator and by use of an
inequality of Carleman’s type. It turns out that the role of the exponential factor is
nothing else than the choice of a metric in the fibres of E. The possibility of a large
freedom of choice in this metric replaces the parameter = of Carleman’s inequality.

In the second part of the paper we show how the general theory gives the vanishing
theorems for g-complete spaces established elsewhere by other methods [2]. Here the
presence, on the manifold, of a C* positive function ® whose Levi form has a given
signature, gives the desired freedom in the choice of the metric on the fibres of E. The
Carleman inequality is established by using a generalized form of an inequality given
by K. Kodaira [14] using a method of Bochner [23].

(*) This work has been supported in part by AF - EOAR Grant n® 63-29. During the final phase of the
preparation of this paper the second named author has been supported by the National Science Foundation through
a research project at Harvard University.
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82 ALDO ANDREOTTI AND EDOARDO VESENTINI

The last part of the paper gives, we hope, a sufficiently detailed indication of
how to apply the previous results to establish the finiteness theorems for g-pseudoconvex
and g-pseudoconcave manifolds [2]. Since we deal with cohomology with compact
support, we are able to avoid the use of the approximation theorem which was, on the
contrary, the essential point in establishing the results for the cohomology with closed
supports in [2]. Moreover, for g-pseudoconcave manifolds we gain additional infor-
mation (by Serre’s duality [20]), namely that the groups H" (X, Q"(E)) have a topology
of a (separated) Fréchet space.

The case of a general complex space (in the sense of Serre) and of the cohomology
on it with values in any coherent sheaf is not treated here. We believe that the methods
developed in [14] will be sufficient for the reader to see how to extend the above result
to cover this more general case (the starting point being always the case of a locally
free sheaf on a manifold).

We are indebted to B. Malgrange for many valuable suggestions and, in particular,
for the idea of reducing the theorem of finiteness to a classical theorem of finiteness of
L.Schwartz [17]. E.Calabi gave us the idea of the proof of Lemma 18. M. K. V. Murthy
and B. V. Singbal of Tata Institute of Fundamental Research helped us in learning the
theory of topological vector spaces and the works of L. Héormander and A. Grothendieck.

To all of these we wish to express our sincere thanks. The results of this paper
have been announced in [5].

§ 1. Preliminaries

1. a) Let X be a complex manifold and let E5X be a holomorphic vector
bundle over X with fibre C". Let % = (U,);c; be a coordinate covering of X such
that on each U;, E|U,; is isomorphic to the trivial bundle. If ®;:U;xC"—E are
these trivialisations of E, we denote by

¢; : U;nU; — GL(m, C)
the holomorphic cocycle defined by the conditions:

(Dj_lo(I)i(z, )=z, eijai)
where £, denote the fibre coordinates over U,.

The dual bundle E"—X of the given bundle E is thus defined on the same
covering % by the cocycle ‘e;*'.

In particular the tangent bundle ©® will be defined in terms of a choice of local
coordinates (2}, ..., z") on U, by the cocycle J,;=2(z)/0(z;), and the dual bundle ©
by the cocycle ‘Ji 1.

b) A C* form of type (p, ¢) with values in the bundle E is a C* section of the
bundle E®O7©0 where O stands for A®" and where the bar over ©' denotes the
complex conjugate of ®. Locally on U, such a form is given by a column vector
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 83

o;="'(o}, ..., ¢/") whose components are C* forms of type (p,¢) on U;. In UnU,
we will have

P =¢;9;-
Let & denote the exterior differentiation with respect to the complex conjugates of the

local holomorphic coordinates. If &/?(E) denotes the sheaf of germs of C* forms of
type (p, ¢) with values in E, then @ defines a sheaf homomorphism

3 : /M) - APY(E)

because E is a holomorphic vector bundle.

If QP(E) is the sheaf of germs of holomorphic sections of E®O7 we get, by the
Dolbeault theorem, an exact sequence

0 > QI(E) >/’
and therefore the isomorphism
H§ (X, Q7(E)) ~ HY(X, E)
where @ is the family of closed or the family of compact subsets of X and where H%(X, E)
denotes the homology of the complex qéo I'p (X, P(E)).

In the sequel the space I'g(X, /™(E)) will be denoted by CP(X, E) if ® is the
family of closed sets, and by 2™(X, E) if ® is the family of compact sets.

2. a) We introduce on the fibres of E a hermitian metric. This will be given

by a hermitian scalar product #(v, w), v, wen™'(z), which depends differentiably on
the base point z.

Locally on U, if &;, v, are the fibre-coordinates of » and w, A(v, w) will be expressed
in the form

h(v, w)="n;h;E;
where h; will be a positive definite hermitian matrix, whose clements depend diffe-
rentiably (i.e. G®) on zeU,.
For this local representation, the consistency conditions are given in U,nU; by

(I) }li:t?uh.g..

n Rt
Consider in U, the matrix of (1, o) forms
l;=h;"'oh;

where 9 is the exterior differentiation with respect to holomorphic coordinates.
From (1) we deduce that

—1 —1
e; Oey=lL—e;" Le,;
and this means that {/;} are the local components of a ¢-connection in the bundle E.

315



84 ALDO ANDREOTTI AND EDOARDO VESENTINI

The obstruction for this connection to be holomorphic is given by the curvature
form

(2) s;= 0l

7 1
for which the consistency conditions are now on U;nU;:

(3) $i = €;5;€j;

In particular, if E is a line bundle (m=1) then the curvature form s= 34 log 4,
is a global (1, 1) form on the base.

b) The datum of a d-connection in the holomorphic bundle E enables us to consider
for any C* section of E the absolute differentiation with respect to local holomorphic
coordinates. If ¢={t} are the local components of a section of E,

L= e;l; in UinUi,
and if /; are the local components of the é-connection, then the absolute differential V¢
of ¢ has the local components

(V’f)t‘,i = ot + L1,
with the consistency conditions
(V) v, = e;j(Vi)y,-

The absolute differentiation is therefore a linear map
V:I'(X, #(E)) - ['(X, #(E®OY),

2/ denoting the sheaf of differentiable sections.

If {#} are the local components of a hermitian metric on the fibres of E then
{l;=h;"oh;} are the local components of a ¢-connection on E. Analogously in the
antiholomorphic bundle E the forms {l;=h;'9h;} are the local components of a
#-connection.

On the dual bundle E” it is natural to assume {'4;'} as metric on the fibres and
correspondingly {-—&'h/'h;"} as é-connection. We have the corresponding formulae
for the bundle E* passing to the complex conjugate forms.

Given any tensor product of holomorphic and antiholomorphic bundles with
corresponding 9 and d-connections, the absolute differentials V and V for the sections
of that tensor product are then defined in a natural way.

We remark that the choice of a ¢ metric ”’ connection has the advantage that the
absolute differentials of the metric tensor {4} are zero:

Vhi=o, Vh=o.

3. a) In particular, a hermitian metric on the fibres of the holomorphic tangent
bundle ® will be the datum on X of a hermitian metric

ds*=22ig 5dz*dZ?
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 85

The corresponding d¢-connection will be given by
of =2 g 0g7, =2 CE dz*.
Y e

The curvature form is given by

50)3 ES Lgap tzz;/\ dzp
oC8
where L, =—=
0z°

In this case one can consider the torsion tensor
I
[ 8 g
S‘M,—Q{Clxp Cpa}

whose vanishing represents the necessary and sufficient condition for the hermitian
metric to be a Kihler metric.

b) It is more convenient to operate in the case of the tangent bundle with a
symmetric connection in which the metric tensor has absolute differential zero. This
is the corresponding riemannian connection whose components are

a __ ! qag agaﬁ 3g57[

B8 ozt T 0z° y

+

« I _{08%s 085/
T2, =% =g 208 vl
T e 8 lozY  o0z°\

=0
The local forms of this connection are thus given by
Q= ? Lo d2” + % Paydz”s Qp=Q
a o Y, E___g(

QB=§FYédz ;o Qp=Qp

Let Q denote the matrix of 1-forms Q:; then the curvature form is given by
dQ+QAQ
whose components are denoted by
Rl dnd7 (t,j, k=1, ...,m, T, ..., 7).

If the metric is a Kidhler metric, then

(4’) Cip = ng ) LEE@ = RoBtEp .
¢) If {#*} (a=1,...,m) is a section of E, and if we take covariant derivatives,

we see that the covariant derivatives V, V;t* and V;V, ¢* are related by the ““ Ricci identity
(VsV,—V, V)t =sit".
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86 ALDO ANDREOTTI AND EDOARDO VESENTINI

4. a) Let X be a complex manifold of complex dimension n, E a holomorphic
vector bundle on X, &= {4} a hermitian metric on the fibres of E and let ds* = 22 g,5dz*dz"
be a hermitian metric on X.

On the space CG(X, E)=®C(X, E) we can define a number of local (*) operators:

o) the operator

o :CM(X, E) - CP»** (X, E)
defined before, with the property 89=o0;

B) the isomorphism

* : CM(X, E) - C*~¢"~?(X E)
locally defined, with the evident block indices notation, by

(5) *p=c det(g,5) Zsgn(MA)sgn(GB)e™dzA £ 7P

the constant ¢ being so chosen that
#xp=(—1)""0
(see e.g. [22]).

The datum of a hermitian metric on the fibres of E defines an ¢ anti-isomorphism *’
of E onto the dual bundle E*. If £, is the fibre-coordinate over U, on E, it is given
by &-—>hE,. _

This anti-isomorphism extends to an anti-isomorphism

# : CM(X, E) - C?(X, E",
which is defined locally by
(#0)i=hio;,
and which commutes with the operator .
Using * and # we obtain:
v) the operator
6:C"(X, E) > CrtY(X, E),
defined by O=—# "%0x#;

we have 00=o.
Using & and 6 we define the Laplace-Beltrami operator

0=00+08 : C*(X, E) - C"(X, E).

The operators 6 and [] depend on the hermitian metric on X and on the metric
along the fibres of E. To emphasize this fact, we may write occasionally 6y and [Jj
for these operators.

It follows from the very definition of 6, that for any ¢eC™(X, E):

(6) Ot w=( 1) T #0,  Op#xo=(—1)"""" % # do.

(1) We call an operator A on C(X, E) local if, for any ¢eC(X, E), support of A¢p Csupport of g.
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Hence
(7) Olpex # = # (-
b) Let 0=\ —1g5dz*rdZ*
be the exterior form associated with the hermitian metric on X. Let
L:C"(X,E) » Crihat (X E)
be the linear mapping locally defined by
(Lo)i = wngi.
We shall consider also the linear mapping
A=(—1)P*t% L« : C(X, E) - C* L1~ YX E).

Let e(s;)p; be the local vector form locally defined by

(e(s)@)* =V —15:3n }-

It follows from (3) that
e(s;) s = €;(e(5;) ;) on U;nU,.

This allows us to define a linear mapping
e(s) : CP(X, E) — CPTLe+ (X E),
Let i(s) : CM(X, E) - CP 11~ YX, E)
be the linear mapping defined by
1(s) =(—1)" " Txe(s)*.
¢) Given ¢, $eCP(X, E) we can construct the global scalar (ﬁ, n)-form
onk # .

If dX is the volume element in the considered metric on X we will denote this
form by A(g, ¢)dX. One has

Alg, =AW 9),  Alg, @)>0

Moreover A(g, ¢)=o0 if and only if ¢=o0. We shall call A(g, ¢)'? the length of the
form o.
In the space  LM(X, E)={9eCM(X, E)| [ Alp, 9)dX<o0}

the scalar product (o, ¢)= fXA(@, $)aX

is defined and gives L”(X, E) the structure of a complex prehilbert space. One verifies
immediately that for ¢eC™(X, E) we have

Ape(* # @, x # 9) = Ag(e, 9).
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88 ALDO ANDREOTTI AND EDOARDO VESENTINI

If ¢, ¢ are forms of suitable degree in C"(X, E) one has the formulae:

A(Le, ) = A, AY),
Ale(s)e, 4) = Alg, 1(5)d)-

If ¢eC"(X, E), 4eCP?" (X, E) one has
Dons #y—'onx #0p=d(lons # o).
Thus, by Stokes’ theorem we have that, if Supp ¢nSupp ¢ is compact, then
(8) (29, 4)= (e, 09).
If ¢, 9,eC"(X, E) and if Supp ¢,nSupp ¢, 1is compact, then
(91, 92) = (01, O po)= (5@1: 5‘?2) + (0, O,).

We will be concerned with forms with (locally) Lipschitz coefficients. We observe
that for such a form ¢, d¢ and 0¢ are defined almost everywhere. Since Stokes’ theorem
holds for Lipschitz forms, (8) remains valid also in this case.

d) If E’, E” are two holomorphic vector bundles on X of rank m’, m’’ respectively
and if {#;},{h'} are hermitian metrics on the fibres of E’, E" then {®#A;'} is a hermitian
metric on the fibres of E’‘®E’”. The corresponding connections and curvature forms
are then represented locally by

L. +1,®
s$®L,. +1,.®s!"

where [/, [l', s/, si’ are the connections and curvature forms corresponding to 4}, A’

? 19 k]

respectively and where I, denotes the identity matrix of rank r.

§ 2. W-ellipticity of vector bundles

5. The spaces WP (X, E). — a) In the space 2™ (X, E) we introduce the hermitian
sesquilinear non-degenerate positive form

a(p, b)=(9, $)+ (29, 39)+ (09, 64).
We denote by
LP(X, E) the completion of 2%(X, E) with respect to the norm ||¢||=/(¢, ¢)";
Wr(X E) the completion of 2%(X, E) with respect to the norm N(¢)=a(gp, o).

The canonical map W(X, E) -~ £ (X, E) is an injective map, as it follows from a
remark of K. O. Friedrichs (cf. e.g. [10]). The elements of W?(X, E) are those
elements ¢e.#”(X, E) which admit simultaneously & and 6 in the generalized sense
of Friedrichs; i.e. there exists a Cauchy sequence (9,)C2™ (X, E), converging to ¢

in (X, E), such that the sequences (d9,) and (0¢,) are also Cauchy sequences
in ZP1HYX, E) and #P17YX, E) respectively.
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 89

The extension of the operators @ and 6 to W?(X, E) will be denoted by the same
letters.

Consider now the dual bundle E* endowed with the metric {%;'}.

We obtain from (6) and (7) the following

Proposition 1. — The anti-isomorphism  # defines an isometry of L*(X, E) onto
LrPn=UX E") which maps WP(X, E) isometrically onto W"~?"—9(X, E").

In W?(X, E) we introduce the Dirichlet sesquilinear hermitian form

d(e, $)= (99, 3¢)+ (69, 6Y).
Then d(¢, )" is a seminorm on W?(X, E).
Definition. — We say that the vector bundle E is W-elliptic in the degree (p, q) (or
briefly WP-¢lliptic) if there exists
a hermitian metric on X,
a hermitian metric on the fibres of E,
a constant ¢>o,

such that for every oe2P (X, E) we have the inequality:
(9) (9, 9)<cd(e, 9).

If E is W™ elliptic, then the Dirichlet seminorm d(¢, ¢)*? is 2 norm on W* and defines
on it the same topology as the natural norm N(e).

Conversely, if the Dirichlet seminorm d(¢, ¢)** defines in W?(X, E) the same
topology as the natural norm N(¢), then E is W»%elliptic [21].

Since, by (6) and (7)

(10)  Ap(P% # @, 9% # @)+ Age(Ope* # @, Ot # ) = Ap(dp, 99) + Ap (659, O50)

for all ¢eC?(X, E), then the anti-isomorphism * # transforms the Dirichlet seminorm
in W?(X, E) onto the Dirichlet seminorm in W"~?*~¢X E"). This proves the
following

Lemma 2. — If E is WP-elliptic (with respect to a metric {h}), then E'is Wr—#n—t
elliptic (with respect to the metric {'h;'}).

b) From the Riesz representation theorem one obtains the following

Theorem 1. — If the vector bundle E is W™-elliptic, then, for any ac LP(X, E), the equation

Ox=«

has one and only one weak solution xeW™(X, E)
(i.e. for any 2eW?(X, E) one has

(9x, ou)+(0x, Ou) = («, u)).
Moreover, since [] represents a strongly elliptic system, it follows from the
regularization theorem (see e.g. [16]) that if «xe#™(X, E)nC¥(X, E) then
xeWH(X, E)nCH(X, E),
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90 ALDO ANDREOTTI AND EDOARDO VESENTINI

and one has Ox=ua

in the classical sense.

6. The case of a complete metric on X. — a) Let o be a point of X and let d(p, o)
be the geodesic distance from o to peX in the fixed hermitian metric on X. Let
B(c) ={xeX|d(x, 0)<c};

one has the following useful

Proposition 3. — There exists a constant A>o such thatif o<r<R andif B(R) is relatively

compact in X, then, for any >0 and any @eCP (X, E), one has the inequality (which will be
referred to as Stampacchia’s inequality):

I
(¢

—_ A
(11) ||3‘?”%&)4‘”6‘?”%@)55”D<P||23(R)+( +m)”@|ﬁ3(m°

The proof of this proposition has been given in [3] in the case of a line-bundle.
Although the same proof holds, with some slight changes, in the general case [21], we
reproduce it here for the sake of completeness.

We start with a lemma, which has been established in [3] (see also [21]).

o) The distance po(x)=4d(o, x) 1is a locally Lipschitz function. At points where the
derivatives exist, we have in terms of local real coordinates,

.
Zg”—:.—:.< 2n (n=dimyX)

B) A straightforward calculation yields the following:
There exists a constant cy>0 (which depends only on the dimension of X) such that, at
any point x€X, for any scalar form u and for any form v with values in E, one has

Auno, unv) <cy|ul?Alv, v),

where |u| denotes the length of the scalar form u= <Z ) uix.__,-pdxi‘/\ ... Adx'» expressed by
<<y

Jul?=Zui,...i,u" .
v) We choose a C® function u(t) on R, with the following properties
o<u(t)<r
S 1 for <1

)=
u(t) lo  for t>a2,

dy

and we set M = Sup Zl

We consider the function w(x) =P~(_p (_x);— E ;—— 27)
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 91

for any choice of R>r>o0. It is a real locally Lipschitz function, and satisfies the
following conditions:

o<w(x)<1
1 for xeﬁG—)
o for xeX—B(R),

do . M
do|—R—r"

w(x)=

It follows from the first condition that, for every form ¢eCP(X, E) and at any
point xeX,

(12) A(we, wp)<A(e, 9).
From the third condition and from «) we see that, where the derivatives % exist,

oxt
aw ow M2
:_¥
|dw[ = 8 o 3x7§2n(R—7)2°
We get from this and from B) that for every ¢eCP(X, E), we have almost
everywhere in X:

(13) A(awAcp, 3w/\(p)<(R ) A( ?),

2nc, M?
(14) A(0whxg, 3w/\*cp)<—(R0_ E -A(9, 9).

3) If « is any locally Lipschitz (p, ¢)-form with values in E and with support
contained in B(R), then

(15) (09, 50‘)1‘:1(1&)4‘ (09, 0a)gry= (0@, *)pw)
Letting a=u?p, we have almost everywhere
da=uldp +owdwne,  Oux=w’Oo—*(2wdIwA*q).
Substituting in (15) we have

(16) ” z’UE‘P HI23(R) + || wbe]| Il23(R)
[(Oe, w’e) )|+ ( 8<p, 2wdwA @) s)| + (00, *(2wdwA *9) )8Ry

On the other hand, the Schwarz inequality gives the following
(O, we)pm)| < { [|we|[3wr) GHDcpH%(R): for every ¢>o0,
— — I [— —
(99, 200wA @)pr)| < Z{I[wdel3r + 41l 9w ellzm}s

I
| (09, *(2waw’\*<P))B(R)|§ 5{“ whe ”%(R)"' 4| a“”*‘?“%(n)}'
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92 ALDO ANDREOTTI AND EDOARDO VESENTINI
Substituting in (16) we have
-— I —
||wa<P“123(R)+”_we@H%m)ScﬂD<P||%(R)+;“w<P“123(R)+4[|awA‘P”%(RH"LH3w’\*<P||B(R)-

It follows from (12), (13), (14) that
HwCPH%(R)S”‘P”%(R)-

_ R 2nc, M? R
(17) H@w/\cplln(n)ﬁmll@llmm,
anc, M?
(18) ”awA*(PII%(R)Sm”(PH%(R)'
Thus, since w>0 on B(R), w=1 on B(r), we obtain (11) with A ='16nc, M2

Q.E.D.
b) Let ¢eZ%(X,E) be a form which admits a e P X, E) and a
Bpe PP Y(X, E) generalized in the sense of distributions, i.e. such that
(¢, Ou)= (9, u)  for all ue@??+(X, E),
(@, dv)=(0p, v)  for all »e2P*~Y(X, E).

Lemma 4. — If the hermitian metric on X is complete, then e W™ (X, E), and 9o, O¢ are
the @ and O of ¢ in the strong sense.

Proof. — As in Proposition 3 we consider the open balls B(R) and B(r) of radii
R=ov,r=v(v=1,2,...), and we construct the function

B (p<x>+R~2r)_ (p(x))
“EHTR— )T

Let ¢, be the form Py =W, 9;

the support of ¢, belongs to B(2v).
Since on B(v), w,=1, we have

le—all=llt—w)el[<|lo/lx—py:
Therefore lim || —g,|| =0.

On the other hand we have
o, =w,00+ dw,np,  Bp,=w,00—*(0w,Ax0p)

in the sense of distributions.
Hence, by (17) and (18)

— - — ¢ — ¢
HaCP“")CPv“SH(I—wv)aCP” +;H(PHB(2\J)_<_“aCP”X—B(v)'I'_;HCPHB(ZV)—>03

c c
”0<P—eﬂ°v”§”(1"‘wv)e<9“ +;”<PHB(2\,)S He(P”X—B(v)+;”<P”B(2v)_)O
with ¢=My/anc,.
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Let (U;) be a locally finite open coordinate covering of X, such that only a
finite number of U; has a non-void intersection with Supp ¢,. We denote by V; open
sets V;,CCU, such that X=UV,.

By an elementary convolution argument we can construct, for every V; and
every v, a sequence (¢f,) of forms ¢, eCPI(V,, E), such that

uETwH(PvIV,'_CP\l;,u“Vi=Oa ugl}}w”a(Pv|Vi——5<P\l;,u”Vi=0> ulir_Pw ”ecpvlvi_e(P\l;,u”V,;:()'

If U;nSupp ¢,=0, we can assume ¢}, =o.
Let (w;) bea C® partition of unity associated with the covering (V,) (Supp =;CV,).
Let <Pv,u. = Z,Tciq)i,u‘

Since only a finite number of U, are not disjoint from Supp ¢,, then
o, u€9"(X, E).

Furthermore, it is easily checked that

u_ljglwll@v_?v,uuzo’ u}églml‘acpv*a(Pv,u]l:O: u_l_)irllw”e@v—ecpv,u“—_‘o:
1.e. uEr_Ir_lmN(cPv_(Pv,u) =0.

Let (s,),cx be a sequence of positive numbers ¢, converging to zero.
For every v we can find an index p(v) such that for any p>up(v) we have

N(cpv—cpv, u.)< Ey.
We have N((P - <Pv,u.(v))_<_ N(CP_(P\:) + N(CPV_ Py, u.lv))< N(CP _CPV) +-&,—0.
Hence the sequence (g, ,,) C2™(X, E) converges to ¢ in the norm N, i.e.
(@4, u) = @5 (99, ) =00, 0%y, uy) =09 in the norm Il ]| Q.E.D.
Proposition 5. — If the hermitian metric on X is complete, WPU(X, E) can be identified with
the space of forms oe L™M(X, E) which admit a doe LP1+ (X, E) and a 0pe #?1 (X, E)
in the sense of distributions.

Under the assumption that the metric on X is complete, setting in (11) R=z2r
and letting r— 4o we obtain the inequality

iy I
(19) 190>+ [[0¢]*<s||Tell*+ |l |I? for every >o.

The following statement is a consequence of (19) and of Proposition 5.

Corollary 6. — If the metric on X is complete, any form ¢eCP(X, E) such that
lle|| <40, ||Oe¢|| <<+ can be identified with an element of WP(X, E).

If, in particular, [J¢=o0, letting in (19) c—-+4 o0, we obtain

Proposition 7. — Let the metric on X be complete. If ¢eLP(X, E)nCH¥(X E) is
such that [Jo=o0, then 9p=o0, 0p=o0.

¢) We now make one more assumption, namely that E s W™-elliptic with respect
to a complete metric on X (and to a suitable hermitian metric on the fibres of E).
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We then have the following
Proposition 8. — Under the above assumptions, if
e LM(X, E)nC"(X, E) and (Je=0
then also ¢=o.

Progf. — By the WP.-ellipticity condition there exists an x*eW™(X, E)nC?(X, E)
such that o =[]x.

By the previous proposition 99 —0="0¢p. Hence []dx=o0=[]0x. Since dxand 6x
are square integrable, again by the proposition, one has 09x=o0=36x. Hence [Jx=o.

9. Vanishing theorem (weak form).
Theorem 21. — If the vector bundle E is WP-elliptic with respect to a complete metric on X,

then if 0e#"(X, E\nC"(X, E) and do=o,
there exists a e L7 Y X, E)nCP*=Y(X, E) such that
@ =—5LP
Progf. — By the W™-ellipticity condition there exists an xe W"(X, E)nC"(X, E)
such that o=1[Jx.

Since ?¢=o0 one has []dx=o0. By proposition 7 of the previous section it follows
that 6d9x=o. Therefore

o =00x=70y,
where ¢ =0xe#?1 (X, E)nCPr1~}(X, E).
Corollary 9. — Under the above hypothesis, the natural map
Hi{(X, O°(E)) - H(X, Q°(E))
is the zero homomorphism.

§ 3. Green’s operator and Carleman’s inequality

8. Green’s operator. — a) Let E be a holomorphic vector bundle on X which
is Wreelliptic with respect to a given choice of hermitian metrics on the fibres of E
and on the base X.

For any feZ"(X, E) there exists one and only one element xeW?(X, E) such
that S=0=x

in the generalized sense. This means that for any #eW™(X, E) we have
(f, u)=(0x, 9u)+ (Ox, Ou).

We thus define this unique solution x as the image of an operator
G:27"(X,E) - WX, E): x=Gf.
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b) From the inequality of the W™-ellipticity one obtains
%112 < e{]] &[>+ || 6]}

=c|[(f,%)]
<c[l A1l
We then have
(20) HGA I =cllf1I-
9. Carleman’s inequality. — a) Let E be a holomorphic vector bundle on X;

let A={k;} be a hermitian metric on the fibres of E and let ds* be a complete hermitian
metric on X.

We now make the following

Assumption: There exists a C* function ® : X—>R with the following properties:

(i) ©=>o;

(ii) for any non decreasing C* convex function A(¢),0<¢< 4 oo, the vector bundle E
is WP%elliptic with respect to the metric ¢X®% on the fibres and the complete metric ds
on X (the constant ¢ of W-ellipticity which appears in (9) being independent of
2 (9, 9 <c{ (99, 99)1+ (029, 629)2}("). Let fe£H(X, E)nCH(X,E), d f=o0; then,
by theorem 2, there exists a form ¢,e£%? }(X, E)nCP?~ (X, E) such that

f=04.
And indeed it is enough to take for ¢ the form
br=0,G,f

Since the operators 6 and G depend on the metric considered on the fibres of E we have
put the subscript A to indicate dependence on the choice of the function A(Z).

Similarly we will denote by A,(¢, ¢) the pointwise scalar product of the two
forms ¢, ¢ of the same degree with respect to the metric ¢X®% on the fibres of E. We
have Ax(e, ¥) =3)\(¢)A(CP3 ),
where A( , ) stands for Ay( , ).

From (19) we get for x, =G, f and any ¢>o0
= = I
(025 03%3) 2+ (0222, exxx)xﬁg(faf)x‘F (%23 %)

Since x,eW2(X, E) we obtain from the above assumption

(2 )2 < C{(Exx, 82,) 5+ (0525, 05%,)5}

with ¢ independent of A.

(1) The index A denotes the dependence of the symbol on the function A.
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. 1 .
Taking o=_ we thus obtain

(Exm 5xx)x+ (03725 0322) 2 < 4¢(f; f) -

In particular we have proved the following
Lemma 10. — If assumptions (i) and (ii) are satisfied for the vector bundle E, then, for

any C*_form feQ.sm;«(X, E)  suchthat 9f=o,
we have the inequality

(21) [ DA, $)dx< a0 [ POA(S, f)ds,
where $,=0,G, f.

The inequality (21) will be called the Carleman inequality for the operator @ in degree

(ﬁ) q) [8]’ [13]. _
Remark. — Inequality (21) is in particular valid for any fe2#(X, E) with 9f=o.
b) Let us now choose feP"(X,E) with 9f=o, and e¢>o. Let ¢y,=sup ®

and select a C* function A(¢) for 0<#¢<+4 o0 with the following properties: %

(i) A)>0,  N(HZo, ()0
o for 0<¢t<g,

.. N
() @ t— (6‘0 +§) for t>c¢y+e.

Let A=W\, v=1,2, ... Construct the forms ¢,=6, G, f. Then the Carleman ine-
quality gives

[ OAW,, b)dx< g0 [ eMOA(S, f)dx.
Since ¢*®=1 on supp(f), we obtain the inequality,

| oo VAL, W) <40 [ o< AUSS)ds.

Hence [omes Al 4) <ace™ [ A(f, f)dx
and letting v—>-o00 we see that

J.(D>co+EA(qlV’ q)v)dx_‘)()-

Moreover since ¢*®>1 we have

[ AW $)dx< g0 [ A(Sf)dx.

Therefore the elements ¢, all lie in a ball of fixed radius in #?(X, E). We can extract
a weakly convergent subsequence ¢, —~{eZ™(X, E). This means that for any
ue #™M(X, E) (and in particular for any #e2?(X, E)) we have

Jim [ AWy, wdi= fXA(¢, u)dx.
328



LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 97
If supp(u) n{®<cy+¢c}=0 we have also
[AW wdz=o0

This means that, as a distribution, ¢ has support contained in the region {®<¢,+ c}.
Finally since @¢,=f we have in the sense of distributions (1) that

ay=f
with supp ¢ C{xeX|®(x)<¢)+ ¢}

We have therefore proved the following

Proposition 11. — Let E satisfy the assumption stated at the beginning of this number, that
gwes Carleman’s inequality in degree (p, q).

Let fe2™(X, E) with 9f=o. Then, given any >0, there exists an element
Ye FPI=YX E) which satisfies the following conditions

(i) 54) =/f in the sense of distributions;
(ii) supp(¢) C{xeX|D(x)< sup ® +¢}.

supp (f)

10. Regularization of the solution. — We first prove the following
Lemma 12. — Let ¢ be a_form of type (p, q— 1) with values in E and distribution coefficients.

We assume that f=09yeCM(X, E).
Let C=supp ¢ and let D be any open neighborhood of C.  Then there exists an 1eCP*~ (X, E)
such that supp nCD,  oq=f.

Proof. — We choose a covering of X with coordinate balls % =(V,);c; with
the following property that

if V,nC+0  then V,CD.

This is possible, taking for instance, a covering of X—D by balls not meeting C, a
covering of C by balls not meeting X—D and a covering of D—C by balls contained
in D—C.

We will denote by A’ the sheaf of germs of CG® forms of type (p, r) with values
in E and by A’ the subsheaf of germs of those forms of A" which are 9-closed. Analo-
gously by K', K/ will be denoted the analogous sheafs of germs of distribution forms.

We note that A%~ QP(E) ~K?.

«) It follows from 9f=o0 that we can find ¢?~1eC%(%, A?~!) such that

FIVi=39t740);

(}) For any ue 971(X, E) we have
olul = (0s, §) = lim (0, ) = () =/Tu-

v; >
329
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we have 8¢? 'eZ'(%, A’"') and hence we can find ¢?2cC!(%, A?~2) such that
Spt~1=10¢?72,
In this way we proceed till we find
S¢%eZ9(, A?).
We note that the supports of ¢/~ ! ¢?72% ..., can be chosen to be contained in D.
B) From a(¢!~'—g?~!)=0 we see that
Y1 gt1eCO(%, Ki-);
hence we can find 2 2eC%%, K?~?) such that
¢q—1_cpq~1____'5¢q—2‘
We will have, since ¢ is global,
Sl ~1=809¢72
We proceed remarking that (p? 2—8({?~?)=0 and make an analogous argument.
Continuing in this way we find an element {°eC?~%(%, K% such that
50— e CI~1(4, KY).

We remark that the supports of ¢?~% ..., ¢* can be chosen to be contained in D.
Moreover the element
ho — 84}0— <p0
is a holomorphic co-chain.
v) We then have 3(¢"+h%)=o,

and since A® is a fine sheaf we can find °eC?~%(%, A®) such that
o+ RO = 3L

We then have, since A° is holomorphic, 9¢°=8l°, hence
S(¢'— Bl —o,

and we can find ['eC?~3(%, A') such that
ot—al° =1,

We continue in this way till we find #~2eC°(%, A?"?) such that

5(¢t=1— 311~ —o.

This means that 7!~ 1=¢?"1—3l¢~! is a global (p, g)-form on X.

We remark that by construction the elements % /% ..., 2~' can be chosen to
have support in D. Therefore the form »?~! is a C® form with support in D, and
we have ot =T
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Corollary 13. — Let E satisfy the assumptions of proposition 11. Then for any
feP"(X, E) with 9f=o and for any >0 we can find an neCP*~Y(X, E) such that

(1) on=f
(ii) supp 1C{xeX|®(x)< sup ®+¢}.

supp (/)

xx.  Cohomology with compact supports. — a) We have the following

Theorem 3. — Suppose that E satisfies the assumptions of proposition 11.  Suppose, furthermore,
that the function ® satisfies the condition

(iil) for any ceR the sets B,={xeX|®(x)<c} are relatively compact in X.
Then we have Hi{(X, Q?(E))=o.
Moreover, given any C* form fe2"(X, E) with f=o0 and any €>o0, we can find a C° _form
19?1~ YX, E) such that
) an=f,
B) supp 1 C{xeX|®(x)< suI? )(D +e}
supp (f

The proof of this theorem is a straightforward consequence of the above corollary 13.
b) We want now to prove that, under the above assumptions, the image of

3 : 9M(X, E) - 9P1+(X, E)

is a closed subspace of 271+1(X, E).

The following remark will be useful.

Remark. — Let (K,) be a sequence of compact subsets, with KVCIO{V +1 and
'.VJKV=X. Let 27(K,, E) be the space of C* forms of type (p, ¢) with values in E and

support in K,. This space, with the topology of uniform convergence of the forms and
of all their derivatives, is a Fréchet space [9].

We have a natural injection
«, : 2%(K,, E) - 27(K, ., E)

The image of «, is closed in 2*(K, , ,, E) and the induced topology on «,(2%(K,, E))
coincides with the natural topology of 27¢(K,, E). This shows that the space 27¢(X, E)
is a strict inductive limit of Fréchet spaces.

Theorem 4. — Under the same assumptions as in Theorem 3, 99" (X, E) is closed in
Pt X, E). In particular the group HI (X, QP(E)) has a structure of a separated topological
vector space.

Proof. — In view of the above remark it will be sufficient to show that 92" (X, E)

is sequentially closed [15, p. 228]in 277+1(X, E). Let (¢,) be asequencein §2?(X, E)

331



100 ALDO ANDREOTTI AND EDOARDO VESENTINI

converging to an element ¢e2??*1(X E). We want to prove that ¢ed2™(X, E).
Now any Cauchy sequence in a topological vector space is a bounded set. By the
structure of 27?+(X, E) as strict inductive limit, any bounded set must be contained
in some 2714 K, E) [11, p. 257]. Thus the forms ¢, and ¢ have all their supports
in a fixed compact set K,.

Let ¢,=dn, with 7,e2"(X, E).

Because of the assumption of W¥-ellipticity we can find pre W2(X, E)nCP¢(X, E)

such that ny =[]l =100,u} 40,0 ul.
Setting 2 =0, ou?
we thus have o, = o2,

Now applying Proposition g to the form x,=du} we get

I A .
(% ‘M)A B(r)S G(@a, @3)A,B(R)+ (;‘i‘ (R—r)2) (3%?) a(“‘\):\))\,B(R):

and letting R=2r and r—-+o we see that
YeLN(X, E).
Moreover 0,02=o0, 9P =nq,.

Hence by proposition 5 we have the inequality
((‘p:\: LIJ&);\SC((PV, cpv)l'

ﬁ) Now hm(va’ CPV)A= (<P> ?)A'
If p=o0 there is nothing to prove. Otherwise we can select an index v, such
that for v>v, we have

(4’3‘, "]Ja\))\_<. 20(‘?: <P))\'

From the sequence (¢,) we can extract a subsequence, that we denote again by (¢,),
which converges weakly to an element ¢ e #7(X, E) having compact support.
Since Y, = o,

we have in the sense of distributions that
=0 ().
By lemma 12 we can then find a ne2™(X, E) such that
o =20

() In fact for any u€ 2P ¢+1(X, E) we have

B[u] = (Ou, §) =lim(Ou, {,) = lim(u, ,)
=lim(u, (Pv) = (u, 9) =@[u]‘
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§ 4. Criteria for W-ellipticity

12. Local expression of the Laplace-Beltrami operator. — This and the following section
are not essential for the comprehension of the rest of this paper and may be omitted.

a) Any form of type (p, ¢) with values in E can be considered as a form of type (o, ¢)
with values in E®®™. We have thus an isomorphism

C(X, E) 5 C*(X, E®RO™).
If ¢eC”(X, E) is given locally by the forms
¢ ={Z¢35d2 4"}  (1<a<m=rank of E),
then its image peC’X, E®®™) is given locally by the forms
B ={Zo45dz"}.

By a direct computation one establishes the following formulae (%):

(22) 9= (—1)33,

(23) Opo = (““I)IJGE@@*PE;
(24) Oge=0re @'P’a-
Moreover one has

(25) Ag(o, <P)=AE®®"1’($’> ?)

b) By the above remark we can restrict our considerations to forms of type (o, ¢)
only.

Let 9eC”(X, E) be given locally by
® z{chgluquz"‘/\ e AdZa“}.

If % is the hermitian metric on the fibres of E we use on E the connection given by A~12k.
On @' we use instead the riemannian connection given by the hermitian metric
on X (cf. n° gb)). We will use greek indices in the range 1, ..., z=dim¢X and latin

indices in the range 1, ...,7n, 1, ..., n. Since the riemannian connection is symmetric
one obtains the following formulae:
Do) — 2 8 v S, 8 78
(26) (99)"= B < ..Z<Bq+1{2<— 1)’ Vﬁrfpa,...ar-uﬁqn}d'z ‘A AR,
a ar _ —B1 —ﬂq-l
(27) (69) Zel<...2<aq_1{ZV’cP Bro B4 A AT

(1) Only the formula (23) needs verification. Formula (22) is obvious, and formula (24) follows from (22)
and (23).
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Let B=(Bl> ] Bq)a B:=(ﬁls LR ] Ei’ ] Bq): Bw’;z(Bls L] Ei’ L] Bj’ R ] 3(])'
From (26) and (27) we obtain

_ — q
af B 3 e
(O9)5=—2g"V.Vso5+Zg I3 Vies+ Z Z(—1)' " (V,V5— V5V)e'E,
Using Ricci’s identity for the last summand we finally get
a G_B a a— A a a
(28) (O9)5=—Zg" V. Va05 + 2g™ Ty Vios + (£ o),
where X '9eC”(X, E) has the following expression:
g
i be DY
(29)  (Fo)p=2 (—1)"{Ssigp0 5+ IRez0 5+ Z(— 1) R5500 555},
and RB;=2R‘§;, is the Ricci tensor.
The endomorphism %" : C*(X, E) - C(X, E) is hermitian, i.e. A(X ¢, ¢) is real.
For ¢g=o, A =o.
¢) We now use formulae (28) and (29) and the remarks made in @) to obtain
the corresponding formulae for any form ¢eCM(X, E). Following the above procedure
we must use on E®@?®®" the connection which is obtained from the metric connec-
tions A~'0k on E, g""19¢" on O (where g'='g~! is the metric on the fibres of @°), and
the riemannian connection on 0"
From (24) and (28) we then obtain

(30) (Do) =—2¢" V. Vaors + Zg" T Vzeis + (A 0)i5
where A peCP(X, E) is defined by
Ho=X"F.

If we compute the curvature form of the metric connection of E®O in terms
of the curvature forms

§= {Es:‘;adza dz"}, L={ZLg;s dz" a’zs}
of E and ©° respectively we obtain for /¢ the following expression:

q P

] bp kya 8
(31) (Ho)as= 2 (—1) {Zssge0an; + = (—1) Lo 5p%an, 5+
B inY 8
+ ZR@E; ?' & + 2(— I)IR%jﬁia 9 ?ﬁg;-}

with the usual conventions and A;=(a, ..., &, .

ey %)

x3. The operator + '[Jx—[]. For any ¢eC%X,E) one has the following
formulae

(Va*cp)al...an_qi...ﬁ=(*Vacp)al...an_qi...ﬁ—iglzsz‘;a(*cp)o:l. ) “n-—q— n
n—gq
(Vﬁ*cp)al...an_qi...ﬁz(*Vﬁcp)al...an_ai...r_l+i§1zriiﬁ(*cp)al...(l)i sy _gl...m
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If the hermitian metric on X is Kahler then S} ,=o0 and Ijz=o; thus for any
eeC™(X, E) one has ‘

V. xo=%V_o, Va*xo=%*Vjo,
so that using the local expression of the Laplace Beltrami operator one obtains that

T 0O0x—O=+"1A"%—A,

where ¢ simplifies into the following expression first given by Kodaira [14]:
a ! i b ! j
(HFo)is= '21 (— I)l{zsg(&ia‘? Aﬂﬁg + ZRQB,- @aAaﬁg + '21 (— I)]R:,-ﬁ,-l%‘PaA;Bﬁg}'
= j=
Moreover computing # !4 %*—J" one obtains the following expression
q Y4 -
-1 i—1 b8 j— ba B b
{67 e—)olig=Z (— 1) Beggpw a2 (1) Shay® ap— 25 0543
Using the operators A and e¢(s) defined in § 1 we then have

* 1% — [ = (Ae(s) —e(s)A),

a formula which was first obtained in [7].
We remark that * '[J#*=# "'[Jmn# according to formula (7).

b) If the hermitian metric is not Kéhler, then one has a more complicated
expression of the form

(32) '0*—0O)e=(*""H *—H)o+F,0+F,Vo+F,Vo,

where F; are linear combinations of the components of ¢, Vo, Ve with coefficients
involving (linearly) the torsion tensor, the tensor I'j5 and its covariant derivatives.

From the formulae we have given it will be clear as to the connection between
the vanishing theorem we give here, which is a generalisation of the vanishing theorems
of Kodaira and Nakano.

14. A basic identity. — a) We first remark that for any scalar 1-form on X
§ =2, dz*+ Xpdz?
one has the following identity dx§ =(2V,{")dx,

when we take on the tangent bundle the riemannian connection. The expression XV, "
is called the divergence of the vector {¢’.

b) Let 9eCX, E) and let ¢>o. We construct from ¢ the following tangent
vectors: E={t"= Sh(V59%%5) 9", BB =0},

n={n"=0, "= Zh(V,9"5) " }.
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Computing the divergence of £ and using the Ricci identity we obtain
div £ = 2y, (V3 V, 9" + -~ (%’ @)%55)e"™ +(V-¢"%5) (Voo™

Analogously we have

div v =Zh;,(V5V,975) 0" +(V,¢"5) (V,0"F).
Therefore .

div E—div 1= Zh{(Vy6*5 (VE<PbYB')‘“(Vr@arﬁ')W‘F;](%‘P)a;ﬁ'W}-
By formula (26) we have
Tho(Ve#*%5) (V5@'™) = (¢—1) | (A(Vo, Vo) —A(30, 39)),
while by formula (27) we have
TV, 975) (Vs0™®) = (g—1) ! A(6g, 0p).

We obtain therefore the following identity:
I . . B - =
(33) =01 (div E—div n) =A(Ve, Vo) + A(A g, 9) —A(d9, 9¢) —A(Be, Op).
15. a) We now suppose that the metric on X is complete. Let oeX and let

o(x)=4d(0, x) be the geodesic distance of x fromo. We set as before B(r)= {xeX|p(x)<r}
With the same notations as in n° 6 y), we now consider the following expression

F= (div w?E—div w?y).

I
(¢g—1)!
Since fodx=o, we deduce from (33) the following equality:

2 ow 2 ow
) B B

7")dX + (wVe, wVe)+

+ (A we, we) — (wde, wde) — (wWhp, whe) =o.
Now we remark that one has

l2( Zw zﬂ Xm_;szza (Vs %) e P dX |

’

2¢ _
SR_r“wV@” el sm)

¢’ _
SgAllwVell +llelbmb
¢’ being an absolute constant. Analogously one has

|2f<2w—-n dX|<——{uwe<pnz+u¢n @}
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Hence, using the fact that (X we, wep) is real we obtain the inequality:

’

1! (R—r)) T+ (H e, we)S

SHE‘P”%(R)‘I'”6<P”123(R)+(_q:’—1)-;@‘__7){2|,<9”23(m+”99”%(3)}-

”wvﬁ"HZB(R)(I -

Letting R—r—c and r—>c we obtain the following:
Lemma 14. — If the hermitian metric on X is complete, for any form ¢eC¥(X, E), with ¢> o,
such that eeZX,E), dpeL**Y(X E), 0Opes (X, E),
one has the following inequality:
IVo[[*+ limsup (#we, we) <||9|+[6e|[* ().

1
(R—r)>+ o

b) Let us consider now any form ¢eC*(X, E) (4>0). Applying Lemma 14 to
the form FeC%X, E®O™) and taking into account (22), (23), (25) and (31) we get
the following

Proposition 15. — If the hermitian metric on X is a complete metric, then, for any
Jorm eCP(X, E) (¢>0) such that ||¢||<+ oo, ||9e||<+ oo, ||0e||< 40, the following
inequality holds

IIV<PH2+13im sup (A ive, we)pry < || 90|*+ || 0|

—r—+>+4 o

Suppose, in particular, that at any point xeX and for every <peC"'(X, E),
A(Ae, 9)2o0.

Then, under the hypothesis of Proposition 15, it follows that

lim sup (o we, we) gy

r—>+

and ||Ve|| are bounded. Since, moreover
0_<_ ('%/‘CP! <P) B(r)s (-%fw% w(P)B(Zr)’
we have (H9, @)= Lm (Ao, ¢)py <+ co.

We have therefore the following
Corollary 16. — If the hermitian metric on X is a complete metric and if at each point xeX
and for any ¢eCP(X, E)(¢>0)
A(A 9, 9)2>0,

(1) The proof of this lemma is independent of prop. 5. One could instead obtain directly from (33) that
for any @€ 2%(X, E) (¢ > o) one has

1Yo |2+ (9, @) =139 [2+ |60,

and then, using proposition 5, deduce lemma 14 by a « closure » argument.
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then, for any ¢eCP(X, E) (¢>o0) such that
eeFP(X,E), 09e PP+t X E), 0Opes?? (X, E),
||Vo|| and (Ao, ) are finite, and moreover
Vo[ + (o, ¢) <[| 20>+ 00"
Corollary 17. — If the hermitian metric on X is a complete metric and if there exists a positive
constant k such that at each point xeX and for every ¢eCP(X, E) (¢>0)
A(AH 9, 0) 2 kA (%, @)
then E is WP-elliptic. In fact for any form ¢eCP{(X, E)nW?(X, E) the following inequality
holds: Ve ll2+kllo|2<|| 902+ |6p][

§ 5. Vanishing theorem for g-complete manifolds

16. A lemma on hermitian forms. — a) On the complex manifold X (dimysX=n)
we consider two hermitian forms given locally on a covering # ={U;} of X by

o= 2g5dz*dz?={!dz,G,dz},
n= Zhaﬁ dza dZB = {tdzi thzt} 5

t G" Gi
‘H,=H,

We will assume that

¢ is positive definite so that it defines a hermitian metric on X,

7 has at each point xeX at least p positive eigenvalues.

If J;; are the transition functions 9(z;)/9(z;) of the tangent bundle, then on U;nU;
G;="7;G,;J; and H,=;H,J; so that the characteristic polynomial det(H;G;*—AI)
is a C* function on X. The eigenvalues of HG™! at each point x are real, let them be

g*)2 ... 2¢,(x),

so that each ¢,(x) is a real continuous function on X. Because of the assumptions we
will have at each point xeX

Let ¢;>o0, ¢c,>0 be two positive constants and let
Iy (x) = ¢18,(%) +¢2inf(0, €,(x)).
Lemma 18. — Given the form v we can find a complete hermitian metric on X such that

lg(x)>o0 VxeX.
Proof. — «) Consider the function

! At
f(7\>t)"‘)\(e "’I)
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for 2, t real. This function has the following properties:
2 243
¢
1) fnt)=t4+— + -l— . is an entire function;

(ii) aﬂ)\ ! e“>o;

(i) If A 20 then f(,¢)>¢

B) We choose a hermitian metric ¢ on X which we may as well suppose to be a
complete metric (*). We set on U;

Gi'{1+ +...}

where A=2A(x) is a non negative C* function on X. Then G, is a positive definite
hermitian metric; moreover on U;nU;

A A
G¢: inGij'i'
Therefore G defines a hermitian metric on X.

Now HG1=f(, HG™Y).

A(x) (H GY) AP (H;GiY)?
3!

, €,(x) of HG™! are given by
(%) =SM#), ,(x)).
From ¢,(x) >¢e,,,(x) it follows (by (ii)) that

Hence the eigenvalues &,(x),

€ (%) 28, 44(%).
Also by (iii) we have Eo(x) >, (x).
In particular g(x)>...>E,(x)>o0.

v) Let 0eX and let d(o, x) be the distance of o from x in the metric 6. Let
B,={xeX|d(0, x)<v}, v=1,2,.

Then, since o is complete, B, is compact.
= Inf .
Let b, xIerh ] g,(%)

Then b,>b,.,, b>0  for each v.

We select a CG” function b(x) on X such that
b(x)>o0 VxeX,
b(x)<b, for xeB,—B,_;.

(1) One may use the following remark: given a riemannian metric ds? on a manifold X we can find
a C® function F(x)>o0 such that F(x)ds? is a complete metric. In fact if (K,) is a sequence of compact sets

on X such that K.,CIO(V_H, UK,=X, we set ¢,=dist(dK,;,,K,). Then >0 and for any F such that
F%(x) >v/c, for x€K,,,—K,, Fds? becomes a complete metric.
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Hence on all X we will have b(x)<b,,

b(x) <e,(x).
Finally we select a G® function p(x) on X such that

p(x) =d(o, )

2kef®
and we set AMx)=——

b
P
where k>A/—b1.
51

3) We have then for every xeX, since e,(x)>o0,

gp(x) = f(A(x), ep(x))> M — p(sz?%
>kee® >k,
En(x) = f(\(x), ,(x))= ;\% (g)\(@')ﬁn(z)__ 1)
O

=TA(x)  2ke® Tk
2

by 1
Thus ¢, ,(x)+ ¢ inf(o, €,(x))> ka—%f =7 (c,k2—cy02)> 0.

Then for the metric 6 defined by G we will have I;(x)>o0. Now if we multiply & by a
convenient G positive function F(x), the condition [y(x)>o0 is preserved, while F(x)s
can be made into a complete metric.

b) Let ®:X—-R be a C® function on X which is strongly ¢-pseudoconvex,
This means that the Levi form of ®
20

P

Z@)=X

has at least n—g -1 positive eigenvalues (*).

Given a hermitian metric ds* on X we can evaluate the eigenvalues of Z(®)
with respect to ds®. Let ¢(x)>...>¢,(x) be these eigenvalues. By assumption
g(%)>...>€,_,,1>0 at each point of X. We set p=n—g-+1.

Lemma 19. — If @ is strongly g-pseudoconvex, for any scalar form u=2u Aﬁdz"‘dz—B of
type (a, b) with b>q the following inequality holds at any point xeX:

2 —_—
&%u Lt >{e (x) +ninf(o, g,(x))} X u,zutl.

a,<...<ota
Bl<-..<Bb

(1) (Added in proof) We prefer now to call strongly g-pseudoconvex a function whose Levi form has at
least n—gq positive eigenvalues.
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Proof. — At any point xeX we have
82(1) —_— n

Wufg, vB' — QEI €g (x) Upai uAPE,
If b>¢ then b+4n—g+1>n-+1, thus any block of 4 indices taken in (T, ..., #) must

contain one of the indices T, ...,z—g¢g -1, i.e. one of the indices of the positive eigen-

values &(x), ..., g,_,44(x). It follows that
n—g+1 —_ _
2 DugputT> X u,putt
p=1  ABB Ta<i<a, 2B
‘51< <ab

From this the assertion of the lemma follows.
We will now apply lemma 18 to the form #=2(®) taking as /gq, the expression

l.‘?((b) = n—q+1(x) + n inf(O’ en(x))

(e,=1,¢,=n, p=n—q-+1). It thus follows that there exists on X a complete
hermitian metric ds® such that at any point xeX we have

(34) lgg)(%)>o0.

We will keep this hermitian metric ds® fixed throughout the remainder of this section.

¢) A complex manifold X is called g-complete if there exists on X a C® strongly
g-pseudoconvex function @ : X —-R such that the sets

B,={xeX|0(x)<c}
are relatively compact in X.

Adding, if necessary, a constant to ®, in view of the last condition we may assume
that ®>o.

Let p=up(f) be a C* function on 0<t<o which is increasing and convex
ie. p'(¢)>o0, u'(t)>o0. Consider the function wu(®): we have

(35) Z(1(®)) =w' ()L (D) + p" (D) | 20
2p/ (D) Z(®).

It follows then that, for any such choice of p, the function p(®) is again strongly ¢g-pseudo-
convex, and again the sets {u(®)<const.} are relatively compact.
From (g5) it follows also that (%)

(36) lg(u(zp))Z H'((D)l.z’(m)-

Lemma 20. — Let X be a g-complete manifold with respect to the strongly g-pseudoconvex
positive function ® : X ->R. Let g: X —R be any continuous function on X. We can find a

() Cf. R. Courant and D. HiLBERT, Methods of Mathematical Physics, Interscience, N.Y., 1953, vol. I, p. 33.
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sequence (a,),cy Of real numbers such that for any function p.=u(t) defined on o0<t<oo and
satisfying the conditions

pw'(t)>o0, p'(t)=>o0, up'(@)>a, Sfor v<i<v+1 (v=o0,1,...),
we have Loy (*) = g(x).
Proof. — Let a,>0 be chosen so that
avl_g(q,)(x)Zg(x) for v<P(x)<v+1.

This is possible since the sets {v<®(x)<v41} are relatively compact. Then the
lemma follows from (36).

17. W-ellipticity conditions. — a) Let E be a holomorphic vector bundle on the
complex manifold X and let 2 be a hermitian metric on the fibres of E. Let
s={2s%,dz’dz*} be the curvature form of k. If f= f(x) is a real valued G* function
on X, then ¢®>0 and therefore ¢/ defines a new hermitian metric on the fibres of E.
Its curvature form is represented locally by (cf. 4 d))

(3530f +53}.

Let us now assume that X is g-complete with respect to the positive strongly
g-pseudoconvex function ®. Let pw=u(f) beanincreasing convex function on 0<t<co,
and let us consider the hermitian metric ¢~*®% on the fibres of E.

We consider on X the hermitian metric ds? of the previous section. Accordingly,
if we use, on the fibres of E, the metric ¢ “®k or & we will affect the symbols which

depend on that choice with the index —u. In particular, we will have for any
9eC”(X, E) A_(e, 9) =¢""PA(g, 9),
: < (D) -
— B_ V1A, 1B
@)= (@) —| B, (1 By oy etz
Lemma 21. — Let X be g-complete.  There exists a sequence of positive real constants a,,

such that for any increasing convex function p(t)>o0 satisfying
w®)>a, for v<t<v+1 (v=o,1,...),
we will have the following inequality
A_u(F_ule)s @) 2 A_u(es @)
Jor any eC”(X, E) with s>q.

Proof. — First we can find a continuous function f:X—>R such that
A(A ¢, 9) > f(x)A(e, ). Then we can write
Pu(®)

A (A 9, 9) 2 OBy gl 50+ f(0)A (9, ).
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We now choose fibre coordinates at x such that 4z, =3,,. It then follows from lemma 19
that we will have the inequality

A— u.(%‘— ® P, CP) Z (l.?(u.(tb)) +f(x))A—- u.(cp’ CP) .

Applying lemma 20 to the function g(x)=1—f(x) we obtain the statement of this lemma.

b) We now fix a function p,=p,(f) for 0<¢<co satisfying the conditions of
lemma 21 and we replace the metric & with e=*™®4,  If A=2A()>o0 is any C* function
on 0<¢<co which is non decreasing and convex (A'(f)>o0, A''(t)>0) then p=p,+2
satisfies again the conditions of lemma 21.

We can then state the following

Proposition 22. — Let X be a q-complete manifold and E a holomorphic vector bundle on X.
We can select a complete hermitian metric ds® on X and a hermitian metric h on the fibres of E such

that for any non decreasing convex function A=2\(t)>0 on 0<t<co, we have with respect to
the metrics ds® and ¢~ *®h that

A—-)\(x‘—-)\q}: <P)ZA_ A(CP, (P)
Jor any 9eC”(X, E) with s>gq.
¢) We apply the previous proposition to the vector bundle E* and to the form
*x#peCr~ = 8(X E". If n—s>gq ie. if s<n—q we then will have
Age, a(H e, a(x # 9), ¥ # 0) 2 Ape (¥ # 9, ¥ #9),
Le. Ag () ) S Ape 3 ( A, _a(x # @), * # @).
Moreover we remark that
AE*,—Z(E* # @, 0% §) = Ag, (0, 09),
Age (0% # @, 0% # 0)=Ag , (99, 09).
Therefore by applying corollary 17 to E* and * # ¢ we obtain the following
Proposition 23. — Let X be g-complete and let E be a holomorphic vector bundle on X.
We can select a complete hermitian metric ds® on X and a hermitian metric k on the fibres of E such

that for any non decreasing C® convex function hA=2\(t) on 0<t<oco, we have with respect
to ds® and e"®h the inequality

llelR<c{l[o0]l}+16:0]3} ¢ = absolute constant

Jor any e 2"*(X, E), provided s<n—gq.

This proposition enables us to apply the results of § 3 and we thus obtain the
following

Theorem 6. — If the complex manifold X, of complex dimension n, is g-complete, then for
any holomorphic vector bundle E on X we have

(1) Hi(X, Q(E))=o0 for s<n—gq and any r,
(i) Hp~ "X, Q"(E)) is a separated topological vector space for any r.
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d) We end this section with some remarks about the  a priori > estimates one
can derive, with the method used here, in the case of complex manifolds with boundary.

Let YCCX be an open relatively compact subset of the complex manifold X
with smooth (i.e. C*) boundary dY.

Let A”(Y, E) be the image of the restriction map

C*(X, E) - C”*(Y, E).
Let t:A"(Y, E) - C*(9Y, E|sy)
be the natural map induced by the natural imbedding of 9Y in X.
We set B*(Y, E) ={p cA™(Y, E) | % #p = o}.
One verifies that if peA™(Y, E), ¢ eB"**1(Y, E), then
(P9, $)y= (9, 0)y.
Let f be a real C* function on X such that
Y ={xeX]|f(x)<o},
df+o on 0Y.
The condition for ¢ €A™(Y, E) to belong to B*(Y, E) is given by
*9Adf=0 on Y,

i.e. in a neighborhood of every point z,€9Y we will have
of
oW a=fiy  (1deeC”).

Given any ¢€A™(Y, E), we can consider 3 €A*(Y, E®®'") and we can construct

the tangent vectors £ and v as in n® 14 5).
If dS is the area element of 9Y we get from identity (33) and from Stokes’ theorem

I
(s—1)!

[, E—madS=]|Vo|[3+ (<o, 9)x—[|Fo||2—1I0e]I3,

where for any vector A=(A% 7\5) we set

- 1
_of af) -3 ( of - af)
=2 L L) En e p D :
* ( & o oz 8z°‘+)\ oz .. on Jx.
Now if ¢eB™(Y, E) then one obtains from the boundary conditions that
N =10,
O U\ ¥ o o
£n= — (Zgu- 3_2‘-" '5;:) Z/zgaV.—{a—chp Aaﬁr (pbAYB on dY.
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We set

|3fl=(2g

a B_ nyB’
92°02 PaBP >

uVEf_Q; — - 32f
o 3z") s L) e 9} =2k,

- F . ==
Z(f){e, o}= E’liavvé?,?“fﬁ'?“‘ﬂ .

Hence we obtain the relation

— 1 I ~ -
2 - - _ 2 2
[Fellt+ (x2, 9)+ =757 [ Ty 200 o 23S = [Tl + 11

Assume that Z(f) has n—q-+1 positive eigenvalues at each point of Y. We
can choose a hermitian metric on X such that

with ¢,>o0, at each point of dY (if ¢=1 any hermitian metric will satisfy this condition).
This same relation will hold in a neighborhood U of 9Y in X. It will still hold if
we multiply the hermitian metric on X by a C® positive function. By a suitable choice
of this function, we can find a positive constant ¢; such that for every ¢eB”(Y, E)
with s>¢ we have

I

(s—r1)!

faYﬁ}(f){‘Pa (P}dS>cJaYA(<P, #)48 ().

Replacing the metric 4 on the fibres of E by €4 we can also find a2 1,>0 and a
positive constant ¢, (t,=o0 if the metric on X is euclidean) such that, if t>t,, we have
for any ¢eB”(Y,E) with s>¢ and supp ¢CU

A (.9, 9)= cTAL (9, 9).

Hence for t>1,, 9eB”(Y, E), supp ¢CU, s>¢, one obtains
Ve |By+arllolfy+e [, Ale, 9)dS< || 0|2y +160 Ly

We can incorporate ¢*/k into k, so that we may assume that the above inequality holds
for =>o.

(1) Let p=yp(t) be a positive G® function on R such that (o) =1. We replace the hermitian metric ds?
on X by wu(f)ds?, and we denote by 3’;‘( f){¢, ¢} the hermitian form ’E"( ) {9, ¢} calculated with respect to
this metric. We have on Y

d 1o t 9 A~B’
N e 01 =2() 10,01+ 5D a7 pate, o) —ame (20 Loy 07, 55 17 ).
d log p(t)
dt t=0
on dY. We point out that this can be done regardless of the number of positive eigenvalues of the Levi
form & (f) on oY.

Hence, by a suitable choice of

we can make the hermitian form '.\Z;( f){e, @} positive definite
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Let V be a neighborhood of a boundary point and let us select an orthonormal
basis o', ..., @" of (1,0) forms on V, with «"=g.df, proportional to df. If

- 3 N AN )
¢ a1<“_<“r<pulmarﬁl”_ﬂsm A AOHFAOTA L. A"

Br< ... < B

is the local representation of ¢ in V, then the condition for ¢ to belong to B”(Y, E)

can be expressed in V by saying that ¢,  ,..5=0 on dY for §<...<B,=n
Letting 6=0, we get

(0.¢)" = (09)* —T#(gf A% )" =

= 0)* +(—=1)""% §<ar Voot By By BTN AOTAGPA L AP,
B <Byq
Thus [16:0 1< y<|0 s,y + 7|l o][%%-

1

) . _
(n) L7 ) AN | ~ — _obo... By B_yn 2

where ||o]|%% (“”‘_r!@_l)!ff Zh5a 9 ..o By o 7P : dX) :

Hence there exists a positive constant ¢;>>o0 such that, for any ¢eB”(Y, E)
with s>g¢,

“ﬁq’lﬁ,Y'i‘Cz"H‘PI‘%,Y‘FclfaYA(‘Ps @)ds<63{|[5‘?“3,3{+ ||6<P|‘3Y+‘52H<P||-(,"§}

This inequality is to be compared with a similar one given by J. J. Kohn for ¢=1
(Regularity at the boundary of the 9-Neumann problem, Proc. Nat. Acad. Sci., U.S.A.,
40 (1963), 206-213; see also J. J. Kohn, Harmonic integrals on strongly pseudoconvex
manifolds, II, Ann. of Math. (to appear)). The spaces B”(Y, E) were first introduced
in general by H. Grauert in a lecture at a seminar in Bonn, Summer 1961. This
inequality can be considered as a generalization of estimates given for the first time by
C. B. Morrey for forms of type (o, 1) on a strongly pseudoconvex manifold with
boundary (C. B. Morrey, The analytic embedding of abstract real analytic manifolds,
Ann. of Math., 68 (1958), 159-201).

§ 6. Applications : finiteness theorems

18. Preliminaries on topological vector spaces. — a) Let F be a locally convex topological
vector space on which we will make the following assumptions.

(i) the topology of F is metrizable. This means that there exists a sequence
(V,)nen of disked open neighborhoods of the origin which is a fundamental sequence

of neighborhoods and such that QNV" =o0. Itis not restrictive to assume that V,=V,.
The second condition says that the topology of the space is Hausdorff. If
pu(x) =inf{AeR|A> 0, AV, 3 x}
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then p,(x) is a continuous seminorm on F ([6] Chap. II, p. 94). We have
V,={reF|p(x<1}.

The topology of F can be defined by the sequence of seminorms (g,),.x-
Since it is not restrictive to assume

V,O2V,.: VneN,
we have L) <p,.1(x) VxeF, VneN.

As a distance defining the topology of F we can assume the expression

o1 #(x—)
R )

(ii) The space F is complete. Thus F is a Fréchet space. Given any > o the set
B,(a, &) ={xeF|p,(x—a)<e}

will be called a n-ball of radius € and center . We will make the following assumption:

(iii) Given £>o0 and n>1 we can cover the unit n-ball V,={xeF|p,(x)<1}
with a finite number of (z—1)-balls of radius <e.

A space satisfying the conditions (i), (ii), (iii) will be called a space of Fréchet-
Schwartz.

b) We want to prove the following

Proposition 24. — o) A space F of Fréchet-Schwartz is a Montel space (i.e. every bounded
set of F is relatively compact);

B) if N is any closed subspace of F then N s again a space of Fréchet-Schwartz (with respect
to its natural topology);

¥) if N is a closed subspace of ¥ then ¥ |N is again a space of Fréchet-Schwartz (with
respect to its natural topology).

Proof. — o) We have to prove that for any €>0 we can find a finite set of balls
of radius <e for the distance d which covers a given bounded set B.

Choose 7,>0 such that r§1 2lr< ¢/3. Thenif p, (x—y)<e/3 we will have d(x, y)<e.
In fact since p,(x)<p,,,(x) we have
el ¢
d(xa}’)ﬁg§;;+§<e-
Since B is bounded there exists a A,>>0 such that
Dr+1(B)<2g VbeB.

We can then, by assumption (iii), cover B by a finite set of rg-balls of radius <e/3.
This proves our assertion.
B) is a direct consequence of the definitions.
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y) For any xeF we denote by % its image in F/N. Let
P.(p)=inf{p, (x)|VxeF with #=y}

Then {$,} is a system of seminorms on F/N defining on it the quotient topology. We
know that this is the topology of a Fréchet space. The unit n-ball {$,<1} in F/N
is the image of the unit n-ball of F by the natural projection F—F/N. From this the
conclusion follows.

¢) Given the seminorm p,, the set {xeF|p,(x)=o0} is a closed subspace N, of F.
Consider then the space F/N, and on it the norm

[|7|]l.=value of p,(x) for all xeF with x=3y
x being the natural image of xeF in F|N,.

Let F, denote then the completion of F/N, under the norm || ||,. There is a
natural continuous map B, : F—>F,

whose image is dense in F,; this associates to every xeF its image % in F/N, as a point
of F,. We have also a sequence of natural maps

oyt Fpp—F,
which associates to every Cauchy sequence {%,}eF/N,,, for || ||+, the same sequence
as a Cauchy sequence in the norm || ||,. This map is linear and continuous, and indeed
we have for every xeF  ||Buyal®)ss >l B
Hence for every yeF, ., ot s D=2 |l +1-
We have, in fact, 0y 11985 1 =B

Thus the image of «,,, is dense in F,.
The maps «,,, are compact maps.

Proof. — Given e>o0 and the set {xcF|p, ,(x)<1} we can find a finite number
of x,eF(1<i<k) such that

k
{xeF | poy (<1} U {xeF|p(x—x)<e/2}.
Therefore we must have

o, {x€F, 4] || % ””+1<1}CU{xe ol 12— ,<e}

This proves that the image of the unit ball of F,,, under «,,, isa relatively compact
subset of F,.

As a consequence, the maps 3, are also compact maps.
Consider now the space

hmF ={(, eHF]aHi(le):xn for n=o,1,...}.

The topology being that induced by the product topology on IIF,.
0
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The space Il F, is a Fréchet space and 1(111 F,, as a closed subspace of it, is again
a Fréchet space. "™’

We have a natural map Y :F—>l(iE F,

which associates to each xeF the sequence (Bn(x))eljr_n F,. The mapping y is linear
and continuous since every map f, is a continuous map.

Moreover vy is injective since B,(x)=o0 implies p,(x)=o0, and hence x=o0 if
B,(x)=o0 for all n.

Finally v s surjective.

Proof. — Let (x,,)el(lg_l F,. .

We select y,€F such that || Bo(yo)—xoll(,s;é.

I
We select »,€F such that || B;(p) —x|[; < >
" : 1
o2 Ba (1) — %o [0 < 22 ;
1
then po(N1—20) < >

We select y,eF such that 1| Ba yz)—x2||2_§§,
I
Ha‘zﬁz()’z)—xl”zS;g-

1
Then 21(pe—) < pre

In this way we construct a sequence (,)CF with the properties

I
pn(.yn+1—_.yn).§ 2n+1’

1
” Bn(yn) —xMIInS;n—H'

I pr(.}'n+1_—y”)
N d m+1>n =X
ow (Dn+159m) 2" 145, (Jns1—In)

i pr(.yn+1—.yn) § i
2" 1 +pr(.yn+1_.yn) nt1 2"

I U 1 21
52n+1{%;}+2n+1§;

oM =

<

— 2n——1’
Therefore the sequence (,) is a Cauchy sequence and converges to an element yeF.

349



118 ALDO ANDREOTTI AND EDOARDO VESENTINI

We want to show that f,(y»)=x,. We have, for v>n,

” Bn()’)—xn”rls H Bn()’)_ Bn(.yv) ”n+ ” ﬁn(.yv)_xn”n
<t(r—2) +[B.) —x[s-

For v—-4oo, p(y—3,) =0 and [|B,(»,)—x,||,—~o0. This proves our assertion.
Using the theorem of Banach we conclude with the following

Proposition. — For any Fréchet space F we can find a sequence (F,) of Banach spaces
and continuous maps o, ,, : ¥, | — F, with dense images, such that F ~ l(in F, (inthe topological
sense).

If moreover ¥ is a space of Fréchet-Schwartz then the maps o, , are compact maps.

d) Let F be a space of Fréchet-Schwartz and let F’ be the strong dual of F. We
have the following proposition ([18], p. 404).

Proposition 25. — The strong dual ¥’ of a space of Fréchet-Schwartz is the inductive limit

of a sequence (F,) of Banach spaces. For each n, F, is a subspace of F, ,,, the injection map
being compact.

Proof. — «) Let F =H£ F,. Let F, be the Banach space strong dual of F,. The

map «,,,:F,,;—F, gives by transposition a compact injective map
o, F,—F, ;.

Let G= UF,’,=1i_r)n F,. A fundamental system of neighborhoods of the origin in G is
constituted by those convex disked sets V of G such that VnF, is a neighborhood of
the origin in F,.

B) There is a natural algebraic isomorphism G —F’,

In fact, if «e€G, for n large enough «€F, and thus «of,eF’. The element thus
defined «'€F’ is independent of the choice of =.

If «'=o0 then a=o0 since B, F is densein F,. Finally if a’€F’ for some n we
must have [o/ (%) | < p(x).
Therefore o' defines an element «€F, such that a'=wo0f,.
v) We have to show that the isomorphism G —F’ is a topological isomorphism
Let B be a bounded set in F, then
B'={aeF’|sup|<a, B>|<1}

is a neighborhood of the origin in F’ for the strong topology. When B describes the
system of bounded sets in F, B® describes a fundamental system of neighborhoods for
the strong topology of F’. Consider the set

B°nF, ={a,cF,|sup|<a,, 8,(B)>|<1}.
Since B,(B) as a subset of F, is bounded, B°nF, is a neighborhood of the origin in F,.
Therefore B is a neighborhood of the origin in G'.

350



LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 119

Let now A be a disked set in G which is a neighborhood of the origin in G.
Consider the set A’={xeF|sup|<x, A>|<1}.

The set A’ is a bounded set in F. It is enough to show that A’ is weakly bounded.
If «cF’ we can find a A>0 such that AeA. Thus for x€A’ we have

I
o) | <L,
and we have AC(A%°
This proves that the topologies of F’ and G coincide. Finally we remark that F’
as a dual of Fréchet space is complete with respect to the strong topology ([15], p. 266).

It then follows that every bounded set BCF is contained as a bounded set in some
space F, of the sequence of definition ([11], p. 270).

¢) We consider the class € of spaces which are a product of a space of Fréchet-
Schwartz and of the strong dual of a space of Fréchet-Schwartz.

Every element E of € has the following properties

(i) E is a complete Montel space of type LF ([11], p. 248).

(i) If (E,),ex is a sequence of definition of E, then every bounded set BCE
is contained as a bounded set in some E,.

(iii) There is a sequence of definition (E,) of E such that, if K is a compact set
of E, then, for some 7, KCE, and is compact for the natural topology of E,.

The properties (i) and (ii) follow from the remarks made in d). To prove (iii) we
proceed as follows. Let E=F’'XG where Gis a Fréchet-Schwartz space and F’ the dual
of a Fréchet-Schwartz space. Let K;, K, be the projections of K on F’, G respectively.
Then K, and K, are compact. Let K= K;xK,. Itis enough to prove the statement
for K. It is thus not restrictive to assume G={o} and E=F". Now, with the
notations used before, KCF, for some 7, and is bounded in F,, hence KCF! +1- But K
is closed in F,,, for the topology induced by F’, hence closed also for the topology
of F,, ,. Morecover, the injection F,—F, , being compact, it follows that K, as a
subset of F, ;, is relatively compact, hence compact.

Let E and F be elements of € and u : E-F a surjective continuous linear map.
Then we have

(iv) u is a homomorphism.

(v) every convex compact subset of F is the image by u of a convex compact set of E.

Proof. — The first assertion follows from ([11], p. 269). To prove the second
assertion we remark that, if (F,) is a sequence of definition of F then KCF, for some =
and is compact in F,. Let (E,) be a sequence of definition of E then, for some m
we must have F,Cu(E,,), for the injection map is continuous for the topology of Fréchet
space of F, and for the topology of Fréchet space of u(E,)~E, /(Ker«|E,). It follows
that K, as a subset of «(E,), is compact and it is thus the image of a compact set
KCE, by the mapping .
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Now K is a compact set in E,, and a fortiori compact for the topology induced
on E, by E which is weaker than the topology of E,,.

If I'(K) and I‘(K) are the closed disked envelopes of K and K these are also
compact, since E and F are complete and we have u(I'(K))=TI(K).

By a theorem of L. Schwartz [17] we then conclude with the following

Proposition 26. — Let u, v be two continuous linear maps of E into F, E and F being elements
of €.

If u is surjective and v is compact, then u-+v has closed image of finite codimension.

19. a) Let X be a complex manifold of pure complex dimension n. Let Q
be a relatively compact open subset of X.

Let E be a holomorphic vector bundle on X and let %= (U;);cx be a locally
finite covering of X with the following properties:

(i) for each ieN there exists a coordinate patch V,22U;;

(i) on V;, E|V, is a trivial bundle.

Let ® be the holomorphic tangent bundle; by condition (i) |V, is also a trivial
bundle.

Let D? a symbol of derivation of order | p| with respect to the local z; and Z; coor-
dinates in U;.

If we introduce a hermitian metric on X and a hermitian metric on the fibres
of E we can also consider the symbols V? of covariant derivation of order | p| with respect
to the local coordinates z; and z;. Given a form ¢eC™(X, E), ¢ can be represented
by a system (¢;);cy of G forms of type (r, s) on the sets U satisfying the consistency
condition ¢;=¢;p; in U;nU;. For any compact set KCX we can consider the
seminorms

ph(e)= sup  sup X |Dlg(x)],

iL,V;nK+e zeU;nk ITI<k

1/2
n1’2<<p>=sup{ 3 Ao, v'cp)w} -

zeklIri<k
There exists a constant C(K)>o such that for any ¢eC"*(X, E) we have
(37) C(K) k(o) < mic(9) < CK)px (o).

b) We will consider the following topological vector spaces. &"°=the vector
space Cm*(X, E) with the topology defined by the family of seminorms =%.

Let (K,),en be an increasing sequence of compact sets in X such that K,CIO{, 15
X= l;JK,; then, setting m,=mg , the family (r,),cy defines on " the same topology.

From inequality (37) it follows then that &™° is a Fréchet space; as a distance
defining its topology we can take

d , :ii TC,((p—-kp) .
® ¥ 02" 147 (0 —1¢)
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We remark that the seminorms =, verify the following inequality:
TE,(CP)STE,.,_I((P)
for any reN.
Lemma 27. — Let B, 1={0ed™’|m,  (p)<1}.

Given €>0 we can find a finite number of points v,eB, | such that
Br+1cLiJ{‘Peg"s|Wr(‘?'—”)i)<5}'

Proof. — If the contention of the lemma is not true, given ¢,€B,,; we can find
@,€B, ., such that =, (¢, —¢,)>¢c. Also, we can find @3B, such that =, (¢, —¢;)>¢,
7, (¢3—@3)>¢c. By this procedure we find a sequence (9,)CB,,; such that for
v, T (e — ) e

Now by inequality (37) we see that the functions ¢, on U;nK, are uniformly
bounded with all their derivatives up to the order r-+1. By Ascoli’s theorem we can
thus select a subsequence (g,) which is a Cauchy sequence in the seminorm =,. This
is a contradiction. In conclusion the space &"° is a space of the class €, and in fact a
space of Fréchet-Schwartz.

b) Let &'"° be the strong dual of £°. This space is again in % and can be identified
with the space of distributions with compact support and of type (r, s) if, for Teé’"?,
we define the value of T on ¢eé™® by

Tle] = (¢, T).
Then the operator ERY 4l S h
is given by T[] = (e, T).

This is a continuous linear map. Hence the space
Zm*={Teé&™°|8T =o}
is a closed subspace of &'"° and therefore is in the category %.
¢) Finally we consider the space Cp°(Q,E) of C® (r,s)-forms with support

contained in Q with the topology defined by the seminorms n%. It is easy to verify that
this space is also a space of the class € and in fact a space of Fréchet-Schwartz. We put

25’ ={9eCy"(Q, E)|9p =0}

This is a closed subspace of Cp*(Q, E), hence again a space of Fréchet-Schwartz.

There is a natural map i1 73" -7
which associates to every form teZj*® the distribution T, defined by

T.[o] = [_Als, 7)dX.

Lemma 28. — The inclusion map i : 23" —2Z'"° is a compact map.
Proof. — Let B={< eZs’ ng(x) < 1}.
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This is a neighborhood of the origin in Z2:°. For any ¢e&”® and teB we have

<i(7), 9> = (9, T)q and therefore
<i(1), > < (9 ?)a-
This shows that i(B) is bounded in Z'™°, hence relatively compact (Note that
(Zn) = E(Z)).
d) From proposition 26 we then obtain the following
Theorem 6. — Consider the linear map

w: & 02 2"’
. Q

defined by w(e'®z)=0d¢ +i(z).
If w is surjective, then dim Hj (X, Q*(E)) < 0.

20. Finiteness theorem for g-pseudoconvex spaces.

a) We first prove the following

Lemma 29. — Let X be a complex manifold

Let @ :X >R be a C strongly g-pseudoconvex function on X such that the sets {®<const.}
are relatively compact in X.

Y ={xeX|®(x) <sup®}
Y
Then the natural map:
Hy =07 4(Y, Q'(E)) — Hy~+4(X, Q'(E))
is injective.
Proof. — Let ¢e2™"~%*YY,E) with d¢=o0. Let us assume that there exists
a ne2"" " YX, E) such that ¢=0y on X.
We want to show that there exists a pe2™"~ Y, E) such that
9= p.
With the same notations as in § § n. 9, and using Proposition 23, we can find a
C*® x,eW3" 94X, E) such that
n= 39;\36)‘—}—6;\3)6;‘;

thus @ = 20, 0x,.
Let ¢,=0,0x,. Then 9y,=g¢, 0,4, =0 so that, by proposition 5 we have
(b5 $2)2=<c(®, ®)a

with a positive constant ¢ independent of A.
This is an inequality of Carleman type; therefore we can find a peC""~¢(X, E)
with p=0;
supp p C{xeX|®(x) < sup ® +¢}.
supp @

Then pe2""~ Y, E) if ¢ is sufficiently small. This proves the lemma.
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b) Lemma 30. — Let X be a complex manifold. Let p, ¢ be C® functions on X with
the following properties;

(i) p is strongly pseudoconvex;

(ii) o is strongly g-pseudoconvex;

(iii) the set Q ={xeX|sup(p, ¢) <o}

is relatively compact in X.
Then we can find a sequence of open sets A,CCQ for veN such that
() ACA,., for veN;
i) a=Uh;
(iii) each A, is a g-complete manifold.
Proof. — Let a=mﬁin p, b=min¢ and let

Q
b
p_ttlal o etlb]
|4l 6]
Then Q={xeX|sup(P, ®)<1}.
Let ¢,=P"4 .
We set Av={er|u[;v<1—$-}.

Then the sequence A,,v=1,2, ..., has the required properties.
In fact ¢, is C* and strongly g¢-pseudoconvex. Moreover for x,cA, we have

sup(P(x,), @ (xy)) = \/ L

v

and for x,e€Q and v sufficiently large
P()" + ®(x,) <1 —+.
¢) Using these lemmas and the arguments of § 21 of [2] one obtains the following

Proposition 31. — Let X be a complex manifold and ® : X >R a C* strongly
g-pseudoconvex function >0 such that the sets

X, . ={xeX|e<®(x)<c}

be relatively compact in X for every €>o0,c>o0.
Let 'V be the family of closed sets F in X such that

sup ®<co.
F

Then Hg(X, Q'(E))=o0 SJor s<n—gq.

A manifold X is called strongly g-pseudoconvex if there exists a C* function ® : X >R
and a compact set KCX such that ® is strongly ¢-pseudoconvex outside K and the
sets {®<const} are relatively compact in X.
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Corollary 32. — For a g-pseudoconvex manifold X
dim H;(X, Q"(E))<o for s<n—gq.
Proof. — By the above proposition every d-closed distribution of type (r, s) with

compact support is d-homologous to a d-closed C* form with compact support contained
in {®<sup ®+1}. This permits the application of Theorem 6 of the previous section.
K

2. Finiteness theorem for q-pseudoconcave spaces.
a) Let X be a complex manifold of pure complex dimension n. Let ® be a C*
strongly pseudoconvex function on X such that the sets

U, ={xeX|®0(x)<e}

be relatively compact, for 0<e<g,. Let ¢ be a C® strongly g¢-pseudoconvex
function on X.

We set U={xeX|®(x) <o},

V={xeU|g(x) <o},
W =U—-V={x€U|p(x)>0}.

Let E be a holomorphic vector bundle on X.

Lemma 33. — H{(W, Q"(E))=o0 for s>g¢+1.

Proof. — Letting V,={xeU,|¢(x)<e} we see that

() U= DUE has a fundamental system of neighborhoods U for which
HY(U, Q'(E))=o0 for i>o.

(i) V= OVB has a fundamental system of neighborhoods V for which
HY(V, Q"(E))=o0 for i>g¢ (use lemma 30 of n° 20 and Serre’s duality [20]).

Hence H/(U, Q"(E))=0 for i>o,

H'(V, Q"(E))=0 for i>g.

From the exact sequence

...—>H{(W, Q'(E))-H*U, Q"(E)) >H*V, Q"(E)) >H;*{(W, Q"(E)) > . ..
we then deduce that

HW, Q(E)~H YV, Q(E))=0 if s—1>4.
b) Let X be a complex manifold and B an open set in X such that 9B is compact.

We say that B has a strongly g¢-pseudoconcave boundary if we can find an open
neighborhood U of B in X and a G” strongly ¢-pseudoconvex function ® on U such that

BnaU={xeU|®(x)>o0}.
Let (Ui, be a finite covering of B with coordinate balls U,ccU and let g,
1<:<t, be C® functions on U such that
0;>>0, supp ¢;CCU;, Xp;(x)>0  VxedB.
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Weset &, =+ ? g;0;- Ifthe ¢>o0 are chosen sufficiently small, then the functions @,

are all strongly ¢-pseudoconvex in U.

We set B'={B—U}u{xeU|®,(x)>o0}.
Then B=B>B!>...0B" since ®,>d,,, (P=0,).
Moreover B°*—B'*t'ccU, , for 0<s<t—1.
And finally BicB.

We thus have proved the following « bumps lemma »

Lemma 34. — Given on a complex manifold X an open set B with compact strongly
q-pseudoconcave boundary, we can find for any finite covering (U,), _;., of éB a sequence of open
sets B®, 0<s<t with strongly g-pseudoconcave boundary such that

(i) B=B"B!D...DB,
(ii) B*—B'*lccU, ., Jor 0<s<t—1
(iii) B‘cB.

Analogously we can construct an increasing sequence of open sets B’, 0<s<t¢ with
compact strongly g-pseudoconcave boundary such that

(i) B=B°cB!C...CB,
(ii) B°*—B*~!ccU, for 1 <s<y,
(i) B,CB.

¢) Let X be a complex manifold and let ® : X—+R be a strongly ¢-pseudoconvex
C® function on X such that the sets

X ={xeX|C>D(x)>c}

be relatively compact for every C>o, ¢>o.

Let B, ={xeX|®(x)>c}
and let ¥ be the family of closed sets F of X such that i%lf d>o.

Proposition 35. — For any c¢>o0 there exists an >0 with ¢—e>0 such that the
homomorphisms H% (B, Q'(E)) - H%(B,_., Q"(E))

Hy (B, ., Q'(E)) - Hy(B,, Q(E))

are surjective for any s>q- 1.
Proof. — With the notations of lemma 34, setting B =B,, making use of lemma 33
we see that for s>¢g41
Hy (B, Q7(E)) — Hy (B, Q7(E))
is surjective. Repeating the argument we see that for s>¢+1
Hy (B, Q'(E)) -~ Hy (B, Q"(E))
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is surjective. If ¢ is sufficiently small B'CB,, . CB, hence the second assertion. The
first assertion is proved in the same way.

Let ¢(¢) be the sup. of all € such that ¢—e>o0 for which the conclusions of the above
proposition hold; then one verifies that e(c) >e(cy)—|c—¢,y|, i.e. that e(c) is a lower
semicontinuous function.

d) Let X be a strongly g-pseudoconcave manifold. That means that we are given a
compact set Kin X and ®>o0 a C® function on X, strongly ¢-pseudoconvex on X—K,
such that the sets B, ={xeX|®(x)>¢}

are relatively compact in X. Let co=ilr{1f ®. We then have the following
Proposition 36. — For any ¢>o0, ¢;—oc>0, the natural map
Hi(B,, —o» Q(E)) — Hi(X, Q'(E))
is surjective for s> q+ 1.
Proof. — Let EeH(X, Q"(E)) and let supp£CB,. We can find a sequence
6=c<¢<... with ¢,—¢,+ o2 such that

H;(B,,,,» Q'(E)) - H;(B,, Q'(E))

Cy1?
is surjective. Hence £ can be represented by a cocycle with support in any B, . Ifv
is large enough B, CB, _,. This proves our assertion.

Corollary 37. — For a strongly g-pseudoconcave manifold X and for any holomorphic vector
bundle E on X we have

dim HY(X, Q(E))<w  for s>q+1.

22, The groups H~ 14X, Q"(E)) on a strongly g-pseudoconvex manifold.
a) Let X be a strongly ¢g-pseudoconvex manifold of pure dimension n. Let K
be compact in X and let ® : X >R a C® function on X such that
(i) @ is strongly g-pseudoconvex on X—K;
(ii) the sets B,={xeX|®(x)<c} are relatively compact in X for every ceR.
Let c¢y=sup @.
K

Using the vanishing theorems for ¢g-complete manifolds and the bumps lemma one

proves that for ¢>¢, we can find an €>o0 such that
H!(B, .., Q'(E)) - H*B,, Q"(E))

is a surjective map for s>¢. From this one deduces the following [2]

Proposition 38. — Under the above specified assumptions one has, if s> ¢,

dimg H*(B,, Q"(E))<+4

Jor any ¢>¢,, and any holomorphic vector bundle E on X.

Corollary 39. — With the same assumptions the image of

2 :9" 4B, E) - 2" 1B E)

is a closed subspace of 2™~ 1+!(B,, E).
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Proof. — We consider the sequence
Cni=1(B,, E) > C"4(B,, E) > C"*1(B,, E).

By the assumptions, since HY(B,, Q"(E)) is finite dimensional, the first map 2 is a topo-
logical homomorphism. Denoting by K*~""~¢+YB E) K"~ ""~¢B, E) the dual
spaces of C"?~(B,, E), C"¢(B,, E) respectively, it then follows that

9 :Kr=mm=9(B  E) » K*~"- 1+ (B E)

has a weakly closed image.

This holds for any r and any vector bundle E. Now we consider 2""~4(B,, E)
and 27"~ ?*YB,, E) as subspaces of K"""¢B,, E), K""~¢*YB  E) by associating
to any form ¢e2"*(B,, E) the distribution T eK"*(B,, E)

Tolu] = (4, ¢)-

To prove the corollary it is enough to show that 997"~ ¢(B,, E) is sequentially closed

(cf. n® 11 b), remark). Let (p,)C092"" 9(B,, E) with ¢,—>¢. Assume that @,= a1,

with 7,e2""7B,, E). We have to show that there exists a ne2""~(B,, E) such that
o7,

By the assumption ¢,—~¢ we have T, —T,, but Tq,ve?K""“q(Bc, E). Thus

Tcpe?K”""“(Bc, E) by the above argument. Thus there exists a distribution S with
compact support in B, such that

¢ =08S.
We now apply lemma 12 and we can find 5e2""~B,, E) such that ¢=d7.
Proposition 40. — Let X be strongly q-pseudoconvex and let E be any holomorphic vector
bundle on X. Then the image of
9 : 97" X, E) » 9"+ Y(X, E)

is closed. Thus H2~9tY(X, Q"(E)) has a natural topology of a separated topological vector space.
Proof. — We have to show that 227"~ X, E) is sequentially closed. Let
¢,=07,609"" "X, E) be a convergent sequence, ¢,—>¢.
There exists a compact set K'CX such that

supp ¢,CK’,  supp ¢CK".
We select ¢,>¢, such that B, DK'.

Then on X—ﬁc‘, dm,=o0. By virtue of proposition g1, if n—¢>1, there exist
forms vy,eC*"~*"%X—B,,E) such that

sup @<, ,=dy, on X—B

supp 7Yy

e*
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Let w be a C* function with the properties
p(x)=1 if xeX—B, .,
pr)=o0 if xeB, 43

then uy, are compact supported forms and we can write’
= 3(n,— 3 (uy,))-
Replacing the forms v, by the forms »,—d(uy,) we see that we can assume that
supp 7,€B, . ;.

If n—g¢=o0 the same conclusion obviously holds.
Taking ¢=¢;+ 1 and applying corollary g9 we then conclude that there exists
an 7eZ2"" 7YX, E) such that '

o=,
This achieves the proof.

23. a) As an application we prove now the following
Proposition 41. — Let X be a complex manifold of pure dimension n. Let E be a holomorphic
vector bundle on X.
We assume that
5 . Qr— r,n—-s(X’ E) — Cn—r,n—-s+1(X, E)

is a topological homomorphism. Let T be a distribution of type (r, s) with values in E (1) and

compact support, such that T =o. The necessary and sufficient condition for the solvability of
the equation
T=2S

with a distribution S, with compact support of type (r,s—1) and with values in E, is that for
any ueCr~""~%(X, E) with du=o we have
T[u] =o.
Proof. — Let Q"~""~%(E) be the sheaf of germs of C*, ?-closed forms of type
(n—r, n—s) and with values in E. We have the exact scquence
0—T(X, Q= ""=4(E)) »Cr=""=%(X, E) > Q"= "= 1+1(X, E).

By the assumptions T[u«] as a linear function on GC*~""7%X, E) defines a continuous
linear function on C"~""~ %X, E)/T(X, Q#~""~°(E)) with respect to the natural
Fréchet topology of this quotient space. Since @ is a topological homomorphism, then
aCr—nm—3(X, E), with the induced topology of C"~""~*+}(X E), is topologically
isomorphic with the previously considered quotient space. Thus T defines a continuous

(}) i.e. T is a continuous linear function on Cn—7:n—%(X E).

360



LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 129

linear function on dC"~""~¢(X, E). By the theorem of Hahn-Banach we can extend
this linear function to a continuous linear function S : C*~""~**+*{(X E)-»C. We thus
have
T[u]=S[0u]
for any ueC"~""7*(X, E). This means that
T3S,

Moreover S as an element of the dual of C*~""~**1(X E) has compact support.

The necessity of the condition is obvious.

Remark. — If dim H"~*+4(X, Q"~"(E))<oco then the assumption of the previous
proposition is satisfied.

Let B be open and relatively compact on X. We will assume that ¢B is smooth.

Let B,={xeB|d(x, éB)><c}. If ¢ is sufficiently small then 2B, is also smooth.
Corollary 42. — We assume that

dimgH"~*(B, Q"~"(E"))<o0
Let ¢eC *(X—B, E) with dp=0 be defined and 3-closed in X———E&. The necessary and
sufficient condition for the existence of a form $eCr*(X, E) such that
3—o, %|X—B—g
is that for any ueCr="™"~*~YB, E') with du=o0 we have

op PAU=0 Jor  0<e<g,.
€

Progf. — From the exact sequence
H'(X, Q4(E)) - HY(X—B, Q7*(E)) -~ Hi(B, 0;*(E))

we see that the existence of ¢ is equivalent to the condition &{¢}=o0. Now
Hi(B, Qr*(E))~H; (B, Q"(E)) and thus 3{¢} can be represented as follows. We

take any $eC"*(X, E) such that §|X—B=g¢; then d% is compactly supported in B.
The condition 5{¢}=o0 means that 93 is the @ of a compactly supported distribution

with support in B. This is equivalent to the condition
fB‘z'faAu=o for all ueC"=""=*=YB E) with du=o.
But
fB%Au = fB_5(’<?A u)= J'Ba'(’a/\ u)= faBs¢Au.
One will recognize the analogy of this result with a classical theorem [23] which asserts

that if f is a G* function on the circle |z|=1 in C then f is the trace of a function
holomorphic in |z|<1 if and only if

f|z|=1fzkdz=° for every keN.
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