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ON SOME BRUHAT DECOMPOSITION
AND THE STRUCTURE OF THE HECKE RINGS

OF p-ADIC CHEVALLEY GROUPS
by N. IWAHORI and H. MATSUMOTO

INTRODUCTION

The purpose of this note is to give a sort of Bruhat decomposition for a Chevalley
group G over a p-adic field K and to give some applications of this decomposition.
To be more precise, we consider the Chevalley group G (see Chevalley [6]) associated
with a pair of a complex semi-simple Lie algebra Qc and a field K with non-trivial
discrete valuation. (The residue class field A:=0/<>p of K is not assumed to be finite.)
Let I)c be a Cartan subalgebra of gp ^d A the root system of gg wltn respect to t)c-
Then for any aeA, there is associated a homomorphism 0^ : SL(2, K) —^G. We

denote as usual the image of ( ) ? ( . ) under 0^ by x^{t), x_^{t) respectively.
\0 T / \t I/

Now let P^ be the subgroup of I)c(=the dual of I)p) generated by A. Then for any
/eHom(P^, K*) there is associated an element h(^) of G (see [6]). Now let us define
the subgroups U, B of G which will be our main subject in this note. We denote by U
the subgroup of G generated by the

^,0-KW; ̂ 0} (^A) and $o={A()c); X^Hom(P,, K*), x(P,) C^}

where £)* is the group of all units in 0 (== the ring of integers of K). Let B be the
subgroup of U generated by the 3£_a .o^eA4 ' (==the positive roots)),

^-KW;^} (^+)
and .§£)• Then it turns out that U coincides with the subgroup of G consisting
of elements which keep invariant the Chevalley lattice 9o==D®9z (m tne sense of
Bruhat [4]) (see Cor. 2.17) , and that B is the full inverse image of a Borel sub-
group B^ of the Chevalley group G^ofgp over k=01^ under the reduction (mod. ^3)
homomorphism U-^G^ (see Prop. 2.4). When K is locally compact, U is a maximal
compact subgroup and it is shown that the condition (I) of Satake [12] (i.e. a sort of
Iwasawa decomposition) is valid (see Prop. 2.33). Also, in a sense Satake's condition (II)
is also verified (see Cor. 2.35). In fact, we can show that the Hecke ring jf(G, U)
(for the definition of Hecke rings, see § 3 or [10, § i]) is commutative and is isomorphic
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6 N . I W A H O R I AND H. M A T S U M O T O

to the polynomial ring Z[X^, . . ., XJ where / is the rank of 9^5 not assuming the
completeness of K, but assuming that O/^P is finite. However this will be treated
in a subsequent paper.

Now let G' be the commutator subgroup of G; also let SOS be the subgroup of G

generated by §=--{A()c); xeHom(P,, K*)} and the o^=^a ((_° 1}} (aeA). Then

we shall show that the triple (G', B', SB') where B'^BnG', SB^SBnG', satisfies all the
hypotheses of Tits [16] (see Th. 2.44). In this case B'n3!B'=$^=§^nG' is a

/" •̂/
distinguished subgroup of 2B' and the quotient group W'=2B7§o' ls isomorphic to
the infinite group generated by the reflections with respect to the hyperplanes
P^ ^==^el)p; (a, x)==k^ (aeA, AeZ), where %= S Ry, and (a, x) means the Killing

form; i.e. W is the semi-direct product of the Weyl group W and the group D' consisting
of translations T(rf) : T\d) x == x + d (rfeP1, where P is the subgroup of % generated
by all weights of Qc and P-^^et)^; (x,\)eZ for all XeP}). Thus after Tits [i6],
all subgroups H of G' such that G'3H3B' are in one-to-one correspondence with the

^«<^
subsets L of the set J of some generators ofW. J is given explicitly in Prop. 2.23 and
we can determine in particular the conjugacy classes of maximal subgroups of G'
containing a conjugate of B' (see Prop. 2.30). When K is locally compact, we
can determine the conjugacy classes of maximal compact subgroups of G' containing
a conjugate ofB' (see Prop. 2.32). Also we can prove that some analogous phenomenon
as in Tits [16] is true for the triple (G, B, SB) (see Prop. 2.8, Gor. 2.7, Th. 2 .22) .
Here Bn2B==j5o and W==2B/.§)o ls tne semi-direct product of the translation group
D={T(J');/eP;!-} and W, where P^^el^; (x, a)eZ for all oceA}. W is a semi-

i^»^/
direct product of W and a finite abelian group ^ which is isomorphic to P/Py. (^ the
fundamental group of the adjoint group) (see § 1.7). Namely G is decomposed into
a disjoint union of double cosets: G= U^Bco(<7)B (co((7) is an element of 333 contained

oGW

in cr) (Prop. 2.16) and some basic conditions of Tits [16] are verified; for example,
co(^)Ba)((r) CBco((7)B u Bco(^cy)B (w^ is an involutive element in the system of standard
generators; see § 2.3) and ^(^Bo)^)'"'1^ B. Then again we can determine the
subgroups H of G containing B using a similar discussion as in [16] (see Prop. 2.88).
In particular when K is locally compact, we shall determine the conjugacy classes
of maximal compact subgroups of G containing a conjugate of B (see Prop. 2.31).
On the other hand, when G is of classical type, H. Hijikata has determined recently [9]
all the conjugacy classes of maximal compact subgroups of G, which shows that our
conjugacy classes given above exhaust all the conjugacy classes. Thus it seems to us
that the number given in Prop. 2.31 for exceptional groups will also give the number
of all conjugacy classes of maximal compact subgroups. However this is still an open
question to us.

In § 3, we assume that k ==0/^3 is finite, and using the above structure of G,
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ON SOME BRUHAT DECOMPOSITION 7

we shall determine the structure of the Hecke rings J^(G, B) and J^(G', B'). If gc is
simple, J^(G', B') is generated by Z + 1 double cosets (/ being the rank of g^)
S^=Bco(^)B (z'==o, i, . . ., /) corresponding to the bounding hyperplanes P(), Pi, . . . , P?

-^^/
of the simplex S)o, the fundamental domain of the discontinuous group W'=D'W5
together with the defining relations which are analogous to those given in [10, Th. 4.1] for
the case where K is finite (see Th. 3.5). Now ^ acts on ^(G', B') as a group
of automorphisms and Jf(G, B) is isomorphic to the (< twisted 3? tensor product
Z[0]®Jf(G', B') with respect to this action (see Prop. 3.8).. Also for xeG, we shall
prove that the index [B : BHA^BA:] (which is equal to the number of cosets of the
form B^ in the double coset BxB) is always equal to a power of q == [0 : ^3] and
we shall give an explicit formula for the exponent (see Prop. 3.2). We denote by \{x)
the exponent: q^ = [B : B n x~1 Bx]. These theorems in § 3 are also given in Goldman-
Iwahori [8], by a different method, for the case where G=GL(/z, K) and B is the
corresponding subgroup. The " Poincare series !? S^ w^here the summation is taken

over the representatives of the double coset space B\G/B turns out to have some relation
with the Poincare series of the loop space of the compact Lie group associated to Qc
(see Bott [2]) and is given explicitly in Prop. 1.30. Also using this, a formula for the
order of W is given (see Prop. 1.32).

The contents of § i are rather classical facts about the structure of the groups W,
^"Ŵ as transformation groups on the euclidean space 1)^, which are given in E. Gartan [5],
Stiefel [14], Borel-de Siebenthal [i]. But we gave them together with proofs to make
the reading easier. We hope that some proofs are new. The main proposition in § i
is Prop. 1.15 which is the main tool for reaching the defining relations for the generators

/^-/
of the Hecke ring Jf^G', B'). (This proposition 1.15 is the analogue for the group W
of the proposition given in [10, Th. 2.6] for the Weyl group W.) As a corollary of
Prop. 1.15, we shall give a system of defining relations for the generators w^ {o^i^l)
of W, where w^ is the reflection map with respect to a bounding hyperplane P^ of the
fundamental simplex (see Cor. i . 16).

Finally we should like to express our deep thanks to Professor F. Bruhat for the
suggesting and helpful conversations during his stay in Tokyo in 1963.

§ i. On the Weyl group extended by translations.

1.1. Let gc be a semi-simple Lie algebra over the complex number field C
and t)c a Cartan subalgebra of gc. Denote by A the set of all non-zero roots of Qc with
respect to t)c. Let % be the dual vector space of I)c and % the real subspace of I)*
spanned by A. The restriction of the Killing form of gc on % will be denoted by {x,j)
for ^,j^e%. This restriction {x, jy) is a symmetric, positive definite bilinear form
on % and thus % is a Euclidean space. The length of xef)^ will be denoted by

11
2, ^) .x : x = [ x . x
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8 N. I W A H O R I AND H. M A T S U M O T O

Now let n be a fundamental root system of A and fix a lexicographical linear
ordering of % such that n becomes the set of all simple roots in A with respect to this
ordering. Denote by A4' (resp. by A~) the set of all positive (resp. negative) roots in A.

We denote by P^ (oceA, keZ; Z means the ring of rational integers) the hyperplane
of % defined by

P^={^et)B; (^x)==k},

Also we denote by A the set of all P^ (aeA, A;eZ). Now let us denote by w^ ^ the
reflection mapping of % onto itself with respect to P^. Thus

^a. k W == ^ — (^ a) a* + k^ [x E %)

where a* means the element 2a/(a, a) of ^ for aeA. We denote by T(d) for each
de\)\ the translation mapping of 1)̂  onto itself defined by

T(d)x==x+d.

Also we denote W^Q by w^. Then we have

^-T^oc^o^.

Let W be the Weyl group of gc ^ith respect to t)c? i•e• W is the group generated by
the w^ (aeA). It is known that W is generated by the w^ (aell) (cf. [13, Expose 16]).

We denote by P the set of all weights of Q^ with respect to I)c for all linear
representations of 9c, i.e. P={Xe%; (X, a*)eZ for any aeA}. Then P is a Z-submodule
of %. We denote by P, the Z-submodule of P generated by A. It is known that
both P and P, are stable under the action of W. P and P, are both free abelian
groups with / generators where ; is the rank of gc : l=dimc\)c' More precisely, let

^ i
n ={ai, . . ., aj; then P,= S Za, (cf. [13, Exp. 10]). Also we have P== 2 ZA, where

z—l i=^

{AI, Ag, . . ., Aj is the fundamental weight system associated with II ={ai, ag, . . ., aj,
i.e. AI, . . ., Aj are defined by

(A,.a;)=S^. (^i,J^l).

The quotient group P/P^ is isomorphic to the center 3 of the simply connected Lie
group Gc which has Qc as its Lie algebra (cf. [6, § i]).

1.2. Now let us denote by P1, P1 the Z-submodules of % defined by

P^^el)^;^, X)eZ for any XeP},
P^=={^e%; {x, a)eZ for any aePj.

Then P1 and P,!- are both free abelian groups of rank / and we have P^-CP^ and
P^/P^P/P,^. We have in fact

P .̂az..,

P^SZ,;,
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ON SOME BRUHAT DECOMPOSITION

where e^, . .., s, are the elements in % defined by

(^a,)=S,, (i^'J</).

In other words (e^ . . . , £ , ) are given by

e,=2A,/(a,,a,) (l.<r</).

Since P, P,. are stable under W, P1, P^r are also stable under W.
We denote by D the group consisting of the translations of the form T{d), deP^r.

Clearly the map d->T{d) is an isomorphism from P,1 onto D and we may identify P1

and D by the map d-^T{d). We also denote by D' the subgroup of D consisting of
the translations of the form T(rf), deP1. D' may be identified with P1 by the above
isomorphism and we have D/D'^P/P^3. Note that

i
a,== Sa,,Ay. (i^^O

i
a;= ,̂̂  (l^J</)

where ^.=(a,,a^) {i<:i,j^l) are the Cartan integers.
Now using the obvious relation wT(rf)w- l=T(w(rf)) (weW, rfet^), we see that

DW(=WD) is a subgroup of the group of all motions of the Euclidean space % and
that D is a distinguished subgroup of DW. Obviously we have DnW={i}.
Similarly D'W(=WD') is a subgroup ofDW containing D' as a distinguished subgroup.

Now the group D'W is generated by the reflections w^ (aeA, keZ). In fact the
equality w^==T(k(^)w^ shows that every w^ is in D'W and also that D' and W are
contained in the subgroup generated by the w^ (aeA, keZ). Thus D'W is the group
generated by the w^ (aeA, yfceZ).

/••»»-/
The set A of the hyperplanes P^ (aeA, keZ) is stable under the group DW.

In fact we have
^MPa^-P^^z^aU)

for any rfeP,, z^eW, AeZ, aeA. Also we see that the subgroup D'W is a distin-
guished subgroup ofDW. In fact, (r(P^)=P^ (ceDW; a, peA; k, meZ) implies that
aw^,ka~l=:w^m' Then ^ is easily seen that DW/D'W^D/D'^P/P,^.

1.3. Now the union UP^ is obviously a closed subset of % and is stable
under DW (JUP^ is called the diagram of Gc). Hence the complement t)B—UP^
is an open subset of %. Any connected component D of %—UP^ is called a cell.

oc,,Je '

Since %—LJP^ is stable under DW, the group DW acts in an obvious manner on
the set gr of all cells. It is easy to see that the open set

Do={A:e%; o<(a, x)<i for any aeA4'}

is a connected component of %—jUP^, i.e. So is a cell. 2)o is called the fundamental cell.
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io N. I W A H O R I AND H. M A T S U M O T O

We note that if P^ and Pp ^ are not parallel, then the angle 6 betwen a and (3

is equal to one of the following 4 values, (i —-^TT (v == 2, 3, 4, 6), and the order of w^w^

is equal to v in the respective cases. (We may assume nX^^^ since P^==P_^ _^.)
Proposition 1.1 (cf. [5], [14]). — Let

A^A^u.. .uA^

^ orthogonal decomposition of A associated with the decomposition Qc == Q^ + • • • + 9^ of 9c
n^o simple ideals Q^\ . . ., g^- ^ ^ ^ ̂  subgroup o/*D'W generated by w^ (a Gil) fl^rf
w^, ..., w^, where w^^w^^y a^ being the highest root of A^, z== i, ..., r. . 7%^ F
is transitive on the set ^ of all cells.

Proof. — Obviously we may assume Qc to be simple. Then the fundamental
cell Do is an open simplex given by

Do={^e%;o<(a,,^), i > ( a o , A : ) , z = = i , . . . , /}

where n=={ai, . . ., aj and <Xo is the highest root of A. Let D be any cell in Qr.
We have to show the existence of an element o-eF such that (i(D)==Do. Let aeD^,
&e2) be fixed elements. Since the D-orbit of b is obviously discrete, the D'W-orbit
and hence the F-orbit T^b) ofb is also a discrete subset of%. Thus inf||a—x\\ (xer{b))
is attained by some A:=<r(&), acF. It is enough to show that xe7>Q. (Then we get
(r(2))n3)o4=0 which implies that o(D) =Do.) Assume that ^^T)o. Then, with respect
to some bounding hyperplane P of Do, x and a belong to different half-spaces.
Let w be the reflection map with respect to P. Since P is equal to one of P^.o? • • • ? P<x ,o?
P(^ i, w is in r. Moreover we have easily

\\w{x)-a\\<\\x-a\\.

This contradicts the choice of x, Q.E.D.
Proposition 1.2. — We use the same notations as in Prop. i. i. The group D'W is generated

by the reflections w^ (aell) and w^\ .... w^ (i.e. by the reflections with respect to the bounding
hyperplanes of the fundamental cell 2)o) $ D'W is transitive on ^.

Proof. — Let aeA, AeZ, then the hyperplane P^ ^ bounds some cell 2). Take
an element aeF such that CT(£)) =S)o (Prop. 1.1). Then (r(Pa./c) coincides with some
bounding hyperplane P of Do. Then aw^a~1 coincides with the reflection w with
respect to P : aw^(J~l=we^. Thus w^el\ which implies immediately that r==D'W
and completes the proof.

1.4. — Now before proceeding to the proof that D'W is simply transitive on 3r,
let us introduce a few notions. Also in order to avoid the inessential troubles about
the description, we assume, in the following part of § i, that Qc is simple. We
denote by a^, . . . ,a ; the fundamental roots and by (XQ the highest root. Also we
put P,==P^o (z==i , . . . , / ) ,Po=P^,w,==^.(z==i, . . . , / ) , WQ ==^^==T(a^)^. Thus
PO, Pi, ..., P/ are the bounding hyperplanes of the simplex Do and WQ, w^ . . .,z^ generate
the group D'W.
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ON SOME BRUHAT DECOMPOSITION n

Now let D, 2)'eg and Pa,^. We shall write D—S^Po^) (resp. D^D'(P^))
ifD and D' belong to the same (resp. different) half-spaces with respect to P^ ^. Since
3)nP^==0, S)'nP^==0, we get easily the following criterion: Let <zeT), AeSV. Then
D-^T)'(P^) if and only if the segment ab intersects with P,^. Also, T)^I)'(P^) is

equivalent to
^,a)-k)(^,b)-k)<o.

/-•^ ^^/

Now let us denote by A (2), 2)') the subset of A defined by

^(D,a)')={P,.,eA:;D^D'(P^,)}.
/^«^
A(2), 3V) is always a finite set. In fact, fixing aeD and &el)', it is easy to see that only
a finite number of P^fc intersect with the segment ab. The following equalities are
easy consequences of the definition:

A^S^A^S))

(T.^D,^')^^?),^')
for any D, D'egr, oeDW.

Now let creDW. Then we denote by A(a) the set A(cr2)o, Do). We denote
/^^/

by X(cr) the cardinality of the finite set A((r). X((r) is nothing but the function considered
/">»^

by Bott [2]. By the definition ofA((r), we get easily

^.A^A^--1),

^-^(a)
for any oreDW.

1.5. Now let us define a function /(cr) on D'W. With respect to the invo-
lutive generators WQ, w^ ..., w/, any element <7eD'W(cr+ i ) can be written as
cr==^ . . . wi (o^z\5 .. ., ir^.l)' The Min(r) for all these expressions of a will be called
the length of a (with respect to the generators WQ, w-^, .. ., Wi) and we denote by /(<r)
the length of T. We also put /(i)=o. We shall call a word w^... w^ in D'W
reduced if l{w^.. . w^) = r. Also an expression CT = ̂  .. . w^ of ere D'W will be
called reduced if /(<r) = r. Clearly, if w^... w^ is a reduced word, then zt^ ... w^
and w^. . . w^ ^ are both reduced. Also for creD'W, l{a)== i means that
(ye{wo5 ^i? • • • ? w/}- The purpose of this section is to show that X(cr)==/(or) for creD'W.
We begin with the

Lemma 1.3. — For any oeDW and for any i, o_<r</, we have

w^-1)-^})^^^1)^}.

Proof. — Let P^A^-1)-^}. Then c(P^eK{a),P^P,. We have to
show that ^(P^eA^cy'^—^Pj. Firstly, since ^(P,)=P,, we have w,(P^)+P,.
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12 N. I W A H O R I AND H. M A T S U M O T O

Now assume ^(P^^^^CT-^O, Do). Then we have P^^a-^o, w^o), i.e.
(y(P,^A(S)o, (TW,Do), i.e. CTW.Do'-'Do^Pa.ii))- On the other hand we have, by

^(^.^^(^.^^^(^(Pa.k))- Henceweget (TW.2)o^(TDo(o(P^)), i.e. w,S)o^2)o(P,,&),
<^ /̂ /-> /̂

i.e. P^eA(z^). Now for any aeDo, the only hyperplane in A which intersects with
———— /^^

the segment a, w^a) is obviously P,, i.e. A(^.)=={Pj. Hence we get P^=P^.,
__ /^^/ '"•s /̂

which is a contradiction. Thus we have shown that w^(a~1) —{P,}) CA(^(?~1) —{Pj.
/~<>^/ i" /̂

Now replacing cr by aw,, we get ^£;,(A(^(7~1)•—{PJ)CA((7--1)—{P,}, which completes
the proof since w^ ==-1.

Corollary 1 .4. — 7w a^ ceDW and for any i, o^i^l, we have

^(A:(cr)-{Pj)-A:(^<r)-{Pj.

Proof. — Replace CT~1 by a in Lemma 1.3.
/-^-/

Lemma 1.5. — 7w any creDW and for any i, o_< z_< /, P̂ . ̂  exactly in one of A(<T'~1),
A(K;,o~1). We have

\{aWi) = X(<T) — i ^ P, e^o-1)

XW=X((7)+i ^ P,^(a-1)

Proo/: — Assume that P.eA^-1), P.e^^CT"1). Then we have crDo^Do(CT(P,)),
CT^S)o^T)o((7(P,)). Hence (y1)o^CT^'Do(cr(P^)), i.e. £)o^^T)o(P,) which is a contra-

/^^/ /^x^/
diction. Similarly we get a contradiction if we assume P^A(<r~1), P^A(^(7~1). Thus P̂ -

»̂»«/ r«»>/

is exactly in one of A(<7'~1), A(^(7"~1). The second half of the lemma is an obvious
consequence of Lemma 1.3.

Corollary 1 .6. — For any creD'W, we have ^(o-)^X(<7).
Proof. — Let a = Wi . . . Wf be any reduced expression of (T. Then since

X(TZ^)^<X(r)4-1 for any reDW, o<^i<^l (Lemma i .5), we have ^(CT)^r=/((r), Q^.E.D.
Lemma 1.7. — £^ oreD'W, cr=)= i. Then A((T) zj not empty.
Proof. — Let a === w^ . . . ̂  be any reduced expression of cr. Put

cr==(7i==^. . .w^, 02==^...^, ..., cr^==^.

^*-/
Assume that A(cr) is an empty set. Then by Lemma i .5 (replacing <r there by cr)

/^»>/ /-^
P^eA(w^<7). Hence we get by Cor. 1.4, A(cr2)=={P^}. Let us assume now that we
have proved the following assertion (A^) for some k, ^^k^r :

(A,) :Ha,)={w^. . . w^), w,^. . . ̂ (P,,), . . ., ^_,(P^.,), P^_J.

We shall show that 2_<^<r and (A^) imply (A^i). In fact, it is enough to
/^^-'

show that P.^A(<j/..). (Then, because of Lemma 1.5 and Cor. 1.4, we have
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ON SOME BRUHAT DECOMPOSITION 13

A(^+l)=A(^^)=^•^(^)u{P^} which is nothing but (A^,).) Assume P^e^^).
Then by (A^) there exists some m with 2<w_<A;—i such that

p^==^-l•••^(p^-x).
Le- (^-i • • • ̂ J^-iK-i • • • ̂ J~1 = ̂
Le- ^-A • • • ̂ -i== ̂  • • • ̂ -i^-
Hence we get

^ ... ̂ :=(^ . . . w^j{w^.. . w^(w^... ̂ )

^J ̂  • • • ̂ -2^ • • • ̂ -î .i • • • ̂  (^>2),

^•••^-i^i---^ (^=2).

This contradicts /(^...^)=r. Thus (Aa), . . ., (A,.) are all valid. In parti-
cular (A^) means that

A:(cr,)=A:(^)={^^ . . . ̂ (P^ . . ., ̂ (P,^), P^J.

On the other hand A(^)=={P,J. Thus P^ must coincide with an element in
{w^. . . M^(P^), . . ., ^_i(Pi,_2), P^_J. Then we get a contradiction as above, Q.E.D.

Corollary 1.8 (^/: [5], [14]). — 77^ ^ro^ D'W is simply transitive on g.
Proof. — We have only to show that creD'W and aDo=l)o imply a==i (see

Prop. 1.2). If o?)o==Do, then A(or) is empty. Hence (T=I by Lemma 1.7.
Corollary i. 9. — Z^ CT e D'W, G- =(= i. TA^ ^r<? ̂  jow^ z with o^i^l such that P»e^((r).
Proof. — Assume P^^o) for all z=o, i, . . . , / . Then for any ae^ the

segment a, a {a) does not intersect with any P^, o<^i<^l. Hence the point a (a) belongs
to 2)o. Thus we have aSo==2)o and or=i , which is a contradiction.

Proposition 1.10. — For any oeD'W, w<? Aa^ X((r)=/((7).
Proof. — Let us prove the proposition by induction on \{a). If X(or) == o, then A'(<y) is

empty and or==i . Hence we have X(o) ==/(ci) ==o. Now assume that X((r)=A>o and
that we have proved X(T)=/(r) for any reD'W with X(r)<A:. By Cor. 1.9, there
exists some t with o<^i<^l such that P,e^(cr~1). Then we have X(T)==A:—I for T=(T^
by Lemma i. 5. Hence we get X(r) == /(r) =A— i by our induction assumption. Thus
there exist j^ . . . , JA ._ I with o_<ji, ..^jk-i^l such that T=Z^ ... ^_^. Hence
<y=T^===w^. . .Wy^Wi. Thus we have /(cr)^(A—i)+ i ==A:=X(cr), which completes
the proof by Cor. i. 6.

Corollary 1.11.—Z^ creD'W and i be an integer with o_<r</. Then there exists a reduced
expression of a starting with Wi (resp. ending at Wi) if and only if P^-e^cr) (resp. P(e'A(^~1)).

(~Sfc/ ___ /̂ «>/

Proof. — Assume P;eA(<r). Then, putting T==^(T, we have P^A(r) and
/(T)==X(T)=X(a)—i==/(<r)—i by Lemma 1.5 and Cor. 1.4. Thus for any reduced
expression T = w^. . . Wj^ of T, we get a reduced expression (T == ̂  wj ... w, of <t.
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Conversely let G==W^W^...WJ be a reduced expression of a with ji==i. Then
^==w^...Wj is also a reduced expression. Hence we have / (T)==/(cr )—i, i.e.

/^»^
X(T)=X(o)— i . Then we get P;eA((7) by Lemma 1 . 5 and Cor. 1.4, Q.E.D.

1.6.
Proposition 1 .12 . — Let ceD'W and a==Wi . . .W[ be any reduced expression of CT.

Then we have
^(o)={P^ ^(P,J, ̂ ^(P,.), . . ., ̂  . . . ̂ .,(P^)}.

Proof. — We prove the proposition by induction on X(<r). If r === X((r) == i, then cr === z^
and we obviously have A((T)={P^}. Now assume that r>i and that our assertion is
valid for reD'W with X(r)<r. Put T=^(T. Then X(r)=/(T) ==r— i. Thus we get

by our induction assumption that A(r) ={Pf., W(/P(.), . . ., w^.. . w^(P^)}. Now
/-'W' /——.^

we have P; eA((7) by Cor. 1.11. Hence P( ^A(r) and we have

A:((.)-{P.J= ̂ (T)-(P.J) = W,W.

(̂ S-/ <̂ »>»'

Hence A((r) =={P^}uw^A(T) which is what was to be proved.
Corollary 1.13. — Let a.T.peD'W and cr==Tp. Then we have X((r)==X(T)+X(p)

r<« /̂ r>«^ /̂ > /̂

if and only if A(o-) ^ ^ disjoint union o/'A(r) flnrf rA(p).
r̂ »/ /̂ «»/ /̂ »»/

Proof. — If A (a) is a disjoint union of A(r) and rA(p), then we obviously get
^(a) == X(r) + X(p). Conversely let X(cr) == X(r) + X(p). Then for any reduced expressions
T === w^. .. w^, p == w^ . . . 2^5 o == w^ . .. w^Wj^.. . w^ is a reduced expression of <r.
Then by Prop. 1 . 1 2 , we get A(cr)=A(T)uTA(p). This is a disjoint union since
X(a)=X(T)+X(p), Q.E.D.

Lemma i. 14. — Z^ w^. . . w^==w^. .. w^ be a reduced word in D'W. If
r*^

Py^A(w^. . .w^), then there exists an integer m such that

s + i ̂  w^ r ayzrf w^... w,^ = w,̂  . .. w^_^

Proof.—PutT=w^...^, p=^^^...^. Then <y=Tp and l{a) ==^(r)+/(p).
Hence A^((r) =A^(T)urA^(p) (disjoint) by Cor. 1.13. Now P^eA((7) by Cor. 1.11.

<—«^
Also P^A(r) by the assumption. Hence

P^(p) =T{P^,, ̂ (Pf,J, . . ., ̂ ,, . . . ̂ (Pf,)}.

Thus there exists some integer m with ^+ i^m^r such that P/\=^^s^i • • • wi„_l(Pln^)?
i.e. P,̂  = ̂  ... w^PiJ. Hence we get ^ == (w^ . . . w^)w,J^ . . . ̂ _,) -l which
completes the proof.

Now let 6 .̂ =6^. be the angle between the fundamental roots a, and ay,
i,<t=t=j^/. It is known (cf. [13, Exp. 10]) that nl2<_Q^<Tc for i^j. Also let
6^ ==6,o (t== i, . . . , / ) be the angle between —a^, a,. Since ao+a^A, we have
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2(ao» ^/(a,, a,);>o. Hence we have also 71/2^60^71 (z= i, . . ., /). It is also well

known that, for o<^i^j<_l, Q,y is of the form ( i—^)7r ,v=2, 3, 4, 6 and we havev

i^. =^.w, if 6^==-n:/2,

1 ̂  ̂ . w, = ̂ . M;, ̂  if 6̂ . == 27T/3,

] (^)2 = (^)2 H 9,, = 3^/4.
ff^.^3=^.7^3 if ft..—K7r/fi

(*)

(^.)3=(^,)3 if e,,==57r/6.
Proposition 1 .15 . — Z,̂  gc î  a complex simple Lie algebra; we use the notations as

above for WQ, .. ., w^ 6,y {o<^ij<^l), W, D'W. Let G be any associative semi-group and
^o? ^15 • • • ? \ ^e ^+i elements in G satisfying the following relations:

A,A,=A,A, if e,,=7r/2,

A,A,A,=A,A,A, if 6,, ==271/3,

(A,A,)2=(A,A,)2 zy 6,,==37r/4,

(A,A,)3=(A,A,)3 zy 6,,==57r/6.

TA^TZ for any reduced words w^.. . w^==w, ... Wj in D'W, we have

A, ...A, =A, ...A,.t! ^r /i Jr

Proof. — Using Lemma 1.14, the proof is given exactly in the same manner as
in Iwahori [10, Th. 2.6].

Corollary 1 . 1 6 . — The defining relations/or the generators WQ, w^ ..., w^ of D'W are
given by (*) above and

wi=i {o^i^l).

Proof. — Using Prop. 1.15, the proof is given exactly in the same manner as
in [10, Cor. 2.7].

i. 7. Let us define a subgroup Q of DW by

^=={(7eDW;(TDo=2)o}.

Clearly Q is defined also by
n=={CTeDW;X(CT)=o}.

Now since D'W is simply transitive on gr, we have easily the following decomposition
of DW into a semi-direct product of 0. and D'W:

DW=^.(D'W), QnD'W={i}.

Hence we have ^^DW/D'W^D/D'^P/P,= 3. Thus 0. is a finite abelian group
isomorphic to the center 3 of G^. It is also easy to see that

X(p(Tp')==X(a)
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for any weDW and p,p'e0. In fact,

A(p<rp') ='A(pop'Do, D,,) ='A(poDo, ̂ ) = p^d ,̂ 3\) = pA'(<r)

implies that X(pop') =X(<i).

Proposition 1 .17 . — T^ intersection of P -̂ w^ ̂  c/ojyre •So O/'D(, cowwfo o/ o and
the e, ZCT'fA (ao, £()=!. ;

Proof. — Let ^= (̂i..e.e^nP,!-, ^+o, ^eZ(i^^Z). Then by o^(a..,A-),

(ao,.v)^i, we get (A..>O (i^i^/) and^;A,OT.^i where OT.=(ao,e,). It is known

that all OT. are positive integers ([13, Exp. 17]). Since x^o, some (A,>O. Thus
OT,==P,,=I and all the other (x, must be o. Hence x=s, for some t, i^i^l, with
(ao, e,)=i. Conversely, if (ao,s;)==i, s, is obviously in 'Do"?,1! Q..E.D.

Now let us give an explicit description ofQ. Let <i=T(</)weDW be an element
of Q where def1, weW. Assume o_+1. Then d^o since QnWcDnD'W={i}.
Now since <T2)o==3)o, we have oDo=3:)o. Hence o(o)e^o, i.e. w{o)+d=de^n'P1.
Hence d=s, with some s, such that (ao,s,)=i. Note that w is uniquely deter-
mined by d. In fact, if we have w, w'eW, T(rf)weQ, T{d)w'e£l, then we get
ar^'ennW^i}, hence w=w'.

Now let us show conversely that if d== s.., (ao, e.)= i, then there exists an element
weW such that T(rf)weD (w is unique as was remarked above). It is known that
there exists in W an element u>a such that WnW=—Tl ([13, Exp. i6J). w^ is unique
and satisfies w^=i. Similarly, if we denote the subset II—{a,} by 11;, then the
subgroup W; of W generated by w^ ..., w,, ..., a»; (w; means that w, is omitted)
contains an element Wn. such that w^i)=—'ni. w^ is uniquely determined in W,
andsatisfies w^= i. Weclaimthat T(s;)wn.WneQ, i.e. T(e,)wn^n(2)o)=3V Clearly
we have Wn(2>o)=—3V Let ae^. Then b==Wn{a)e—T>o. It is enough to show
that WruW+Ste^o. Now since Wn, is a product of the w,'s with j^i, we have
Wn,(ai)==a;+^vya/ for some vyeZ. Hence Wn.(ai)>o. Also we have »n.(ao)>o.
Nowifj=K (a/., Wn.W+s,)=(a;, Wn,W)=(Wn.(a/), &)>o since Wn^,)e—H,,be—^.
Alsowehave (a,, Wn.(6)+e,)= i +{w^i), b)>o since Wn((a,)eA+ and be— ̂  imply
that (wn^),b)>—i. Finally (oco, Wn.(6)+e,)= i+(a»n.(ao), A)<i since Wn,(ao)eA+
and be—^ imply that (wn^),b)<o. Thus we get T(e,)wn^n(S)o)=S)o* and we
have proved the following

Proposition 1 .18. — The mapping from the set {o}u{s;; (ao, e,)=i) onto Q defined
by o—l, e(-^T(s;)wn(!»n w bijective.

Corollary 1 .19 . — T^ order of the group Q (i.e. the index [P : PJ) is equal to
i + N, wAcre N M ̂  number of i's such that (ao, s,) = i.

Corollary 1.20 (cf. [5]). — For any cell 2), the intersection tinP1 consists of a single
element. In particular T>o r> P1 == {0}.

Proof. — Since P1 is stable under D'W andJ)'W is transitive on g, it is enough
to show that DonF-'-^o}. Let x^o be in S)onP1. Then since P-'-CP;1-, there
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ON SOME BRUHAT DECOMPOSITION 17

is some i with x==e^ (ao,e,)==i. Now since A-eP1, we have T(^)==T(e,)eD'. Hence
T^s^Wn^neD'Wnfi^i} which is a contradiction, Q.E.D.

The unique intersection point DnP1 is called the lattice point associated with the
cell I). Note that for cr, reD'W, aDo and rDg have the same associated lattice point
if and only if <yW=TW. In fact, the lattice point associated with oDo is clearly <r(o),
hence it is enough to show that

(T(O)==T(O)O(TW=TW.

But this is obvious since <7(o)==T(o)oCT~ lT(o)=oocF~ lTeW.

1.8. We shall now consider the automorphism o—»'pcrp~1 of D'W defined
by peD. Since ^(pcrp"'1)^?^), this automorphism induces a permutation of the
set [WQ, w^ ..., wj. Thus we get a homomorphism from 0. onto a permutation
group of /+ i letters ^o, z^i, . . ., w/. This homomorphism is injective. In fact, if
a non-trivial element p = T^)^.^ eD, with ((XQ, e^) = i induces the identity, we get
pz^p"^^ (o_<^'^/). In particular we get

^£;,T(£^w^^^w/-l==T(^)w^^^ O'^ ^ . . . ,^) .

Hence we have WfT{^^)wJ~l==T{e^), i.e. ^/(s^) == e^, i.e. ( ay , s ; )==o for i^j^l-
Hence £f==o, which is a contradiction.

Proposition 1 .21 . — (i) Z^ P=T(£^)w^^^£;^e^ (ao)£i)==i- 7^^ P^oP"-l==^<;(•
(ii) Let 9 : DW ->W be the natural homomorphism. Then (p is injective on Q. and the

set {oci, .. ., o^, —oco} is stable under the subgroup WQ=(p(t2) of W.
Prw/.—(i) Let us show first that pWop^eW, i.e. p^op~ l(o)===o, i.e. ^~l{o)eP^^.

Now p"-l(o)=^^^,^£;^(—^l)• Since z£;y(^)==^ (j'=t= i) we have Wn^8?)^8^ hence
p-^o)^—w^(£^)• Thus we have to show that (ag ,—Wn(^) )= i , i.e. (^^(ao)5—e/)^!.
Now Wn(II)=—11 implies that w^{y.o)=—cy.o and we have (^r^o)?—£l)=(a09 £l)= I-
Hence we get p^op'^eW. Thus pWop - le{Wl, . . ., ^}. Now the natural homomor-
phism 9:DW->W is injective on ^, since £ inD={i} by Prop. 1.18. Hence
to determine the element pWop^eW, it is enough to determine the image of
pz^op"1 under this homomorphism DW->W. Now this image is clearly given by
^Hi ̂ n ̂ ao^n ̂ Hi = ^Hi ̂ a, ̂ n, since w^ (ao) = — ao and w^ w^ w^ == w_ ̂  = w^. Thus the
image is equal to w^ where P^^n^o)* O11 t^ other hand (Be±II since
pWop - le{wl, ...,^}. As was remarked in the proof of Prop. 1.18, w ^(ao)>o.
Hence (Bell. Also, since ag is of the form a^+ S.w/ay and ^n, ls a product of the

Z£;/s (j4= i), p = Wn^(ao) is also of the form o^ + S jiyay, (JiyeZ. Thus P must coincide
with a^ and we get p^op"^^.

(ii) Let p=T(£;)w^•w^ be a non-trivial element in 0.. We have seen above that

y(p)(—ao)=^^^^(—ao)=a,.

Put p'^T^^n^n- T^en ^n,^n= (^n^n)"1^^^- Hence
?(P) (a/) = ̂ n^n(a/) - ̂ n^n^/) = —^0.

^
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(Since Wn^n(-—ao)=ay.) Also for a^ell—^ay}, we get

?(P) (afc) = ̂ n^n/^) e^n(—n/)cn.

Thus <p(p) keeps the set {ai, ..., a^, —ao} stable, Q.E.D.
Corollary i.m. — If (ao,s,)=i, ^ ^(ao)-^.
We note here that the order of p==T(£^)^^^^eQ is equal to the order of w^.w^

since the homomorphism 9 : DW ->W is injective on 0.. Thus, if the Weyl group W
has a non-trivial center, then w^ = — i and the order of p is equal to 2. Hence for
types B,, C^, D; (/==even), Gg, F^, Ey, Eg, every element p of 0. (p=[= i) is of order 2.

We shall give in the following the table of the action of peQ on the set
{wo, w^ .. ., wj defined by ^->pw,p-1. We refer to Borel-de Siebenthal [i] for the

i
coefficients m^ in the expression of oco== S m^. It is also noted that the permutation

w,->^w^~1 (o<^i<l) of the set {wo,w^...,w^} induced by peQ coincides with the
permutation of the Dynkin diagram of {—ao,a i , . . ., aj induced by <p(p)eW^CW
Since <p(p) preserves the angle between —ao, ai, . . ., a,, ^(p) is an automorphism of
the Dynkin diagram of {—o^, a^, . . ., aj.

^0

(A,):
0"-———————0 — — — - - - - - - - ———-o
a! a2 ^l

^O = ̂  + . . . + ̂

Q ̂ Z,^. i (cyclic group of order / + i),
p=T(si)z<;jj^n generates Q and

pWlp""1^^? 9W29~1==W3, • •^P^P" 1 ^^-

P^OP"1—^!.

(B.

(C,)

250

^ ^_^ ^

—ao
ao=:al+2(a2+. . .+a,)
ti^Z^ ^={i,p}, p=T(s^n^n.

p^oP-l=^l, pWlp-l=Wo, p^p-1^^

ai ag a^_ i a^

ao==2(ai+...+a^i)+a^
Q^Z^, ^=--{1, p}, p=T(s^n^n.

p^p-1^^, pWip-1^^.!, . . ., p^p""1^^1

(^^).
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ao==ai+2(a2+. . •+a(-2)+a,_i+a;
^^{^PnPi-^Pi} where

p,=T(£,)wn^n

Z==even: jQ^ZaXZg,

pi^opr^^ pi^ipr^^
pi^-ipr^^ pi^pr1^^-!-

pi^pr^^-z (o^'^), pi-i==pipi=pipr
Z==odd: n^Z4, p, generates t2 and pi==p^ P?-i=P^

Pi^oPi -^^^ P^lPi l==:^-l. p ,̂p, -^w

p^i-ipr1^^? p^^p^l=^<;l-
al
0—

-%)
ao==
^^

P^oP"1^
p^p-1^
P^</3p-l==

005

ai 002
0——————0——

ao==^
p^oP"1-
p^p"1-

ao a^

^

< > a4

ai + 203 + 3a2 + 2a4 + 2a5 + ag
^3, p=T
Wl, p^lp-
^2, P^P"

Ws.

0('>

ai + 2ag + 3
Z2, ^=={1

^, pZ^p-

^4, p^p"

^2 0(3

as as

(
1

-1

3-

a

3

1

1

Oag

£i)wn^n generates Q,
=Z£;e, p^p""^^
=^5, p^<;5p~l=W4

^4 ^

3+4^+2^

P}. P-^

=^2, pWgp

=^5.

0^4

^

07 —ao

+ 3^6 + 2^

^^n^^n-
^~l=w^

05 ay (Xg

ao == sa^ + 302 + 4a3 + 5<X4 + 6a^ + 3ag + 407 + 2ag
0={i}.
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(F4) :
«i a^ 003 04 —a^
o————o4===o———o--~----o

(&i) :

ao = 2ai + 403 + S^ + s^
Q={i}.

^ a^ —o^

ao == 3°^ + 20C2
0={i).

i. 9. We shall give in this section a formula for X((r) and applications of this formula.
i '"̂Let CT==T(rf)^eDW, rfePy, weW. Then for a hyperplane P^eA, the relation

P^ ^eA(<y) is equivalent to
((a,a)-A;)((a,o(a))-A)<o

where a is any point in 2)o (see § 1.4). Now since Pa^=P_a,-&5 we ^^-V assume
always that aeA4". Let us denote by v^ the number of keZ satisfying the above
inequality for fixed aeA4', aeDo. Then we have

x(o)= 2\ ̂
a6A4-

Now let us compute v^- Since a (a) ==w{d) -\-d and
(a, a{a)) = (a, w^) +d) = (^-'(a), ̂  + (a, d),

v^ is equal to the number of AeZ satisfying the following inequality:

(a^)^(^-l(a),a)+(^a).

Now v^ ls independent of the choice of flet)o- Taking a sufficiently close to the origin
of!)B, we see easily that

j|(a,.f)| if w-\^)>^
^"^ | ( a , f l ? ) — i | if ^(/-l(a)<o.

Thus we get the following
Proposition 1.23. — Let rfeP,)-, z^eW. TA^

X(T(rf)^)== ^ |(a,rf)|+ ^ |(a,rf)-l|.
w- l(a)>0 w-^aXO

Let z^eW. Then we denote by A^ the subset of A4' defined by A^" == ̂ "^"nA4".
We also denote by n(w) the cardinality of the set A^". Then by Prop. 1.23 we get
easily the

Corollary 1.24. — \(w)==n(w) for any weW.
As applications of Prop. i. 23, we shall compute Min X(a), Max X(<r) for a given. ri r 35 r oeT(d)w v n oeT(d)W v / 5

def^-. Put
Al={aeA+; (a, rf)^o}, A^aeA-*-; (a, d)>o}.

252
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Then ©==(—A^uAg obviously satisfies
A==©u(—©), ©n(—©)=0.

Moreover, © is additively closed in A, i.e. ae@, (Be©, a + P e A imply that a+P^©.
Hence there exists a unique element w*eW such that ^A^^Q. (See Borel-
Hirzebruch, Amer. J. Math., 80 (1958), Chap. I, § 4, or R. Steinberg, Trans. Amer.
Math. Soc., 105 (1962), 118-125.) Then we have A^_i=Ai and A4 '—A^-i^Ag.
Thus we get by Prop. i. 23,

X(T(^)= S (|(a,rf)|+i)+ S |(a,rf)|.
aGAi aGAa

Then it is obvious that we have X(T(rf)^*)== Max Xfcr). Similarly, there exists a
x ' / / oGT(d)W v / ' 5

unique element w**eW such that w**A+=AlU(—Ag)=—©. Hence A^-i^Ag,
A+—A^-i==A^ and we have

XCIW)= S (|(a,</)|-l)+ S |(a,rf)|.
aGA, a£Ai

Then we obviously have ^(T^)^)^ Min X((r), X(T(rf)^*)—X(T(rf)^)== [A4 '], where
| A4 '] means the cardinality of the set A4'. Moreover we get w*==w**w^ since
z^A4' === —z^A4" = z^^n^4^- Now let us show that the element weW which attains the
Max \(T(d)w) is unique. More precisely we shall show
wGW

^T{d)wfw)==^^{d)^v)—n{w)

for any M/eW. In fact, we have / (w)==X(w)==w(w), hence
HT{d)w'w)>HT{d)w^—Hw)=nT{d)rv)—n{w).

by Lemma i.5. Put wf==w~lw^; then we easily get n(w')^=n[w^)—n(w}•==\^+\—n(w)
(observe that A4 '^—w^^)u^-i is a disjoint union and A^-i=—wA^") and we
have

^(T^^—IA^-I^T^)^^
X(T(^)^wz£;0>X(T(^)^^)—^(^)^X(T(rf)^)—7z(w)—^(^=X(T(rf)^

Thus we get the equalities everywhere and hence we have \(T{d)w*w)==\(T{d)w*)—n{w).
Similarly we get

HT{d)w"w) = \(T(d)w") + n(w)

for any weW. Hence the element weW which attains the M.in\(T(d)w) is also
' wEW ' v /

unique. Thus we have proved the
Proposition 1.25. — Let def^-. Then Ma^x X(T(a?)w) and MinX(T(rf)w) ^

attained by unique elements w*,w**eVf respectively. Moreover we have

X(T(^)=^N,+|S,|,

X(T(^)^N,-|S,|;
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where \ S^ | (resp. | S^ [) means the cardinality of the subset o/'A+ defined by

S,={a€A+; (d, a)^o} (resp. S^={aeA+; (d, a)>o})

and N^== S | (d, a) |.
a e A

Furthermore, we have, for any weW,

^T(d)w'w)=^^{d)lv)—n{w),
HT{d)w"w) == X(T(rf)^) + n{w) $

We also have iv=iv'w^, ^^{d)wc)—^^{d)w^)= [A4-!.

Corollaryi.26.-Let deV^. Then Max X(w.T(rf)) W Min X(w.T(rf)) are attained
by unique elements w^\ w^ respectively. We have moreover

X(^).TW)=^N,+|R,|,

^.TW)^N,-|R,|,

wA^ R^^oceA^; (rf, a)^o}, R^={aeA+; (rf, a)<o}. M^ fl/jo A^^/or any weVf

X(^l)T(rf))=X(^l)T(rf))—7^(w),

X(w^T(rf))=X(^2)T(rf)) +n(w),

and w^^w^w^, ^w{l)T{d))—^w{2)T{d))=\^+\.

Corollary 1.27.—-L^ (reDW. T^TZ Min ̂ (wcr) is attained by w==i if'andonly if'aDo

^ contained in the positive Weyl chamber {xe^', (a,, A:)>O /or ^ z==i, ...,/}. Also
Max X(WCT) ij attained by w== i ?y<znrf OTZ^ ^<TDo ^ contained in the negative Weyl chamber

{A:e%; (a,, A:)<O for all i= i, ..., /}.

Proof.—By Cor, 1.26, X (a-) ==Mi^ X(w<r) is equivalent to X(^(r)>X(<y) (z= i, . . . , / ) ,

i.e. to P^A((T) {i= i, . . . , / ) ; which is in turn equivalent to a^o^oW [i= i? • . ' , 1 ) .
i.e. to the fact that <rDo is contained in the positive Weyl chamber. The second half
is also proved similarly.

Remark. — Let J be any proper subset of {o, i, ...,/}. Then the subgroup Wj
ofD'W generated by {wy^jej} is finite. More precisely, the natural homomorphism

/"^-/ /^^/
D'W-^W is injective on Wj, i.e. D'nWj={i}. In fact, since J is a proper subset
of {o, i, . . ., /}, ,n P̂ . is not empty. Let ae f1 P .̂ and aeD'nWj. Then a{a) ==a.

However, the only element creD' which has a fixed point is i. Thus we get

D'nWj=={i}, whence Wj is isomorphic to a subgroup ofW. Now, using Wj instead
ofW, Prop. i .26 and Cor. i .27 are still valid under a suitable modification. However
we shall not use this fact in this paper and shall return to a detailed treatment of this
question in a subsequent paper.
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For later use, we give a criterion for P, to belong to ^(o""1), i.e. a criterion
for X((yw,)<X(<7)((reDW).

Proposition 1.28.— Z^ (T=T(^, </eP^ weW and i an integer with i<^i^l. Then
we have

(i) X(ow.)<X((r) if w(oc,)>o, (w(a,), ^)>o,
or if z^(a,)<o, (z<;(a,), rf);>o.

(ii) X(CT^)>X((T) z/ ^(a,)>o, (^(a,), ^)^o,
or if ^(a,)<o, (w(a,), rf)<o.

Proof. — Let fle£)o. Then X((TW,)<X((T) is equivalent to P.e^-1), i.e. to
^i,a){^G~\a))<o. This is equivalent to (a,, a~\a))<o since (a,,a)>o. Now
^a)==w-\a-d). Hence (a,, a-1^)) = (^(a,), a)-(^(a,), </). Since a can be taken
arbitrarily close to the origin, (a^CT-1^))^ is equivalent to (w(oc,),rf)>o (resp.
(^(a,), rf)^o) if w(a,)>o (resp. if ^(a,)<o). Thus we have proved (i). (ii) is shown
similarly.

The following proposition is also proved similarly.
Proposition 1.29. — Let a=T{d)w, a?eP1, weW. Then we have

(i) X(o^o)<X(a) if ^(oco)>o, o^{w(^), d) +1,
or if w(ao)<o,o>(w(ao),^)+i.

(u) X(a^o)>^(<r) z/ ^(ao)>o, o<(^(ao), </) +1,
or if w(ao)<o, o^(w(ao), rf) + i.

1.10. In this section a few comments about the Poincar^ series P(DW, t), P(D'W, t)
will be given, where

P(DW,^)= 2 ^°), P(D /W,^= S ^°).
o£DW v 3 / oGD'W

(cf. Bott [2, §§9, is]). Since DW is a semi-direct product of 0. and D'W and since
X(pT)=X(r) for pe^.reD'W, we have P(DW, ^)== [t2[ .P(D'W, ^) where |^| is
the order of 0..

Now let deP^weW. We shall say that a? is related to wif Min X(o) for <reT(^)W
is attained by T{d)w. By Prop. i .25, if d is related to w, then we have

^A+={aeA+; (a, rf)^o}u{aeA-; (a, rf)<o},
Le- wA-=={aeA-; (a, rf)^o}u{pGA+; ((3, rf)>o},

and also we have

HT{d)w)= S (a,rf)+ S ((a,rf)-i)
a>0 a>0

(a,d)^0 (a,d)>0

^J^ ̂ +^J^.^ P)-!^-"^!
= 2 (rf,w|3)—n(w).

p£A-

^J
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Let S a=fliai+ .. . +^a^ where ^, ..., ^ are positive integers. Then we get from
the above equality

i
HT{d)w)= S ^(rf, —w^—n{w).

Now fix weW. Then deP^ is related to w if and only if

{d,w^)>_o for (B6A~n^</~ lA~ and
(^w(3)>o for (BeA-nzeT^A4-.

These conditions are equivalent to

{d,W(x.)^o for ae(—Tl)nw~ l^'~ and
{d,wa.)>o for a<=(—r^nw^A4'.

Infact,let —n^—n^^A-.—n^—nOn^A4-. Then n^ ^ form a parti-
tion of n. Let def^r satisfy (rf,wa)^o (for any ae—n^) and (rf,^a)>o (for any
a e — I^) • Let p e A~ and (S= S Va• a + ^ v^.y where ,̂ v are non-negative

a e — IIi Y G — IIa

integers. Now if (SeA-nw-^A-, then (</, ^(B)= S ^(rf,wa)+ S vjrf, WY)^O-
a G — rii Y G — n,

Also if (SeA-nw-^A4-, then w(3== S v^.^a+ S V^.Z£;Y>O. Hence we haveae-iii ve-n, •
^>o for some YE—^2. Thus we get (rf,w(3)== S ^(rf,wa)+ S >/Jd,w^)>o.

a e — iii Y^_na
Let @(w) be the set of all deP^r which are related to zceW. Let

-^^{-^nw-1^-^-^ ...,-aJ,
-n^-I^n^A-^-a^, ...,-aJ.

Then by what we have seen above, deP^- is in @{w) if and only if Si^o, . .., ^^o,
?

^,4.i<o, . . . , ^<o where W1^) = S ̂ ^, ^eZ (i^z^/). Moreover if rfe©(w),
we have

i
HTWw)==-^a^-n{w).

Thus we have obtained for a fixed element weW

^ ^(T(d)w)^^-»(w) y ... v y y ^i^i+...+^^
de0(w) 7]x=0 " ' 71,=0 ^^=1 ' ' ' 71^1

, 1 I ^r+l ^f
^f-n(w)_______ __________ ____

I — — ^ 1 ' ' ' I—^r i — ^ r + l ' ' • I——t^

Let us denote by a(w) the integer defined by

a(w) == S di (weW).a^ew-^- v /

256
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fd{w}— n(w)

Then we have S t^WW^—————. Since DW is a disjoint union of the subsets
ri(z-^) .
z==l

©'(w)W, where ©'(w) ={T(rf)a/; rfee(z£;)} (weW) (see Prop. 1.25), we get

P(DW,<)== S S .̂
wGW oGQ'(w)W

Now S ^°)== S S ^^^(W,^) S ^ (see Prop. 1.25), whereoee'(w)w Te0 ' (w)w'ew Tee'(w)

P(W^)= S '̂̂v / w'ew

PfW t)
hence we get P(DW^)=—————— S ̂ )-^).

-n- wewn(i—^)
Thus we have proved

PfW t}
Proposition 1.30. P(DW,^=————— S ̂ )-^

••-.- w £W11(1—^.)»=!
PfW f)

P(D'W,<)=——————— S <°("')-»("').
loin^.-^)—

where S a=^ai + ...+^/a/, a(w)= S a,.<xeA+ 1 1 ^ i i^ \ ^ a^ennur-^- (

Similarly, using MaxX(T(rf)w) we get
w £W

PfW ^P(DW,^)= . r^^ S ^)+^
ri(i-^) wew

z=l

where b{w}= S <z . . Hence a(w) + b{w) = ai + • • • + ̂ i- We note that
o^Glinw^A4-

a{w^w)=-=b{w), n(w^w)== [A4"!—w(z^).
<

Hence S; ^-^ is self-reciprocal: (ff(w)— n{w))+{a{w^w)—n{w^w))== S ̂ —lA4-] .
w GW » *= 1

Now using Cor. 1.26, 1.27, similarly as in Prop. 1.30, we obtain

P(DW,^)==P(W,^) S t^
o £ F

where F is the set of elements a in DW such that crS)o is contained in the positive Weyl
chamber. Let r'==rnD'W. Then we have

^(D'W.^^W,^ S ^°L
oer'

257
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Let CTI, ..., mi be the exponents ofW, i.e. let the Poincare polynomial of the compact

form of Gc be H (i +f2m^+ l). Then by Bott [2, § 13],

S f"°'_ I
o€r ' rrn(i—c"<)(=1

Also it is known that ([6, p. 44])

p{w,t)==^{I+t+...+tm<).
i=l

Thus we have
I T J- / J- _L /^

Proposition 1.31. — P(DW,^)= |Q| n—————3——1 '1=1 i—^

Also we get an explicit form of the polynomial denoted by Q^) in Bott
[2, p. 277], i.e.

Q^)= S ^°)
oeri

where 1̂  is the set of elements cr in D'W such that oDo is contained in the parallelotope
{^I)B;O<(O,,A:)<I for z = = i , ...,/}. By [2, § 13]

s ^)^-_^L_oer nd-^5
1=1

hence we have P(DW, t) == | Q | P(W, t) —.
11(1-^)

i=i
Comparing this with Prop. i. 30, we get

|^[.Q^)== S ^)-^).
w£W

Putting ^==1, we get a formula for the order JW| of W:

|W|=[0|.Q(i).
i

The value Q(i) is given by [2]: Q(i)=nn^,
»=i!

where </, = (a^, e,) (i ̂  ̂  /), i.e. ao = S; rf,a,. Thus we have a formula for the order [ W |
of the Weyl group W: i=cl

i
Proposition 1.32. — [W|=|^[/!n d,.

i 1=1
Since [ W | == II (i + m,), we also have

1=1
in(i+m,)

|Q|^ir__———.

llHd,
»=i
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§ 2. On a generalized Bruhat decomposition of a Chevalley group over a
p-adic field.

2.1. Let K be a field with a non-trivial non-Archimedean discrete valuation | |,
i.e. ^ -> [ S | is a map from K into the real number field R such that

(i) 1^1^° fo1' anv S^K. and |^ |==o if and only if ^=o.
(ii) |^|=|^|. h| for any S^eK.
(iii) |^+^ |^sup([^ , [^[) for any ^eK.
(iv) { | ^ [ ; ^eK*=K—{o}} is an infinite cyclic subgroup of R_^. =={<zeR; a>o}.
Then 0={^eK; |^|^ 1} is a subring of K called the ring of integers of K

and ^={^eK; |S[< 1} is the unique maximal ideal of 0. The complement D*
of ^P in 0 is the group of units of 0. We denote by k the residue class field 0/^P.
There exists an element n in ^5 which attains Max{|^|; ^e^3}. An element n in ^3
attains Max{|^[; S6^} if and only if ^3=7r0. Such an element n is called a
prime element. We fix once for all a prime element TT.

Now let Qc be a complex semi-simple Lie algebra and I)c a Gartan subalgebra
of go. We keep the notations of § i, i.e. II is a fundamental root system of the root
system A of Qc with respect to I)c and so on. Let gz denote the Lie subring (over Z)
of Qc introduced by Chevalley [63 p. 32]:

Q,=I),+ S ZX,.
a6=A

Let us denote by 0^ the homomorphism from SL(2, K) into the automorphism
group of the Lie algebra gi^^-^Qz over K- which was defined in [6, p. 33]. (We
keep the notational conventions in [6, p. 36].) Let us consider the Chevalley group G
associated with the pair gc, K ([6, p. 37]); G is generated by the subgroups {Xa; aeA}
and § where

X,=K(^eK}, ^)=0^ ^J),

^{A^xeHon^K-)}.

As in [6] U (resp. 93) denotes the subgroup of G generated by the {3^; aeA4'} (resp.
by the {^;aeA-}).

We now introduce some subgroups of G: let U be the subgroup of G generated
by the subgroups {Xa,o;aeA} and §.o, where

^.o=M9;SeO},
^^(^XeHon^O*)}.

We denote by B the subgroup of U generated by the subgroups {^^asA"},
{X^aeA^ and $o» where

a^-MO;^}.
2M
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We denote by 2Bo the subgroup ofU generated by the elements ^ a f Y 0 I)) (aeA)

and § .̂ Let ^ be the homomorphism from 2B onto the Weyl group W defined in

[6. P- 37L where 933 is the subgroup of G generated by the elements ^a((_° 1}}

(aeA) and §. Then it is seen easily that the restriction of ^ to 2Bo is a surjective
homomorphism from 2Bo onto W with the kernel $^, since 2B=2B.o§, §o=2B.on§.

We denote by D the subgroup of § defined by

D={A(x);^Hom(P„{7c^ ;zeZ}).

Since the map x-^x) from Hom(P,., K") onto § is an isomorphism, the group D
is isomorphic to the group Hom(P,, {7^; zeZ}) via the map h, i.e. D^Hom(P,,Z).
On the other hand Hom(P^, Z) may be identified naturally with the module P1 (§1.2)
via the map d->^ where Xd(a)==(^a) for aeP,, from P,1-onto Hom(P,,Z). Thus
the group D defined above may be identified with the group D defined in § i. 2 via the
"^P ^(Xd)-^1^) (^eP1). Since K* is the direct product of the subgroups O* and
{^; zeZ}, $ is the direct product of the subgroups §o and D. Hence 28 is the semi-
direct product of D and 2B.o with D as a distinguished subgroup. Thus the quotient
group W==2B/$o is the semi-direct product DW ofD and W=2Bo/$o. We denote/^/ ^^
by ^ the canonical homomorphism from 2B onto W. It is easily seen that there exists/^*"̂
a unique isomorphism from W onto the semi-direct product DW in § 1.2 preserving
the elements in D, W. We shall identify these two groups in what follows.

2.2. In this section we shall investigate the fundamental case where G = SL(2, K)

and SL(2, 0)==U=(^ b} eSL(2, K); a, b, c, dec},\\c a/ )

B=((J ^eV;a,deD\ceD,be^.

"< S:-')-2). ̂  l-)--^-}
and <!fBo=$o"§oWl, 2B=$u§Wi

s,-{(; :-,);..o-), »,=(_^ ;).
Then, as is well known, G (resp. U) is generated by the elements ( (I ^, ( I °\; SeE.!
/ t / i ^ /i o\ , _n lvo I/ vs I/ '
(^•((o i ) ' U i)5^))-

LetUy=[^ ^'^l 2)•0=((£ S1)^60)' ^en the following proposition
for SL(a, K) is easily verified by a direct computation.

260
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Proposition 2. i.
(i) B == 93o §o 14 = 14 §o93o.
(ii) U=BuB^B (disjoint union) and BW^B==BW^OQ.
(in) G==Ba3SB== U B(o(cr)B (disjoint union), where (^ is a map from W==9B/^ ^o2B

^ ^ ^ ^ ^
j^A that ^((x)((r))==or /or ̂  <y(=W. (^ u ̂  natural homomorphism SB-^VV^SB/^o.)

The involutive elements ^n== ^ ( ( -i 1 1 ^d Wi = ^ ( ( | ) form a
^ \ \ — ^ o// \ \ — i o//

system of generators of W. Noting this fact, it is easy to prove the ^^/
Proposition 2.2. — For the system (G, B, SB) and the involutive generators WQ^ w^ ofW,

the hypotheses of Tits [16] are all satisfied.
To be more precise, we note that B and 2B generate G, that Bn2B==^o ls

/->»/
a distinguished subgroup of SB and that 2B/$o=W is generated by WQ, w^. Moreover,
the conditions (iii), (vii) of Tits [16] are easily verified: (o(^)B<o((r) CBco(o-)BuBco(z^<r)B
for any oeW and z==o, i; (x)(^)Bco(^) =)=B for z==o , i .

Thus, by Tits [i6], U and V==BuB(o(z<;o)B are the only subgroups H o f G such
that G^H^B. They are not conjugate in G (see [16]), but they are conjugate in

GL(2, K) by the element I Tc] which normalizes B.

The following proposition is also easy to check and gives an " Iwasawa
decomposition " of SL(2, K).

Proposition 2.3. — G == U^U = UDU, where

-{(; 0^4
2.3. Now let us return to the notations of § 2.1.
Proposition 2.4.

U=U<p93o93M3o
== U l((p9So$o(o(w)93o (disjoint union);

where U^ (resp. 93^) is the subgroup of U {resp. of 93) generated by {X^(p;aeA4"} (resp.
{3£a o5 aeA~}), and co is a map from W into 3B^ such that ^{u{w))==w for any weW.

Proof. — As in the proof of [6, Lemme 4, p. 38], we see that Xa,o? 3£-a,o (aell)
and §0 generate the group U. Therefore, to prove U^ll^SSoSBoSo, it is enough to
show that ^U(p93o2Bo93oCU(p93o9!Bol(o for any element ^ in the system of generators
{§05 Xa 09 3£-a o (aell)}. To begin with, we note the following facts (cf. Chevalley
[6, §111]):

(i) U^ (resp. 93o) is a distinguished subgroup of the group U(p§o (resp. 93;o$o).
(ii) U<p== n 3£^^p (resp. 33^== II 3E^o), where the product is taken in the

a e A-1- ' 3 e A- *
ascending (resp. descending) order of the roots. (We assume here that the linear ordering
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of the roots is regular in the sense of [6, p. 20] i.e. the height h{a.) of aeA with respect
to II is an increasing function in a :A(a);>A((B) if a> p.)

(iii) U^^^^U^ where U^= H 3£. „, a, en.
aeA-1- '
a+ a^

a^^.o^ where <^>= 0 X,^, a;eIL
a e A"^ *
a + a^

^-iCU(i) for any ^ in X^.

^B^-1^) for any ^ in X_\.,o.

Now the statement (i) implies immediately that ^U^W^CU^yK^ for
any ^e$.o. Let a, be a fundamental root. By the statements (ii) and (iii), we have
U^SoCUip^yX^X.^o, and more generally, for any ^ in X^.,o or in 3£-a.,o? we get

^SoCU^o^^X.^^cU^^

therefore
^^^oSoC^U^O^(SL(2,0))o)(^)^^.

Now by Prop. 2.1, we have

0^(SL(2,0))C^.^_^,o§ouX,^X_^.oco(^)^X_^,o;

hence, if ^"^(—a^o, we have

^)93(o)0./SL(2, 0)M^)§o2^c
c UW^^^X.^.oco^)^^ u llWX^^X_^.o(o(^)^^^(o(^)^^c
c U<pSo(o(w)$o93o ̂  »<p93o^(^a^)$o»o

(by the statement (iii)); if ^(—a^o, we have ^"'^^(-—a^o,

U(<p)®(o)<I>a,(SL(2, 0))<o(^)$o^ CU|p^O^(SL(2, 0))(o(^^)$o%o ;

hence, as in the preceding case,

lllM<I),(SL(2, 0))co(^)^93o c U<p25oco(^)^93o u U<p»o0)(^^)$o93o.

Thus we have proved U =1(^93^333^ 93^.
Now let us consider the homomorphism p defined by the reduction mod. 3} from U

onto the Chevalley group G^ of gc over the residue class field k == 0/^3. p satisfies
P^a^^aOO for any aeA, SeO, where "( is the residue class of ^, and p(A(^)) ==A®
where ^Hon^P,, 0') and ^Hon^P,, k^ is such that )c(a) is the residue class of 7(0)
for aeP,. Let B^ be the Borel subgroup ofG^ generated by p(93o) and p(§.o); we have
p(U<p%o§o)CB^. Therefore, from the decomposition of U which we have just shown
it follows that

G.=B,p(2B^)B,= UlKp(^))B,.wew
262
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This is nothing but the Bruhat decomposition of G^ with respect to B ;̂ and Gj^ is the
disjoint union of the double cosets B^p(co(w))B^, weVf (see [6, Th. 2]). It follows
immediately from this that U is the disjoint union of the subsets U(p93o^oCt)(w)3So, weVf,
and that the inverse image p^B^) of B^ by p is equal to U^%o§oSo=U<p§;o93o. The
proof is now complete.

Theorem 2.5. — B='U(p§jo33.o.
In fact, as we have just seen, U<p$.o33o is a subgroup ofG, and has the same system

of generators as B.
This theorem is our fundamental tool, which will play an important part in our

later discussions.
We remark that, since Th. 2.5 is established, Prop. 2.4 gives the double coset

decomposition of U with respect to B.
Let d=h[y^ be an element in D. As we have remarked in § 2. i, d is identified

with an element in P;!- which is also denoted by d and we have ^(a) =7T(d'a) ^ov ^Y a eP,..
Assume now that gp is simple and let o^ be the highest root in A. Put

WQ=^\^>^[\_° _^ ( ) p we then have Wo==w^do, where w^eV>f is the reflection

with respect to the the hyperplane {xef)^, ao(^)==o} and do^D is given by
{do, a) =—a(HJ ==—2(a, ao)/(ao, ao) =—(a, a^) for any a in P,. (Hence it is easily
checked that this element WQ is identified with the element WQ defined in § 1.4, via the

^/ / o i\ \
identification in §2. i.) ForeachoCtin II =={^ ..., aj,put ^==w^== ̂ (°a,(_, ,.))•

/^^/ /^^»» <" '̂
Let o be a map from W=DW into 9B such that ^(co(<r))=(r for any aeW.

We then observe that the cosets Bco(o), (o((r)B and the double coset B(O((T)B are inde-
r^^/

pendent of the choice of the map co and depend only on a eW, since B contains the

kernel §o of the homomorphism ̂  : 2B->W. Also the subgroup G)(CT)Bco(<r)-1 depends
only on creW but not on co. Thus we have B(o((r)o)(T) ===B^((rr), (B<o((7))~- l=(o(G•- l)B

for any o-, T eW. Under these notations, we have the
Proposition 2.6. — Assume that Qc is simple. Let

r^Bnc^z^-^BcoO^) (o^z^/),

and let {^} be a representative system in 0 of A;=0/^P. Then we have
(i) B==Ur^_a.(^) is a disjoint union for any i==i , . . . , / .

(ii) B=Ur^(7i:^) is a disjoint union.
proof. — (i) Let b be an element in B. Then b can be written as b==uhv,

^ell<p, Ae$o, ye93o by Th. 2.5. Since 2?o === S^X.. <^ o we may write v==vfx_^{t),
v ' eS^, t eO. Now by (o(^)Xa. oco(^) -1 = X^^ o and (o(^-)Xa, ̂ W ~1 = 3^(a) ̂  (fo11

any aeA, i^i^l)^ we have

(o^U^^-'ClI^ co^Sgo)^)-1^^
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because aeA", OG+—a, implies that ^(a)eA~, ^(a)=t=—a,. These relations together
with ^(^Sot*)^)""1^.^ show that co(^)6co(z^)~1 is in B if and only if
(»>(z^)A:_^.(^)ct)(z^)""1 is in B. In other words, beY^ is equivalent to x_^.{t)e'K. Now
from the fact that 93$nU==={i} ([6, p. 42]) and Th. 2.5, it is seen easily that x_^.(t) eB
is equivalent to te^. Thus we have shown that

r,=u^a^aL^
and B==r\X_a. o? r^^a-.o^^-a,^* Then we easily get the disjoint union
B==Ur,^^j."

(ii) Let b == ̂  eB, v e93^, A e§^, ^ eU<p. Then u can be written as

u^u'x^t), u ' e 11 3^<p, te^.
aeA+ '
a + a,

Now we have for any aeA, ^eK,
^{w^t^w.r^x^n^n

where P === Wy^ (a) = a— (a^, a)ao. Since (a, ao) ̂ > o for any a eA4', we see that
(a^, P) = (a;, ^.(a)) == (^a,(^)> a) = — (a;, a) is given by

—2 if a=ao,

( a S , ( 3 ) = < — i if aeA4-, a+ao, PeA-,
o if aeA-^, peA4-,

using the fact that (a, a)^< (ao, ao) (for any aeA). Thus we have u{Wo)ufu{wQ)~l eB.
Similarly we get co(^o)yco(^o)~1 eB. Obviously we have ^(^^(^o)""16^. Thus
^(wJ&co^o^eB is equivalent to ^{wo)x^{t)^{wo)~le'K, i.e. AeFo is equivalent to
x_^{±n~2t)eB. From ll§na3=={i} and Th. 2.5, it is easily seen that x_^{±n~2t)e'K
is equivalent to te^2. Thus we have obtained

Fo^^^oU^,^

where U^== n 3£a,<p, ^^'-{^oW;^^2}- Also we see that
a C A-1- *
a+ a°

B == FoXa,, (p, roHXa^ (p == Xao, (P«•

Hence we get the disjoint union B==UroA:^(7r^).
Corollary 2.7. — (i) co^^Bco^^+B /or z==o, i, . . . , ^ .
(ii) B(o(^.)B=B(o(^)X_^,o(i^^) ^^ Bcx)(w,)B=UBco(^)^^(^) isadisjoint

union for i== i, ..., /.
(iii) Bco(^o)B==B(o(^o)3£-a,.<p fl^ B(o(ze;o)B=UB(o(wo)^a,(7^) ^ fl disjoint union.
Proof. — (i) is clear by Prop. 2.6. (ii), (iii) are seen from the fact that the natural

map r,\B-»B\Bo)(^)B from the coset space r,\B=={r^; Z»eB} onto the coset space
B\B(o(w,)B=={B(o(^)&$^eB} defined by r^->B(o(w,)6 is a bijection.

Now using the function X in § i. 4, we get the
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Proposition 3.8. — Assume that QQ is simple. Let i be an integer with o<_i<l and c
an element in W=DW. Then

(i) if X(w,(7)>X((7), we have Bcx)(^)B(x)((r)B==B(o(^(7)B$
(ii) if X(^<7)<X(a), we have Bco(^)B<*)((r)B=B(o((y)Bu B(*)(^(y)B.
Proof. — (i) First let i> o. Then

B(o(z£;,)Bco(CT)B=Bco(^)X_^^(o((T)B==
=Bco(^)co(CT)co(a)- lX^^,o^(CT)B=B(x)(^CT).(o(<y)- lX_^,o(o(o)B

by Cor. 2.7, (ii). Thus it is enough to show that ^W'1^^^^^) CB under the
assumption X(^CT)».(cr). Let cr^Ac, deD, weW. Then

(o^r1^. ,̂ ) co(<r) = ̂  ̂ (±7^ - w^).

Now ^(CT-1^)^^^):^^)^^--1) implies by Prop. i. 28 that (^—^(a;))_>o (when
w(a^)>o) and (^—w(a,))>o (when w(a,)<o). Therefore we get ^(CT)-1^.^. O^(CT) CB.
The case where z===o is also proved similarly using Prop. 1.29.

(ii) First let i>o and {^} be a representative system in 0 of A;==0/^. Then
by Prop. 2.63 (i) we have

B<o(w,)Bco((7)B=Ur,.co(^)^^(^)(o(CT)B.
/^«»/

Now put z^(7==TeW. Then

^(^^^(^CO(CT)B=CO(^)^^(^(0(^<;;)-1CO(^,)(0^

=^(±^MT)B.

On the other hand, using the homomorphism O^. : SL(2, K)->G, it is seen that ^^5
implies ^.(±^)eB(o(^)B. Thus we have

^(Wi)x_ ̂ W^W eBo)(^-)Bco(T)B = Bco(^T)B == BO)((T)B

for ^e0* since X(^T)>X(r). In other words we have

Bco(^)^^(^)(o((T)B==Bo)(G)B for ^e0*.

If ^e^, the preceding computations also show that

Bo)(^)A;.^(^)co((7)B=B(o(T)B=Bco(^(7)B.

Thus we have proved B(o(^)Bco((y)B=Bo)(<j)B u BO)(^CT)B. The case where ^==0 is
also proved similarly by using Prop. 1.29, Prop. 2.6 and the following fact:
^(^^(^^(^o)'"161^^)15 (for ^S)"), which is seen using the homomorphism
<^:SL(2,K)->G.

Corollary 2.9. — Assume that Qc is simple. Let i be an integer with o<_ i<^ I and CT an element
in W. Then:

(i) BuBci)(w,)B forms a subgroup of G.
(ii) If \{w,(j)>\(a), then BO)(^,)B(O(^CT) CBco((y)uBco(^G)B.
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Proof. — (i) Since {'Ku{w^)~l=Ku{w,)B, we have only to show that
Bco(w,)Bo)(w,)BCBuB(o(^)B, but this is an immediate corollary of Prop. 2.8, (ii).

(ii) Since

B<o(^)Bco(^CT)==Bco(^)Bco(w,)<o((7) and Bco(^)Bct)(^)CBco(w,)B(o(^)B==BuBco(^)B,

we get Bco(^)B(o(^or)C(BuBco(^)B)(o((y)CBco(CT)uBco(^)Bo)((y).
Now by the assumption X(^CT)>X(GT), B(o(w,)Bco(or) CBco(^)B(o((7)B = Bco(^a)B (see

Prop. 2.8). Hence the proof is complete.

2.4. Let us now consider the subgroup G' of G which is generated by the
subgroups 3£a, aeA. Since our ground field K is an infinite field, G' is the commutator
group of G) (See [6, Cor. of Th. 3] when gc is simple. This immediately extends to the
case where gp is semi-simple, since the Chevalley group of Qc is the direct product of
the Chevalley groups of the simple factors of gc).

Let $' be the subgroup of § defined in [6, p. 47], i.e. A(/), for 7eHom(P,, K*),
is in y if and only if there exists an element ^'eHom(P, K*) such that ^' |P^==^.
We denote by D' the subgroup ofD defined by D'=Dn§'. Then it is easily seen that
this subgroup D' coincides with the group denoted by D' in § 1.2 under the identi-
fication in § 2.1.

Now let us consider the subgroup Q defined in § 1.7. Let us investigate the
relationship between Q. and the normalizer N(B) of B in G. Let cr = dweW, rfeD, weW.
Then, (o((T)^(^co(o•)-l=A:^(±^w(a))^. Therefore (O^BCO^-^CB is equivalent to
the following conditions:

(rf,w(a))^o for aeA'^n^'^A4',
(rf, w(a))>:— i for aeA'^nz^A",
(rf ,w(a))^>i for aeA'nz^A4",
(fl?,^(a))^>o for aeA~"nw"~ lA~.

Thus we see that co^Bco^'^CB is equivalent to the following conditions:

(rf ,^(a))==i for aeA'rW^A'1",
{d,w{cx))=o for aGA'nz^A".

In other words, ^(c^Bco^'^CB is equivalent to the following conditions:

(rf,(B)=i for peA-^-n^A-,
(rf,(B)==o for (BeA+rwA+.

By Prop. 1.23, these conditions are equivalent to X((r)=o, i.e. to aeO.. Thus, since
^^l)=^^, co^Bo^cr^cB implies that (O^^BCO^CB, hence we have then
co((r)eN(B). Thus:

Proposition 2.10. — Assume that Qc is simple. Let o be a map W-^2C such that
r^f /-^ ^ ,̂

^(<o((7))=or for any creW. Let oeW. Then we have <o(<7)eN(B) if and only if ae^l.
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Now let us prove that the double cosets B(x)((r)B, for creW, are mutually disjoint.
We begin with the

Lemma 2 . 1 1 . — 2CnB==j[)o-
Proof. — By [6, Cor. i of Th. 2], G is a disjoint union of the subsets

93§(o(^)U^eW), where U,= II ^CU. Since U,=U for w==i, B is
aEA+nw-^A-

containedin ®§co(i)U=93§U byTh.2.5. (Note that B=93^§^U^.) Thus if ^eB
is in 9!B=^U^$(o(^), we must have ^e$(o(i)=^. Now any element in B can be written
as^with yeSo, AeJOo? ^ells^. Furthermore, in this expression y, h and u are determined
uniquely by %5nU=={i}, aSnU={i}. Thus we have §nBC§^. Hence we have
shown that SBnBC^. Obviously aSriBDj^ and this completes the proof.

Corollary 2.12. — T'^nB^^.
The proof of the following proposition is essentially the same as the one given

in Tits [16]. However, for the covenience of the reader, we shall reproduce his
proof here.

Proposition 2.13. — Assume that Qc is simple. Let (T, reW and Bco((r)B=Bco(T)B,
then a = T.

Proof. — Let ^((T)^X(T). We shall prove our assertion by induction on \{a).
I fX((r )==o, then co((r)eN(B). Hence G)(T) is also in N(B). Thenweget B(o((r)==Bco(T),
i.e. (o(p)eB where p^^T^eQ. Hence o)(p)eBnT~l(^)=§o by Cor. 2.12, i.e,
p== ^(<o(p))= i. Thus we get GT=T.

Now let \{a)=k>o and assume that our assertion is true for Bco((y')B=B(x)(T')B
with ^((^^(T'), \{(j')<k. For some i with o<,i^l, we have \{w,<j)<\{a) by
Lemma 1.5 and Cor. 1.9. Now (o(^)ct)(z^cr)B=Ct)((7)B CB(O(T)B, hence

(0(^(7) B C O)(^)BG)(T)B C BG)(T)B u BG)(^T)B

by Prop. 2.8. Therefore Bco(^<y)B must coincide with BO)(T)B or with Bco(w,T)B.
Hence, by the inductive assumption, we get w^ = T or w^ = w^. However, w^ = T is
impossible since X(^(T)<X((T)^X(T). Thus W,G=W^ i.e. CT=T, Q.E.D.

Remark. — When K is locally compact, Prop. 2.13 can be also proved using a
result in Goldman-Iwahori [7, Th. 3.15].

Lemma 2.14. — B2BB is a subgroup of G.
Proof. — We may assume that g^ is simple. Since (B2BB)"1 =B2BB and

B93SB= U^BO)((T)B, we have only to show that Bco(CT)B.co(T)BcB2BB for any <y, reW.
oGW

Let d^po', peti, cr'eD'W (note that W is a semi-direct product ofQ and D'W; cf. § i).
Let CT' = w^. .. w^ be a reduced expression of a ' with respect to the generators
WQ, . . ., wi of D'W. Then ^[)<\{^)<.. .<X(</,) where a,=^ . . . w^ {i<.s<r).
Hence we have by Prop. 2.8

Bco((7/)B=B(o(^)BG)(^)B ... Bco(^ )B.
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Hence BCO((T')BCI)(T)B CB2BB by Prop. 2.8. Now since <o(p)eN(B) we have
B<o(p)=(o(p)B and B(o((7)B=B(o(p)B(o((7/)B. Therefore

BQ)((J)BCO(T)B = Bc^Bc^OBcoMB c Bco(p)B9[BB = Bco(p)2BB = B2BB,

which completes the proof.
Lemma 2.15. — Assume that Qc is simple. Let H be a subgroup of G such that

GDHDB, HnD=t={ 1 }- Then H contains the subgroup G'B of G.
Proof. — Let rfeHnD, d^i. Then ( r f , a )4=o for some a<=A. Hence

HD^X^-^X,.

Also ( ^ — o O + o implies that HD3£_^. Since d\,(SL(2, K)) is generated by X<,

and X_a , we have then HD(^(SL(2, K)). Then d^^i^ °_i))eHnD and

(rfi, (3) ==((3, a*) for any (BeA. Hence, as above, HD<Dp(SL(2, K)) for any (BeA such
that ((B, a)=t= o. Now, since go is simple, for any (Be A there exists a chain y^, . . ., y^ of
rootssuchthat (B==Yi. a=y,, (y,, Y,+i) =f=o for i^^r—i. Thus HD<Dp(SL(2, K))DXp
for any (BeA. Hence HDG', which completes the proof.

Theorem 2.16. — G==B2BB== U^Bco(<j)B (disjoint union).
oew

Proof. — We may assume that Q^ is simple. B2BB is a subgroup ofG containing B, 933
(Lemma 2. i4). Hence BfflSBDD. Thus BaiBBDG' by Lemma 2.15. Also we have
§C2BCB2BB. Hence ^G'CBSBB, i.e. G==B93SB= U,Bco(<7)B and this is a disjoint
union by Prop. 2.13, Q..E.D. oew

Corollary 2.17. — (i) G==U$U=UDU.
(ii) U coincides with the subgroup of G consisting of elements x such that XQ^==QQ,

where 9.o==9o®0 is the Chevalley lattice in the sense of Bruhat [4].
Proof. — (i) is seen from (o(w)eU for weW and 9[B=D9[C^.
(ii) is seen by (i) and the following facts: xeV implies that XQ^ == Q^ ; rfeD, d^p i

implies that rf9o=t=9o.
Corollary 2.18. (cf. Bruhat [4]). — IfK is a locally compact field, then U is a maximal

compact subgroup of G with respect to the natural topology of G.
Proof. — Obvious by Cor. 2.17.
Corollary 2.19. — N(B)-B^"1^), N(B) = U Bco(p) (disjoint union) andp e Q

N(B)/B^a^P/P,.

Proof. — Let A;eN(B). We may write x=b^{cj)b^ where ^eB, ^eB, oeW.
Then (o(o)eN(B). Hence aeQ. by Prop. 2.10. Thus N(B)C U B^(p). N(B)3 U Bo(p)
is obvious and we have N(B) == U Bco(p). Now this is a disjoint union by Cor. 2.12.
Hence we get N(B)/B^^P/P,, Q.E.D.

Now assume that 9c is simple and let us consider the union H= U BG)((T)B. This
is a subgroup since D'W is generated by WQ, w^ .. ., Wi (see the proof of Lemma 2.14).

268



ON SOME BRUHAT DECOMPOSITION 37

H contains B and a non-trivial element ofD since H contains co(W) and o)(^o)- Hence
HDG'B. Now since we may assume that <^{w^ eG'{o^i^l), we have HcG'B. Thus
we get the

Proposition 2.20. — G'B= U B(o((y)B (disjoint union).
o ^D'W

Corollary 2.21. — G'N(B) =N(B)G'=G, N(B)nG'B=B.
Proof. — By

N ( B ) = U B a ( p ) , G'B= U BO)((T)B and W=DW=^(D'W) == (D'W)Q,
p £0 o GD'W

we get
G'N(B) = (G'B) .N(B) =^U^Bco(cr)Bco(p)B

peo

= U Bco((7p)B= U Bco(o)B=G.
TeT °^

Also ^nD'W={i) implies that N(B)nG'B==B using the preceding double coset
decompositions.

Now let aSB^^-^D'W). Then, for <jeW, (0(0) e2B' is equivalent to o(cr) eG'Bn2B
by Prop. 2.20 and Th. 2.16. Hence 9!B*==G'Bn3[B. By Lemma 2.11, we have
2B*nB==§^. The quotient group 2B'7$;o is isomorphic to D'W.

Theorem 2.22. — The hypotheses of Tits [16] are all satisfied for the triple of groups
(G'B, B, 2B*) and the involutive generators w^ (ocell), ^(1), . . ., w^ o/D'W (cf. Prop. 1.2
for the notations w^).

Proof. — We may assume that Qc is simple. We have to show with respect to
the involutive generators WQ, w^ . . ., w^ of D'W the following facts:

a) co(w,)Bco(<r) CBci)(w,cr)BuB(o((y)B for any w^ and creD'W, where co is a map
from D'W into 2B* such that ^(co((r)) ==(T for any creD'W.

b) (o(z^)Bci)(z^)4=B for any w^.
c ) B and SB* generate the group G'B.
However we have already verified these properties a ) , b) and c ) in Prop. 2.8,

Cor. 2 .7 and Prop. 2.20.
Thus we now can apply the theorems of Tits [16] to the group G'B. In particular,

when Qc is simple, WQ, w^ . .., w^ are the only elements of D'W such that BuB(o((7)B
is a subgroup of G'B. Hence, returning to the case where Qc is semi-simple, let
9c == flc^ + • • • + 9? be the decomposition of gc into simple ideals Q^\ . . ., g^- Let

A^A^u . . . uA^ be the corresponding orthogonal decomposition of the root system.
Let a^ be the highest root of ^(i^'^r) and w^ the element of D'W defined by
w^^d^w^) where rf^eD' is given by (rf^, a)== 2(00, a^)/(a^, a^) for any aeA.
Now let n =={ai, . . ., aj and w^-==w^ (i<^^). Then we get by the above remark
the following

Proposition 2.23. — w^, . . ., w^ w^\ . . . .w^ are the only elements of D'W such
that BuB(o((r)B is a subgroup of G'B.
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Also, by Tits [i6], the subgroups H such that G'BDHDB (the parabolic subgroups
containing B in the sense of [16]) are determined. Namely, for any subset J' of
J==^w^, . . ., w^ w^\ . . ., ^(r)}, let Wj, be the subgroup of D'W generated by J'. Then

c-̂ ' /^^/
Bco(Wj,)B is a subgroup of G'B containing B. The map J'-^Bo)(Wj.)B is a bijection
from the set consisting of all subsets J' of J onto the set of all parabolic subgroups
containing B. If BO)(W^)B and B(o(Wj^)B are conjugate in G'B, then J^==Ja.

Now let us modify Th. 2.22 to obtain the
Theorem 2.24. — Let B'^BnG', SB^SHSnG', ^o=$onG'. Then
(i) B^U^o^o, B'nSS^o.
(ii) 2B'= U §^co(cr) is a disjoint union, where co is a map from D'W into 2B' such that

o £ D'W

^ (o (<7))== cr for any ceD'W. Hence the quotient group 2B7-S)o is isomorphic to D'W.
fiii) G'= U BWcQB' is a disjoint union.v / oeD'w v / J

(iv) The triple of groups (G', B', 2B') and the involutive generators ^(ocell),
w^, . .., w^ o/D'W satisfy all the hypotheses of Tits [16].

Proof.—Since U<pCG', SoCG', an element b=uhv of B, where ueU^, Ae^,
ye93o, is in G' if and only if AeJOo* Hence B'=ll(p§o33o- Now

B'nSB'^BnaSnG'^onG'^o.
/^^/ ^ ^ ^ r»^

Thus we get (i). Now let ^' be the restriction of the homomorphism ^ : 9!C->DW
to 933'. Then, since ^-^^nG' is not empty for any oeD'W, we have T /(9fB /)=D /W

/^«»/
and the kernel of ^ / coincides with SB'o^o^^o- Thus we have proved (ii). To
prove (iii), (iv), we may assume that Qc is simple. Then it is not difficult to verify
all the analogues of Propositions 2.6 to 2 .11 ,2 .13 to 2.15 replacing B, 2B, §,0, D, DW
by B', SB', §^3 D', D'W respectively. Hence we get (iii), (iv) quite analogously as above.

Thus the results of Tits [16] are also valid for (G', B', 2B'). In particular, there
is a bijection of the set of all subgroups H' such that G'DH'DB' on the set of subsets J'
of J==(w^, ..., w, ^(1), . . ., ^(r)}. Hence, there is a bijection of the set of all parabolic
subgroups of (G'3 B^ 2B') containing B' on the set of all parabolic subgroups of (G^ B, 2B*)
containing B, whose inverse is given by H->H', where

G'BDHDB, G'DH'DB', H'=HnG'.

If H= U Bco((7)B, we may assume that co(<T)eG' and we have H'= U B'co^B'.
o eWj' o eWj'

Hence we also have H == BH'B. In particular we have
Corollary2.25.-Let oeD'W, co((J)e2B/,?/(o)((7))==<7. Then

(Bo^B^G^B'co^B'.

2.5. We shall now determine the subgroups H of G containing B. Let H be
r>»-' r»-/

such a subgroup. Then Hn2B3Bn2B=$o and Wg==^(2BnH) is a subgroup of
W==DW. Since HDB, H has an expression H== U Bco(<r)B for some subset ©

o G ©
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ofW. Then we obviously have T- l(©)=Hn2B and ©=WH. Thus H->WH is
an injective map from the set (5 of all subgroups H of G containing B into the set ®* of
all subgroups ofW. Let So be the image of S under this injection. We have to deter-

/-^/ /̂ »/ /^-w/

mine the set ©o. Let He®. Then ^H==£lnWH and Wg^D'WnWg are subgroups
ofn and D'W respectively. LetJ be the set of all creD'W such that BuBc>)(cr)B forms
a subgroup of G. Then in our former notation, J=={^i, . . . , w^y ^(1), . .., ^r)}. Now

/^^/ r^i r^^/ <"«fc/

let us prove that Wg is generated by the subset JH^WHOJ and that WH==^H.WH.
To begin with: /̂ ^»

Lemma 2.26. — Assume that gp is simple. Let o^i^l and (T£W. If X(^o')<X(<r),
then co^eBco^BG)^)-^ (cf. Tits [16, Cor. 2 to Th. i]).

Proof. — By Prop. 2.8, the intersection Bco(^)Bco((j)Bn Bcx)((r)B is not empty.
Hence there exist b, b^ b^eK such that ^{w^b^(c:)==b^{a)b^ i.e. ^(^eBo^Bco^'^B,

Q..E.D.
Now let He (5 and oeWn. We can write cr==Tp with reD'W, peQ. Let

^=.Wi . . . W i be a reduced expression of T. Then X(^- (r)=X(w^T)<X(T)=X(CT).
/^»>/

Hence we have by Lemma 2.26 (o(^)eBci)(<7)Bco((7)~~ BcH, i.e. ^eWg. Therefore
r^/ ^^»

w^<5==w^... ^peWg. Continuing in the same manner, we get w^, ..., w^eW^
and peWn. Thus we see that WH==D'WOWH is generated by JH^WHOJ and

that WH==^H-WH.
Furthermore, Jji is normalized by any element pe^n : pJHP~ l=JH• I11 ̂ ^ JH ls

/^^/
the set of all <reD'W such that X((j)=i and creWn (cf. Prop. 1.10). Hence
pJgp'^Cjg for any pe^n by using the fact X(pc^p~ l)==X((7). Therefore we get pJHP~l=JH
for any peDji.

Let now ©i be the set of all pairs (tl', J') consisting of a subgroup 0.' of 0. and
a subset J'of J such that pJHP"~ l==JH for any peQ'. Then we get as above a map ®->©i

defined by H-> {O.Q, Jn). This is injective since H = U B(o(o)B, WH = ̂ H^H = W^n
oGW-

/^o-/ "

and WH is generated by JH. Now let us show that this map is surjective. Let (^',J')e(5i.
Let Wj, be the subgroup of W' generated by J'. Then obviously ^Wj, =Wj,Q' is a

<-» /̂ r*^/ ^<^i

subgroup of W containing Wj» as a distinguished subgroup. Then H=Bco(^/WJ,)B
is a subgroup of G by the same argument as in the proof of Lemma 2.14. It is easy
to see that HDB and ^'==^ WJ,=WH. Then we get J'=JH by Tits [16, Cor. 3]
since (G', B', 2B') satisfies the hypotheses of Tits. Thus we have proved the

Theorem a. 27. — The map H-> (t^, Jg) defined above from the set G of all subgroups H
ofG containing B into the set (Si of all pairs (^J') of a subgroup 0.' of £1 and a subset]' of
the standard generators J of D'W is bijective.

Now we shall consider the conjugacy problem of H^, HgeS. If H^, HgC® are
conjugate in G, there is an element xeG such that x}i^x~l==}i^. Now by Th. 2.16
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/^^-'
we may write x==b^{a)b^ with ^Z^eB, oeW. Then (o((y)HiCx)(CT)~ ==}i^. Therefore
(^{a)'K(^{(s)~lC'HL^. Put (y==Tp, reD'W, peQ and let T==Z^. . .^ be a reduced
expression of T. Then by Lemma 2.26 we get as above (o(w^)eB(J^)(<7)Bcl)(o•)~lBcH2.
Hence u{w^c!)ti^{w^a)~l=}:l^ andsoon. Therefore finally we get ^(p)!-!!^?)"^]-^.
Then we get immediately

^11,==^ PJH.P'^JH,-

Conversely, if these conditions for i2g 5 0.^ 5 Jg , Jg are satisfied for some peQ, we have
easily (^(p)!-!!^?)""1^!^. Thus we have proved the

Proposition 2.28. — Let H^ Hg be subgroups of G containing B. 7/* H^ a^rf Hg are
conjugate by an element ofG, then they are conjugate by an element of'N(B). Moreover, H^ and Hg
are conjugate in G if and only if ^H^^H, an^ pJHlP~l==JH, f^ some P6^-

By a similar argument as above, we have the
Proposition 2.29. — Let N(H)==L be the normali^er of a subgroup H with G3H3B.

Then
^{pE^pjHp-^jH}, JL-JH.

Now using Prop. 2.28 and the table of the action of 0, on J given in § i . 85 we can
determine easily the number of conjugate classes of maximal subgroups of G containing
a conjugate ofB for each type of simple Lie algebra over C. (We note that for H^, H^eS,
H^CHg is equivalent to HH^^H, ^d JB^JH,*)

We observe that if H is a maximal subgroup such that G^HDB, then only the
following cases are possible:

a) Qg=t2; then J^ is a maximal Q-invariant subset of J.
b) Qg=t=Q; then JH^J s^d 0-^ is a maximal subgroup of ^.
Then we easily get the
Proposition 2.30. — The number of conjugacy classes of maximal subgroups of G containing

a conjugate of B is equal to the sum of the number of ^-orbits of J and the number of maximal
subgroups of 0.. For simple Lie algebras over C these numbers are given by the following
table (I).

Table (I)

(Ai)i>i : I + J ^ where s is the number of prime divisors of /+ i.
(B^ : i+/.

(^2 : 2+[2̂_

^+1 if / is odd.
(U)^3 ' ' I 2

-4-85 if I is even.

(Eg) : 4.
(E,) : 6.
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(Eg)
(FJ
(G^)

9-
5-
3-

Next let us consider the case where K is a locally compact field. Then ^==0/^p
is a finite field and G is an algebraic subgroup of GL^C^^G-L^TZ, K) where n==dimcQc
(Ono [11]). It is seen easily then that U and B are open compact subgroups of G.
Now we shall determine the number of conjugacy classes of maximal compact subgroups
ofG containing a conjugate ofB for each simple Lie algebra gc over ^- If H is a subgroup

i i '̂ w/
ofG containing B, then by H == U Bo)(cr)B, H is compact if and only if W^ is a finite

O G W H
subgroup, i.e. if and only if JH^J (see the remark in § 1.9). Thus, in order to determine
the number in question, we only have to determine the maximal ones in the subset
^^{(^JD^S^J'^J} and then we have to determine the partition of ©3 by the
equivalence relation given in Prop. 2.28. In this way, a simple computation using §1 .8
gives us the following

Proposition 2.31. — Let K be a locally compact field. Then the number of conjugacy
classes of maximal compact subgroups of G containing a conjugate of B for simple Lie algebras Qc
over C is given by the following table (II).

Table (II)

the number of positive divisors of / + i.(A,),>i
(B,)^a
(G()t^S

(D,)^<

(Eg)
(£7)
(Eg)
(FJ
(Gs)

the
^4-
^
\ 1

[ I
5-
8.
9-
5-
3-

1 + 1 .
/+!.

/, if / is odd.
/+2, if / i s even.

For example, for type (D^) ( /=2v) , the representatives of the conjugacy classes
of maximal compact subgroups H containing B (or conjugates of B) are given using
(Qg, Jg) as follows (the notations being that of § i .8):

Case (i) Q.^==0.. Then J^ is of the form JH=J—L? where L is an orbit of Q
in J. There are v orbits of 0. in J and we get v conjugacy classes for this case.

Case (ii) 0.^={i,^}. Then J^ is of the form JH==J—L'? where L' is an orbit
of { i , pi} and cannot contain any ^-orbit. Thus we get v—i conjugacy
classes for this case.
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Case (iii) ^=={1, p^_i}. Then we get only one conjugacy class, e.g. JH^J—{ w o7 w l - l } '
Case (iv) Q^=={i , pj. We get only one conjugacy class, e.g. JH==J—{^'o? w]}'
Case (v) ^g=={i}. We get only one conjugacy class, e.g. JH==J—{^o}-

Thus the total number of the conjugacy classes in question is v ^ - ^ — T ) + 3 = ^ + 2 .
The situation is much simpler when we consider the group G'B or G'. Namely,

a subgroup H of G'B (resp. of G') containing B (resp. B') is determined by a subset J^
of J, where J^ is the intersection of J and the subgroup Wjp of D'W defined by
WH^^eD'W^^BcH} (resp. by WH. ={(reD'W; B'c^B'CH}). Hence H is
maximal if and only if Jjj is a maximal subset of J, i.e. if and only if Jjj = |J | — i
where |Jg , [J| mean the cardinalities of the finite setsJ\j,J respectively. Thus ifK is
locally compact, every proper subgroup H of G'B (resp. of G') with H3B (resp. with
H3B') consists of finite double cosets of the open, compact subgroup B (resp. B'),
hence H is compact. Therefore we have the

Proposition 2.32. — Let K be a locally compact field. Then the number of conjugate
classes of maximal compact subgroups o/G'B (resp. of G'} containing a conjugate ofB {resp. ofB')
is equal to \]\ =/+r, where I is the rank of Qc an^ r ^ the number of simple ideals of Qc-

We shall now give an " Iwasawa decomposition " of G.
Proposition 2.33. — G==U^U==UDU.
Proof. — Take the following system of generators ofG: Xa (oceA^"), §, X_a . (^^It).

We then can show without difficulty that zlI^UCH^U for any ^ in the system of
generators, by using Prop. 2.3.

Finally we shall give the decomposition of G into double cosets of the form
H^Hg (^eG), where H^ and Hg are subgroups of G containing B. As before, we fix

i-*^ ^^> i^*^
a map co from W=DW into 2B such that ^((o(ar)) == o- for any CT(=W. ^^/ /-^»/

Proposition 2.34. — Let H^ and Hg be subgroups of G containing B and Wyp W^ be
the subgroups of W associated with H^, Hg respectively.

(i) Let aeW. Then H^)H^== U , Bco(T)B.
TGWg oW^

(ii) Let (T, reW. Then H^^H^H^MHa if and only W^crW^==W^TW^.
/"»»w' . . /~^>/ ("»»»' /~>w/ /̂ S.̂  (~»̂

(iii) Let W= UWg .CT^.W^ be any partition ofW into double cosets mod. W^ : W^.

Then G = U H^ co (<7^) Hg is a disjoint union.
A

proof. — (i) Let A= U BG)(T)B. Then clearly we have A CH^ 00(0) Hg.
TGW^oW^

Since G)(<7)eA, to show A=H^{(J)H^, it is enough to show H^AcA and AHgCA.
Since H^ is generated by

co(p) (pe^J. ^M ^eWH), and B,

to show Hi AC A, it is sufficient to see that ^AcA for any ^ in the above system of
generators ofH^. For ^<=B, ^AcA is trivial. For ^=(o(p), peQ^? ^ ls ln N(B) and

/-o^/

we have (o(p)Bci)(^)B==Bco(p^)B; hence ^AcA. Now let reW^. Then T can be
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written as T==^. . .^ with w^y • • • s ^ / ^ j H i - Thus we have only to show that
/"^ ^s-/

(o(^)AcA for any Z^^JH • However this is easily seen, because if ^W^ crW^,
then by Prop. 2.8, we have co(^.)Bco(^)B CBco(^)BuB(o(w^)BcA. Similarly we have
AHgCA and the proof of (i) is complete.

(ii), (iii) are immediate consequences of (i).
Corollary 2.35. — (i) G= U BrfU == U UrfB (disjoint unions),
(ii) Let D^={deD, (rf, a,);>o for i<:i<^l}. Then G= U UrfU ^ a rfzj/oz^

^m<w.
Proof. — (i) Since U = U Bco(^)B, we have Wy = W. Now since W = DW = WD

is a semi-direct product, we get (i).
fii) This is immediate since DW= U W^W is a disioint union.v / de^ J

§ 3. On the structure of the Hecke ring J^(G, B).

Through this section we assume that A==D/^} is a finite field consisting of
q elements. (But we assume nothing about the completeness of K, thus K need not
be locally compact.) We use the notations of §§ i, 2. Also for the convenience of
description, we assume that Qc is simple through § 3.

3.i . Let xeG. We denote by ind(A:) the index [B :1Snx~l'Kx].

md{bxb') ==ind(A:) for any xeG'y &, Z^eB.

Let r^Bn^BA:. Then the map r>->Br^(^eB) from the coset space r\B={r^;^eB}
into the coset space B\B;cB=={Br^eB} is bijective. Hence

ind(^)= B\BxB

where [ B\BA:B means the cardinality of the set B\B^B.
Suppose ind(^)<oo, ind(j)<oo. Then we have ind(r^)<oo. In fact, we have

Br^BcBxB^B. Moreover there exist finite subsets {^, . . ., ^}, {j^, ...3^} °f ^ such
that BrB == U Bx,, ByB = U B^. Hence B^B == U Bx, B^ = U BA;B^ == U B^^. Now,

by Prop. 2.63 we have
ind(co(^)) == ^ for z==o, i, . . ., /

•̂̂
where o is a map from DW into 933 such that ^ ( cD(<7) )=o for any C?EDW. Hence
we have ind(^)<oo for any xeG'B by Prop. 2.20 and the proof of Lemma 2.14.
Also it is clear that we have ind(x) = i for every A:eN(B). Thus we get by Cor. 2 .21
that

Proposition 3 . 1 . — We have ind(^)<oo for any xeG.
Thus B is commensurable with any conjugate of it and we can consider the Hecke

ring J^(G, B) (see e.g. [10, § i]). JT(G, B) is defined as follows: let 9JI be the free
Z-module generated by the double cosets BO)((T)B, a eDW. We denote by S^ the double
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coset Bci)(or)B regarded as an element in 9JI. Then the multiplication between the
basic elements Sg (creDW) of 9JI is defined by

SA-S<A
V-

where the structure constants m^ ^ are defined as the number of cosets of the form Kx
in the set Bco(o•)"-lBco((Jl) nBo)(r)B:

^^[B^^-^Bco^nBcoMBI.

Then, for any fixed a, T eDW, there is only a finite number of pi eDW such that m^^ ={= o,
because m^4=o is equivalent to

Bco((JL)BcBco(cr)B(o(T)B.

Provided with this multiplication law, J^(G, B) forms a ring with the unit element
i = = S ^ (see e.g. [10, § i]).

The map S^o-S^->SX^.ind(<o(cr)) eZ is a ring homomorphism from Jf(G, B)
0 0

onto Z (cf. e.g. [10, § i]). We denote this homomorphism also by ind:

ind(2X,.SJ=S\,.ind((o(<7)).
0 0

Now let a eDW, (T == pr, peQ, T eD'W. Then, since co(p) is in the normalizer N(B)
of B, we easily have ^ ^ ^

^O^^P^T-

Let T=w^...Wi be a reduced expression of T. Then X(T')<X(T) where T/--=--^,T
and we get by Prop. 2.8 (i) and Cor. 2.9

S^=S^S^, where we put S^==S^.

Continuing this, we get finally
s^==s^. . . s^.

Therefore, by applying the homomorphism ind : J^(G, B) —Z, we see that

ind(S,)=Y=^.

Now, since ind(Sp)==i , we have proved the
Proposition 3.2. — ind^o-^^HK^SJ^^^ for any oeDW.
Corollary 3.3. — ind (x) = ind {x~~1) for any xeG.
Also, by what we have shown above, we have the
Theorem 3.3. — J^(G, B) is generated by Sp (pe^), So, S^, . . ., S where S^=S^

{o^i^l). Moreover, let c r==pT, pe^, TeD'W, and T = = ^ . . . W ( . a reduced expression
of T. Then ^ ^ ^ ^ ^ ^

^a = °p ^T :== ^p0^ • • • ̂ ir'

Now let us consider the Hecke ring Jf^G'B, B). J^(G'B, B) can be regarded in
an obvious way as a subringof J^(G, B) with the common unit element. By Prop. 2.20
and Th. 3.3, jf(G'B, B) is generated by i, So, S^, . . ., S/. Now we shall characterize
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the ring jf^G'B, B) by giving the defining relations among the generators i, So, . . ., S;.
Let us denote by 6^ ==9^, { i ^ i ^ F J ^ l ) the angle between the fundamental roots a,, a .
Also we denote by %,== Q^ {i^i^l) the angle between a, and —a^, where a^ is the
highest root of the root system A.

Proposition 3.4. — (i) S?==^. i +{q— i)S, /or z==o, . . . , / .

iS^.=S^., z/ 6^.=7r/2,

U;s,s,=s,s .̂, z/ e^.=27T/3,
KW^S,^2, zf e^37r/4,

^S^.)3^,^)3, z/ 6,,-57r/6.

Proof.— (i) By Prop. 2.8, Bco(^)Boj(^)B =Bco(^)B u B. Hence S ' -A.I+^.S,
with some positive integers X, pi. Furthermore, X, [JL are given by

X-|B\Bco(^)- lBnB(o(w,)B|==|B\Bcx)(^)B|=^
pL^IB^co^^Bco^nBo^BI.

However the value of [L is easily obtained by applying the homomorphism
ind : JT(G, B) ->Z to the equality S2 = X. i + [JL . S,: we get ^2 == \ + pi. q. Since X = ^,
we get [L = q— i.

(ii) Let 6^.=7T/2. Then ^^.=^.^. Now if we can show that X(^^.)==2,
then we have also \(WyW^)=2. Thus w^Wj, WyW^ are both reduced expressions of some
element c-eD'W. Hence we get S^=S^. and S^=S^.S, by Th. 3.3. So let us prove
that 6^=7r/2 implies X(^^.)==2. Firstly, we have \(w^w^=l{w^w^ (Prop. i . 10),
hence X(^^.)^2. If \(w,Wy)=o, then we have ^^.eQnD'W={i}, hence w^=w^
which contradicts 6^==Tc/2. If X(^^.)== i, then we get a contradiction by Prop. i .5.
Thus we have 'h(w^w-)=2,

Next let 6^.==27c/3. Then we get w^w^w^w^w^Wj and by the same reason as
above, it is enough to show that \(w^w^w^==^ in order to prove that S,SyS,= SyS.Sy.
Firstly we obviously have '^(w^w^w^<_^. On the other hand, by 6^== 2TC/3, we get
(with the notation of § i) that the hyperplanes P,, ^(P,), ^^-(P,) are all distinct.
Then we have {P,, ^(P,), w,Wy(P,)}c^w,WyW,) by Cor. 1.4 and Hw,WyW,)<,^ Thus
we have \(w,WyW,) == 3, hence S^S,==S,S,S^. The remaining cases are also proved
in a similar manner.

Theorem 3.5. —- Let 3r ^ the free ring over Z generated by Ag, A^, . . ., A^ together with
the unit element i. Z^ 9 ^ the ring homomorphism from g o^o J^(G'B, B) (fe/z^rf &j
cp(A^) == S^ (o^^/). TA^TZ ^A^ A;^r^/ 0/9 coincides with the ideal a of f; generated by the following
elements: A?-(,.I+(,-I)A,) (o^Z),

A(A,-A,A. (/or 6,,=7r/2),
A,A,A,-A,A,A, (for 6,, =2^3),
(A,A,)2-(A,A.)2 (/or 6,. =3^/4),
(^-(A,^)3 {for 6,, =57^/6).
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Proof. — We have dCKer((p) by Prop. 3.4. Thus cp induces a ring homo-
morphism 9 from g==g/a onto Jf^G'B, B) such that (p(A,)==S, (o^z^/), where A, is
the image of A .̂ under the canonical homomorphism S^S"- The A^ satisfy the
relations (i), (ii) of Prop. 3.4 (replacing there each S^ by A^ respectively). Now we
have to show that 9 is bijective. Let © be the set of all finite sequences (z^, i^y .. . 5 z'y.)
of integers z\, .. ., iy with o^z\, . . ., i^l. For each element c in D'W let us choose
a reduced expression (T = w, . . . ̂  of o- and denote by 6(0-) the element of © defined by

6(cr)=(A,...J,).

Let ©Q={6(cr ) ; o-eD'W}. Now, for each 6e©, let us denote by A(6) the element
of g defined by A(6)==\ . . .A^ where e==(z'i, . . . ,^ .) , and by A(6)=i if 6 is
empty. Let 5o be the submodule of 8r spanned by A(6((r)), oeD'W. Then we have
9(A(6((7)))=S^. Since {S^; creD'W} form a base of the free Z-module ^(G'B, B),
•[A(6(<r)); creD'W} are linearly independent over Z and <p|5o is a bijective map
from So onto J^(G'B, B). Hence we shall get Ker(cp) =a if we can show that S^So-
Therefore we claim that 3^ is a subring of 3r. (Then, since i, Ap, . . ., A^^, we get
immediately 5== So)- Thus we have only to show that A(6((7)) .A(6(T))e3o for any cr,
TED'W. However this will be the case if we have A^ .A(6(r)) e^o for any i with o<^ i<^ I
and for any reD'W. Let 6(^)==0i3 • • • ? J s ) - We distinguish two cases:

Case i. — Suppose that \{wiiv^. . .w^)=sJ^l. Then, by Prop. 1.15, we have
A(6((7))=A,A^. . .A^, where (T=^^...^. Hence A,.A(6(T))ego.

Case 2. — Suppose that \{WiW,..,Wj)=s—i. Then, by Cor. 1.11 and
Lemma i .5, there exists a reduced expression w^. . . w^ of T such that i=k^. Then
by Prop. 1.15, we have A(6(r))==A^A^ . . . A^. Hence

A,A(e(T))-A^..^A^)

= q^k,. • . \ + (?— i )AA, • • • A^
=<7A(6(p))+(<7-i)A(6(T)),

where p=^ ...w^==w^. Thus A^A(6(T))e^o, which completes the proof.
Corollary 3.6. — Z^ creDW, o^i^l. Then

S,S,=^+(<7-i)S,, zy X(^,a)<X((r),

SoS—^s^+(^-i)s,, zy x(^,)<x(c.),
s,s,=s^,, zy x(^,o)>x(o),
s,s,=s^, if X(^.)>X((T).

Proof. — This is obvious from above if creD'W. When GTEDW, let (r=Tp,
reD'W, pe^l. Then, by S^=S^Sp, we get the desired formulas easily.

Now by Th. 3.5, the defining relations for the generators Sg, . . ., S^ of J^(G'B, B)
are given. Thus the structure of ^(G'B, B) is determined only by the structures of QQ
and A;==0/^. Hence, for example, ^(G'B.B^J^G'B,]?) where bar means the
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corresponding groups for the Chevalley group associated with 9^ over the completion K
of K.

It is almost obvious that for the Hecke ring j^(G', B-), Th. 3.5 is also true, and
in fact, it is shown quite analogously using the properties ofG', B' in § 2. More precisely
we shall give the following proposition. (We may omit the proof.)

Proposition 3.7. — Let S^ denote the double coset B'o)(cr)B' (ocD'W) regarded as an
element of ^(G-, B'). Then ind(S,)=^°). // ^^_^ „ ^ ,̂ ^ expression
of oeD'W, then S, == S^. . . S;.^ where S;.=S^.. ^(G\ B') is isomorphic to ^(G'B, B)
^ ̂  m^ S^->S^ (oeD'W).

Now let us consider J^(G, B). Let Z[^] be the integral group ring of 0.
Then it is easy to see that p->Sp (pe^) defines an injective ring homomorphism
from Z[Q] into J^(G, B) since SpS,=S^ for any pe^, reDW. We shall identify
the ring Z[Q] with its image JT(N(B), B) in J^(G, B). Now by ^(D'W)=DW
and ^nD'W={i}, jT(G, B) is identified as Z-module with the tensor product
^(^^.^^(G'B.^^Z^J^^G^B) byp®S,=S^(pE^oED'W). Nowfor
any pe^, Sp is invertible in J^(G, B): SpSp..=Sp-.Sp= i. Hence ̂  acts on ^(G'B, B)
as an automorphism group through the setting p(SJ = SpS.Sp-^ Sp^_. (pe^oeD'W).
Thus the multiplication law in the tensor product Z[^]®J^(G'B, B) is given by

(p^SJ^p^SJ^pp^p-^SJS,,

for any p,?^^ and ^o'eD'W.
Let us call in general such a ring structure of Z[T]®91, where % is a ring over Z

and F is a group acting on 9? as an automorphism group, the twisted tensor product and
^-/

denote by Z[r](J)^R the ring thus obtained Then we have the following proposition
by what we have observed above:

Proposition 3.8. — J^(G, B) ̂ Z^j^J^G7, B').

For example, ifgp is of type (A^), then ^(G, B) is generated by i, p, S^, . . ,, S^
together with the following defining relations:

p^-i, pS.p-^S^, (o^r</;S^=So),

S?=<7.i+(^-i)S,, (o^r</).

^A'""8?^? if J ^ ^ J (mod.Z+i) ,
^•S^Sy.S,, if j^^ '4- i (mod.Z+i ) .

For the other complex simple Lie algebras, similar relations are easily obtained by
considering the extended Dynkin diagram (with —ao attached) and the action of 0.
on J-^o. • • • , ^ } (cf. § 1 .8) .

3.2. As an application of Th. 3.5 and Prop. 3.8, we see that S,->—i {o<,i<^l)
Sp -> i (p eO.) can be extended uniquely to a homomorphism from ^f(G, B) into Z. We
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shall denote this homomorphism by sgn. Then, as in [10, § 5] an involutive automor-
phism ^-^ ofjf^B) is defined by

S,=(^-i).i-S, (o^^Z)

which satisfies the following properties:
(i) S, is invertible in j^(G, B) =j^(G, B)<J)Q^ and Sy1-^^—!). i). Then

every S^ (creDW) is also invertible in Jf^G, B) and we have

S^sgn(SJ.ind(S,)S,-1

(ii) ind(^)=sgn(S), sgn(S)-ind(S) for any ^JT(G, B).
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