
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S.

HYMAN BASS

ALEX HELLER

RICHARD G. SWAN
The Whitehead group of a polynomial extension

Publications mathématiques de l’I.H.É.S., tome 22 (1964), p. 61-79
<http://www.numdam.org/item?id=PMIHES_1964__22__61_0>

© Publications mathématiques de l’I.H.É.S., 1964, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PMIHES_1964__22__61_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


THE WHITEHEAD GROUP OF A POLYNOMIAL EXTENSION
by H. BASS, A. HELLER and R. G. SWAN (1)

§ i. Introduction*

This paper is a sequel to c( K-theory and Stable Algebra " [i], hereafter referred
to as [K], The object is to study the behavior of the functor K1, constructed in [K, § 12],
under polynomial and related extensions. The analogous problem for its companion, K°,
was handled already by Grothendieck (see [2, Prop. 8] or [6, § 9]), and it will be convenient
for us first to recall his result.

If A is a ring, K°(A) is the cc Grothendieck group 5? of finitely generated project! ve
left A-modules (see [K, § 12] or [2, § 4] or § 3 below). Before stating Grothendieck5 s
theorem we need a definition: A is left regular if A is left noetherian and if every finitely
generated left A-module has finite homological dimension.

Theorem (Grothendieck). — If * A is left regular and t is an indeterminate, then

K°(A)->K°(AM)
is an isomorphism.

Actually, Grothendieck5 s proof is in an algebro-geometric setting, so it applies
here only when A is commutative. We give here a proof of a generalization of it in
the above form to graded rings (Theorem 6, § 5). The argument here is inspired by
Serre's discussion of the theorem in [6, § g],

Let T be an infinite cyclic group with generator t, and let A[T] =A[t, t~1]
denote the group ring over A. It is immediate from Grothendieck's methods that
K^AI^D-.K^A^r1]) is also an isomorphism. See § 5 for details.

Hilbert's Syzygy Theorem (see, e.g. [5, Theorem 1.5]) says that A[t] is left regular
if A is, and it follows that A[t, r~1] is likewise, being a ring of quotients ofAj^]. Hence
an induction on n yields:

Corollary. — Let T be a free abelian group with basis t^ ..., ̂  and let Abe a left regular
ring. Then

K^A^KWi, ..., /J)->K°(A[T])
are isomorphisms.

To construct the functor K1 one considers automorphisms a of projective left
A-modules (always finitely generated). If T is an infinite cyclic group, such a can be

(1) This work was supported in part by the National Science Foundation. The last named author is an
Alfred P. SLOAN fellow.
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62 H. B A S S , A. H E L L E R AND R. G. S W A N

viewed as A[T]-modules in an obvious way, and as such, we can speak of exact sequences
of oc's. K^A) is now the Grothendieck group denned by such oc, but with some relations
in addition to those given by exact sequences. Namely, if oc and [B are automorphisms
of the same module, we want a(B and oc®(B to agree in K^A). (See § 3 for details.)

If oceGL(7z, A), we can view a as an automorphism of the free module A" and
hence assign it a class in K^A). (Since K^A) is abelian it is unimportant that
GL(n, A) —^Au^A^ is an antihomomorphism.) Letting GL(A) = U^GL(^, A) (see § 2)
we have thus a homomorphism GL(A)->K.1(A).

Proposition 0. — {See Whitehead [7, Theorem i] and [K, § 12]) The map above
induces an isomorphism

GHA^A^K^A),

where E(A) =[GL(A), GL(A)] and is the subgroup generated by all " elementary 3? matrices
{see § 2).

K^A) is the Whitehead group of A. If a is an automorphism of a projective A-module
or an element of GL(^, A) for some n, its class in K^(A) will be denoted by Woe, and
called its " Whitehead determinant 3?.

Now we can state our principal results.
Theorem 1. — Let A be left regular and t an indeterminate. Then }^[A^->Y^{A[t\)

is an isomorphism.
Again, by the Syzygy Theorem, we can replace t above by ^, . . . , ^ . More

generally we can replace A\f\ by a suitable graded ring. (Theorem i', § 3).
If A is a division ring and A*==GL(i, A) is the group of units, then we obtain

(using a result of Dieudonne [3] when A is not commutative) the following weak genera-
lization of the division algorithm (for polynomials in one variable):

Corollary. — I/A is a division ring, then GL(A[^, .... ̂ ]) /E(A[^, . . ., ̂ ]) is isomorphic
to the commutator quotient group of A*.

Using [K, § 19] we obtain also:
Corollary. — If A is the ring of integers in a (finite) algebraic number field, then the commutator

quotient group of SL(A[^, . . ., ̂ ]) is finite.
Remark. — If the conjecture in § n of [K] could be settled affirmatively one could

claim these corollaries already for GL(m, ) and SL(w, ), with m sufficiently large.
In the last corollary one could have, in addition, that GL(m, A[^, . . ., ^]) is a finitely
generated group for m>n + 2, a fact that would be not uninteresting already for A = Z.

The inclusion i: A-^A[t, t~1] is a right inverse to the unit augmentation
/: A[t, r^-^A, f(fi = i, so the kernel of K^/) is a direct summand of K^A^, r1]).
The next theorem, which is a kind of Klinneth formula, describes this kernel.

IfP is a projective A-module, then Q= A[t, r1]®^ is a projective A[t, t~ ̂ -module,
so W^.^eK^A^, r1]). This defines a homomorphism

^K^A^K^r1]),
and, since f(f) = i, im(A) Cker K\f).
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THE WHITEHEAD GROUP OF A POLYNOMIAL EXTENSION 63

Theorem 2. — If A is a left regular ring, then
(A, K^i)) : K\A)@K\A) ->K^A[t, r1])

is an isomorphism.
If B is a ring and q a two-sided ideal we write K^B, q) =GL(B, q)/E(B, q) where

GL(B, q)=ker(GL(B)->GL(B/q)) is the (c q-congruence subgroup ", and
E(B,q)=[GL(B),GL(B,q)].

If the projection /:B-^B/q has a right inverse, then the sequence

o-^B, q) -^(B) -^(B/q) ->o

is shown in [K, Proposition 13.2] to be exact. If we apply Theorem 2 now to
B = A [t, t~1] and q = (i — t) B, therefore, we obtain:

Corollary. — Let A be a left regular ring, S==A[t, r1], and q= (i—^)B. Then, if
GL(B, q) is the ^-congruence subgroup of GL(B), we have

K°(A)^GL(B, q)/[GL(B), GL(B, q)].

This isomorphism is a little remarkable in view of the (c additive 3? nature of the
left side, and " multiplicative 59 character of the right.

If we apply to Theorem 2 the Syzygy Theorem, the Corollary to Grothendieck's
Theorem, and induction on n, we obtain:

Corollary. — If T is a free abelian group of rank n and A[T] the group ring over a left
regular ring A, then K^(A[T])-KO(A)W(A).

Corollary. — IfT is a free abelian group and if A is a left regular ring with K°(A)^Z,
then K^ACTJ^TCK^A).

In this corollary, if K°(A) is generated by the class yA of A in K°(A) — this is
automatic if A is commutative — then the description above of the homomorphism h
shows that the monomorphism T-^K^A^]) in the corollary sends teT to W(^.i^n).
From the matrix point of view (see Proposition o) it is thus induced by the inclusion
TcGL(i, A[T])CGL(A[T]). This remark is pertinent in the next corollary.

An obvious direct limit argument shows that we can replace T in the last corollary
by any torsion free abelian group.

The corollary applies, notably, when A is a field or A=Z. In the latter case,
the result was proved, for T infinite cyclic, already in 1940 by G. Higman [4]. Just as
then it yields, by virtue ofj. H. G. Whitehead's theory of simple homotopy types [7],
the following topological application:

Corollary. — If the simplicial map f: X->Y is a homotopy equivalence of finite simplicial
complexes having free abelian fundamental groups, then f is a simple homotopy equivalence.

Atiyah has pointed out to us the following very agreeable interpretation of
Theorem 2:

Suppose A is the coordinate ring of an affine variety X over the complex
numbers C. Then A[t, t~~1] ==A®cC[A rl] coordinatizes XxC\ C*=C—{o}. The
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64 H. BASS, A. H E L L E R AND R. G. S W A N

unit augmentation corresponds to the map X->XxC* sending x to {x, i). Note that C*
is homotopic to the unit circle S1.

Now let X be a (suitable) topological space, and let X->X x S1 be the map described
above. Then, in the setting of Atiyah-Hirzebruch [9], this induces a homomorphism
K^XxS^-^K^X) with kernel K^X). Bott periodicity for the unitary group then
says K\X)^K°(X).

Thus, Theorem 2 is a kind of algebraic analogue of unitary periodicity. We
cannot, however, literally regard it as a periodicity theorem, since we lack the higher K1

to even formulate one. It seems unreasonable, moreover, that there should be any
periodicity in our somewhat rarified setting.

A final remark about the layout of the paper. Theorems i and 2 claim something
is an isomorphism. Injectivity is no problem in Theorem i, and is achieved in Theorem 2
by constructing a left inverse for h. This map is suggested directly by a similar procedure
in the Atiyah-Bott proof of the periodicity theorem [8]. To establish surjectivity we
first show (§ 2), on the basis of matrix calculations, that, modulo the image, everything
is congruent to an element of very explicit type. (These calculations are also needed
to define the left inverse of h in Theorem 2.) Then (§ 3) we observe that if we were
permitted to compute K1 (and K°) with all modules, and not simply with projectives,
the elements of explicit type produced in § 2 could be handled. In § 4 we show that,
for regular rings, one can compute K1 (and K°) with all modules, and this disposes of
Theorem i. The proof of Theorem 2 is executed in § 5. Finally, in § 6 we give a
proof of Grothendieck's Theorem general enough for our applications.

§ 2. Criteria for Theorems i and 2.

GL(n, A) is the group of units in the algebra of nXn matrices over A. An
c< elementary matrix " is one fo the form i + ae^, aeA, i^j. Here e^ is the matrix whose
only non-zero coordinate is a i in the (^j)^ position. E(7Z, A) is the subgroup of GL(TZ, A)
generated by the elementary matrices. We view GL(/z, A) CGL(TZ+i? A) via the
identification

aeGL(n,A)= a ° eGL^+i.A).

This done, we set GL(A) = U^GL^, A) and E(A) == U^E(%, A). Proposition o of § i
permits us to define K^A) provisionally by:

K\A)==Gi{A)IE{A).

Let W==WA : GHA^K^A) be the canonical projection. If /:A->B is a ring
homomorphism, then/induces a homomorphism, also denoted here by/, GL(A) -^GL(B),
and clearly /(E(A))CE(B). We can thus define

K^/) -.^(A^E^B)

by K^/KW^O^WB^OC). This makes K^A) a covariant functor of A.
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THE WHITEHEAD GROUP OF A POLYNOMIAL EXTENSION 65

We are interested in the cases B==A[<] and K=A[t, r1]. To avoid a repetition
of the same basic argument, we will place ourselves in a somewhat general setting.

Let A=^S^^A^ be a graded ring; A^.CA^.. Denote by A4- the subring
2 A^. We require certain hypotheses :

n>0
a) A4-is generated over Ao by AI; equivalently, A,A,=A^ for all i.j^o.
b) In case A+A4 ' we assume there is a unit which is homogeneous of positive

degree.
Further, we suppose given a ring homomorphism /:A->AoCA satisfying:
c ) /is a retraction; i.e. f[a)=a for all aeAo.
d ) If p is a square matrix homogeneous of degree one (i.e. with all coordinates

in Ai) then (B and/(?) commute.
If A+A4 ' and t is a unit as in b ) , then we can replace t by f{t)~\ if necessary,

and assume, by c ) , that f(t) = i. This done, we set T equal to the cyclic group generated
by t. Incase A=A+ we set T=={i} . We consider TcGL(i, A) CGL(A).

Examples. — i) A=Ao[^], or; more generally, A=A4 ' satisfying a ) . Then we
can take/defined by /(AJ=o for all n>o, for example.

2) A=Ao[^,r1]. Define/by / (^)==i ; this is the usual augmentation.
Proposition (2.1). — Under the hypotheses above, every element of GL(A) is congruent,

modulo T.E(A), to a matrix with all coordinates in A4'. An element of the latter type is
congruent, modulo GL(Ao) .E(A+), to a matrix of the form i —/(B + (B, where (B is homogeneous
of degree one and (necessarily) satisfies an equation of the form ^(i—/p)s=o, for some r, S>Q.

Proof. — Since E(A) is the commutator subgroup ofGL(A) (Proposition o), T.E(A)
is normal. Hence the latter contains the subgroup generated by all conjugates of T,
and this includes all diagonal matrices with elements of T on the diagonal. Evidently
any matrix over A is a product of one of these and a matrix over A4', and this is our first
conclusion.

Now suppose aeGL(A) has coordinates in A4-, say a=oco+ai + . . . +a^ with a,
homogeneous of degree i. Working first modulo E(A4') we shall render a an element
of degree one (i.e. with d= i). By induction it suffices to show that if d>i then we
can reduce the degree of a.

Now aeGL(^, A) for some n, so we shall think of the a, now as nxn matrices.
Since, by a ) , A^=A^Ai, we can write o^=S^L^. withy, an nxn matrix over A^_i,
and ^.eAi, i<j<^h. Working now in GL((A+ i)n, A) we transform a modulo
E((A+i)^ , A4') as follows (where !„ denotes the nxn identity matrix):

a o .... o
0 !„ .... 0

0 0 \

-
a Yi • • • • Y»
0 !„ . . . . 0

0 0 In

——>

a—o^
—^i- l .

Ti • • • T^
!„ 0

-^.1. 0

The last term has degree <_d—i, as desired.
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66 H. B A S S , A. H E L L E R AND R. G. S W A N

It remains to handle an element a = ao + ̂ i • Let y =/a == ao +yaieGL(Ao) and set
^y-^i. Then

y(I—/P+P)-Y( I—Y~y a l+T~ lal)=Y—/al+al=ao+/al—/al+al=a.

Hence, modulo GL(Ao), a is congruent to i —/(B +[BeGL(A).
We conclude now by showing that [B satisfies the necessary equation. Since (B

is homogeneous of degree one it follows from d ) that (B commutes with f^ and hence
also with §=i—/(B. Write (8+P)~ 1=T-^+. . • + T - i + Y O + T I + • . • + Y n . and
compare degrees in the equation

(S+P)(y^+...+Yj==i.

In degree o we have Syo+PT-^1- Multiplying this equation on the left by S^8

we see that the desired equation (namely, S^^o) will follow once we know that,
for each z^>o, ̂ ^=0, and for each z<o, §^==0, for suitable r and s. But these
assertions follow by induction from the equations SYz+PYi-i^0 ^or I J ^ 0 ^ starting
from PYn^0 ^d SY_^==O, respectively.

Consider the case A=A4' and /(AJ==o for n>o. Then, in the proposition
above /(B = o, so that [B8 == o for some s. In general, a unit of the form i + (B, with [B
nilpotent, is called unipotent.

Corollary (2.2). — Let A=A()+AI+. . . be a graded ring generated over AQ by Ai.
Then the inclusion of\ induces a decomposition K^A^K^Ao)®]:!, and every element of H
is represented by a unipotent aeGL(A). Hence, if W^(a)=o for all unipotent aeGL(A),
then the same is true of Ap, and K^A^K^Ao).

Corollary (2.3). — Let A==A()[^] ^ <2 polynomial extension^ and consider the conditions:
a) K^Ao^K^A) is an isomorphism.
b) W^(a)==o for all unipotent aeGL(Ao).
c ) W^(a)==o for all unipotent aeGL(A).
Then c)oa)=>b).
Proof. — c)=>a) and b) is contained in Corollary 2.2.
Now assume a). Let g : Ao^A be the inclusion and f^: A->AQ the retraction

defined by fi{t)==i, i==o, i. Then our assumption says that K^) is an isomorphism
and that K^/o)-K1^)-1^^^). Let a = i + P be unipotent in GL(Ao).

Then

W^(a) =W,)(W^i +tW -Ki(/o)(W^(i +^)) =W^(/o(i +^)) =W^(i) =o.

(Note that i + ̂  is unipotent and hence automatically invertible.) We have thus
shown b ) . But now if a is unipotent in GL(A) then /c^) ls unipotent in GL(Ao),
so W^(/oa) ^K^/oKW^oc) ==o. Since K^/o) is an isomorphism, W^x==o, and this is c ) .

Remarks. — i) Corollary 2 .2 will be the basis for our proof of the generalization,
Theorem i', of Theorem i, in the next section.
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THE WHITEHEAD GROUP OF A POLYNOMIAL EXTENSION 67

2) If q is an ideal in AQ and A is the associated((Rees ring3?, denned by A^ = q^ ^>o,
then the above considerations carry over without essential change for the relative groups:

K^Ao.q^K^A.qA),

in the sense of[K, Chap. III]. In particular, Corollary 2.3 carries over intact, and we
recover Corollary 2.3 from this in the special case q = Ao. On the other hand we
have not succeeded in generalizing Theorem i to the relative case.

We close this section now with the criterion to be used in the proof of Theorem 2.
Corollary (2.4). — Let A==Ao[T] =Ao[^ t~1] where T is an infinite cyclic group with

generator t. If aeGL(A) is a polynomial in t {i.e. all coordinates lie in A()[^]) then there is
a YeGL(Ao) .E(A()[^]) such that ay = i + (t—i)(B, where (B is a matrix over AQ satisfying
(B^i—(^^o for some r, s>^o.

S 3. Proofs of Theorems i and a.0 *J

Let ^ be a category and T an infinite cyclic group with generator t. We are
interested in " ^-representations 53 ofT. Such a representation is defined by assigning
to t an automorphism a of some Meobj (^7. We will identify a with the representation.
If a'eAut^(M') is another, then a morphism a—^a' is (by definition) a ^-morphism
f : dom a == M->dom a' == M' such that foe = v!f. We have thus defined a new category
which we shall denote by ^[T] ==^[t, r1]. If we regard T as (the morphisms of) a
category with one object, then ^[T] can also be described as the functor category
Funct(T, ^). Thus it is clear that ^[T] is additive (resp. abelian) if ^ is. ^[T] need
not have enough projectives even if ^ does, as happens in the cases of primary interest
to us when ̂  is the category of finitely generated (projective) A-modules. For then ^[T]
has no non trivial projectives! However, if ^ is the category of all left A-modules,
then ^[T] " is ?? the category of all left A[T]-modules; hence the notation.

We shall assume ^ is given as a full sub-category of some abelian category ^\
then likewise for ^[T]Cj^[T]. A sequence in ^[T] will be called " exact 9? if it is
exact in ^[T]. Note that this is equivalent to exactness on the domains.

We will always assume that ^ contains a zero object of e .̂
Definition, — Let W==We : obj ^[Tj-^K1^) be universal for maps into an

abelian group which satisfy
(A) (Additivity). If o-xy^-> . . . ->ai—^ao->o is exact, then S(—i)'Wa,==o.
(M) (Multiplicativity). If dom a = dom (B, then Wa[B=Wa+Wp.
This clearly defines W and K1 up to canonical isomorphism, and their existence

is clear provided the isomorphism types of obj ^ form a set, an assumption we shall
always make.

Remarks. — i) K°(^) is similarly defined by taking y^e : °bj ^-^K0^) uni-
versal for maps into an abelian group which are required only to be additive.

2) If ^ is an abelian category, it is sufficient to require additivity for short exact
sequences, the additivity on long sequences being a consequence of this. More generally,
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68 H. B A S S , A. H E L L E R AND R. G. S W A N

if %7 is a full subcategory of an abelian category ̂  it will suffice to require additivity
on short exact sequences provided the following condition is satisfied:

If o->M'->M->M"->o is exact in ^ and M, M"e^ then M'e%7.
This condition permits us to break up a long exact sequence into short ones.

However, without some such condition, the two definitions of additivity will not be
equivalent. For example, consider the full subcategory of abelian groups with objects o,
Zg, Zg, Z^, Z^. The additivity on long exact sequences is essential in the arguments
used in § 4.

3) To handle K° and K1 simultaneously, as well as the relative K1, one can proceed
as follows: Let F : %7-^' be an additive functor, and let ^(F) be the full subcategory
of ^[T] whose objects are those a for which F(a) is an identity morphism. Now take
D : obj ^(F)—^'18^, F) universal for axioms (A) above, and

(M'). If dom a = M == dom [B, then

Dap+DiM—Da+DfB.

The functors M->i^ and a->doma induce a decomposition K*(^, F) =K°{^)@K\^, F)
and D followed by the projection on K^, F) is universal for axioms (A) and (M).

When F=Ide, K^, F) == K°(%7). When F is a "constant" functor,
K^, F) =K1^). If ^ is the category of finitely generated projective left A-modules
andF=A/q®^ for some two-sided ideal q, then K°(%7) =K°(A) and K^, F) =K\A, q)
in the sense of [K, Chap. HI],

If one retains this point of view in Theorem 5 below, then the proof goes over
intact for K^) ̂ K^^eK1^) by simply changing it to accomodate axiom (M')
instead of (M) at one point. For a general F the property needed is'that ^(F) be closed
under <( pullbacks ".

Now suppose Meobj ̂  and peHom^M, M). We call (B ^-nilpotent if there is
a filtration o=MoCMiC. . .M^=M (in j^) such that M, and MJM,_^ are in ^,
and such that (3M,CM,_i, i<r<yz. In this case the automorphism a== I M + P is called
^-unipotent. It is clear that the M, are a invariant, and that a induces the identity on
each M,/M,_r By axiom (M), W annihilates identity automorphisms, so we conclude
from axiom (A) and induction on n:

Lemma (3.1). — If v. is ^-unipotent, then W^a=o in K^^).
Let A be a ring, J( the category of finitely generated left A-modules, and Sft the

category of projective modules in J(. Then Proposition o of the introduction is to be
understood as describing an isomorphism.

K^A) =GL(A)/E(A)^K1^).

Suppose M is a finitely generated A-module and [BeHom^(M, M) is nilpotent,
pn ̂  ̂  g^ ̂  ̂  i^ pn-^ Q<z<n. Then M, is also finitely generated, and we see that P
is automatically ^-nilpotent. Hence W^ annihilates all unipotents, by Lemma 3.1.
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THE WHITEHEAD GROUP OF A POLYNOMIAL EXTENSION 69

In particular, the homomorphism K1^)-^1^) annihilates elements of K1^)
represented by unipotents.

Now suppose A = Ao + AI + . . . is a graded ring generated over Ag by A^. If we
knew K1^)-^1^) were a monomorphism, then the remark above together with
Corollary 2 .2 would imply that K^Ao^K^A) is an isomorphism. Thus, Theorem i'
below, which generalizes Theorem i, is a consequence of Theorem 3 below.

Theorem 2'. — Let A=Ao+Ai+. . . be a left regular graded ring generated over AQ
by AI. Then

K\A,)->K\A)
is an isomorphism.

Theorem 3. — Let A be a left regular ring. Then

K^-^K1^)

is an isomorphism. In particular., W^(a)=o for all unipotent a.
Corollary. — If A is a left regular ring, every unipotent matrix in GL(A) is in the commutator

subgroup, the latter being generated by elementary matrices.
Corollary. — If A is a left regular ring and q a nilpotent two-sided ideal, then the

^-congruence subgroup GL(A, q) lies in the commutator subgroup of GL(A). Hence
K^A)—^1^^) is an isomorphism.

The last conclusion uses the fact [K, Lemma i. i] that E(A) —^E(A/q) is surjective.
This corollary applies, notably, when A is an Artin ring of finite global dimension and q
is the radical. If A is commutative with a non zero nilpotent element n, then
W( i + n) =t= o, as may be seen by factoring the determinant homomorphism through K^A).
Theorem 3 thus provides a rather bizarre proof of the well-known fact that a commutative
regular ring has zero nil radical.

§ 4. Proof of Theorem 3.

In this section, as in § 3, we will consider various full subcategories of an abelian
category j^. All statements of exactness, including those used to define K° and K1,
are to be interpreted as holding in s^. All categories considered will be assumed to
contain a zero object of ^. We remark once again that in the theorems proved here
it is essential to use the definition ofK° and K1 involving additivity on long exact sequences
as in § 3. Of course this will be irrelevant if condition b) of the theorems is assumed to
hold for both subcategories.

We will deduce Theorem 3 from the following result which generalizes a theorem
of Grothendieck [2, Theorem 2].

Theorem 4. — Let s/ be an abelian category and let ^Cejf be full subcategories ofs^ satis-
fying the following conditions:

a) ^ and ^i are closed under finite direct sums.
b) If Q->Mt->M->M.t'-^o is exact in ^ and M, M."EJK then M'eJK.
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70 H. B A S S , A. H E L L E R AND R. G. S W A N

c) If M is an object of Ji\ there is an exact sequence

o-^P, >P.->M->o
with all P,e .̂

Then the inclusion 8ft Cj( induces an isomorphism K°(^) % K°(^).
Note that the integer d in c ) is allowed to vary with M and is not required to be

bounded.
If P is the sequence P^-> . . . ->P« of c ) , the inverse isomorphism K°(^f) ->K°{^)

sends y(M) into /(P) ==S(— i)^?,) because ^(P) clearly maps onto y(M) in K°(^).
We will refer to such a sequence P as a finite ^-resolution of M.

The proof makes use of the following lemma.
Lemma 7. — Let P-^M be a finite ^-resolution of MeJK and let f: M'->M inJ(.

Then there is a finite 8ft-resolution P'-^M' and a map P'->P covering/.
Proof. — Let B be the pullback of

M'

If
Pn M

In other words, B is the universal object for commutative diagrams

B -> M'
1 i

Pn M -> o

Since B is the kernel of (^, —/) : Pn®M'-^M, it follows that Be^ because do, and
hence {do, —f), is an epimorphism. Also, it it easy to see that B-^]vT is an epimorphism.
Since B has a ̂ -resolution by c ) , there is an epimorphism PQ->B with Po<=^. Composing
this with the maps B-»]vT and B—^PQ gives us a commutative diagram

P'-••o

Pn

M'

1

M

Now, if

P:_
d.

P'^O M'

•P. Pr-l Pn M
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has been constructed, we continue by repeating the previous argument on

kerrf;,^

P,. -> kerrf^i ->- o

These kernels are in ̂  by b) and induction on r. Since P is a finite resolution, we will
eventually reach a point where P, = o for i^r— i. At this point, we finish off P' with
a finite ^-resolution of ker d^_^.

Proof of Theorem 4. — Let y:G'->G be a map of complexes. The mapping cone
of/is the complex C(/) defined by C(/)^=G^_i®C^ with the differentiation given

by /. , . There is an exact sequence o->C->C(/)->G'->o by the injection and

projection maps associated with a direct sum. Note thatj is homogeneous of degree — i.
In the resulting homology sequences, the connecting homomorphism is homogeneous
of degree o and is well-known (and easily checked) to be H(/) : H(C') ->H(C). There-
fore H(/) is an isomorphism if and only if C(/) has zero homology.

If G' and C are finite complexes in ^, so is C(/) and

(*) ^GC/))^^)-^)

where, as above, ^(C)==2(—^^(CyeK0^). Therefore, if H(/) is an isomorphism,
it follows that /(C) == )c(C') because C(f) has o homology and hence is an exact sequence.

Now, suppose P->M and P'—^M are two finite ^-resolutions of Me^f. By
applying Lemma i to the resolution POP' of MOM and the diagonal map M—'-M®M
we obtain a finite ̂ -resolution P" —^M and a map P" -^POP' covering the diagonal map.
Composing this with the coordinate projections yields maps P"->P, P^-^P' covering
the identity map of M. Thus these maps induce isomorphisms of homology and hence
^(P) =^(P'f) =x(P'). This shows that the map y : obj^f->K°(^) by <p(M) ==-)c(P),
P any finite ^-resolution of M, is well defined. We must now show that y is additive.
As we have remarked in § 3, condition b) shows that it will suffice to check additivity
on short exact sequences.

Let o-^M'-^M-^M^-^o be exact with all terms in Jt\ Let P->M be a finite
^-resolution of M. By Lemma i, we can find a finite ^-resolution P' of M' and a
map f: P'->P covering z : M'-^-M. Let C(f) be the mapping cone off. Since P'
and P have zero homology except in dimension o where Ho(P') ==M', Ho(P) ==M, the
exact homology sequence of o-^'P—^C(f)—^P'—^o shows that H^(Cf/ ) )=o for ^2,
Hi(C(/)) w ker i==o, and H()(C(/)) w coker iw M". Since C(f) clearly has nothing in
dimensions <o, it follows that C(f) is a finite ^-resolution of M". The relation (*)
now shows that ^(M") ==y(M)—<p(M') .

We have now shown that cp defines a map <p : K^.^-^K0^). This is clearly
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a right inverse for the map K°(^)->K°(.^). It is also a left inverse because if Me^
we can compute (p(M) from the resolution o^M->M—^o.

Example. — Let ^ be the category of abelian groups and J( the full subcategory
whose objects are finite direct sums of copies of Zg, Z^, and Zg. Let ffi be the full
subcategory whose objects are finite direct sums of copies ofZ^ and Zg. Then Theorem 4
applies and K°(^) % K°(^) w Z generated by y(Z2). However if we define K° in
terms of short exact sequences, K0^) will be unchanged while K°(^) will become
Z®Z generated by y(ZJ and ^(Zg).

Theorem 3 is an immediate corollary of the following theorem which gives an
analogue of Theorem 4 for K1. Note that condition c ) of Theorem 4 is here replaced
by a stronger condition.

Theorem 5. — Let ^ he an abelian category and let ^C^ he full subcategories of ^
satisfying the following conditions:

a) 8ft and ^t are closed under finite direct sums.
b) If o-^M'->M->M/'->o is exact in ^ and M, M"£^ then M'e^jf.
c) IfM is an object of^f, there is an epimorphism P—^M with Pe^ such that every

endomorphism of M lifts to one of P.
d) If

...->P^P.-.- ^Pn->M->0

is exact with Me^ and all P^e^, there is an integer r such that ker d^Sft.
Then the inclusion ^C^ induces an isomorphism K1^0);^ K^^f).
To prove this, we must first show that Theorem 4 applies to ^[T]C^[T]. This

is done using the following lemma:
Lemma 2, — IfM is an object of^t^ there is an epimorphism f : P-»M with Pe^ such

that every automorphism of M lifts to one of P.
Proof. — Let g : Q->M be an epimorphism as in c ) , so that every endo-

morphism of M lifts. Let P=Q?Q, and let f:P—^M be the composition of
g@g : P®P->M®M with the projection (i^, o) : M®M^M. If oceAut(M), lift a to

(^a-^

morphisms

a o
o a~1

ofthefo

eAu

)rms

t(M©M)
^ Y
0 IM

By [K, Lemma i .6], .-i

and

is a product of auto-

with y£Hom(M, M). Since y can be

lifted to y'eHom(Q, QJ, we can lift
of P.

to which is an automorphism

M of M such thatCorollary. — IfM. is an object of'e^, there is a finite ^-resolution P
every automorphism of M lifts to one of P.

Proof. — That there is an infinite such resolution P' follows directly from the lemma,
using condition b) to insure that we never leave ̂ , If d is the differential in P',
condition d) shows that for some r, ker d^Sft. Let P-^-M be

o->kerrf,->P: -PO->M-
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If a is an automorphism ofM, lift it to an automorphism (3' ofP\ Restricting (B' to P gives
an automorphism (B on all terms but ker d y . The 5-lemma then shows that (B is also
an automorphism of kerrf,..

Proof of Theorem 5. — The categories 8ft\Y\ C^[T] clearly satisfy conditions a)
and b) of Theorem 4. Let aeAut(M) be an object of^[T]. Let P->M be the
finite ^-resolution given by the preceding corollary. Since we can lift a to an auto-
morphism (B of P, we see that condition c ) of Theorem 4 is also satisfied. Therefore
K°(^[T]) w K°(^[T]). By the remarks immediately after Theorem 4, the inverse cp of this
isomorphism sends W(a) -^)c(P) where P is the automorphism ofP which we have just consi-
dered. If we can show that <p defines a map K^e^) —^K1^3) we will have the required
inverse for K1^3)—^!^.^'). To do this, it will suffice to show that the composition

9' : K^^TJ^KWT])-^1^)

is multiplicative. If a, a'eAut(M) and P->M is as in the corollary of Lemma 2,
lift a, a' to automorphisms [3, (3' of P. Then (B[3' lifts aoc'. If ^ denotes the restriction
of (B^ to P^, we have

^(aaQ =x(PP') -S(- i^Wd^),) =S(- iWfBA')
=2(- i^W^) + W((B;)) = q/(a) + ̂ (aQ

Therefore q/ is multiplicative.
Corollary. — If ̂  is an abelian category in which every object has finite protective dimension

and if y is the full sub category of projective objects, then the inclusion 8ft C^ induces an isomor-
phism K^^K1^).

This includes Theorem 3.
The generalization to the case where c^+eQ/ has some useful consequences.

For example, it shows that even if A is not regular, we can compute K° and K1 for
projective modules by using all modules of finite homological dimension. Another
typical use is the following: If A is an algebra without torsion over an integral domain,
the Grothendieck group of categories of A-modules can be computed using only torsion
free modules. Reductions of this type are often useful because non exact functors may
have exact restrictions to smaller categories.

§ 5. Proof of Theorem a.

Let A be a ring and T an infinite cyclic group with generator t. Then
ACB =A[^] CC =A[^, r1], and the augmentation /: C-^A by f(t) = i is a retraction.

We define h: K\A)-^K\C) by A(-^P) =Wc(^. IQ:), where Q=C®^P. Since
/(^i.imWckerCKV)).

By virtue of Theorem 3, Theorem 2 is a consequence of the following theorem.
Theorem 2\ — There is a homomorphism cp : K^C^-^K^A) such that <p.A=id. Hence

(9, KV)) : K^C^K^A)®]^)

is a split epimorphism. Moreover every element of its kernel is represented by a unipotent.
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proof. — We shall start with some general remarks preparatory to the construction
of <p. If 8 is an endomorphism ofB^ let M(8) == coker(8) = B^SB^ viewed as an A-module.
If 8' is an endomorphism of B", then clearly
(1) M(8®8')^M(8)©M(8').

If n' == n, then 8'8 is defined and there is an exact sequence
o-^'B^^B^B^^B^B^'B^o.

If 8' is a monomorphism, then 8^/8^^ B^B^ so we have an exact sequence
(2) o^M(8) ->M(8/8) ->M(8') ->o.

Finally we note that:
(3) M^.i^A- and M^.i^A^

Let aeGL(n, C). Then ^a is a polynomial in t for large N, so it defines an endo-
morphism 8 of B^ In order not to interrupt our discussion we postpone the proof of :

(*) M(8) is a finitely generated projective A-module.
Admitting this, ^M{S) == ̂ M{S) eK° (A) is defined, so we can write

^(a)=YM(8)—nNYA.

To show that ^ is independent of N, we note that the endomorphism of B'1 defined
by ^a can be written 8'8, where 8'=^i^. By (2) and (3), then, we have
YM(8 /8)—/^(N+I)YA=YM(8)—^NTA+YM(^ IBn)—y ^TA= =YM(8)—7 ^ NYA•

If^a and ^'a' are polynomials, inducing 8 and 8' on B", then ^^'a'a induces 8'8
on B^ so we have, using (2),

^(a'a) =YM(8'8)—^(N'+N)yA
= yM(8') — TzN'yA + yM(8) —TzNyA

=W+W9

Hence +„ is a homomorphism. (GL(^, G)-^Aut(Cn) is an a antihomomorphism,
but K°(A) is abelian.)

Consider now aCiceGL(n+ i, C); ̂ (adj is a polynomial inducing 80^. ig
on B"4"1. It follows from (i) and (3) that

^(a©ic)=YM(8®^.iB)-(^+i)NYA
^^(^—^NyA+Y^^-^—^A
=YM(8)—nNYA=^(a).

Hence ^ and ^+1 are compatible with the inclusions GL(^, G) cGL(n+ i, C), so they
define a homomorphism ^ : GL(C)^K°(A), and this induces

9 : K^C) =GL(C)/E(C)->K°(A),

since K°(A) is abelian and E(G) = [GL(C), GL(G)] (Proposition o).
Now suppose P is a finitely generated projective A-module. We must show that
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yWTA^-TA1'- We can write P@Q^An for some n. This induces CPQCQ^C^
where CM denotes C(x^M, and permits us to represent (t.i^)@(i^) by a matrix a
in GL(^, C). Our choice of basis guarantees that a is already a polynomial. Now

A(Y,P)=Wc(^.icp)

=Wc((^.icp)®(icQ))=Wc(a).

Hence (R^YA?)) =?(Wc(a)) =^(a). Let 8 denote the restriction of a to B^BPQBQ.
Then S=t.i^@i^, so M(8) ==BP/^BP^(B^.B)®^P^A®^P^P. Thus

^nW=fAP—^AA=fAP.
as desired.

It remains to prove (*). With oceGL^, C), suppose ^a is a polynomial
inducing, say, 8 on B". By Corollary 2.4 there is a yeGL^z, A) .E(TZ, B) such that
^ a Y = i + ( ^ — i ) p , with JB a matrix over A satisfying ^{1—^=0 for some r, j>o.
Now ^ay induces 8y on B^ where y, belonging to GL(/z, B), defines an automorphism
ofB". In particular M(8)^M(8y) =M( i +(t— i )p).

Lemma.—If ̂  is an endomorphism of a module M, and (^(i—^^o, ^% M==Mo®Mi,
where M, = U^ker(z— p)^ i == o, i.

Proof.—If A:eMonMi, then p^=o== ( i—jB)^ for some n, m. Since i is a linear
combination of (B" and ( i — P ) ™ we conclude that x=-o.

Similarly i == (3r/+ (i —P)^, where / and ^ are integral polynomials in (B, so we
have, for xeM., x=^fx+ {i—^gxeM^M^.

We apply this lemma to the endomorphism, also denoted p, of A" defined
by the matrix (B above. Then A^P^Fi and (B ̂ Po9?^ i^-Pl PO with po and
ip^—Pi nilpotent. Abbreviating B®^M by BM we have B^BA^^BPoOBPi and
I B n + ^ — I ) P ^ ( I o + ( ^ — I ) P o ) ® ( ^ l + ( I l — P l ) ) , where 1,=!^ and ? and ^ are iden-
tified with their extensions to BP and BP,, respectively. The first term is unipotent, so,
in particular, an automorphism of BP^. In the second term (B^ is a unipotent auto-
morphism, so we can write ^ i+( i i—Pi) =Pi(^. i i+ (P f 1 —ii ) ) =Pl(^ i i+v) with
v = (Pi"1— i^) nilpotent.

We can now compute M(8). As noted above

M(8)^M(i+^—i)p)=coker(io+(^—i)Po)®coker(iBi(Lii+^)^coker(^.ii+v).

Let 7 r = ^ . i i + v ; we will show coker(7r)^Pi (as A-modules), and this will establish (*).
P^(= i(x)P^) is an A-submodule of BPi, so it suffices to show that BPi=Pieim(Tc). If
o+^eBPi^P^]55, say ^=^o+^+. . .+V1, with x,eP^ x^ o, then nx == tx + vx has
<( degree " n + i >o, since v is of degree zero. Hence Pinim(7r) == o. Next we note that
BPi=Pi+^.BPi=Pi+(7r—v)BPiCP,+im(7r)+im(v)=Q+im(v) with

Q=Pi+im(7r).

Hence BPi=Q+v(Q+vBPi) ^Q+^BP^^ . . . ̂ Q+^BPi^Q, since ^=0 for
some n.
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To complete the proof of Theorem 2' we must show that K^C) is generated by
the image K^A), the images of elements of the form t. IQ, and the classes ofunipotent
automorphisms. Any element of K^C) is W^(a) for some a in some GL(TZ, C). Now
a= (^-N. i ) . (^a), where ^a is a polynomial, as above, so it suffices to catch ^a. But,
in the notation above,

^^=^^-l={l+{t-l)^-l

= [(io+ (^- i)Po)Wi+ (ii-Pi))]T-1

=W.ii)(Bi(ii+r^)]y-1.

Here y"1 and ^ come from A? and ^ Pi? and Il+ r lv are unipotent, so the proof
is complete.

§ 6. Proof of Grothendieck's Theorem.

We begin with some general remarks on projective modules over graded rings.
Let A=S^°A, be a graded ring. If ̂  and ^A are the categories of graded and ordi-
nary A-modules, there is an exact functor ^A-^A obtained by forgetting the grading.
We will denote this functor by M->M. If M is a graded A-module, let M(n) be the
graded A-module defined by M(^=M^. A free graded A-module is by definition
a direct sum of modules of the form A{n). Since A(/z)=A, the forgetting functor
preserves free modules and hence preserves projective modules. Conversely:

Lemma 1. — M£^ is projective if and only if Me^ is projective.
proof. — Let /: F->M be an epimorphism with F free. If Mis projective, there

is a map g : M->F splitting the epimorphism F->M. Let go : M-^F be the component
ofg of degree o. Then clearly /^o^M so M is projective.^ The converse is trivial.

Corollary. — If Me^ ^as projective dimension n in ̂  then M has projective dimension n
in JK^

proof. — If
o->N->P—t-> . . . ->Po^M-^o

in ^ with all P^ projective, then

o^N->P,_,-^ .. .->Po->M^o

in J(^ and N is projective if and only if N is.
Let us call a graded module M bounded below if there is an integer N such that

M^=o for n<—N. These form an abelian subcategory ^ of ^A and the preceding
arguments clearly apply to ̂  also since B^Y ^^i is a quotient of a free module Fe^.

For any graded module M, define D,(M)CM, by D,(M) =S^.M,_, over all
j<z, and define CL(M) =MJD,(M). Then CL, is additive and right exact. We may
regard S,Q^(M) as a graded module over Ao. If Me^t and CL(M)=o then M=o
since if n is least such that M^+o then D^(M)=o and M^==^(M). If UwA(n)
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is free then Q^(M)=o for i^—n, Q^(M)==Ao. Thus (^ sends free modules into
free modules and hence sends projective modules into projective modules. Note that
a graded A^-module Q is projective if and only if each Q^ is projective as an ordinary
Ao-module.

If Q is a graded A^-module, then A®^Q is a graded A-module where
(^AoQJn^A^AoQn-z overall i. Clearly A®^Q is isomorphic to 2JA®^QJ(—n)
where, in this sum, Q^ is regarded as an ordinary Ao-module. We now determine all
project! ves of ^.

Lemma 2. — The functor Q^A®^Q establishes a one to one correspondence between
isomorphism classes of graded projective \Q-modules which are bounded below and isomorphism
classes of graded projective A-modules which are bounded below. Its inverse is given by the functor d.

It should be emphasized that those functors do not give an isomorphism of cate-
gories since there may be many maps of A®^Q^ which do not come from maps of Q.

Proof. — It is clear that the functors preserve the boundedness condition and
that Q/A®^QJ =Q,. All that remains is to show that if P is a projective A-module
which is bounded below and Q^== Q,(P) then there is a (non-natural) isomorphism
P» A®^Q. If we regard P and Q^= CL(P) as graded Ao-modules, the map /: P^Q
given by the definition of Q is clearly an epimorphism of graded Ag-modules. Since Q
is Ao-projective, there is an A^-map^ : Q->P such that fg=i^. Now, g defines an
A-map h : A^Q-^P and obviously Q^(h) : Q,(A®A,QJ » d(P). Since d is right exact,
this shows that (^(coker h) = o and therefore coker h == o since all modules involved are
bounded below. This shows that h is an epimorphism. Since P is projective, h splits
and the additivity of CL shows that Q. (ker h) w ker[(^(A®^QJ -> CL(P)] = o- Therefore
ker h == o.

We now turn to the actual proof of Grothendieck's theorem. From now on we
shall assume all graded modules to be zero in all negative dimensions. We shall also
assume that A is noetherian and that all modules are finitely generated. Note that a
graded module M is finitely generated if and only if M is because if m^, .. ., m^ generate M,
the homogeneous components of the m^ generate M. In particular, the finitely generated
graded A-modules form an abelian category if A is noetherian.

Let the polynomial ring A[t] be graded by A[t]^ == S A^7. We shall, moreover,
identify A with A[t]l{i—t)A[t]. i+j=n

Lemma 3. — Every \-module M is isomorphic to A®^mN for some graded A[t]-module N.
Proof. — Write M^A^R, and say R is generated by a,==(a(z, i), . . ., a[i, n)),

I^^^- Let d be a bound for the degrees of the a{i,j). If a == OQ + a^ + . . . + a^ is an
element of degree <d in A write a' == a^ + a^^ + .. . + a^A\f\^. Then let R' be the
submodule of A^p generated by the ^ = (a(z, i)', . . . , a(i, yz)'), i<:i^m, and set
N= App/R'. Clearly N is a graded A[^]-module. The exact sequence R' -^AOF-^N-^o
yields A^jR'-^A^Ae^jN-^o, and it is clear that the image in An of A^jR'
is just R. This proves the lemma.

Lemma 4. — A®^ is exact on the category of graded A\t\~modules.
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Proof. — The lemma amounts to the assertion that if M is a graded A [^-module
and M'a graded submodule, then (i —t)Mr\M'= ( i—^M'. Let m==nio+m^+ ... eM
and suppose ( i—^weM' ; i.e. mo+ (m^—tmo) + . . . + (m^—tm^_^) + . . . eM'. Then
it follows by an obvious induction that each m^eM'.

Since the functor taking P into A®^P is exact on the category of project! ve
Ao-modules P, it defines a map K°(Ao)-»K°(A) where K°(A) refers to the category
of ordinary projective A-modules. We also have a ring homomorphism A-^AQ which
is the identity on Ag and sends A,.->o for z=t=o . The functor sending P into P®A^O
gives a map K°(A)->K°(Ao) which is clearly a left inverse for K°(Ao)^K°(A).

Theorem 6. — Let A = AQ + A^ + . . . be a graded left regular ring. Then K°(Ao) ->K°(A)
is an isomorphism, K°(A) refering to the category of ordinary A-modules.

Proof. — Since the homomorphism in question has a left inverse^ we need only
show that it is surjective. Let P be a projective A-module. Choose a graded
A[^]-module N, such that P==A®^jN (Lemma 2). Choose a finite resolution

o->P,-^...^Po-^N^o

by graded projective A[^]-modules. This is possible by our hypothesis on A, the Syzygy
Theorem, and Lemma i, Corollary.

By Lemma 4,
(*) o-^A®^P,-> .. . ̂ A®^Po^A0^N ̂  P->o

is exact. Now by Lemma 2 (applied to A[t]) each P^ is (disregarding the grading)
a direct sum of modules of the form A[^]®^Q^ with Q Ao-projective. Since
^^AM^M^A.QJ ^AOO^Q, we conclude that each A®^jP, is a direct sum of modules
of the latter type. This combined with the exact sequence (*) clearly proves the theorem.

Corollary. — If A is a left regular ring, then the map }^° {A}->¥^ [A\f\) sending P into
A[^]®^P is an isomorphism.

Corollary. — If A is a left regular ring, then the map K^A^K^A^, r1]) sending P
into A[t, f^1]®^? is an isomorphism.

Proof. — The map has a left inverse induced by the ring homomorphism
A^r'^l-^A sending t into i. The map also factors through K°(A[^) by means of
the ring homomorphisms ^^ _^ ̂

By the theorem, it will suffice to show that K°(A[^) -^K°(A[^ r1]) is surjective. Let P
be a projective A[t, t~ ̂ -module. We can define P by a system of generators and relations.
By multiplying each relation by a suitable power of t we can insure that no negative
powers occur. Therefore these relations considered over A[t] define a module M such
that P w A[t, r"1]®^^!. Now M has a finite projective resolution over A[t]. Tensoring
this resolution with A[t, t~1] resolves P by projective modules coming from A[t]. In
this last step we need the fact that A[t, t~1] is A[^]-flat, which follows from the usual
results about localization. Alternatively we can observe that A[t, t~1] is the direct
limit of the free modules A[^]f1 as n->—oo.
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