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SOME FINITENESS PROPERTIES
OF ADELE GROUPS OVER NUMBER FIELDS

by ArmManp BOREL

The formalism of adeles and ideles, introduced in algebraic number theory by
Chevalley, has been recently applied to more general situations. In particular, it
allows one to associate to an algebraic matric group G defined over a finite number
field £ a locally compact group G,, the adele group of G, in which the group G, of
rational points over £ of G is naturally imbedded as a discrete subgroup, in the same
way as the multiplicative group % of non-zero elements of £ is imbedded in the idele
group I, of %.

When £=0Q, the pair G,, G, may be viewed roughly as the global counterpart
of the pair Gy, G5, where, as usual, Gy is the group of real matrices of G, and G the
group of integral matrices with determinant +1 contained in G (the units of G); and,
in fact, the chief purpose of this work is to prove for G,, G, the analogues of the main
results of [4] on Gy and G,.

This paper is divided into eight paragraphs. The first one fixes the notation
and collects some definitions and elementary facts pertaining to the adele groups. The
second one contains some remarks on the double cosets modulo G and G,, where Gy is
the stability group of the lattice of integral points in the underlying space £", chiefly:
relation with the ideal classes of £ if G=GL,, with the classes in the genus of a rational
quadratic form F, if G is the orthogonal group of F, with strong approximation, and
behaviour in semi-direct products. § g reviews, reformulates in part, and strengthens
slightly some results of [4].

In § 4 we construct, in much the same way as in [4], fundamental sets for G, in G,
(i.e. subsets of G, which intersect only finitely many of their right translates under G,
and which meet every left coset x.G,), when G is connected. The case of non-connected
groups is dealt with in 5.2.

§ 5 proves first that the number of distinct double cosets G .x.G, is finite. This
makes it clear that G,/G, is of finite invariant measure, or is compact, if and only
if G,/G, is so; here G, is the product of the groups Gkv’ where £, runs through the
completions of £ with respect to the archimedean absolute values, and G, is the group
of units of G, (if £=Q, then G, =Gy, G,=G;). Theorem 12.3 of [4] then shows
that G,/G, is of finite invariant volume if and only if the identity component G° of G has
no non-trivial rational character over £, and is compact if and only if, moreover, every
unipotent element of G, belongs to the radical of G,. In analogy with Theorem 6.9
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6 ARMAND BOREL

of [4], it is also proved in § 5 that if G is reductive, H is a reductive subgroup of G,
and ¢:G—G/H the natural projection, then ¢(G,)n(G/H), consists of finitely many
orbits of G;,.

As a consequence of this last result and of some elementary facts about Galois
cohomology, we show in § 6 that if G is reductive, connected, the principal homogeneous
spaces over k£ of G which have rational points over all completions of £ form finitely many
isomorphism classes.

§ 7 is concerned with the double cosets of G, modulo G, and H,, where H is a
parabolic subgroup (i.e. is such that G/H is a projective variety) over £&. Their number
is finite and, under suitable assumptions, equal to the number of double cosets HY.x.H,
in H,. .

Finally, § 8 extends to S-units and certain subgroups of G, the results of [4] and
of §§ 4, 5 of the present paper pertaining to fundamental sets and closed orbits in rational
representations.

The main results of this paper have been announced in [1, 3]. Some of them
have already been established for solvable groups in [11] and for certain classical groups
in [14]. The compactness criterion for G,/G, mentioned above is the adele version
of Godement’s conjecture and has also been given another proof by G. D. Mostow and
T. Tamagawa (Annals of Math., 76 (1962), p. 446-463).

§ 1. Preliminaries.

In this paragraph, we fix the notation and recall some notions and facts about adele
groups attached to linear algebraic groups over number fields. This is not meant as
a self-contained introduction to the subject; for more details, see [14, Chap. I]. The
notation of the sections 1.1 to 1.4 will be used throughout.

I.1. k is an algebraic number field of finite degree, o the ring of integers of £,
V the set of primes (or of equivalence classes of absolute values) of £, PcV the set of
finite primes of k£, x—||x||, the normalized absolute value associated to veV, £, the
completion of £ with respect to ||*||,, 0, (p€P) the ring of p-adic integers of &, and A,
or A the ring of adeles of k. If veV—P is an infinite (or archimedean) prime, we
put o,=k,. IfS is a subset of V, then o(S)={xck|xep, (veV—S8)}. In particular,
o(S)=p if S is contained in V—P.

1.2. The letter G will always stand for an algebraic matric group over £, n for
its degree, and G° for its identity component (see 1.11). Given a subring B of an
overfield of £, Gy denotes the group of elements of G with coefficients in B and determinant
invertible in B. 'We shall write G, for Gkv'

GAk or G, is the adele group of G, and
GU= I Go >
pep P

Gyg= I G,x I G,, (ScV; S finite).

vES veV—-8§ v
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SOME FINITENESS PROPERTIES OF ADELE GROUPS OVER NUMBER FIELDS 7

We recall that G, is by definition a subgroup of the direct product of the G,’s.
An element x= (x,),cy of that product is an adele of G if and only if x,eG, for almost

all (i.e. for all but a finite number of) v’s. The group G, contains therefore G,.
The group G, (veV) islocally compact with respect to the s-adic topology, and G,,p (peP)

is open and compact in G,; Gy, is locally compact and Gy is compact for the product
topology. G, itself is a locally compact group, once endowed with the inductive limit
topology of the G, ), where S runs through the finite subsets of V ordered by inclusion.
G, is open in G,; every compact subset of G, is contained in the union of finitely
many translates of G;°, hence belongs to some group G,.

For any ScV we put G,q={g=(g,)€G,]g, G, (veV—S8)}. If S is finite, this
definition of G, 4, coincides with the previous one. =g will denote the projection of G,

in II G,, Gg the image of G,, and jg the natural inclusion of Gg in G, as the subgroup
vES

of adeles whose components outside S are equal to ¢; often, we identify Gy with j5(Gg)
and Gy with j5(Gy). We have G,=~Gg X Gy_g. If S is finite, then Gy= II G,.

vES

If S=V—P, we write G,, G,,Gp, n,,j, for Gy, Gg, Gy, s, Js-

To any element acG, corresponds an adele of G, all of whose components are
equal to a, called a principal adele of G.  When viewed as subgroups of G,, the groups G,,
Gyg), G, will, unless otherwise said, be identified with groups of principal adeles. They
are discrete and G5 = Gy5n Gy, in particular G,=GPnG,. If S=V, Gy5=G,,
Gy5)=Gy.  If S is empty or contained in V—P, then G,g =Gy, Gy5=G,. The
group G, is the group of units, and G, the group of S-units of G.

The (possibly infinite) number of double cosets Gy .x.G,(xeG,) in G, will be
denoted by ¢(G).

1.3. A rational homomorphism f: G—G’ over k£ of G into another algebraic
matric group over k induces a continuous homomorphism f, : G,—~G, mapping GDp
into G[,p for almost all p’s, and consequently also induces continuous homomorphisms
f2:G,—>Gy, f5:Gg—~>G{, which are isomorphisms if f is.

The rational homomorphisms over £ of G into GL,, usually called the rational
characters defined over & of G, form a commutative group, to be denoted X,(G). Each
element xeX,(G) defines a homomorphism of G, into GL,,. The latter group is
just the idele group I, of £.

1.4. When £=0Q, the primes of k£ are of course the rational prime numbers
and an infinite prime co. As is well-known, and as will be seen repeatedly in this paper,
the general case of a number field can in many instances be reduced to the case
where k= Q by the use of the so-called restriction of the groundfield [14, Chap. I].
We recall that, once a vector-space basis («;) (1<i<d=[k:Q]) of K over Q is
chosen, there is associated to G an algebraic matric group R, G=G’ over Q, of
degree n.d, and a rational homomorphism p: G'—~G over k£ such that

(1) W= (p% ...,p1%) :G—->G%x ... XxXG%
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8 ARMAND BOREL

is an isomorphism over k, where o, ..., s, are the distinct isomorphisms of £ into C.
The pair (G, ) is, up to isomorphism, independent of the choice of the basis (),
and can also, up to isomorphism, be characterized by a universal property (loc. cit.).
The map p also induces isomorphisms

(2) Go=Gy;  Gr=Ga;  Gy=G,,

and, if («;) is a module basis of o over Z, as we shall always assume, then
(3) Gz=G,, G:qO%GXZ’ G{=~Gy.

1.5. There exists a rational homomorphism v:G-—G’ over k such that
V= (% ...,v%) :G% X ... X G%->G’,

is the inverse of u’. In fact, if say o, is the identity, the intersection G, of the kernels
of the homomorphisms % (74 1) is stable under every isomorphism of C over £, hence
is defined over £, and it is mapped isomorphically onto G by p. The map v is then
just the inverse of the restriction of u to G;. It clearly has the following properties

(®) oy =id. piov(G) = (¢ (i+ 1),
(5) L (i) = (xeG).

Proposition. — The map o« : Xo(G')>X\(G) defined by y—voy (x€Xq(G')) is an
isomorphism.

Let xeX,(G). Then poxeX,(G’), therefore the product in X,(G’) of the
characters (poy)% is defined over Q, whence a map B : X,(G)>Xy(G’). A routine
verification based on (4), (5), which we omit, shows then that «of and Boa are both the
identity map.

1.6. Proposition. — Let G=H.N be the semi-direct product of a subgroup H and a
normal subgroup N, both algebraic, over k. Then N, is normal in G,, and G, s the semi-direct
product of H, and N,.

Let g=(g,),ev be an element of G,. Since G, is the semi-direct product of H,
and N,, we may write uniquely g,=#,.n, (k,cH,, n,eN,). We have k,=f(g,) where
f:G—=>G/N=H is the natural projection, hence (k,),.yeH,, whichimplies (n,),veN,
and G,cH,.N,. The proposition then follows readily.

1.7. Proposition. — Let G' be an algebraic matric group over k, and ® : G,—~G, an
isomorphism which maps G, onto G, for every veV. Then ®(Gy,) is commensurable with Gy
Jfor every subset S of V.

(We recall that two subgroups of a group are commensurable with each other if
their intersection has finite index in both of them.)

The group @(Gop) (peP) is open and compact in G;, hence is commensurable

with G[,p. The groups ®(Gy) and ®(Gy{), being compact, are contained respectively
in Gy and Gy for a suitable finite subset T of V; hence (D(G,,p) = G;p for peV—T,

and the proposition.
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SOME FINITENESS PROPERTIES OF ADELE GROUPS OVER NUMBER FIELDS 9

Remark. — This proposition applies notably when ® = f,, where fis an isomorphism
over k of G onto G’, or when G=G’ is normal in an algebraic matric group H over £,
and ® is the restriction to G, of an inner automorphism of H,. In the former case,
it shows that f(Gyg) is commensurable with Gy, for any ScV.

1.8.  Proposition. — Let S be a subset of V containing the infinite primes.  Then 75(G,g))
is a discrete subgroup of Gg and G 5)/Gys) is a principal fibration over Gg[ng (Gys)), with compact

structural group 11 G, .
pev-g P

Let M= II G,

pev—s P
of G, onto Gg, with kernel M.  Since M is compact, 75(G,) is discrete. Moreover,
we have obviously

(6) Js-75 (Gog) - M =151 (75 (Gy(5))) N Gp gy = Gy () M.

The projection mg:G,—>Gg induces a homomorphism

The group N=G,4).M is closed and, since M is normal in G, the space G, /G,
is a principal fibration over

G, 5)/N=(Gg X M)/N=Gg/ng (G, 5)),
with structural group
N/G,5=M/(Mn G, ) =M.

1.9. Proposition. — The group G,[/(G°), is compact.

We view G/G® as a o-dimensional cycle over £ in GL,/G’ and denote by o the
restriction to G of the natural projection of GL, onto GL,/G°. Let xeG/G® and
X=0"'(x). We show first:

(*) There exists a finite subset S, of V, such that if »¢S,, and X, is not empty,
then X, = Goan,, is not empty.

The field &' =#k(x) is algebraic, of finite degree over £. Let V’ the set of primes
of k', S’ the set of finite primes of £, and o’ the ring of integers of £.

Since X is defined over %', and is irreducible, non-singular, there exists
a finite subset S. of V’ such that X contains an integral P-adic point for every P¢S, (1).
We take then for S, the set of primes of £ which are divided by some
element of S;. It is finite. Let now peP, p¢S,. If X is not empty, and yeX,,
then k(x) =k(c(p))Ck,, hence k’Ck,. This implies the existence of PeP'nV’ such
that P|p and kp=*k,, 0y=n0,. By definition of S,, we have PB¢S;, therefore X contains
a point with coordinates in pg, hence in p,.

For peP, let us choose for each xeG/G® an element of (¢7*(x)), if (¢ (x)),+ 9,
belonging to (o-_l(x))% if the latter is not empty, and let C the set of these elements.

It is finite, and belongs to G, if v is outside the union of the sets S, (xeG/G"), therefore
C={g=(2,)eCslg,cCy, (veV)}

is compact. Since clearly G,=C.(G’),, the proposition is proved.

(*) See S. Lanc, Bull. Amer. Math. Soc., 66 (1960), p. 240-249, end of introduction.
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10 ARMAND BOREL

1.10. Let W be a finite dimensional vector space over £&. Then W,=W®A
is the adele space attached to W. More generally, an adele space X, may be attached
to any algebraic variety X defined over £ [14, Chap. I]. However, this will occur only
incidentally in this paper, and we refer directly to [14] for the relevant facts.

1.11. Remark. — The notion of algebraic matric group over £, of degree n, which
is meant here, differs slightly in presentation, but of course not in substance, from that
of ¢ algebraic matric group defined over £ ”°, as used for instance in [4], or in the author’s
paper on linear algebraic groups (Annals of Math., 64 (1956), p. 20-80), where the matrix
coefficients and the fields of definition are assumed to belong to some universal field Q,
given once and for all. This convention would not be consistent with the consideration
of all the G,’s. It will be more convenient to say that an algebraic matric group H over £,
of degree n, is given by an ideal Jck[X, X5, - . ., X,,] such that for some (and hence
for every) algebraic closure £ of £, the set Hj of elements of GL(n, k) whose coefficients
annihilate J is a group. H is said to be connected if Hj is connected in the Zariski
topology. IfBisasin 1.2, then Hyis the group of elements of GL(z, B) whose coefficients
annihilate 3. In agreement with this point of view, we shall write GL,, SL, rather
than GL(n, Q), SL(n, Q) and then use indifferently GL,5 and GL(n,B) or SL j
and SL(n, B) (V).

An isomorphism class over £ of such groups corresponds to an affine algebraic group
over £, of which these groups are matrix realizations. Properties of, or notions relative
to, algebraic matric groups over £ which are invariant under isomorphisms over £ belong
in fact to the underlying affine algebraic group. This is the case for Gy, Ry oG, or also,
by 1.7, for the finiteness of ¢(G), but not the case for G,, Gf or the actual value of ¢(G).

We leave it to the reader who feels the need for it to make similar adjustments
in the few occasions where we shall have to consider affine or projective varieties.

1.12. It will be convenient to be allowed to consider sometimes rational repre-
sentations over £ and homogeneous spaces of a non-necessarily connected matric algebraic
group. In the cases of interest in this paper, this does not present any difficulty but,
there being seemingly no handy reference for it, we feel compelled to devote a few
sentences to that question.

Let L be an algebraic matric group, of degree m, over a field F. The ring F[L]
of regular functions, defined over £, over L, the ¢ coordinate ring >’ over F of L, is generated
by 1, the matrix coefficients and (det #)~* (xreL). A rational representation ¢ : L-~GL,
is over F is the coefficients of p(x) (xeL) belong to F[L].

Let M be an algebraic subgroup over F of L. Then M\L will be identified
with its image in M\GL,. The regular functions over F on M\L may be
identified with the ring F[L]¥ of elements of F[L] which are invariant under left

(1) This way of introducing algebraic matric groups, which in a way brings us back to the pre-universal
field days, was suggested to me by P. CARTIER; see his paper in the Proceedings of the Collogue sur la Théorie des

Groupes Algébriques, Bruxelles, 1962 (to appear) for a more complete discussion, and a comparison with the point
of view of schemes.
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SOME FINITENESS PROPERTIES OF ADELE GROUPS OVER NUMBER FIELDS I

translations by elements of M. If M\L is an affine algebraic set, this determines
completely its structure over F. In particular, if p : L-~GL, is a right rational repre-
sentation over F, and weF? a point whose orbit X is closed and whose isotropy group
is M, then g—>x.p(g) induces an isomorphism over F of M\L onto X.

1.13. Let F be a field of characteristic zero, L an algebraic matric group over F.
For the sake of reference, we recall that if Ly is Zariski dense in L, in particular
[12, Theorem 3] if L is connected, then L=H.N is the semi-direct product of its unipotent
radical N by a reductive algebraic subgroup H over F. This globalization of a known
fact on algebraic Lie algebras is due to Mostow (Amer. 7. M., 78 (1956), 200-221,
Theorem 6), see also G. Hochschild (/llinois 7. M., 5 (1961), 492-519, Section 3).

Remark (added in proof). — In fact, the preceding result is also valid if L is not
connected (see [5]). This allows some simplifications in the sequel. In particular, in 3.6,
the second part of the proof, from « In the general case » on, is superfluous ; in 4.6, the
proof given is also valid in the non-connected case.

§ 2. The double cosets modulo G} and G,.

This paragraph is devoted to some simple examples and remarks concerning the
double cosets GP.x.G,. In the sequel, 2.3 will not be used and 2.2 will be needed
only when £=Q.

2.1. In this section, we recall some facts on lattices, of which Proposition 2.2
will be an easy consequence.

Let X be a lattice in k. Then p,. X=X (peP) is a lattice in £}, and X, =0}
for almost all p’s. Conversely, given lattices X (peP) such that X} =op; for almost
all p, then X’'= NN X, is a lattice in £" and we have (X'), =X, forall peP.

veP
A lattice X in £" is isomorphic to the direct sum of p"~* and a fractionary ideal

of k, whose ideal class v(X) depends only on X. Two lattices X, X' are isomorphic if
and only if v(X)=vy(X’). (For all this, see e.g. [6, §§ 12, 13]).

To an ordered pair X, X’ of lattices in £" (resp. in &, (peP)), there is associated
a fractionary ideal y(X, X') of £ (resp. k,) [13, Chap. III, § 1]. If for example k=Q
and X'cX, then y(X,X’) istheideal generated by theindex of X'in X. If ueGL(n, k),
then (X, u(X)) is the ideal generated by det u (loc. cit., Prop. 2, p. 58). Since x(o,a) =a
for any ideal a of 0 [13, p. 27], the above and the formal properties of x(X, X’) [13, Prop. 1,
p- 58] imply that the ideal class of y(o", X) is equal to y(X). We note finally that

1(Xs Xy =x(X,, X3) (peP),

as follows directly from the definition of (X, X').
2.2. Proposition. — The number ¢(G) is equal to the class number of k if G=GL,,
to one if G=SL,.
Let G=GL, and g=(g,)€G,. By 2.1, given a lattice X in £", then
gX)=N g,(X,) is a lattice, and G, operates in this way transitively on the set of all
peP :
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12 ARMAND BOREL

lattices in £". The isotropy group of o” is just G, hence the orbits of G, in G,/Gp
are in 1 —1 correspondence with the isomorphism classes of lattices in £* and therefore,
by 2.1, with the ideal classes of £.

Let G=SL,, g¢=(g,)€G,, and X=g(o"). Then

X(Dg, Xp) = (det gp) =Dy

for every peP, hence yx(o", X)=o. Since (y(0" X))=+v(X), there exists then
ueGL(n, k) such that X=u(0"), and since (detu)=1y(o", X), the determinant
of u is a unit of p. Multiplying 4 by an element of GL(n, o) whose determinant is
the inverse of det u, we get an element u'eSL(n, £) which brings 0" onto X. Thus
SL(n, k)(0") =SL, ,(0"), which proves our assertion.

2.3. Proposition. — Let k=Q, F be a non-degenerate quadratic form on Q*, and G=O(F)
the orthogonal group of ¥. Then the elements of GY\G,/Gq are in 1—1 correspondence with
the classes in the genus of F.

As is usual, we shall write L[M] for ‘M.L.M, where L, M are two 7 X n matrices.

Let S, T be two rational quadratic forms on Q". We recall that S, T belong to
the same class if there exist matrices B, CeGL(n, Z) such that

(1) T=S5[B], S=T[C],

and that S, T belong to the same genus if for every prime v of Q there exist matrices
B,, C,eGL(n, 0,) such that
(2) T=S8[B,], S=T[C,.

In the latter case, the quotient det S/det T is >o0 and is a p-adic unit for every finite
prime p, hence det S=detT, and detB,= 4 det C,= +1 for every v. Using the
fact that a p-adic quadratic form always has a unit of determinant — 1, we see that
if S, T are in the same genus, then (2) has solutions B,, C,eSL(n, Q).

Let now UeG,. By 2.2, we may write

(3) U=M.N"!(M=(M,)eSL?,), NeGL(n, Q), det N= +1.

We have then F[N]=F[M,], therefore T =F[N] is a rational form in the genus of F.
A straightforward verification shows that the class of T does not change if we use another
decomposition of U similar to (3) or if we replace U by an element of G{.U.G,.
Therefore U—T defines a map ® of G\ G,/G, into the set of classes in the genus of F.
There remains to show that @ is bijective.

Let T be as above, and T'=F[M;]=F[N'] be obtained similarly from F. It T’
belongs to the class of T, then there exists LeGL(n, Z) such that T=T'[L]; we have
F[N']=F[N.L], F[M;]=F[M,.L],

hence
M'eGy.M.L, N'eGy.N.L, M'.N'7'eGY.M.N"L.G,,

which shows that @ isinjective. Let now T be in the genus of F, and M = (M,)eSL(n, A)®
be such that T=F[M,] for every ». By Hasse’s theorem, there exists NeGL(n, Q)
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SOME FINITENESS PROPERTIES OF ADELE GROUPS OVER NUMBER FIELDS 13

such that T=F[N]. We have then M.N~'eG,, det N= + 1, and the class of T belongs
to the image of ®.

2.4. Proposition. — Assume that G=H.N 1is the semi-direct product of a subgroup H
and a normal subgroup N, both algebraic, over k, and that ¢(N)=1. Then ¢(G) is finite if c(H)
so is, and is equal to one if ¢(H) so is.

" Let (x,);c; be a set of representatives of the double cosets HY.x.H, (xeH,). We
have G,=H,.N, by 1.5, and N,=N7.N, by assumption, whence

G=UHp.x.H, N,=UH?.x.N?.x;7.,.G,.
i€l i€l

Since x;.N7.x;' is commensurable with NY (1.7), there exist finitely many elements
;€N such that x, NP .x~ 1CL}JNX". Jij+ The set of products (;;.x;) contains then
representatives of all double cosets G .x.G,, which proves the first part of 2.4. If
moreover ¢(H) =1, then I has one element, we may assume x;=e, whence j;=e,
and ¢(G)=1.

2.5. Corollary. — If G s unipotent, then ¢(G)=1.

This follows from the approximation theorem if dim G=1, and from 2.4 by
induction in the general case.

2.6. The group G is said to have the strong approximation property if Gy_p.G; is
dense in G, [8, g]. This property is clearly invariant under isomorphisms over .

Let G have the strong approximation property. If U is an open subgroup of G,
containing Gy_p, then U.G,=G,, for, given geG,, we have U.gnGy_;.G,+0,
whence geU.Gy_p.G,=U.G,. In particular, G,=G%.G,, and ¢(G)=1. This
applies e.g. when G=SL, or G is unipotent [8, g].

2.7. Proposition. — Let G=H.N be the semi-direct product of a subgroup H and a
normal subgroup N, both algebraic over k. Assume that N has the strong approximation property.
Then every double coset G3.x.Gy(x€Gy) intersects H,, hence ¢(G)<c(H). If moreover
Gy =HY.NZ, then ¢(G)=c(H).

For any x€G,, the group x *.N%.x is openin N, and contains Ny_p, therefore,
by 2.6, we have N, =N%7.N,=x"'.N7.x.N,, hence also

(1) x. NP .N,=N7.x.N, (xeG,).
Let now (;);c1 be a set of representatives of HP\H,/H,. We have
G,=UHp.x.H,.N,=UHp % NP.N,. H,=UH? .%.N?. G,
and, using (1)

G,=UH? . N2.#,.G,=UG?.%,.G,,

which shows that (x,);c; intersects each double coset Gf.x.G,, and proves the first
assertion.
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14 ARMAND BOREL

Assume now that G{=H.NP, and let x,yeH, be such that xeGY.y.G,.
Then we may write

x=a.b.y.u.v (acHY, beNY, ueN,, veH,).

The element x'=a"'.x.07' of H, belongs to the same double coset mod HY, H, as x,
and is also equal to 4.y.u, hence, by (1)

x'=p.0".u" (b'eNY, u'eN,).

Since G, is the semi-direct product of H, and N,, this yields x’=y, and our second
assertion.

§ 3. Siegel domains in GL, and fundamental sets in G..

In this paragraph G, is identified with = (G,).

3.1. A subset B of G, is a fundamental set for G, if it satisfies the following
conditions

(Fo), : K.B=B for some maximal compact subgroup K of G.

(F1), : B.G,=G,,.

(F2), : For any a, beG,, the set of xeG, such that B.a.x.0nB+#0 is finite.

The condition (F o), has been included chiefly to remain in agreement with [2, 4],
but will play no role here. Since G, is discrete in G, (F 2),, is certainly true if B is
relatively compact. Therefore compact, or open and relatively compact, fundamental
sets always exist when G /G, is compact.

It is clear that the condition (F 2)_ is not changed if x is allowed to run through
any finite union of right or left cosets of G, in G,. For future use, we mention one such
apparent strengthening of (F 2), :

Lemma. — The condition (F 2), for a subset B of G, is equivalent to:

(F2),,: For any a,beG,, and any non-zero algebraic integer reco, the set of
xeG,={geG,|r.g,7.g7'eM(n, 0)} such that B.a.x.bnB#0 is finite.

Let xeG,. Then

(r).o"cx(o™) c(r™ 1) .o

But there are only finitely many lattices between two lattices I'cI' of #* (since I'/T’
is a finite group) ; therefore G, is the union of finitely many left cosets modulo the isotropy
group of 0" in Gy, that is modulo G,, and G, is of course equal to G, if r=1, whence
the lemma.

3.2. The following property of a subset BcG,, relatively to a given algebraic
subgroup H over £k of G, plays a considerable role in [4], although it is not stated explicitely
there:

(F3), : For any rational integer m>1, any rational (right) representation
e : G—>GL,, over £, any point wek™ with a closed orbit and isotropy group H, and
any lattice I'ck™, the intersection w.p(B)nT is finite.
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In view of the properties of Ryq, it is clear that if (F 3),, is true for R, G, R, H,
then it is true for G, H.

3.3. Thestandard Siegel domain &, (¢, u€R, ¢, u>0) of GL(z, R) is by definition
the set of products k.a.n where keO(n), a = diag (ay, ..., a,) (¢;<t.q;,;1=1, ..., n—1)
and n=(m;) is upper triangular, with ones in the diagonal, and |n;|<u (i<j), where

the bounds are sufficiently large so that GL(n,R) =G, ,.SL(n, Z), say (>4/3, u>1
2

(see [4, § 4.5] for references). It has the property (F 2), by a well-known theorem
of Siegel recalled in [4, § 4.5] and is therefore a fundamental set for GL (n, Z) in GL(n, R).

3.4. Lemma. — Let k=Q, S a standard Siegel domain of GL(n,R), 1 a finite subset
of GL(n, Q). Let G be a reductive group, acSL(n, R) such that a.Gg.a™'is self-adjoint (*),
and B=U (a71.6.¢cnGyg). Then B has property (F2),. If H is an algebraic subgroup

cel
over k and a.Hg.a " is also self-adjoint, then B has property (F 3),, with respect to H.

Property (F 2), follows from the facts recalled in 3.3. As to (F3),, 3.4 is in
this case chiefly a restatement of results proved in [4]. In fact, an easy commensurability -
argument, as given at the end of 6.9 in [4, p. 511], shows that it is enough to prove the
existence of one rational representation p’: G —GL, over Q and of one point w’'eQ™
with closed orbit X’ and isotropy group H such that w’.p’(B)nI" is finite for any
lattice I'"cQ™ We start then with a representation p’ : GL,—~GL,, over Q for which
there exists w'ek™ whose orbit under GL, is closed and whose isotropy group in GL,,
is H. This exists by [4, 3.8], taking into account the fact that, a.Hg.a™' being self-
adjoint, H is reductive [4, § 1]. The orbit of w under G is then also closed, and it is
a fortiori enough to show that w’.p’(a~'.&’.6)nT" is finite for any lattice I'"cQ™ and
any beGL(m, Q). This amounts to proving the finiteness of w’’.p'(S)nIV.p'(571),
where w'’'=w'.p(a™"'). Since I'.p'(b™') is also a lattice in Q™, and the isotropy group
a.Hgz.a™ ' of "’ in GL(n, R) is self-adjoint, the finiteness in question is a consequence
of [4, 5.4]

3.5. It follows from 3.4 and [4] that if G is reductive, and H an algebraic
subgroup over k£ of G, then G, has open or closed fundamental sets which also
verify (F ).

In fact, using the restriction of the ground field, we may assume £=Q. If (F 3), is
not an empty condition relatively to H, then H\G admits a realization as a closed orbit,
hence H is reductive [4, 3.8], and there exists aeSL(n,R) such that a.Gg.a™! and
a.Hg.a™ ' are self-adjoint (by a result of Mostow, also proved in [4, § 1]). Then,
by [4,6.5], G,= Gg=B.G,, where Bis asin 3. 4, and satisfies therefore all our conditions.

3.6. Similarly, we may strengthen slightly [4, 12.3] and assert that G, contains
closed or open fundamental sets. ‘

(1 As in [4], a subgroup of GL(z, R) is said to be self-adjoint if it is invariant under the map g — ‘g,
where {g is the transpose matrix of g.
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16 ARMAND BOREL

If G is unipotent, then G_/G, is compact, and G, has compact, or open and
relatively compact, fundamental sets (see 3.1).

If G, is Zariski-dense in G, we use the decomposition G=H.N of 1.13. In
view of the above, it suffices to show that if BcH, and CcN,, with C relatively
compact, are fundamental sets for H; and N, in H_ and N_ respectively, then B.C is
a fundamental set for G, in G,. For (F 0),, this is clear because the maximal compact
subgroups of H,, are also maximal compact in G, ; as to (F 1), this follows from

G,=B.H, N_,=B.N_H,=B.C.N,.H,.

The condition (F 2)_ is invariant under a rational change of coordinates, since the
latter replaces G, by a commensurable group (1.7, Remark). We may therefore assume
that £" is the direct sum of subspaces which are stable under H; and acted upon trivially
by N,, and that N, is upper triangular. Then G,=H,.N,, and the proof given
in [4, 6.12] holds here too.

“In the general case, let G, be the subgroup of G formed by all connected components
of G which intersect G,. By the theorem of Rosenlicht [12, Theorem 3], G, is Zariski
dense in G;. By the above, there exists an open or closed fundamental set Q, for G,,
in G;,. We denote by K, a maximal compact subgroup of G, such that K,.Q, =Q,.

Let (g) (1<i<s) be a set of representatives in G, for the cosets G,/G,,. Then
Q= U 4.Q, obviously verifies (F1),. If now Q.axbnQ=+0 (a, beG,, xeG,),

1<i<m
then there exist ¢,j (1<, j<m) such that

aQ.a.x.b.na ) +0.

By definition, G,, contains Q,, a, x, b, therefore ¢; and a; are in the same coset
modulo G, ., hencei=j, Qua.x.bnQ,+0, and the possible x’s are finite in number.
Thus Q verifies (F2),.

In order to have Q verify (F o), also, we take a maximal compact subgroup K
of G, containing K;. Then K intersects all connected components (usual topology)
of G, hence we may take the g;/s in K. We have then K= LijaiKl,

0=Uq.0,=Uq.K,.Q =K.Q,,

and therefore K.Q=Q.

Remark. — In the last part of the proof we have used the fact that the usual properties
of maximal compact subgroups in a connected Lie group are also true in a Lie group L
with finitely many connected components, in particular: every compact subgroup is
contained in a maximal compact one, the maximal compact subgroups are conjugate
by inner automorphisms, and the quotient of L by one of them is homeomorphic to a
euclidean space (see G. D. Mostow, Annals of Math., 62 (1955), p. 44-55)-

112



SOME FINITENESS PROPERTIES OF ADELE GROUPS OVER NUMBER FIELDS 17

§ 4. Fundamental sets for G, in G,.

4.1. Definition. — A subset QcG, is a fundamental set for G, if it verifies the two
conditions:

(F1), :G,=0Q.G,,
(F2),: Q7 1.QnG, is finite.

Since G, is discrete, (F 2), is true for any relatively compact set Q; therefore,
if G,/G, is compact, there always exist compact, or open and relatively compact,
fundamental sets.

4.2. In analogy with 3.2, we also introduce the following condition for a subset Q
of G,, relatively to a given algebraic subgroup H over £ of G.

(F 8), : For any rational integer m>1, any rational representation p : G—>GL,,
over £, and any wek™ with closed orbit and isotropy group H, the set w.p,(Q)nk™ is
finite.

4.3. Lemma. — Let B be a subset of G, and C a relatively compact subset of Gp.

a) If B verifies (F 2),, then B.C verifies (F 2),.

b) If B verifies (F 3), relatively to a subgroup H, then B.C verifies (F 3), relatively
to H.

Let xeG,n(BC)~'.BC. Then, for any peP, the elements x and x~! belong
to the relatively compact sets =,(C~'.C) and =,(C.C™") respectively. The basic
properties of the adele topology (see § 1) show then the existence of rep,r+0, such
that 7x,7x 'eM(n, 0,) for every peP, hence such that rx,7x~'eM(n, 0). For the
components of infinity, we have B.xnB=+@, whence our assertion (see 3.1).

The proof of ) is quite similar. Let p, w be as in (F 3), and xew.p,(B.C)nk™.
For every peP, the element x belongs to the relatively compact set =, (w.p(C)); there
exists then rep, 7+ 0, such that r.xep] for every peP, therefore such that r.xep™.
Thus

xew.p(B.C)nk™=xel,

where I'=(r—1!).p™ is a lattice in ™. Projecting at infinity, we get xew.p,(B)nT,
which is finite by assumption.

Remark. — The proof of (F 3),—(F 3), shows in fact that if B verifies (F 3),,
for one representation p, one point wek™, and any lattice I'c4™, thenB.C verifies (F 3),
for p and w.

4.4. Lemma. — Let k=Q, G=GL,, and S a standard Siegel domain of GL(n, R).
Then G, =6G.Gy.Gy.

This follows from G,=GY.Gq (see 2.2) and 1.8 (6). In fact what is proved
here is that if ¢(G)=1, and B.n (G, =G, (BcG,), then G,=B.Gy.G,.

4.5. Theorem. — Let k=Q, G be reductive. Let S be a standard Siegel domain
of GL(n,R) and aeSL(n,R) be such that a.Gg.a™"' is self-adjoint [4, § 1]. Then there
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18 ARMAND BOREL

exist finitely many elements b, ..., b,eGL(n, Q) such that Q= 0 (a7'.6.GL, y.5,nG,)
i=1

is a fundamental set for Go in G,. If H is an algebraic subgroup over k of G and a.Hg.a™!

is self-adjoint, then Q verifies (F 3), relatively to H.

Here, a7 '.6.GL,  stands for
{g=(2)eGL, ,|g,€a7".8, g,eGL(n, Z)), (p prime)}.

By [4, 3.8] there exists a rational representation p : GL,—>GL,, defined over Q and
a point weQ™ whose orbit under GL(r, C) is closed and whose isotropy group is G.

Let @' be the point of A" defined by w;, =w.p(a™"), w,=w, (p prime). The
orbit of w,, under GL(n, C) is the same as that of w, hence is closed, and the isotropy
group of w, in GL(n,R) is a.Gg.a™!, hence is self-adjoint. Lemma 3.4 (with G
and H replaced by GL, and G respectively) and 4.3 show the existence of finitely many

elements &, ..., 5,eGL(n, Q) such that
(1) w'.p,(8.GL, y)nw.p, (GL(n, Q) c{w.p,(b7"), ..., w.p,(b7 )}

)

Let us put
H={xeGL, ,|w' .0, (x) =w}.
Then, clearly,
(2) H=j_(a).G,.
Let now xeH. Using 4.4, we may write
x=s5.b"1 (seS.GL, y, beGL(n, Q))
and the relation w’.p,(x)=w gives
w'.px(s) =w.p.(8);
which, by (1), shows that w.p,(8) =w.p,(b;") forsome (1 <:<s). Thisyields 4.5,eGy,

HcU (8.GL, .5.Gy)

t=1

which, together with (2), proves that G, =Q.G,.
We may write QcB.C, where

(3) B— EJ1 (¢S () nG,)

verifies (F 2), by 3.4, and where

(4) C=

T Co

. (mp(b;) . GL, yn Gy)
is compact. The validity of (F 2),, (F 3), then follows from 3.4 and 4.3.

4.6. Theorem. — G, contains closed or open fundamental sets for G, if G is connected.
If G is reductive, and H is an algebraic subgroup over k of G, then G, contains closed or open
Jfundamental sets verifying (F 3), relatively to H.
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By use of the restriction of the scalars, the proof is readily reduced to the case
where £=Q.

Let first G be reductive. Then 4.4 gives closed fundamental sets. But we can
of course replace & by the interior of a standard Siegel domain, and GL, ; by a bigger
open, relatively compact subset of GL,, », and then we get open fundamental sets. If
now H\G is realized as a closed orbit in a vector space, it is an affine variety, hence H
is reductive [4, 3.8], and there exists aeSL(n, R) such thatboth a.Gg.a"! and a.Hg.a™!
are self-adjoint [4, § 1]. With this choice of a, the set Q of 4.5 verifies (F 3), in virtue
of 4.3 b).

If now G is connected, we have G=H.N, with H reductive, N unipotent and
normal in G (1.13). By [11, Prop. 15] N,/Ng is compact, hence 4.6 is true for G=N,
and it is enough to show that if BcH, and CcN, are fundamental set for Hg and N,
with C relatively compact, then B.C is a fundamental set for Gg in G,.

We have

G,=H,.N,=B.Hg.N,=B.N,.Hy=B.C.G,.

et g=h.u (heHy, ue elong to -1 BC. is is the case if and only i

Let g=# }ZHQ Ng) belong BC)~1.BC. This is th if and only if
B.inB+0, Ar 1.C.h.unC%0.

Thus there are only finitely many possibilities for %, and, C being relatively compact,
only finitely many possible «'s for a given A, which ends the proof.
Remark. — The first part of 4.6 will be extended to non-connected groups in 5.2.

§ 5. Finiteness theorems for G,, Gj.

5.X. Theorem. — The number ¢(G) of distinct double cosets G .x.G, (x€G,) 1is finite.
Since a compact subset C of G, is contained in the union of finitely many right

translates of Gy (see 1.2), 5.1 is equivalent to the existence of a compact subset C
of G, such that

(1) G,=Gy.C.G,.

Let first G be connected. Using 1.13, 2.4, 2.5, we may assume G to be reductive.
By restriction of the ground field (1.4), it is enough to consider the case where k=0Q.
But then (1) is a consequence of 4.5 (3), (4).

In the general case, there exists a compact set D of G, such that G, =D.G} (1.9).
By 1.2 and the above, we may find finite subsets I, J of G, and G{ such that

G,= U Gr.x.G*.G,.
zel,yed

The theorem follows now from the fact that x.G?.x~"! is commensurable with G (1.7).

5.2. Corollary. — Let B a fundamental set for G, in G,,. Then there exists a compact

subset C.cGyp such that B.C’ is a fundamental set for G, in G, for any relatively compact subset C’
of Gp containing C.
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By 5.1, there exists a compact set C; in Gy such that G, =Gy .C,.G,. Let
(2) C=Gy.G,.Gy.
We have
GY.C=G,.C=B.(j,.7,(G,)).C;

using (2) and 1.8, we get

Gr.C=B.C.(j,.n,(G,))=B.C.G,,

0
hence

G,=Gp.C.G,=B.C.G,.

The corollary then follows from 4.3. Since B always exists (3.5), this produces funda-
mental sets also when G is not connected.

5.3. Let G be reductive connected and H an algebraic subgroup over £. When
k=Q, it is shown in [4, 3.8] that H is reductive if and only if there exists a rational
representation p : G—>GL(W) over £ and a point weW, whose orbit X is closed and
whose isotropy group is H.

This is also valid over a number field, with G not necessarily connected. In fact
let G'=R; G, H'=R,H, X'=R;,(X. Wehavethen X'=H'\G'. If His reductive,
then so is H’, hence X' is affine ([4, 3.8] and 1.12), X is affine, and the existence
of p follows from [4, 2.4, footnote 2] (!). If p exists, then X is affine, hence so is X',
H’ is reductive [4, 3.8], and therefore H is reductive.

5.4. Theorem. — Let G be reductive, H an algebraic subgroup over k of G, and o the
natural projection of G onto X=H\G. Assume that H is reductive or, equivalently (5.3) that X
is an affine algebraic set. Then o,(G,)NX, is the union of finitely many orbits of G;, (%).

Let p:G—>GL, be a right rational representation over £ and wek™ a point
whose orbit X' is closed and whose isotropy group is H (see 5.3). There is an equivariant
isomorphism ® : XX’ over k£ which maps o(H) onto w, whence an equivariant
homeomorphism @, : X, -X; which sends X, onto X; and ¢,(G,) onto w.p(G,).
Thus we are reduced to proving that w.p(G,) nk™ consists of finitely many orbits of G,
or that w.p(Q)nk™ is finite for a suitable fundamental set Q for G, in G,; but this
follows from 4.6.

5.5. Lemma. — The following conditions are equivalent: a) G, is unimodular, b) GY is
unimodular, c) GY s unimodular, d) G, is unimodular, e) every left invariant rational exterior
differential form on G°, of degree s= dim G, defined over k, is right invariant. If X, (G°) =1,
then G, is unimodular.

By 1.9, the quotient group G,/G% is compact, therefore (a)<>(5). The quotient

() We do not need to know whether the result of Weil used in the proof of [4, 2.4] holds good for non-
irreducible varieties, because H'\G’ is embedded in H'\GL,, which is irreducible. An affine embedding over &
of the latter then yields one for the former.

(3) As in [4], we have been led by our conventions on Siegel domains to consider right representations
in § 3. This is why 5.8 is formulated for right coset spaces; but it is of course equivalent to the corresponding
statement for G/H.
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G, /G, is finite, and 1.9 implies that G7/G}® is compact. Therefore G (resp. G,)
is unimodular if and only if G} (resp. G%) isso. It suffices therefore to prove 5.5 when G
is connected.

Let o be a rational left-invariant differential form of degree s on G, defined over £.
Then w.g=y(g).w where yeX;(G), hence X, (G)=1 implies ¢).

The form « induces a left-invariant form o, on G, for every veV. There exist
convergence factors (A,),cy such that the product of the measures A, o, is defined on
Gy (ScV, S finite) and is a Haar measure, and the inductive limit of these Haar
measures is a Haar measure on G, [14, Chap. II]. From this, the equivalence of ¢) with
any of &), ¢), d) is clear.

5.6. Theorem. — (i) G,/G, carries an invariant measure and has a finite volume for
that measure if and only if X, (G°) =1.

(i) G,/Gy, is compact if and only if X, (G°) =1 and every unipotent element of G, belongs
to the radical of G,.

By 5.1, there exists a finite subset I of G, such that

G,=UG?>.x.G,.

zel

We have then
(3) G,/G=Ux. {(x*.GP.x)/(x *.GL.xnGy }.

13

Since x~*.GY.x is commensurable with G{ (1.7), the group x~'.G7.xnG, is commen-
surable with G?nG,=G,. Taking 5.5 into account, we see that (i) and (ii) are
respectively equivalent to the same assertions for Gy/G,. Since the latter space is fibered
over G_/G, with compact fibers (1.8), (i) and (ii) are also equivalent to the statements
obtained from them by writing G, /G, instead of G,/G,, but these follow from [4, 12.3]
and from the fact that (G°),, has a finite index in G,.

(Of course, we could also reduce the proof to the case where k=Q by useof 1.4,
1.5 and then refer to [4, 9.4, 11.8] rather than to [4, 12.3].)

5.7. Let m,:I,—~R* be the continuous homomorphism of the idele group

of k£ into R™ which associates to an idele x= (x,),cy its idele module II ||x,|[,. To
veV
each character ye€X,(G) corresponds a continuous homomorphism moy, : G, >R™;

we put
(4) Gy = n ker (myoy,).

1 EX,(6)

If s is a rational integer, then, clearly, ker my oy =ker mpoy,. Therefore

(5) nGa= N ker (myoxs)s

x EM

whenever M is a subgroup of finite index of X;(G).
Let

(6) L={geG|x(x) = +1, (xeX,(G))}.
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This is an algebraic normal subgroup over £ of G, whose unipotent radical coincides
with that of G. Since Gy is compact, it belongs to ,,G,, whence

(7) mGan Gy =L, X Gy,
which implies

(8) ﬂ:oo(Gn) CLoo’ ”oo(Go) =T:oo(Ln)'

For connected groups, 5.6 admits the following generalization:
5.8. Theorem. — Let G be connected. Then ,G,= [ ker(myoy) is unimodular,

x €X,(G)
contains G, the space ,,G,|G, has a finite invariant measure, and :,GA/Gk is compact if and only
if every unipotent element of G, belongs to the radical of G,.

A classical special case of 5.8 not included in 5.6 is the compactness of the
quotient I/k" of the group of ideles of k£ of idele-module one, by &*.

By the product formula, ,,G, contains G,. Let J be a set of representatives for
the distinct double cosets G .x.G; which meet ,G,. Itis finite by 5.1, and

Gi= U (,G,nGY).x.G,.
z€d

The group x '(,G,nG{)x=,G,nx"*.GY.x is commensurable with ,G,nGy and
therefore, as in 5.6, our theorem is equivalent to the corresponding assertion for ,G,nGY
and G,. Using 5.7 (6), (7), (8) and 1.8, we see that (,G,nGyY)/G, is fibered
over L /m,(L,) with compact typical fiber Gy. We are thus reduced to proving the
statement 5.8 with ,,G, and G, replaced by L, and L,, the latter group being now
viewed as a subgroup of L. This modified statement follows from 5.5 and [4, 9.4, 11.8]
provided that we show that X,(L°) =1. But this last fact is a consequence of the more
general lemma:

5.9. Lemma. — Let F be a field of characteristic zero, M a connected algebraic matric group
over F, and B a connected normal algebraic subgroup over k of M.  Then the cokernel of the restriction
homomorphism Xp(M) —-Xg(B) s finite.

Let R(M) and R(B) be the radicals of M and B. The group R(B) is normal
in R(M) and M (resp. B) is isogeneous to the semi-direct product of R(M) (resp. R(B))
with a semi-simple group. The restriction defines therefore an injective homo-
morphism Xp(M) =Xy (R(M)) (resp. Xz(B) >Xz(R(B))) with finite cokernel, and we
may assume M and B to be solvable. The group M is then the semi-direct product,
over k, of its unipotent radical N by a maximal algebraic torus T, whence a natural
isomorphism Xp(M)=~=X(T). Assuming, as we may, that S=TnB is a maximal torus
of B, we have similarly B=(TnB).(NnB), X;(B) =X;(TnB), so that it is enough to
prove 5.9 when M is an algebraic torus; in that case it follows for instance from [4, 8.4 a)].

5.10. Remark. — In Ono’s terminology [11], G is of type (F) if ¢(G) is finite,
of type (C) (resp. (M)) if ,G,/G, is compact (resp. of finite invariant measure), and G has
no defect if the restriction homomorphism X, (G)—X,(G°) has a finite cokernel. If G has
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no defect then the intersection L’ of the kernels of the elements of X,(G°) has finite index
in the group L of 5.7 (6), hence L, has a finite index in L, and 5.7 (5), (7) show
that ,,G,/,G% is compact. Thus ,G, is unimodular if and only if,,G{ is so. Together
with 5.1, 5.6, this proves: G is of type (F), a group with no defect is of type (M), a group
with no defect is of type (C) if and only if every unipotent element of G, belongs to the
radical of G,. For G solvable and G, Zariski dense in G, this was already proved in[11].

§ 6. Application to principal homogeneous spaces.

Our aim in this paragraph is to give an application of 5.4 to Galois cohomology.
As to the latter, we limit ourselves to a minimum of preliminaries, and refer to [5, 10, 13]
for more details.

6.1. Let L be a group, and B a group on which L operates on the left. Being
interested here only in Galois cohomology, we assume that all the orbits of L in B are
finite and we define a 1-cocycle of L, with values in B, as a map s—&, of L in B with
a finite image, such that b,=s(b). Two cocycles (b,), (b;) are cohomologous if
there exists ceB such that b,=c¢"1.b,.5(c). This is an equivalence relation. The
set of such equivalence classes is the first Galois cohomology set of L with coefficients
in B, denoted H'(L;B). If B is commutative, it is a commutative group; in
general HY(L; B) is just a set with a distinguished zero element, the class of the
coboundaries s—b"'.5(b) (beB). If L operates on another group C, again with finite
orbits, then any equivariant map f:B—C induces a map f*:H'(L;B)—H'L; C)
sending the zero element onto the zero element; by definition, the kernel of f* is the inverse
image of the zero element of H'(L; C).

The set B of fixed points of L in B is, by definition, the o-cohomology group H°(L; B)
of L in B, and the following lemma is in fact a part of the exactness of a cohomology
sequence ([13, p. 133], [5])-

6.2. Lemma. — We keep the previous notation, and assume that B is a subgroup of C.
Then there exists a natural map S : (C/B)'—H(L; B) which induces a bijection 8, of the set of orbits
of Clin (C/B)Y onto the kernel N of the map * : H'(L; B)—>HY(L; C) induced by the injection
of B in C.

Let = : C—C/B be the canonical projection, and o==(B). Let xe(C/B)Y, and
choose cen!(x). Then xe(C/B)Y implies ¢ '.s(c)eB, and s—c¢ '.5(c) is a cocycle
of L in B, whose class does not change when ¢ varies in n~'(x), and is 8(x) by definition.
Clearly 8(x)eNj; it is easily checked that 3 is constant on the CI orbits.

If 3(x)=3(») (x,»e(C/B)Y), then there exist ¢, deC, zeB such that

c.o=x, d.o=y, dls(d)=z"t.c150).5(z) (seL),
whence ¢.z.d7'eCt. Since ¢.z.d7'.y=x, this shows that 3§, is injective. If now

(b,)eN, then there exists ¢ceC such that b,=c"'.s5(c) (seL), whence =(c)e(C/B)"
and (b)=5(r(c). Thus Im 35N.

6.3. We shall be concerned here only with the case where L is the Galois group
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Gal(F[k) over £ of the field F of all algebraic numbers, and where B=Gy; as is usual,
we write H'(k, G) for H'(Gal (F[k); Gg). This set may also be viewed as the inductive
limit of the cohomology sets H'(Gal ('[k); G,), where &’ runs through the finite algebraic
normal extensions of k. Since H'(Gal (£'[k), G,) =0 when G=GL, (Theorem of
Speiser, see e.g. [13, p. 159]), we also have

(1) H!(k, GL,) =o.

Together with 6.2, this implies the

Lemma. — The map & : (GL,/G),—~H(k, G) induces a bijection 3, of the set of orbits
of GL(n, k) in (GL,/G), onto H(k, G).

6.4. A principal homogeneous space for G is an affine algebraic set X over
which G operates, say on the right, as an algebraic transformation group, so that for
each xeX the map g—x.g is a biregular map of G onto X. Since we are in charac-
teristic zero, it would be equivalent to require that G is simply transitive on X. The
principal homogeneous space is over % if X and the action of G on X are defined over £.

A principal homogeneous space over £ is said to split over an extension £’ of £ if
it has a point rational over £’. If this is the case, and if xeX,, then g—x.g identifies,
over £, X with G operating on itself by right translations.

Two principal homogeneous space X, X’ for G, over £, are isomorphic over &
if there exists an equivariant birational biregular map over £ of X onto X'. It is well
known that there is a natural 1 —1 correspondence @ between these isomorphism classes
and H'(k; G) (see [10] for instance). We sketch the proof:

A principal homogeneous space X over k£ for G always contains an algebraic
point x. Given seGal (FJk), there is a unique g,eGy such that x.g,=s(x). Itis
readily checked that s—>g, is a 1-cocycle whose class depends only on the isomorphism
class over £ of X, and that the map @ thus obtained is injective. That @ is surjective
follows from ¢ field-descent ” but, in our case, may be deduced from 6.3: in fact,
if xe(GL,/G);, and if X, is the inverse image of x in GL,, viewed in the obvious manner
as a principal homogeneous space for G, then it follows immediately from the definitions
that 3(x) =9(X,).

6.5. A principal homogeneous space X over £ is said to split locally everywhere
if it splits over all completions of 4. Since an irreducible variety over £ has integral
p-adic points for almost all peP (see 1.9 for a reference), so does X, if G is connected.

Let now G be connected, G’ be an algebraic matric group over £ containing G as
an algebraic subgroup, and ¢ : G'—>G’/G the natural projection. ¢ induces a continuous
map o, : G;—(G’'/G),. Let x6(G’/G), and X=0c""(x) be the corresponding principal
homogeneous space. If xe0,(G)), then X obviously splits everywhere; the remark
made earlier in this section shows that the converse is true if G is connected. Together
with 6.3, 6.4, this proves the following.

6.7. Lemma. — We keep the previous notation, and assume G to be connected. Then
the elements of ker (H'(k, G)—>H!(k, G")) which, viewed as principal homogeneous spaces, split
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locally everywhere, are in 1—1 correspondance with the orbits of G, in ,(G;)n(G'/G),.

If now G is reductive and G’=GL,, then ¢,(G;)n(G’/G), is the union of finitely
many orbits of G, by 5.4. Combined with 6.3, this proves the following:

6.8. Theorem. — Let G be reductive, connected. Then the number of isomorphism classes
over k of principal homogeneous spaces over k for G which split locally everywhere is finite.

This theorem will be generalized in [5], where it will be shown that given a principal
homogeneous space X over k£ for G (where G is subject only to our standing assumptions)
and a finite subset ScV, the principal homogeneous spaces over k£ for G which are
isomorphic to X over £, for all v6V—S form a finite number of isomorphism classes over £.

§ 7. Application to parabolic subgroups.

7.1. Let G be connected. An algebraic subgroup H of G is parabolic if G/H is
a complete variety. H is then connected, equal to its normalizer. If, moreover, H is
defined over £, the fibering of G by H admits local rational cross sections defined over k&
(for all this, see [7]); consequently [14, p. 27]:
(1) (G/H),=G,/Hy, (G/H),=G,/H,,
and, of course, (G/H), is compact.
7.2. Lemma. — (Godement). Let G be connected, and H a parabolic subgroup. Then
there exists a finite subset 1cG, such that
G,=UGp.x.H,.
z€l
By (1) and the compactness of (G/H),, there exists a compact subset C of G, such
that G,=C.H,. The set Cis covered by finitely many translates of G (1.2) and H, by
finitely many double cosets modulo HY and H, (5.1). Therefore G, is a finite union
of subsets y.G?.z.H, (yeG,, zeH,). Since y.Gy .y~ ! iscommensurable with G (1.7),
it is contained in the union of finitely many right translates of G, whence the lemma.
7.3. Theorem. — Let G be connected and H be a parabolic subgroup, defined over k.
Then (G/H),, is the union of finitely many orbits of G,.
Lemma 7.2 implies the existence of a finite subset I of G, such that
G,cUGy.x.H,

zel
whence G,=U(G’nG).x.H,,
z€l
(2) G,=UG,.x.H,
z€l

which is equivalent to our assertion.

7.4. Remark. — The above proof is due to Godement. Another one is given
in [2]. In fact, the theorem is proved there only when k=Q , and G is semi-simple.
However the general case can easily be reduced to that one by use of the restriction
of the scalars, of the surjectivity of G, -(G/H),, and of the fact that H contains the
radical of G. We refer to [2, 4.6] for another formulation of this theorem.
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We conclude this section with a proposition which is used in proving the assertions
made in [2, 4.7], as will be shown elsewhere.

7.5. Proposition. — Let G be connected, and H a parabolic subgroup. Assume that
G,=GY.G, and that G,;,=G,,;J.Hp Sor every peP. Then the number v(G, H) of double
cosets of G, modulo G, and H,, is equal to ¢(H).

The assumption on the G, (peP) implies

GA == GA” . HA’
whence
(3) Gy= U GP.h.Hy,
1<i<m
where (#;) (1<i<m) is a set of representatives in H, for the distinct double cosets
HP.k.H,. Since G,=Gy.G, by assumption, there exists x,€G, such that keGy.x;,
whence

G,= U (GnG).x,.H,= U G,.x.H,

1<i<m 1<i<m
and (G, H) < ¢(H).
If now x,€G,.%;.G,, then heGY.h.H,, and therefore
/zje(fonHA).hi.Hk=HZ°./zi.Hk,
which shows that v(G, H) > c(H).

§ 8. Generalization to the groups of S-units.

The results of the previous paragraphs pertain to G,, G,, those of [4] to G,, G,.
Here we discuss some extensions to Gyg), Gy, Gs (SCV).

As usual, S denotes a subset of V. Unless otherwise stated, S is assumed to contain
the infinite primes, but it is not necessarily finite.

We shall often make no notational distinction between G, and w4(G,), or between
G,g and m5(G,g). Otherwise said, when we view Gy, G,5 as subgroups of Gy,
then we mean w4(G,), 75(Gyg))-

8.1. Asubset QCGyg, is a fundamental set for G, if it satisfies the two conditions:

(F 1)as) 2 Q. Gy =Gy,

(F 2),5 : Q7 1.QNG, is finite.

We could of course define a fundamental set Q for G, in Gy in the same way,
but the case where S=V-—P suggests rather to require

(F 1)g : Q.Gyg)= Gg.

(F 2)g : For any g, beG,, the set of elements x€G,5 such that Q.a.x.6nQ+0
is finite.

8.2. It will be convenient to have at one’s disposal the analogue of (F 2)/ in g.1.
To this effect, we remark first that if I' is a lattice in £", then
(1) o(S).I'= N(T',nk"), (T

p¢s

=p,.I").

» P

122



SOME FINITENESS PROPERTIES OF ADELE GROUPS OVER NUMBER FIELDS 27

In fact, I being the direct sum of 0"~ and of a fractionary ideal of £ [6, Satz 12.5], the
proof of (1) reduces to the one-dimensional case, where it follows from ideal theory.
Since I'y=(o,)" for almost all p’s, this implies that if I' and I'" are two lattices in &",
then o(S).T" .and o(S).I" are commensurable, and therefore the set of groups o(S)I'”’,
where I'” runs through the lattices in £" such that
(2) o(S).T'co(S).T"" co(S).IV,
is finite.

Lemma. — The condition (F 2)g for a subset Q of Gy is equivalent to (F 2)¢ : For any a, beG,
and any non-zero algebraic integer reo, the set of elements x€G, suchthat r.x, r.x~*eM(n, o(S))
and that Q.a.x.bnQ=+Q is finite.

Let G,s={geG,|r.g,r.g'eM(n, 0(S))} and x€G,;. Then

o(S).(r).0"co(S).x(0™) co(S).(r1).o"

By the above, G, g is then a finite union of left cosets modulo the isotropy group of o(S).0"
in G, g, which is nothing but G5, whence the lemma.

8.3. The following condition for a subset QcGg, relatively to an algebraic
subgroup H over £, admits (F g)_ and (F 3), as special cases.

(F 3)s : For any integer m>1, any rational representation p : G—-GL,,, over £,
any wek™ with isotropy group H and closed orbit, and any lattice I'c™, the set
w.p,(Q)no(S).T" is finite.

8.4. Lemma. — Let BcG,, C a relatively compact subset of Gpng. If B verifies
(F 2),, (resp. (F ), relatively to a subgroup H), then B.C verifies (F 2)g (resp. (F 3)g relatively
to H).

Let a,beG, and x be as in (F2)g. For pePnS, the element x then belong
to the relatively compact set w,(C7!.C), whence the existence of sep such that
5.x,5.x"'eM(n, 0,) for every peS. Since x, x 'eGL(z, 0,) for p¢S by assumption,
we get sx,sx”'eM(n, 0). Since BxnB+@, the part of the lemma concerning F 2
follows from g.1.

Let now p:G—>GL,, wek™ be as in (F 3)g, and xew.ps(B.C)no(S).I. In
particular, xem,(w.ps(C)) for pePnS, whence again the existence of rep such
that rxeo} for all pePnS. Two lattices in £" being commensurable, there exists sep
such that (s)['eo™; since xeo(S).I', we have then xel', for p¢S, hence s.xeo}
for p¢S. Altogether, we get r.s.xep™ which shows that x belongs to the lattice
I'=(s"t.r o™, and, combined with x=w.p(B), ends the proof.

Remark. — The remark to 4.3 also applies to the proof of (F 3),= (F 3)s.

8.5. Theorem. — The groups Gy and Gy contain open or closed fundamental sets
Jor Gy, which, in the case of Gy, verify (F 3)g relatively to H, if G is reductive, and H an algebraic
subgroup over k of G.

In view of 8.4, 3.4, 3.5, it is enough to show that if BcG, satisfies (F 1),
then there exists a compact set CcGpg such that B.C and B.C.M, where M = II G"n’
verify (F1)g and (F 1), respectively. PEs
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By 5.1, there exists a compact (in fact finite) subset IcG, such that

zel
We may of course limit ourselves to the double cosets which intersect G, ), and therefore
may assume that I1cG,g. Then

(1) Gy =xLeJIGZ° 2. (GygnGy) =IL€JIG;° 2. Gy,
which shows the existence of a compact set CcGp,g such that
(2) Gus=Gy.C.M.G,5y (M= pl;é[s(}%) ().
Since L= 1II G, is compact, we may, and shall, assume

(3) pesnt L.C.L=C.

By assumption, G_=B.x_(G,), whence
Gu5=B.C.M.7_(G,).Gyp),
and by (3),
GA(S) == B . C . GU . Tcoo (GD)GD(S) .
Using 1.8 (6), we get
Gy =B.C.Gy.G,.Gy,
GA(S) - B . C . GU . GO(S),
and, again by (3),
GA(S)=B'C‘M'GO(S)’
hence also
Gs=B.C.G,
which proves our assertion.
8.6. Remarks. — (1) In fact, this proves the existence of open or closed fundamental
sets of the form B.C.M or B.C, where B is a fundamental set for G, in G, C is relatively

compact in Gpg and M= 1II Gop, which satisfy (F g)g relatively to H if G is reductive,
pgs

and H a given algebraic subgroup over % of G.

(2) If k=Q, and G is reductive, then, in the notation of 4.5, there are
fundamental sets for G, in G, and in Gy of the form

Q= ‘l_Jl(a‘IGGLn,U.bin Gus) (5;eGL(n, Z(S))

and mg(Q) respectively. The proof is the same as that of 4.5, except for the fact that
it uses the equality
(4) GLn, As)=C. GLn,U . GZ(S) ’
which is an obvious consequence of 4.4, rather than 4.4 itself.

8.7. LetT be a lattice in £", G, - the stability group of T'y=0,.T" in G, (peP),

(1) This proof of (3) is patterned after an argument of M. Kneser’s (unpublished).
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and G, . =Gy. IEIPG‘,,F. The group G, 1 is open and compact in G, and G, . is of
P
course the isotropy group of I' in G,, where G, operates on the set of lattices in k"

by I'—»g(I')= n gp(I‘p) (e=(g,)eG,) (see 2.2). The facts on lattices recalled in 2.1
pEP

show that G, = G‘,p for almost all peP, hence that G, 1 is commensurable with Gy,
or with G, v for any lattice I''ck™

Let now p:G—GL, be a rational representation over k. Then any lattice T
in k™ is contained in a lattice I''ci™ stable under p(Gy). In fact, p(Gy) is compact,
and therefore p(Gy)nGL,, , r is commensurable with p(Gy). Consequently, the set
of transforms of I' under p(G,’) is finite, and the sum I'" of those transforms is the desired
lattice.

8.8. Theorem. — Let G be reductive o : G—>GL,, a rational representation over k,
wek™ a point whose orbit X is closed, and T a lattice in k™. Then w.ps(Gyg)nk"
(resp. w.ps(Gg)no(S).T") s contained in the union of finitely many orbits of G-

In view of 8.7, we may assume I' to be invariant under G;°, hence o(S).I' to
be invariant under G,g. The theorem follows then from the existence of fundamental
sets in G, (resp. Gg) which verify (F 3),, (resp. (F 8)g).

If S=V, then both parts of 8.8 reduce to 5.4.

8.9. In the next section, we shall need the following fact, whose proof uses a
result of [5].

Lemma. — Let S be any finite subset of V. Let X be a homogeneous space over k for G.
Then Xq= I1 X, is the union of finitely many orbits of Gg.

vES
It is enough to prove this when S consists of one element v. If £, =G, then G, is

transitive on X,; if £,=R, this assertion is elementary (see [4, 2.3]). If v is finite, the
only proof known to the author is a cohomological one, to be given in [5].

8.10. Theorem. — Let G be reductive, p : G—>GL,, a rational representation over k of G,
X a closed orbit and T a lattice in k™. If S is finite, then Xgno(S).I' is contained in finitely
many orbits of Gyg.

By 8.9, Xyno(S).I' is contained in finitely many sets of the form w.pg(Gy),
with wek™, to each of which we can apply 8.8.

Here, it would be in fact enough to prove this for G connected, since (G,)s has
finite index in Gg. We give two applications of 8.10.

8.11. Corollary. — Let S be finite. Then the number of orbits of SL(n, 0(S)) n the
set of all symmetric n X n matrices, with coefficients in 0(S), and a given non-zero determinant, is finite.

This follows from 8.10 applied to the case where p is the natural representation
of SL, in the space of symmetric n Xn matrices and X the set of symmetric matrices
with the given determinant. If S=V—P, k=Q, then 0(S)=Z, and we get of course
the well-known finiteness of the number of classes of integral quadratic forms with a
given non-zero determinant.

8.12. Proposition. — Let p: G—>G’' be an isogeny over k of G onto an algebraic
matric group G over k. Let S be finite. Then w(Gyg) is commensurable with Gyg,.
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It is clearly enough to prove this when G is connected. Adding one variable if
necessary, we may, by a familiar trick, (see [4, 2.1] for instance), assume that G’ consists
of matrices of determinant one, hence is closed. Let n’ be the degree of G’. Assume first
that Gisreductive. We let then operate G on the space of n’ Xxn’' matrices by x—x.u(g)
and define in this way a rational representation p:G—>GL,, (m=n?) over k. Our
assertion follows then from 8.10 applied to p and to G’, viewed as the orbit of e.

If p. is an isomorphism, then 8.11 is elementary, and is a consequence of 1.7.
This is necessarily the case if N is unipotent. In general, we use the semi-direct product
decompositions G=H.N, G'=H'.N’ of 1.13. Since we are allowed to replace G
(resp. G’) by a group isomorphic to G (resp. G’) over k, we may assume that C" (resp. C")
is the direct sum of subspaces spanned by canonical basis vectors, stable under H (resp. H'),
on which N (resp. N’) acts trivially, and that N (resp. N’) is upper triangular. Then
Gys)=H,s)- Ny (resp.  Gggy=Hg.Nyg) and we are reduced to the two already
discussed special cases.

Remark. — This extension to S-units of [4, 6.11] is not really new. K. Honda
(Jap. J. Math., 30 (1960), 84-101) has proved it when S is big enough (for group varieties,
not necessarily linear ones, in fact), and Serre (unpublished) has removed the assumption
on S by a suitable modification of Honda’s method.

8.12. By the argument used in 5.6, it is easily derived from 8.5 (1) that Gg)/Gyg)»
G connected, is the union of finitely many open subsets, isomorphic'to quotients G /H;,
where H; is commensurable with G,. Thus the criteria of 5.6 for the finiteness of the
volume or the compactness of G,/G; also apply to G,g)/G,e) and Gg/Gyg.
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