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ORTHOTOPY AND SPHERICAL KNOTS
By BARRY MAZUR

The classical knot theory analyzes imbeddings of the one-sphere in three-space,
and its methods conceivably apply, and generalize, to yield some information concerning
72-sphere knots in n + 2 space. Most crucial to the theory is the fact that in this range of
dimensions, the complementary space of the knot is a delicate indicator of the equivalence
class of the knot. (In the classical situation the fundamental group of the complementary
space is enough to determine whether the knot is trivial.)

Deviate, however, from this range of dimensions: ^-sphere knots in n-\-2 space,
and the homotopy type of the complementary space gives absolutely no information.
It is independent of the knot class.

Concerning ranges of dimension other than "n in n + 25 5 very little is known. For
instance: It is unknown whether there are any non-trivial imbeddings of spheres in
euclidean space, where the codimension of the sphere is different from 2.

There are, however, certain negative results if the dimension of the ambient
euclidean space is sufficiently large with respect to the dimension of the sphere.

There is a theorem of Guggenheim:

THEOREM: Any two imbeddings of K^ in Er are isotopic ifn is the dimension of K,
and

r^>2 7Z+2.

And then, for the case of spheres, there is refinement, due (independently) to
Milnor and Wu (unpublished):

THEOREM: IfK^ is S71, then the above theorem can be improved to read:
r> 2 n + i.

The main theorem of this paper is along the lines of these two theorems. It says
that for a broad range of dimensions (r> (3 ^+5)/2) any /z-sphere knot in Er (fulfilling
a certain requirement of local smoothness) is *-trivial. (For a definition and treatment
of *-triviality, see [2]. Briefly, a spherical knot is *-trivial if there is a homeomorphism
of euclidean space onto itself sending the knot onto the standard imbedding of the sphere,
such that the homeomorphism is combinatorial except possibly at one point.)

The paper is divided in two parts, the first being devoted to a study of orthotopy,
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30 B A R R Y M A Z U R

and general position techniques. The second part uses this theory to prove the main
theorem.

I am most thankful to Prof. Milnor who allowed me to see his manuscript.

§ i. Terminology.

I rely upon [3], for general terminology, and permit myself the following loose
usage: Homeomorphism will always mean combinatorial homeomorphism ; a subcomplex
AcE*" will mean that A is a complex whose imbedding homeomorphism

i : A-^

is piecewise linear ; the "standard" ^-sphere, S/ccEr is an image of S^^L^4'1 under
affine transformation, where L/^1 is a (k 4-1)-dimensional subvector space ofE^ and Sr~l

is the unit sphere in E^ The metric I shall place on E7' is :
\\x\\ =max[^.| if x=={x^ . . . 3 ^ ) 3 ^eR.

A homogeneous n-manifold M will refer to a finite complex which is topologically an
w-manifold, for which A(M), the group of combinatorial automorphisms ofM, is transitive
(i.e. usually called a combinatorial yz-manifold).

By a regular neighborhood^ A, ofN(A), a subcomplex ofB, I shall mean the closure
of the second regular neighborhood (as defined in page 72 of Eilenberg-Steenrod ; I do
not mean what they mean by regular neighborhood).

Let ScEr be any set. Then R(S) is the linear manifold spanned by S:
R(S)==(A:eE r |^=a^+(I—a)^, aeR, s^ ^eS).

If I^cl^* is an Tz-dimensional complex in an m-dimensional complex, then the codimension
of K in L is:

cod K = m—n.

If X is a metric space (i.e. if X = E^ then d{A, B) is the distance from A to B,
where A and B are compact sets. Also, let j&eE^ then Bg(j&) = (xe'Er\d{x, j&)^e).

Define E^cE r to be
E^=[(^.. . ,^)eE r |^>o]
El=[(^,...,^)GEr |^o]

and they are called the upper and lower half-planes, respectively.

§ 2. The definition of knot equivalence.

I will say that two subcomplexes KcE^ K /cE r are equivalent (and I denote this
by: K^K') if there is a homeomorphism

T: E'-^
such that

T:K-^K1
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ORTHOTOPY AND SPHERICAL KNOTS 31

is a homeomorphism of K onto K7. Thus the question of classification of equivalence
classes of imbeddings of K in Er is the classification of the combinatorial type of the
"relative55 manifolds (E^ K). Equivalence is just what was called an ambient homeo-
morphism equivalence in [3]. A fact used most frequently in this paper is an immediate
corollary of the main theorem of [3]:

THEOREM i. I f / , : K-^ is an isotopy between K and K' then K^K\

§ 3. Virtual Dimension.

In proving and applying many of the "general position55 lemmas that will be
developed (all of which involve consideration of the dimension of complexes), I will use
a systematic and obvious alteration of the concept of dimension (virtual dimension)
which will never be larger than the usual dimension of K (most often smaller), thereby
"strengthening55 those general position arguments which depend upon the dimension
of K being small.

DEFINITION i. Let L, Kef/ be two complexes in W. I will say that the virtual
dimension of K with respect to L is less than or equal to k (in symbols: virt dim^(K)^A)
if: There is a A-dimensional complex P, and a sequence of regular neighborhoods of P:

00

MoD Mi 3 . . . , such that riM,=P, such that there is a homeomorphism of E'

leaving L fixed which brings K into any M,.

If N is a regular neighborhood of K, and L is E''—N, our notation can be
reduced to: virt dimLK=virt dim K. Notice:

virt dim^K_<dim K,

and that the following three conditions are equivalent:

(i) virt dim^K = o
(ii) virt dimJL==o
(iii) K and L are unlinked.

The generalization of results stated in terms of dimension to corresponding results stated
in terms of virtual dimension, being rather straightforward, I henceforth adopt the policy
of proving all results merely for dimension, and leaving the transition to virtual dimension
to the reader.

For later application of virtual dimension I point out an obvious lemma:

LEMMA i. Let U be a regular neighborhood of V. Then

virt dim U^dim V

§ 4. The Problems of Local Smoothness.

The most obvious distinction between combinatorial imbeddings and differentiable
ones is the possibility of a certain local unsmoothness to occur in the combinatorial
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32 B A R R Y M A Z U R

situation which has no counterpart in the differentiable. The simplest example of these
phenomena is obtained by taking a knotted S^E3, and considering E^E4 imbedded
as a linear hyperplane. Then take a point PeE4 outside of E3, and draw all line
segments from p to points on S^E3. The locus, D^E4, of these line segments is a
combinatorial 2-cell, which is "knotted55 in E4. A clear manifestation of its "knottedness55

is: If B == BQ&) is any small ball drawn about p, and S = ̂ BnD2, then S is homeomorphic
with S1, and SC^B is knotted. Such a phenomenon could not occur ifD2 were a diffe-
rentiable disc imbedded in E4. I should like to rule out the possibility of severe local
unsmoothness in the imbeddings which I consider.

Situations such as the above are eliminated by requiring that the imbedding be
locally unknotted (for the definition ; see [2]).

More convenient for the purpose of this paper is a different local smoothness
condition:

DEFINITION 2. A subcomplex KcE r is called homogeneously imbedded (or just:
homogeneous) if for any continuous family of homeomorphisms

P,:K->K

such that Po is the identity, and for any regular neighborhood N of K, there is a homeo-
morphism

P:Er->Er

such that P^—N^i and P|K=Pi.
I don't know whether or not the two conditions local unknottedness and homogeneity

are the same. That neither restriction is very restrictive may be seen by the following
heuristic statement which would lead to unwarranted digression, if I were to attempt
to make it precise. Let 2 be a combinatorial imbedding of a ^-sphere in Er which
is a "very close approximation55 to S, a differentiable imbedding. Then S is both
homogeneous and locally unknotted.

§ 5. The knot Semi-Groups.

There is a natural additive structure to the set of all equivalence classes of
Tz-manifolds combinatorially embedded in Er (see [i] for precise definition), where ifMp
and Mi are two knotted yz-manifolds in E^ M() + M^ is essentially obtained by displacing
the M, so that one lies in the upper half-plane and the other in the lower half-plane,
then join the M^ by removing an ^-simplex \ from each, and attaching a tube, S^1 X i
such that

S^xo^BAoCMo
S^x i=^AiCMp

This process is standard, and I call the resulting semi-group of knots K^
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ORTHOTOPY AND SPHERICAL KNOTS 33

There are sub-semi-groups that should be singled out:
1) S^: the semi-group of spherical knots ;
2) S^: the semi-group of locally unknotted spherical knots ;
3) H^: the semi-group of homogeneous spherical knots (See [2]).

§ 6. General Position and Orthotopy — Part I.

Although our ultimate concern will be with isotopies, we shall have to deal with
something not quite as restrictive in search of isotopy.

DEFINITION 3. A local isotopy cp^K-^E^ will be a map <p : I x K—^ which
is simplicial for a fixed subdivision ofK and for each t. It is nonsingular on each simplex
ofK, for each t, and piecewise linear in t for fixed p, the subdivision of I being independent of p.

DEFINITION 4. An orthomorphism 9:K->E r is a simplicial map, nonsingular on
each simplex in K, and satisfies the following condition (which assures that self-inter-
sections ofK are not too high in dimension):

If A^, Ag are distinct simplices in K such that (p (int A^) n 9 (int Ag) is non-empty, then,
codim R(A^, Ap)_<i .

DEFINITION 5. An orthotopy y^K-^ is (i) an orthomorphism for each t (ii)
a local isotopy.

Essential to an analysis of the problem of knotted spheres in euclidean space is the
following generalization of a theorem ofGuggenheim.

^3

Fig. i

THEOREM: Let K and K7 be simplicially isomorphic complexes ^ : K->K' imbedded
piece-wise linearly in E^ There is an orthotopy ̂  between K and K\ More precisely,
there is an orthotopy ^^:K->Er such that ^ = i and ^i = ̂ .
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34 B A R R Y M A Z U R

PROOF. Draw polygonal arcs [B, from the vertices w, of K to the corresponding
vertices ^(w^)==w[ ofK7 . See Fig. i.

§ 7. Perturbation into General Position*

Let V be the set of all vertices of the p/s. Let P,, for yeV stand for the set of all
hyperplanes spanned by subsets of vertices in V—{v\

Notice that P^ is always a finite union of hyperplanes, hence a closed (r—i)-
dimensional set.

DEFINITION 6. I shall say: Figure i is in general position if v^P^ for all yeV.
It will be a great simplification if the problem of proving the orthotopy theorem
reduces to proving it for the case when Figure i is in general position.

This will be so if the following lemma is proven.

LEMMA 2. It is possible to "put95 the entire array KuK'u^^) of Figure i in
general position by an arbitrarily slight isotopy.

PROCEDURE: Order the vertices of V, V = (^, . . ., v^). One can find a v^ arbitrarily
close to v^ so that y°p^P^. (For P^ is of codimension one in E^.

LEMMA 3. There is an isotopy ^(? of the array of figure i which leaves all vertices
other than ^ fixed, and brings ^ to a z/? such that z/?^P^. In fact, ^(1) is the identity
on simplices outside of St ^

and brings Stv^=J(v^, 8Stv^) piecewise-linearly to J^?, ^St^).
Now we study the new array, as perturbed by ^i. I will speak of V0^ as the new

set of vertices (V—{^}) u^^}, and of P^ as the union of hyperplanes generated by
sets of points in V^—{y}.

So, as matters nowst and we have Z/^P^). The next stage in the process is similar.
v!

We must find a replacement v^ for ^ so close to ^ that an isotopy ^) can be found which
leaves all vertices of the array other than ^ fixed and sends ^ linearly to v^ and that
^J^P^- B^ we need one more thing as well. We need v^ to be taken so close to ^ that
the isotopy ^) doesn't destroy the fact that Z/^P^), since P^) changes under the

v! v!

isotopy ^). But it is clear that it can be so arranged. Thus we obtain a new
array, P^, and repeat the process.
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ORTHOTOPY AND SPHERICAL KNOTS 35

And so it goes. At the 1th stage, it is a question of isotopically perturbing ^--1)

to v^ where y^P^, and so slightly that one's previous handiwork:

.^P^ i>k

remains intact. The procedure ends with its final array in general position, proving
the lemma.

^g- 3

The orthotopy <p^ is obtained, step by step, climbing up the p.'s. A typical step
would consist in "replacing55 one vertex, ^ by the succeeding vertex, x[ on the arc Pi.
In this manner, the orthotopy cp^ will be obtained as the composite of a chain of ortho-
topies ^), z = = i , . . . , v , ^) will be an orthotopy of the complex K^"11 to K1, where

K°=K
K^K7

and all K^ will have as vertices only those in the array, K1, being obtained from K1"1

by chosing one vertex xe¥^~1 and replacing the vertex x by its successor x ' on the path
of the array (B^, which contains x. This can be done, as long as x is not the "last" vertex
ofp^ ; or equivalently as long as x ^ K ' . ("Successor55 means in the direction towards K'
along (B^.) Thus the local isotopy ^ which sends x to x ' may be defined by its action
on the vertices of K'~1 (and extended piece-wise linearly to K'""1):

^(v)=v ifyeV(K1-1)
y^x) = (i —t)x + tx ' v + x

and K' is, of course, ^(K1"1). Since the number of vertices of the array is finite this
process must terminate, if repeated enough, with a K" such that all vertices of K" arc
in K', i.e. K^K/. Thus the chain of local isotopies ij/?, ....i^ will yield an
orthotopy ^^ between K and K/ if they themselves are orthotopies.
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36 B A R R Y M A Z U R

LEMMA 4. The ^(? are orthotopies.
Let ^^==^y, dropping the unnecessary superscript. I shall prove:

LEMMA 5. For each t, o<^< i, ̂  is an orthomorphism.
Which clearly implies lemma 4 above, and by induction I assume ^o to be an

orthomorphism already.
Call A^^A) for A a simplex in K^K^. Assume that ^ fails to be an

orthomorphism for some t> o. So: int A{, int A^ intersect, where A^==^(A^) and
AI, Ag are distinct simplices ofK, yet:

cod[R(AjE, A^)]>2

Let xeVL be the unique vertex moved by ^^ and, by our convention,

^tW==Xt.

I must distinguish between two cases:

I) A{eSt(^), A^St(^)
II) A^, A^eSt(^).

CASE I: Let A^=Ag be the simplex unmoved by ^ ̂  The assumption

cod[R(A{, ^)]^2

gives us
cod[R(A{, A^, ^)]^i.

I make the notational convention: A'cA' is the face in A^ opposite the vertex x^ for
A(CSt(^). Thus:
a) A^cBSt^)
b) A^A0 for all o^^i.

A useful fact for the arguments that follow is the obvious:

LEMMA 6. Let S be a set, ScE^ x^eE" andaeR, a 4=1 , then:

ax+{i—a)yeR{S), xeR{S)
implies j?eR(S).

A) Assuming (I), then t^ i.

PROOF: If < = = = i , then
R(A{, A^a^,

for let a^e int A^ocgG int Ag and ai=02==X^+ (i—X)^, for ^eA^, and o < X < i .
Thus a2==X^+(i—X)^eR(^,A2) and SieR(Al, Ag) but, by Lemma 6, one has
^eR(A^, Ag); however

cod R(Ai, Ag) ^ cod R(A^, Ag)^ 2
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ORTHOTOPY AND SPHERICAL KNOTS 37

therefore
^eR(Ai, A,)cP^,

which contradicts general positionality. Therefore o<^<i.
B) R(A;, A,)cR(A{, A,,^).
To demonstrate this, it suffices to show

A:oeR(A^ Ag, ^).

But ^, ^eR(A^ Ag, ^) and since ^=^+(1— t )xQ and ^ 4 = 1 , Lemma 6 again gives
^eR(A{, Ag, ^).

Also, ^ e R (A?, Ag): Because if 04 e int A^, o^ e int Ag, o^ = ag, then a2==o4==X^+(i—X)^,
SieA? and o<X<i , but

codR(A?, A,)^codR(A{, A^ ^)
^codR(A{, Ag)—!^:!.

Therefore
^eR(A?, A,)cP^

again contradicting general positionality.

CASE II: Assume again that ^ is not an orthomorphism for some t>o9

There are simplices A^, A^ such that:
1) o^e int A{n int A^
2) codR(A{,A^)^2.

A) R(A?, A^)cR(A^ ^ x,),

an evident fact, implying
cod R(A?, A^) ̂  cod R(A{, A^, x,) ̂  i.

B) In fact:
codR(A?, A^)^2.

For, if codR(A?, A^)= i ,
R(A?, A^)=R(A{, A^, x,)

and ^eR(A{, A^, ^).
Since x^ ^eR(A{, A^, A-o) and A:(==(I—^A-o+^i, ^=t=o , this implies:

^eR(A?, A^)cP^

contradicting general positionality.
Let a^eintA? be the elements for which ^(a^^o^.

C) a?4=<4 For, by (B), cod R(A?,A^)>^2, and ^o being an orthomorphism,
int AlOintAg is empty. Let a°==S^+X^, where

{^)^-
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38 B A R R Y M A Z U R

Then:
^(a.) ==»'== 8^+X^

=8.°+X,[(i—()^+toi]
giving us

D) 8?-8^= (^-^)[(i-^o+^i].
Also:

E) o + a?-a^ = (81—8,) + (Xi-X^o.
F) ^—^s + o.
If A.i=X2, one would have, by D),

8?=%a?=o^
which would contradict E). So F) follows.

8?—S^
G) ——eR(A,,A,)

^2——A!

for _ s t eA^cR(A„ A,).
I——A,

H) XieR(Ai, A;), for D) and G) yield
$0__^0

———==(i—^+^eR(Ai,A,).
Ag——AI

clearly ^eR(Ai, Ag), and by the induction assumption, t^ o; H) follows by the appli-
cation of Lemma 6. But H) contradicts general positionality, since

^eR(Ai,A2)cP^.

So the orthotopy theorem is proved. With just a bit more care in the proof of the theorem,
we could have proved this slightly strengthened version which will be needed later.

THEOREM (EXTENSION). Let Fo, FI be imbeddings (or merely orthomorphisms,
for that matter) of K in E\ Let LcK be a subcomplex and

/^L-^E-

an orthotopy such that
/o=FolL,A=Fi|L.

Then there is an orthotopy F^ between Fo and F^ such that
FJL=/,.

§ 8. The Singularity Locus.

DEFINITION 7. The pre-locus V of an orthomorphism y^K-^ is the set of
multiple points of/ in K. That is,

V={AeK|3A'+A,/(^)=:/W}.
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ORTHOTOPY AND SPHERICAL KNOTS 39

Clearly V is a subcomplex of K. The locus L is the image of the pre-locus in E\
L=/(V).

The pre-locus (and locus) of an orthotopy f^ o<^t<_i, is the union of all pre-loci V^ (loci)
of the orthomorphisms/^ for each t, o<,t<, i:

V=UV,.
tCl

And again, V is a subcomplex of K.

LEMMA 7. Let f\ IC'—t-E^ where IC* is an ^-complex, be an orthomorphism, and V
its singularity pre-locus. Then

dim V<_2 n—r+ i.

If ft : ̂ -^E^" is an orthotopy, and W its pre-locus, then

dimW^2/z—r+2.

PROOF: Let j&eV. Then pe\,pe^ where A, are the images of distinct simplices
of K under f.

dim AinA^dim R(Ai)nR(A2) =dim R(Ai) +dim R(A2)—dim R(Ai, A^).

But if AI, A^ have an interior intersection at all, dim R(A^, Ag)>_r—i. So
dim A^n Ag^dim R(Ai) + dim R(Ag) — (r— i)

and since dim R(A,)_^n
dim AlOAg^s n—r+ i.

COROLLARY i (Guggenheim). Any two imbeddings (po? (pi^K^-^E'' are isotopic
if r>_2 n+2.

For by the orthotopy theorem, there is an orthotopy <p^ between 90 and 91.
And by the above the dimension of the singularity locus of each orthomorphism 9^ is —i,
or the singularity locus of each 9^ is empty. Therefore, the orthotopy is an isotopy.

COROLLARY 2. Let L', L, N be subcomplexes of Er and 9 : L->L' an isomorphism
leaving LnN fixed. Then there is an orthotopy 9^ from L to L7, leaving LnN fixed (91=9),
such that if 9<(A) and A' have a non-empty interior intersection, for AeL—LnN,
and A'eN, then cod R(9<(A), A')^i.

PROOF: Apply the orthotopy theorem with K=LuN, K^L'uN.

COROLLARY 3. In the situation of the above corollary, if
y>dim L + dim N + 2

the orthotopy 9^ can be chosen to be an isotopy of the complex LuN. Thus 9^(/)eN
implies /eN for /eL.

This corollary is interpreted as saying that L and N are unlinkable in Er if
r^> dim L + dim N + 2.

J 3 1



40 B A R R Y M A Z U R

§ 9. Some Necessary Facts Concerning General Positionality.

1) Stability of Orthotopy.

LEMMA 8. Let (p^K-^ be an orthotopy ; then there is a number p(<p^)>o
such that if 9{ : K—^E^' is a continuous family of simplicial maps, such that

\\^tW—^tW\\<^^

for all t, and all vertices yeV(K), then 9^ is again an orthotopy.
The proof is a rewording of the proof of Lemma i of [3]. I omit it.

2) Even stronger than an orthomorphism is a map /rK-^^ such that: i)/is a
simplicial map non-singular on each simplex of K ; 2) if int A^ and int Ag intersect,
for AI, Ag distinct simplices of K, then R(A^, Ag) =E*'. Just to give such an/a name,
I call it maximally transverse.

LEMMA 9. If /: K-^^ is a simplicial map, it is approximable arbitrarily closely
by a maximally transverse map

/^K-^.

Moreover, if LcK and /|L is already maximally transverse, one can have //|L=/|L.
The method of proof has been displayed sufficiently often that I omit the precise

proof (or statement) of this lemma.

COROLLARY 4. Any map y^K"-^ for r> 2 7 2 + 1 may be approximated
arbitrarily closely by an imbedding f : K-^E7'.

COROLLARY 5. Let A, B c C be subcomplexes and virt dim^A + virt dimJB + i <^ r.
Let 91: A-^E*"

93:5-^

be simplicial maps such that <pjAnB==(p2[AnB. Then there is a simplicial map 9 :
AuB-^^ such that cp |A==(p^ ,9 [B approximates 93, and <p(B—BnA) is disjoint
from 9 (A). If the 9^ were homeomorphisms then so will 9 be.

Define the map 9' : AuB-^ to be the composite of ̂  on A and 93 on B. Then
9'| A is already maximally transverse. Approximate 9' by 9, a maximally transverse
map 9:AuB->Er, such that 9 [A ==9'[A, and so close to 9' so that 9|B is still an
imbedding ofB (applying the Stability Lemma for imbeddings. Lemma iof[3]). 9 will
be an imbedding of AuB if

dim A + dim B + i < r

and, after a simple modification (which I omit) it would be an imbedding even if

virt dim^A + virt dim^B + i < r.
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ORTHOTOPY AND SPHERICAL KNOTS 41

§ io. Part II : The Main Theorem.

I shall use the tools developed in Part I to prove the following theorem: Let S
be a A-sphere knot in E7' which is homogeneous. Then if

^^±5
2

S is invertible. Or, in terms of the semi-groups of [3] in the same range of dimensions,
as above

H,=G^

Coupled with the main theorem in [i], one has: In the same range of dimensions, all
homogeneous knots are *-trivial. Indeed, with no further complication, let/ be an
orthotopy between two manifolds K and K' in E' satisfying assumption (o):

(o) i) r^±^.
2

2) K is homogeneous.
3) The singularity locus VcK of/ can be brought into a k-cell A^K by a

continuous family of homeomorphisms ^: K—^K such that Ao== 1 ? ^d h '.V-^^.
Clearly condition 3) follows if K is a sphere.

THEOREM 2. If ft is an orthotopy between K and K' satisfying condition (o), then :
K '^K+S

where S is a spherical knot.
The paragraph titles together with the accompanying diagrams provide a rough

outline of the method of proof of the theorem.

§ ii. Isolation of the Singularity Locus.

Let/ be an orthotopy ofK' to K with singularity pre-locus VcK. Thus

/^K-^,
/^K-^KcE' is the natural injection, and fo:K->K'cE\ I should like to find a
neighborhood U^ of /(I x V) cE' for which there exists a regular neighborhood N of V
in K, such that

ft: W->8V
/:N^U.

Then U would serve to isolate that part of the orthotopy which had singularities. This
would allow us to redefine/ on U so that the newly-defined/^* would have no singularity
on U. The resulting imbedding K*==/^(K) would be equivalent to K7 and "differ
from95 K merely in U, a set of low virtual dimension,

virt dim U:< dim (Vx l ) .
The proof of the main theorem would then follow fairly easily.
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43 B A R R Y M A Z U R

§ 12. Regularizing the Orthotopy.

In order to carry out this program one must first replace the orthotopy f by a close
approximation/7, which has the property that f ' ( I X N) is disjoint from /'(I X (K—N))
for N some regular neighborhood of the singularity prelocus V.

LEMMA 10. There is an orthotopy f :I X K->Er arbitrarily close to / which
still has pre-locus V, and has the property that: f (I X V) is disjoint from // (I X (K—V)).

PROOF: Apply corollary 5 of section 9 where A=f'(I x'N)^=ff{I xK—N))
in the notation of the corollary. One must check that

virt dim^f (I X N) +virt dim B + i <_r

Or:
2 k—r+^+k+i<^r.

But

3A±4<,
2 ~

which proves the lemma.

i) Isolation Lemma: There is:

(i) A one-parameter family Ug, o<^s<^i, of closed neighborhoods of /(V X I)
in E^, and a continuous family of simplicial homomorphisms g g : U^-^Ug.

2) A one-parameter family Ng, o<^s<^i of closed neighborhoods of V in K/, and
a continuous family ^:Ni->Ng, of simplicial homeomorphisms

— such that:
3) The map g : 8\J^ X I-^E^' is a homeomorphism, where g is

g{u,t)^q^u\ ueSV^

4) The map g : ̂ N^ x I->K is a homeomorphism, where g is
g(n,t)=p,{n) TZEBN,.

5) /<:N^U,
/,:aN,->au,

and
6) The following diagram is commutative:

c»Ni X I -">• Ni—int NoCK

^ /( /<

where

3UiXl->Ui—intUoCE1 '

F((M) - (/,(»),<) ^N1
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7) 8\Jg is a homogeneous manifold combinatorially imbedded in E', o<^s<^i.

8) Uin/(IxK)=/(IxNi).

PROOF: It is standard that one can choose a one-parameter family of regular closed
neighborhoods of V in K' with the properties that:

1) There is a continuous family ^g:Ni->Ng of combinatorial homeomorphisms.
2) The map g:8N^xl->'K' is a simplicial homeomorphism, where g is

g(n,t)^pt(n) neBNi.
Moreover, after Lemma 10, I assume f to be such that f(l X N^) is disjoint from

/(I x (K—Ni)). It then follows that /(I X NJ is disjoint from /(I X (K—NJ). Now
let MS==/(I X Ng) cE^ and choose a combinatorial (continuous), monotonic increasing
function e(^)>o, so small that Rg^(V) is disjoint from ^N^.

§ i3« Explicit Description of U,.

Let
^)=^/(VxI))
^)^(A/[(K-intN,)xI])

for peE^
Define

TO)=B^)

where

\{p)=rmn\i d8{p) \ .s(.), d^p)]
l_\d{p) + ds[p) I J

nvxi )

Fig. 4

ns



44 B A R R Y M A Z U R

and

u . = U u,(^).
y£M^

§ 14. Pictorial description of U .̂

I represent, in figure 4, Mg by the V-shaped arc ; the vertex represents /(V X I)
and the endpoints represent /(BN, X I). Then U, is obtained simply by "thickening55

every point on /(int N, X I) a very little bit, the amount of thickening decreasing to zero
as one approaches /(BN.xI). The closure of this is U,.

The proof that U,, so defined, actually satisfies properties ( i ) thru (8) is straight-
forward ; I omit it therefore.

§ 15. K*: The Modification of K.

LEMMA n. f^ BNi is an isotopy of BNi in BUi.

PROOF: For ft is an orthotopy and the singularity pre-locus V is disjoint from BN^.

Thus let F^Ui-^Ui be an ambient homeomorphism covering f^ applying
Theorem 2 of [3].

LEMMA 12. There is a continuous family ofhomeomorphisms G^ : BUi X I->8V^ X i
such that

G^, i)-F^)
Gt(u, o)==u

for z/eUi.

PROOF: Define G^u, s) =F^) for ueV^, o<^t,s^i; now define a homeomorphism

G^:U^U,

by
G^(u)=u, if ueV,
G^^G^-^), if ^U,-Uo

where g is the homeomorphism

g : 8V, x I -> U^—int Uo

of the isolation lemma.
Notice that:

WW^fiW if ^5N,.

Define ^K^E' to be the composite

^)==/lW^eK /—intN„
^W-G^M.^eN,.
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The two definitions agree on ^N^, and h is actually a homeomorphism since
y^(K/—N^) is disjoint from U^. The image:

K^h^K'}

is the necessary modification.

LEMMA 13. K*^K'.

PROOF: One must obtain a homeomorphism H : Er->Er carrying K' to A(K').
G^ does this on Up In the bounded manifold M == Er—int U^, ̂  is an isotopy of
K/—int NI==L with the property that j^(^L)c^M, and Vi|^L is covered by an ambient
isotopy Gy[^M=^Ui. Using Theorem 2 of [3] again, one can find an ambient
isotopy H^ covering both G/^M and /([^L. Then the homeomorphism

H{x)==H,{x) ^eE'—int U,
H{x)=G^\x) xeV,

sends K' to K*, establishing their equivalence.

§ 16. Summarizing the Relevant Properties.

1) K^K7 ;
2) KnU,=A(N,) ;
3) K'cKuU, ;
4) KnE^. consists of a A:-cell, E^., imbedded as the standardly imbedded lower

hemisphere of S^ ;
5) virt dim^Ui<^dim(V X I).

§ 17. Bringing Un K into the Lower Half-Plane.

LEMMA 14. There is a homeomorphism

P: E'-^E'
which has the properties:

1) P:K-^K ;
2) P : KnU->El, the lower half-plane.

For since VcK, the singularity locus, is assumed contractible to E^cK ((3) of
condition (o)), there is a continuous family p^ :K-^K, such that p^= i and p ^ : V~>E^.
Since N is a regular neighborhood of V, a continuous family p^ can be found which also
has the property:

^:N->E^.

By homogeneity of K, p^ can be extended to a homeomorphism P : E^E^.
Let

P(K*)=K;
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F^- 5

and
P(K)=K
P(Ui)=U,.

Then one has:
1) UguKg is in the lower half-plane ;
2) K;-K, ;
3) K;cKuU,;
4) virt dim^Ly <, dim(V X I).

§ 18. Bringing Ua into the Lower Half-Plane.

LEMMA 15. There is a homeomorphism
A:u,-^.

leaving U^n K fixed.

PROOF: Obvious.

LEMMA 16. There is a homeomorphism f^\ Ug-^E^ such that
1) UgoK is left fixed ;
2) ^(U^—L^nE^cE'—KnE.r..

PROOF: It is a simple application of Corollary 5, after one checks that
virt dim^Ug + virt dim K + i < r
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LEMMA 17. There is an isotopy A:(:Er->Er such that
1) ^|K,=i ;
2) ^|U,=/,(thus^(U,)cEl).
PROOF: Apply Corollary 3 with U^==L,f^U^) ==L\ K = N and observe that

virt dim^ U^ + vi^ dim K + 2 <r

or

But this is the case, for

or

for

Call:

and: i)
2)

3)
therefore:

2 A—r+3+A:+2.^r

3^+5 .————<r.
2 —

A;i(K;)=K;,W,)=U3
K^~K^~K'
K;cKuU3
U3CE1;

KsnE^.=KnE^.
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§ 19. The Decomposition: K^K/ + S.

LEMMA 18. K^ = K + S where S is a spherical knot.

For define: S= (K^nE^L)uE^, where E^ is the standardly imbedded upper
hemisphere of the standard A:-sphere in E^ E^.cE^.

LEMMA 19. E^.nK^ is a A:-cell, and E^^K^ is the standard k—i sphere in E^1,
where E7"""1 is the hyperplane E^LnE^.

PROOF: Obvious from the construction ofK^:

E.T.nK^cE^uUe

(Because K;cKuU3, and KnE^.==E^.)
Therefore the boundaries match:

a(ElnK;)==^E^

and S is actually a sphere.

LEMMA 20. K+S==K^.

This is obvious. (SnE^ is the standard A-cell, E^, KnE^. is the standard
A-cell E^_. Therefore their sum consists simply of:

(K—int E^) u (S—int E^) = X.

But this X is just K^.
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