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THE CHERN-WEIL HOMOMORPHISM OF REGULAR LIE ALGEBROIDS

by J. KUBARSKI

Abstract. The aim of this paper is to construct the Chern—Weil
homomorphism for regular Lie algebroids. This bomomorphism, in the case
of an arbitrary integrable transitive Lie algebroid A, agrees with the
one for any connected principal bundle for which A4 is its  Lie
algebroid. Next, it is proved that there exist nonintegrable transitive
Lie algebroids having the nontrivial Chern—Weil bomomorphism. Lie
algebroids of some transversally complete foliations  have this
property. Some applications to nonclosed Lie subgroups and to  vector

bundles over foliated manifolds are given.



INTRODUCTION

1. In [24] K.Mackenzie gives the first general and abstract
treatment of the algebraic properties of Lie algetroids. The present
work belongs to this direction. It is based on:

(a) the observation by the author that the Chermn—Weil bomomorphism
of a connected principal bundle is an invariant of the Lie algebroid of
this bundle,

(b) the construction of an equivalent of this homomorphism in a
large class of regular {thus, nontransitive in general) Lie algebroids.

(c) the discovery of a class of Lie algebroids which are not
integrable, i.e. which do not come from principal bundles, but have
nontrivial Cherm—Weil homomorphisms.

[ alogous observations, which will be the topic of the next work
by the author, concern the characteristic classes of flat (and
partially flat) principal bundles].

This enables one to apply this technique to the investigation of
some geometric structures defined on objects not being principal
bundles but possessing Lie algebroids, such as  transversally complete
foliations, nonclosed Lie subgroups, wvector bundles over foliated
manifolds, Poisson manifolds or some complete closed psewdogroups.

This work concerns the Cherm—Weil bomomorphism and transversally
conplete foliations, chiefly, foliations of left cosets of Lie groups

by nonclosed conmnected Lie subgroups.

2. The notion of a Lie algebroid comes from J.Pradines [29], [30].
Originally, this notion was invented in connection with the study of
differential groupoids [ J.Pradines in [29] introduced the so—called Lije
functor which assigns a Lie algebroid to any differential groupoid].
Since each principal bundle P determines a differential groupoid [ the
so—called Lie groupoid PP' of Ehresmann [61], therefore each principal
bundle P defines — in an indirect manner - a Lie algebroid A(P).
P.Libermann noticed [Z1] that the vector bundle of this Lie algebroid
is canonically isomorphic to the vector bundle TP/G (G is the structure
Lie group of P). The construction of the Lie functor for principal



bundles with the omission of the indirect step of differential
groupoids was made independently by K.Mackenzie [23] and by the author
[16].

The Chern—Weil homomorphism hP of a principal bundle P has been
known for some forty years [3]1. One can ask the question whether this
homomorphism is an invariant of the Lie algebrvid A(P) of a given
principal bundle P. In [17] (see also [19]) the author proved that it
is so under the assumption that the structwre Lie group G of P is
conected. It turns out that this condition can be eliminated entirely
(see Chapter 5). More precisely, the Chern—Weil homomorphism of a
principal bundle P appears as a characteristic feature of the Lie
algebroid A(P) of P in every case [ provided only that P is connected].
This means that, knowing only the Lie algebroid A(P) of P, one can
uniquely reproduce the ring of invariant polynomials (Vg*)l and the
Chern—Weil homomorphism hp:(Vg"){-» H (M) (g denotes the Lie
algebra of G).

We pay ouwr attention to the fact that this holds althouwgh in the
Lie algebroid A(P) there is no direct information about the structure
Lie graup of P (which may be disconnected !)

In addition, we must point out two things:

1) A Lie algebroid is — in some sense — a simpler structure than a
principal bundle. Namely, nonisomorphic principal bundles can possess
isomorphic Lie algebroids. For example, there exists a nontrivial
principal bundle for which the Lie algebroid is trivial (the nontrivial
Spin(3)—structure of the trivial principal bundle RP(3)}xS50(3) (191,
[18]).

2) There exist other sources of Lie algebroids than principal
bundles, for example, transversally complete foliations [26], [Z271,
Foisson manifolds [4]1, [9]. or some complete closed pseudogroups [31].
Among them there are ones which give “nonintegrable" Lie algebroids,
i.e. those which are transitive and cannot be realized as the Lie
algebroids of principal bundles . Namely, according to Almeida-Molino
theorem [1]1, [27]. Lie algebroids of nondevelopable (and only Such)
transversally complete foliations have this property. An example of
such a foliation is any transversally complete foliation with nonclosed
leaves on a simply connected manifold. A more concrete example is any

foliation of left cosets of any cowmected and simply connected Lie



graup by a Lie subgroup connected and dense in some torus.

3. In connection with the above, it seems important to construct
the Chern-Weil homomorphism in some category of Lie algebroids, being a
generalization of that for principal bundles. This problem is solved
in our paper (chapter 4) in the category of regular Lie algebroids,
i1.e. of such ones in which the anchor is of constant rank.

Namely.,
h :kzﬁo(Sechg*) o — H (M)
A 7 E

1 . .
r — [ET -..r,nbv...vnb;»]

serves as this homomorphism for the regular Lie algebroid A (with the
adjoint bundle of Lie algebras g), where Qb € Qz(M;g) is the cuwrvature
tensor of any connection in 4, whereas (Sec ng' )1" is the space of
invariant cross—sections of Sec ng* with respect to the adjoint

* ;
representation of 4 on ng . die. Te (Sechg.‘)Io if and only if

v v [()/of){r_..o'iv...vdk}
EeSecA SPEREE ,o’kGSGCg

k
= L I, v...vllf,o',ﬂv...vo’k:}]
- i .

The nontriviality of hA means, of course, that in 4 there is no  flat
connection.

The existence of a natural isomorphism of algebras v such that

ke)éo(Sechg*) o
H \
AL P)
>l /.HdR(M)
h
Vg™, d )

for the Lie algebroid A(P) of a principal bwndle P (prc:vided only that
P is connected) means that the Cherm—Weil homomorphism of a Lie
algebroid is some generalization of this notion known on the ground of
principal bundles. On the other hand, this also means that the
Chern—Weil homomorphism of a principal bundle is a characteristic
feature of its Lie algebroid ( for connected principal bundles).

We give two applications of the homomorphism obtained:

® the transitive case is used for TC-foliations, especialy, for



the foliations of left cosets of Lie groups by nonclosed connected Lie
subgroups (chapters 6 and 7),
® the nontransitive case —~ for vector bundles over foliated

manifolds’ (sectim 5.7) .

4, Chapters 6 and 7 concern transversally conplete foliations. We
start with giving a precise construction of the Lie algebroid A(M,%) of
a TC—foliation (M,F). Next, we explain the geometric signification of
comnections in A(M,F) :

Let E and Eb be the distributions tangent to the foliation ¥  and
to the basic foliation Fp respectively. Connections in A are in the
1-1 correspondence to the C® distributions C<TM satisf yving the
conditions: (1) 5+Eb=TM, (2) EﬁEb=E, (3) an arbitrarily taken
vector belonging to C is the value of some folialte vector field having
all values in C [in the case of left cosets of a connected Lie group G
by a connected Lie subgroup H< G. condition (3) is equivalent to: (3%)

C is H-right-invariant].

In particular, such a distribution c always exists. A conection
in 4 is flat if and only if the corresponding distribution in ’T M is
completely integrable. Thus the nontriviality of the Chermnm—Weil
homomorphism of A(M,¥F) means that then there exists no  comnpletely
integrable distribution C_'c TM satisfying conditions (1)+(3) above. In
chapter 7 we give a wide class of transversally complete foliations for
which the Chern-bWeil homomorphisms of the corresponding Lie algebroids
are nontrivial. It will be some class of foliations of left cosets of
Lie groups by nonclosed connected Lie subgroups. As & preparation in

this direction we give (Th.7.4.2):

Let H< G be any connected Lie subgroup of G and let b, b and g be
the Lie algebras of H. of ils closure H and of G, respectively. Let
A(G;H) be the Lie algebroid of the foliation of left cosets of G by H.
Denote by hP:(st*)I _— HdR(G/ﬁ) the Chern-Weil homomorphism of the
H-principal bundle P=(G——G/H). Then there exisls an isomorphism of

algebras o such that the following diagram commutes:



kéo(Sechg* ) o

hA(G MDD

V5" y (VBT .

Because of the well-known fact that, under the assumption that G

L 2
ool
o)
X
Q
™~
x|

4

is a comnected, compact and semisimple Lie group,
(h)*:(6") —=s H2_(6/H)

is an isomorphism, we assert, thanks to the diagram above, that hA(G;H)
is nontrivial. This means that then there exists no C00 completely
integrable distribution Cc76 suwch that (1) C +E, =TG, (2)
C ﬁEb=E, (3) C is H-right—invariant.

As a corollary we also obtain that (Cor.7.4.8):

No Lie subalgebra ccg satisfying (1) ¢ +Hb=g, (2) cnbh=9
exists.
(Such a Lie subalgebra determines some flat comnection in A(G;H)).

Adding the simple connectedness to the assumption about G, we get,
according to the Almeida-Molino theorem, some nonintegrable transitive

Lie algebroid having the nontrivial Cherm—Weil homomorphism.



0. PRELIMINARIES

We assume that in our work all the manifolds considered, are of
the C*—class and Hausdorff, and that the manifolds M, M’,... over which
we have Lie algebroids are, in addition, connected. By Q°(M) we denote
the ring of C° functions on a manifold M, by X(M) the Lie algebra of C°
vector fields on M, and by SecAd the O°(M)-module of all c® global

cross—sections of a given vector bundle A (over M).

Denote by § the category of couples (M,E) consisting of a manifold
M and a C® constant dimensional and involutive distribution EcTM. A
morphism £:(M',E') —— (M,E) in § from (M',E') to (M.E) is a C~
mapping f:M'——— M such that £ [E°]cE.

Let (M.E) be an object of the category ¥, and f any vector bundle

o M. Each element of
Q_(M:f):= "é"n"_:m;f), where Q:_(M;f): = SecAE~of ,

is called a (Cw) tangential dif ferential form on (M.,E) with values in
f, while, for the trivial vector tundle f=MxR, briefly a (C* real)
tangential dif ferential form on (M,E) ( for that, see [28]). The space
of tangential differential forms on (M,E) will be denoted by QE(M).

There is an obvious differential dE of degree +1 in QE(M) which
can be defined in an elementary way in terms of local coordinates [28]
or, equivalently, by the global formula:

_ PRy ~
d @K 5. aX,) = E DX O 5 Tos X))
_ay i) A A

+ LE:J'( 1) @([XL,Xj],Xo,...m...J...,Xk)

(for ©e QE(M;r)). We evidently have (d)°=0. The tangential

cohomology space HE(M) of (M.,E) is, by definition, the cohomology space

of the comple: (QE(M),dE). If E=7M, then HE(M) is the de Rbham
cohomology space HdR(M) of M.

For a morphism f: (M’ ,E') —— (M,E) of § and a vector bundle f on

M, we can define, in a standard way, the pullback of forms
*
£ _(M:F) — a_, £ ).

The usual law of the commting of f* with the differentiation of



real-valued forms holds:
Fed =d or".
k
Let f'i,...,f' +f be vector bundles over M. An arbitrary k-linear
homomorphism of vector bundles p:fi x...xf'k-—»f' determines the
mapping

p*:QE(M;fi) X.o.aX QE(M;f'k) —_— QE(M;f)
defined by the standard formula

{O*(@1,... ,®k)(x;v1A...Avm)

= 1 . .
T .qk,gsgno' P(xX;0 (X5V_ A )ye..s®

(x3...AV ))

k i T(m)

in which =Yg, where g is the degree of © e QE(M;f'i').

Sometimes, the form p, (O ,...,0,) will be denoted in other ways:

(a) for forms of degree O (i.e. for cross—sections of the vector
bundles f'), by PO 5...40, )3

(b) for the standard homomorphisms  ©°:f x...x f —— ®F .,
Vk:f' X.u. X f'-——»ka_.. by ®1®”'®@k and © v...v0, , respectively;

(€) for the duality <-,->:Vf" x Vf — R, 8], by <@ ,0 >, etc.



1. THE CATEGORY OF REGULAR LIE ALGEBROIDS

1.1. The category of regular Lie algebroids.

1.1.1. Definition [2?9]1, [30]1. By a Lie algebroid on a menifold M

we mean a system

A= (A4,0-,-1,p) (1)
consisting of a vector bundle A (over M) and mappings

[-.-1:5ecA x SecA —— SecA, y:A—aTHM,

such that

(i) (SecA,l:, 1) is an R-Lie algebra,
(ii) y. called by K.Mackenzie [23] an anchor, is a homomorphism
of vector bundles,
(iii) Secy:S5ecA ~— X(M), & —— y &, is a homomorphism of Lie
algebras,

(iv) L, f Nl =F-IE, 0]+ (po&)(f) ' for Fe®(M), &, ne SecA.

Lie algebroid (1) is called

(a) regular if y is a constant rank; then E:=Imy is, of course,
Cm constant dimensional and completely integrable distribution, (1) is
then also called a Lie algebroid over (M,E). g:=Kery 1is a vector
bundle, called the adjoint of (1), and the short exact sequence

0 »y g ¢ » A Y, E > O (2)

is called the Atiyah sequence of (1);
(b) transitive if ¥y is an epimorphism.
The concept of a Lie algebroid enables one to make  many

generalizations (151, [ZZ2].

1.1.2. Let (1) be a regular Lie algetwoid. In each vector space

g|x(=Ker }/Ix)’ xe M, some Lie algebra structure is defined by
[vowli= [€.00(x), E.meSecA, £(x)=v, N(X)=W, V,WE 9.

9 is called the jsotropy Lie algebra of (1) at x. For transitive Lie
X
algebroid (1), g is a Lie algebra bundle [2], [19], [Z3].



1.1.3. The following are important examples of +transitive Lie
algebroids: '

(1°) the Lie algebroid A(P) =TP/G of a G-principal bundle P, see
(161, [191, (23],

(2°) the Lie algebroid CDO(f) of cavariant differential operators
on a vector bundle f, see [23],

(3%) the Lie algebroid j*(TQQ) of a Lie groupoid 3. see [13].
301,

(4°) the Lie algebroid A(M,#) of a transversally complete
foliation (M,%), see [26], [27]1; in particular,

(5°) the Lie algebtroid A(G3;H) of the foliation of left cosets of a
Lie group 6 by a nonclosed connected Lie subgroup H< G, see [20],
[271,

(6°) the Lie algebroid of some pseudogroups, see [31].

The following are examples of nontransitive (in general) Lie
algebroids:

(1°) the Lie algebroid j*(T("Q) of a differential groupoid &, see
[121, [271, [301,

(2°) the Lie algebroid of a Foisson manifold, see [4], (51,

(3°) the regqular Lie algebroid A’:=; '[E1cA defined by
transitive Lie algebroid (1) and an involutive distribution E<cTM (fDr'
example, a Lie groupoid {or a vector bundle] over a foliated manifold

determines such an object).

1.1.4. Definition. [24] Llet (1) and (A',0-,'1',7') be two Lie
algebroids (even not necessarily regular) on manifolds M and M,
respectively. By a homomorphism

He(A' -, 1" ,p") —— (A,0-.-1.2) (3)
between them we mean a homomorphism of vector bundles H:A'—— A, say,
over f:M'—— M, such that,

(a) ?/°H=f*°?/’,

(b) for arbitrary cross—sections E,8" e SecA’ with
H~decompositions

Hof =Lf - (nof), Hof' =L (nlef),
X J

fL, f’JeQO(M'), nt,n:ie Secl, we have

10



Holl ,£'1" = z,f"-f"'-llnt,ngl of + Ty eE)(F) niof ~L (' & ) (1) m of -
(P J i

In the case of Lie algebroids A and A' on the same manifold M, a
strong };omomrphjsm H:A'—— A of vector bundles is a homomorphism of
Lie algebroids if and only if

(1) yolH =y,

(2') SecH:SecA'—— Secldy, & +——— Ho¥, Is a homomorphism of Lie

algebras.

Indeed, " = " is trivial.
"e " Let Hef =):ft-n_t and H°:'=gf”-n3 be H-decompositions of
[ J
£, &' e SecA’. Then
HollZ,£°0" = [HoZ ,HoE'] = lszL-n.L,):f'j-n;l]
[ J
= E'fl-f"-ﬂnt,nsﬂfz_f‘-(yoni)(f")-n;— z_f”-(yan;)(f‘)-n.L

{ L. (PR

Ll
L f I B+ L o0 i~ L e ) () - o
Ll J L

il

If homomorphism (3) is a bijection, then H"1 is also a
homomorphism of Lie algebroids; then H is called an isomorphism of Lie
algebroids.

EBelow, we represent each nonstrong homomorphism (3) of regular Lie
algebroids over f:(M' ,£') —— (M,E) as a superposition of some strong
homomorphism H:A'—— £ 4 with the canonical nonstrong one y:f " A ——— A
where 74 is the so—called inverse—image of 4 over f. The term
“inverse-image of A over f" appears in work [24] by K.Mackenzie, but in
the sense not quite helpful here (f«:)r example, Mackenzie’'s definition,
although it is general enough, ensures neither the existence of the
inverse—image of A nor its regularity for a regular Lie algebroid A).
For the sake of completness, we add that the two definitions, 1.1.0
below and 1.4 from [24], are equivalent on the ground of transitive Lie

algebroids.

1.1.5. Definition. Let (1) be a regular Lie algebroid over (M,E)
and let f: (M E') — (M,E) be a morphism of the category §. The

inverse-image of A by f is a regular Lie algebroid over (M’ ,E*)
(74, U5 T,pr)) (4)

in which



(i) 74 = E'><“’r A={(V,W)€E'>< As £ (V)=}’(W)}CE’91"*A
w?) *

(fAA is a submanifold of E'ef A because £ oxyiE'<xA—— ExE is
transverse to the diagonal AcE x E, and fAA=(f* x;/)—i[A])_a
(ii) the bracket [-,-] in Secf” A is defined in the following way:
Let (X.L_.{?,L)eSecfAA, i=1,2 [where XLGSGCE', E_,LeSecf*A]. Then,
locally (say on UCM’), E" is of the form ngi-{’,jof for some
. ° J 1 1 L 1 .
g: (M) and E_LeSeCA, and we put
II(Xi,tfi),(XZ,Ez)llw
_ ik ped gk I, gk iy,
- ([Xi’le’j’zksh 9 H81’62H°f+§x1(gz) f:zof_IJ:Xz(gi) f1 f)lu :
The correctness of this definition. By antisymmetry, it is
sufficient  to  show  that L g g led e ler+2X () t"ef
ik 1 2 1 2 K 1 2 2

is independent of the choice of the decomposition for {7 2" Consider

*
simultanecusly the 2-linear function F:Q°(M') x SecAd — Secf 4 given

by
Flg:8) = £ gle),elef +X (g)Eof, geOr), £ e Seca
J

. i kel gkp LI k .k o
Clearly j),:kgi g, IIE1,ZZH f+§X1(gz) EZ £ E}F(gz,:fz). For te( (M),
by standard calculations and thanks to the  assumption that

f*(Xi(X)) =;/(Ei(f(x))), one can easily notice that (cf. Lemma 1.4 from
[24])

F(gst-&) = Flg (tef),£).

To prove the  examined independence, take two  decompositions
£ =Egk'fk°f=‘—2§7r'gref. For a popint xe M, let v be a local basis
2 722 STz "2 s

of the module Secd around f{(x) and let Ek=2hs~v ’ E”=z?75-u
2 3 k s 2 Jr s
(araund f(x)), hi,%feﬂo(ﬂ); then, around x we have Eg:-hiof
~p o k
:):g:'hsf:f for sach 5. Therefore, in the end, we obtain
r
r
k k., _ k s . - . k. S,
}EF(gz,fz) = E:F(gz,ghk vs) }S_',‘F(i_‘,gz hk f,vs)
= "r_'“sso - ~r o= = ~r ~r .
EF(FQZ hr f,vs) gF(gz,ghr vs) ?F(gz,fz) o
The Atiyah sequence of the inverse—-image [ ~4 of 4 is

pr
X
O s f g » £7°2 S » O.

12



(identify f"g with Oef’™g).
Clearly,

x= prz:f A s A
is a homomorphism of regular Lie algebroids.

1.1.6. Proposition. Let A and A’ be regular Lie algebroids over
(M,E’) and (M’'E'), respectively. Let H:A'—— A be a homomorphism of
vector bundles over f: (M ,E') — (M,E). Then H is a homomorphism of
Lie algebroids if and only if

(1) yeH = £ _oy’,

(2) H: A'—— A, vi— (7 (V).H(V)), is a strong homomorphism of

Lie algebroids.

Proof. The very easy proof will be omitted. m
According to this proposition, each nonstrong bomomorphism  of

regular Lie algebroids is canonically represented as the superposition

Hear Py o4 X, (5)

In the case of reqgular Lie algebroids, each bonmomorphism (3)
determines a homomorphism of the associated Atiyah sequences

0 » g’ < y A'—2y E° > O
+
I L
O > g ¢ y A Y, E 3> O

(H+ is the restricted bomomorphism of the adjoint vector bundles and

+ . . . i
H'x.g'x—-—-—) g’f(x) s X€ M, is a homomorphism of Lie algebra-s).

An example of a nonstrong (in gener‘al) homomorphism of regular Lie
algebroids is the tangent mapping f*:E‘—————+ E to any c® morphism

F2(M E°) —— (M,E) Of the category ¥. cf. {24].

1.1.7. A11 regular Lie algebroids and all bomomorphisms between

them form a category fundamental in ouwr considerations.

1.1.8. Lemma. Let A and B be o regular Lie algebroids over
(M\E)y H:A—— B a strong homomorphism, and f:(M',E’) —— (M,E) any
morphism of §. Then the mapping R A~ £7By (0yV) —— (U H(V)),

is a strong homomorphism of regular Lie algebroids.

Proof. Of course, priof = pr, - To prove that Secf “H is a

homomar-phism of Lie algebras, take two cross—sections

13



taneSecf A, £ =(X,Ef" ¢ of), Y;=(Y,z:gj-fjo[), and calculate
L v J

FRHLE sl = F o (I (X,Zfi-f.tof)_.(Y,I:gj-fjof)]])
L J

(CX,¥1, ):'fL-gJ‘-[IHoE_L,HoEJ,Dof + TUX(GI-Y(ED) Ho of
L) L

i

ﬁ(X,zf‘-HofLof),(Y,zgj-yosjof)ﬂ
L J

L HoE ,f Hom]. =

”~ . .
1.1.9. £} is called the [nverse—image of H cver f.

1.2. The Lie algebruid A(f) of a vector bundle f.

1.2.1. Definition. Let f be any vector bundle on a manifold M,
with a vector spacre }V as the typical fibre. A linear  bhomomorphism
1: Secf —— f'lx is called an f-vector tangent at x if and only if there
exists a vector ue TXM such that

Hf-vy=f(x)y )+ ulf) vix)
for all f e Q°(M) and v e Secf.

The vector u determined uniquely by 1, is called the anchor of 1
and denoted by ¢(1). All f-vectors tangent at x form a vector space
A(f)lx- FPut A(f) = Uxenmf)m and let p:A(f)-—— M be the canonical
projection. Clearly, each f-vector 1] is factorized by some linear

mapping 1 from the space of 1-jets at x:

Secf — (Jif’)Ix

1 17

f’

1 x 1

and the mapping just obtained A(f) — Hom(J'fif), 1—— 1, is a
monomorphism on each fibre. One can prove [23] that the image of this
mapping, equalling CDOf, is a vector subbundle of Hom(Jif;f)- Via this
mapping we shall identify A(f) with CDOf to obtain a transitive Lie
algebroid with g A(f) ——s TM, lI—— qg(l), as the anchor. A
cruss—section & € SecA(f) defines a differential operator .«"‘,’z in f by

the formula:
fﬁ(v)(x)=fx(v), ve Secf. xe M,

being a covariant dif ferential operator in f. Besides, each covariant

differential operator in { is of the form .i?t for exactly one

14



cross—section £ € SecA(f). The bracket [ -, ] of cross—sections of A(f)
is defined in the classical — for differential operators — manner, i.e.
for £, ne SecA(f), [#,n] is a cross—section of A(f) such that
xﬁt,nn =.'€Eo£n-.‘€n oxt. The Atiyah sequence of A(f) is

0 —— Endf —ts AF) —Is T — ©

and £ (v)=F(v) for ¢ € Sec(Endf), where £ (v) € Secf is defined by
1ok
E(wi(x)=F (v ). xeM).
X X

Take now a vector bundle f on M and a mapping f:M'—— M. Consider
the inverse-image £ (A(f)) (=TI’1'><“’r q)A(f)) of A(f).
o

1.2.2. Lemma. For xeM' and (u,l)e f"(A(f)), there exists
exactly one element we A(f*f)m with the anchor u, such that
w(vef)=1(v), veSecf. The correspondence (u,l) —— w establishes a

strong isomorphism
e, A — AT
of transitive Lie algebroids.

Proof. let xeM  and (u,l)efA(A(f'))lx, i.e.  ueT M,

le A(f')‘f(x) and

£ ) =qil). (6)

The uniqueness of an element we A(f*ﬂm with the anchor u, such
that w(vef)=1(v), ve Secf, is evident. As to the existence of such
an element, we notice that any cross—section 7 e Secf*f' can be
represented (not uniquely) in the form 7 =‘Eft'vtof, fe Q®M),
v € Secf. Put )

i) = zf‘(x)-z(ui) + (") v e f(x).
i

The correctness of this definition: Let T =}:fL-vLef=ZgJ-rjof
i J
(locally in some neighbourbood of x). Take an arbitrary basis o 4....1

»

n

of cross—sections of f around f(x) and  let vL=):qo?-ps, Tj=2w§-p5.
S s
Therefore in a neighbourbood of x
Eft'ﬂof°f =ZQJ'W?°fs s=1,...40- (7)
L J

Equalities (6) and (7) yield

LEi(x 1w + alfh) v o f(x)
L

15



= AL FUX) 0 e (X)) N )+ T U £ 9 of )1 of(x)
s 4 v s s i v s

= rdx AT )+ ulg) T e f ()
J

If is easy to see that i is an f f-vector tangent at x (with the
anchor u). Clearly, the mapping obtained cf:fA(A(f)) —-)A(f*f),
(Uyl) b W, is a strong bomomorphism of vector bundles. The
smoothness of cf follows from the fact .that cf maps a smooth
cross—section to a smooth one: namely, (X,zft-fiof) is carried over to

L
a cross—section n such that .&’,’n(Vof) =}E]ft-Z£L(v)ef, v e Secf.

It remains to show that cf is a homomorphism of transitive Lie
algetwvoids. Of course, gec, = pr, - To see that Sec(cf) is a
homomorphiism of Lie algebras, take o cross—sections
£, neSecf “AUF)) . They are(lcx:auy) of the form £ =1(X. zf L of),

n=1(Y, 2:9 f of) for f ’9 e (M) and fLGSeCA(f) we calculate
(for v < Secf)

IC'O{,C‘Onl(vof)

= P o {(roef) — X Ox (vof)
c‘.ot c'_on ‘,or; °E.
(V) f+E(X(g)—Y(f)).f (v)of

L

= xc,olt,nl(vc'f)' |

16



2. REPRESENTATIONS OF LIE ALGEBROIDS ON VECTOR BUNDLES

2.1 Definition and fundamental examples.

2.1.1. Definition (cf. [23, p.1061). Let f and (1) be any vector
bundle and Lie algebroid (both over M), respectively. By a
representation of A on f we mean a strong homomorphism of Lie

algebroids
T:A —— A(). (8)

2.1.2. Adjoint representation (defined by Mackenzie [23] for the
transitive case). One can trivially notice that if v e Secg, then, for
¥ € SecA, the value of [£,v] at x depends only on the value of £ at x
and belongs to gix. In this way, it is the correctly defined element
[v,vl e 9, for ve A and v € Secg.

A very important representation is the so—<called adjoint

representation of a regular Lie algebroid A

adA:A —_ A{g)

defined uniquely by the following property:
adA(V)(v) =[v,vl, ved, ve Secg.

To see the existence of adA_. we only need to notice that
Secgav5-——>l1v,v]leglx is a g—-vector. The smoothness of adA is

evident.

2.1.3. Contragredient representation. The contragredient

representation of (8) is, by definition,
T°:4 — 24"

such that {fr.,oz(p),v>= (;/of)(qo,v)—(qo,.frot(v)}, ¥ € Secd, pe Secf'*,

v € Secf .

2.2.Representations induwced by a single one. A single
representation T:4-—— A(f) determines (as in the case of a
representation of a Lie algebra in a vector space) a nunber of new
ones. Among them we shall need the following ones:

2.2.1. The symmetric product VT of A on V*f as the one for which

17



karog(viv"'vvk) = Fviv...vxrot(vi')v...vuk, pt e Secf. €& € SecA.

2.2.2. The representation Homk(l'") of A on the space of k-linear
homomorphisms Homk(f' iR) as the one for which

i k
xﬂomk(‘r)oz D geal )y

() (V' 05) = (el ) (p(0ty... 5N ~Letw' e z
i, o

for any k-linear homomorphism e:f <...xf—a R and for vie Secf s
¢ € SecA.
Via the above, the given representation (8) determines VkTH of A
ko ¥
on the space V f .

2.2.3. Lemma. The representation V*I" is def ined by the following

formula:

< >= & )4l, > = 4
\kar.,otr,viv...vv >=(yo&) F_viv vuk Zﬂr_viv P 4

v P 4
k . 7ol i K

forTe Sec(ka'*) and v e Secf .
Proof. We need the following

2.2.4. Sublemma. let, for a given matrix B, the symbol permf(B)
denote the permanent of the matrix which arises from B by the
eliminating of the it row and _jLh column (for the definition of a
permanent, see [81). The following properties of the permanent of the
matrix B=Lf); i, jSk1 hold:

(1) The expansion formula with respect to the 1':>h row or jih
column:

X f j k i j
permB = jE}lf-to'pennLo(B) =L‘=,_‘,1f-b‘°-perm-t°(8) s
(2) the law of differentiation :

X(permB) = EAX(ff) -perm-f(B)
LPJ

where ff and X are C” functions and a vector field on a given manifold,

respectlively.
The very easy proof will be omitted. o

Proof of Lemma 2.2.3. 1t is sufficient to show the equality for a
* * i
cross—section I of the form I'=u v vu k,. u*Je Secg*. Using the
above sublemma, we obtain, for v € Secf,

<P 9 *k X
. VkT.'ozu Voov ,Uiv...vl)k}



A PRI Va5 3 P Voo >
7T ok Tt

k
[ %1 . *j .
£ V¥ ... wE V¥ o.aa ;
) U »v, T"ozu 1 w2
=} perm
J
. %y ) . * j ) . *k )
<u VP oaaa XX VP oeea K >
L\ L] k hS r.oiu . k ¥ ,Vk
PEETO o oXj . . ¥k
U Y F ewa (Fol)<u J,v> cae KU G0 2
1 1 1
=Yy perm .
7 : .
A | . X ] . ¥k .
LU GV ¥ e (po&)iu J,v F oaae U v 2
i k k k
. xq N *j ; . ¥k .
P oawe X
<u V7 <u ’xrozv1 u ,vik
— L perm :
3 : .
. *¥L ] i . ¥k
u sV, e u ,.frotvk,> -=a U ,vkk
-, %) J ¥ j
= Llyel)su “yvirperm. — TL<u ,£_ v 2>-perm,
L, ¢ o 7ok i L
. ¥ . L 3 .
LW gV 7 aaa SU GV &
1 1
= (y o) perm
* >k

-
L | . Xk
“u ,Di)" -na “u V7
. ¥q . . Xk
— Y perm} <u £ V7 oaea U £ v,
}n.: P rer i I rek 1
{u*‘i v > ,.u*k .
~ - S ~
Tk S
= -l
. ¥ * Xk -
=(ypof)lu v...vU ,viv...vvk;
| *)k .
=L U vooovU R v L Vv.vr . B
B 1 Tok k

2.3. The inverse-image of a representation.

2.3.1. Definition. Let A be any regular Lie algebroid over (M,E),

and f any vector bundle over M, whereas f:(M',E’)—— (M,E) -

any
morphism of the category J§. By the inverse—image of a

representation
T:A—— A(f) over f we mean the representation 51770 A) ———)A(fxf')



defined as the superposition
~ c
e L4 raoh —5 acth

where ci_ is the isomorphism described in 1.2.2 whereas 77 is the

inverse-image of 7 aver f, see 1.1.8-9.

2.3.2. Lemma. The inverse—image of the adjoint representation is
adjoint, i.e.

*
f (adA) =ad . -
Proof. It is enough to check the equality
*
£ (ad J(w(vef) = ad . (W (vef)

for v € Secg and ue £fTA. Write u=(v,w) for vek’ and weld , see

1.1.5. Then

*
£ (ad Y (W) (vef) = cfoandA(v,w)(vaf)

c (vyad (w)){vef) = (ad (w))(v)
f A A

!

[we,vl = [(v.w).(O,vef)]

adf,\ (w(vof). m
A

2.3.3. Lemma. Under the canonical identif ications
f*(f");(f*ﬁ*, f*(ka)‘—"_—Vk(f*f), the following equalities of
representations hold:

(@ £ = D",

) £V = V.

Proof. (a): Let xe M ad (v,w)e (1"'\,11)'x s i.e. ve E;x,
we Am )and f (v)=y(w). Of course (by the unigueness considered in
1.2.2), it is sufficient to show the equality

TN o) = (D (v, T e )
for v* € Secf'*. Both sides of the equality are elements of the space

fo(x) (_—.- (f*f’*)lx), therefore, to show this, take arbitrary uef

and a cross—section v € Secf, such that v(f(x)) = u.

1Fex)

(T v (0 e f)

= < UT ) (vaw) (VT o f ) vof(X)>

e (VeI (L of ) wef (x)>
)



= <T (W) () e f x>

= (N =  (F(x)),T(W) (0)>
=f*(v)/;v”,z»—<v"(f(x)),cf(v,:r(w))(z)of)'}
= V(<0 o f 0o f3) =0 (£(X)) f T (vywd)(vof)>
= (D (v )0 F(x0)>

= < D (van 0 o), ue

(b): Under the canonical identification £ (V') 2V¥(£ f), we
have v ofv..vv of = (v v...vv )of for v e Secf. Since a cross—section
ve Sechf' is (locally) a linear combination of cross—sections of the
form L Vv, v,LeSecf', we see (by the same argument as in (&)

above) that it is sufficient to notice the following:
X ik
v Dvsw) (v voovp Yo f)

= VkT(W)(V v..ov )
1 k

1l

Evi(f(x))v...vf(w)(v',.)v...vvk(f(x))
= Lo, (£ v v f TV (0 o f)veoww (£(x))

= Vk([*T)(v,w)(viofv...vvkof). -

2.4, Invariant cross—sections (cf. Mackenzie, [Z3, p_195])_

2.4.1. Definition. Let (8) be any representation of a regular Lie
algebroid A aover (M,E) on f. A cross—section v € Secf will be called
invariant (Dr, more precisely, T—-invariant, or, after Macken:zie,
A-parallel) if T(v){»)=0 for all ve A and v € Secf.

Denote by (Secf')lo(r) (or briefly by (Secf')l., if it does not lead
to confusion) the space of all T-invariant cross-sections of f.
(Secf)la(n is an oZ(M,y)—fmdule where ¥ is the foliation having E as
its tangent bundle [n:m_.ar) being the ring of #-basic functions].

One can prove (cf. [23]) that each invariant cross—section
v e Secf with respect to a representation T:4—— A(f) of a transitive
Lie algebroid A is unigquely determined by the value at one of the
points of M.

2.4.2. Lemma. let T:A—— A(f) be a given representation of A on

f. An element pe Sechf'* determines a  k-linear homomorphism
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oif xooxf —s R by the formula: ;(vi,...,vk)=<Z(p,v1v...vvk>. We

have that ¢ is VkTh—invarjant if and only if «~p is Homk(T)—jnvariant.
Proof. Follows directly from 2.2.3 and the definitions. =

2.4.3. lemma. Let T:A—— A(f) be a given representation of A on
f. Let T' e SecV*f  and r, e SecV'f  be VI- and V'T-invariant
cross—sections, respectively. Then the symmelric product
rivrz € Sechﬂf' is V<''T- invariant.

Proof. Follows trivially from the equality

(VT (v (M o) = (VSTHvIE VT (%) + T (VT (v (C))
1 2 1 2 1 2

for ve Alx’ x e M; which can easily be checked by considering simple

= = VY e . m
tensors I"jl L Ve I"z VLYY P Secf, only

2.4.4. Theorem. Lel A be any regular Lie algebroid over (M,E), and
f any vector bundle over M, whereas f:(M',E') —— (M,E) — any morphism
of the category 8. For a representation T:A—— A(f), the linear
mapping f":Secf'-—-———-» Secf*f’, Vs vof, can be restricted o the
spaces of cross—sections invariant under T and f *T_. respectively:

» »*
f1°=(secr)1°(7) R 4 (Secf F)IQ(f"T)'
Proof. Let v e (Secf)lo(r) and (v,w) € f7A. Then
T wef) = e of Ty (wof)

= cf(v,T(w))(vof) =T(wi(v) =0 . m
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3. CONNECTIONS IN REGULAR LIE ALGEBROIDS

In this chapter we fix a regular Lie algebroid (1) over (M,E)e §

with the Atiyah sequence (2).

3.1. Connections, curvature and partial exterior covariant

derivatives.

3.1.1. Definitions. By a connection in A we mean a homomorphism of
vector bundles A:E —— 4 such that yok=id£. The uniquely determined
homomorphism w:d——s g such that w|g=id and ow|ImA=0 is called the
connection form of A. The projection H:A— A onto the second
caomponent with respect to the decomposition A=ge(, C(C:=Imx, 1is the
horizontal projection. By the curvature tensor of a connection X we

shall mean the form QbeQ;(M;g) defined by
Qb(xisxz) = _w([[7\°X1,)\OX2]]), XLESGCE,
or, equivalently, by
Qb(xisxz) = >\°[X1,X2]—[[>\°X1,K°X2Ds XLGSGCE- ()
A given connection A in A determines the so-called partial
exterior covariant derivative V:QE(M;g) —*QE(M;g) by the formula

k j A
(V@) (X ,....X) = L (—1)Jﬂ)\oXj,®(Xo,...j...,Xk)]]

=0

+ T(-1)"Me(rX ,X1,X RS S
L <J vl ©

X € SecE, for @ezQE(M,g). Without difficulties we assert that
19

V(v-8) = VoaB+v-d6 (10)
for v € Secg and B e QE(M) H besides, the linear operator
V|Secg: Secg —— Q:_(M;g) is a partial covariant derivative (im the

sense of [111, compare [131, [141).

) k
3.1.2. Proposition. (1) If e:gx..xg—R is a Hom(adA)

-invariant k-linear homomorphism, then, for © e Q:_'L(M;g), we have
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e:g X...

have,

ds(p*(®1’""®k)) =ngp_1)q1“'”qbﬂp*(®1,“.,V@L,“.,®k
(2) va, =0 ( The Bianchi identity).
PTogf. (1): We begin with the following lemma:
3.1.3. Lemma. For a Homk(adA)—invariant k—linear

x g ———— [R and vLESecg, we have
dE(p(v1,”.,vk)) = E:p*(vi,“.,Vvt,”.,vk).
Proof of the lemma. According to definitions 2.2.2 and
for Xe Seck,
ds(p(vl,...,vk))(X) = X(p(v y...5v)))
= (}’°)\°X)(¢P(v1,---,vk))

(V )g.oqv )
L

= Fp(vi,...,f K

a.dAo)LOX

= f""J(p(vi,....,[I)\m)(_.u_tl] ,...,vk)

= E:@(vi,“.,(VDL)(X),”.,vk)

= E:p*(vi,“.,Vvt,”.,vk)(X). o]

To continue the proof of our Froposition, we notice

) -

homomorphism

2.4.1, we

that since

both sides of the examined equality are [R-linear with respect to each

®U and each g-valued form @ is (locally) a linear combination of forms

v-8 wh
show

lemma

ere ve Secg and @ is a real form, therefore it is sufficient to

the equality for © =v -6, v eSecq, abenqt(n).
L

above and (10) we obtain

dE(ep*(vi'ei,...,vk-ek))

dE(@(vi,...,vk) LR

]

dE(rp(vi,...,uk) Y A8 A8, F (L 4 ) -d"r(ei/\...,\ek)

i

g:p*(v1,”.,Vvi,“.,vk)AeiA“.AGk

From the

k
» . — q1+..'+qL—]
+ lp(vi,..._..bk) Y (1) 91/\.../\(159(\.../\9’(

L=1
k q,+...+q.
- 1 -1 . )
Lg]( 1) ‘P*(Vi 61""’VVLA9‘L""’D)< Bk)

k
gy gt . . :
+ T (-1)N Ll (v 8 4, dEeL,...,vk o)

L =1

il

k
- q1+...+q< -1 N , . .
T (—1) Ll (D 0 sy VL AD b0 dgei,“.,vk 8,)

=1
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k +...+q.
= -1y 3Tt = S 6 ),... 8 ).
e,)z:j( ) qo",(v1 61. _‘7(1«'_L e,t), 2Py ek)

(Z): From the definitions, equality (%) and the Jacobi identity

in SecE we obtain:
VQb(Xo_-.Xi,Xz)
= [[KOXO,QE)(X1'.XZ)B _u7\°X1,Qb(X°,X2)n +[[K°X2,Qb(xoyx1)]]

— [XO,X1] ,Xz) +a( [Xo,Xz] ,Xi) - Qb([x1’xz] ,Xo)

il

[xoX sneLX X3 ~0xoX AoX DD —IxoX ,No[X ,X, I~ [xoX ,XoX 1]
+ lIK°X2,>\°[XOy X1] - [17\°X°,7\°X1]]B ‘“7\°[[X°, Xi:]’le + ‘IA‘.[XO’Xi]’XOXZB
+ k°[[X09X2],X1] - HKD[XO,XZJ 5K°X1]] _K°[[X15X2]5X°] + II>\°[X1,X2],)\-°X°]]

I

O. m

3.2. Inverse—image of a connection.

3.2.1. Definition. Let X be a connection in A, Take a morphism
f:(M,E') — (M,E) of the category ¥ (see chapter 0). By the
inverse—image of A over [ we mean the connection X in the inverse—image
of A over f, (4), defined by Av) = (V,?\(f*(V))), veFE'.

Notice the commuting of the diagram

A prz
£ —= 2

fx
E'——— E
and the equality 7—\oX=(X,7\ofon) for Xe Seck’. The connection form of

- i >
X is wif A e— f gs (VaW) b— wlw), where w is such a form for A.

3.2.2. Proposition. et X le

u

cennection in A, and Q - i ts
curvature tensor. Then 61:’ the cwrvature tensor of the Inverse—image x
of X over f, is equal to Q (X2¥) = (£ Q)(X,¥). X, Ye SecE"

Proof. We start with the following

3.2.3. Lemma. (1) For X< SecE’y we have (X,X\-f  +X) < SecfA.
(2) For X,Ye Seck’, we have
l[(X,Kof*t’X),(Y,?\of*oY)ﬂ = ([X,Y]),Kof*o[X,Y]-(f*Qb)(X,Y)),

Proof of the Lemma. (1) is evident. To prove (2) we establish the

equality in some neighbourhood of an arbitrary point xe M. For the
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purpose, take any commuting vector fields
local basis in some neighbourhood U of

U= f Ul <M, we may write

v

= i" i'o o = j' jo:»
(£,oX)y0 = (EGYef) s (£ 0¥),, = (ERVeD),,

for some gt,h%sﬂP(M). Therefore, by (%),
lI(X3)\°f*°X)g(Y_q>\°f*°Y)DIU,

= [[(x,zg‘-xoy‘of),(Y,zhj-xoyjof)nlu,
L 3

(RPN J

'L DJ

= (X Y1,= (£7Q) (X, 1) + LX(R) AeYlef = £Y(g) -xoy‘of)lu,.
3 L

1t remains to prove that

_ I I
(£ oY1) = EXE) Yol ~EY(G) Y eh) ..

(LX, YT, Tg b Iney s nerTof + DX(H) NoYlef ~LY(g) Re¥ror)
L

([X,¥1,- £g B0 (1Y) ef + DX(H) ReY o ~EY(G) Ao¥ o),
J [

Let aeq(M; then (f*oX)(a)IU,=X(aof)w,=(}L:gL'Y"(ot)of)lu,,

analogously — for Y; so,

£ oLX, Y](ot)'u.= LXs Y](otof)lu,

(X(Y(aof)) = Y(X(ao£))) ,

(X(?hj'}’j(ot)of) - Y(g;g"-y"(ayof) )y
= ()J;‘X(hj) Yo f ~EY(g) Y () o),
because L
()J:hj-X( Yi(a) of) -)L::g‘-Y(y‘(a)of) )

- i, S B i
= (W (£ X)(Yo) —~Eg (£, e

i

( g Y(Yoref - £ g-n'Y(reef) .
tad L)

Il

L K@y, rie.r ,
i,d w

= 0. O

Proof of the proposition. Let X, Y e Seck’
lemma above, we have

Q, (X, V) (x) == w(lReXne¥D) (x)

== (L (XsNof o X) s (Ysnof o¥)]) (x)
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=~ WX YT N ef o LK YT = (£70,) (X, 1))) (x)

y |
=T Wl (Ao e DX YT = (£70) (X, V)1 (X))

= (f*nbnx,}’)(x). n

3.2.4. Proposition. Let H:A'—— A be an drbitrary homomorphism
( say., over  f:(M,E’') — (M,E)) of regular  Lie algebroids. Let
AtE——> A and AN:E'—— A" be connections in A and A’s  respectively,
such that HeN'=Aof 3 then the curvatwe tensors Q and Ql; of XN and

N', respeclively, are related to each other via
* + ’ ,
(f Qb)x = Hlx(be), xe M.
Proof. Represent canonically H in the form of superposition (D).

Let X be the inverse—image of A over f and denote by Q the curvature

tensor of A. Consider the following diagram

( it . 1

. | x
gtx gnﬂx) 9|f(x>
Inbx ‘I\be ,[Qbf(x)
f_  xf
*x e
[ [ - ’ . I
ExxEuc E|x><E‘x : |f<x>Xch(x) -

By 3.2.2, we have the commutativity of the right sgquare. Thus the
proposition reduces to the case of a strong homomorphism, say,

H:A'— A’:
c'ib(x,.Y) == @(IXoX,xo¥]) =~ (LHoA X, Hox"oY])

= —woHolN oX,N0¥] == H owIN eX, N oY] = ﬁ;n;)(x,y). n
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4. THE CHERN-WEIL HOMOMORPHISM OF A REGULAR LIE ALGEBROID

4.1. Definition of the homomorphism. Let (1) be an arbitrary but
fixed reqgular Lie algebroid over (M,E) ey and let (2) be its Atiyah
sequence. Assume also that a connection A in A4 is given, and that
Qbe(ijn;g) is its curvature tensor. Let us fix a point xeM. By the
zkE*

caommutativity of the algebra k&0/\ » there exists [8, p.122] exactly
X

one homomorphism of algebras

~ * k>0, 2k ¥
X(A,A),x'vglx &"A E|x
h that & (1) =1 and % (ry=<r,a >, FeVlg® =g"
suc a X(A,A),x =4 an X arnx Ry € glx—g|x'
4.1.1. Lemma. % (Fy = 2<r,n Q. > for CeV¥g"
T * Xanx Tokr T bx T bk )

k times
Proof. Define auxiliarily a mapping

> *
3 :®g* —s KON y TM——a <0 ®..00 >, for l'“eég .
X | x | x bx bx I x

Thanks to the simplicity of the nature of the duality

®ng>u&gm-———>R (see [B]1), we state (analogously as in Lemma III

in [9,p.261]) that ﬁx is a homomorphism of algebras. Take the canonical

jecti ®g Vg ®...® The  followin
ection : . s e .
proj nx glx—-y g|x_ W, wkt———-—n./1v VW, g
diagram
3
k X 2k ¥
&g ———— &°NTE
| x | x
n‘l
% ~
x X(A,)\),x
Vglx

commutes, which can easily be seen by checking on simple tensors

* * . .
W ®... 0w eég* . lLet 2:Vg —seog denote a mapping defined by
1 k |x1 x | x | x
= et - . Th o = j and see 8,
?cx(wlv...vwk) k! Ewau)@ B g o> en T id ( L8,
o

91,1931}, for FeVg" and u e
pp.-91,1931), fo <Vig L €9,

) 1 . .
4 . . > = et e > -
xx(r) : u1® ®L5< - . uiv vuk/

Therefore
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X(A,)\),x(r) = X(A,)\),x( rtxo nxr) = r?x( “xr) = <Jc:cl—"'Ql‘:xau'enbx> Y
so, for v eFE ,
L 1>
. > = | b
Xnmx>,x(r)(v1/“"szk) xkx(r),be®“.®ﬂbx(V£Au.AVzk)}
_— 1 . ~,
-‘-k——l- (r,bev...Vbef(ViA. ..AVzk). [ ]
Fix an integer kz 0. The family of homomorphisms
~ * * .
xk :ng -———)AZkE « XxXeM, gives rise to a strong homomorphism
CANLX | x | x

of vector bundles if&kkag*-———+AzkE* and, by the Lemma above, we

have the equality

~k _ 1 .
X(A'A)"r = 'l:—!- ‘(I—',va...vﬂb/

k ¥ . . ~k . (¢ 3] .
for Me SecV' g . from which we obtain that X(AK) is a C homomorphism
of vector bundles. The homomorphism of QO(M)—moduli

k0 k% ko _ 2k
Xy b SecN'g — & QUM < (M),

induced on the cross—sections, is, of course, a homomorphism of
algebras.
The adjoint representation adA gives rise to a representation

Vkad: of 4 on ng*, see 2.2. Denote by (.S'eCng’\‘)I° the space of

invariant (under Vkad:) cross—sections of ng* and restrict Xeans to
invariant cross—-sections to obtain
kz0 k *
Xearrs® & (SecV' g Yo —— Q (M.
. -~ kYo Kk *
According to 2.4.3 & (SecV'g )1° forms an algebra.
4.1.3. Proposition. The forms from the image of X any° e
closed.
Proof. Let e (Secvkg*)l., . Then, by 2.4.2 and 3.1.2,
= L_- ) = .i_ r
dE(X(A,A),f(r)) e d (KT Q v v >) = L (0, .,0,))
1 ~
b~ = 0.
= )J:(r*mb,...,nb,vnb,...,ob)) C -
| S —4
j-1 times
Define the superposition
pd °
k> * s A,
h : éo(Sechg ) o 22D, Kerd ——— H (M).
AN 1 E
4.2. The functoriality of the homomorphism hugxf Let H:A w—— A
be an arbitrary homomorphism (say, over f:(PP,E')————)(M,E)) of
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regular Lie algebroids. Define the pullback

* kY kK X > *
H' :¥8%secV g -———*kéOSechg' by the formula:

. + % . + +
Z, . > o= 4 - ’ ’
“(H (I",))x_..viv...vv .Ff(x),H'x(vi)v...lex(vk)>, xe M, v.€9 -

k
It is easy to see that H+* is a homomorphism of algebras.

24 x
4.2.1. Proposition. The pullback H* maps invariant  cross—sections
into invariant ones.

Proof . Represent H in the form of superposition (5) and notice
4

that H+*(F)==H-*((x+)*(r)); therefore we see that 1t 1is enough to
consider two cases: (a) a strong homomorphism and, {b) the canonical
homomorphism yx, see 1.1.05.

(a) Consider the case of a strong homomorphism H:4d'—— 4 of
regular Lie algebroids (both over (M,E)). Let F<5(Séchg*)lo. For

¢ e Sech’, o, € Secg’ .
()/'of){H+*r,c’1v...vo’k} = (Q/OHof)(r,H+°c’1v...vH+oo’k>

= ¥4I, H+oo’1v...vH+0ﬁ L v...vH+oo’k}
i

*
F{}f r,clv“.vﬂf,clnvn.vdk}.

(b) Consider the canonical homomorphism x:fAA————yA. Identify

£ vEg ) 2viir¥ ) . Then (x)*r=f"r and, applying 2.3.2 and 2.

&
L

we get
£ vEady = VErFadt = vRadt L .
A f'A

A
Our assertion now follows from 2.4.4. =

4.2.2. Theorem (The functoriality property ). Let H:A'—— A be a

homomorphism  ( say, over fe (M, E) — (M,E)) of regular Lie
algebroids. Then, for arbitrarily taken connections AN and X in A and
A4, respectively, such that Hor*=Xof the following diagram
commutes:

h

CA, A

k$o(SeCng*)lo » HE(M)

H+>¥ f#

kYo k % h(A' b N

& (SecV g’ )Io d > HE,(N’) .
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Proof. Of course, it is enough to prove the commutativity of the

following diagram:
p3 *
kéo(Sechg ) A QE(M)

- -

X
k6% (SecV<g’ ™) QM) .

A’ , A"

v

DR

Let Qb be the curvature tensor of X . Take FeSeCng*. By

have, for xeM and v, eEI' ’
L X

n

*
ox(&x)(r) (x3 V1A...AV2k)

i
k‘I,__

! -<F,va...vnb>(f(x) ;f*(vi)/\.../\f*( vzk) )

'{rf(x), va...vﬁb(f(x) ;f*(V1)A...Af*( Vzk) y >

- =

LI

1
T o S DI B LS L,V (IA v, )0

2

=

<

...va(f(x);f*(v )Af*(v )) o

o(2k—~1) o2k

}iv

1 1 +
= 4T el o O x v
r ’zk GL‘.S'gn H|x( b(x’ Ve Vo

+
- Q H >
lex( b( X3 vc(zk-i)Ava<zk)) )

1 4 1

= 2.2 ry ,—- o (x3 RVIe NS¢ ;
i )X’zk Esgn L XV ™ Ve VY IB Y  ™ ei) 7
1 +%

= e r VI ‘ H :
o H D) L (v Q) (X5 v Aav, )5

. + % .
- X ’ ’ OH (r)(X, V1A"°szk)' ]

4.3. The independence on the choice of a connection.

4.3.1. Theorem. Let (1) be an arbitrary regular Lie algebrovid over

(M,E). Then, the homomorphism h(A'M is independent of the choice of a
connection \.

Proof. Let 7\_L:E--——>A, i=0, 1, be two arbitrarily taken
connections in A4 and let w,L:A-———bg be their connection forms. Take

the regular Lie algebroid TRxA over (RxM,7/RxE) [241 being the
product of the trivial Lie algebroid TR with A and take in it the

connection form WiTR X E = 0 xg defined by
w(t,m(v’W) = (U,wOX(w) (1-¢) + wix(w) g

The following
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G:TR x A ~—— A, Ft:A——aITRxA,
(VW) —— W W —— (80‘”)
(SL is the null tangent vecltor at te [R), teR, are homomorphisms of
regular - Lie algebroids over prz:([RxM, TRXE)—~—s (M, E) and
jt:(M,E)-—-—-——»(UE'xM,T[RxE) (x——(t:x)), respectively. Notice the equality
woF,L=F:ow‘,', i=0,1. Let AN:iTRxE~—— TRxA be the connection in
IR x A, corresponding to w. We see that Koj,t*=Fio7\‘,'. Functoriality
property 4.2.2 yields the commutativity of the diagram for j=0, 1:

k&% (SecV(oxg) ¥ ) . —IRXAN 4 (RxM)
1 TRXE

+ % K3
| &
h

(A, AN. D)
k%% (secV*g™) . : H (M) .

A 4

Consider the homotopy H= ldkxn joining Jo to J.- Since

Hi(RxMTRXE) —— (RxM, TR xE) is a morphism of the category 3s

) : : H#_# c o *-4
therefore H implies the equality 1_]0 7, (h.Q TRXE(CRXM)——-——»QE M)
defined by (@) (X3V A...Av ) = f@ (__a AV AAV ) dE is a
1 q-1 (txy It 1 q-1
. . °© L x  x
cochain homotopy operator, i.e. the condition b —_]1=hodE+ d oh
o

holds, cf. [28]). From the fact that GoFL=idA, i=0, 1, we have

+ X% + X

FL oG = jd.
Therefore
i + ¥ +% F: 3 + %
Arg)> hm,)\o>°FL °G Jooh(ﬂzx,q,)\)o
rs + %

G - h(A.A,)'

= ]1°h<mx4x>°
The theorem just proved means that the examined homomorphism
h(A.)U is, in fact, a characteristic feature of the regular Lie
algebroid A and justifies its being denoted by hA. It will be called
(traditionally) the Chern-Weil homomorphism of A, whereas its image
Imh <H_(M) will be called the Pontryagin algebra of A and denoted by

Pont A. Clearly,
h (M) = [2-<T0v.v0,>] if Te (SecV*a@™) . (11)

where Qb is the curvature tensor of any connection in 4. As a simple

corallary from Theorem 4.3.1 we obtain
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4.3.2. Corollary. If the Chern-Weil homomorphism h, 6 of a regular
Lie algebroid A is nontrivial (i.e. h;#(')), then there exists no f lat

connection in A- ®m

In the nearest chapter we compare this homomorphism with the
well—known homomorphism for principal bundles, whereas in the next ones
we examine this homomorphism more precisely for Lie algebroids called
into existence by other objects such as TC-foliations or nonclosed Lie

subgroups.
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5. COMPARISON WITH PRINCIPAL BUNDLES.

J.1. The Lie algebroid of a principal bundle [16]1., [19]., [23]. Let
us fix a G-principal bundle P= (P,n,M,G,-). By a Lie algebroid A(P) of
a P we mean a transitive Lie algebroid (A(P),[-.-1,7) on a manifold M,
in which A(P)=TP/G (i.e. the vectors v and (Rd)*v, ve TP, are
identified for each a<G), y([lvl)=nr _(v), ve TP, where [v] denotes
the equivalence class of v, and the bracket is constructed on the basis
of the following observation (see [16] [19]): For each cross—section
n € SecA(P), there exists exactly one c® right—-invariant vector field
n e 25 (P) such that v (z)1=n(rz), and the mapping
SecA(P) —— &R(P), N +—— n', is an isomorphism of Q°(M)-modules. The
bracket [£,n] for &,ne SecA(P) is defined in such a way that
(.70 =[(&",m’]. [The Lie algebruid of a principal bundle can also be
constructed in some other ways [161, [19]1].

The Lie algebra bundle g adjoint of A(P) is canonically isomorphic
to the Ad-associated Lie algebra bundle P x Gg (g denotes the right'!

Lie algebra of G) via T:chg——»g, (z,v) i——————)?(v), where

Zig——g , vi— [(A) (V] x:=nlz), (12)

is an isomorphism of Lie algebras, AZ:G » Py at » 2 Q (see (1&],

[1‘?])- Notice that
(za)"=’z‘oAdG(a), ze P, acG.

Let (P',n’',M,G’,+’) and (P,n,M,G,*) be two principal bundles (on
the same manifold I'[) and p:G'——» G — a homomorphism of Lie groups. By

a (u—)homomorphism of principal bundles
Fi (P, MG’ ') —— (Pyrt  M,G,4)

we shall mean a mapping Fi:P'—— P such  that  noF=n’ and
F(z-'a)=F(z)-ula)y, ze P'y, ae G’'. F determines a homomorphism of Lie
algebroids dF:A(P’) ——> A(P), [vlF—— [F*(v)] (SEE [16], [l‘?])-

5.2. The Lie algebroid of a principal bundle of repers. With a
vector bundle f we associate the Lie algebroid A(f), see 1.2. Of
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course, with f we can also associate the Lie algebroid A(Lf) of the
principal bundle Lf of repers of f. Both of them are isomorphic [Z23
which can be proved by considerably simpler means than those of

¥

K.Mackenzie [23]. We begin by giving some simple

5.2.1. Example. For the right Lie algebra T_d(GL(V)) of the Lie
i
group GL(V). V being any finite dimensional R-vector space, the
following linear bomomorphism

pv:T'.d(GL(V)) —_— EndV. v > (it » v(;/))_.

where wiGL(V) — V., ar—>s a '(w), is an isomorphism of Lie algebras
provided that EndV is equipped with the canonical Lie algebra
structure [11,12]:= 11012—12011. Of course, thanks to the fact that
GL(V) can be considered as an open suwbset of EndV, we have the
canonical identification c: Tid(GL(V)) -—E-) EndV. Then, Py =—id.

5.2.2. Now, we apply this idea to vector bundles. Let § be any
vector bundle over M with the typical fibre V and let Lf be the
GL(V)~principal bundle of all repers of f interpreted as linear
isomorphisms V ——g-y f e xe M. For a cross-section v e Secf, define

the C%° mapping
Delf Ve Ub—— U (2 (rw)). (13)
It is easy to see that, for £ € SecA(Lf) and v e Secf,
L) ) X s a(€’ (), ue (Lfy s

is a correctly defined C00 cross—section of f. By a simple calculation
we assert that
(i%) E 0N =L8 () + (o8 ) v, f € O°(M), which means that
,‘ez:Secf————» Secf is a covariant dif ferential operator, [Z3],
.. O
(:(Lj.iO)) if't :;5’5; -~ oL .
ot £ n IR 4
By (io)_.. .‘l‘,’Z can be interpreted as a C® cross—section of A(f) with
qe¥, =rel, see 1.2, and, by (ii°), SecA(Lf) —— SecA(f), & — L,
is a o°(M J—homomorphism. Therefore we see the existence and the

wniqueness of a homomorphism of vector bundles
Qf:A(Lf) — A(f)

such that @fof is the cross—section of A(f) correspoding to a
covariant differential operator .‘C”t. By (iiio), @f is a homomorphism  of



Lie algebroids. §f is defined by the formula:

éf([v])(v)=u(v(w~))), where ve T _(LF), ueLf.

5.2.3. Proposition. §>f is an isomorphism of transitive Lie
algebroids.

Proof. Look at the homomorphism of associated Atiyah sequences
indured by §f. By the SLemwna, it is clear that it suffices to see that
§::g-————-> Endf is an isomorphism of vector bundles (g being the
adjoint Lie algebra bundle of A(Lf)). For the pwpose, take xeM,
ue (L )‘x and notice the commutativity of the diagram

+

g —L%, End(f ) woaou '
| x | x
’aTg ;T I
T, (GL(V)) —L 5 End(V) a. m

5.3. Representations of principal bundles on vector bundles. Let f
be any fixed vector bundle over M, with a vector space V as a  typical
fibre. Denote by Lf the GL(V)-principal bundle of all repers

z:V—-—;—+ f'|x, xe M.

5.3.1. Definition. Let u:G —— GL(V) be a homomorphism of Lie
groups. By a p-representation of a principal bundle (P,n,M,G,') on f we
mean a p~homomorphism of principal bundles

F:P — Lf. (14)

5.3.2. Examples. (a). By the adjoint representation of P we mean
the AdG-repr'esentatim

AdP:P —— g, zr———»?,

where Z is defined by (12).

(b). The contragredient representation of (14) is
F P s L(FT), 20— (F) ™7,
(c). The symmetric product of (14) is

VEESP s LOVEE)s 20— VF(2).

5.4. Differential of a representation.

5.4.1. Definition. By the differential of a  representation
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F:P— Lf we mean the representation F':A(P) —— A(f) defined as the
superposition F*'= QfodF.

S5.4.2. Example. Consider a Lie group G as a G-principal bundle.
Its Lie algebroid A(G) (Dn a one—point manifold) can be canonically
identified with the right Lie algebra g of (G (see [19]) via the
isomorphism
p=p 1 AG) —> g, [vI— 0 (v),

where ©F denotes the canonical right—-invariant 1—form on G. Therefore
[v.wl=Cv,wi® ([-,-1° is the right Lie algebra structure on g). The
Atiyah sequence of A(G) equals

O—s g = g » O » O

(g is treated here as a vector bundle over a one-point manifold),
whereas the principal bundie Lg of repers of the vector bundle g is the
same as the Lie group GL(g) of all automorphisms of the vector space g.
Besides, the following two isomorphisms

i)
AGL(g)) = A(Lg) —2» Alg) =g  ®g = Endg,

AlLg) = A(GL(g)) = Tid(GL(g)) —f-)z-b Endg,
are identical (which is not difficult to pr‘ove). Also, after the
identifications A(G) =g and AGL(g)) = Tid(GL(g))_. the adjoint
representation AdG of the principal bundle G is simply the adjoint
representation of the Lie group G. Therefore d(AdG) = (AdG) xe"
Seeing the following commuting diagram

(Ad ), c
g ———— T, (GL{g)) = Endg
’ ~r P —
(2d,) ésl.-: & l)d
N
A(g) %  Endg

and recalling that (Co(AdG)*e)(v)(w)=[v,w]L (L-.-1" is the left Lie

algebra structure on g), we assert that, for v, we g,
, _ _ L
(AdG) (v)(w) = (AdG),‘e(v)(w) =—[v.wl
— R— —
=[v,w]l =0lv,wl —adA(G)(v)(w),

which means that (Ad )’ =ad -
G AG)
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5.4.3. Theorem. (a) (Adp)’=ad
(B) (FY)’ = (F))"
(c) (VEF)y = vi(F")

AP)

} for any representation (14).

We start with the following

5.4.4. Lemma. lLet w:UxV——-)pd[U] be a local trivialization of
a vector bundle f (with V as a typical fibre). For v e Secf, denote by
. -1 .
vw the function U s x+— w|x(vx) € V. Then the mapping

w:TU x EndV —» A(f)'u .

such that v_J(v,a)(V)=wlx(v(vw)+a(vw(x))) when veT U and aeEndV,

is an isomorphism of Lie algebroids.

Proof. It is immediate that w(v,a) is an f-vector with v as  the
anchor, which means that qoz—/;=pr1. First, we notice that ; is a
bijection such that ¥, T UxEndV — A(f’)'x is a linear
isomorphism. The fact that w'x is a monomorphism is clear. To see that
it is an epimorphism, take an arbitrary ! e A(f )'x and notice that the
element v/:((l(v)) -—q(l)(vw) of V depends only on the value of
ve Secf at x. Denote by a(u) the element where v is a cross—section
of f such that »(x) =w'x(u), ueV., Put a=(up— alu))e EndV. One
can trivially assert that w(g(l),a)=1. It remains to verify that
Sec t/_/ is a hbomomorphism of suitable Lie algebras. To this end, take
X, Ye2(U) and oy ne Q°W;iEnd(V)). For xeU and v € Secf, we have

Wo(x,o-),u”zow,n)llx(v)

= wlx(Xx,o“x)(wo(Y,n)(v)) - w‘x(Yxmx)(w'»(X,or)(v))

VXY )+ ) +o (Y (0 )+n (v ()

-yl Y (X ) +a(v )+ n X )+ (v (x) ))

wlx([X, Y]x(vw) + Xx(n) (vw(x)) =Y (o) (vw(x)) + [o'xmx](vw(x) ))

(wo([X: Y1, 24 (n) = £y (o) + [oyn])) (0)

(Joll(x,«),()',n)ll)x(u). o

Proof of theorem 5.4.3. (a): The case P=(G was considered in
Example 5.4.2. To prove (a) in all its generality, take an arbitrary
local trivialization ¢@e:UxG——F. ¢ determines a local
trivialization qu: TUxQ—— AP), (v,Ww) — [p (Vv,W)], of the Lie

algetroid A(P). (see [19]), especially, a local trivialization
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we = p::U XG—— g, (X W) t+—> «p':x(ex,w) « Of the vector bundle g.
Next, according to the Lemma above, we obtain a 1local trivialization
wiTUx Endg — Alg) of the Lie algebroid A(g). To prove that
(Adp)' ='adA(P)_. it is sufficient to show (taking accont of the
classical eguality (AdG)"—:adg) that two following diagrams commute

for any o :

AdP' adA(P)
A(FP) » Al(g) A(P) » A(g)
A — A —
TUxg idx(-}idc‘); TUxEndg TUxg jdx(—a%) » TUxEndg
AdG*e -f_.»

in which Ad_‘:g ———— T (GLg) = Endg (¢ as in Example 5.4.2). For

the puwrpose, take v e Secg, ve TxU, weg and notice that

w‘x=<0(x,e)A, whereas ;)‘oAdpoqo:UxG

» a is given by
BoAdPotp(x,a) =Dlp(x.a)”) = z")(qo(x,e)AoAdGa) = Adc(a“) (v, (x))
=p (x) (Ad_a).
) G
Therefore

(Ad,)" @™ (v,w) (1) =8 _ed(Ad, ) (Lp, (vs) D) (2)

I

ig([Adﬂ((p*(v,w))])(v) = wlx((AdPo«))*(v,w)(v))

wlx((v,w)(VoAdpolp)) = wlx(v(vw) +w(vwlix) oAdG(')))
= wlx(v(vw) +ps(AdG*w)(vw(x))) = wm(v(vw) —AdG’(w)(vw(x)))

= yolidx ~Ad ") (v,w) ().

Since pAo(O,vw)=v, we have, following the fact that ;pA is an
isonorphism of Lie algebroids, that

adA(moqu(v,w)(v) = [p(vew),vl

= IIqu(v_.w),gvo(O,v )1 = p? [(vaw)s (0,0 )]

W | x L'

= o (8 ,v(v )+ w,r (15 = v (viv ) —[wsr (015)
1x x Y ' I1x ' Y

i

Wlx(v(vw) —ads(w) (vw(x)))
= r;o (idx —adg)(v,w)(v).

(b): Consider the identical representation idlf:Lf'—-——bLf'. of

course, Qf:A(Lf') — 3 A(f) is its differential. First, we notice that
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(1) F° =id:foF.-
(2) 7" =id:(f)o1‘ for any representation T:A— A(f), in
particular, (F')h=id:(f)°(F')5
N A .
(3) (Ide ) (zdl_f) or, equivalently,
. A _ A
1d.4<f>°§f_§f" d(ldzf)'
(1) and (2) follow directly from the definitions.

(3): Let pe Secf*, v e Secf, ue (Lf)lx and v e Tu(Lf)- Then

. . A
<\§f,od(1de)(EV])(qo),vx}

I

W ud ) (@, >

X

Il

~ &y ~
. of p
Lvip Jd”),v(u)
On the other hand (for n:Lf —— M being the projection),

;A .
<( fdA(f)oif([v]) o) L

m_(v)ipvr—<p & ([Lv])v>
X x f .
= v((.:qo_..v}orr)—'-iqoxou,v(;)}-

) ) ~ R~
To end the proof of (3}, notice that ';.(p,v}on:ﬂqoozde,v} and apply the
Leibniz formula for v<$)o1‘d:‘f,5>.
From (1)+(3) above we obtain

i
A

LI . LI wAdlid o - oF o
(F™)r =8 od(F") = @ odlid] oF) = id, o3 cdF

=id oF' = (F)".
A
(c): First, we notice that
(1) VF = (Vid, ) oF,
(2) VkT=(Vk1'dA( ))oT for any representation T:4 —— A(f), in
particular, V¥(F') = (VkidA(f))o(F’) .
(3) Vk(idl'f) = (Vkid”)', or equivalently,

k. _ VK
(v ld,”,“@f =3 kf d(¥ 1d”)-

V'
(1) and (2) follow directly by the definitions.

(X): Let viGSecf, ue (Lf)|x, ve Tu(Lf)- Then

&

K, .
fod(V 1d”)([v])(v1v...vvk)

vk
k. ~

= twv...vuf (Vv Jde)*(V)(Viv---VVk) )

= uv...vu(V((viv...vvk)NovkidLf))

= uV...vu(v(ﬁ V..l )}
1 k
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i

uv...vu(L 'Nﬁ( u)v...vv(;i‘)v...v;k(u))
L

:,:vixv...vu(v(vt))v...vvkx)

il

’Fvixv. ..vIdA(f)OQF([V])VLV-- 'vvkx)

k.
(v ldA(f))°§f([V])(v1v...vvk).
From (1)+(3) above we obtain
k ’ = ] k = o k' -3 = -] oF o
(V' F) éka aiy ' F) Q\)ﬂ: daq(y ld”) F) @ka dacy 1d”) ar
= (V¥id )e® odF =(VEid ) eF ' =V(F). =
Lf f Lf

5.4.5. Problem. Prove part (a) of the above theorem immediately

without using this fact for a single Lie group.

5.9. Invariant cross—sections.

5.5.1. Definition. Let (14) be any representation of a principal
bundle P on f. A cross—section v € Secf will be called invariant (or,
more precisely, F—invariant) if there exists a vector vel suwh that
F{z){(v)=v__ for all zeP (equivalently, if the function voF  is
caonstant, where v is defined by (13)). Denote by (Secf)l(n the space
of all invariant (with respect to F) cross—sections of f.

5.5.2. Proposition. Let (14) be a p-representation of P on f.
Denote by Vz the subspace of V of u-invarisnt vectors ( see [‘9,p.3‘?]).
Then, for ve Vz’ the function

VV:M—-——>f, Xb— F{2)(V),
where z € P|x, is a correctly def ined C® cross-section of f. and
V — (Secf) s Vi— U,
1 r v
Is an isomorphism of veclor spaces. m

5.5.3. Proposition. The spaces of invariant cross—sections
(Secf)l(n and (Secf')lo(r,) under a representation F:P— Lf and its
dif ferential F': A(P) —— A(f) are related by

(a) (Secf), . < (Secf) o . »

(b) if P is connected (nothing is assumed about the connectedness
of G!), then (Secf)”n=(5ecf) o

1Py
Proof. (a). Let v e (Secf)”n; this means that voF is constant.
Thus, for [wle A(P)'x, we TZP, we have
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F'(lwl)(v) = QfodF(EWJ)(v)

if[F*(w)](v) = F(z)(F*(w)(v))
=.F(z)(w(veF)) = O.

(b). Let ue(Secf)l.,(r,); this means that F'(v)(»)=0 for

all ve A(P). Let we TZP, then
WDeF) = F, (W) (¥) =F(2) 7 (@ (IF, (WD)
=F(2)™'F"(twl) (v) =0.

From the assumption about the connectedness of P it follows that voF is
constant. m

S.6. The Cherm-Weil homomorphism. Consider the representation
Ad::G——-b GI_.(ng*) induced ty AdG an the k—symmetric power of the dual
vector space g*. According to 5.3.2(b)(c), AdP:P——b Lg determines the
Ad:~represa1tatim Ad:(:= ded:):P——-b L(ng*). 5.4.3 yields that the

. . VI s _yvk_ = . ke *.
differential of Adp is equal to adA(P)(.—-V adA(P)).A(P) — A(V'g );

therefore Propositions 5.5.2 and 35.5.3 give rise to a monomorphism of

vector spaces

v:(ng*)l D —— (Sechg*)lo_. Wh—— v

W
where vw(x)zvk(fz\-i)*(w), xeM, z€ P'x_.. and next, assert that ¢ is

an isomorphism if P is comnected.

5.6.1. Theorem. (cf. (171, [(191). The Chern-Weil homomorphism hr
of P and h,«n of A(P) are related by the following commutative diagram

k&% (SecV*g") o
1 \h’
ACP)
v /HdR(M)
=
(Vg*)l d .

Proof. To see this, we only need to observe the equality

* 1 ) 1, )
—_— . = e W O QU 15
n (k ! <vw,va.. va}) I Wy v (13)

where (1 and Qb are, respectively: the curvatuwre form of some connection
Hc TP in P and the curvature tensor of the corresponding connection A
in the Lie algebroid A(P) (le= (n? )_1[Im>\mz], ze P, where

|2
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TP ——s A(P) 1is the canonical projectim). Both sides of (13) are
horizontal forms, so we must notice the equality on the borizontal
vectors only. Let A:TM ——— A(P) be any connection in A(P) and let
vie TzP denote the horizontal lifting of ve TnzM . By the relationship
between 0, and Q,

Q (x3vaw) = Q(Q(z,vawz)), zeP , vowel M,
b 3¢ x

we have, for we (ng*)l, zeP and v e TnzM,

* o1 N f e ,Z =
n (;—| {vw,ﬂbv...vﬂb.f)(Z,ViA...szk)

‘|v...vﬂb(x;v )

AV J
o1 o(2)

ok, At ¥ 1
—.—-Q(V (z ) )(W)’T ngno'-ﬂb(x,v ozk-1""" a2k
o

2

)v...v(/z‘:‘i)ﬂb(x;\/ )>

AV AV
o) o2 o{2k—1) o2k

-—-<w,-1—--zsgn 0'-(/2\—1)0 (x3v
k! 2k b

z z z z
v )v...vﬂ(z;v >

1+ . 1
T e * % s * O’.Q - v P
k! \w’zk Lsgn (z’vom'\ o2 czk-1" " gzk

o

i . z z
= -l:—!-'*(W,QV...VQ.}(Z;ViA...szk). [

95.6.2. Remark. In [19] it is proved that the Chern-Weil
homomorphism of a principal bundle is an  invariant of the so—called
“local isomorphisms" between  principal bundles, fulfilling an
additional condition (the Ch— pmperty) which 1is satisfied, for
example, in the case of principal bundles with connected structuwre Lie
groups. By 5.6.1 above, we can assert more, namely, that the Cherm—eil
homomorphism of a principal bundle is a characteristic featuwre of the
Lie algebroid of this bundle provided only that it is conected. In
consequence, the Chern—Weil bomomorphism of a principal bundle is an
invariant of all local isomorphisms  between connected principal

bndles. More precisely, we have:

5.6.3. Proposition. Let H:P'—— P be a local homomorphism of
principal bundles (see [161, [19]). Assume that P’ is connected. Then,
for an arbitrary partial homomorphism F:P’ DDF————» P belonging to §
and the corresponding local homomorphism p:G’ DDM — G of Lie
groups, we have

(1 Ve "[(Ve™) T« g™y and Ved “i¥g™) — (Vg s
independent of the choice of Fe'§,

(2) the diagram
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(Vg*)l
Vidu)™ H. (M)
(Vg' )
commutes.

Proof. Let dJ8:A(P') —— A(P) be the homomorphism of Lie
algebroids induced by §. By functoriality property 4.2.2, we obtain the

commutative diagram

h
¥
[x v k%o Kk *. hA(P) 1
(Vg ), — & (SecV' g )Ia —_— HdR(M)
l(d3)+:¥
* v’ k0 k * hA(P')
(Vg '’ )1 = & (SecV g’ ) o — HdR(M).

| J

To end the proof, it is enough to check that
- *
V(dJJ)*':-v' 1o(dﬁ)+ ov. Let F be an arbitrary partial homomorphism

belonging to J. Take xe Ur and ze Pl'x. By the obvious equality
F(Z)Aodu=dFTxo’z\, we have the commatative diagram
1

k ~— *
Vg™ Vo (F(z) ) | Ve g®

-

Ve ™ Vk(dFTx)

ng'* ) > Y g""F .

| x

Notice also that (d3+)*(r)x=vk(dFTx)*(l"x), and  that
uw(x) =Vk(F(z)A—1)*(w). The result is now trivial:

kAX

pTHUEE Y (1 ) = VTV )T V) ) = Vi T 0 - .
5.7. Remarks on the tangential Cherm—Weil homomorphism. Let P be a

conected H-principal bundle on a manifold M, and F<TM a c® constant

dimensional involutive distribution. Let & denote the foliation of M
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determined by F. We recall that the transitive Lie algebroid A(P) and
the distribution F give rise to a regular Lie algebroid over (M,F)
equalling A(P) :=2 " [F1<c A(P), see 1.1.3.

By the tangential Chern-Weil homomorphism of P over the foliated
manifold (M,F) we mean the Chern—Weil bomomorphism

K Kk *
h,«p#"@ (SecV g )Io cad

A(mn-——-» HF(M)

of the regular Lie algebroid ap* (g is the Lie algebra bundle adjoint
of A(P)).

hA(ml“ measures the nonexistence of a partial (over F) flat
conection in P

In the case of P equalling to the G-principal bundle I_.Gf' of
G-repers of some G-vector bundle f (G<GL(n,R), n=rank f)s the
tangential Chern—Weil homomorphism measuress the nonexistence  of
(suitable) flat partial covariant derivatives.

Notice that the superposition

h

F
< e (SecV¥g™) . —Z s H ()

* .k k *

ad

(in which A:= A(LGf')) agree for G=GL(n,R) with the homomorphism
obtained by Moore and Schochet [28] to investigate vector bundles over
foliated manifolds. However, the domain of ow  homomorphism hAF
contains, in general, more elements.

To further consideration of the matter, the author will devote an

individual papet.

In the end, we add that the generalization of the Bott WVanishing

Theorem from [14] can be formulated in our language as follows:

Let {F,F'} (F'<cF<TM) be a flag of foliations on M. If F=F'ef,
then Pontk(A(f)r) =0 for k=2-rank f.

This theorem follows easily from the existence of a flat partial

covariant derivative in f over F.
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6. THE LIE ALGEBROID OF A TC-FOLIATION

6.1. TC-foliations. Basic properties [261, [27]. A foliation (M,F)
is said to be {ransversally completel TC-foliation for short] (see
F.Molino [26], [27]) if, at each point xe M, the family LC(M,W) of
complete global ( #-)foliate vector fields generates the entire tangent
space TXM.

For an arbitrary TC—foliation, we adopt the following notations:

f’b — the basic foliation,

E, Eb - the vector bundles tangent to & and f‘b, respectively,

Lx, be - the leaves of & and 3‘b, respectively, passing
through xe M,

riQ—— M (Q=TM/E) - the transverse bundle,

rtb:M————» W — the basic fibration,

a:TM ——— Q — the canonical projection,

X: =asX — the cross—section of { corresponding to a (local)
vector field X on M,

I(M,7) — the Lie algebra (and the O°(W)-module, as well) of

transverse fields.

Recall that by a transverse field we mean a cross-section [ € Sec{)
such that, in any simple distinguished open set U equipped with
distinguished local coordinates (D (p=dinF,

g=codim¥), { is of the form C=}:bj'i-—j for the functions b
T ey

constant on the plagues. If [ =X, then £ e l(M,F) if and anly if
Xe L(M,ZF).

Besides, the foliation 3‘“b is simple and defined by a locally
trivial basic fibration nb:M——-> W with a Hausdorff manifold W.

A fundamental role in the construction of the Lie algebroid of
(M,F) is played by the following properties:

b.1.1. If C,ve l(M,F) and, for some xeM, [(x)=v(x), then
{(y)=vly) forall yel, .

6.1.2. Every foliate vector field X projects onto W, giving a
vector field Xw , and the homomorphism of Lie algebras L(M,F)——— X(W),
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Xv+—— X , [faclorizes to a homomorphism of Lie algebras

Y UM,F) — X(W), X —> Xw' The following equality holds:

[X,fom, Y1 =For -LX,Y1+X (F)-Y, Feq®W), X,YeLOF).

6.2. Construction of the Lie algebroid of a TC—foliation. Let
(M,#) be an arbitrary TC—foliation. In the transverse bundle r:Q ——— M
of (M,F) we introduce the eguivalence relation " = " as follows :

For v, we Q we put
VRW & {nb(r{?) =nb(n7) and 3 (L (rv)y =V and C(n7)=ﬁ)}.
Lel(M,F)
6.1.1 makes the following lemma obvious.
6.2.1. Lenma. Take x and y lying on the same leaf of the basic
foliation ?‘b. Then, for each vector ve Q|x, ere exists exactly one

vector w e Q|y such that vxw. The correspondence Vi Ww establishes

a linear isomorphism O(i:le——-—) Qly’ see figure 1. =

ai = (Vi— W)
/l >~

(tsomorphism) /

W

i P
o7,

v=0(x), w={(y), { € {M,F).

Figure 1.

Clearly, two vectors v, we ) are in the equivalence relation & if

~

and only if they corresponds to each other via one of the isomorphisms
a::. In the sequel, [v] denotes the equivalence class of Vv and
A(M,F): =Q/x denotes the set of all eqguivalence classes (with the

quotient topology) and
r:A(M,7) —— W, [V]E_—"nb(ﬁ)’

the projection.

Each fibre A(M,(f’)p_c:= ?-1(;), x < W, possesses a structure of a
vector space, defined uniquely by demanding that for each xe n:‘(;)
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the canonical bijection le:le——» A(M,?'")D_{, Vi—— [V], be a linear
isomorphism. The family (?Ix , xe M, determines the canonical
projection 3:Q —— A(M,¥) being a homomorphism of vector bundles over
the basic fibration n, . We equip A(M,%) with a structure of a %
manifold as follows: For any x e W, we find (as a consequence of 6.1.1)
its open neighbourbhood U and transverse fields Ci,...,(qe HM,F) which

are linearly independent on U: =n;1[5], and we put

plU x RY 2_’-1 (Ul <A

— i -1, —
{x,a) l———»[}L:aC,Lx], xemn, (x).

¢ 1s a bijection such that go’_(:[Rq-———y A(M,?’)D_( is an isomorphism of
vector spaces. It is easy to see that F—i[U] is open and ¢ 1is a
hemeomorphism, see the following diagram:

Ux RY = r'[U1 cQ (x,@+—Lal,

lnbxid lﬁ’ '

Ux RY £ FYUU1 ¢ AM,7) .

In A(M,F) there is exactly one ¢c® manifold structure (compatible with
the topology) for which the p’'s are diffeomorphisms. To see this, we
must only notice that, for another o’ (defined on U'xR? wvia
(;,...,C;e HUM,F) ), go'_ioep is c®. Cl‘early, for a point xo.e uny’
there exists its neighbourhood U” cUnU’ and functions F: e O° (W)
such that Ct=§:fionb-(;3 on U: =nb1[U"]- Therefore we have
ptep(X,a) = (X (LA (X),... . LaFlx))), xeU”, aeRY,
P i
which proves the smoothness of o' top. Ofcourse, FrA(M,F) —— W is c®
and (A(M,F),r,W) is a vector bundle with ¢'s as local trivializations.
The mapping

v AM,F) — TV, [V]»—-—-—-»nb*(v),

is a correctly defined epimorphism of vector bundles.

6.2.2. Proposition. (1) A cross-section [ € SecQ) is a transverse
field if and only if there exists a cross—section & € SecA(M,¥) such

that the following diagram
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Q —I— 5 A
b

M ——— W

commutes. Such a ¥ is at most one.

(2) The correspondence { +——— ¢ establishes an isomorphism of
Q% (W)—modules

c: (M, F) —— SecA(M,F),

Proof. (1): Necessity is evident.
Suf ficiency. Let [ € Sec) be a cross—section of Q for which there
exists ¢ € SecA(M,F) making diagram (16) commute. Equivalently,

L Y=
x x y

for any points x and y lying on the same leaf of f‘b. To prove that { is
a transverse field, we first observe that if (Xi,...,xp,yi,...,yq) are
distinguished local coordinates in U, then, for any points x and y

lying on the same plagque, we have 2 : - , i2qg. Indeed, (M,5)
ay‘[x ay‘ly
is 7C, therefore there exists a transverse field v e [(M,F) such that

v =i—_ . Locally on U, v=}:bk-:’-—- with the functions bk canstant
x 8Y"|x k d)’k
an plaques. Since bk(X) =<5"<, therefore bk(y) =cS',<; in  consequence,
L 1
vy= i_t| , 50, by the definition of the equivalence relation =, we
Iyiiy

have that S— a2

éylx 6)"}’

Passing to the proof of sufficiency, write locally ( =Zbk-i—k -
k Iy
Take x and y belcnging to one of the plagues. We have, by the above,

;;b(y) -—I =, =) =a (}:b (x)-2— 1 )

b Y Tix

2b (x)- a”(—— ) = )jb (x) |

¥ x v

Thus b (x) =b (y), Wthh confirms (1).

(2): ¢ is a monomorphism of Q°(W)-modules, as is easy to  check.
The surjectivity follows from (1) and the observation indicating that,
for a cross-section F € SecA(M,F), there exists a cross—section

[ € Sec)Q making diagram (16) commute. =

In SecA(M,¥) we introduce the bracket [-,-] (forming a Lie



algebra) by demanding that ¢ be an isomorphism of Lie algebras, i.e.
[c(g), el = (g 01, {,ve UM,F).

The system (A(M,F),[-,-1,y) is a transitive Lie algebruoid (over
the basic manifold W), which is clear from 4.1.2. It is called the Lije
algebroid of the TC-foliation (M,¥). Let g=Kery be the adjoint Lie
algebra bundle of A(M,F). We have the following isomorphism of short
exact sequences

O e 1T (M,F) ey (M, F) L X(W) —— O

;lc* = lc I

O — Secg e SecA(M,F) — X (W) — O .

6.3. Connections and the Chern—Weil homomorphism. Let (M,¥) be an
arbitrary 7C—foliation and (A(M,7),[-,-1,y) — its Lie algebroid. Notice
that, for any xe M, the isomorphism (?'x:le-——-—) A(M,fr“)b_‘ maps
Qi E.b'x Y
determines the so—called horizontal subbundle C":=Im\ < A(M,F) (i.e.
the condition A(M,5F) =9$CA thds), and next, the distribution

Cr<TM on the manifold M by C* :=a_1[ﬁ-i[CA_]], xe M.
| x |x fa¢ | x

/E'x onto 95 ;:=rzb(x). A conmection X in A(M,F)

6.3.1. Lemma. The correspondence XN p——p C  establishes a
bi jection between connections in A(M,¥) and distributions C<TM such
that

(1) Eme=E,

(2) Eb+E=TM,

(3) Elx= {X(x); Xe L(M,F) ﬁSecE} for each point xe M.

In particular, such a distribution C always exists (and is Cw).

Proof. " =» " Let E=C—A for some connection A.

= -1 -1 A - . _

(1): (EbnC)!x—alx[le[gli_nC“_(]] Ker ((3 a)|x) E|x'

— _ - -1 A = -1 CF § =

(2)'(Eb+C)|x—a|x[’?|x[9\§+c|§]] alx[{’ilx[A(M,&")l’_‘]] TXM.

(3): Let ve E'x. We have to find a foliate vector field X lying
in the distribution C and such that Xx= v. For the purpose, take
arbitrarily a cross—section ¥ € Sec(CA) such that E§=[C‘], and next,
the cross—section [ € Sec) defined by Cy={3;;(5_), ye n:(;'_), }_;e W.

y

{ is a transverse field, see Proposition 6.2.2. Let { = Y for a foliate
vector field Y. Then v-—Y GEI . Taking an arbitrary vector field
X X
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Xe%(F) such that X =v-Y , we obtain that X+YeL(M,%)NSecC
and (X+ Y)x= Va

" & "Let C<TM be any distribution an M satisfying (1) + (3).
There exists a subbundle CcA(M,F) such  that Cl)?=ﬁ|x°alx[€:l J
xXe n;l(;), xeW. To see this, we only need to show the correctness of
this formula, i.e. the independence of the right-band side of the
choice of a point xe rt;i(;). In order to get this, it is sufficient to
notiEe the inclusion B'xoalx_[Clx] cﬂlyoa'y[c'y] for x,ye nbi_(x). For
ve Clx and Xe L(M,F) NnSecC such that Xx=v, we  have Xye' C.y. Since
X is a transverse field, according to the definition of the eguivalence
relation & in , we have [V]=[)_{_y] € B|y°aly[6|y]' C is easily seen  to
be C00 and complementing g, thus, in consequence, determining soame
connection A for which the property c A =C is obvious by the

construwction. =

6.3.2. Definition. (a). A distribution CcTM fulfilling (1) <+ (3)
from Lemma &6.3.1 will be called a connection for the TC-foliation
(M,7).

(b). If E=EA for a connection X in A(M,¥F) and if © and Qb are
the comnection form and the curvature tensor of A, respectively, then
the tensors w e 0N (M:Q0*) and Qe QP (M:Q’) defined in such a way that
the following diagrams

T M T MxT M
x _ x x —
w Q
(23 X x
1%
QL
R T Tt .
QI X Ql x b* b¥ Q p.q
~ ~f At ~lnt
ﬁ"‘i= W =1B"‘ J Q. _ —lﬁ'x
A _ — g _ . TWxT W —2% , g _
| x | x X x | x

are commutative will be called the connection form and the cwrvatwre
form of the connection C, respectively.

w may be defined immediately in the following way: w{v) =V1
(=a(v1)) if v= v1+ v, is an arbitrary decomposition wsuch  that
v, € E b V€ C.

Lemma 6.3.3 below gives an independent definition of Q. Let C_c C

be any complement of E (i.e. 5=E€BCU). Of course, TI'I=Eb$Cu. Fut
H:TM —— TM as the projection onto the second component. H plays a
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role of the horizontal pro jection for c (although it is not  uniquely
determined by C), giving the equality

He(fBoct) = (Boc)oH
in which H is the horizontal projection for the conection A.

6.3.3. Lemma. (a) The vector fi
such a field,

(b) For Yi,Yze L{M, &) O(Yi,}'z) =—w([HoY1,HoY2]).

Proof. (a): Let Ye L(M,7). To prove that HoY is a foliate vector
field, it is sufficient to show that ao(go)’) is a transverse field.
Since

BelaeHoY) = HofloatoY = HofieY = (Hoc(¥))om, ,
theorem 6.2.2(1) yields our assertion.
(b): Let Yi,YzeL(I'I,C?“) and xe M. We have
- BTN S
Qx(Y ) = fi'x ofi'x(ﬁx(Yix,YZX))

-1
=0 x (Qbi(nb*yix’nb*})z’x))

13’ 2x

i
= (?Ix (Qb’_‘(}'b_‘(c()’i)’_‘),rp_‘(c(Yz)E)))
=3 (Qb(roc(Yl),yoc(Yz)),_()

| x

i

+—1 = —
—lew}.{(ﬂ?\oyoc(}’i),Koyoc(Yz)]l,_‘)
= - +-1 -] Y ] Y
= lew,_‘(lIH c(Yi),H c(Yz)Il,_c)
+
+

-1

w_(LetaoHoY ),claoHoY H)
X 1 2 x

X
-1

—le w,_‘(c([aoHoYi,aoHoYzl),_()

+-1 = =
—[?‘x w,_‘(c(ao[HoYl,HoYzl);)

+—q — -~
-8, wi(ﬂlxoa‘x([HoY1,HoY2]x))
=-w ([HeY ,HeY 1,). =
6.3.4. Proposition. The following condilions are equivalent:
(1) fib =0,
(2) =0,
(3) L(M,¥) nSecC is a Lie subalgebra of L(M,¥),
(4) the distribution C is completely integrable.

Proof. The equivalence (1) ¢ (2) is evident.
(2) » (3): Let Y, ¥, < L(M,F) A SecC. It is sufficient to prove



that [Y .Y e SecC (because L(M,F) is a Lie algebra). Using the
decomposition C=E®Cu , we write Yi.=xi,+Yli.u where X_LGSeCE and
Y_mGSecCu , 1=1,2. Then

[Y1’Yz] = [X1’Xz] + [Xi,YZUJ—[Xz,YmZ] + [Ym’YZu]'
ke have

(a) [X,,X,]e SecE (< SecC),

(b) [X1’qu]’ [Xz,Ym] € SecE because X eSecE and the vector
fields Ytu=YL_Xi.’ i=1,2, are foliate,

(c) [Yux’YZu] € SecC by lLemma 6.3.3(b) and the equalities
C=Kerw and [Yiu,Y2u]=[HoY1,H:Y2]. _

(3) = (4): Take Z1’ Zz € SecC, xe M, and put X=Ttb(X) eVW. Take
also cross—sections 81,...,Eq € SecC being a local basis of the vector
bdle C on a neighbowbood W' <cW of x. The cross—sections
Ci,...,quSecQ for which the equalities Bn(i=fionb », i<q, hold
exist and are linearly independent transverse fields (see Proposition
6.2.2). Besides, any vector fields Xi. representing C,L are (by the
definition of 5) from SecC and linearly independent on  W'': =n;1[h"].
Adding any vector fields Xq+ ,...,Xq+pe SecE forming a local basis of

1

E on some neighbourtood U of x, we obtain a system (Xi,...,XQ+p) of
foliate vector fields being a 1local basis of C on UnW”. Let

id =za;i-x', i=1,2 (a_jeQO(Uf‘lW")). Then, an UNW"”, we have
U S i
= i.gk. i, kyy —oX.v (a)- ol
£z,.2.1 j}’:k(ai a [Xj,Xk] +a Xj(az) X, —a, X (@) XJ.) € SecC

according to assumption (3).
{4) = (2) — trivial by Lemma 6.3.3(b). m

As a consequence of the above proposition and Corollary 4.3.2 we
obtain the aim of this chapter:

6.3.5. Theorem. (The geometric signification of the Chern-Weil
homomorphism for TC-foliations). If the Chern-Weil homomorphism of the
Lie algebroid A(M,¥) of a TC-foliation (M,¥) is nontrivial, then there
exists no completely integrable distribution C on the manifold M
satisf ying conditions (1) + (3) from Lemma 6.3.1. =

In chapter 7 we describe a wide class of TC—foliations for which

there exists no caompletely integrable connection c.



7. THE LIE ALGEBROID OF A NONCLOSED CONNECTED LIE SUBGROUP.

7.1. Dense comected Lie subgroups and the Malcev Theorem [71,
(251, [32]. Let H< T be a conmnected and dense Lie subgroup of a Lie
goup T and let F={{H; te T} be the foliation of left cosets of G by
H. E, as usual, denotes the tangent bundle to ¥, whereas H and t  the
(left) Lie algebras of H and T, respectively. In the sequel, R, is the
tangent mapping to the right translation by (.

7.1.1. Lemma. If t=HeK for some linear subspace Kcb©, then,
for each te T,

Eu OR“QEK] =

Proof. Let ve EutﬁRtle[K]' Then, v is the value at ¢ of the
right—invariant vector field Yw generated by some vector we K. Since
Yw is an (&-)foliate vector field belonging to the distribution £ at ¢,
it belongs to £ for each point of the closure (tH)CL of the leaf t{ of
F through ¢; however, (tH)°L=T, therefore w=Yw(e)€E'eﬁK=O; in
consequence, v=0. &

7.1.2. Lemma. Every foliate vector field Ye L(T,¥) is of the form
Y=X+Y for the uniquely determined vector field Xe2(¥F) (i.e.
tangent to ¥) and vector we K.

Proof. fis a corollary from 7.1.1, we see that the system
{le,...,?wq} of transverse fields, where (wi,...,wq) is a basis of K,
forms a transverse parallelism on (T,¥). Therefore any vector field
Y e X(T) is of the form ¥ = X+):;f’ Y, where Xe(¥) and e a®(6).
Now, let Y be foliate. Then f“ are cmstant. Indeed, for an arbitrarily
taken vector field X' € X(#), we have: [X',Y]1 € ¥(F). However,

[X,Y] = [X',X]+Efj-[X',Y,,j]+)3X’(f’)-ij ,
J )
therefore E£X° (rhyy, which implies that X'(f')=0. The free
choice of X' gives thE result: f" are F-basic functions, i.e. in our

situation, fJ are constant; fJ=bJe[R. In the end, we assert that
Y=X+Y for w=):bj-w,. =

7.1.3. Proposition. If H is a connected and dense Lie subgroup of
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a Lie group T, then:

(i) H is a normal subgroup of T,

(ii) each lef t—invariant vector field Xw s Wet, I foliate, and
XV=X+YW for some Xe X(F),

(iii) T/H is abelian.

Proof. (i) and (iii) follow from the Malcev Theorem [71, [251.
[32]. Here we give new, "foliated proofs" of these facts.

(i): Eguivalently, we need to notice that b is invariant under the
isomorphisms Ad(t), teT. Let teT and ue H. Fut w:i=Ad(t)(uw); then
Elt 3Lt(u) =R, (w) (Lt denotes here the tangent mapping to the left
translation by t)_. s0 the foliate vector field Yw is tangent to & at ¢,
which implies that w=Yw(e) € E'G =b.

(ii): The module X(¥F) is generated by the left-invariant vector
fields Xu_. ue b, therefore we need only to check that [Xu_.Xw] e X(F)
for wet and ue H. But, by virtue of (i), b is an ideal in t, thus
[u,wl’ € b, which gives [X.X 1=X,  , €®(F). The secand part
follows from the observation that X=Xw - Yw is foliate and
X(e)=0¢ E'Q.

(iii): T/H is connected, thus it is sufficient to show that t/B is
abelian. Let u, we t. On account of (ii), we have:

[uawl” = [X X Ie) = [X+Y ,X 1e) = [X,X He)eb. m
w W o w w

7.2. A structure of the Lie algebra bundle, adjoint of the Lie
algebroid A(G;H). Here, we give a more detailed description of the Lie
algebroid A(G3;H) of the foliation F={aH;ae G} of a conected Lie
group G by left cosets of a conected and nonclosed (in general)- Lie
subgroup H< G. [ The fact that & is TC follows from the observation
that all right-invariant vector fields are foliate and generate the
entire tangent space TgG for each ge G]. A(G;H) is called the Lie
algebroid of a connected Lie subgroup H. Denote by b and g the Lie
algebras of H and G, respectively. In the sequel, Yw and Xw stand for
the right-invariant and left-invariant vector fields aon G,
respectively, generated by the vector we g.

Assume that Tc G  is the closure of H. Then Fo ={glsge G} is
the basic foliation and the projection nb:G-———> G/T is the basic
fibration.

7.2.1. Lemma. The isomorphism Rﬂg:TgG——) Tth, teT, gegG,
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maps E‘g onto E‘g thus Induces an isomorphism §“£:Q —Q

t? ig gt *
and, furthermore, the right free action ReQx T e (0,

(Vs t) .---»z?t(\?).

Proof. Since Adt[b]cb for teT, E|t=Lt|e[b]=Rt|e[b]' Thus
for ge G,

R“g[E'g] = Rt|g[l“g19[b]] = Lgﬂ[Rtle[b]] = Lgut[EwJ = E|gt

Clearly, R is a right smooth free action. m

7.2.2. lLemma. (a). For a cross—section [ € S5ec{), we have:

{ € (G,¥F) if and only if, for any ge G and teT,
gty = §t(C(g)), (17)

in other words, if and only if { is T-right-invariant (with respect to
the action ff).

{b). For v, we (@,
vaxiwe 3tel, ;7=§£(\7),

e. Vx W If and only if they belong to the same orbit of the action

x|

Proof. (a). " =2 " Let { € {M,¥) and g€ . Then there exists a
vector we g such that £ (g) =i"w(g). According to 6.1.1, { and fw agree
on the leaf g7 of 3"b. So, for teT,

Lgt =Y (gt)=R,(Y (g) =R, (L(g).
" &« " Let [ € Sec satisfy (17). Take vectors wi,...,wqeg in such a
way that transverse fields Ywi,...,}’wq form a base of _Q over some
\?“b—samrated open subset Uc G containing g. Then { =Zf"f”t for some
f* «0®(W). Therefore, property (17) of { and of ¥, yields that, for
geUand teT, [(gh=Lf (gt)¥,  (gt) and, simultanecusly,
B

Ligh) =R, (g =R, (Lf (T, ()
L
=Lf (g R, (Y, (g) =%:f‘(g)-Yw.L(gt).
These give fi'(gt) =f.‘(g), which means that fL are f‘u—basic functions.
The assertion follows now trivially (namely, the coefficients with
respect to any distinguished local coordinates after multiplying them

by basic functions remain constant on plaques).

(b). " = " Results from (a).



"e"let Vv, We and let W=I_?_t(\7) for some teT7T. Clearly,
V= Yu(g) for a vector ueg where g=r(V). So, since wWe( and
€

— —_ - 1g¢
UG,7) and l7=Rt(V)=Rt(Yu(g))=Yu(gt), we assert that vxiw. =

7.2.3. Remark. The above two lemmnas enable us to define the Lie
algebroid A{G;H) immediately as the space of orbits of the action R.
Such a principle is adopted by the author in [Z20].

By the same reasoning as in 7.1.3(ii), we assert that each

left-invariant vector field Xw .« wet, is foliate.

7.2.4. Proposition. The Lie algebra bundle g of the transitive Lie
algebroid A(G3H) of & is a trivial bundle of abelian Lie algebras, with
the global trivialization

G/T x t/ —— g

(X2 Tw1) — (X N0, (18)

Proof. Since

le(w) . (12)

g e X W L

¥e big" g

is an isomorphism, we see that t/D —— Ql’g, [w] —> )?w(g), is also an
isomorphism. Hence — mapping (18) (whose correctness of the definition
is easy to check) is an isomorphism of vector bundles. To verify that
g|x is abelian, take u s u, € qx. By the above, there exist W, and W,

belonging to t such that ut=(c()_(.w))(x) for i=1, 2. So, we have
[u w1 = [e(X, ) (x0),e(X, )01 = LeX,, 1se(X, )1 ()

= cllX, X, D) =c(X Jx) =0

L
gawp)

(because the relation w:= [wi,wz]L € b implies X € SecE). m

7.3. Comnections in A(G:H).

7.3.1. Proposition. Any distribution C <TG is a connection for
the TC-foliation ¥ [see Def.6.3.2] if and only if it is c®, satisfies
(1) and (2) from Lemma 6.3.1, and

(3") C is T-right-invariant, i.e. C_lg

t=Rt[Clg]’ geG, teT.

Proof. " = " Let C fulfil conditions (1)+(3) from Lemma 6.3.1 and
take v e 5|g. By condition (3), v=X(g) for some Xe L(G,¥)nSecC.
Since X € (G,#), 7.2.2(a) shows that
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X(gt) = X{gty =R (X(g)) =R (V) =R, (v) ,

which vyields Rz(V) -Xlgl) e Eigt' Condition (1) and the relation
XeSecC- give now Ri(v)eC .. S0, RIC 1cC .. therefore the
H 19t ¢ g gt —
equality of the dimensions gives the examined T-right—invariance of C.
" & " dssume that C < 76 is a C* distribution satisfying (1) and
(2) from Lemma 6.3.1 and (3') above. For each point x € G/T, we define

- -~ 1
C'x : ﬂ'g[alg[Clg]], gen, (x).

{(37)y 7.2.1 and 7.2.2(b) imply the correctness of this definition: for
teT and ge G, wa have

Blge[azge[qg

A1 = Blgt[algt[Rtlg[C]g]]]

= ﬁlgt[Rt}g[aig'[Clg]]] = ﬁzg[aig[clg]]-

Put C = Uxea/r Clch(G;H). It is a standard calculation to prove
that C is a Coo subbundle of A(G3H). By assumptions (1) and (2) , C is a
horizontal subbundle of A(G3H) [i.e. C+g=T(G/T) ad Cng=0
hold], therefore it is determined by some connection A. Clearly, C=C

(see 6.3). Thereby, (3) is satisfied according to Lemma 6.3.1. m

7.4. The Cherm—Weil homomorphism of A(G;H). Notice that the
situation when H=T or T= is not interesting from ow point of view
because then, in the first case, the Lie algebroid A(G3;H) is  trivial,
A(G;H) —-g—-——) T(G/T), which implies g=0 and, in consequence,

(hmc-u ))+=O; in the second case, the basic manifold W is one-point,
s0 also (h,«aw ))*‘—‘0. Therefore we can consider the case H=T#0
only.

The Proposition 7.2.4 sets up a global trivialization
oig ——s G/T xt/6 (20)

therefore any cross—section v e Secg determines  some t/H—valued
function »:G/T m—s /6, namely D= pr,epev - falogously, via the
canonically induced global trivialization ng* =G/T x Vk(t/b)*, any
cross—section e Sec ng'# determines some Vk(t/lj)**-valued function
F2:G/T s Vk(t/b)* . et <, ~.';>:ng% x ng-—-——y [R be the canonical
duality [8]. It is easily seen that, for xeG/T and W, € t, i<k
(k=rank g=dimt—dim D),



<CaelX, IvevelX,, 0700 = <T(x), 00 Iv..ovlv, 15 (21)

7.4.1. Proposition. Let FeSechg*, then I' s Vkad:(ow)

—invariant [i.e. T e (Sechg*)I,] if and only if [ is constant.
Proof. " =» ". Let I’ be invariant. This means, in particular, that
(roclY NSCre(X,, Iv..velX,, )
= ?{F,C()?wi)v...vu:c( Fw),C(X—wj)nv...vc()_(wk)},

for we g, W< t; but EC(YV),C(XVj)D=c“_'w"—‘wj’=0’ =0

(7oc(7w))<F,c(7w1)v...vc().(—wk)> = 0.

The values of vector fields pocf( }—’—w), we g, generate at each point
xe G/T the entire tangent space TX(G/T); therefore the function
TaelX,, Iv...velX,, )7, thanks to the connectedness of G/T, is constant,
so0 the same holds for the function G/T » X +—— <I—"(X),[W1]v...v[wk]>.
Equivalently, I—-":G/T——bvk(t/b)* is constant.

" & " Assume now that [ is such that the function T is  constant.
Thus (21) implies the same for the function <:r,c(5('w1)v...vc()?wk)>,
wj e t. To prove the invariance of [, take arbitrarily cross—sections

v o€ Secg, i<h, and ¥ € SecA(G;H). They can be written as follows:

v, = nfle(X,) (glebally), ¢ =pg-c(f,) (locally),
3 J

for some 1, g'e Q°(G/T), w ety u € g. Therefore e =§;gj-yoc(§"uj)
J
and

_ e T S T 7
1z,v_ j%s[g Flletf, )ae(X,, = £y ec(X,, g el¥,)
+g]'?'oc(}.’_uj)(f;s)'c(f(—vjs)]

= T Frec¥ 0I5 clX, )
isig J S s
because poc(X, )=0 and [c(Y, ),c(X, W =c([Y¥, X, 1)=0. Next,
g J s 3T Wig
wa have

° <, = J. ° Y 4 ji' ¥ jk' X
(yo&) r'_viv vvk} j,ji,.z__,jkg Y C(Yuj)ﬂ_',fi C(ijl)v vfk C(ijk)>

= B rectT Ui £k e(X,, Iveve R, 1)

1 k

- Egj'}"’C(}-;uj)(fil.'“'fik).{r’C(i“’j )v...vc(xrwj )2
1 k
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- L pee T MEIS) Ikl (KL Ve ve (KL )
J'.s'.iy;..,ikg f1 v C(Yuj)(fs ) fk ¢ ,C(ij1) C(ijk)

= <r j" X RV g o '3 js . X jk' X
g £e®, v B roe T )20 B,y v E £ec R, 0>

= Z‘(r,uiv...vﬂf ,vsnv...vvk>,
s

which means that I' is Vad" _ —invariant. =

By the above proposition, the value of the function T at any point

xeG/T does not depend on x for e (Sechg*)I, . Denote it by I.
Clearly,

P * ‘ x ~
p:*8%(SecV'g") . — V(1/0)", T T,
is an isomorphism of algebras.

7.4.2. Theorem. The Chern-Weil homomorphism hA(G.”) of the Lie
algebroid A(G;H) makes the following diagram

h
k&% (SecV*g” ) o —=2E08 H(G/T)

X
Vit/en” — YT, ey
commute, in which Vj* is the monomorphism of algebras induced by the

canonical pro jection jit —— t/0, whereas hP:(Vt*)I——»HdR(G/T) is

the Chern—-Weil homomorphism of the T-principal bundle P = (G~ G/T).

Proof. First, we notice that ImVj'c (V") . Indeed, InVj"
= e Vt"; ¢ ['=0 for all we b}. Since b is an ideal in t and /b is
an abelian Lie algebra, see 7.1.3, therefore [u,wl* €® for all
Uy wet. Thus, for any ue b and e Ikaj*, we have

j))::l{l:,wiv...v[u,wj]Lv...vwk> = 0, W, € t,
which means [because 7 is connected] the AdT—i;lvariance of T. That V _]"‘F
is a monomorphism follows from the fact that j is a monomorphic (see
(8, p-1081).

By the independence of hP(I:‘) and h (') on the choice of a
comnection, we may set an arbitrary connection CucTG in the principal
bundle P. Then 5:=E$Cu is a cannection in TG for # because C is a C%
distribution and requirements (1), (2) and (3') from 7.3.1 are
satisfying: '

(1) Clearly, EcEﬂEb. TJo see the opposite inclusion, take
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arbitrarily veEﬂEband write vEv tv, for vieE, vzeC. of
144

course, the vector v2=v—vieCuﬁEb=O is  null. Therefore
v=vieE.

(2) C+E, =(E®C)+E >C ®E =TG (E, is the vertical

u b u b b

bundle of P).

(3') For telT and geG, we have, by 7.2.1 and the

T-right-invariance of C in P,
u

Rtlg[Clg] = Rtlg[Elg S Cu‘g] = Rtlg[Elg] & Rtlg[Culg]

= ElthCu!gi = Clgt.

Let wueo‘(s;t) be the connection form of C . Denote by
ViiG——s Eb the vertical projection. Since Ag:T——-)G, gr— gt, is
the restriction to T of the left translation by ¢, we have
y/gowug=l7lg » g€ G, where wg is defined By (19). fccording to the
definitions of the connection form w of C (Def. 6.3.2(b)) and of the

isomorphism ¢ of vector bundles (20), we obtain the commiting diagram:

wu
- TG g > 1
g
vV
lg Wg J
- o/
wg Eblg /5 (22)
al ©
g . | x
A ﬁ
\, ‘Q' Ig s '
"Fig T ¥ x

for ge G and x=m (g)-

Let Que QZ(G;t) and Qe QZ(G;Q') be the curvative forms of Cu and
of C—', respectively, while Qbe QZ(G/T;g) the curvature tensor of the
connection A in A(G:H) for which E=5A. Define auxiliarily the form
0° € Q% (G3t/H) by

O%(gsv av,) = qo|xof3:g(5(g;v1z\vz)),
x=nb(g) as above. We prove the equality
(e

0 = _pou. (Z3)

To this end, take v, vzeTgG and find foliate vector fields
Yi_. YzeL(G,3') such that Yt(g)=v.t, i=1, 2. By Lemma 6.3.3(b) and
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diagram (22), we assert that

(=] _ -+ poog .
Q (g,visz) = tp'xoﬁ‘g(ﬂ(g,v1z\vz))

‘0|x°ﬁ|g(—w(g;[H°Y1’H°Y2](g)))

—jow (gslHeY sHeY 1(g))

j(Qu(g;Visz)).
For l:e(th*)l, the class h (F) is represented by the form
eeoz"(G/T) whose m -lifting equals <0 v..v0 >, Let
--(V_] )(F) for T=p(I") where Fe(Sech )0 ;3 then we have

<r,0uv...vﬂu> = {F,Q v...vQ pn (24)

Indeed, using the fact that homomorphisms of algebras Vj* and Vj are
dual [8,p.108], we obtain, by (23), that for ge G and v, € TgG:

<F Qv v 2(g2v Aav_ )
u 144 1

2k
=z ESQDU.{ij*HF)’Qu(g;ch)Ava(z))v"'Vnu(givatzk—nAvc(zk))}
=-:—k§sgnd'<ﬁ,j(0u(g;vd(1)Avd<z)))v...vj(ﬂu(g;va(zk_” a(z)o”
=2k dz n°"<1:',Qo(g;vc(i)/\vc(z))v...on(g;vc(zk_“Avd(zk)»
=<0 ... }(g.VA AV k)
On the other hand, hA(G;”)(I") is represented by the form

f-l--<r,nbv...vnb>, see (11). Fut QZGOZ(G/T,t/b) as follows:

Q:(X;V1AVZ) = p|xmb(x-=‘71’“72))’ Vi’e TX(G/T).
We check that

o

Q= ﬂb(Qb) ’ (25)
P v = 2 O o .
\F,va...vﬂb} <F,va...vﬂb> . (26)
Seeing Def. 6.3.2 of the tensor 5_. we assert (29) trivially. Using the

duality between the homomor-phisms V«JTX and qulx of symmetric algebras,
we notice that, for xe G/T and GL_e Tx(G/T),

<I“,va...vnb>(x;v1/\...szk)

= ﬁrx,(va...va)(X;ViA...AVzk)>

* o) — _
<Vg0| X(I") ’ (va...vﬂb) (x,viA...szk)t«»

<F,V4plx( (va...vﬂb) (x;x?iA...szk) >
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= <f“,n:v...vr):>(x;\71A.. -A\72k) .

which confirms (26).

Now, we are able to prove our theorem: Taking " e (Sechg*)l., and
keeping the notations above, we assert, by (24) and (26), that the

cohomology classes hP(V_j*(p(F))) and h ”)(l“) are represented by the

AG;
forms  whose rrb—liftings are equal to :—l'<I“,Q°v...vQ°> and
* - :

nb(fT-ﬂT,O:v...vQ:}), respectively. But, these two last forms are

identical according to (25), which ends the proof. =
Here is the aim of this section:

7.4.3. Theorem. If G is any connected, compact and semisimple Lie
group and H< G is its arbitrary connected nonclosed Lie subgroup, then
the Chern—-Weil homomorphism hA(G;”) is nontrivial.

Proof. Let T be the closwe of H. T is, of course, compact.
Applying Th.XI from [10, Ch.IX, p.392] to the principal bundle
P=(G—— G/T), we get the equivalence of the conditions:

(1) the Chern—Weil homomorphism hp is mregular [understanding in
(Vt*)l the natural even gradation],

(2) H (G)=R and H, (G)=0, 1<p<mn.

Since G is compact and semisimple, it follows that H:R(G) =R,
H:R(G) =H:R(G) =0 [H:R(G) #0]. Combining  this  with the
above—mentioned theorem, we obtain that the Cherm—Weil homomorphism hp
is Z-regular, in particular, this yields that

(2) * 2
(hy) :(t )1——>HdR(G/T)
is an isomorphism. In view of Theorem 7.4.2, we get that

@2 -4 * * = 2
(hmo;m) op (/D) > (1 )l-————->HdR(G/T)

is a monomorphism. The assumption H#7T implies t/H =0, whence we

obtain that (h y? 20, and s0, h is nontrivial. m
AKG ;X)) AG;X)

7.4.4 Remark. Here is the more concrete example of a nonclosed Lie
subgroup: Let T be an arbitrary, not necessarily maximal, torus of G

and HcT any of its dense connected Lie subgroups.

7.4.5. Remark. Adding the simple comnectedness of G to  the

assumptions of Theorem 7.4.3, we get, according to Almeida—tblino’'s

Theorem, see [1], [27], some nonintegrable transitive Lie algebroid
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having the nontrivial Cherm—Weil homomorphism.

Therefore we can formulate the important

7.4:6. Corvllary. There exists a nonintegrable transilive Lie
algebroid having the nontrivial Chern-Weil homomorphism. =

Return to Theorem 7.4.3. As its consequence as well as that of
Theorem 6.3.5 and Frop.7.3.1 we obtain that, under the assumptions of
Theorem 7.4.3, there exists no completely integrable T-right—invariant
distribution C <TG such that C+E, =76 and CNE, =E.

Now, we give a simple situation 1i1n which such a completely
integrable distribution exists.

7.4.7. Example. Assume that the symbols G, H, T, ¥, g, b, t have
the same meaning as before. If there is a Lie subalgebra ccg suwch
that

(1) ¢+t = g,

(2)y cnt =1,
then the G-left—invariant distribution C determined by ¢ (i.e. the oane
tangent to the foliation {gF:ge G} where F is the conected Lie
subgroup with its Lie algebra equalling c) is a completely integrable
connection in 7G for . Indeed, it is clear that the conditions
EﬁEb=E and E+Eb=TG hold. Therefore it is enowgh to verify the
T—right—-invariamie of C only, i.e. the equality Rt[C|g]=C|g’ te7,
geG. lLet ve Clg" then v=Lg(w) for some vector wec. Since
Rt(v) =Rt(Lg(w)) =Lg(Rt(w)), we need observe that Rt(w) e Cu' Since
T is the closure of H, we have t=limhn, hneH. In virtue of the
Closedness of C, we obtain that the fact that the element Rt(W)
(equalling ZimRhn(w)) belongs to C follows from the relation
Rh[c] cCIh for heH which is evident by the relation rh[H]cH where
r, is the left translation by h.

As a simple corollary of 7.4.3 and 7.4.7 we obtain

7.4.8. Corollary. Under the assumptions of Theorem 7.4.3, no Lie
subalgebra ¢ <@ fulfilling (1), (2) from 7.4.7 exists.
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