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INTRODUCTION

The notion of a Lie algebroid, introduced by J.Pradines (221,
{23j, was invented in connection with studying differential groupoids.
Lie algebroids of differential groupoids correspond to Lie algebras of
Lie groups. They consist of vector bundles equipped with some algebraic
structures (R-Lie algebras in moduli of sections). Since each principal
fibre bundle (pfb for short) P determines a differential groupoid ( the
so-~called Lie groupoid P ' of Ehresmann), therefore each pfb P defines
- in an indirect manner -~ a Lie algebroid A(P). P.Libermann noticed
[12] that the vector bundle of this Lie algebroid A(P), P= P(M,G), is
canonically isomorphic to the vector bundle ng_ (investigated earlier
by M.Atiyah (2) in the context of the problem of the existence of a con-

nection in a complex pfb). The problem:
- How to define the structure of the Lie algebroid in Tg“; without

using Pradines® construction,
is systematically elaborated in this work (chapt. 1),
The Lie algebroid of a pfb can also be obtained in the third man-

ner as an associated vector bundle with some pfbe.
To sum up, three natural constiructions of the Lie algebroid A(P)
for a given pfb P= P(M,G) are made (chapters 1 and 2):

(1) A(P)= T%G,g the idea of this construction could be found in
M,Atiyah (21 and P.Libermann {123, see also (16}, {173, €191, £201.

(2) A(P)= A(PP™'):= the Lie algebroid of the Ehresmann Lie grou-
poid PP~!, see (31, (9], 122), {23},
(3) A(P)=W (P)xG1(ﬁ% “%q) where q= eﬂ(e) is the Lie algebra of

G defined by rightwinvarlant vector filelds, W (P) is the 1-st order
prolongation of P and G1 -~ the n-dim. 1-st order prolongation of G,

n=dinM, (4}, (71; via somm left action of G1 n.mnxq.
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In the theory of Lie groups it is well known that two Lie groups
are locally isomorphic if and only if (iff) their Lie algebras are
isomorphic. The question:

-What this problem looks like for pfb’s?

is answered in this work. A suitable notion of a local homomorphism
(and a local isomorphism) between pfb’s is found (chapt.3).

By a local homomorphism ( isomorphism J &:P(M,G) —-a»P'(M,G/)
we shall mean each family

9‘={(Fty}lt)r’ tGT‘\

of "partial homomorphisms" { isomorphisms 1 (Ft'“t)’P:DDt —s P”
provided some compatibility axioms are satisfied (def.3.1).

Every local homomorphism‘?’defines an homomorphism of the Lie al-
gebroids dF:A(P) — A(P7) (prop.3.2) and, conversely, every homomor-
phism of the Lie algebroids comes from some local homomorphism of the
pfb’s (th. 3.4).

Two pfb’s are locally isomorphic iff their Lie algebroids are iso-
morphic (th.3.5).

Some invariants of isomorphisms of pfb’s are invariants of local
isomorphisms so they are then de facto some notions of Lie algebroids.
For example:

(1) the Ad-associated Lie algebra bundle PX.q,

(2) the flatness (chapt. 4),

(3) the Chern-Weil homomorphism (for some local isomorphisms)
(chapt. 5).

One can ask the question:



- How much information about pfb T is carried by the associated
Lie algebra bundle PXG{?

It turns out that sometimes none:
- If G is abelian, then PXG¢ is trivial (see corollary 1.11),
and sometimes much, and most if G is semisimple:

~ Two pfb’s with semisimple structural Lie groups are locally
isomorphic iff their associated ILie algebra bundles are isomor-
phic (corollary 7.2.6).

Let A= (A, £+,+d,T) be an arbitrary Lie algebroid on a manifold
M. A connection in A, ie a splitting of Atiyah sequence

0 —¢(A) S A I, ™M — 0 where :{(A)= Ker 7,
A

determines a covariant derivative V in the Lie algebra bundlet[(A)
and a tensor S}MGSEZ(M;Q(A)) by the formulae:

(a) VX6= [%Xﬁn’

(b) .Q,M(X,Y)=) (X,Y] - 0AX, AYD (the curvature tensor of 2).

Now, let q be an arbitrary lLie algebra bundle, V - a covariant
derivative intu and SEMGEZ?(M;Q). The necessary and sufficient condi-
tions for the existence of a Lie algebroid which realizes (m;‘],S)M)
via some connection are (see chapt.6):

(1) RX,Y6°' [,QM(X,Y),Gl, R being the curvature tensor of V,

(2) VX["‘?]" [VXey'q] + (6, VX"]]a
(3) VR y=o0.



The results of chapter 6 are used to give a classification of Lie
algebroids in two cases (chapt.?):

(10) all flat Lie algebroids with abelian isotropy Lie algebras,
(20) all Lie algebroids with semisimple isotropy Lie algebras.

The second looks as follows (th. 7.2.3):

- For any Lie algebra bundle @ whose fibres are semisimple there
exists exactly one (up to an isomorphism) Lie algebroid A for
which ¢(A)= q.

In consequence, two arbitrary pfb’s with semisimple structural Lie
groups and isomorphic associated Lie algebra bundles have isomorphic
Lie algebroids, so they are then locally isomorphic.

- Are they globally isomorphic (in our sense, see p.15) provided
their structural Lie groups are, in addition, isomorphic ?

It turns out that they are not, even if these Lie groups are as-
sumed to be connected (ex. 8.3).

Some results contained in this work were obtained independently
by K.Mackenzie [141, but, in general, using different methods., This
concerns some parts of chapters 1, 4 and 6 only (in the text there
are more detailed references). The main results of this work /all
chap., 2, theorems 3.4, 3.5, 3.6, 5.2, 5.8, 7.1.1, 7.2.3, 8.1 and ex.
8.3 / are included in the remains chapters.



CHAPTER 1

LIE ALGEBROID A(P) OF A PRINCIPAL FIBRE BUNDLE P(M,G)

All the differential manifolds considered in the present paper
are assumed to be smooth (ie Cm) and Hausdorff.

Take any pfb
P = P(N,G)

with the projection X:P —» M and the action R:PXG —» P, and define
the action
RT:TPxG — TP, (v,a) r— (Ra)*v,
Ra being the right aetion of a on P. Denote by
ACP)

the space of all orbits of RT with the quotient topology. Let [v] de-
note the orbit through v and

JtA

:TP —e A(P), v > [v],
the natural projection. In the end, we define the projection
p:A(P) ~—» M, [] »>»xz, if veTZP.

For each point xeM, in the fibre p-1(x) there exists exactly
one vector space structure (over R) such that

[vl+ [wl= [v+w) 1if ‘R’P(v)r-TfP(w),
IP:TP — P being the projection.
A,
1(|Z.TZP — A(P)lxz’
is then an isomorphism of vector spaces, zé€P.
The pfb I(M,G) determines another pfd
TP( TM, TG )
with the projection F:TP — TM and the action

R*:TPXTG — TP
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[5). We can treat G as a closed Lie subgroup of TG (C}E{ja; a€G}, Ga
being the null tangent vector at a). The restriction of Ry to G is then
equal to RT t51. By (6], we see that the structure of a Hausdorff C®ma-
nifold, such that w4 is a submersion, exists in A(P) (this result is
obtained by K.Mackenzie ([14,p.282]1 in another way). We also obtain a pfb
TP(A(P),G) with the projection ®* and the action RT.

PROPOSITION 1.1, (cf [14,pp.282,283}). For each local trivialization

q:0xG — P of P(M,G), the mapping

(1) ?A:Tquj @pq[U.‘ICA(P), (v,w) > tg.(v,w)3,

is a diffeomorphism, where gq=TqG,

PROOF. It is easy to see that qA is a bijection. Besides, the following
diagram

R
ruxrg 2428, myxg

ce*l A l‘*A

P —X  A(P)
commutes where @R denotes the canonical right-invariant 1-form on G.
Indeed, if we put
A:=¢(+,e), and A,:G —» P, a > za, 2€P,

e being the unit of G, then we have, for xeU, veTxU, a€G and weTaG,

Thoqu (v, W)= [u(v,w)1= [9(+,a), (V) +q(x, ), ()}
(R 2D, (v) + (A 40y ()

[R5 (B D, (V) + (A1), ()]
[0+ (A9 (8w = g 4w, 8% (w))
et (1ax6™) (v, w).

L}

Because of the fact that KA and id%@R are submersions, we assert
that ?A and G?A)_1 are of the C®- class, O

REMARK 1.2. Using the bijections qA, we can define the differential
structure of A(P) in a more elementary manner then above as the one for
which qA are diffepmorphisms. For this purpose, we must only notice that,
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for arbitrary local trivializations q)i:UiXG —» P, i=1,2, we have:

() (@) "t ', 1np ' (U,11 s open in TU

91 P 1 Y 2 open 1n 1%{ ’
A-1 A

(b) (q:1) °Q 5 is a diffeomorphism,

(a) is trivial. To see (b), we shall calculate that
A=1
(@)™ b 3(v,w) = (v,8%(g (v)) * Ad(g(x))(W))

for veTxU, xeU, we(, where

N0, —» G

g:U4| >

is a transition function, ie q)z(x,e)- q>1(x,e)-g(x), xeU,NT,, and Ad
denotes the adjoint representation of G. Put

)i:'qi *y€)
and let la’ r, denote the left and the right translation by a on G. We
have

- A=
@) bgh(v,w)= (q>1) g, (v, 1)
-1
= (@) 7107+ (3 (), (0D

= @7 @) (7D + (A (3y.g(x) ) (WD)

= @7 CURE ) W (R 1) (A1 (7))
¥ (AM(X))-&(g*(V)) ¥ (AM(X)O Lg(x) ) (W1

Ay=1 |
= (q’]) ([21*(‘7)* (A7\1(x)org4(x)) (g (V))

+ Ay (0 ((F .1(x>>*<<1g(x)) (0N

= (q1>'1m1,<v>+ CAp (x) s (aR(e,(v)) + Aa(g(x))(w)I)
= (v,8%(g, (v)) + A(E(x)(W). D

PROPOSITION 1.3. (see [14,p.283) The system
(2) (A(R),p,M)

is a vector bundle and (1) is a (strong) isomorphism of the vector
bundles (over the manifold UcCM).

PROOF. It is sufficient to notice that
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A
9 'X:Txe ¢ — A(P)'X
is an isomorphism of vector spaces, xeU. O
EXAMPLE 1.4. (a) For an arbitrary Lie group G (treated as a trivial pfb

over a point), we have:
A(G) = TG/GE'q; , [w) t—-)SR(w).

More generally, for P= MxG, we have:
ACR) = T(MXGYGE Mixg, [(v,w)] = (v,0%w)).
(b) ACLKM)) 5 JY ™M), see [111.

Let
Sec A(P)

denote the Cm(M)-module of all ¢® global cross-~sections of the vector
bundle A(P), and

X%(p)
- of all c® right-invariant vector fields on P. Each vector field
XGIR(P) determines a cross-section

Xoe Sec A(P)

in such a way that Xo(x)= (X(z)1 for zePlx, xeM. XO is a C® cross-sec-~
tion because locally XOIU= ﬂ'onoJ\ where A:U — P is an arbitrary local
cross-section of P, The mapping

(3) XR(P) — SecA(P), X s X,

is a homomorphism of C® M)~ modules.

PROPOSITION 1.5. (ef (14,pp.281, 2853 ) For each cross-section meSecA(P),
there exists exactly one c® right-invariant vector field

n’exR(p)
such that
(4) ty'(2)1=q®z).,
The mapping
(5) Sec A(P) —» (R(P), m s 7,



is an isomorphism of Can)-modules, inverse to (3).

PROOF. Formula (4) defines in a unique manner some vector field 1" on
P, n’ is, of course, right-invariant. To show the smoothness of m , we
take an arbitrary local trivialization 9:UxG — P and define the map-
pings ?T'and ﬁ in such a way that the following diagram commutes:

n’ A

P —s TP T .+ AP) ——

?] I** ¢’ J
v’ idse® 3
UX G — s TUXTG S TUAQ —d— [
)

A ~
(p;:;\\\\\\\*

(U*G)g (= ACUXG))

We read sr'out ags a right-invariant vector field on the trivial
pfb UxG, induced by 7:

(120" )(F (x,a)) = (@) b wteneq(x,2) = (¢1) " lomue g(x,2) =T (x).

Therefore, the problem of the smoothness of 'ﬂ’reduces to that
for the trivial pfdb’s form UxG. An arbitrary c® cross-section
M:U — TUxq is of the form &j:l(x,s) where Xe¥(U) and 6:U — ¢ . The
right-invariant vector field " on UxG is then defined by

7 (x,2) = (X(x),(x,), (6(x))),

but this formula asserts the smoothness of %I.

Ty 43 + R T P R

ey - em Tzl

3]

rZ, we rotice ik

(£om) = £X- 7",

(5) is a homomorphism of CGKM)—modules being inverse to (3). 0O

Now, we define some R-Lie algebra structure in the R-vector space
Sec A(P) by demanding that (5) be an isomorphism of R-Lie algebras.

The bracket in Sec A(P), denoted by (.,*3, must be defined by
pd /
G = (LY, 3)
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We also take the mapping
Yy :A(P) — TM, (v] —> TV,
Of course

- A -1
le ﬂ;zo(nlz) for ZePlx‘

DEFINITION 1.6. The object

(6) A(P)"(A(P)!l"'lyr)
is called the Lie algebroid of a pfb P(M,G).

The fundamental properties of (6) are described in the following
proposition.

FPROPOSITION 1.,7. (see [14,p.2851).
(a) (SecA(P), 0.,+3) is an R-Lie algebdra,
(b) Sec r:Sec A(P) — ¥ (M), t—>yo} , is a homomorphism of Lie
algebras,
(¢) r is an epimorphism of vector bundles,
(d) Ef,fond= £+ OgmD+ (yo§)(f)en for £eC®M), ¥,neSecA(P),

(e) the vector bundle

¢ (P):= Ker ycA(P)

is a Lie algebra bundle (see [5,p.3771), where the structure of a
Lie algebra in a fibre q(I0|x, xeM, 1is defined as follows:

(?7) fv,wl := Og,m3(x)
where §,meSec A(P), t(x)=v, M(x)=w, v,weq(P)'x.
The mapping
(&) Po:Uxg =g (), (x,w) = qho_,w),

is a local trivialization of the lLie algebra bundle for an arbitra-
ry local trivialization ¢ of P, where q = T,G is the Lie algebra
of G defined by right-invariant vector fields.

COROLLARY 1.8. By properties (a) ¢ (d), (6) is a Lie algebroid in the
sense of J.Pradines (22], (23].
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PROOF OF PROP. 1.7. (a)< (d) see (14,p.2851 .

(e) To prove that (7) is a correct definition, we must show that
the right-hand side of (7) does not depend on the choice of t and v .
For this purpose, we take %, §2eSecA(P) such that §,(x)= 32(x), X being
an arbitrary but fixed point. We prove that

B5,73(x) = Ef,mI(x)

for n€Sec A(P) provided 1 (x)e¢(P), . Put v= ¥, =%, ; v(x)= 0, The fact
that A(P) is a vector bundle implies the existence of sections 31,...
. §g€5ec A(P), functions £',...,feC®(M) and a nbh UcM of x, such that

fi(x)ao, i¢m, and »1U= v,1U where », = Z:figi. Making use of (d) and ta-
king a function separating an arbitrary point yeU in U, we see that
£,M21U= 14,,M31U. Consequently,

0%,M3(x) = L5,M0(x) = 2,70 (x)
= T ei 0.0 3x) - I (remd(x)(£h) ¥ (x)
=0,

The correctness now follows from the antisymmetry of @.,].

It remains to show that
A g— (P)
q’o,x‘qf q Ix
is an isomorphism of ILie algebras, xeU. Thanks to the equality
cpﬁ,X(V)= (A, x)e(VIYs  veq,
we need to show that
(9) Z:@ = q(P) 0 v L4, (v,

is an isomorphism of Lie algebras, where zePlx.

Take vy, V,€q and the right~invariant vector fields X1,X2€ X(G) de-
termined by \EALY respectively. Let §1, §2 denote arbitrary but fixed
crods-sections of A(P) taking at x the values §(v1), %(vz), respectively.
To get the equality

2( Iv,v,1) = Ok, §0(x)
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it is sufficient to see that
A1V v,1) = 1], 850(2).
First, we notice that X, is A, -related to g;:
AZ*(Xi(a))‘-' Az*((ra)*(vi)) = (Ra‘AZ)*(Vi)z (Ra)*<§’i(z))
- im0 ¥y (a).

Therefore [X,,X,] is A -related to [gfl,g'zj, which implies the asser-
tion. 0

EXAMPLE 1.9. ([21]) As the Lie algebroid of a trivial Pfb MxG we take

™ xq

with the structures

(a)r= pry:TMX¢ —> TH,

(v) €(X,6),(Y,m)0 = ((X,Y),Lm-Ly6+ [s,m1), X, TeX(M), 6,m:M —¢
(an arbitrary cross-section of TM *q¢ is of the form (X,6) where Xe¥ (M),
6:M —q).

FROPOSITION 1.10. (cf [1) and (14,p.119)). @(P) is canonically isomor-
phic to the Ad-associated Lie algebra bundle Pquj .

PROOF. The mapping
‘t':Pqu: - q(P), [z,v]) > [Az*(v)],

is an isomorphism of Lie algebra bundles. 0O

COROLLARY 1.11. If the structural Lie group G is abelian, then ¢(P)
is trivial,

PROOF. ¢(P)= Px,q = (qu)/G, ERxE Mrg O

«-—-O---.|o-_0—0._—-0~
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DEFINITION 1.12. (cf J.Pradines (231). By a Lie algebroid (on a mani-
fold M) we shall mean a system

(10) A= (A, [‘9'117')
consisting of a vector bundle A (over M) and mappings
R-,*l:SecAxSecA —» SecA and Y:A — TM

such that
(a) (SecA, [+,*]) is an R-Lie algebra,
(b) v, called by K.Mackenzie [14] an anchor, is an epimorphism

of vector bundles,
(c) Secr:SecA—» ¥ (M) is a homomorphism of Lie algebras,

(d) U}, fond= LoEgmB+ (yoy)(£)en for £eC®(M) and §,meSecA.

LJ.Pradines (23] does not require for the anchor y to be an epimorphism.
The reason is the fact that J.Pradines associates such an object with
a differential groupoid, much more general than a Lie groupoidl

With each Lie algebroid (10) we associate a short exact sequence
of vector bundles

(11) 0 —q(aA) s A Lo ™M —0
where
‘{(A) = Kery,

called the Atiyah sequence assigned to (10) (see [14,p.2881).

In each fibre ‘[(A)lx’ some Lie algebra structure is defined by

[v,w]:= l[g,v)](x) where {,meSec4, Y (x)=v, M(x)=w, v,weq(A)lx.

‘{(A)Ix is called the isotropy lLie algebra of (10) at x.

THEOREM 1.13. (see (14,p.1891 and (18,p.501). For any ILie algebroid
(10) on a connected manifold M, the vector bundle q(A) is a Lie

algebra bundle.
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TROOF. Let [-,°*] denote here the cross-section of q:(A)Z’1 such that
L+, ,; is the Lie algebra structure of Q(A)lx. We must prove that

(12) (Q(A)v {Le,2Y)

is the so-called J ~bundle (see (5,p.3731).
Let 2:TM —» A be any splitting of the Atiyah sequence (11), ie
YoA= idTM holds:

(13) 0 — {(A)C—bA—:——bTM—-»O
Q——

It is easy to see that the formula
fora (X608, ¢eSecq(A), XeX(M),

defines some covariant derivative in the vector bundle ¢(A). Prom the
Jacobl identity in SecA we trivially assert that

Vi(lsm1) = tVy86,m1% (6, Uy, e V([-,+1)=o0.

This implies that V is a J -comnection in (12), see (5,p.373). By
Theorem 11 ibidem, the assertion is proved. O

DEFINITION 1.14. (([9,p.2731, (14,p.101]). Let (A, f+,+¥,y) and
(A%, B-,+37,77) be two Lie algebroids on the same manifold M. By
a homomorphism between them we mean a strong homomorphism

H:A — A7

of vector bundles, such that

(a) yleH=7,
(b) SecH: SecA—>SecA  is a homomorphism of Lie algebras.

H determines some homomorphism of the associated Atiyah sequen-

ces

0 -—nt(A)‘T—--—-vA—-——-»Y ™ —» O

1H° 11{ I

]
0 = q(N)e——s ¥ —L s ™M —» 0

o=
whereﬁH Hig(A).



If H is a bijection, then g is also a homomcrphism of Lie alge-
broids; then B is called an isomorphism of Lie algebroids.

Each Lie algebroid isomorphic to TMx¢ (defined in Example 1.9)
is called trivial.,

REMARK 1.15. A pfb P with a discrete structural Lie group has a trivial
Lie algebroid, more exactly, a(P)% TM, a

REMARK 1,16, (cf (14,p.1011). Let (10) be any Lie algebroid on M and
let U be an open submanifold of M. Take the restricted vector bundle
Ay and 7= rl(AlU):AlU —> TU, In the space Sec(AlU) there exista
exactly one Lie algebra structure ﬁ.,.]U such that ngrU,qu%JuujynnlU,
g,neSecA, and the system

(AIU’ ., .nU’ TIU)

is a Lie algebroid called restricted to U.

Let 2:U — P be any cross-section of P, then
(9, ) :TUxq — A(P)
AP ! 1u?

where Qa:UxG-—9 PIU’ (xya) »>A(x)+a, 18 an isomorphism of ILie alge-
broids; therefore A(P)|U is trivial,

Besides, if H:A —e A7 is any homomorphism of Lie algebroids, then

Vg
Big:hyg — Ay
is such a homomorphism, too. a
-0 —6¢ —0 — 0 — 0 —

Each (strong) homomorphism [ isomorphism J

(F,N):F(M,G) — P7(1,67)

of pfb’s / F:P — P7, p:G — G’ such that XeF=%, m is a homomorphism
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[ isomorphism 1 of Lie groups, and F(za)-= F(z)*m(a) / determines a
mapping (see [14,p.2891)

dF:AC(P) — A(P7), [v] = [F,(V)].

tROPOSITION 1.17.((14,p.289)). 4F is a homomorphism [ isomorphism }
of Lie algebroids. O

The covariant functor
P(M’G) HA(P)’ (FQN) > dF

defined above is called the Lie functor for pfb’s.

As we have said in the Introduction, the Lie algebroid of a pfb F
can also be defined as the lie algebroid A(PP-1) of the Ehresmann Llie
groupoid PP'1, via the construction of J.Pradines (see (31, 1231).

We recall these constructions.

(a) Let ® be any Lie groupoid [20]. We define

APp)=u"1"d

where T = Keroay (x:$ —» M - the source, u:M — & y X u, u -

the unit over x). The right-invariant vector fields on P correspond 1-1
to the cross-sections of A($). The bracket E¢,mB of tsmeSec A(R) is
defined in such a way that the right-invariant vector field correspon-
ding to [§f7n equals the Lie bracket of the corresponding right-inva-
riant vector fields. The mapping ¥:A(®) — ™ is defined by T(v)= Be(v)

(8 - the target). The system obtained
(:A(§}” E‘s ! s'F)
is a ILie algebroid (for details see for example (91, (14)).

1

(b) The Ehresmann Lie groupoid PP”' is defined as follows:

- 16 -



Its space equals the space of orbits of the action
(PxP)xG — PxP, ((z1,22),a) wa-(z1a,zza),
the source and the target are defined by:
q([z1,zzl)=ﬂ'z1, B( [21,22])=It‘z2

([21,22] being the orbit through (z1,zz)), the partial multiplication
by :
[22,23]~[z1,22]= [z1,z3].

THEOREM 1.18. (cf [12,p.63) and [14,p.1191). A(P) & a(PP~ ).

PROOF. For an arbitrary point xeM, we define an isomorphism

(v), veTZP, zeP

P iA(R),, — ACEETY), , W] —w I

22
where
wz:P —»»(PP'1)X, 2”7 w> [2,27].

The definition of ¢, is correct which follows from the commutati-
vity of the diagram

‘M Toat
\ <Ra*z/'
) A
Taz TP T

Now, we establish the smoothness of the mapping

-1
ACPP )IX

¢ :A(P) — A(PP™)

defined by ?IA(P)|X= Py+ What we need to prove is the smoothness of

poTiire — A(FPTT) S 2((BXR)g),

but qurA= r*oc where r:PXP —e-(PxP%G_is the canonical projection and
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c:TP —» T(PxP), v »—> (@Z,v) if veTZP, and rg and c are, of course,
smooth,

It remains to show that 14 is an isomorphism of ILie algebroids.
The equality Yo =T 1is easy to see, The fact that Secg is a homomor-
phism of ILie algebras is the last thing to consider. Take any XG&R(P).
X is wz-related to the right-invariant vector field (QoXO)’ on PP-1.
Indeed, for the right translation by 1z,z"]

D[Z,Z'] :(PP-1)1(Z’ - (PP_"‘)J(Z’ (z7,27) s (z, Z”J’
we have

= (-]
wz D[Z‘,Z'] Zlo
Thus, for x1=xz’, we have

(UZ)* Z'( le) = (D[Z, Z‘]owZ' )* Zl(xzf) = (D[Z,Z’])* [Z,Zl](?X,[XZ'J)
4 4
= (D[z,z'])*(?oxo(x ))= (?°xo) (“‘Jz(z )) .
Although,wZ:P —s pp~] is not a surjective mapping, each right-in-
variant vector field on P iscaz—related to exactly one right-invariant
vector field on PP-1. By this remark and the fact that, for §1,§2

€Sec A(P), the vector field [gf,,g’zl (=[§1,§21|’) is w, -related to
E90§1,Qo§2]' and to (Qo [;1,§2])’ simultaneously, we obtain the equality

¢ L5y §o0 = Hoofyhe80. O



CHAFTER 2

AR) E w1(P)xG1§lR“x¢)
n

Now, we give the third manner of a natural construction of the Lie
algebroid for a pfb P(M,G), in the form of the associated vector bundle

(14) K(P):=w1(P)xG1(an<{)
n

with some suitable structures.

We recall (4], [71 that w1(P) is the smooth fibre bundle of all
1-Jets with source (0,e) of the so-called allowable charts on P(M,G),
ie of pfb isomorphisms

(15) Y :VxG — Py

of a trivial pfb VxG onto PIU’ where V is open in R™ and such that
0eV and U is open in M, n=dimM.

w1(P) is a pfb over M with structural Lie group

G| := W (R"xG) (= the fiber over 0),

provided that both the multiplication in G1 and the right action of

G; on W (P) are defined by means of the compositlon of Jjets, ie if

us= jgo,e)‘be w1(P) and h= ng,e)ZEG’;, then uh= jgo'e)(\bo Z)Qw1(P).

Each allowable chart (15) is uniquely determined by a couple
(x,A) of a chart »:U —=» VcR™ (0e&V) on M and a cross-section
A:U —»-PlU such that

Y(x,2) =20 (%)), xeV, acC.

From the identification
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(16) 4’" (3(-’)‘)

we deduce that any element j( ¢ew (P) can be identified with a cou-
ple (30(7C ).Jx)), X:= 1:1(0), thus with a couple of linear mappings

(024 x) € Iso(R";T M) x Hom( TMT) )R )

where )‘&'xzﬁn —IM tes) 12 T and, for arbitrary xeM and zeP,,

by Hom(TxM,T P) we mean the set of all linear homomorphisms

ZZ:TXM — T,P such that 1V*Z-Az= id

T M*
Therefore, we can identify
1 n-‘ 1 .
(17) KEM ;JP Iso(R™; T M)xHom(T,M; T ),

Ix
According to 18}, the group G; can be naturally written as
6} = 6I(n,R)x G x Hom(R",q),

and the explicit formula for the multiplication in G is then of the
form

(X1,a1,6' Je (Xz,a S ) = (X, 2,a1oa2,Ad(a'2'1)o61oX + 62),

2
XieGI(n,R), a€G, GieHom(Rn;{).

The action
w1(P)"Gx11 —w'(p)
can be written as follows:

for (xy»2,) €Iso(R";T M) Hom(T,M;T_P)

and (X,a,6)€ GI(n,R)xGx Hom(R™,q)
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-1 =1
za)ate"g"X °Xy )

(18)  Gtysd,)+(X,2,6) = (a0 X, (Ry), oA+ (4

€ 1so(R™; T,0)* Hom(T M;1__P).

Via identification (17), any allowable chart (16) determines a
local cross-section of W (P)

’ll}w:U - W1(P)9 X > (;qxo)*x)‘

Let 1’ (xi,li), i=1,2, be two allowable charts on P, %, being
with domain U;e Let

g:U1002 - G

denote the transition function for A1 and 22, ie Az(x)= 21(x)-g(x).

The transition function for \PY and ﬂJg is equal to

gw:U1ﬂU2 —————> GL(n,R)xGx Hom(R",q)

A—1 -~ ~
X —> ()(1' X‘ lex’g(x)n(lg-i(x))*" g*x° 12')()'
Really, by (18) for z:=?t1(x) we get

V300870 = Gy 10D+ 7 1 100 B0 (Lt 33, By )
= (10 (Re(x) duz? 1*x+(Azg(X))w(lg"(x))f Byx)
= 01 R ez 1ex* (A2 g x)° Bex)
= (g x020px)

=¥ 2(X).

Now, we see that we can define the pfb w (P), independently of the
above, as the 6! -pfb for which gw are transition functions.

To finish with, what we need to notice is that (2) is a G1-vector
bundle via some linear action G1 on anxq By Prop.1.3, we see that any
allowable chart (16),2 being with a domain U, determines a local tri-
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vialization of (2) by

¥ = (‘Y;\ )AO(iXid) :UXiRn’“f — Ay

where @,:UxG — P, (X,a) F>A(x)+a, and x:UR® — 70, (x,t) > %5t

According to remark 1.2, for two allowable charts ¢i= Cxi,ki), i=1,2,
(%y with a domain U;), we have

§75 9,00 X Exg —s UNUXRPx,

2

(X tyW) = (X, %743, (1) 5 87(E, (i, (1)) + Ad(e(x))(w)).

Take

T: (GI{n,R)xGX Hom(R",q))x(R"x¢) —> R%xq

((X,2,6),(t,w)) —> (X(t), Ad(a)(w+6(t))).

It is easy to see that T is a left smooth action. It remains to
notice that

~

(e"(x),(t,w)) = TOE, xR 13 ECX) 5 (L))o By 0 L0 W)
= (i;:x"ignx(t) » Ad(g(x))(w+ (lg-i(x))*og*xo;tzm(t)))
= GU7 1 R (£) 5 AACE(X) )W) + 8%(g, o0, (1))

= ("1"-1-1‘ $2>lx( tyw).

From the general theory we cbtain an isomorphism correctly defined
by the local formula

WI(B)x j(BPxq) —s  A(P)
Gn
[ o Ry )r (8501 > [, )y (52, (£))1

(ie the independence of the choice of an allowable chart (16) holds).
One can easily show that it is globally defined by (see (14))



(19) H:A(F) —_— a(P)
(02,0, (t,w)1 —s D ex (t)+(4,), (W),

Via (19) we introduce on A(P) some structure of a Lie algebroid
(A(P)’ ["'n‘v v?)'
Now, we describe this structure without the help of (19):

(a) F( [(xx’ )Z),(t,W)])= Te H( [(%(p )Z)!(tyw)])
= T(0,ox () + (4,) (w)1)
= H(t)o

(b) Each allowable chart (16) (> with a domain U) defines some
linear isomorphism of vector bundles

Vg — KBy, (W) = [y 0h 0,01, ven v,

and we have the commuting diagram

-

TG % q - K(P)'U

(%)k‘ '/H

in which (cy) )A and HIU are isomorphisms of Lie algebroids (see remark
1.16). So ¥ must also be an isomorphism of Lie algebroids. Each cross-
section 6 of A(LP)|U is of the form

%= o, (3
(20) o,(t,6)1

for some (uniquely determined) mappings %:U — R and 6:U —¢,
(20) determines a vector field X on U by the formula

X0 =3, (Mx) - (L6025, ).



Thereby,
¥o(X,6)= 8.

Let §i= [¢w,(%i,ci)], i=1,2, be two cross-sections of K(P)'U and
let Xi be the vector field on U determined by Ei' Then we calculate

€s,,8,0 = ¥ (1(x,,6,),(X,,6,)3)
= ¥ ( [X1 ’le’ﬁX-1€2'£X261 + [61 162])

= OG0T Oy X0, 8y 6, - Ly 6+ S, 8,100,
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CHAPTER 3

THE NOTION OF A IOCAL HOMOMORPHISM BETWEEN PFB’S

In the theory of Lie groups the following theorems hold:

THEOREM A, If G1 and G2 are two Lie groups with Lie algebras T4 and {é,
respectively, then, for each homomorphism
By — 9,

of Lie algebras, there exists a local homomorphism

H:6,D0) — G,

(§), is open in G, and contains the unit of G,) of Lie groups
such that

dH= h. o

THEOREM B. Two ILie groups G, and G2 are locally isomorphic iff‘q1 and
q, are isomorphic. (]

What does this look like for pfb’s?

First of all, we know (101, {21] that the theorems similar to the
above ones hold for Lie groupoids and algebroids, as well. Thus, we
have only to discover how to define a suitable notion of a local homo-
morphism between pfb’s in order that it correspond to the notion of a
local homomorphism between Lie groupoids.

Here is an answer to this problem.

DEFINITION 3.,1. By a local homomorphism from a pfb F(M,G) into a second
one P°(14,G”) we shall mean a family

F = {(FyrMy);i t€TY

such that
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Fy:FDDy — F7, D, open in P,

M:GDU0 —= 6%, U, open in G, eeU

tr'
provided the following properties hold:
(1) ¥4 is a local homomorphism of Lie groups,
(2) U0y =n,
(3) Jt'oFt=JtlDt (X and X” denote the projections),
(4) Ft(z.a)= Ft(z)-pt(a) for z€D, and aely such that z-aeD,,
(5) If t,t%€T, z€Dy, a€G, z-aeD,., a’€G”, z%€P and
Ft(z)= z”, Ft,(z-a)==z’-a', then
(a) Ft’= Ra’°Ft°Ra‘i in some nbh of z-.a,

(b) Ui =T,-1°4°T, 1in some nbh of eeG (Ta(x)a aoXoa'1, x€G)

If Ft and Ui are diffeomorphisms, then
F-1.2 {(F?,y?); teTy

is a local homomorphism, and F is then called a local isomorphism.

PROPOSITION 3.,2. Let

F={(Pyouy); t€TY :B(1,G) —s P7(N,G7)
be a local homomorphism between pfb’s. Then
d¥:A(P) —s ACFT), [v] [Fy(v)], Vel P, zeD,, teT,

is a correctly defined homomorphism of Lie algebroids.

PROOF. We start with proving the correctness of the definition of the
linear mapping

(@F) | A(B) ) — A(PT) s V] — [F, (v)1,

ie its independence of the choice of z and t. Let t“€T and aeG be arbi-
trary elements such that z-a€Di-. The independence follows easily from
the commutativity of the diagram
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A - (Ft)-&z

‘ﬁ/ TZP - TZ’P, k\;:q‘
ACP) |, ‘\(Ra) Zl l(Ra,)*Z, ACRT) |,
%“ 4 t ZZa ’ oA
28 Toaf '__———"" Tpoar® T2

(dq)lx

where z7= Ft(z), Ft,(za)= z’a’,
Now, we prove the sought-for properties of 49,

(a) dF is a Cm—homomorphism of vector bundles. Indeed, for a point
x€M, take an arbitrary teT such that xe:r[[Dt]. The smoothness of d¥ in
some nbh of x follows from the commutativity of the diagram

(F,)
™ = ’I('%Dt]——-—"i—i*-»TP
J T
4F X

ACP) D p [thJ] — A(P’)

where 'JfP:TP —> M is the projection.
(b) yod¥F=7 is evident,

(c) Sec(d%):Sec A(P)-——-» Sec A(P’) is a homomorphism of Iie alge-
bras. Indeed, for X€3£ (P), the cross-section d9'°X of A(P?) induces
the right-invariant vector field Y: =(d3’°X ) on P’. It turns out that,
for an arbitrary index teT, the field XlDt is Ft-related to Y:

(Fy dpp(X,) = (""Ft<2>)_1 (4%) X))
' -1
= (I'Ft(z)) (aFex (tz))

= (aFx ) (F (2))
= Y(Ft(Z))o

The above remark yields (by a standard calculation) that
(dFelt,,§,0) 1D, ] = gdFe §,,dF-§,B1X(D, ],

The free choice of téT ends the proof. [0



REMARK 3.3. (1) It is easily seen that d Fis an isomorphism if ¥ is
a local isomorphism. (2) We have

dFg(P)1 (")

and we get the commuting diagram

¢ —2—qp),
(Nt)*e[ . l(d?%J{(Pxx
. _Fy(2) :

¢ —————q(P)
for terT, zeD, (see (9)).

THEOREM 3.4, Let

h:A(P) —> A(P)

be any homomorphism of Lie algebroids. Then there exists a local
homomorphism F:P(M,G) — P°(M,G”) such that d%¥= h.

PROOF. Take the Ehresmann Lie groupoids

$:=Pp~! and & :=p’p?
corresponding to the pfb’s P(M,G) and P'(M,G’), reapectively., Let
h:A(P) —— A(P7)

be the homomorphism of Lie algebroids for which the diagram

ACP) B a(F")

?| ?|

~

A(®) 2 a(3)

commutes, where ¢ and p’ are natural isomorphisms described in the
proof of theorem 1.18. By theorem A, for Lie groupoids, there exists
some local homomorphism

(21) F: 3500 ~— él,
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G2 being open in ® and covering all units, of Lie groupoids such that
dF= T, Now, we are able to construct some local homomorphism of pfb’s.
It will be the family

F = {( FopriM,, -)i(z,2" e P@P”

(POP= {( z, z’)erP’ ;sz=Tr'z’X) where F, ,=w"1°Fow 1D, D =w"1t.Q,nP
and - =y F-y z’ U p [‘anﬁtz , andcu :P—d, 2% [z, z’J,

GJtz is the isotropy Lie group at x, u, G — GI sy & > [z,2za], (wz,,Pz,
are defined in a similar manner), see the figure:

P j 23

%

i 7 — L

ERET

We have to prove that F is a local homomorphism and d%=h, Proper-
ties (1) and (2) of a loecal homomorphism (see definition 3,1) are e-
vident.

(3): MOF,,.(2)= W (X Fw,(%)))) = 87 (F([z,3))
=B[z,z) =%,

N R
N

§
=S

(4): Take ‘éeD , a€U, such that Z.aeD . For z’€P”, we have
F,(Z:a)=w’ (F(w (z-a)))=w :(F([z z+a)))
= wz,(F( [za,Zzal-[z,zal))
= w X F( (2,5 )b, (U, .(2)))
= FZZ,(E)-pZZ,(a).
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To prove (5), take (z,z7), (z1,z;)e1(9P , a€G and EEDZ such that
V4

~

zaeDZ1. Let 2 =FZZ,(Z) and FZ1’Z%(Zwa)= z «a’, see the figure:

/
S e R SRR

St R

- [ §

F ]

Z1Z1 : ]

-~ ] '

—"**-“-————-—"-*-—'—'72 |

|

e i I PP -z’ |

. v L

' i !

' f M z -EI__ l ! !
1 m
e L sy |

First of all, we prove that

(i) Fop+=Fyz- in some nbh of Z,
(ii) p,,-=4gy- in some nbh of the unit of G.

We see that, for ZeD, N Dy,
- v -1, v
Fope(E) = (Fw,(£))) = & (F((z,51))
=w (PO, 51+ 12,21)) = o J(FC 12, 23) - Fw (5)))
-1 . v . -1 v v
= wZJ(F( [Z)Z])' (z52 ')': wZ'(D[Z',%"](F( [Z’Z])))
_ - - _ ¥
= Wa (Flwy(2))) = Fgyr (2).
. -1 - .
Whereas, for aesy [‘Q'i'an['z',z‘j (2,1 (S),y:=4)yn9,, X:=X%), we have
Z.a€D_ND~ and
z' UZ
Fop-(Zea)=F  (B):b,, . (a)=E 4, ,(a),
FZZI(Z‘3)= Fég'(z-a)= Fgg'(%)°P§§‘(a)

-1 - w?’
= 03/ (FWy(5))) bz (a) = 3 opzmi (a),

This yields the equality pzz,(a)==pggf(a).

Analogously, we prove
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(iii) Fz1,z1’ = FEa,'z"a’ in some nbh of Za,
(iv) (uz1'23 = "ia,E'a' in some nbh of the unit of G.

From (i) + (iv) it follows that it is sufficient to show that
(v) Fe ,E'a’ = Ra’°F§Z’°Ra'1 (on the set Dg, = Rad[D;g])o
(vi) Mza,52” = Tar-tolzz.oT, (on the set Ug = 'ra_ifUEJ).
(v): From the equalities
Wy = wﬁ"’Ra" and Wg'ys = wfzvnRa:-i

za

we obtain

Za g’at(z) w‘\" / (F(w-' (Z))) a/(W§:1(F(Ug(Ra_1(é)))))
=R,.° Fﬁﬁ’oﬁa'i(z)‘

(vi): From the equalities
Mga =Mz°T, and Mpir=paet .

we get

Mo, 55 8) = My (Flpg,(3))) = v, 7 g (gl (3))))

= 1,2 gy (Y (B))).
It remains to show that
dF= n.

Take arbitrary x€éM and zeP| « For veT P, we have (see theorem 1.18)

(4%, Iv] = CF ypou (V)1 = Lo, *z F*u Wy uz(V)I = ?x *u ° 9x(V)

= 9. oh o9 (V)=h(v). O

~ As a corollary we obtain

THEOREM 3.5. Two pfb’s P(M,G) and P'(M,G’) are locally isomorphic iff
their Lie algebroids are isemorphic. a
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Take now two pfb’s
P = P(M,G) and P’ = P’(I,G)
over M, with the same structural Lie group G. ILet
{(Ut'wt); tETX, {(Ut,?é); tGT3

be two families of local trivializations of P and P’ respectively,
(over the same covering iUt; teT} of M) with the transition functions
equal to

gtt,’gét" t,t’ET,
respectively. Put
s o1
Py o= PioFy » teT.
wWhen is the family

F = {(Yy,1d); teT)

a local homomorphism between pfb’s ?

THEOREM 3.6. The following conditions are equivalent:

(1) Fis a local homomorphism,

(2) for any t,t"€T, the transition functions
Byt7 s B Uy MUy — 6
differ locally by an element from the subgroup

{aec: /\ (Ta(é)eZGo)}

a€eG

where ZGO is the centralizer of GO and GO is the connected compo-
nent of the unit of G,

COROLIARY 3.7. Under the assumption of the connectedness of G, condi-~
tion (2) is equivalent to




(2”) for any t,t’€T, the transition functions By’ 2 Bpy - differ
locally by an element from the centre ZG of G, O

COROLLARY 3.8. Under the assumption that G is abelian, condition (2)
is equivalent to

(27) for any t,t’€T, the transition functions Bit”s g{t/ differ
locally by a constant. a

FROOF OF THEOREM 3.6. The family F always fulfils conditions 1<4 from
definition 3.1. Therefore ¥ is a local homomorphism (so it is a local

isomorphism because ¢t, teT, are diffeomorphisms) iff it fulfils con-
dition 5.

Take arbitrary teT, zoeDt:=RT1[Ut], 2€G and let zoaeDt,:=ﬂf1[Ut,].
Then x _:=Nz €U, N U .. Let ¢t(zo)= zg and ¢t,(zoa)= zéa’. We prove
that a necessary and sufficient condition for

(a) ¥, = Ra’°¢t°Ra‘1 in some nbh of z_a,
(b) id="T . 4°7, in some nbh of eeG

to hold is that the transition functions gtt"g%t’ should fulfil in
some nbh of X, the condition:

g;t,(x) = gtt,(x).a

for some a€G such that Ta(E)EZGO for all aeG.
Let ’

2t=<Pt(-,e) and thc?;(o,e).
for aoeG such that z, = 2tz(xo)-ao, we have

1

e

- -1
(%) a = aO ’gtt’(x())'gt/t’(x())'ao‘a-

Indeed,
Z;= wt(zo>=(?£°?;1()t'(xo)'ao)=(?;°q;1<)t(xo)°gtt'(xo)'ao)

L HCIT-NICIHIEIO R WEIDLY-NNIC IOLL I
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on the other hand,
zg~a'= ¢t(zo-a)= ?;’«7;j<3t’(xo)°ao'a))= ?é,(xo-ao.a)
=23 (x )2 .a= Bﬁc(xc,)-g{t/(xo)'ao-a.
80 );(xo)-ggt’(xo)-aooas 2;(x0)-gttr(x0)-aoaa', whence
g;t’(xo)-ao°a= gtt/(xo)-ao.a',
which proves ( # ),
What does condition (b) say? It turns out that

id='fah1oté in some nbh of the unit of G iff
id=‘ra~1'a on GO iff

(b") a'*1oanGo.

Now, we explain condition (a). Because of the fact that each nbh
of z.,a contains the nbh consisting of all points of the form

2tz(x)oao.a-g
for x from some nbh of X, and g from some nbh of the unit of G, we see
that condition (a) is equivalent to
(a”) for x and g as above, the equality

\bt'(atf(x)'aooatg)-'—' Ra.-o “]to Ra_.j(ut,(x)oaona.g>

holds.
But its left-hand side is equal to

L= qy 0% (Ayr (X)eageaeg) = 9 (x,8_sa0)
=g (x)eageaeg=2(x) gL (x)ea avg,
while the right-hand side to
R= Ra,(cg»’to??(}\f(x}'ao'wg'a”))
= Raf(q'tcef(?\t(xwg:tt/(:x)-ao-a-g-a'1 ))
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= Ra°Q-t<X’gtt’(x)‘ao'a'g°a~1)
=2%(X)'gtt'(x)-ao-a-g-a'1-a',

therefore (a”) is equivalent to

(a”) for x and g as above, we have

giy/(X)ea sacg= gttf(x)-ao-a-g-a“1.a’.

In particular, for g=e, we get
-1 4 - i
Ettl(x)‘gttl(x)oao-a— a,*a .
This means that

1

-1 ‘- -
gtt'(x)-gétr(x)= a +a <a 1-ao (=const),

which proves that the function
-1
X —> gtt,(x)-g;’t/(x)
is locally constant. Let
(% %) g%t/(x)= gtt,(x)-é for x from some nbh of x_.
Then we can observe that (a) is (by (# ) and (% #)) equivalent to
(a”’) for geG , we have a.(a aj.g=(a a)-goa-1oa-1-§-(a a)
A o} o} o o ’*
But we have the following equivalences:
a a)

(b)) = (a-1.5-a .a)"1-anG 9T 1(2)ez; @ (a').
o o} o ( o o

Thereby, the system of conditions (a) and (b) is equivalent to
the following fact:

— the transition functions g{k: and Bt differ 1locally by a
constant a such that, for arbitrary a,a, we have‘tca ayi(a)GZG ,
0 0

which means that, for an arbitrary aeG, we have'fa(é)eZG . B
)
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CHAFTER 4

CONNECTIONS IN LIE ALGEBRQOIDS

DEFINITICON 4.1. ([2,p.1881, [14,p.140]). By a connection in ILie algebroid
(10) we mean a splitting of Atiyah sequence (13), ie a mapping

(22) A:TM —» A
such tha$ 7yoA= ldqy, or, equivalently, a subbundle B¢ A such that
A ={(A)®Bo

W#e define its connection form (called by K.Mackenzie (14,p.140)
a back connection )

A

WA —q(4)

as a unique form such that
(2) whig(a)= id,
(b) Ker wh= Im).

Let (22) be an arbitrary but fixed connection in (10) and let
A= A(P)
for some pfb P= P(M,G). For each point zeP, we define a subspace

a A -1
le.-— Im[(jr”rz) o)n,z] CTZP.

A

FROPOSITION 4.2. (see [14,p.292]1). z ha'le’

in P.

zeP, 1s a connection

PROOF. The equality
A

(23) JrJ:‘za"(Ra)*z =Tz
implies
A 2
Hiza = (Ra)*z[le]‘
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A A , .
On the other hand, 7§ZIH|Z:H'Z — TIZM is a linear isomorphism, thus

= A
TZP Hlfz$ Ker (3¢ z)'

It remains to show the smoothness of the distribution H . Let X
i€n, be a local basis of ¥ (M) on Usx, x being an arbitrary point of M
Then (}oX )", i¢n, forms a local basis of H” on w~ [U]. O

PROPOSITION 4.3. ((14,p.2921). The correspondence

(24) 2 > g
sets up a bijection between connections in (6) and in P(M,G).
PROOF, Let H be any connection in P(M,G). Put
le'“%zuﬂz]

where zsP'x, X€M, By (23), we see that B
of z€P, . Evidently,

Ix is independent of the choice

iIx
A(B) ), = B, DgP)

B, TxM is an isomorphism as a superposition

because rlxlB Ix

I1x
A -1

T'sr-z'le"C"’Iz'HIzz) ¢

B := Uxle C A(P)

is a vector subbundle. Indeed, take a basis of the distribution H on a

set N~ [Ul Usx, x being an arbitrary point of M, consisting of right-

invariant vector fields Y1,...,Yn and take a local cioss—section

€¢:U — P, Then the system of smooth cross-sections OYioF ien, forms
a basis of B on U which proves that B is a vector subbundle. B defines
a connection. 2 :TM —» A(P) Dby ) (Tlx!B.x) . The correspondence

H o-—);\ is inverse to (24). (J

Fix a connection H in a pfb P, It determines the connection form
we.Q,1(P,c[) and the curvature form .QE.Q, (P;q@). §2 is Ad-equivariant
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and horizontal at the same time [5,p.2571, ie is a basic ¢-valued form
on P. Via the classical manner (see for example [5,p.4061) the space

QB( Piq:)

of all basic ¢-valued forms on P(M,G) is naturally isomorphic to the
apace of all forms on M with values in the associated Lie algebrz bun-
dle Pqu:

85 (Pig) = QUM PxgE), 6 > 6,

~ Z Z
@(X”v1’.lo,vq)’ [Z,@(Z,‘V1,...,Vq)l, ViéTXM,
where zeP'x, while vZ denotes a lifting of veTxM to TZP (for example
with respect to some connection in P). *
Considering the canonical isomorphism PXG{gtt(P) (see prop.1.10),
we obtaln an isomorphism (see (9))

Q5P 4) = Q(Nig(R)), 0 — 8y

(25) - z Z
@M(x;v1,...,vq)= z(@(z;v1,...,vq)), z eP

1x*

Via isomorphism (25) we define the so~called curvature base form

(or the curvature tensor) SEM of H. Now, let A:TM —» A(P) be the con-

nection in (6) corresponding to H with connection formcoA. Of course,

the following diagram commutes

T z

21 WA lﬁz

q(B),, —2 A(E),

PROPOSITION 4.4.

(26) S X, ¥) = =0 (B 2K, poYD), X, YeX(M).

TROOF. By the equalityfnfz(vz)= A(v), veT M, we see that, for XeX(IM),
the right-invariant vector field ()oX)' on P is equal to the horizontal
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lifting X of X. By the classical equality
K (X,1)= - 1x,11),
we obtain (zeP

lx)

RM(X’Y)(X)

2(Q(2;%(2),1(2))) = 2(-w(z; (£, 71(2)))
= -l e X), (o 1) 1(2)))

= -0t (X, 12K, 20 YD (2)))

= —wh(x; 02X, 20 Y3 (x))

= _wA( 0)eX, 2oY0)(x)., 0O

Prop. 4.4 asserts that the curvature tensor SZ of a connection H
in a pfb P(M,G) corresponding to a ‘connection A in the Lie algebroid
A(P) depends on A only.

COROLLARY 4.5,

(267) 82 (X, Y) = 2+ [X, Y] - [)eX,2° YT,

PROOF. 2o [X,Y] - EpeX,2o YReSecq(P), therefore

200X, 71 = EeX,20 YR = =e™( DX, ae YT)
= §2u(X,Y). a

Equation (26) or (26’) can be taken (see [14,p.295)) as a defini-
tion of a curvature tensor of a connection 2 in Lie algebroid (1C),

COROLLARY 4.6. The following properties are equivalent to one another:
(1) H is flat (ie $2 =0),

(2) &&= o0,
(3) Sec A: X (M) — SecA(P) is a homomorphism of Lie algebras. [J]
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Any connection (22) in Lie algebroid (10) is called flat iff
SecA is a homomorphism of Lie algebras or, equivalently, if its curva-
ture tensor SEM defined by (26) or by (26”7) vanishes.

Lie algebroid (10) is called flat iff it possesses a flat connec-
tiono

A pfb P(1,G) is flat iff its Lie algebroid (6) is flat.

By theorem 3.5, we obtain (as a corollary)

THEOREM 4,7.1f both pfb’s P(M,G) and P’(M,G”) are locally isomorphic
and one of them is flat, then the second one is flat, too. Con-
sequently, flatness is an invariant of local isomorphisms. [J

EXAMPLE 4.8. Every trivial Lie algebroid is flat. The canonical flat
connection in the trivial Lie algebroid TMxq¢ is defined by

A:TM — TMX¢, v > (v,0)., O

CORCLIARY 4.9. If Lie algebroid (6) of a pfb P(M,G) is trivial, then
P(M,G) is flat. [J
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CHAPTER 5

THE CHERN-WEIL HOMCFMORPHISM

We prove that the Chern-Weil homomorphisms of pfb’s (over an arbi-
trary but fixed connected manifold M) are invariants of some local iso-
morphisms between them and, in the case of pfb’s with connected struc-
tural Lie groups, these homomorphisms are invariants of all local iso-

morphisms.

let P= P(M,G) be any pfb with a Lie algebroid A(P). Let
k k
* N
Vae™ ana Vg ()

be the k-symmetric power of the vector space {*zum.the vector bundle
q(P)*, respectively;

k K
Ve*s @ Vg,
k K
In the sequel any element of \/{* (analogously of \/(q(Ilej*)is

treated as a symmetric k-linear homomorphism ¢ X...4 —> R via the iso-

morphism
k
Ve* =0 ;s r)

t1V...\/'tk — ((V.I,...,'Vk) —> lg“' é t€(1)(v1)-...-ts(k)(vk)).

Define the mapping (see (9))
k k
* . *
8:(Vg™; — @ (sec \ga))
= PRI
o(F), = VP
- k - k "
for [e( \/q:*)l where z€P, , x€M. From the Ad-invariance of [é€( \/c[ )1
and the fact that
(za)"= ZoAda, zeP, aeG,

we see the correctness of this definition, ie the independence of
@(f)x of the choice of zeP‘x. To prove the smoothness of 8(F), we take
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& local section 4:U — P of P. A determines a local trivialization

k *
of \/Q(Iﬂ of the form

amt

k k k
g7 :ux Ve — Ve, qu) - VO™ ) ;

of course, qv-1-®(f)lU is a constant cross-gection x w» (x,I"), thus

a smooth one., Denote the imageihn®k (@k:=®l(‘vk*)l) by

!
(see Vg () )y

Of course,
Kk k k "
8:( Vg*; —> (Sec \g(P) )1

is an isomorphism of vector spaces.

k * K *
PROPOSITION 5.1. Let fesec \g(P)*, then re(sec Vq(p)*); iff, for any
z1,226P, we have

k k
V() (g, ) \/<22>*<’5rz2>- o

THEOREN 5.2. The mapping

K X,
nA(E) . P (sec \/q_'(P)*)I — H(M)

for which the diagram

k k A(P)
D (5ec \/‘:(;(13)"')I B . Hm)
by

(Vg*; —

commutes is defined by

k
rb-—-—) [I'*(QM,...,QMJ)] for FE(Sec\/C[(P)* )I

k-times
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where fEN is the curvature base form of any connection in P and

&(QM’ e 9'521\/1)(){7"71 yeee ,ng)
1
-2k é sen6-[(E2(X35Vg () Ve (2))r  + s R KiTe (it + + Ve i Ph

vieTxM, X€M,

PROOF. We must only prove that
(27) TP (S ppr v r )V = T Qe )

where SZM and §2 are the curvature base form and the curvature form of

the same connection in P. Both sides of (27) are horizontal forms, so,

to show the theorem, we must notice the equality on the horizontal vec-
tors only. Let 2P, and Vi,..4.,V, €T M, then we have (see (25))

T CCO5F), (g v+ 22302, Ve )

(®k’=)*(g Mree ,RM)(“25V19 soe ’v2k)

1 k‘. *

s ; sgné(8°1), ({2 M(ZiVg(ay 2 Vecg) s e e "Q’M(X’VG(ZI‘A)’VG(M) ))
1 Fra=1 . 2=1 .
1 Z Z Z 2z

x

Cseer82)(z5v%, . 0yve ). O

Now, we describe the relationship between the Chern-Weil homomorp-
hisms for local isomorphic pfb’s.

Let F={(Fy,¥y )5 t€TY:B(1,6) —> P (M,G ) be a local homomorphism
between pfb’s P(M,G) and P(M,G7) and let

W e, ¢

be a connection form on P~ where qf}=q1(G’)°.
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FROPOSITION 5,3. There exists exactly one connection form

1
WeL, (P;q)
on P such that for each teT

"'1 -1 *
WIxp D 1= (Uy)r (Fro).

PROOF. Correctness of the definition of w: Let z €D ND,., If F..(z )

=Ft(zo)-a’ (a"€G”), then F(-=R_,*F, in some nbh of z_, and Mir=T 1ol
in some nbh of the unit of G. That is why, for 2z from some nbh of z,
and for veTZP, we obtain

(B g ol Frred J(257) = (Tymtopy )T (R0 B Y )(557)
= ((py)]dend(a))(FER o) (25v)
= ()] 1o ad(a”))(F(ad(a’ ")) (z5v)

= (U, )7 Fre’(z5v).

W(25(8y)p 6 (V) = (M7 (Pl ) (25(A,), (V)

= (g dpel@ (R(2)3(Fy (4, (¥))))

-1 ’
= (Lo ( (R ()], (B, (D)

= Ve

(b) K;o= (Ada-1hu;indeed, let zeDt, z)GP/, aeG, aféG’, zaeDt,,
F.(z)= z7, Fy.(za)= z”+a”, Then Fy»=R,,°Fi*R -4 in some nbh of za, and
Ft’=.ta“1'yt°té in some nbh of the unit of G. So

. - * 7
(Rpw)(257v) =0(za;(R,), (v)) = (B )0 (F o )(za;(R,), (7))
-1 :
= (M g o @ (Bye(2a)5(Fy ) ((Ry), (7))

= (Mg Dy o' (2748" 5(R By (V)
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= (Ta,.1°Ft°T

- %* / ’
IR W R ()

(ad ™ De(p ) (W (275, (v)))

Ad(a—1)w(z; v). )

The connection form w obtained in proposition 5.3 is called
induced by F from w’. @ and w’ induce some connections Aand A° in
A(P) and A(P7), respectively, which next determine connection forms

w? and W in them. The following diagram commutes
WA A
P(P) e—— A(F) «—— TN
(28) (d?)ol @ ldq n
, w/;\. 2’
Q(F") == A(F") <& 1 .

Indeed, the commutativity of the left-hand side of (28) follows from
the commutativity of all the remaining squares in the diagram

(Fy)
o *Z . 7

1

[

A(P)Ix

wAl
Ix

T, —Eeqr),

/

dQ)lx

—_——

@

(a%S

IX

(?t)*e

ACET)

lo

Ix

A
1x

A
jrlF;(z)

Ft(:N

T

The

»
>

wlFt(z)

/

¢

commutativity of the right-hand side of (28) follows easily from

the above because, for each veTxM, the vector (d9§'x()(v)) is hori=-

zontal and its projection on TxM is v.

a

FROPGSITICN 5,4, The relationship between the curvature base form 52M
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and S}h of W% end W™ € the curvature forms & and & of w and
w’ 1,respectively, is described by the equality

o) -0 -1 . ~1n¥® A~
(@) 8y =82 L = (u ) R 0.
FROOF. For X,YeX(l), we have

(AN°Q(X, 1) = (dN°(-w 0AX,2 YD) = -0 (dFEIX, A YD)
= ~wl¥( 2 X),d¥aY)D= -w VX, N YD
= - QL(X,1).
The equality in the square brackets is classical [5,p.278] but we

may obtain it immediately in the following way: by (25), for zeD

t’
VGTZP, we have

Hine025vT,v0) = By L BT\ (xiv v, = Pe(2)" 7 (a9, Q%5740

F(2)" (X357 15V, = SU(F(2) v e v Bel@)

* .-
(Fe83)(z3v],v2). O

PROPOSITION 5.5. If M is connected, then, for any t,t'éT, there exist
aéG and a’€G” such that Bio=T,,q°M o, in some nbh of eeG.

PROOF. Let t,t’€T. Take arbitrary xeNID;], x"€NID,. ) and let
T:{0,1) — M be any path such that T(O)=x, T(1)=x. We can choose some
sequence of indices t,,...,t €T such that t=t., t’=tn,

Unio, 15Im% and ®ip, INTID, 1 # §,
i i i +1

1

and some sequence of elements z1,...,zneP such that

2 .€D X, =Nz . €NX[D, INn{ID 1.
17787 TN Yy Tie

Let a;€G and a;eG’ be elements such that
zi-aieDt R Ft.(zi)= z; and F

. t.

(z,+a,)=z{+a]
Z.a,. )= Z.38.,
i+1 i i+1 101 11
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Then u, =‘ra"hyt.°ra in some nbh of eeG. Therebuy,
i+ i i i

1
,:P =T 7 en” -1°H OT D
Ht t, (an eeoval t “(a

1°ouoOan)

DEFINITION 5.6. A local isomorphism F is said to have a property Ch-w
if for all teT

(29) Vg, WV g ™ )11c (Vg™);

C or, equivalently, if there existsteT such that (29) holds (by
prop.5.5) provided M is connected J.

EXAMPLE 5.7, F has the property Ch-W if it satisfies one of the follo-
wing properties:

(a) G is connected,

(b) there exists t€T such that M, can be extended to some globally
defined homomorphism G —» G~ (provided M is connected),

(¢) there exists teT such that for each ae¢G, there exists a’€G”
such that M,  °Ada= Adzfoyt*e (provided M is connected).

First, we easily show that eaoh local isomorphism fulfilling pro-
perty (c) has the property Ch-W. Now, we trivially notice that

(a) & (c) and (b) # (c). 0O

THEOREM 5.8, If F has the property Ch-W, then

k k k
(30) V (a%)° isee V() )1¢ (see Vg (2));

and the following diagram commutes:
r kK

k k
( vct,*)l —— (Sec\/q(P,)*)I\A(P’)~
K, k
\4%*81 l\/(dgyii///////////'

H(M)

k K k ACP)
(Vq*); —&— (sec Vq®)"); .

PROOF. To prove the left-hand side of the above diagram, and the in-
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clusion (3C), we need to show the commutativity of

k -k K
( \/%'*>]; —2 s Sec Vece)*

k k
Vit [\/(d‘f)O *
k k
( \/q;* )1 "‘-@‘_’ SQCV g (P)*o

k
CV (@H°* e ™)), = 04 F) 2(aF°x.. xaF°)

= fo((ptz)‘"1x. . .x(th)"‘1)o(d‘5"’XX.. .qulox)

= ToUy, Xee o XB, )o(E % x3™ Ty

txe

Gk(ﬁ°(ytﬁex"‘xut*e)>x

k
(Gko VPt:e(f:))X,

Zean” Dt’ xeﬂEDt].

To end the proof, we notice that (by prop.5.4)

(B0 \ (a)0%r ) = nA P (%%, . .xa%0))
Fo(dF %K. . xdF%) (R pye e sS4
LdF Wy o0, dFRY DI

LGS+ -+ » 831

= hA(P’)_ O

CORCLLARY 5.9. The Chern-weil homomorphisms of pfb’s are invariants of
local isomorphisms having the property Ch-W. In the case of pfb’s

with connected structural ILie groups, the Chern-weil homomorphisms
are invariants of all local isomorphisms, O
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CHAPTER ©

A STRUCTURAL THEOREM

Here we prove that any Lie algebroid A is uniquely determined (up
to an isomorphism) by its Lie algebra bundle ¢(4), a covariant deriva-
tive V inq(A) and a 2-tensor .S?,GS?.Q(M;:[(A)), fulfilling some condi-
tions. Cf [1; chapt. VIIIl and [14,p.224].

Let (10) ba any Lie algebroid on a manifold M with the Lie algebra
bundle ¢. Let A:TM —> A be any connection in this Lie algebroid,

(31) 0 —> @S> A —1» TM — 0,

2/

with the curvature base form
\Qmeﬂz(M;q).
Corollary 4.5 states that
(1) X, 2 Y0 = ALK, YD = (X, ¥), X, YeX(M),

AX:=20X, The connection A determines a covariant derivative V in q by

the formula
(ii) V,6= 0x,63, Xex(M), 6€Secq,

(see the proof of theorem 1.13). Y is called corresponding to A or after
K.Mackenzie [14,p.295) the adjoint connection of A.

We notice that the bracket H0+,+] in the Lie algebra Sec A is uniqu-
ely determined by the system (q,V ,.Q,M) and A, namely

(iii) X+6,AY+M 1= A[X,Y) ‘-le(XvY)"' vx’l" VYG"' [‘."13,
X,YeX¥(M), ®,mM€Secq.

NV determines the so-called exterior covariant derivative in
§,(M;q) by the classical formula:

for ‘fe.Q,q(M,-q), we have VYG‘Q, q”(M;q{), and

- 51 -



q -
(1v) V¥(X,en, X )= jgo(n)qvxj<Lf(xo,...,xj,...,an

~ »

)i+l
+iz<j( 1) \.t‘( [Xivxj],"'Ixipooong,ooopxq), Xje x(l’l)o

PROPOSITION 6.1. The elements VYV and 'Q'M fulfil the following asdrtions

(1°) RX’Y&- [R(X,¥),61, X,YeX(M), €eSecq , where R denotes
the curvature tensor of ¥V, ie

V2= -18,,6), s€Secq, (the Ricci identity).

(20) cho':"]]= [VX‘,"IJ + (s, ‘7)(",]’ XeX (M), §,m€Secqy , ie V is
a 2 -connection in (g,{L+,+1}) ( see the proof of theorem 1.13)
(called in the sequel a 2 -connection inq or after (14,p.143] a
Lie connection in q ).

(3°) VQy=0 (the Bianchi identity).
PROOF, Trivial calculations. a

THEOREM 6.,2. (cf (1,p.3721 and (14,p.223]1). (a) Let a system

(C{. v "Qm)

be given, consisting of
(i) a Lie algebra bundle 4 on a manifold M,
(ii) a covariant derivative V in 9,
(iii) a 2-form .Q,Me.Q?(M;q),
fulfilling conditions (10){- (.‘30) (from proposition 6.1).
Then, for a vector bundle ADq and mappings y, A, such that

(%) in the diagram (31) the row is exact and 7veA= idpye

there exists in the vector space SecA exactly one Lie algebra
structure H+,+} fulfilling conditions:

— (4, [+,-1,7) is a Lie algebroid with the Lie algebra bundle
equal to q,

— equalities (i) and (ii) hold.
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The bracket U.,+*B is defined by formula (iii).

(b) For another vector bundle A“Dq (on M) and mappings 77,
A7, fulfilling the analogous properties, there exists exactly one
isomorphism F:A” —» A of Lie algebroids such that the diagram

/‘['\f'

Qg‘ ﬁ/ﬁ{ ™

A

1

commutes. F is defined by the formula F(} (v)+ w)=2(v)+w, veTM,

wéﬁ.
(c) If SEM= 0, then the Lie algebroid constructed in (a) is

flat.

TROOF. (a) The uniqueness of f.,-B is evident. To prove the existence
of the sought-for structure, we need to demonstrate that (iii) defines
it. The bilinearity and antisymmetry of K.,+} and properties (i) and
(1i) are very easy to see,

The Jacobi identity:
TEAX +6,AY+7D,aZ+8D + cycl
= DMK, V) - (X, 1)+ VM = Ny6 + [6,91,22+8 D + cycl
(A0, ¥1,21 - S, (1X,Y1,2)+ V[X,Y]S + N, (80,(%,Y)) --'\7Z VX'V)
+V, V6 -V, 16,13 - LR(X,1),81+ [V,71,8]
- [VyS,81+ 16,11,8) + cycl

0.

The last equality is obtained from the Jacobi identity in ¥(M) and in

Secq and from assumptions (10) = (30).

The equality HEAX+6,f<(AY+M )1 = -EX+6,2Y+MD+ X(F£)+(2Y+7)

is easy to obtain.

(b) To prove the second part of our theorem, we notice that
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-7o%=17" (trivial),
~ Sec F:S5ec A” —» SecA is a homomorphism of Lie algebras,

indeed:
PO EAX+6,2°Y +m0 )= F( ¥[X, Y) ~ (X, 1)+ -V 6 4 6,m)

= A [X, Y] -S},M(X,Y)+VX"] -VY€+ ts,71
EAX+6,3 Y+ ]
EF(A"X+6), F(2"Y+7)1.

(c¢) Trivial because then Secd: ¥ M) —» SecA is a homomorphism of
lie algebdbras, a
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CHAPTER 7

CLASSIFICATIONS OF LIE ALGEBROIDS OF 30ME TYPES

Let A, A,:TM —> A be two connections in a Lie algebroid (10).
Then

c:=21-3

has its values in the bundle q(A) of course.

PROPOSITION 7,1. If V, ‘71 are two covariant derivatives in ¢(4A) cor-
responding to 2, 21, respectively, then V= ‘71 iff c:T™M —»q(4A)
is a central homomorphism, ie such that c(v) belongs to the centre
of the Lie algebra q(A)|x for veT M, xeM.

PROOF. By the definition we have: Y]v6= (v),s1, (‘71)v6= kA (v),61,
veTM, 6€Secq(A). Therefore V=V iff, for all veTk and seSecq(4),
UKV)-—31(V),6]= 0, thus iff [c(v),wl=0 for all (v,w)eTxM%{(A)|x, xeM. O

CORQLLARY 7.2. If the isotropy lie algebras are abelian, then to all
connections there corresponds the same covariant derivative. O

COROLLARY 7.3. 1f the isotropy lLie algebras are without the centre, then
to different connections there correspond different covariant deri-

vatives. O

7.1. A CLASSIFICATION OF FLAT LIE ALGEBROIDS WITH ABELIAN ISOTROPY LIE
ALGEBRAS.

THEOREM 7.1.1. Let q’be an arbitrary vector bundle on a manifold M,
considered as a bundle of abelian Lie algebras. Then there exists
a bijection between the set of all classes of isomorphic flat Lie
algebroids with the Lie algebra bundle § and the set of all equi-
valent flat covariant derivatives 1ntu, where by the equivalent
covariant derivatives we mean both V and ‘7 such that there exi-
sts a vector bundle 1somorphlsm f:C[-—-»tﬁ for which V;( = VX( fo6),

- 55 =



Xe¥(M), €€3ecq.

PROOF. Fix any vector bundle A >¢ and mappings T,2 , such that the con-
dition ( # ) (see theorem 6.2) holds. With each flat covariant derivati-
ve V in q we associate the system

@,V,0), 0eQ(M;q),

and with the latter - according to theorem 6.2 - some flat Lie algebro-

id A = (A,[-,-]v,T) (for the bundle A taken above). Lie algebroids ob-

tained in this manner are - for different A,r,A - isomorphic (see theo-

rem 6.2). Of course, by prop.6.1 and theorem 6.2, each flat Lie algebro-
id with the Lie algebra bundle g can be obtained (up to an isomorphism)

with the help of some flat covariant derivative in {.

Let V and §71 be two covariant derivatives in 4| such that the Lie
4
algebroids A:=AY and A1:=Av are isomorphic (via some isomorphism F):

0 —> GCp A —Lo TM —> O

leO ﬁlF H

1
0 —> g 4 T —> 0

let A:TM —> A be any connection in A; then FeA is a connection

in A1. According to corollary 7.2, we have <7X5= IAX,63, <7}1(6=
=f{FoA(X),61, Xe%(1), 6eSecq. Thereby, since F is an isomorphism of Lie

algebroids,
V (F%6 )= LFeA(X),F%6T = [Fo(pAX),FesD = [aX,s3 = U, T ,

which means that V and V' are equivalent. (O

7.2, A CLASSIFICATICN OF LIE ALGEBROIDS WITH SEMISINMPLE ISOTROPY
LIE ALGEBRAS.

Let g be any bundle of semisimple Lie algebras on a manifold M.
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FROFOSITION 7.2.1. For any Z-connection \Y, in §, there exists exactly
one 2-form

S}'Me Q2( My"u )

fulfilling condition (10) from prop.6.1. SZNIfulfils the Bianchi
identity (3°).

PROOF. It is easy to check that
Rv,w:qlx —%)x

for v,weTXM is a derivation of the Lie algebratt'x, R being the curva-
ture tensor of V. From the assumption that qlx is semisimple we have
the existence and the uniqueness of an element

SZM(x;v,w)eqnx
such that

E%’w(u)= -[Q.M(X,'v,w),ul, ueqllx .

Of course, we have thus defined a 2-form SZM6§Z?(M;q).

By a standard calculation and the fact that ﬁdx’ x€M, are without
the centre, we obtain the equality Y7£2M= 0:

LVE (X, ¥,2),61 = LV (Q (¥,2)),61 - LV (X,2)),61
+ LV (8 (X, ¥)),61 = 18 ( 1X,Y),72),6)
+ L82,(X,21,Y),61 - [Q)(Y,21,X),6]
- Vy(Ry, g9+ By 5(V 36+ Vy(Ry 4€)
- By, z2(Ny®) = Vy(Ry )+ Ry y(V;9)
* Ry, Rex, 21,10 " By, 29,55
= 0. 0O

By the above, we see that any z:-connection in.q_determines exac-
tly one Lie algebroid (see theorem 6.2).
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TROPOSITION 7,2.2. If @ is the Lie algebra bundle assigned to a Lie al-
gebroid A, and a covariant derivative V in § corresponds to a con-
nection A in 4, then the 2-form SBMGSEZ(M;g) defined by (1°) is
exactly the curvature tensor of A.

PROOF. We need to notice that
R 6 = - [)[xrjf] - [%X»?\Y]I,GJ
X,Y

knowing that VXG-- I»X,63; but this is a standard calculation. [J

THEOREM 7.2.3. For a given Lie algebra bundle Qq whose fibres are semi-

simple, there exists exactly one (up to an isomorphism) Lie alge-
broid A for which q(A)=<u.

PROOF. The existence: Accordihg to 15,p.3803, there exists in ¢ a
Z:-connection. Let 4,7,A be elements as before (see (31) and (%) in
theorem 6.2). Give any Z:-connection \V} in ¢ and the 2-form JZM
eSQ,(M,q) fulfilling (1°). For this homomorphism A, we define in A some

structure of a Lie algebreoid according to theorem 6.2.

Let ‘73 denote the covariant derlvatlve in q:correspondlng to a connec-
tion A:TM —> A,

LENMA 7.2.4. The correspondence

A - 7

establishes a bijection between the set of all connections in A
and the set of all 2 -connections in q-

PROOF. By corollary 7.3, this correspondence is an injection.
Iet V be an arbitrary J_ -connection in ([. 0f course,

=V - V,

is a tensor

T: TM‘Q?—»(K
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where :70 ig a Zf-connection corresponding to an arbitrary but fixed
connection )o'
Besides

Vvo‘a Vov6 + M(v,6(x)), veT M, 6€Secq s XEM,
We want to find a homomorphism
c:TM -—#%
such that
V6= LA, + ¢)(v),6D
which will mean that
v-v)0+c .
First, we notice that
T(v,-):t{['x -— qux’ veT M,

is a derivation of the Lie algebra Q}x. Because of the fact that
%< is semisimple, we see that the derivation ™(v,+) is. inner
which means that there is an uniquely determined element c(v) such that

T(v,+)= [c(v),-].
It remains to show that the mapping
c:IM —q, Vv r>c(v),

is a C®-vector bundle homomorphism. Of course, it is a vector bundle
homomorphism, so we must prove the smoothness of ¢ only. Since q is a
locally trivial Lie algebra bundle, the smoothness of ¢ is obtained lo-
cally by the following assertion:

— For a Lie algebra h without the centre, a manifold N and a
c®-1linear representation T:Nxh—sth, such that T(v,«)= [c(v),-1,
veN, for some c¢c:N —»h, we have: c is c®

This assertion is easy to show, see the diagram
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N - k24, pop
L T ]

in which M(v)(w)= Nv,w). [J

The continuation of the proof of the theorem: Let A1, A2 be two Lie al-

gebroids for which
1 ’ 2
q(a)=q(aA%)=q .

Take an arbitrary ) -connection V in §f, and denote by Ays )2, the cor-

1

responding connections in A, Az, respectively (according to the lemma

above). Then

2

F:A1 — A7, (}‘1(v)+w —3> 22<V)+W), VéTM, Wéqa

is an isomorphism of Lie algebroids. Indeed
FOOMX 46, Y703 ) = (A1 X, 11~ Qu(X,Y) * Vy 9 = V.6 4(6,13)

= A Y1-Q0(X,Y)+ Vym- Vys+ [s,1]
= LAX+6,A,7v+1]. O

COROLLARY 7,2.5. Two Lie algebroids with semisimple isotropy Lie alge-
bras are isomorphic iff their Lie algebra bundles are isomorphic., O

Theorem 3,5 and the last corollary give the following

COROLLARY 7.2.6. Two pfb’s with semisimple structural Lie groups are lo-
cally isomorphic iff their associated Lie algebra bundles are iso-

morphic, O
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CHAPTER 8

SOME EXAMPLES

A/ We ask two questions:

10) Does, for any pfb P= F(},G) and a Lie group ¢’ locally isomor-
phic to G, there existsa pfb P”a P(M,G”) such that A(P)% A(P") ?

20) Are pfb’s Pa= P(M,G), P = P'(M,G’) globally isomorphic provided
their structural Lie groups G and G” and their Lie algebroids A(P) and
A(P”) are isomorphic ?

It turns out that the answers for both these questions are negati-
ve (even the Lie groups G and G’ are assumed to be connected ).

1°: Consider the Hopf bundle
£ = (82— 59)

(being an S1-pfb) and the universal covering R —*-81.

THEOREM 8,1. There exists no R-pfb with the Lie algebroid isomorphic to
ACk).

PROOF. Suppose P(Sz,m) is such a pfb. According to {6,p.58], this pfd
has a global section, thus is trivial. Therefore its Lie algebroid is
trivial; consequently, A(}) is trivial, so (by corollary 4.9) ¢ is flat.
But 82 is simply connected, so, by Atiyah-Milnor’s theorem (2, prop.141,
[15,1emma 11, t is trivial, which yields the contradiction because ¢
has no global section. 0O

29: Without the assumption of the connectedness of G and G7, the

negative answer to 2°) is easy to obtain.

EXAMPLE 8,2, Let 1 — M be the universal covering of M and let‘I1(M)1‘0.
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Then R}(M)-pfb’s M~ M and Mxﬂa(M) —~+ M are not isomorphic alt-
hough its Lie algebroids are isomorphic (see remark 1.15).

It turns out that the assumption of connectedness and even, in
addition, the semisimplicity of G and G are not sufficient for a po-
sitive answer.

EXAMPLE 8.3. (The idea of this example was suggested to me by Th.FPrie-
drich). Because of the fact that H1(RP(5);Z2)= Z2’ there exist [251
two distinct Spin(3)=-structures of the trivial pfb RP(5)xSO(3) . One
of them, say P1, is of course trivial: P'= RP(5 )xSpin(3), but the se-
cond one, say P2, according to [241 is not triviall Thus, between P1
and P2 there exists no global fibre isomorphism (so, no global pfb’s
isomorphism in any sense). However, Lie algebroids A(P1) and A(Pz)

are isomorphic. Indeed, there exist (by the definition of spin struc-
tures) homomorphisms

(F5,A):PY — RE(5)XS0(3), i=1,2,

where A:5Spin(3) —> 50(3) is the standard homomorphism from Spin(3)
to SO(3). A being a covering is a local isomorphism, which implies
that the homomorphisms of Lie algebroids

aPt: a(Pl) — A(RP(5)Xx50(3)), i=1,2,

are isomorphisms, and then A(P1) and A(Pz) are isomorphic (and, of

course, are trivial).

B/ Both, R.Almeida and P.Molino (171, [181 constructed a Lie alge-
broid which cannot be realized as the lie algebroid of any pfb. Now,
we give a simple example of a ILie algebroid which cannot be realized
as the Lie algebroid of any pfb with abelian structural ILie group.

Namely, we construct a Lie algebroid A= (A, 0.,3,7) such that the
vector bundle §(A) is not trivial but all isotropy Lie algebras q:(A)IX
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are abelian. Then, according to corollary 1.11, there exists no pfb
with an abelian structural Lie group and with the Lie algebroid A.

EXAMPLE 8,4. Let q be any vector bundle on a manifold M which is not
trivial but admits of a flat covariant derivative V. Put

AaQ@TM and Tf prgzq@TM —> TM.
Let A:TM —> A be any splitting of the following exact sequence

0= g —> O™ —L5 ™ —s 0
\X/

In the C®™ M)-module Sec(qt@TM) we introduce a structure of a Lie alge-
bra @.,:) (see th.6.2) by the formula:

EAX +6, 2Y+MD = ALX, Y]+ Vx-r) - VYG )

We obtain a Lie algebroid (A, {-,:3,7) in which the isotropy Lie
algebras q(A)Ix are abelian,
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