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§ 17 - INTRODUCTION.

1.1. The firing squad synchronization problem was introduced by E.F.MOORE

in 1962 [ 3 ]. One considers a finite -but arbitrarily long- ordered line

of n finite state machines numbered from 1 to n. All machines numbered
from 2 to n-1 are identical and called soldiers ; the machine numbered 1
is also called the general and the machine numbered n the right-end soldier.
These n machines work synchroneously ; the state of a machine at time t+1
depends only on the states at time t of itself and its (one or two)

neighbours.

For t < 0, all machines are in the same state, called the quiescent

state,.

At t=1, an external intervention undergoes the general in a new
state ; all other machines still being in the quiescent state. Afterward

there is no external intervention ; the line evolves as an isolated system.

The problem is to define finite sets of states and transition rules
(for the three types of machines) with a distinguished state, called the
"fire state" so that : Whatever be the length of the line, all machines first
enter the fire state at the very same time (called the synchronization

time t(n), which obviously depends on the length n of the line).

1.2. One can show that necessarily t(n) > 2n-1.

Intuitively 2n-1 is the minimal time for the general to send a

message to the right-end soldier and to get back an answer.

A minimal time solution of the synchronization problem is a family
of finite sets of states and transition rules for which t(n) = 2n~1. An

N-states solution of the synchronization problem is a solution for which



the union of the sets of states of the three types of machines is of

cardinality at most N.

1.3. J.MacCARTHY and M.MINSKY proved the existence of solutions (1965) ;

these solutions work in times 3n—1,-§ n-1 .... A minimal time solution
was presented by A.WAKSMAN (1966) [4 ] ; this solution uses 16 states.
R.BALZER presented an 8-states minimal time solution (1967) [ 1]. We present

here a 6-states minimal time solution.

1.4. To study this problem, it is natural and usual to consider the set

of pairs (K,t) with 1 <K<n and 1<t < t(n). This plane set of pairs
can be used in two ways.

- The state-diagram is obtained by indicating the site-values < K,t >
(i.e. the state of machine K at time t). Graphically we shall represent
the site (K,t) by an unit square and get an N-colored tiling of the rectangle
formed by these n x t(n) unit squares.

- Geometrical diagrams are obtained by indicating the action of
some distinguished transition rules which correspond intuitively to the
propagation of signals. Graphically, this gives continuous lines through the

portion of plane [1,n] x [1, t(n)].

1.5. To avoid the consideration of three cases of transition rules

corresponding to the three kinds of machines, it is convenient to introduce
- a new artificial state denoted X.
- two artificial machines always in state X, delimitating the line, having

ranks O and n+l.

This trick allows us to represent the transition rules of an N-states
solution by a family of N-1 matrices of states with N lines and N columns

as follows



- we denote q, the fire state, 4 the state X and q, dy the
remaining states.

- If at time t, the machines numbered K-1, K, K+1 (where K € {1 ,..., n})
are in respective states a9 s 9, (where a,b,c are in {1 ,..., N})

then at time t+1, the machine K 1is in state q where q is the element

of the b-th matrix on line a and column b.

REMARK. - Since all machines have to enter the fire state at the very same
time, we do not consider transition rules where one of a,b,c is O.

- The elements of these matrices are among qdgy» 99 > qs seres Qe
- Thus, all machines 1,2 ,..., n~1,n are considered as identical

they have the same set of internal states {qo, 959y 5 93 e+ qN} and

the same transition rules.

The way machines 1 and n, the general and the right-end soldier,
can be distinguished is as follows : machine 1 (resp. machine n) is the
only one to have a left (resp. right) neighbour in state q, and so to
make use of the related transition rules indicated in the first line

(resp. column) of each matrix.

1.6. The idea of the earlier solutions (MINSKY and MacCARTHY) is the

following :

- After the external intervention the general generates two waves which
propagate through the line at different speeds (cf. figure 1.6).

- The fast wave is reflected by the right-end soldier.

- This reflection meets the slow wave at the middle of the line.

- By this way the initial line is broken into two new lines having equal
length, which evolve independently (depending to the parity of n, these

two lines are disjoint or have a common element).
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- The right line evolves in a way "homothetical” to that of the initial line,
so that its general is its leftest machine. The left line evolves in a way
"symmetric" and 'homothetical"” to that of the initial line, so that its
general is its rightest machine.

- This dichotomy is iterated up to the obtention of lines with length two.

Then the fire state appears.

1.7. The common features of WAKSMAN and BALZER's solutions are the

following :

- After the external intervention, the line generates a family of waves, all
of which seem to come from the general.

- The two fastest ones (G1 G, G3 and Gy Gy on figure 1.7 a)) act as in
MINSKY and MacCARTHY's solutions and break the initial line at G3 creating
two new lines having equal length.

- The right line (consisting of machines numbered from E%l to n), which
is created at time %?-—1, has in fact begun its evolution at time n, 1its

general being the machine n. It evolves in a way such that the trapezoid

of sites F, G, G, F, 1is symmetric and homothetical to the trapezoid of

373 72 72
sites F2 G2 G1 F1 associated to the initial line.
- The remaining portion of the initial line (machines 1 to 2%l---l) is

also iteratively broken by the meeting of G, F1 with slower and slower

waves all seemingly starting at site Gl'

This remaining portion evolves in such a way that the triangle of

is "homothetical” to the triangle of sites F, G, F,.

sites F 1 72 "2

1 % Fy

The two triangles of sites F1 G3 F3 is F2 G3 F3 are symmetric, so that

the two machines 1 and n (the first and second generals) are synchronized.
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In case n 1s odd, figure 1.7 a) shows the first step of this
iterative process.

In case n 1is even, figure 1.7 b) shows the needed (easy)

modifications.

Figure 1.7 c), shows the iterative process in the idealized (though

impossible) case where all breaks are as in figure 1.7 a).

1.8. The previous solutions seem symmetric since the initial line is

broken into equal parts. However the general is alternatively at the right
end or at the left end of the successive lines. This fact induces an
irregular character and introduces superfluous internal states. We shall give

a minimal time solution in which the general is always the left-—end soldier.



§ 2 — GEOMETRY AND DELAYS.

2.1. As indicated above, in the solution presented here, all created

lines will have as general their leftmost macine.

This can be done in a very convenient way by breaking lines at 2/3

of their length instead of 1/2.

We shall first describe our solution with continuous geometrical~
—diagrams : such a description applies to an idealized case where all
intersections of lines have integral coordinates (in fact this ideal case

does not exist !).

In this situation we have the following property shown by figure 2.1 a).

The initial line is broken at site G2 (so that G2 Fp = 2 R1 GZ). The new

line consists of machines %? s++.5 0. The wave G, Fy (which is the progression

from site G2 of the reflection of the initial signal G1 Rl) has the

same length as the wave G2 R2 F2 (which is the progression of the wave

created in the new line on site Gys reflected on site R2 and going back

on F, to the general of the new line).

In particular these waves G2 F1 and G2 R2 F2 reach their

respective generals at the very same time, thus synchronizing the two

. . 2n .. . . .
generals, i.e. machines 1 and 3 This is the basic step of an iterative

process which leads to the synchronization of the whole line.

REMARK. This situation occurs only if the breaking point is on machine %?w

As in WAKSMAN and BALZER's solutions, the created line and the

remaining portion of the initial line (which consists of machines

1 ... g—r—l---l) evolve independently from time EEJ-l to time 2n-1

3 3

- The evolution of the new line from time %?-—1 up to time 2n~1



is homothetical to that of the initial line from time 1 up to time 2n-1.

- The remaining portion of the initial line will be also broken at

2

. . . 2,2 . . .
1ts / i.e. at machine (39 n, creating a second new line consisting

3 b

. 2 .. .
of machines numbered from (%) n, to g-n—l, and a second remaining portion

3

of the initial line.
- This new left portion is also broken and so on.
By this way an iterative process is set up.

The creation of the new line with general %;» at site G2 is the

result of the meeting of the reflection R1 F1 of the initial wave with

the slow wave G1 G2.

The remaining portion of the initial line (machines 1 to %;ﬂ-l)
is also iteratively broken by the meeting of R1 F1 with slower and slower
waves all (seemingly) starting at site Gl'

Figure 2.1 b), shows this iterative process (with all waves) in the

idealized case.

2.2. In figures 2.1 a) and 2.1 b), we have supposed that all sites have

integral coordinates. In the discrete situation where n 1is an integer,
"

we have to modify the basic step (figure 2.1 a)) according to the "ternarity

(the remainder modulo 3) of n.

In the sequel we no longer consider geometrical diagrams but .

state~diagrams.

The initial wave fills sites (£,£) and its reflection fills sites
(£, 2n-£) (for £ € {1 ,..., n}). Suppose that the new general is created
at site G2 = (K, 2n-K). The reflection of the initial wave reaches the

old general (machine 1) at time (2n-K) + (K-1) = 2n-1.



If the new general (machine K) becomes active after a delay of j
units of time then :
- the new initial wave starts at site (K, 2n-K+j),
- it reaches the right-end soldier (machine n) at site (n, 2n-K+j+n-K),
- and goes back to the new general at time 2n-K+j+(n-K) + (n—K) = 4n-2K+7.
In this case both the new and old generals (machines K and 1) will be

synchronized if 2n~1=4n-3K+j, i.e. 3K = 2n+j+1.

This equation in K and j 1is solvable with the constraint

j € {0,1,2}.

Suppose that the initial line has length n = 3p+i with i € {1,2,3}

and p > 1 ; then :

if i1=1, we get K = 2p+l and j=0

if 1i=2, we get K = 2p+2 and j=1

if 1i=3, we get K = 2p+3 and j=2.

The value of j will be called the "delay" for the activation of
the new general. In all three cases, the new line consists of p+l machines

numbered from K = 2p+i to n = 3p+i and the delay is j=1i-1.

Figure 2.2. shows these three different cases.

REMARK. The slow wave progresses at speed l/ (so that it is graphically

2
represented by a "line of sites' of slope 2). Machine K receives this slow
wave at time 2K-1 and the reflection of the initial wave at time n+n-K= 2n-K.
The value of K determinated above is also that for which :

— the reflection of the initial wave attains machine K before (or

at the same time) that the slow wave.

- the waiting delay between these two waves is minimum.



§ 3 - THE SCHEME.
We now study the generation of the family of slow waves.
In fact it is more convenient to introduce the waves on which successive

right-end soldiers are created (rather than those corresponding to new

generals).

3.1. Define the set of sites El as the set of (K,t) such that for

some value of n (n» 4) the first break of a line of n machines occurs
on site (K+1, t) so that machine K 1is the right—end soldier at site
(K,t) (and the reflection of the initial wave is on machine K at

time t+1).

As seen in 2.2., if n = 3p+i, then machine 2p+i becomes general

at time 2n - (2p+i) 4p+i ; so that

El = {(2p+i-1,4p+i) ; p>1 ; i € {1,2,3}}.

Observe that two sites (K,t) and (K', t') are "related" if

K =K' and |t-t'|=1 or if |K-K'| =1 and t = t'. It is convenient
to connect the set §1 and introduce the set S1
S, = (p+i-1,4p+i-1) ; p>1, i € {1,2,3}} U §1

Similarly we define for every positive 1, the set of sites Ei as
the set of sites (K,t) such that for some value of n, the ith break of the
initial line of n machines occurs on site (K+1,t) (all these breaks are
relative to the leftest remaining portion of the initial line) and K > 2
also Si is defined by :

s. =5, U {®&, t-1) ; (K,t) €35.}.
1 1 1

Observe that if machine K transmits the initial wave at time ¢t
then it receives its reflection at time t+2(n-K) which has the same

parity than K. So that one unit of time out of two can be that of the
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arrival of its reflection.

This phenomenon will be called the "internal clock".
It allows us to use half of the time to get the synchronization

either with particular constraints imposed (cf. [ 3]) or with fewer states.

3.2. A "connected wave'" is by definition a non empty set W of sites such

that 1if (K,t) € W then either (K+1,t) € W or (K, t+l) € W and

(K-1,t) and (K+1,t) are not both in W,

We define the starting machine SM(W) and the starting time ST(W)
of W as follows
SM(W) 1is the smallest K such that (K,t) 1is in W for some t

and ST(W) the smallest t such that (SM(W), t) is in W.

To each site (K,t) with K > 4, we associate the site NR(X,t)
(NR for new right-end soldier) so that NR(K,t) is the new right-end
soldier after the first break in the evolution of the line of machines 1
to K, the external intervention occuring at time t-K+2 (so that the
reflection occurs at time t+1) : (K,t) being the right-end soldier, the
reflection occurs at time t+1).

The domain of NR is D = {(X,t) ; K> 4} and, as seen in 2.2,
if (K,t) in D is of the form (K,t) = (3p+i, t) where i € {1,2,3}
and p » 1, then :

[*] NR(3p+i, t) = (2p+i-1, p+t+l).

We observe that if W 1is a connected wave, then W N D and its

image NR(W N D) are empty or are also connected waves.

In fact [#] shows [#xx]
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[ %] If NR(K,t) = (K', t') then
- NR(K, t+1) = (XK', t'+1)

- | NR(K+1,t) = (K',t'+l) if K = 0 mod (3)

NR(K+1, t) K'+1,t') if K # 0 mod (3).

If the starting machine of W N D is of the form SM(W N D) = 3p+i
with p>1 and i € {1,2,3} then NR(W N D) is non empty and its

starting machine is 2p+i-1.

We now describe a process to obtain the connected wave NR(W N D)

from W N D (cf. figure 3.2).

This process is twofold. First we initialize the wave NR(W 0 D),

then we construct the whole wave from its starting site.

The initialization of NR(W N D) cannot be done in a general
setting : there is no way to get quickly the starting machine of NR(W N D)

from that of W N D.

We suppose that SM(W N D) = 3p0 + io where p, > 1 and
i0 € {1,2,3}, whence (using [*]) SM(NR(W N D)) = 2pO + io—l. This starting
machine being fixed, we do construct the starting time of NR(W N D) from
that of WN D by the following elementary process
- from site (SM(W N D), ST(W N D)) a signal o 1is emitted which propagates
along the diagonal
A(SM(WND) , STWND)) = {(SMWND)-L, ST(WND)+L) ; 0 < £ < SM(WND)-1}.
- The starting time of NR(W N D) 1is that one when this signal o reaches
machine SM(NR(W N D)).

We now describe the construction of the wave NR(W N D) from its

starting site.

First we observe using formula [*] that both sites (K,t) and



NR(K,t) (for K » 4) belong to the same diagonal

AR,t) = {(K-2, t+l) ; 0 < £ <K-1}.

The content of [%**] can be rephrased as follows
- When one moves vertically on WND (i.e. from (K,t) to (K, t+l)),
then the corresponding move by NR on NR(W N D) 1is also vertical.
- When one moves horizontally on W N D (i.e. from (3p+i, t) to
(3p+i+l, t)), then the corresponding move by NR on NR(W N D) 1is in
two cases out of three also horizontal (cases 1=1 or i=2), and in one

case out of three vertical (case i=3).

Similarly to BALZER [1], we introduce three kinds of distinguished

states s 3 propagating along the diagonals A(K,t) for those

125958
(K,t) in W N D such that (X+1,t) 1is also in W N D.

Let r € {1,2,3} be such that SM(W N D) = r mod (3)

We let the first such signal (that one which starts from a site
(SM(W N D), t)) be S, and we let these signals appear successively

in the order .... S, S. S, S, +eev..

[+] Thus the only possible signal starting from machine K (if there

L_is some) 1is sj where j = r + (K-SM(W N D)) mod (3)

j = Kmod (3).

Formula [**] can now be restated as follows

[*xx] | if (K', t') = NR(K,t) where (K,t) is in W N D then
- if (K', t') does not belong to any of these signals s.
J

(i.e. (K,t+1) €EWND and (K+1,t) ¢ W N D), then

(K', t'+1) € NR(W N D).
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[#%%] - if (K', t') does belongs to such a signal sj where j = 1 or
j £2mod (3) (case K=1 or K=2 of [+]) then (K'+l,t') is
in NR(W N D).

0 mod (3)

Hi

- if (KXK', t') does belong to such a signal 8 where j

| (case K=3 of [+]) then (K', t'+l) is in NR(W N D).

Figure 3.2. shows such a construction of NR(W N D) from W N D.

3.3. As seen in 2.2. if a line has 3p+i machines, i € {1,2,3}, then

the new general which will be created will become active after of delay

of i-1 wunits of time.

We have noticed in 3.2. that the only possible signal starting
from machine 3p+i 1is s - This shows that s, conveys the information :
"If you become general, then be active after a delay of i-1 wunits of

time".

3.4, Let S = be {K,Kk-1), (K,K-2) for K » 4}.

The very definitions of S1 and NR show that S1 = NR(SO)

(observe that S0 c D, the domain of NR). Also for all i » 1, we have

si+1 = NR(Si n D).

Figure 3.4. illustrates these process which give S1 from SO

and 1iteratively S2 s 53 5o+ from Sl’ 82 seess
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§ 4 — STATES AND TRANSITION RULES FOR AN 8-STATES SOLUTION.

We suggest the reader to constantly refer to figure 4.10 (which
gives an instance of the synchronization process) as an illustration of

the material developped in this paragraph.

Besides the matrix notation for transition rules described in 1.5,
it is convenient to denote (U,V,W) — T the transition rule which asserts
that if machines K-1,K, K+l are at time t in states U,V,W, then at

time t+1, machine K 1is in state T.

4.1. The very statement of the synchronization problem introduces

- two particular states : the quiescent state (denoted L), and the fire
(denoted F).
-~ Obviously related transition rules (L,L,L) — L and (L,L,X) — L

and (X,L,L) — L.
Clearly for t <K, site (K,t) 1is in state L.

We now introduce states and transition rules convenient to set up
the process described in § 3 : first we introduce such states in a loose
way, then we severely reduce the set of states.

It is essential to observe that the different notions associated
to signals and waves, reed not be characterized by particular states, but

rather by particular situations, that is triples of states (corresponding

to machines K-1,K, K+1).

4.2. We present a first tentative set of states and transition rules

translating the inductive step of the construction of the Si's via the

signals sj's (cf. paragraph 3). We introduce four particular states

A,B,C,S
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- all sites in U S. will be in state S.
i>1

- all sites "between" Si and Si+1 will be in state A,B ou C.

States A,B,C will be distributed so that :
- signal sy (resp. Sy ,s3) is on site (K,t) iff (K,t) 1is in state A
(resp. B,C) and (K+1,t) 1is in state B (resp. C,A).

- If sj and Sj' are successive signals going from Si to Si+1 then

all sites '"between" sj and Sj' (and Si and Si+ ) are in the same

1

state : that one common to all sites in s.,.

Following the different elements of the construction in § 3 we now
enumerate, comment and represent on figure 4.2 (anticipating alinea 4.3,

state S 1is indicated by L on figure 4.2) adequate transition rules.

1. S. emits s..
1 J

We get three rules : (A,S,8) — B, (B,S,S) — C, (C,S,S) — A.

The first one can be interpreted as follows
at time t, sites (K,t) and (K+1,t) are in Si' Site (K-1,t) is

in state A ; this means that the last signal emitted by Si was  Sj,

coded by (- C A). Site (K,t) has to emit signal Sy ¢ in order that site

(K-1, t+1) be in signal site (K, t+l) must be in state B (and

Sl,

site (K-1, t+l) must be in state A since s, 1is coded by (- A B)).

1

2). Si does not emit any sj.

We get nine rules :

(A,A,8) — A (B,B,S) —™ B (c,c,s) —C
(C,A,S) —> A (A,B,S) — B (B,C,8) —> C
(58,A,8) — A (s,B,5) — B (s,c,8) — C

Rules (+,A,S) — A starts the filling of a new diagonal

between two successive signals s, and s (with the three possible left

3 1
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neighbors). Other rules have similar signification.

3). Filling diagonals.

We get two sets of rules

(i) (A,A,B) — B (B,B,C) — C (C,C,A) — A
(A,B,B) — B (B,C,C) — C (C,A,A) — A
(ii)
(8,B,B) — B (c,c,c) — C (A,A,A) — A

Rule (A,A,B) — B allows the propagation of signal 5y ° if

(K,t) 1is on signal s, then (X-1, t+l) 1is also on signal s so that

1 1

(K, t+1) has to be in state B (and (K-1, t+l) in state A).

Rules (A,B,B) — B and (B,B,B) — B do insure the filling

of diagonals between successive signals sj's.

4). S. receives s..
i+1 ]

According to [#%*%] 1in 3.5.
We get three rules : (S,A,B) — S (s,B,C) — S (5,C,A) — A.

Rule (S,A,B) —> S can be interpreted as follows : site (K,t)

is on signal 1 and has its left neighbor on S,

i+1°
This means that Si+1 receives a signal s, on site (K-1, t+l)
and has "to move right" : site (K, t+l) has to be in Si+1’ hence in
state S.

Rule (S,B,C) —> S 1is similar with signal Sy Rule (S,C,A) — A,

interpreted in the same way, means that Si+1 receives a signal s, on

site (K-1, t+l) hence has "to move vertically", so that site (K, t+1)

is also outside S, .. Since the next signal will be s,, site (K, t+1)

i+l 1’

has to be in state A.
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5). Si+1 does not receive any s..

We get three rules :

(S,A,A) — A (S,B,B) — B (s,c,c) — C.

These rules complete the filling of diagonals between successive signals.

6). Vertical moving of S, and S. ..
i i+l

We know that if (K,t) 1is on Si and (K+1, t) 1is not on Si
then (K, t+l) has to be on Si' This leads to eleven rules :
(s,5,v) —™ S (U,s,w) — S

where U and W are A,Bor C and V is B or C.

Observe that any environment SSV corresponds to an horizontal

move of some Si hence to the reception of signals s or s

9 (and not 53).

1

The middle S in SSV must come from A or B (and not C) with right

neighbors BB or CC (recall signal sy and s, are coded par AB

and BC). Thus V 1is obtained as the result of the rules for environments

ABB and BCC : V is B or C (and not A).

7). Construction of S1 from Sg.

We now attribute states A,B or C to sites (K,K), for K » 3
If K = 1 mod (3) then site (K, K-1), which is on So’ emits a signal Sq-

Since s

1 is coded by AB and (K-1,K) 1is on Sy» sites (K-1, K)

and (K,K) have to be in states A,B. So we put state B on site (K,K).

HI

Similarly if K = 2 mod (3) (resp. K = 3 (mod (3)), then site

(K,K) will have state C (resp. A).

This gives nine transition rules :
(A,L,L) — B (B,L,L) — C (C,L,L) — A

(A,B,L) — B (8,c,L) — C (C,A,L) — A
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(S,A,L) — A (s,B,L) — B (8,c,L) — C

(the last three are in fact useless but not obviously so).

Observe that if (K,K) has state A (resp. B,C) then it does
know : "If the reflection occurs at next unit of time, then the line has
K+1 machines and K+1 = 1 mod (3) (resp. 2,3) so that the new general

will become active after delay O (resp. 1,2)".

4.3. We do observe the following key fact : replacing S by L in all

previous rules 1 to 7, one gets a compatible set of rules. This permits

to eliminate state S in profit of L.

4.4,

8). Initialization of the construction of the Si's (i>1).
According to 3.2, we observe that the starting machine of Si+1

(1 » 0) 1is machine 2, and the starting site of Si+1 is obtained via
the signal ¢ emitted by machine 4 at the smallest time t for which (K,t)
is in Si (so that we have also (3,t) in Si)' Observe that t = ST(Si N D)

and S’I‘(Si+ ) = ST(Si N D)+2 (it takes two units of time for signal o

1
to go from machine 4 to machine 2 along a diagonal).
We introduce two states G and H :
~ G marks all sites (1,t) for t > 1,
- H marks all sites (2,t) except those already marked by L (i.e.

those in U S.).
i>0

In particular, since sites (3, ST(Si N D)) and (4, ST(Si N D))
both have state L, site (2, ST(Si N D)) has to be in state H. Also,

since ¢ reaches machine 2 at time ST(Si N D)+2, site (2, ST(Si ND)+1)
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is not in Si+1 hence has to be in state H.

Apart from o, the first signal emitted by S, (i > 0) starts
from machine 4 at a time 6 such that (4,0) and (5,08) are in Si.

This signal is $q since 4 = 1 (mod (3)).

Since sy

(3,9+1) and (4, 6+1) are in states’ A and B.

is denoted by states A,B on adjacent sites, sites

In order not to introduce new transition rules we attribute state A

to all sites (3,t') for 1+ST(Si ND)<t'<s~,

Now all sites below the first signal s, emitted by Si have

1
been atributed a state (cf. figure 4.4). Note that signal ¢ is coded by

the environment HAL.

All this process necessitates the introduction of the following rules :
X,G,L) — G (X,G,H) —™ G Persistency of G.
(6,L,L) — H (G,H,L) — H Introduction and (partial persistency) of H
(G,H,A) — L Machine 3 is always in state A or L ;
when A comes, it carries signal o,
so that machine 2 gets into Si+1 and

has state L.

(G,L,A) /@ L (Partial) persistency of L on machine 2.

>

(4,L,L) — (H,A,L) —> A Machine 3 emits signal o.
(4,L,B) — L (Partial) persistency of L on machine 3

(machine 4 is always in state A, B or L).

We remark that transition rules 1 to 8 (where L replaces S)

attribute states to sites below the reflection of the initial wave.
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Remark.

Recall the internal clock phenomenon (cf. end of 3.1) : one unit
of time out of two can be, for a particular machine, that of the arrival
of the reflection of the initial wave. With the above transition rules,
this phenomenon is translated by the following fact : up to the arrival
of the reflection of the initial wave, any machine K stays in a particular
state an even number of time units.

This fact, joined to the diagonal propagation of the sj's, implies

the staircase aspect of the distribution of states on sites below the

reflection (cf. figure 4.10).

4.5, Now we consider the reflection of the initial wave and its propagation

up to its meeting with a signal S. under the hypothesis that the
i

created line is not too short (i.e. of length at least 3).

Machine K knows (at time t) that it is upon (at time t+l) to
deal with the reflection of the initial wave (of the very initial line
or of some of the created lines) if and only if
- (K,t) 1is in state L
- (K+1, t) 1is in state X or G

- (K-1, t) 1is in state A,B or C.

Moreover if (K-1, t) 1is in state A (resp. B,C), it does know
that the next general to be created will become active-after its creation-

with delay O (resp. 1,2).

All these informations will be transmitted by machine K to
machine K-1 and will progress along diagonals up to the machine which

has to become general.

In order not to introduce new states we shall code these informations
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as follows :

- the order of appearance of states A,B,C (which is ... ABC .
horizontally and vertically) is broken (hence inversed since they are

only three). This introduces the following transition rules :

A,L,X) — C (B,L,X) — A (c,L,X) — B

(A,L,G) — C (B,L,G) — 4 (C,L,G) — B

- The previous inversion is transmitted to machines along a diagonal using

the transition rules :

(A,A,C) — C (B,B,A) — A (c,c,B) — B

Due to the staircase distribution of states (cf. remark at the
end of 4.4), we have not to consider environments different from AAC, BBA

and CCB.

In this way we have set up the reflection of the initial wave. Now
we deal with the propagation of the information about the delay : it is
convenient to introduce an eighth state, denoted R, to mark the end of the
delay-transmission process. The three possible delays and the staircase
distribution of states lead to the three following sets of rules (cf.
figure 4.5). Recall that delay O (resp. 1,2) is conveyed by sy (resp.

Sy 53) which is coded by .AB (resp. .BC, .CA) and gives at reflection

.AC (resp. .BA, .CB).

~ Delay O
(A,C,X) — R | the right-end machine enters state R after one unit of
(A,C,G) —> R | time.

(A,C,R) — R } Propagation of the delay information.
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(C,bR,X) — L | After the passage of the diagonal of R;, any machine
(C,LR,G) — L | goes back to the quiescent state L (except in the case
(C,R,L) — L | when the left neighbor is the general). The last rule
(R,L,X) — L (L,L,G) — L gives the persistency of L after the
(R,L,G) — L | passage of the R;.

(R,L,L) — L

(L,L,G) — L

- Delay 1
(B,A,X) — C the right-end machine meets the conditions of delay O after

(B,A,G) — C | one unit of time so that the total delay is one.

(B,A,C) — C } propagation of the delay-information.

Plus all the transition rules described in the delay O case.

- Delay 2
(C,B,X) — A | the right-end machine meets the conditions of delay 1 after

(C,B,G) — A | one unit of time so that the total delay is two.

(C,B,A) — A } propagation of the delay information.

Plus all the transition rules described in the delay 1 case.

4.6. We now consider the meeting of the reflection of the initial wave

with any signal Si'

If at time t, machine K is in state A (resp. B,C), if its
left neighbor is in state L and its right neighbor in state C (resp. A,B)
instead of A or B (resp. B or C, C or A), then machine K knows
- (K-1,t) 1is on some Si

- (K+1, t) transmits the reflection of the initial wave.
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Hence it realizes that it has to become general of a new line at
time t+1l. This introduces the following transition rules

(L,A,C) — G (L,B,A) — G (L,C,B) — G

This new general will stay in state G up to the firing time.

We shall study in alinea 4.8 this G-stability question.

The diagonals which transmit the reflection and the delay (there
are 2 or 3 or 4 such diagonals according to the value O or 1 or 2
of the delay) crash on the vertical line of G's sites. The new general

becomes active when its right neighbor is in state R.

A simple analysis of the three types of reflection (associated
to the three delays) leads to figure 4.6., and shows that only three rules
are necessary :

(G,A,C) — C (6,C,R) — R (G,R,L) — H

Observe that after the arrival of the R's diagonal, the new general
emits the initial wave of the new right line : in fact states G and H
mark the first and second machines of the new line while other machines

of this new line are in the quiescent state.

4.7. We now consider the case where the created line has length two :

in this case the emission of the reflected wave does interfere with its

crash on the G vertical line.

We introduce four rules
(G,A,X) —™ C (G,A,G) — C : these rules complete the previous rules
(G,A,C) — C (B,A,G) — C
(G,c,X) —@™ R (6,,G) —> R : these rules complete the previous rules

(G,c,R) — R (A,C,0) — R

We do not consider environments GB. since they do not appear.
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4.8, We first study the stability of G wup to the creation of too

short lines.

This G-stability question is twofold :
— during the crash of the reflected signal,

- after the created line is operative.

The G-stability in the reflection period leads to nine cases
corresponding to
- the three possible delays conveyed by the reflected signal coming from
the right up to the activation of the new line,
— the three possible delays conveyed by the reflected signal progressing
leftwards along the remaining portion of the initial line (after the

creation of the new line).

This leads to figure 4.6 which shows the sole environments which

have to be considered, and gives the ten following rules

(L,G,A) — G (L,G,R) — G
(R,G,R) —> G (A,G,R) — G
(A,6,C) — G (B,G,R) — G
(B,G,C) — G (C,G,R) — G
(c,G,C) — G (L,G,C) — G

After the new line is activated and up to time 2n-3,
- the right neighbor of the general is always in state L or H

- the left neighbor of the general can be in any state except state G.

This leads to the following rules :

(A,G,L) — G (B,G,L) — G (C,G,L) — G
(R,G,L) — G (L,G,L) — G (A,G,H) — G
(B,G,H) — G (C,G,H) — G (R,G,H) — G

(L,G,H) — G (4,6,L) — G (4,G,H) — G
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4.9. Finally we now have to deal with short lines which cannot be broken.

A priori, such lines have length 1,2 or 3.

Since we do not consider an initial line of length one and since
the breaking process creates lines with length at least two (if n = 3p+i
where p > 1 and i € {1,2,3}, then the new general is machine 2p+i,
so that the line has length p+l and p+l > 2), we have only to consider

short lines of length two or three.

Such lines appear in three different contexts
- The initial line has length two or three.
- A created line has length two or three.

- A remaining portion of a line has length two or three.

The firing synchronization will be obtained as follows

- up to time 2n-3, no two adjacent machines are both in state G,

at time 2n-2, all machines are in state G,

at time 2n-1, all machines are in state F.

The G-synchronization at time 2n-2 leads to figures 4.9. and to
the following transition rules :

(G,L,X) — G } Rule necessary for an initial line of two machines (az)

(H,L,X) — H | Rules necessary for an initial line of three machines

(G’H’H) —_— G (a ).

3
(H,H,X) — G

(G,R,X) — G } Complementary rule necessary for rightmost created lines

of length two (b,).

2
No new rule is needed for the case of a rightmost created line

of length three (b3).
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(G,R,G) — G } complementary rule necessary for the generic created line

).

of length two (c2

(H,L,G) —> H | complementray rules necessary for the generic created

(H,H,G6) — G | line of lenth three (c3).

(G,L,G) — G } complementary rule necessary for the remaining portion of

a line, with length two (dz).

No new rule is needed for the case illustrated by (d3).

Lastly we consider the stability of G within the context of
short lines. Figure 4.9 shows that at time 2n-3, all machines are in
state G,H,R,L. To complete the stability of G (from time 2n-3 to

time 2n-2) it suffices to introduce a single new rule : (H,G,R) — G.

With these rules all short lines are G-synchronized at time 2n-2.
The whole initial line, being covered by these short lines, is thus

G-synchronized at time 2n-2.

It is now clear that the firing synchronization is insured by the

three following rules

(6,6,G) — F (X,6,G) — F (6,6,X) — F

4.10. Now we have all necessary transition rules which fill the seven

matrices of figure 4.11.
Observe that no two rules are contradictory.

Also observe that the blanks in the matrices correspond to
environments which are not met, hence for which no transition rule is

necessary.

Figure 4.10 shows the synchronization of an initial line of 29

machines.
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§ 5 - A SIX STATES MINIMAL TIME SOLUTION.

5.1. In this paragraph we show how to eliminate two states in the

preceding solution. It is easy to eliminate state H. The matrices of the
8-states solution show that state R appears very few times. We are going

first to eliminate state R and then state H.

To do this we shall introduce new rules, some of them, marked
by [*], contradicting old ones. To get over the contradiction we shall
also abandon some old rules and introduce some new ones. And so on up to

an equilibrium.

5.2. Observe that no B-diagonal belongs to the part of the reflection

which crashes on a G vertical line (cf. figure 4.10). This induces us
to replace state R by state B and leads to the following transitions

rules (suggested by figures of § 4)

(B,L,L) — L [* 1] (B,L,X) — L [* 1] (B,L,6) — L [* 1]
(c,B,X) — L [* 2] (C,B,G) — L [* 2]
(A,C,X) — B (A,C,G) — B (c,B,L) — L
(G,B,L) — H (6,B,G) — G (G,B,X) — G
(A,C,B) — B (,c,B) — B (¢,C,G) — B
(G,C,X) — B (4,G,B) — G

Unfortunately

- rules marked by [# 1] contradict rules
(8,L,L) — C (B,L,X) —> A (B,L,G) — A
- rules marked by [* 2] contradict rules

(C,B,X) —> A (C,B,G) — A
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B

to sites on a signal

2

5.3. In order to maintain rules marked by [* 1] we =

BLL below the reflection of the initial wave.

and the precceding

g T A
upnress ©oe

T
signal s..

Using

the internal clock phenomenon we replace the portion of the state~diagr.m

BBL
BLL by

By this way, we also suppress the environments

BCL
GLL

occuring on the reflection of an initial wave.

BLX and RLC

Looking at figures 4.10 and 4.2, we see that this leads to
- the suppression of
(B,L,L) — C (A,L,L) — B {B,B,L) — B
(B,L,G) — A (B,L,X) — A (A,B,L) ~—>» 3 (L,B,L)
- the introduction of
(L,G,L) — B [* 3] (G,L,L) —— C 5
(A,L,L}) — G (B,B,L) —> G (A,A,G) —> B
(L,B,L) — G (B,8,6) — B (A,G,L) —> B [* 3]
(G,L,B) — L (6,L,0) — L (L,B,G) — B
(8,6,L) — B [* 3] G,L,6) — A& [* 3] (G,L,X) — A [* 4]
Unfortunately rules marked by [% 4] and [* 3] contradict
rules
(L,G,L) — G (6,L,L) — H
(A,G,L) — G (B,G,L) — G (G,L,G) —> G {(G,L,X
5.4. In order to maintain rules marked by [* 2] we modify rhe

reflection of the initial wave in the case of delay 2. To do this we rvesis

the portions of diagrams
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BAC2Z BAC?Z
AZ CBAZ where Z 1s state X
by
CCBZ CCG2Z or G.
CL Z CL Z

By this way we suppress the environments CBX and CBG.

Looking at these portions of diagrams and figure 4.5 (for the

reflected wave), we see that this leads to.

— the suppression of :
(C,L,X) — B (C,B,X) — A

(C,L,G) — B (C,B,G) — A

- the introduction of :

(C,L,X) — G (C,G,X) — A (c,c,G) — B
(C,L,G) — G (C,G,G) — A (G,H,6) — G
(G,G,C) — G (G,G,B) — G

In the case the line to be created is going to be short the preceding

diagrams have to be modified.

To suppress the environments CBX and CBG we have to replace

the portions of diagrams

LGAZ LGAZ
LCB?Z by LCG?Z where Z 1is state X or G.
CL 2 CL 2

This introduces the rule : (L,C,G) — G.

5.5. Observe that the environments of the rules marked by [#* 3] occur

only when machine 2 is in state L. In order to maintain these rules

marked by [* 3], we always (in fact up to time 2n-2) place machine 2 in
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state H. To do this, we replace the two portions of diagrams :

GLA GHLTB
GLA GLLB
GHA GLAB
by :

GHL
GHA GHLB
GHA GHLB
GHA GHAB

This leads to :
- the suppression of rules
(4,G,L) — G (G,H,A) — L
(L,G,L) — G (A,G,L) —™ G (B,G,L) — G

(C,G,L) —> G

— the introduction of rules :

(G,H,A) — H (4,A,B) — L

This new state-value introduced for machine 2, modifies also the
G-synchronization in the case (dz) (see figure 4.9). This leads to the

suppression of the rule (G,L,G) — G and the introduction of the rule

(G,H’G) —_— G-

Now there remains only two contradictory rules : (G,L,X) — A
and (G,L,L) —> C. We observe that the rule (G,L,X) — G 1is used only
when the initial line is of length two : when the rightmost new line is

of length two, the rule (G,B,X) — G introduced in 5.2 is used.
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We observe that rule (G,L,L) — H 1is used only to
set up machine two. Thus the two remaining contradictions

concern only site (2,2).

5.6. Now we eliminate state H ; this suppresses rule (G,L,L) — H.

Rule (G,B,G) — G (resp. (G,L,L) — A) suggests us to replace state H
by state B (resp. C). In fact using the internal clock phenomenon we shall
replace state H alternatively by states C and B. Observe (look at

site (3.21) in figure 5.6) that we must introduce the rule (C,L,G) — L
which contradicts the rule (C,L,G) — G introduced in 5.4. To avoid

this contradiction, we shall code states of machine 3 in a particular way
machine 3 will be alternatively in state A and in state G. To do this

we replace diagrams of figure 5.6 a) by diagrams occuring in figure 5.6 b).

This leads to :
~ the suppression of all the rules in which a state H occurs and of the
rules :

(L,B,L) — G (L,G,L) — B (L,A,L) — A

- the introduction of rules

(G,L,L) — C (G,C,L) — B (G,B,A) — C
(G,C,G) — B (B,A,L) — G (G,B,L) — C
(B,A,B) — G (C,G,L) — A (G,G,L) — B

(A,B,C) — L

(A,B,L) — G X,G,B) — G X,6,0) — G

These new site values for 2 and 3 modify the G synchronization

when :
- the initial line is of length three or four (cases ag,a, of figure 4.9)

- the remaining portion of the initial line is of length three of four



(cases Cqs €, of figure 4.9).

This leads to the introduction of the following rules
(A,B,A) — B (G,B,C) — B (B,C,6) — G (B,C,X) — G

(8,G,6) — G (B,G,X) — G.

By this way we obtain a six-states automaton which synchronizes

all lines consisting of more than two machines.

The special case of an initial line of two machines is solved

by the two following diagrams

XFFX XGBL the first diagram insures the synchronization of an
X AAX XACL initial line of length 2 ; the second one deals with
XGLX XGLL the consequences brought by the first.

This leads to the introduction of the following rules
(A,C,L) — B (X,A,C) — G
(X,G,L) — A (X,A,A) — F (A,A,X) — F

and the suppression of the rule (X,G,L) — A.

5.7. Observe that these modified rules have the following consequence :

a site (K,t) in Si receives state L 1if and only if K > 4 (contrary
to the situation described in § 4 ; this is due to the particular coding

device of machines 2 and 3).

.8. Now we have all necessary transition rules which fill the five

(%]

matrices of figure 5.7.
Observe that no two rules are contradictory.

Also observe that the blanks in the matrices correspond to

environments which are not met, hence for which no transition rule is
necessary. Figure 5.8 shows the synchronization of an initial line of 29

machines.
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§ 6 ~ PROOF OF CORRECTNESS.

6.1. We now prove that the automaton defined in §5 (whose transition

rules are indicated on figure 5.7) is indeed a minimal time solutiom of

the firing squad synchronization problem.

The proof will proceed by induction on the length n of the initial
line : the synchronization of a line of length n = 3p+i (with i € {1,2,3})
is reduced to the synchronization of lines of length 2p+i-1 and p+1

(corresponding to the break at the 2/3 described in paragraph 2).

In order to get such a reduction, we first prove some facts relative
to :
- the behaviour of the line below the reflection (the scheme),

- the reflection itself.

The following fact will be useful :

Fact 1. Every site (K,t) with K >t has state L.

It is a trivial consequence of the rules (L,L,L) — L and
L,L,X) — L.
Finally we shall often use the fact that the distribution of states

on a set X fully determines that on a set X bigger then X as illustrated

by figure 6.1.

6.2. It is clear (cf. the study of signals sj in § 3) that diagonals
are the esseptial objects to consider. Due to the internal clock phenomenon,

the most pertinent object is that of double diagonals DDm :

Notation 1.
If 7<m<n, we let DDIn be the set

{(m-i, m+i), (m—i,m+i+l) ; i € {-1,0 ,..., m-1}}
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(i 1is allowed to be =1 in order that DDm captures two sites

corresponding to machine m+1.

As can be seen in figure 5.8, a double diagonal DDm consists
of several "unicolor" pieces. This leads us to introduce truncated double

diagonals

Notation 2.

If 7<m<n and 1 <K< j<ml we let DDm 3K be the set
’ ’

DDmﬂ {(L,t) ; R<L<j}={(m-i,m+i), (m~i,m+i+1) ;i € {m-j ,..., m=K}}.

REMARK .
Observe that indices m,j,K are in decreasing order : this is

indeed the order of appearance of machines when one progresses upward on DDm'
We distinguish some families of basic truncated double diagonals.

DEFINITION 1.

Suppose j » K+3 and K » 2.

1). We say that DDm,j,K is A-basic (resp. C-basic) if :

(a). its rightmost and leftmost sites (j, 2m-j), (j, 2m—j+1)

and (K, 2mK) (K, 2m-K+1) have state L.

(B). its other sites (i, 2m-i), (i, 2m-i+l) have state A
(resp. €) (with i in {m-j+1 ,..., m-K-1}).

2). We say that DDm,j,K is B-basic is condition (o) above is
satisfied and

(B') its left to rightmost sites (j-1, 2m—j+1), (j-1, 2m~j) have
states B and G,

its other sites (i, 2m-i), (i, 2m~i+l) (with 1 in

{m-j+2 ,..., m~K+1}) have state B.

3). DDm,j,K is basic if it is A, B or C basic.
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REMARK .
The reason of the condition j > K+3 1is that the extreme sites

are distant enough and do not directly interfer.

The next two lemmas describe some possible evolutions in time

of truncated double diagonals (up to the arrival of the reflected signal).

LEMMA 1.
Let j » K+3 and K » 2.

1). If DD is B-basic (resp. C-basic) and if the rightmost

m, j,K

sites of DD (i.e. (j,2m-j+2) and (j, 2m~j+3)) have

m+]-sj9K

state L then DDm+1,j,K is also B-basic (resp. C-basic).

2). 1If DD is A-basic and the rightmost sites of DD

m,j,K IIl+].,j,K

have state L and if
(%) | sites (K-1, 2m-K+1) and (K-1, 2m-K+2) have states different

from L,

o) 1 b 0 1 1 o b o 1 md et ) o gk et e b 1 g et

then DDm+1,j,K 1s also A-basic.

Proof. We refer to figure 6.2 a).

Case C-basic.
Using rules (c,Cc,L) — ¢, (c,C,C) — C and (L,C,C) — C we
see that all sites (i, 2m—i+2) (and then all sites (i, 2m-i+3)) for

i € {K+1 ,..., j-1} are in state C.

Observe that the enviromment (L,C,L) does not occur : they are at

least two sites between the leftmost and rightmost sites of DD_ . K since
b b
j > K+3.
States marked by U,V on figure 6.2 a) (on sites (K-1, 2m-K+1)

and (K-1, 2m-K+2)) are not X since K # 1. This fact and the tramsition
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rules (-,L,C) — L where . 1is any state different from X, show that

(K, 2m-K+3) , (K, 2m~K+2) have state L.

This proves that DD is C-basic.

m+l1,j,K
Case B-basic.
We proceed in a similar way. Observe that (B,B,L) — G puts

state G to site (j-1, 2m-j+3). This imposes us to consider the case

j = K+3 (see figure 6.2 a)) for which we use rule (L,B,G) — B.

Case_A-basic.

We proceed as in the case C-basic. The lack of any transition rule

with enviromment (L,L,A) 1is supplied by the hypothesis (¥%). o

LEMMA 2.

Let j»K+3 and K> 2 and 7 <m <n.

1). 1f DD 5K is A-basic (resp. B-basic) and if the rightmost
b bl
sites of DDm+1,j+1,K+1 (i.e. sites (j+1, 2m~j+1) and
j+1 , 2m—3+2 h . i - i
(3 m-j+2)) ave state L then DDm+1,J+1,K+l is B-basic

(resp. C-basic).

2). 1If DD_ . is C-basic, if the rightmost sites
m, J,K

have state L and if condition (*) of lemma 1 is satisfied

DDm+1,j+1,K

ot et ot b ) b bt e el ) ot ) D e gt et e

then DDm+1,j+l,K is A-basic.

The proof is similar to that of lemma 1 and is illustrated by

figure 6.2 b).

Looking at figure 5.8, we see that double diagonals consist of

basic truncated double diagonals and a terminal portion somewhat different.
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DEFINITION 2.

Let 7 <m<n ; a truncated double diagonal DD (resp.

m,4,1

DD resp. DD ) 1is called a 4-end (resp. 5-end, resp.

m,5,1°

6-end) 1if its site-values are those indicated by figure 6.2 c)

m,6,1

case 1 (resp. case 2, resp. case 3).

LEMMA 3.

Let 7 < m < n., There exists a finite sequence of integers

(jT gec ey j? ) such that
m

.m .m .m .m
4 < 3 < ... <j J,< ... < ]J; =mtl

Km £+1 £ 1
and
1). for every £ in {1 ,..., Km-l} the portion of double

diagonal DD o .m is basic.
m’jz ] J£+1
2). The integer j? is 4,5 or 6 and the terminal portion
m

DD is a j? - end.
.m »
m,Jﬂ , 1 m
m

0 b (ot e o o e b b ot g 3 2 b b b e b b g et g gt el e et

Proof. The argument is an induction on the integer m 1in the segment

[z ,..., n-1}.

(i). Case_m=7.
Observing that the site-values of DD7 is independent of n

(n > 8), it suffices to check this case with any particular value of n.

This can be done using figure 5.8.

We now assume that the lemma is true up to m (m < n-2) and prove
the case m+l. The proof is quite long and occupies (ii) to (v) below.

. .m+ .m+1 .m+l
(ii). We define £m+1 and the sequence J? 1 s oy J? yo sy J? as
m+1

follows :
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~ . . .m )
[1] - £m+1 is £m+1 if sz-6 and all truncated double diagonals
DD (with £ in {1,...,4£ -1}) are A or B-basic ;
o @l m
9J£9 J£+1
£ is £ otherwise.
m+l m

- For £ in {1 ,..., £}
m

j?+1 is j?+1 if all truncated double diagonals DD o o.m with
m’js’ js+1

s € {1,...,4£-1} are A or B-basic ; j?+1 is j? otherwise.

In particular for £=1 jT+1==jT+1 = m+2.

.m+l
| - If £m+1_. Em+1 then ip =4,
m+1
We observe that if j?+1 = j? then j2+1 = j: for all s in

L ,..., Km} and ﬂm+ =L .

1 m
(iii). We first observe that condition (*) from lemmas 1 and 2 is always
satisfied for the DD with £€ {1 ,..., £ -1}
.m .m m
m;Jz ) JZ"']_
- Case £ =12 -1.
m

It is clear from property 2) for DD m and figure 6.2 c)
m,jz ’ 1
m

that sites (j? -1, 2m—j? +1) and (j? =1 ,2m—j§ +2) are not in state L.
m m m m

- Case £ <4 -1.
m

It is clear from property 1) for DD m m and definition 1
m,J£+1 s J£+2
that sites (j?+1— 1, 2m—j2+1~+1) and (j2+1-1, 2m—j?+1-+2) are not in

state L (they are both in state A or both in state C or in respective

states G,B).

(iv). We first prove a part of property 1) for DDm : double diagonals

m+l  .mtl
m+l> Jg 0 dge1

+1
DD are basic for £ € {1 ,..., mel} (the only. possibly
.. .m+l  .m+l _ . . .

remaining DD .. ,sz ,J£m+1 when ﬂm+1 = Zm-Fl will be studied in

point v)). The proof is by induction on £ in {1 ,..., Km—l}.
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% Initial step £=1.

Using Fact 1, we know that sites (m+2, m+l), (m+2,m) are in

. m . . s
state L. Since m+l = J;» this shows that DD .m satisfies the
m,m+1, j,y

hypothesis of lemma 2. Noticing that the different cases in lemma 2 correspond
. . e e .m+l .m .
to the different cases in the definition of iy from iy the conclusion

of lemma 2 establishes that DD mtl is basic.
m+l,m+2,j2
* Induction step.

We suppose that DD is basic (with 1< /£ < Km-l).

m+l . m+1
m*'lan ,J£+1

First we observe that the rightmost sites of DD

.m+l .m+l
m+1

’Jfﬁ-l s J£+2
are the leftmost sites of DD 1 .m+l” The induction hypothesis
m+19.]£ ’J!.+1

(over £ ) insures that these sites are in state L.

.m+1 .m

- Case Jpe1 = J£+14'1.

The very definitions of j?:} from j?+1 show that every

DD m om with s € {1 ,..., £ -1} is A or B-basic. Thus, the value
m’JS ’ js+]_
.m+l .
of Jper 1s
j2+2+1 if DD

m,j$+1, j?+2 is A or B-basic

.m cp . .
Jpen if it is C-basic.

Since sites (j?+1*‘1, 2m—j?+1-+1) and (j?+1'*1 ,2m—j?+1-+2)

. . . . .m+l _ .m _
- being the rightmost sites of DD m+l  .mel SimCe Jp g T J£+1'+1
mrl3pe 0 g4
have state L, the hypothesis of lemma 2 is satisfied for DD .

.m .m
Ml pr1 > Ip42
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Observing that the different cases in lemma 2 correspond to the
. e .m+1 .m .
different cases of the definitions of Jp4o from Jpen s we get the basic

character of DD

ml .m+l .m+1l

2Jp+1 2 g2

.m+l  .m
- Case Jper = Jpar-

Recall (cf. end of point ii)) that this equality implies j?:; = j?+2.

Since sites (jlz+1 ,2m—j$+14-2) and (j$+1, 2m—j$+14~3) -being the

. . . .m _ .m+l
rightmost sites DD m+l .me1 STPCe Jpiq T Jpyg havg state L,

m+1,]£+1 ’ J£+2
the hypothesis of lemma 1 is satisfied for DD .
.m+l  .m+l
m+19J£+19J£+2
Thus DD -which is the same as. DD - is

m+l .m+]l . m+] +1 . .m
’J£+1’J£+2 m 5J£+19J£+2

also basic.

(v). Up to now, we have shown that the double diagonals DD mel mtl

m+1aJ£ ’Jf_"'l
will £ € {1 ,..., Zm—l} satisfy condition 1) of lemma 3. We still have

to study the remaining part DD of DDm

m+1

. +1°
m+1,J£ , 1
m

It is convenient to consider two cases corresponding to the possible

values of j?+1 from j? .
m

.m+1 1]
- Case g = 3p -
m m

Notice (as above in (iv)) that sites (j? , 2m—j? +2) and
m m

.m .m . .
(JK , 2m ip 3) -being the leftest sites of DD e+l mel have
m m m+1,J£ -1 31p
state L. m m
Using the induction hypothesis over m, DD o is (according

m,jz , 1
m
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to property 2) of the lemma 3 at step m) a 4 (or 5 or 6)-end. As illustrated

by figure 6.2 d), the state-values of sites in DD mel are completely

m+1,J£ , 1
m

determined and this truncated double diagonal is also a 4 (or 5 or 6)-end.

Note : In this case, we always have Km+1 = Km (which agrees with point ii).
.m+1 .m
- = +1.
Case ip ip 1
m m

Notice (as above in iv)) that sites (j? +1 ,2m—j? +1) and
m m

.m .m . .
(JZ +1, 2m ip +2) -being the leftest sites of DD el ]
m m m+19J£ _1’J£
have state L. o "
Using the induction hypothesis over m, DD m is a 4 (or 5
1
’

m, j
or 6)-end. Km

As illustrated by figure 6.2 e) the state values of sites in

DD are completely determined.
m+1 j?+l 1
’ b
m
It is trivial to check that :
- if DD o is a 4-end (resp. 5-end),
m9j£ y 1
m
then DD is a 5-end (resp. 6-end).
.m+1
m+l, , 1
e
m+1
In this case we have £m+1 = Km which agrees with point ii).
- If DD o is a 6-end, then :
m’jf, s 1
m
* i 4
DDm+1’4’1 1s a end

* is A-basic.
DD 41,7,4
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In this case we have j? = 6, j?+1 =17, j?+1 = 4 and
m m m+1
£m+1 = £m+1 which agrees with point ii).
This complete the proof of lemma 3. o

The following notion is quite convenient.

DEFINITION 3.

The sets of sites U and V included in {1 ,..., n} x {1 ,..., 2n-1}
are n-equivalent if there exists a translation T : N ——-’]N2

such that :

- T@) =V,

- For every (K,t) in U, sites (K,t) and T(K,t) have the same

state in the state diagram of an initial line of n machines.
We shall use the following consequences of the above proof :

LEMMA 4.

1). If j? = j?+1 then the translation (¥X,t) — (K, t+2) maps

1

1

1

1 DD onto DD and respects the state values.

i mib,1 m+1 o+l 1

} 9J£, 9J£ ’

1 . .m  .m . .
. < -

i 2). Let 1 <4 Kmo, the function m — Jp=dpn with domain

i {mo yoe+y D=1} 1is not decreasing.

.m+
Proof. (1). From the proof of lemma 3 we see that the condition j? = J? 1

implies :
- £ =L
m+1 m
- for s in {{f,..., mel} the set DD ot eq 2nd its state
ml, 0 G,
values is obtained from DD 0 .m (and its state values) via the
m’js b4 js+1

translation (K,t) — (K, t+2).
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- The set DD mel and its state values is also obtained via this
m+1,j£ s 1
m+1
translation from DD o .
msjz b 1
m

(2). This is a trivial consequence of the proof of lemma 3 : in

m+l .m+l .m .m .
fact (JK "J£+1) - (Jz"J£+1) is 0 or 1. n]

The next lemma states an essential property of the scheme, i.e.
the distribution of states below the reflection. It will be basic to prove
that the remaining portion of the initial line after the break at the
2/3 evolves -for the part duriné and after the reflection- as an initial

line of length (cf. 6.1).

20
3
LEMMA 5.

Let 12 <m<n be of the form m = 3p+i with p > 4 and

1

1

h

1i€ {0,1,2}.

1

1 . .. . .
i 1). DDm,m+1,2p+i is A (resp. B,C)-basic if i =0 (resp. 1,2) ;
i also j? = 2p+i.

1

1

1 2). DDm,2p+i,l is n—equivalent to DD2p+i—1 = DD2p+i—1,2p+i,1'

Proof. We argue by induction on the integer m. The case m = 12 1is easily

checked (cf. figure 5.8).
Suppose now that properties 1 and 2 hold for m.

(i). From Fact 1 we see that sites (m+l,m) and (m+l, m-1)

have state L. Since DD is basic, its leftest sites (2p+i, 2m—2p-i)

m,m+1,2p+1
and (2p+i, 2m~2p-i+l) have state L. Due to the decomposition of DDm in
basic and end DD's (lemma 3), their neighbors (2p+i-1, 2m-2p-i+l) and
(2p+i-1, 2m-2p-i+2) have states different from L. This shows that the

hypothesis of lemma 2, including condition (%), are satisfied by DDm,m+1,2p+i'
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Applying lemma 2, we are led to the three cases :

- Case 1 = 0.

. . . D oy _ .
By induction hypothesis, Dm,m+l,2p+1 i1s A-basic and lemma 2

. B ‘. .. . +1 = Ta+s
shows that DDm+1,m+2,2p+i+l 1s B-basic. Noticing that the equality m+l = 3q+]j

with j € {0,1,2} implies q=p and j=i+l=1, so that 2q+j = 2p+i+l, we

see that the first part of property 1) holds for m+l.

- Case i = 1. Similar.
~ Case i = 2,
By induction hypothesis DDm,m+1,2p+i is C-basic and lemma 2
shows that DD is A-basic. Noticing that the equality m+1 =8q+j

m+l,m+2,2p+i

with j € {0,1,2} implies q = p+l and j = 0 so that 2q+j = 2p+2 = 2p+i,

we see that the first part of property 1) holds for m+l.

(ii). In the three previous cases, the basic character of

. . .mtl . _ . . .
DDm+1,m+2,2q+j implies that j, ~ = 2q+j where m+l = 3q+j with j € {0,1,2}.
We consider two cases according to the value of j?+1 from j?.
- Case .m+l _ .m
P Io°

Point 1 of lemma 4 and the induction hypothesis prove point 2 of

this lemma for m+l.

- Case j§+1 = j$4-1.

By induction hypothesis DD is equivalent to

. DD . . g
m,2p+i,l 2p+i~1,2p+i,1

Sites (2p+i+l, 2p+i) and (2p+i+l, 2p+i-1) have state L by Fact 1.

Sites (2p+i+l, 2m-2p-i+1) and (2p+i+l, 2m-2p-i+2) have state L because

j?+1 = j? + 1 = 2p+i+l and these sites are the leftest ones of DD ml”
m+1,m+2,j2
Thus the two sets

U= U {(2p+i+l, 2p+i), (2p+i+l, 2p+i-1)  and

DD2p+i—1,2p+i,1

\Y U {(2p+i+l, 2m-2p-i+2), (2p+i+l, 2m-2p—-i+l)}

DDm,2p+i,1

are n-equivalent via the vertical translation of vector (0,2m-2(2p+i-1)) = (0,2p+2).
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Notice that the state-values of DD (resp. DD

m+l,2p+i+l,1 )

2p+1,2p+i+l,1
are fully determined by those of V (resp. U) (see figure 6.2 f)). We thus

deduce that DD ) _ .
a mt1,2p+i+l, 1 and DD2p+i,2p+i+1,1 are n-equivalent.
Observe that the equality j?+1==j?+1 implies that DD is
m,m+1,j?

A or B-basic (cf. point ii) of the proof of lemma 3). Thus, point 1) of lemma 5

shows that if m=3p+i then i # 2.
Finally, recall that if m+l = 3q+j (where j € {0,1,2}) then
2q+j = 2p+i+l (where m = 3p+i with i € {0,1}).

Thus the n-equivalent preceding sets are exactly those of point 2

of lemma 5 for mtl. a

6.3. The two next lemmas describe some properties of the reflection

of the initial wave. The first one considers the emission and transmission

by the right—end soldier of the reflected initial wave.

LEMMA 6.
Let n > 25, n = 3p+i with i € {1,2,3}.
Let Z and U be the sets

Z

{0, 2n-L+i+z) ; L € {jlz‘“1+5 ..., n}; z € {-1,0,1,2,3}}

[§]

{(£,2n-L+u) ; £ € {jrzl—1+5,....,n};u€{0,...,6} (cf. fig. 6.3 b)).
These sets are non empty and :

1). The distribution of states on Z is as indicated in figure

6.3 a), i.e. every vertical section has states CBLLL from bottom

to top.

2). The distribution of states on U completes that of Z as

indicated in figure 6.3 a).

Case i=1: U~NZ consists of two L-valued diagonals above Z.

Case 1i=2 : U~NZ consists of two diagonals, one A-valued below Z

e ) 3 e et e b e o e e o o g gd g et b g £ e £ g et o o bt ) ot ) ) et

and the other L-valued above Z.
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Case 1i=3 : UNZ consists of two diagonals below Z. The highest

one is A-valued, the other one is B-valued except its rightmost

b o b g b b ot el

site which has value G.

Proof. When n = 25, we have j§4 = 16 and the truncated double diagonal

DD has sites corresponding to ten adjacent machines. Using point 2
24,25,16
of lemma 4, we deduce that for all n » 25 , DD n—-1 has at least ten
n_19n’j2
adjacent machines.

As illustrated in figure 6.3 b), DD n-1

fully determines
n_lan9j2 ’

the set U. Observe that this set is non—empty since there are least six

(indeed ten) adjacent machines involved in DD n-1°
n—l,n,j2

Observing that n-1 = 3p+ (i-1) with (i-1) € {0,1,2}, lemma 5

-applied to DD 4 — sgives the three distributions of states on U
n_19n9j2

(as illustrated on figure 6.3 a)). o

REMARK.

Lemma 6 proves that the delay is really conveyed by the reflected

wave as indicated in paragraph 4.

The following lemma considers the crash of the reflection of the

initial wave and completes lemma 6.

LEMMA 7.
Let n > 25. The distribution of states for sites corresponding

to machines j;—l-Z yo oo j; +5 and to the arrival of the

reflection of the initial wave is always that of some of the nine

et et gt b e gt b e e e e

cases indicated in figure 6.3 c).
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Proof. Let V be the set

DD u{(j’z“1+5,zn-j‘2"1-5+z) s £€1{0,..., 6}}.

.n—1 .n-1
n—lst +5$J2 -2

The set V is fully determined by V.

We first observe that j§4 > j§4+3 and 25 = jil‘ > j§4+6 (easy
check, cf. figure 5.8). Point 2 of lemma 4 permits to extend these inequalities :
jg_l >-j§-14-3 and n = j?-l >-j;_1-+6. This insures that :

DDn_l .n—l_"5 .n—l__zC [DDn_l .n-1 .n-1 Y DDn_l .n—l]'
,J2 st :J2 sJ3 ’n’JZ
By lemma 3, DD is A or B or C-basic.
.n-1 .n-1
n—lan s J3

From lemmas 5 and 6 the distribution of states on
DD L1 and {(j;_1-+5 ,2n—j2_1-5+-£), £€{0o,..., 6}}

n—lsn’jz

(which is included in the set U of lemma 6) depend only on the remainder
of n modulo 3. Thus there are only nine types of distribution of states

on the set V.

Observing that vV is fully determined by V, we get the nine cases

of figure 6.3 c). o

6.4. In order to compare states—diagrams for inital lines of different

lengths, it is convenient to introduce the following notation and definition :

Notation 3.
Let Y be a set of sites included in {1,...,N}x{1,..., 2N-1}
and N<n. By <Y > ~we mean the restriction to Y of the

state-diagram of the evolution of an initial line of length n.

Also < K,t >ﬁ denotes < {(K,t)} >
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DEFINITION 4.

Let Y and Z be two sets of sites. By <Y > ~< Z >, ve
mean

- <Y >ﬁ and < Z >ﬁ are both defined

- there exists a tramslation T : (K,t) — (K-a, t-b) such that

T(Y) = Z and T respects state-values (i.e. < T(K,t) > T <Kt >

for (K,t) in Y).

REMARK.

In case n=m, then <Y > ~ < Z > if and only if Y and Z

are n—equivalent in the sense of definition 3.

Notation 4.

t . . . . .
HK . 1s the following portion of a constant-time line
b

{(,t) ; K<L<jl.

LEMMA 8.

Let n» 25, n = 3p+i with 1 € {1,2,3}, then

t 3
2p+1i,3p+i >3p+i ~= H1,p+1 >b+1

for t = (2n-1) - [2(p+1)-1-3] = 4p+2i+1 (i.e. the distribution

< H

of states at time 3 for an initial line of p+1l machines is that

at time t for the p+l rightmost machines of an initial line

et £ 4 o e b g e b et g e et

of n machines.

Proof. It is clear that the distribution of states on Hi p+l for an
b

initial line of length p+l is GBALL ... LL.
Using lemma 7 for a line of n machines, it is easy to check that
in the nine cases of figure 6.3 c)

- sites (2p+i, t), (2p+i+l, t), (2p+i+2, t) are in respective states GBA.
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- sites (2p+i+2, t=1), (2p+i+2, t-2), (2p+i+3, t-2), (2p+i+3, t-3) are

in state L.

By lemma 5, j;—l = 2p+i-1 ; thus lemma 6 insures that all sites in
the set
W= {(, 2n-L+i+1), (£, 2n-£+i+2) ; £ € {2p+i+4 ,..., n}} have state L

(for an initial line of n machines).

Observing (cf. figure 6.4 a)) that the set

WU {(2p+i+2, t=1), (2p+i+2, t-2), (2p+i+3, t-2), (2p+i+3, t-3)} fully

t

2p+i+3, dp+i ? we deduce that all sites in
I’

dtermines a set containing H

t

H2p+i+3,3p+i have state L (for an initial line of n machines).

t

. . > .
2p+1,3p+i  3p+i are

This proves that the states of < H
GBALL ... LL.

Taking T : (h,8) — (h-2p-i+l , 6-t+3), we see that :

t 3
< Hyoei,3p+i T3p+i T < Hi,pel Tpel

Notatijon 5.

LDD; i is the following set of sites (it is the union of an
2

initial truncated double diagonal and a triangle) (cf. figure 6.4 b)) :

t R
LDDm,j = DDm,j,l U {(h,8) ; h<j and 6 <t and h+6 > 2m+l}.

LEMMA 9.

Let n » 25, n=3p+i with 1 € {1,2,3}, then

4p+2i+1 > o~ < LDD2p+21—1

<IDD 1, 2p+i-1 Tn 2p+i=2,2p+i-1 ~2p+i-1

(i.e. the distribution of states at time 2p+i-1+b (with
b€ {0,..., i})) of the b rightmost machines of an initial wave
of length 2p+i-1 is that at time 4p+i+l+b (with b € {0 ,..., i})

of the b left neighbors of the machine 2p+i of an initial

ot et e pd ) 3 ot ) 1 g (o e e e

line of n machines.
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Proof. (i). Observing that if n = 3p+i with n € {1,2,3} then
n-1 = 3p+i-1 with i-1 € {0,1,2}, lemma 5 insures us that

< DD <

n-1, 2p+i-1,1 Tn ~ < PPopsi-2, 2p+i-1,1 Tn°

Let I be the set {(h, h-£) ; with 0 <. < h-1 and h < 2p+i},

then DD is fully determined by I U {(1,1)}.

2p+i-2, 2p+i-1,1

By Fact 1 we have < I > =<1 > . (all sites have state L).
n 2p+i-1

Since < 1,1 >h =< 1,1 > = G, we have

2p+i-1

< DDyori-2, 2p+i-1,1 Tn " < PPopyi-2, 2p+i-1,1 T2p+i-1°

. ~ < . . . e
Thus < DDn—l, 2p+i-1,1 “n DD2p+1-2, 2p+i~1,1 >2P+1_1

(ii). States < 2p+i-1, 4p+i+l+b > with b € {0 ,..., i} are
indicated by lemma 7. These states depend on the remainder of 2p+i-1

modulo 3 ; they are given by figure 6.3 c).

States < 2p+i-1, 2p+i-1+b >, with b € {0 ,..., i} are

p+i-1
fully determined by the states of DD2p+i—2 for an initial line of 2p+i-l
machines ; they are given by figure 6.3 a) (where n is replaced by 2p+i+l).

These states depend also on the remainder of 2p+i~1 modulo 3.

Whatewer be this remainder, one checks easily on figures 6.3 c)
and 6.4 ¢), via the translation T : (h,t) — (h, t-2p-2), that
< {(2p+i-1,4p+i+l1+b) ;b € {0,..., i}} >~

< {(2p+i-1,2p+i-1+b), b € {0 ,..., i}} >

2p+i-1°
s , 4p+2i+1 2p+2i-1
(iii). Observing that LDDn—1,2p+i—1 and LDD2p+i—2,2p+i—1 are

fully determined by

DD U {(2p+i-1, 4p+i+l+b) ; 0 <b < i} and

n-1, 2p+i-1,1

DDy viop | 2pei-1,1 Y [(@pri-1, 2p+i-1+b) 5 0 <b < i},
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the two preceding points show that

4p+2i+1 > o~ < LDD2p+21--l a

< , . . . g
LDDn—1,2p+1—1 n 2p+i-2,2p+i-1 >Qp+1—1

6.5. Let n = 3p+i with i € {1,2,3} and n » 25, we observe that

U {(2p+i, 8) ; 4p+2i+1l < 6 < 2n-1} fully determines
{K, 2n-1) ; 1 <K < 2p+i-1} (i.e. the (wanted) synchronization step of

the 2p+i-1 leftmost machines of the initial line at time 2n-1).

_ Lhpt2i+l

2p+i, Ip+i U {(2p+i, 0) ; 4p+2i+l < 8 < 2n-1} fully determines

{(K, 2n-1) ; 2p+i < K < 3p+i} (i.e. the (wanted) synchronization step of

the p+l rightmost machines of the initial line at time 2n-1).

. . . +2i+
Lemmas 8 and 9 show that the distribution of states on LDD4p 21 1.
n-1,2p+i-1
4p+21+1 .
and H25+i,3p+i are those on adequate subsets of the state-diagrams of initial

lines having lengths strictly shorter than n.

In order to reduce the synchronization of an initial line of n
machines to that of shorter initial lines, we prove that :
() ™ - machine 2p+1i stays in state G from time 4p+2i+l wup to
time 2n-2.
~ During the same time interval, the states U,V of machines 2p+i-2

and 2p+i-1 are such that the rules for enviromments (U,V,X) and

L.(U,V,G) give the same result.

LEMMA 10.
Let n = 3p+i with i € {1,2,3} and n > 25.
For every time 6 in {1 ,..., 4p+2i+1}

(<n-1,6>,<n,0>) 1is an element of the following set

i e o ot ot o ) e

A, = 1C,L), (A,L), (A0, (,B), (B,L), (L,L), (G,L), (C,6), (B,A)}
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Note. This proves that up to time 4p+2i+l, the enviromments GGX and

AAX do not occur.

Proof. From Fact 1 we know that these two states are (L,L) up to time n-2,

From lemma 6 one checks that these two states are in A1 from
time n-1 wup to time n+6.

From Lemma 7 one checks that these two states are (L,L) from

time n+7 up to time 4p+2i+l, o

We cannot prove X directly. We proceed by an examination of

successive horizontal lines.

LEMMA 11.

Let n> 25 and n = 3p+i with i € {1,2,3}.

Suppose that condition (%%)

(#%x) [ For all 6, 1 <6 <2m3 (<m-1, 8 >, <m6>) €N,

with A, =4, U {(B,C), (B,6), (G,C), (G,B), (G,A)}
holds for all m such that 3 <m < n.
Then

1). For t € {0 ,..., 2p-3}

CAp+2i+l4t 3+t
(@) < By i 3p+i Tapri ~ <M1, pe1 Tpel
®). < H4p+2i+l+t 2p+2i-1+t

2p-2-t,2p+i-1 “3p+i © ~ "2p=2-t,2p+i-1 ~ 2p+i-1

et e ) S e e e e et et b et e el e e gt e e ) e b ) )

2). Condition (**) holds for m=n.

Proof. (i). We prove point 1) by induction over t. Observing that

fp+2i+l is included in LDD*P*2it+l

H2p—2,2p+i—1 n—-1,2p+i-1

we see that the case t =0

is answered by lemmas 8 and 9.

We suppose now that point 1 is true for some t < 2p-4 and we
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prove point 1 for t+1 in (ii) to (v) below (cf. figure 6.5).

.. . 4p+2i+1+(t+1) 3+ (t+1) . .
(ii). Since H2p+i+1,3p+i (resp. H2’P+1 ) is fully determined
4p+2i+1+t 3+t .
by 2p+i, 3p+i (resp. Hl,p+1)’ point 1 a) shows that
4p+gi+1+(tf1) . < H3+(t+1) )
2p+i+l, 3p+i n 2,p+l ptl

(iii). Observe that

_ hp2i+1+(t+1) 2p+2i-1+(t+1) )

2p-2~(t+1),2p+i~2 (resp. H2p-2—(t+1),2p+i—2 is fully determined by
35f3f2355+1-1 U LDDEEI?§;11-1 (resp. Hﬁgfiflf§;+i-1 U LDD;g:ii;}2p+i—1
S v apricl T ™ < Moprir,spri1 T2pri-1 BY Poine 1) ) for .
o= LDDsfffigfi-l “n "< LDD§§:§EET2P+1—1 >ypri-1 DY lemma 9.
thus < B s ™ < oLy aaeics T

(iv). Observe that if 3 < 6 < 2p then < 1,8 >p+1 = G.
- 0> 14 then (1,6) 1is a leftmost site of a double diagonal DDm with
7<m< p+l and lemma 3 insures that < 1,6 >p+1 = G.

- Cases 3 < 6 < 13 are easily checked on figure 5.8.

e e 4p+2i+1+(t+1)
Now we complete the distribution of states on H2p—2—(t+1),2p+i—1

by determining the state value of site (2p+i-1, 4p+2i+1+(t+1)).

Condition (*%*) shows that :

< 2p+i-1, 2p+2i-1+t > ) €A

< +i- +21- >
(< 2p+i-2, 2p+2i-1+t 2pri-1

2p+i-1" 2°
Point 1 b) for t then shows that

(< 2p+i-2, 4p+2i+l1+t > < 2p+i-1, 4p+2i+1+t >h) €A,.

It is easy to check from the transition matrices (cf. figure 5.7)
that if (U,V) € AZ’ then (U,V,X) and (U,V,G) are environments for

which there are transition rules, and these two rules have the same result.
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Observing that =< 2p+i, 4p+2i+1+t > is <1, 3+t >b+ by point 1) a)

1

for t and < 1,3+t > is state G (cf. above), we see that the environments

p+l
(< 2p+i-2, 2p+2i-1+t >2p+i-1’ < 2p+i-1, 2p+2i~-1+t >2p+i—1’ X) and
(< 2p+i-2, 4p+2i+l+t >h’ < 2p+i-1, 4p+2i+l+t > G).
have the same result, hence
< 2p+i-1, 4p+2i+1+(t+1) > =< 2p+i-1, 2p+2i-1+(t+1) >2p+i—1
4p+2i+1+t+l

(v). Now we complete the distribution of states on H2p+i,3p+i

by determining the state value of site (2p+i, 4p+2i+1+(t+1)).

Observing that if t < 2p~4 then 3+t < 2p-1, we note that < 1, 3+t >b+1

and < 1, t+3+1 >b+l are in state G (cf. above).
In an initial line of p+1 machines, site (2, 3+t) 1is on double

diagonal DDS (where s 1is Ehad is t 1is odd, 5+§-1

else). Since

we have s < p, site (2, 3+t) is a site for machine 2 ona 4 (or 5
or 6)—end by lemma 3. Thus < 2, 3+t >?+1 is state B or C (cases

3 < t+3 < 13 are directly checked on figure 5.8). By point 1) a) for t,

< 2p+i+l , 4p+2i+l+t > is B or C.

Since n » 25 we have p » 2 and 2p+i~1 » 3. Thus we can apply

condition (**) to m = 2p+i-1 which shows that

(< 2p+i-2, 2p+2i-1+t >2p+i—1 , < 2p+i-1, 2p+2i-1+t >2p+i—1) €A,
hence that
< 2p+i-1, 2p+2i-1+t > . is different from state F.

2p+i-1

Thus by point 1 b) for t, <2p+i-1, 4p+2i+l+t >h is different
from state F. Observing —on the transition matrices of figure 5.7- that

all environments (U,G,B) and (U,G,C) (where U 1is different from F)
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give state G, we conclude that < 2p+i, 4p+2i+1+(t+l) > is state G.
n

and this completes the proof of point 1 for t+1.

(vi). Now we consider point 2. Lemma 10 shows that condition (**)

for n holds from time 1 up to time 4p+2i+1.

By point 1 (< n-1, 4p+2i+1+t >n , < n, 4p+2i+l+t >n) is

<p, 3+t > ) for 0<t < 2p-3.

b+l ? < p+l, 3+t > +

ptl

n 1insures us that

Thus condition (*%*) for p+l < 3p+i
(< n-1, 4p+2i+l+t >h’ < n, 4p+2i+l+t >h) is in A2 for 1 < 3+t < 2(p+1)-3

i.e for 4p+2i+1 < 4p+2i+l + t < 4p+2i+1+2p—-4 = 2n-3.

This proves that condition (**) holds for m. o

6.6. Now we can complete the proof of correctness.

THEOREM.
Let A be the automaton whose transition rules are indicated on

figure 5.7 ; A 1is a minimal time solution of the firing squad

S et ) e

synchronization problem.

Proof. We prove by induction on the length n of the initial line that
(1). A synchronizes an initial line of length n in time 2n-1.
(2). A G-synchronizes an initial line of length n with n > 3
(i.e. <K, 2n-2 > =6 for K€ {1,..., n}).

(3). Condition (**) holds for n with n » 3.

We easily check the following facts :
- A is a minimal time solution of the firing squad for initial lines

strictly shorter than 25.

- For 3 <n <24, A G-synchronizes an initial line of length n.

- Condition (**) holds for n with 3 <n < 24.
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We now suppose that facts 1,2,3 are true for m < n-1, and we

prove them for n with n » 25.

The induction hypothesis 3) for m < n-1, shows that the hypothesis
of lemma 11 holds for n. Thus, point 1 a) of lemma 11 in the case

t = 2p~3 shows that :

2n-2 > o~ < H2p >
2p+i, 3p+i " n 1, p+1 “p+l°

Since p+l < 3p+i = n, the induction hypothesis 2) for p+l shows
that all sites (K, 2p) (with 1 < K < p+l) are in state G if the
initial line is of length p+l. Thus all sites (K, 2n-2) with
K € {2p+i ,..., 3p+i} are in state G 1if the initial line has length n.

Point 1 b) of lemma 11 in the case t = 2p~3 shows that

2n-2 4p+2i-4
. ~ < . . g
=< H1,2p+1—1 >h H1,2p+1—1 >Qp+1--1

Since 2p+i+l <n (n = 3p+i with p>7 and i € {1,2,3}), the
induction hypothesis 2) for 2p+i+l shows that all sites (K, 2(2p+i~1)-2),
with 1 <K < 2p+i-1, are in state G, if the initial line has length
2p+i-1. Thus all sites (K, 2n-~2) -with 1 < K < 2p+i-1- are in state G

if the initial line if of length n.
By this way we have proved that all sites (K, 2n-2) with

K€ {1,..., n} are in state G 1if the initial line is of length n.

This proves point 2 for n.

From this G-synchronization at time 2n-2, we get
- using rules (G,G,G) — F, (X,G6,6) — F, (G,G,X) — F-

the F-synchronization at time 2n~1 of the initial line of length n.

Finally condition (**) for n 1is a trivial consequence of lemma 11

(and the induction hypothesis).
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§ 7 — CONCLUSION.

In [1], R.BALZER's has shown that
- no minimal time solution exists with 4 states.

- no minimal time solution satisfying extra conditions exists with 5 states.

However, the solution presented here does not satisfy BALZER's
four extra conditions
- in particular his extra conditions 1 (the stability of state ¢) and 4
(rules (G,V,G) — G for V # G) are violated,

"image solution" (his

- the very idea of our solution is not to be an
condition 2),
~ the only condition satisfied is condition 3 (the fire is introduced only
by environments GGG, XGG, GGX).

Also it is easy to obtain a seven state solution which does not

satisfy his condition 3 (introduce (GBG) — R and (GRG) — F and

(GRX) — F where R 1is a new state).

The remaining open question is : "What is the minimal number of

states for a minimal time solution of the firing squad ?".

We know now that this number is 5 or 6.
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Figure 2.1 a)
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Figure 3.2

7Y 7,

connected wave W N D

The

connected wave NR (W N D)

The

1
I

al o

=1

g

-

g,

=

gnal
ignal s,
gnal S,

-

B RE

S

NN

ANNENN

NN




S. (i»>1)
1

o)

‘Q
w0

e
[*] 7]

2 >
o
Q [ L]

S = 3

o o
~ ] v

N o -

3 o 9] —
N [ U w
~ = =

=] =]
[+ Q —

w (3} 5 «
o =]
+ [ [ a0
el £ £ Mo
vy [l [} v

J ra
~
B}

Y
=
b}

&0
o
[

gnal s

S

gnal s3

S

oo

Signal o

u

N>

H-H

/

NN

VU

\

N

s

/

2




.l

U,
——

L L 1
lL 2
,
machines

67

<< VLD ||| [ ]| ] | ) I ] ]

R SLSILS I o]0 JE- G QIO I® J000 I [ SN IO TP [ ) O | | O | ) O |

OO e q q PO [ T T 0 0 Y Y ) A
(O F+ R (OO (T 10RO | ) T A
oo < <00oM <O d-dJad daaddaaaiaaa2dag 4
O« <0VDD<COVOD =2 3ddd JdagIdaJIddaaada
<<CVVDODCCLOLVDDC L ILd I IIII I DI dd
<OONOCCOVAOCCOVNILIIIITI I aIIJID Jad I
VLB LCCVVOD<CCOVOD LI IIIIIdAD I DI
S 0o <o NDC<OVNOC(CIIL DI II I DI Id DI
JJCCOVDDCCOVDDCCOOVLI SIS I I II
<IdJ I IO B CCOVO D CLOOODL I VI I D IS
QI I I OO OB CCOUVDD < JI I JI I I ITII
Q<O VI JIIODCLCOVDD QUL III I I I Idd
AACCBBBBLL%WL@B@A%@QBELLLWLLLQLLLL
VLDV ODO L JJJIDDCCOVDOD LI I I NI I I
VLD OD LV VLV IICLIV VDD LCLCOO J I I I IdI I
JOodaoaog<ovOnmJdidld 0ag<o0mO _J_gJdaddJdd
JdJdJddCq OB CICC D IOV CC I AT II I
VOV LI J A D0 << QO LId JOM <€ OO I I J I
OVmnaononanJdJdgqggVUDODoJI<OO0Omm JIJdJd I
SO0 AON0ggddIIIID0000C<II 00 IS
A DAL O[O0 VOO IO OV OO LI D -
Oomo o JddJdJdJddJdamomm JJdJdadoayJsd oo dd -
2300 I << ||| I | <[ < D [ < D ]
130 I S A N g I S ) ) ) ] e R T ] e )N g g




68

Figure 4.4

numbered O are not

hine

e-value of the fictive mac

>

GILAL

GILAIL

GILA L
GHA L

GHILIL

GH LB

G HLB

GiL LB

GLAB
GILAL

GILAL

IGILA|L

IGILAIL

IGHAIL

I |H/LL

IGIL[L|B

lcILIAIB

IGILAIL

IGLIAIL

IGHA|IL

GH|LL

GILLB

GILAB

GHA|L

GHLIL

GILILIL

mbered K (1 <K < 4)



69

C/BIAC

CciCc
C

C/C/BA

BAICR

AICIR|L

CIRILIL

LILIL
RLILL

L
A
L
L

B/AICIR

B/B/AC
BB
B

A CRIL

CR|L[L

LiLL
RILILIL

delay 2

delay 1

delay O

Figure 4.5



AAC

LACR

CILIGIRIL

LILLLG

BACR|G

CICBGH| L

RILLLG
CRILLG
ACRILG

CBACG
CCBAG

A A

AAC

LACR

BBAGHL

LLLLG
LLLLG
RLLLG

BACRIG

BBACG

CRLILG
ACRILG

BLGR|IL

A A

AAC

LACR

RLLG

AACGHL

AILGIRIL

LLLLG

LLLLG

LLLLG

RILLILG

~
=g

ACRILG

(

AACRG

eys :

ing leftwards conv

The reflected signal progress

delay 2

delay 1

delay O

eys delay O

the right conv

ing from

Figure 4.6 : The reflected signal com

BB

BB A

LIBAC

C/IC/BG RIL

CILGICR

LLLILIG

RILILILIC
CRILILG
ACRILG

BIAICRG
CBACG

CCBAGHI|L

BB

B BA

LBAC

B BIAG R|L

BLGCR

LLLLG
RLILILIG

BIACRG

BIBIAICGHL

LILLLG

CRILILG|

ACRRILG

BB

B|B|A

LBAC

AIACGRIL

ALGICR

RL LILIG

LILILL|G
LILILILIG

LILLLG

CIRILILIG

ACRIL|G

AACRIGHL

ing leftwards conv

reflected signal progress

The

delay 2

delay 1

delay O

right conveys delay 1.

ming

: The reflected signal co

Figure 4.6.



[T 4T q[:12](8)
I Q<D0
O OOOOOLOOIVO0
Sddidieio<|/aj]d
Jdddelo<«C/ @O0
SJJdix|o<«<®@ 0
< |O|<C/@oO|O
JJio<C@moO
IxOl<mO0
OVVIVIV VIV VOO0
ddiddideelo<«ldd
ddd-d el @m@
dddciol«</mm
SJdez|O</mm
-4 EO<<@MO
I o<«Odo0
OOV VIOVVIVOVLO0
Y ] | I ) T Y P |
SJdd A Do <
- dddao«<«
4| d| Ol

eys :

ing leftwards conv

The reflected signal progress

- delay 2

delay 1

delay O

right conveys delay 2.

ing from

: The reflected signal com

Figure 4.6



X X X
2l[a] ]
X[ XX

Case a

Q)
DM
XXX

Case b

72

Figure 4.9

XK XK (X (X
allaliallall
I IO
rirZiom
XK X XXX

@]
&
©
o
51

N OQR| -
DI IO
rC IO
3| XXX

Case b3

il

Case ¢

QOG-
DI IO
rriIjeoMm

Case c.

rriem

2)[a )2

. oo -

Case d,

- T T
rrIeom
OO -

Case d.

t=2n~-1 Initial line of length two or three.

t=2n-1 Right-most created line of length two

or three.

t=2n-1 Generic-created line of length two or three.

t=2n-1 Remaining portion of a line of length two

or three.

L]

Site whose state~value is known

by hypothesis

Site whose state-value
does not interfer with

these alinecas.

Ll

Site whose state-value nec
the introduction of a new
transition rule.



t{F[F|F|F|F|F

134
55
5§
s3
s2
$1
S0
&4
4F
13

Mo N s g s

-

»

P o
JONEEEIE AN NS

O I NI S

BN IR INIR 18]

Ha

15

HEERERHRGEGRE

ESESI

seswund

DY

FIE[FIETF]L « [FIFTEIFIF]F
;If 1[
FH

Y

A4

VEAREI
13 TTT

LT

7
</
TR/

</

A I

<4<

85
2 ¥
N
N
oA
N\
HH W A3
gt hoh s .
= !
i ) W

I T
111

"n

Figure 4.10

D State L

B scate ©
[ state H
E' State A
State B
State C
E State R

m State F

The fictive
state X 1is

not marked.

Observe that :

- machine 20 becomes
general at time 38
and active at time 39

(delay 1).

- machine 13 becomes
general at time 45
and active at time 45

(delay Q).

- machine 9 becomes
general at time 49
and active at time S1

(delay 2).
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Figure 5.6
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Figure 6.1.

N/ . . . .
Site of a fictive machine

numbered O or n+l.

D Site of X.

D Site of X~X.
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Case 2 : 5-end

Case 1 : 4~end
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Figure 6.2 d)
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e-value is known by hypothesis
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Figure 6.3 a)
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