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MULTIPLIERS FOR THE HECKE ALGEBRA 

OF A REAL SEMI SIMPLE LIE GROUP 

by Patrick DELORME 

INTRODUCTION. 

Let G be a real semi-simple Lie group, connected, with finite center and 

K a maximal compact subgroup of G. In this paper, we study multipliers of the 

Hecke algebra ^ K G ) o f smooth, compactly supported functions on G, which ar 

left and right K-finite. By a multiplier we mean a linear endomorphism commuting 

with the left and right actions of the algebra. Essentially we construct a sub-

algebra of the algebra of multipliers of (tn* 3) . This result has been 

originally proved by Arthur (cf. [1], th. Ill, 4.2), but his proof rests on a 

Paley-Wiener theorem for real semi-simple Lie groups, whose proof is very hard 

(cf. [1], th. III.4.1). Our construction of multipliers for ® ( G ) ^ is simple 

and elementary. Let us explain it in more details. 

Let _g be the Lie algebra of G, g = k © p a Cartan decomposition of _g 

with Cartan involution 0 , the complexified Lie algebra of g. We set 

u = k @ i p , q = i u . Then g^ = u © q is a Cartan decomposition of _ĝ  (viewed 

as a real Lie algebra). 

Let h^ be the Lie algebra of a maximally split 0-stable Cartan subgroup 

of G. Then h^ = © , where t 0 = n k , a 0 = h 0 n P • Moreover a = i © 

is a Cartan subspace of , and (h^)^ is a Cartan subalgebra of .We denote by 

the Wheyl group of the pair (g^ , (h^)^) which acts on a . 
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Now we denote by G the connected, simply connectec Lie group with Lie 

algebra _ĝ  , by U the analytic subgroup of with Lie algebra. 

Let ^(G^/U) (resp. (^T(U \ G^/U)) be the space of smooth functions on 

G^/U (resp. the space of compactly supported distributions on G, biinvariant 

under U). 

From the spherical Paley-Wiener (cf. [4] ), for each x in T (a.) 

(compactly supported, W^-invariant distributions on a) there exists a unique ~ 

in <ff (U \ G^/U) whose spherical Fourier transform in equal to the usual Fourier 

transform of x > T - The right convolution by "x determines a continuous endomorphism 

T of $ (G^/U) which commutes with the left translations by elements of G„. We 

show in theorem 1 that every such map is a right convolution by an element of 

$ T(U \ G^/U) i.e. is one of the T . Now, from the Flensted-JensenTs corres-
& T 

pondance between certain functions on dual symmetric spaces (cf. [2]), there is an 

inejction n of g?(G), . in ^(G /U) . , with nice properties. It is easy to show 

that each T leaves stable the image of ri , hence T1^ = n o T 0 7-1 is a well 
T T T) 

defined endomorphism of ® (G) . From the properties of r¡ , it is easy to see 

that commutes with the left and right actions of the enveloppind algebra 

U(g) of g. 

We show in theorem 2 that it is enough to ensure that T1^ is a multiplier 
T w c 

for ££(G) / T.x. Finally, we have defined a map (x -> T1^) from <?T(a) into the 

algebra of multipliers of the Hecke algebra i#(G)^^ 

Now we identify Z(g,), the center of U(g) , with S(a) . Then we show in 

theorem 3 that, for any element (j) of (G) and any principal series represen­

tation (TT,H ) of G with infinitesimal character y (v £ a*), T\(T^ (h) = 1 (V)TT(*) • 

7T —d X 
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This achieves the comparison with the multipliers constructed by Arthur in 

th. III.4.2. 

In paragraph 1, we introduce the general conventions. 

In paragraph 2, we introduce the Flensten-Jensens correspondance and 

etablish some of its properties needed in the sequel. 

In paragraph 3, we study the G^-endomorphisms of ^(G^,/U) (th. t). 

In paragraph 4, we construct certain multipliers of the Hecke algebra 

~^^(K) a n c* e t a f r - ^ s n s o m e of their properties. 
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