PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

PATRICK DELORME

Multipliers for the Hecke Algebra of a Real Semi Simple Lie Group

Publications du Département de Mathématiques de Lyon, 1982, fascicule 4B « Journées d'analyse harmonique », , p. 1-3

http://www.numdam.org/item?id=PDML_1982___4B_A7_0

© Université de Lyon, 1982, tous droits réservés.

L'accès aux archives de la série « Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

MULTIPLIERS FOR THE HECKE ALGEBRA OF A REAL SEMI SIMPLE LIE GROUP

by Patrick DELORME

INTRODUCTION.

Let G be a real semi-simple Lie group, connected, with finite center and K a maximal compact subgroup of G. In this paper, we study multipliers of the Hecke algebra $\mathscr{D}(G)_{(K)}$ of smooth, compactly supported functions on G, which ar left and right K-finite. By a multiplier we mean a linear endomorphism commuting with the left and right actions of the algebra. Essentially we construct a subalgebra of the algebra of multipliers of $\mathscr{D}(G)_{(K)}$ (th. 3). This result has been originally proved by Arthur (cf. [1], th. III, 4.2), but his proof rests on a Paley-Wiener theorem for real semi-simple Lie groups, whose proof is very hard (cf. [1], th. III.4.1). Our construction of multipliers for $\mathscr{D}(G)_{(K)}$ is simple and elementary. Let us explain it in more details.

Let \underline{g} be the Lie algebra of G, $\underline{g} = \underline{k} \oplus \underline{p}$ a Cartan decomposition of \underline{g} with Cartan involution θ , $\underline{g}_{\mathbb{C}}$ the complexified Lie algebra of \underline{g} . We set $\underline{u} = \underline{k} \oplus i \underline{p}$, $\underline{q} = i \underline{u}$. Then $\underline{g}_{\mathbb{C}} = \underline{u} \oplus \underline{q}$ is a Cartan decomposition of $\underline{g}_{\mathbb{C}}$ (viewed as a real Lie algebra).

Let $\underline{h}_{\emptyset}$ be the Lie algebra of a maximally split θ -stable Cartan subgroup of G. Then $\underline{h}_{\emptyset} = \underline{t}_{\emptyset} \oplus \underline{a}_{\emptyset}$, where $\underline{t}_{\emptyset} = \underline{h}_{\emptyset} \cap \underline{k}$, $\underline{a}_{\emptyset} = \underline{h}_{\emptyset} \cap \underline{p}$. Moreover $\underline{a} = \underline{i} \underline{t}_{\emptyset} \oplus \underline{a}_{\emptyset}$ is a Cartan subspace of \underline{q} , and $(\underline{h}_{\emptyset})_{\mathbb{C}}$ is a Cartan subalgebra of $\underline{g}_{\mathbb{C}}$. We denote by $\underline{W}_{\mathbb{C}}$ the Wheyl group of the pair $(\underline{g}_{\mathbb{C}}, (\underline{h}_{\emptyset})_{\mathbb{C}})$ which acts on \underline{a} .

Now we denote by $G_{\mathbb C}$ the connected, simply connected Lie group with Lie algebra $\underline{g}_{\mathbb C}$, by U the analytic subgroup of $G_{\mathbb C}$ with Lie algebra.

Let $\mathscr{E}(G_{\mathbb{C}}/\mathbb{U})$ (resp. $\mathscr{E}'(\mathbb{U} \smallsetminus G_{\mathbb{C}}/\mathbb{U})$) be the space of smooth functions on $G_{\mathbb{C}}/\mathbb{U}$ (resp. the space of compactly supported distributions on G, biinvariant under G).

From the spherical Paley-Wiener (cf. [4]), for each $_{\rm T}$ in $\mathscr{E}'(\underline{a})^{\text{WC}}$ (compactly supported, $_{\rm C}$ -invariant distributions on \underline{a}) there exists a unique $_{\rm T}$ in $\mathscr{E}'(U \smallsetminus G_{\underline{C}}/U)$ whose spherical Fourier transform in equal to the usual Fourier transform of $_{\rm T}$, $_{\rm T}$. The right convolution by $_{\rm T}$ determines a continuous endomorphism $_{\rm T}$ of $\mathscr{E}(G_{\underline{C}}/U)$ which commutes with the left translations by elements of $_{\rm C}$. We show in theorem 1 that every such map is a right convolution by an element of $_{\rm C}'(U \smallsetminus G_{\underline{C}}/U)$ i.e. is one of the $_{\rm T}$. Now, from the Flensted-Jensen's correspondance between certain functions on dual symmetric spaces (cf. [2]), there is an inejction $_{\rm T}$ of $_{\rm T}$ leaves stable the image of $_{\rm T}$, hence $_{\rm T}^{\rm T}$ = $_{\rm T}^{\rm -1}$ or $_{\rm T}$ or $_{\rm T}$ is a well defined endomorphism of $_{\rm C}(G_{\rm C})$. From the properties of $_{\rm T}$, it is easy to see that $_{\rm T}^{\rm T}$ commutes with the left and right actions of the enveloppind algebra $_{\rm T}$ of $_{\rm T}$ commutes with the left and right actions of the enveloppind algebra

We show in theorem 2 that it is enough to ensure that T^{η}_{τ} is a multiplier for $\mathscr{Q}(\mathsf{G})_{(\mathsf{K})}$. Finally, we have defined a map $(\tau \to T^{\eta}_{\tau})$ from $\mathscr{E}'(\underline{a})^{\mathsf{K}}$ into the algebra of multipliers of the Hecke algebra $\mathscr{Q}(\mathsf{G})_{(\mathsf{K})}$.

Now we identify $Z(\underline{g})$, the center of $U(\underline{g})$, with $S(\underline{a})$. Then we show in theorem 3 that, for any element ϕ of $\hat{\mathscr{L}}(G)_{(K)}$ and any principal series representation (π,H_{π}) of G with infinitesimal character $\chi_{\mathcal{V}}$ $(\mathcal{V}\in\underline{a}_{\mathbf{C}}^{\mathbf{X}})$, $\pi(T_{\tau}^{\mathbf{N}},\phi)=\tilde{\tau}(\mathcal{V})_{\pi}(\phi)$.

This achieves the comparison with the multipliers constructed by Arthur in [1], th. III.4.2.

In paragraph 1, we introduce the general conventions.

In paragraph 2, we introduce the Flensten-Jensens correspondance and etablish some of its properties needed in the sequel.

In paragraph 3, we study the $G_{\mathbb{C}}$ -endomorphisms of $\mathscr{E}(G_{\mathbb{C}}/\mathbb{U})$ (th. 1).

In paragraph 4, we construct certain multipliers of the Hecke algebra $\mathscr{D}(\mathsf{G})_{(\mathsf{K})}$ and etablish some of their properties.

Acknowledgements:

I am grateful to J. CARMONA for many helpful conversations during the preparation of this article.

REFERENCES.

- [1] J. ARTHUR, A Paley-Wiener theorem for real reductive groups (preprint).
- [2] M. FLENSTED-JENSEN, Discrete series for semi-simple symmetric spaces, Ann. of Math., 111 (1980), 253-311.
- [3] S. HELGASON, Dirrerential geometry and symmetric spaces, Academic Press, New York London, (1962).
- [4] S. HELGASON, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297-308.
- [5] S. HELGASON, A duality for symmetric spaces with applications to group representations II, Differential equations and eigenspace representations, Adv. Math. 22 (1976), 187-219.
- [6] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, (1962).
- [7] P. TORASSO, Le théorème de Paley-Wiener pour l'espace des fonctions indéfiniment différentiables et à support compact sur un espace symétrique de type non compact, J. of Funct. Anal. 26 (1977), 201-213.
- [8] N. WALLACH, Representations of semi-simple Lie groups and Lie algebras, in Queen's papers in pure and applied math. 48, 155-248, Queen's University, Kingston, Ontario (1978).