PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

A. BOUVIER

F. Burq

G. GERMAIN

Un exemple d'anneau caténaire

Publications du Département de Mathématiques de Lyon, 1980, tome 17, fascicule 1, p. 97-101

http://www.numdam.org/item?id=PDML_1980__17_1_97_0

© Université de Lyon, 1980, tous droits réservés.

L'accès aux archives de la série « Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

UN EXEMPLE D'ANNEAU CATENAIRE

par A. BOUVIER, F. BURQ et G. GERMAIN

Résumé : Nous montrons dans ce travail que l'anneau A[x] des polynômes à coefficients dans un anneau de Bezout A de dimension finie est un anneau caténaire.

Les anneaux considérés sont commutatifs. La terminologie employée est celle de [2].

Etant donné P \in Spec(A), on note ht(P) la hauteur de P et P* l'idéal PA[x] engendré par P dans A[x].

Soit $f \in A[x]$; l'idéal engendré dans A par les coefficients de f est noté c(f). Lorsque c(f) = A, on dit que f est un polynôme primitif. Si A est un Bezout , tout $f \in A[x]$ non nul peut s'écrire af f, où a f est primitif.

Le corps des fractions d'un anneau intègre A est noté Frac(A). Etant donné un idéal I de l'anneau A, on note $\overline{\bf I}^1$ l'idéal fractionnaire A : I.

THEOREME. - Soit A un anneau de Bezout de dimension finie. L'anneau de polynôme A $\begin{bmatrix} x \end{bmatrix}$ est caténaire.

Un exemple d'anneau caténaire

La démonstration repose sur plusieurs lemmes probablement connus.

LEMME 1. - Pour tout idéal premier P de A, on a $ht(P^*)$ = ht(P).

DEMONSTRATION. - Il suffit de prouver que tout idéal premier Q de A[x] contenu dans P^* est de la forme $P^{!*}$ avec $P' \in Spec(A)$ et $P' \subseteq P$. Soient $P' = Q \cap A$ et $f = af^{\#}$ un élément de Q; puisque $c(f^{\#}) = A$, on a $f^{\#} \notin Q$ et donc $a \in P' = Q \cap A$; d'où $f \in P'^*$ et $Q = P'^*$.

LEMME 2. – Tout idéal premier de A[x] qui n'est pas un P* est de la forme Q = (P,ϕ) , où P = $Q \cap A$ et $\bar{\phi}$ est un polynôme irréductible et primitif dans $(A/P)[\bar{x}]$; de plus $ht(P,\phi) = ht(P)+1$.

DEMONSTRATION. - Soient $Q \in \text{Spec A}[x]$ et $P = Q \cap A$. On suppose $Q \neq P^*$. D'après [5] ou [3,1-5], on a $Q/P^* = \overline{\phi}$ Frac $(A/P)[x] \cap (A/P)[x]$, où $\overline{\phi} \in (A/P)[x]$ est irréductible dans Frac(A/P)[x]. Mais par [2,34-9] on a

$$\bar{\phi}$$
 Frac(A/P)[x] \cap (A/P)[x] = $\bar{\phi}$ [c($\bar{\phi}$)]⁻¹(A/P)[x].

L'anneau A étant de Bezout, l'anneau A/P l'est aussi $[2-Ex. 1\overline{2}]$. $\overline{\phi}$ peut être supposé primitif et donc $Q/P^* = \overline{\phi}(A/P)[x]$, où $\overline{\phi}$ est un polynôme irréductible dans (A/P)[x]. De plus, ht(Q) = ht(P)+1.

LEMME 3. - Les idéaux maximaux de A[x] sont de la forme (M,ϕ) où M est maximal dans A ou bien de la forme (P,ϕ) où $\bar{\phi}$ est une unité dans (A/P')[x] pour tout P' contenant strictement P.

DEMONSTRATION. - Puisque les P^* ne sont pas maximaux et que les idéaux (M,ϕ) où M est maximal et $\bar{\phi}$ irréductible dans (A/M)[x] le sont tous, il suffit de donner une condition nécessaire et suffisante pour que (P,ϕ) soit maximal dans A[x] lorsque P est un idéal premier et non maximal de A.

Si (P,ϕ) est un idéal premier non maximal de A[x], il est contenu dans un idéal premier (P',ψ) ; donc $P \in P'$ et, comme $\overline{\phi}$ doit être dans (A/P')[x] un multiple de $\overline{\psi}$, le polynôme $\overline{\phi}$ n'est pas une unité dans (A/P)[x]. Réciproquement, soit (P,ϕ) un idéal premier de A[x] et P' un idéal premier de A[x] et P' un idéal premier de A[x] contenant strictement A[x] on peut écrire A[x] et A[x] d'après A[x] d'après A[x] on peut écrire A[x] et A[x] où les A[x] sont irréductibles dans A[x] ; alors A[x] est strictement contenu dans A[x], ce qui prouve qu'il n'est pas maximal.

LEMME 4. - Soient $(P, \phi) \in (P', \psi)$ deux idéaux premiers de A[x]. Si $ht(P'/P) \geqslant 2$, il existe dans A[x] un idéal premier (P'', θ) tel que $(P, \phi) \in (P'', \theta) \in (P', \psi)$.

DEMONSTRATION. - Puisque ht(P'/P) > 2, i1 existe P'' \in Spec(A) tel que P \subseteq P'' \subseteq P'. D'après le lemme 3, $\overline{\phi}$ n'est pas une unité dans $(A/P'')[x] ; \text{ donc } \overline{\phi} = \overline{\phi}_1 \dots \overline{\phi}_k \text{ les } \overline{\phi}_i \text{ étant des polynômes irréductibles}$ dans (A/P'')[x]. Puisque $\phi_1 \dots \phi_k \in (P', \psi)$, 1'un des ϕ_i appartient à (P', ψ) et 1'on a $(P, \phi) \subseteq (P'', \phi_i) \subseteq (P'', \psi)$.

LEMME 5. - Soient P^* et (P^*,ψ) deux idéaux premiers de A[x] . si $ht(P^*/P) \geqslant 1$, il existe un polynôme $\phi \in A[x]$ tel que $P^* \subseteq (P,\phi) \subseteq (P^*,\psi).$

DEMONSTRATION. - Le polynôme $\bar{\psi}$ n'est pas une unité dans (A/P)[x]; il est donc produit de polynômes irréductibles $\bar{\psi} = \bar{\psi}_1 \bar{\psi}_2 \cdots \bar{\psi}_k$. L'un des ψ_i appartient à (P', ψ) et donc P* \subset (P, ψ_i) \subset (P', ψ).

DEMONSTRATION DU THEOREME. - Compte tenu du lemme 1, pour étudier les chaînes saturées entre deux idéaux premiers Q et Q' de A[x], trois cas sont à considérer.

Un exemple d'anneau caténaire

- (1). $Q = P^*$ et $Q' = P^{**}$. Entre P^* et P^{**} , tous les idéaux premiers sont des $P^{"*}$; le spectre de A étant un arbre $\left[4;4-2\right]$, il n'y a, entre P^* et P^{**} , qu'une seule chaîne saturée.
- (3). $Q = P^*$ et $Q' = (P', \psi)$. Montrons que toutes les chaînes saturées reliant Q à Q' ont pour longueur $\operatorname{ht}(Q'/Q) = \operatorname{ht}(P'/P) + 1$. Soit $P^* = Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_{n+1} = (P', \psi)$ une telle chaîne et soit i_k le plus grand indice tel que Q_i soit une extension. D'après les lemmes 1 et 2, si $P_i^* = Q_i \cap A$ cette chaîne s'écrit : $P^* = P_i^* \subseteq P_i^* \subseteq \cdots \subseteq P_i^* \subseteq P_i^* \subseteq \cdots \subseteq P_i^* \subseteq P_i^*$

Puisque cette chaîne est saturée, d'après le lemme 1, on a $P_{i_{k+1}} = P_{i_k}$; cette chaine est donc de la forme :

$$P^{*} = P_{1 \neq 2}^{*} \subseteq P_{2 \neq \dots}^{*} \subseteq P_{k \neq k}^{*} \subseteq P_{k, \phi_{k}}^{*} \subseteq P_{k+1}^{*}, \phi_{k+1}^{*} \subseteq P_{k+1}^{*}, \phi_{n}^{*} \subseteq P_{n}^{*}, \phi_{n}^{*} = P_{1 \neq 2}^{*} \subseteq P_{n}^{*}, \phi_{n}^{*} \subseteq P_{n}^{*}, \phi_{n$$

Chacune des sous-chaînes $P^* = P_1^* \subseteq P_2^* \subseteq \ldots \subseteq P_k^*$ et

 $(P_k,\phi_k) \underset{\neq}{\subset} \ldots \underset{\neq}{\subset} (P_n,\phi_n) = (P',\psi)$ étant saturée, compte tenu du début

de la démonstration, la chaîne $P = P_1 \subset \dots \subset P_n = P^*$ est saturée et $n-1 = ht(P^*/P)$, donc $h = ht(Q^*/Q)$.

• En fait on peut montrer, voir [1] que ce résultat est vrai sous des hypothèses moins restrictives .

Un exemple d'anneau caténaire

BIBLIOGRAPHIE. -

- [1] A. BOUVIER, M. CONTESSA and P. RIBENBOIM, Prime ideals in polynomial rings, à paraître.
- [2] R. GILMER, Multiplicative ideal theory, Marcel DEKKER (1972).
- [3] I. KAPLANSKY, Commutative rings, The University of Chicago Press (1974).
- [4] W.J. LEWIS and J. OHM, The ordering of spec R, Can. J. Math., Vol. XXVIII, n° 3 (1976), p. 820-835.
- [5] S. Mc ADAM, Going down in polynomial rings, Can. J. Math., Vol. XXIII, n° 4 (1971), p. 704-711.

Manuscrit remis en octobre 1980.

A. BOUVIER
F. BURQ
G. GERMAIN
DEPARTEMENT DE MATHEMATIQUES
UNIVERSITE CLAUDE BERNARD
43, bd du 11 novembre 1918
69622 VILLEURBANNE CEDEX