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0" -TOPOLOGIES ON THE TEST FUNCTION ALGEBRA

G. LASSNER

1. INTRODUCTION

This paper deals with C*-1like topologies on the test function algebra
57. , the tensor algebra over the Schwartz space <. These topologies are
connected with continuous representations of this algebra.
If R is a ®-algebra and ¢ a pre-Hilbert space, then a representation

ar A(a) of R in 7 1is a homomorphism of R into End & , such that

<¢,A(a)y> = <A(a*)¢,U> for all ¢ ¢ e D .

For a representation of a Banach #~algebra R all operators A(a) are
automatically bounded and the representation is uniformly continuous. In fact

b

for ¢eD , f(a) = <¢,A(a)¢> is a positive functional on R and therefore [ﬂ

|1aGa)e]|? = <6,A(a%a)¢> = f(a*a) = £(1)]]a*a]|

stell? 11al1?,
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ot -topologies on the test function algebra

which implies l'a(a)''<llal| . In comparison with this for general topolo-
gical algebras, one has to face some new problems mainly connected with topo-
logies in algebras of unbounded operators. With this question we deal first

in the next section.

2. TCPOLQGIES ON Op" -ALGEBRAS

For a pre-Hilbert space & by f+(.?) we denote the set cf all operators
A e End4 for which there exist an operator A" ¢ End ¢ satisfying
¢, A = <A+¢,¢> for all ¢, 0 e & . §’+(2 ) becomes a s»-algebra of operators
with the invelution A > A+ . A« -subalgebra 2t of ¢+(53) containing the
identity I will be called an Of* -algebra. f+(97) is the maximal Cp*-algebra

over & .

A subset M I we call % -tcunded if sup |1a¢|] < = for all
¢e ¥

operators A e A . 1€ tre Op‘-algebra contains bounded operators only, then

1 - ] h
the .%-bounded sets are precisely the btounded sets in

Analogously to the bounded case we can also cn Op*—algebra of untounded
operators define different topclogies related to the underlying pre-Kilbert

space. We regarc four topologies, defined by the fellowing systems of serincrmg,

DEFINITION 2.1. -

c; , weak topology : !‘All¢ . <o, ap>|  for 211 ¢,e®
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o* ~topologies on the test function algebra

o9 , strong topology : ||A||¢ = ||a¢|| for all 6 ¢ D ;
Ty » uniform topology : ||A]] = sup |<¢,Ap>| for all * —bounded
ot
b,be

sets o .

2 . . oMo
T , quasi-uniform topology : ||Al| = sup |laell for all
Jt; ~bounded sets oM . ¢ M

On infinite-dimensional Op*-algebras of bounded operators the weak
topology is properly weaker than the strong topology and this is properly
weaker than the uniform topology which in this case coincides with the quasi-

uniform topology and is equal to the usual norm—-topology, i.e.

dgp = 07 < T = TS) = norm—topology (2.1).

For Op*-algebras of unbounded operators we have in general only the

relation

LT (2.2)

and in consistency with the foregoing one many relations between these four

topologies are possible [2] . For example the strong topology may be stronger

than the uniform one, more precisely, the relation
9 _ .9
P < g O =T (2.3)
is possible, as we shall see in section 5.

For a general theory of topological algebras of unbounded operators

the uniform topology T plays an important role as first was outlined in [3].
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O -topologies on the test function algebra

DEFINITION 2.2. -
An  Op™ -algebra ét[Tg.] equipped with the uniform tepclogy 1, we
call 0Or-algebra and if it is complete O0%-algetra. A topclogical
x ~clgebra R, which ts algebraically and topologically tsomcrpkic te

an " -algetrairesp. 5‘—a2gebra we call AO"-algebra resp. AC*-algebral.

The 0"-algebras are generalizations of the C"-algebras and the A0~
algebras are generalizations of the B -algebras. It is an interesting problem
to give an abstract characterization of an A5*—a1gebra, like the property

|la*al] = Ila||2 of a B"-algebra. For barrelled 4#-algebras this problem

could be completely solved.

THEOREM 2.3 (Schmudgen [4]). -
1) In ar AO'-aigebra R the cone K = conv {a*a ; acR} is ¢ normal cne.
27) If ir a barrelled s-clgebra R uith a wunity e the zome K ¢f resvt<ve

. . - . et
elements 1s a vcrrmal cne, ther R 1g an AQ -algeltra.

3. CONTINUOUS REPRESENTATIONS

A representation of a «-algebra R is a »-homomorphism a » A(a) of R

onto an Op' -algebra ;t = A(R).

DEFINITION 3.1. - A representation of a topological =~ -algebra R is sa7d to

be weakly (resr. strongly, uniformly, quasi-uniformly) continuous,
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O* -topologies on the test function algebra

if the mapping a = A(a) of R onto A is continuous with respect to the

wveak (resp. strong, uniform, quasi-umiform) topolcgy on A .

As we already remarked in the introduction, any representation of a
Banach *-algebra is uniformly continuous. In general one has only results

of the following type.

LEME 3.2. - If R s a barrelled x*-clgebra and a & A(a) a weakly continuous
representation, then this representation ie quasi-wntformly cov:tinuoug
and in consequence of (2.2) uniformly continuous also.

Iis

©

Proof. - Let ||. and U = {ac¢R ; ‘lA(a)l|J6~$ 1}.

be a seminorm of T

U is an absorbing set and futher

/
U o= o La [la@ells 1}
¢ed%
(3.1)
- T e e a@e] 1),
q)e;,’t: Y =S

where S is the unit sphere in & . In consequence of the weak continuity of
the representation the sets on the right-hand side on the last line of (3.1)
are closed and absolutly convex. Therefore U is closed, absolutly convex and

absorbing, i.e. a barrel. Hence U is a neighbourhood, Q.E.D.
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O” -topologies on the test function algebra

LEMMA 3.3. - Let R be a barrelled #-algebra and a'> A(a) a weakly
continuous representation. Then the bilinear mapping a, b v A(ab' Ffrom

R onto AR) [t g] 78 jointly continuous.

Proof. - Let % be an arbitrary A -bounded set, then
llA(ab)ll,& = sup l<¢,A(a)A(b)y>]
¢,p< %
M _
e laGnel ] s 1amul] = a7 | am 1%
de ‘P&l/%

In consequence of the foregoing lemma there is a seminorm p(.) of the topo-~

*)II“'('

b
logy of R such that ||A(a < pla) and ||AM) || < p(b). Hence

[1vacab) |1, < p(a) p(b). Q.E.D.

As a corollary of the foregoing Lemma we obtain immediately following

theorem.

THEOREM 3.4. - In a tarrellecd A?)"-algebm the rmultiplication a,b > ab <s

Jointly continuous.

4. TOPOLOGIES ON TEE TEST FUNCTION ALGEBRA

The test function algebra .‘_’fo is the algebraic direct sum fo = :f

]

. d .
where 3’0 = C and :fn ’Y(R n) is the Schwartz space of Cm-functions of

rapid decrease. The elements of j’ o 2Te thus sequences f = (fo’fl""’f ,0 )
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where all but a finite number of fv effv are equal to zero. Ve denote the

direct sum topology on Eﬁ@ by T . yO[T] is the completion of the tensor

algebra over yl (cf. e.g. [5]). The multiplication is defined by

(f g)n(xl""’xn) = u+€=n fu(x],...,xu) 8, (xv+],...,xn) 4.1)

and the involution by

(f‘)n(xl,...,xn) = fn(xn""’xl) (4.2)

Let N be an unbounded operator in LZ( 1Rd) defining the topology of fl’
j.e. the system ||f]||k = || Nk flllL defines the usual topology of the
. 2
Schwartz space t‘F  + Then we define in fn the seminorms anl |k=l INEH:£n| lL

1 2

where Nx is the operator N acting on the variable X, -
v

Now let be (Yn) a sequence of positive numbers and (kn) a sequence of

integers. In ﬁf@ we define the seminorm

||f||(vn),<kn) T ol 4.3,

The direct sum topology T of f’Q is defined by the system of all possible
seminorms (norms) (4.3). Another important topology in y; is the topology

T, ([6],[7]) given by the following system of seminorms:

[1£]] = Ty |l£ ] (4.4)
(Yn)’k n n n' 'k
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O* -topologies on the test function algebra

where (Yn) runs again over all sequences of positive numbers and k over all
integers. The topology T_ 1is properly weaker than T but yet a complete

topology.

A third important topology in :?0 is the topology N (cf. [8}) , the
strongest locally convex topology on :fe such that the multiplication on

B’G is a jointly continuous bilinear mapping.

o [x] f@h] > L (k] (4.5) .

ol

Since m is surjective ( 90 has a unit element) this topology exists.

LEMMA 4.1. - The multiplication a, b~ ab <s
(i) not jointly continuoug in .‘/7® (1]
(<1) jointly continuous in 5;[Ta] and
(1i1) not jointly continuous in & [or].

i) was proved in [6],[7],[8] and ii) can be shown by a simple estimation

Dﬂ . (iii) will be proved in the next section, corollary 5.6.

As an immediate consequence of Lemma 4.1 and the definition of (Y’ we

obtain yet the following relation.

T« o a1 (4.6).

oc ~

From the more or less trivial property i) of the foregoing lemma one

gets the following interesting theorem.
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THEOREM 4.2. - ge[:] 18 not an AO*—adebra.

Proof. - fe[I] is the locally convex direct sum of F-spaces and thus a
barrelled space. Therefore the theorem follows from theorem 3.4.

The last theorem is connected with the fact that the direct sum topology
t is bad adapted to the order structure of the % -algebra EPQ , namely the
cone K = conv {f*f ; £ €ff®} of positive elements is not normal with respect
to the topology T . This was directly proved in [7] and gives, in connection
with theorem 2.3, (i), another proof for theorem 4.2. (About the normality

of cones in semiorderd spaces cr. e.g. [9]).

In contrast to T the topologies T_ and ¥ are "bad" from the point
of view of the theory of locally convex spaces, but they are better adapted

to the order structure of 9; than T . Namely it holds the following lerma.

LEMMA 4. 2 - ©) Both topologies T and X are complete, but neitker kcrrolo-

gieal nor barrelled.

12) The cone K is normal with respect to 1_ and L.

5. O"- TOPOLOGIES ON ¥ .

DEFINITION 5.2. - A topology & on a #-algebra R 1is called 0¥-topology

(resp. 0*-topology), if R[] s an AC"-algebra (resp. AO"-algetra).

33



O" -topologies on the test function algebra

If R carries a normed O*—topology £, then R[E] is a B*—algebra and
£ is the only 0"-topology on R. In general on a % -—algebra different

0*-topologies can exist, as we see from the following theorem and (4.6).

THEOREM 5.2. - T1_and " are 0™-topologies on J@'

for T_ the statement was proved in [6] and the proof for & will

be given in what follows t(theorem 5.5).

We start first with some general considerations. Let R [£] be a
topological x-algebra and w a positive continuous functional on R[£]. By
a — Aw(a) we denote the GNS-representation associated with y with the domain E
and the cyclic vector Qw (fl],[5]) , uniquely determined up to unitarg equi-
valence by
w(a) = <Qu’Aw(a)Qu> (5.1,

-

The wniversa. rerresentation a v Au(a) is the direct sum of all

GNS-repres tationms,

A(a) =I @4 (a) ' (5.2)
w

defined on the algebraic direct sum

with the natural scalar product. Given any vector ¢ =L @ ¢w of 9
w
(only finite many components ¢w are different from zero) then

Au(a) ¢ = i ® Aw (a) ¢m (5.4).
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O *-topologies on the test function algebra

We call a topological #-algebra Rf&] semi-simple , if the universal
representation is faithfull. Au(R) = UtR is then an Op*—algebra isomorphic

to R, which is called the universal realization of R.

DEFINITION 5.3 - Given any semi-simple R[E], then the uniform tcpology

g on 04R defines by the isomorphism a topology or R, which ve
u

dencote by Eu and call the 6‘-topology generated by E.

By simple considerations one can prove the following lemma [2}

LEMMA 5.4. - If £ 18 a barrelled topology on R, then gu is the strongeet

5’—topology on R weaker than E.

E.g. if C][O,l] is the topological = ~algebra of one-times differentiable

LY v

functions with the natural topology given by the norm ||f =sup|£(x) the
gy 8 y c~S3

strongest C -norm on C1[O,1].

Now we can state and prove the main theorem of this section.

THEOREM 5.5. - 4 is the strongest 0*-topelogy on ffe which is veaker than

the direct-sum topology T , i.e. N = T

Proof. - i) Let £ be any 6*—topology on ffo weaker than T , then ffo[g] is

algebraically and topologically isomorphic to an 6*-algebra de[tgl by v A(f)



O -topologies on the test function algebra

which is therefore a weakly conginuous representation of fPQIT] . Hence,

(a,b) » A(ab) is by lemma 3.3 a jointly continuous mapping.
g ltl x Tl » U [xg] =Sle] (5.6)

From the definition of J" then it follows that A is stronger than £.
ii) Now we show ' to be an 7" -topology. Since o is a topology for
which the cone K is normal (lemma 4.3 it is defined by seminorms
P (£) = sup |w(f)] (5.7)
- weM /
where the sets M are weakly bounded sets of J'-continuous positive func-
tionals ([9] , chap. V). Let a Au(a) be the universal representation of

‘ye [t] onto u‘}u and M any set of (5.7). We put ff = {Q weM} - ) . b is
u

C'tu—bounded. In fact

2
sup| I‘L'u(f)QwH sup < Qw’Au(f‘f)Qw >

th' weM
(5.8) .
sup w(t¥) <

w €M

Further, any seminorrm (5.7) of c/’can be estimated in tke following

way (see (5.1-4))

pM(f) = . iu |<Qw , A (f)Qw>|
w (5.9).
& sup <6 , A ()] =] A (D)]]
¢, Ve b R
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(5.9) means that any seminorm of " can be estimated by a seminorm of

1, =19 - Thus, T is stronger than (¥'. Together with i) thkis yields
u
u
iy’= ‘ru. Q.E.D..
In [8] > theorem 1, it was proved that for eny seminorm qa(f) of T

there is a positive continuous functional « such that

# 11/2
alf) ¢ wit*n)'/? - [1a,(2) o || (5.10).
. Dy . .
A consequence of that is 1< 0o and since T 1s barreled we have
Ly, 9
=0 %=1 v (letma 3.2).
Therefore
9 2
u u
Oy © Tg 4 O = T (5.11),
u u

which is one possible relation between tre four topologies of definition 2.1,

)
. . . . & .
already mentioned in (2.1). T@ = J is different from T - = T since
u

§’O[J] is an AC -algebra but nct 500[1] .

. . % - . . . ...
Since in an O -algebra c/t I‘Tﬂ] the multiplicetion (a,t) = at is Jointly

continuous if and only if Ty = T ([3], theorem 3.2) , we obtain frem

(5.11) yet the

COROLLARY 5.6. - The multiplication (f,g) =~ = g is not Jointly continuous

with respect to S = 1 9 -
u
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