PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

MARC ROGALSKI

Sur les espaces uniformément fermés de fonctions à variation bornée

Publications du Département de Mathématiques de Lyon, 1973, tome 10, fascicule 4, p. 67-79

http://www.numdam.org/item?id=PDML_1973__10_4_67_0

© Université de Lyon, 1973, tous droits réservés.

L'accès aux archives de la série « Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Il - Coll. Anal. Fonct. (1973, Bordeaux) p. 345-357

Publications du Département de Mathématiques Lyon 1973 t.10-4

SUR LES ESPACES UNIFORMEMENT FERMES DE FONCTIONS A VARIATION BORNEE.

par Marc ROGALSKI

RESUME. Cet exposé développe des travaux de G. Mokobodzki et de l'auteur parus dans [4]. On montre que tout sous-espace uniformément fermé de C([0,1]), formé de fonctions à variation bornée, est de dimension finie. On donne un résultat d'existence d'une majoration de la dimension dans certains cas.

I. INTRODUCTION, NOTATIONS et RAPPELS .-

Le résultat suivant est classique :

PROPOSITION 0 .- Soit H un sous-espace fermé en norme uniforme de C([0,1]). Si H est formé de fonctions de classe C¹, alors H est de dimension finie.

Rappelons la démonstration : Le théorème du graphe fermé montre que l'application $d: H \to C([0,1]): f \leadsto f'$ est continue. Il en résulte que la boule unité B_H de H est équicontinue, donc compacte, et H est de dimension finie.

Nous nous proposons d'étendre ce résultat au cas où $\,\mathrm{H}\,$ est formé de fonctions absolument continues ou même à variation bornée. De plus, dans le cas où les "dérivées" des fonctions de $\,\mathrm{H}\,$ sont toutes dans un espace $\,\mathrm{L}^p$, pour un même $\,\mathrm{p}>1$, nous donnerons un théorème d'existence d'une majoration de $\,\mathrm{H}\,$.

NOTATIONS:

- C désigne l'espace C([0,1]).

- VBC désigne l'espace des fonctions continues à variation bornée sur [0,1]. Si f appartient à VBC, nous désignerons par df la mesure de Stieltjes associée à f, et la nommerons "variation" de f; c'est une mesure diffuse sur [0,1].
- ~ $W^{1,p}$ désigne l'espace des fontions continues presque partout dérivables, primitives de leur dérivée, et à dérivée dans $L^p(1 \le p \le +\infty)$.

On a les inclusions : $C^1 \subseteq W^{1,\infty} \subseteq W^{1,p} \subseteq W^{1,1} \subseteq VBC \subseteq C$

- M désigne l'espace des mesures de Radon sur [0,1].
- L^P désigne l'espace classique associé à la mesure de Lebesgue sur [0,1].
- $L^{p}(\mu)$ désigne l'espace analogue pour une mesure positive sur [0,1].

Si H est un sous-espace de C, nous noterons $\mathbf{B}_{\mathbf{H}}$ sa boule unité.

Pour les résultats de base sur les fonctions de W^{1,p} et VBC, on pourra se reporter à [5].

II- DISTANCE DE HADSDORFF, GRASMANNIENNE D'UN ESPACE DE BANACH.

Soit (X,d) un espace métrique, de distance bornée. Sur l'ensemble $\mathcal F$ des fermés non vides de X, on définit la distance δ par l'expression

$$\delta(A,B) = \sup \left[\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A) \right].$$

On montre que (\mathcal{F}, δ) est complet [resp: précompact, compact] si et seulement si (X,d) l'est lui-même. (cf.[0])

Soit alors E un espace de Banach muni de la distance d associée à sa norme. On note $\hat{\mathcal{G}}(E)$ l'ensemble des sous-espaces vectoriels fermés de E, et on identifie cet ensemble avec l'ensemble des traces de ses élements sur la boule unité B de E, c'est à dire qu'on a $\hat{\mathcal{G}}(E) \subset \mathcal{F}(B)$. Dé même, on peut considérer que $\hat{\mathcal{G}}(E) \setminus \{0\}\} \subset \mathcal{F}(S)$ (où S est la spère unité de E). On peut alors montrer que

 $\hat{\mathcal{J}}$ (E) est fermé dans \mathcal{F} (B), donc complet pour la distance δ sur \mathcal{F} (B) associée à d. On appellerera <u>prégrasmannienne</u> de E l'espace métrique complet ainsi obtenu.

On obtient alors le résultat important suivant, qui nous servira dans la suite :

LEMME 1.- L'ensemble \mathcal{G}_n des sous-espaces de dimension n de E est ouvert dans $\mathcal{G}(E)$; l'ensemble $\mathcal{G}(E)$ des sous-espaces fermés de E possédant un supplémentaire topologique dans E est aussi ouvert dans $\mathcal{G}(E)$.

L'ensemble - (E) s'appelle <u>la grasmannienne de E</u>. Pour plus de détails sur l'étude de la prégrasmannienne et de la grasmannienne d'un espace de Banach, on pourra se reporter à [1].

III- SOUS-ESPACE DE W¹, p UNIFORMEMENT FERMES, POUR p > 1.

PROPOSITION 2 .- Tout sous-espace uniformément fermé de W^{1,p} pour p > 1, est de dimension finie.

La démonstration est presque identique à celle de la proposition 0, l'équicontinuité de B_H se démontrant par l'inégalité de Hölder: $|f(x+h)-f(x)| \le \|f'\|_p h^{1/q}$ (il s'agit en fait d'un cas particulier d'un résultat sur les espaces uniformément fermés de fonctions höldéniennes). On voit par le théorème du graphe fermé que l'application $d: H \to L^p: f \leadsto f'$ est continue; donc il existe une constante K telle que $\|f'\|_p \le K\|f\|_p$ pour toute f de H. Nous allons voir que si K est fixé, la dimensions de H ne peut être arbitrairement grande.

DEFINITION 3 .- Pour
$$p \ge 1$$
 et $K \ge 1$ on définit $\mathcal{O}_{K,p} = \{f \in W^{l,p} | ||f'||_p \le K||f||_\infty\}$,

puis on pose

 φ (K,p) = Sup{dim(H) | H sous-espace fermé de C,H $\subset \mathcal{O}_{K,p}$ }
Le nombre φ (K,p) est un entier fini ou infini. Il est évident que la fonction (K,p) $\leadsto \varphi$ (K,p) est croissante en K et décroissante en p.

THEOREME 4. - Si p > 1, on a $\varphi(K,p) < +\infty$

Notons S la sphère unité de C, et si H est un sous-espace de C notons $S_{\dot{H}}$ la sphère unité de H. Le théorème 4 résulte du lemme suivant :

LEMME 5 .- Soit R un ensemble équicontinu de S . Alors on a Sup $\{\dim (H) \mid H \text{ sous-espace fermé de } C, S_H \subseteq R \} < \infty$.

Ce lemme dépend du théorème d'Ascoli et de résultats élémentaires sur la prégrasmannienne de l'espace de Banach C. Précisemment la prégrasmannienne $\mathcal G$ de C étant l'espace métrique des sous-espaces fermés quelconques de C, le sous-ensemble $\mathcal G$ de $\mathcal G$ formé par les espaces de dimension n est un ouvert de $\mathcal G$ (Lemme 1). L'ensemble R étant relativement compact, l'ensemble correspondant R' de $\mathcal G$ (formé des $\mathcal G$ tels que $\mathcal G$ est compact, et inclus dans la réunion des $\mathcal G$ n. On conclut par le théorème de Borel-Lebesgue.

COROLLAIRE 6 .- Lorsque
$$K \to + \infty$$
, $\varphi(K,p) \to + \infty$ $(p > 1)$.

PROBLEME 7. Soit
$$K \ge 1$$
. La quantité $O(K) = \lim_{\substack{p \to 1 \\ n > 1}} \varphi(K,p)$

est-elle finie ?

Si oui, peut-on évaluer la borne supérieure des nombres p tels que $\varphi(K,p) = O(K)$?

Sinon, que peut-on dire de la suite $p_n(K)$ définie par la relation: $\varphi(K,p) = n$ si $p \in p_{n+1}(K)$, $p_n(K)$?

Une direction possible pour résoudre le problème 7 consiste à essayer d'évaluer numériquement le nombre $\varphi(K,p)$.

On peut obtenir des minorations en étudiant certains sous-espaces particuliers de VBC.

Un exemple : fonctions affines par morceaux.

Soit Δ une subdivision de [0,1] en N intervalles consécutifs de longueur $l_1, l_2, \ldots l_n$; notons H_{Δ} l'espace des fonctions continues, affines sur chaque intervalle de Δ . Pour tout $p \ge 1$, H_{Δ} est inclus dans $W^{1,p}$, et sa dimension est N + 1. Soit $d_{\Delta,p} \colon H_{\Delta} \to L^p$

l'application dérivée. Un calcul d'extrémum élémentaire prouve que l'on a $\|\mathbf{d}_{\Delta,p}\|$ minimum lorsque $\Delta = \Delta_0$, subdivision correspondant à $\mathbf{1}_1 = \mathbf{1}_2 = \dots \mathbf{1}_n = \frac{1}{N}$. Et on trouve alors $\|\mathbf{d}_{\Delta,p}\| = C(N,p) = 2N$

PROPOSITION 8. - Dès que
$$K \ge 2$$
, $\varphi(K,p) \ge E\left(\frac{K}{2}\right) + 1$.

REMARQUE 9 .- On peut montrer l'inégalité suivante, en utilisant les fonctions trigonométriques:

$$\varphi(K,p) > 1 + 2E \left(\frac{K}{1 + 4\pi \left[\frac{r^2 \left(\frac{P+1}{2} \right)}{\pi \Gamma(P+1)} \right]^{\frac{1}{P}}} \right)$$

Malheureusement, quelques essais numériques semblent montrer que cette minoration de $\varphi(K,P)$ est inférieure à celle de la proposition 9.

IV- FONCTIONS A VARIATIONS BORNEES DONT LES VARIATIONS SONT DANS

PROPOSITION 10 .- Soit H un sous-espace fermé de C. Si H est inclus dans VBC, et si les variations df des fonctions f de H appartiennent toutes à un même espace $L^P(\mu)$, où P>1 et μ appartient à M^+ , alors dim $(H)<+\infty$.

L'hypothèse que nous écrirons en abrégé : $d(H) \subset L^P(\mu)$, signifie que pour toute f de H, il existe φ_f de $L^P(\mu)$, unique, telle que $df = \varphi_f d\mu$. Il est facile de voir qu'on peut se ramener au cas où μ est diffuse (ne charge aucun point) car, les fonctions de H sont continues. On peut évidemment supposer μ de masse I. On voit alors, par le théorème du graphe fermé, que l'application $f \to \varphi_f : H \to L^P(\mu)$, que nous noterons encore d, est continue.

Soit alors $f \in B_{\mu}$. On a:

$$|f(x+h)-f(x)| = \left|\int_{x}^{x+h} df\right| = \left|\int_{y}^{x+h} du\right| \leq \left||\varphi_{f}||_{p} \left[\mu([x,x+h])\right]^{\frac{1}{q}} \leq K\left[\mu([x,x+h])\right]^{\frac{1}{q}}$$

et ceci tend vers 0 quand $h\to 0$, car μ est diffuse. B_H est donc équicontinue, et on achève comme à la proposition 0.

C.Q.F.D.

Dans le cas où $d(H) \subseteq L^{P}(\mu)$ (μ diffuse, $\mu \in M_{1}^{+}$), on peut étendre le théorème 4.

DEFINITION 11. - Soit
$$\mu$$
 diffuse, $\mu \in M_1^+$. On pose, pour $P \ge 1$ et $K \ge 1$: $\mathcal{O}_{K,P,\mu} = \left\{ f \in VBC \mid df \in L^P(\mu), \text{ et } \|df\|_{L^P(\mu)} \le K\|f\|_{\infty} \right\}.$

Puis on définit :

$$\varphi(K,P,\mu) = \sup \left\{ \dim(H) \mid H \text{ sous-espace fermé de } C, H \subset \mathcal{O}_{K,P,\mu} \right\}.$$

THEOREME 12 .- Si
$$P > 1$$
, on a $\varphi(K,P,\mu) < + \infty$.

La démonstration est exactement la même que celle du théorème 4. On peut aussi, dans ce cas, poser le problème analogue au problème 7.

PROBLEME 13 .- A-t-on
$$\lim_{P\to 1} \varphi(K,P,\mu) = +\infty$$
 ?

V- LE LEMME FONDAMENTAL.

Nous allons maintenant donner le lemme qui est la clé de la solution du problème général. Ce lemme est classique et du à Helly, mais nous incluons une démonstration pour la commodité du lecteur.

LEMME 14. - Soit H un sous-espace fermé en norme uniforme de VBC. De toute suite de B_H, on peut extraire une sous-suite conver-geant simplement partout vers une fonction à variation bornée (peut-être non continue).

<u>DEMONSTRATION</u> .- D'abord le théorème du graphe fermé montre, comme dans la démonstration de la proposition 0, que l'application $d: H \to M: f \to df$ est continue donc qu'il existe K > 0 tel que

Sur les espaces uniformément fermés ...

l'on ait ; $\|df\|_{M} \leq K \|f\|_{\infty}$.

Nous allons faire la démonstration dans le cas où les fonctions de H ne sont pas toutes nulles en O(dans ce cas particulier, la démonstration se simplifierait légèrement).

Soit donc $f_n \in B_H$. Soit $\varphi \in H$, telle que $\varphi(0) = 1$. On peut écrire $f_n = f_n - f_n(0)\varphi + f_n(0)\varphi = g_n + f_n(0)\varphi$, où $g_n \in H_o$, et $\|g_n\| \le 1 + \|\varphi\|_{\infty}$. Quitte a extraire une première sous-suite, on peut supposer que $f_n(0)$ converge vers une limite λ . Pour tout n, on a $\|dg_n\|_{M} \le K(1+\|\varphi\|_{\infty}) = K'$. Donc on a aussi $\|(dg_n)\|_{M} \le K'$ et

 (dg_n) \leq K'. Posons alors

$$g_n^1(x) = \int_0^x (dg_n)^+ et g_n^2(x) = \int_0^x (dg_n)^-.$$

Les fonctions $g_n^{(1)}$ et $g_n^{(2)}$ sont croissantes et comprises entre 0 et K'.

Rappelons alors le résultat classique suivant, dont la démonstration utilise deux fois le procédé diagonal :

LEMME 15 .- De toute suite (u_n) de fonctions croissantes sur [0,1], à valeurs dans [0,K'], on peut extraire une sous-suite convergeant simplement partout vers une fonction croissante.

Donc, en appliquant ce lemme deux fois, on peut extraire une soussuite d'entiers (n_p) telle que $g_{n_p}^{(1)} \rightarrow g_1$ et $g_{n_p}^{(2)} \rightarrow g_2$ simplement partout, g_1 et g_2 étant croissantes.

Alors il est clair que $f_{n_p} \rightarrow g_1 - g_2 + \lambda \varphi$ simplement partout, et cette fonction est évidemment à variation bornée.

C.Q.F.D.

On voit déjà, par ce lemme, que la boule unité d'un sous-espace uniformément fermé de VBC jouit déjà d'une propriété proche de la faible compacité.

Nous allons utiliser cette propriété pour montrer que $d(B_{H})$ est

faiblement relativement compacte dans M (pour $\sigma(M,M')$), par le théorème d'Eberlein. Nous déduirons de cette propriété, par un théorème de Grothendieck, une propriété d'uniforme intégrabilité dans un espace $L^1(\mu)$. Et, cette dernière condition par intégration, nous fournira l'equicontinuité de B_H , c'est à dire le résultat. Même dans le cas où H est inclus dans $W^{1,1}$, il est clair que la méthode de l'inégalité de Hölder, utilisée pour montrer la proposition 2, est inopérante.

VI- SOUS-ESPACES UNIFORMEMENT FERMES DE VBC.

THEOREME 16. Soit H un sous-espace uniformément fermé de VBC. Alors $dim(H) < + \infty$.

<u>DEMONSTRATION</u>. Soit df_n une suite de $d(B_H)$. D'après le lemme 14 il existe une sous-suite f_n qui converge partout simplement vers une fonction f à variation bornée. Soit $\ell \in M'$. L'application $f \to <\ell$, df> est continue sur H. Donc par le théorème de Hahn-Banach, il existe une mesure μ_ℓ de M telle que pour toute f de H on ait $<\ell$, $df>=\int f d\mu_0$

On a alors $< \ell$, $\mathrm{df}_{n_p} > = \int f_{n_p} \mathrm{d}\mu_\ell$, et cette quantité converge vers $\int f \mathrm{d}\mu_\ell = \alpha \ \mathrm{d'après} \ \mathrm{le} \ \mathrm{th\acute{e}or\grave{e}me} \ \mathrm{de} \ \mathrm{Lebesgue}. \ \mathrm{Donc} \ \mathrm{la} \ \mathrm{suite} < \ell \ \mathrm{,df}_{n_p} > \mathrm{est} \ \mathrm{de} \ \mathrm{Cauchy} \ \mathrm{pour} \ \mathrm{toute} \ \ell \ \mathrm{de} \ \mathrm{M'}, \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{exprime} \ \mathrm{que} \ \mathrm{df}_{n_p} = \mathrm{est} \ \mathrm{une}$ suite de Cauchy faible dans M.

Or, on sait que M est séquentiellement faiblement complet. Donc df converge faiblement vers une mesure.

Donc, de toute suite df_n de $d(B_H)$, on a pu extraire une sous-suite df_n faiblement convergente. Il résulte alors du théorème d'Eberlein [2]

que d(B) est faiblement relativement compact dans M (pour $\sigma(M,M')$) puisqu'il est borné (car d est continue).

Un théorème de Grothendieck [2] affirme qu'il existe alors une mesure μ de M^+ telle que $d(B^-) \subset L^1(\mu)$, avec $d(B^-)$ faiblement relativement compacte dans $L^1(\mu)$ (pour $\sigma(L^1(\mu),L^\infty(\mu))$).

Toute me sure df de d(B_H) s'écrit donc df = φ_f dµ,où φ_f est dans L¹(µ), et l'ensemble des φ_f est faiblement relativement compacte dans L¹(µ). Il résulte du critère de Dunford et Pettis [2] que l'ensemdes φ_f est uniformément intégrable dans L¹(µ).

Soit alors f dans B_H. On a ;

$$|f(x+h) - f(x)| = \left| \int_{x}^{x+h} df \right| = \left| \int_{x}^{y} \varphi_{f} d\mu \right| \leq \int_{x}^{x+h} |\varphi_{f}| d\mu$$

et cette dernière quantité est majorée par ϵ si $\mu([x,x+h]) < \epsilon$ uniformément pour f dans B_H .

Si $\mu(\{x\}) = 0$, alors $\mu([x,x+h]) < y$ par $|h| < h_0$, et les fonctions de B_H sont équicontinues au point x. Si pour tout x, $\mu(\{x\}) = 0$, on peut alors conclure par les théorèmes d'Ascoli et de Riez.

Donc tout revient à montrer qu'on peut choisir μ diffuse. Or ceci se démontre facilement : on écrit $\mu = \mu_c + \mu_d$, où μ_d est la partie discrète de μ . Et il résulte aisément du fait que les mesures df sont diffuses, que les fonctions φ_f appartiennent à $L^1(\mu_c)$ et que l'ensemble de ces fonctions ψ est faiblement relativement compact.

C.Q.F.D.

Bien entendu on retrouve ainsi les propositions 2 et 10.

Voici une application du théorème 16 aux sous-espaces fermés de L¹([0,1]).

COROLLAIRE 17 .- Soit E un sous-espace fermé de L^1 , de dimension infinie Alors le sous-espace H de $W^{1,1}$, formé des fonctions

$$f(x) = \int_0^x g(t)dt ,$$

où g appartient à E, n'est pas fermé en norme uniforme, et son adhérence n'est pas incluse dans $W^{l,l}$.

Pourtant, la boule unité de E peut être faiblement compacte, puisqu'il existe des sous-espaces fermés de L de dimension infinie qui sont réfle-

xifs (car, par exemple, inclus dans L^2 ; cf.[3]).

Si H est un sous-espace uniformément fermé de VBC, l'application d : H -> M est continue, donc il existe K tel que pour toute f de H on ait :

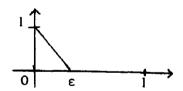
$$\|df\|_{M} \leq K \|f\|_{\infty}$$
.

Et l'existence de cette constante K est la clé du lemme 14 et, finalement, de l'équicontinuité de B_H . Néanmoins, dans la démonstration du théorème 16, la structure vectorielle de H intervient fondamentalement pour affirmer que la forme linéaire $f \leadsto < \ell$, df > est bornée, donc continue, donc se prolonge en une mesure. Si on se pose alors le problème d'étendre le théorème 4 (ou le théorème 12), on est amené à définir, par exemple, l'ensemble suivant :

$$\mathcal{O}_{K,1} = \left\{ f \in W^{1,1} | \|f^{\dagger}\|_{1} \leq K \|f\|_{\infty} \right\}.$$

Mais $\mathcal{O}_{K,1}$ n'est plus un espace vectoriel, et ne pouvant donc lui appliquer le raisonnement précedent, on ne pourra plus conclure que l'ensemble $U_{K,1} = \mathcal{O}_{K,1} \cap S$ est relativement compact dans S, c.à.d. équicontinu. Et d'ailleurs ceci est faux, comme le prouve l'exemple suivant :

EXEMPLE 18. On considère les fonctions f_{ε} de graphe ci-contre. Il est clair que les f_{ε} appartiennent à $U_{1,1}$, pourtant elles ne sont manifestement pas équicontinues.



Le problème suivant reste donc ouvert :

PROBLEME 19. - Définissant
$$\varphi(K,1)$$
 par
$$\varphi(K,1) = \sup \left\{ \dim(H) \mid H \subset \mathcal{O}_{K,1}, \text{ H fermé dans C} \right\},$$

$$a-t-on \qquad \varphi(K,1) < + \infty ?$$

On peut poser le même problème en remplaçant $\mathcal{O}_{\mathrm{K,1}}$ par l'ensemble

 $_{K}^{\mathcal{V}} = \{f \in VBC | | df | |_{M} \leq K | f |_{\infty} \}$. On a néanmoins un résultat partiel (valable aussi pour $_{K,p}^{\mathcal{V}}$, $P \geq 1$).

PROPOSITION 20 - Soit K > 1. Soit \mathcal{H}_K l'ensemble des sous-espaces fermés de C inclus dans \mathcal{V}_K . Alors \mathcal{H}_K possède des éléments maximaux pour l'inclusion, et tout H de \mathcal{H}_K est contenu dans l'un d'eux.

Cela résulte de ce que si H est un sous-espace vectoriel de \mathcal{V}_{K} , $\overline{\mathbb{H}}$ est encore inclus dans \mathcal{V}_{K} (utiliser un raisonnement d'uniforme continuité, valable aussi dans $\mathcal{O}_{K,p}$, pour prolonger l'application d).

VII - GENERALISATIONS ?

Bien entendu, le théorème 16 subsiste pour des fonctions continues à variation bornée à valeurs vectorielles dans \mathbb{R}^n . Mais il devient évidemment faux, comme le montre l'exemple des fonctions constantes, pour des fonctions à valeurs dans un espace normé E de dimension infinie. D'ailleurs l'équicontinuité de la boule unité d'un sous-espace H uniformément fermé de C([0,1],E), formé de fonctions à variation bornée, n'implique nullement la compacité en norme de cette boule B (car la réunion des f([0,1]), pour f dans B, n'est pas relativement compacte dans E).

La généralisation éventuelle serait alors la

CONJECTURE 20 .- Soit E un espace normé (ou de Banach) et H un sous-espace uniformément fermé de C([0,1],E), formé de fonctions à variation bornée. Alors la boule unité de B de H est équicontinue.

Voici en tout cas un résultat plus faible :

PROPOSITION 21 .

Sous les hypothèses de la conjecture 20, soit E' le dual de E, muni de la norme duale. Alors la famille des applications $\varphi_f:[0,1]\times E'\to \mathbb{R}:(t,\ell) \leadsto \varphi_f(t,\ell)=\langle \ell,f(t)\rangle$ indexée par les éléments f de B, est équicontinue.

Si $\ell \in E'$, on montre par le théorème du graphe fermé que, les fonctions ℓ of : $[0,1] \to \mathbb{R}$ appartenant de façon évidente à VBC pour f dans H, l'application f \leadsto d(ℓ of) : H \to M est continue. Il en résulte que d(ℓ oB) est borné dans M. De plus, on montre comme au lemme 14 que toute suite (f_n) de B admet une sous-suite (f_n) telle que ℓ of converge simplement sur ℓ of converge simplement sur ℓ of on en déduit, comme dans la démonstration du théorème 16, que d(ℓ oB) est ℓ o(M,M') relativement compact, puis que la famille (ℓ of) ℓ est équicontinue sur ℓ o(1).

Soit alors $(t_0, \ell_0) \in [0, 1] \times E'$. Si (t, ℓ) est un point variable de $[0, 1] \times E'$, on a l'inégalité

$$\left|\varphi_{\mathbf{f}}(\mathbf{t},\ell)-\varphi_{\mathbf{f}}(\mathbf{t}_{0},\ell_{0})\right|\leqslant\left|<\ell_{0},\mathbf{f}(\mathbf{t})-\mathbf{f}(\mathbf{t}_{0})>\left|+\right|<\ell_{0},\mathbf{f}(\mathbf{t})>\right|.$$

Le deuxième terme du second membre est majoré par $\|\ell-\ell_0\|$. $\|f(t)\|$, lui-même majoré par $\|\ell-\ell_0\|$. Le premier terme est majoré par $\frac{\varepsilon}{2}$ si $\|t-t_0\|<\eta$, ceci uniformément pour f dans B, d'après ce qui précède. Donc, si $\|t-t_0\|<\eta$ et $\|\ell-\ell_0\|<\frac{\varepsilon}{2}$, on a bien, pour tout f de B, $\|\varphi_f(t,\ell)-\varphi_f(t_0,\ell_0)\|<\varepsilon$.

Par ailleurs, depuis les travaux exposés ci-dessus, Pajor a montré le résultat suivant, qui étend le théorème 16 au cas des fonctions définies sur un ensemble totalement ordonné quelconque :

THEOREME 22. - Soit X un ensemble totalement ordonné, et H un espace vectoriel uniformément fermé de fonctions numériques à variation bornée sur X; alors H est de dimension finie.

Sa méthode consiste à plonger X dans [0,1] et à se ramener au théorème 16.

BIBLIOGRAPHIE

- [0] N. BOURBAKI: Topologie générale, Ch.9, exercices; Hermann, Paris.
- [1] A. DOUADY: Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné; exposés au Séminaire Leray, 1965-66, Collège de France, Paris.
- [2] A. GROTHENDIECK: Espaces vectoriels topologiques; Sao Paulo.
- [3] A. GROTHENDIECK: Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad.J. of Math., t.5, 1953, p.129-173.
- [4] G. MOKOBODZKI et
 M. ROGALSKI Sur les espaces uniformément fermés de fonctions
 à variation bornée; C.R. Acad. Sc., Paris,
 t.274(1972), p. 1225-1228.
- [5] F. RIESZ et
 B.Sz.-NAGY
 Leçons d'Analyse fonctionnelle; Publication
 de l'Acad. Sc. de Hongrie