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N. Bourbaki, [1, p.35] notices that it is not kuuwn if every bornological

barrelled space is ultrabornological. In (2] we proved that if E is the topological

product of an infinite family of bornological barrelled spaces, of non-zero
dimension, there exists an infinite number of bornological barrelled subspaces,which

are not ultrabornological. We also gave some examples of barrelled normable
-ultrabornological spaces.

non
In [3] we gave an example of a bornological barrelled

space E, such that E is not inductive limit of Baire espaces. We prove in this

article that the example given in [3] is not inductive limit of barrelled normed
spaces. Other result given here is the following: If E and T are two infinite
dimensional Banach spaces, such that the conjugate of F is separable, there exists a

family in E of precompact absolutely convex sets {Bs:seS} such that, for every seS,

EBS=F, Eﬁé is the second conjugate of F, being ﬁs the closure of BS in E, and E is

the inductive limit of the family {E; :seSl.
S

The vector spaces we use here are defined over the field K of the real or
complex numbers. We mean under '"space" a separated locally convex space. If T is the

topology of a space E we shall write E{T] sometimes instead of E. If A is a bounded

absolutely convex set of E, then BA denotes the normed space over the linear hull of

A, with the norm associated to A. We say that {xgm -1 is a Cauchy (convergent)

sequence for the Mackey convergence in E if there is a bounded closed absolutely

convex set B in E such that {xn}:=1 is a Cauchy (convergent) sequence in Eg. We say

that E is locally complete if every Cauchy sequence for the Mackey convergence in E
is convergent in E. We represent by E the completion of E. If F is the family of all

locally complete subspaces of E, which contain E, its intersection is a locally
A

complete space E and we call it the locally completion of E. We say that & subspace
E of F is locally dense if, for every x¢F, there exists a sequence {x }n =1 of
elements of E, which converges to x in the Mackey sense. We say that a space E is a

Mackey space if it is provided with the Mackey topology.

We shall need the following result ,|2]: a) Let E be a locally dense subspace
of a space F. If E is bornological, then F is bormological.

THEOREM 1. 1If E is a bornological space, then B is bornological.

Proof: Let {E;:iel} be the family of all bornological subspaces of ¥, containing E.

We show now that {Ei:isl} with the inclusion relation is an inductive ordered set,

Indeed, let {Ej:jeJ} be a totally ordered subfamily of {Ei:ieI} and we set

F=lJ{E.:jeJ}. Since F is a Mackey space and Ej is dense in F, for every jeJ, we have

that F is the inductive limit of the family {E :jedJ} and, therefore, F is
bornological. By Zorn's lemma, there exists a bornolog1cal subspace G of E
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containing E, which is max1mal, refered to the family {Ej:iel}. We shall see now
that G coincides with B. Indeed, if GtE G is not locally complete and, therefore,
there exists a vector x in E xiG, such that if M is the linear hull of GU{x},
then G is locally dense in M and, by result a), we have that M is bornological,which

contradicts the maximality of G in {Ei:ieI}. q.e.d.

For the proof of Theorem 2 we shall need the following results: b) Let E be a
barrelled space. If F is a subspace of E, of finite codimension, then F is barrelled,
[4)c) If E is a metrizable barrelled space,then iE.iE.HOt the union of ag_increasing.

sequence of closed, nowhere dense and absolutely convex sets, [5]. d) Let E and F

be two spaces so that F is a Ptdk space. If u is an almost continuous linear mapping

from E into F and the graph of u is closed, then u is continuous, |6, p.302].

THEOREM 2. Let E be a non-complete (LB)-space. Let X, be a point 2£.ﬁ which is not
in E. If G is the linear hull of EU{x,} with the EX_E induced topology, then G is

not the locally convex hull of barrelled normed spaces.

Proof: Let {En}:=1 be an increasing sequence of subspaces of E such that

U{E_ :n=1,2,..}=E. Let T be a topology on E finer than the topology of E n? such
that E [T ] is a Banach space and E is the inductive limit of {E [T ]} _1.*If Bn
is the unit ball in E; let {A }:=1 be a strict increasing sequence of positive
numbers such that A B CA 4By and lJ{Aan:n=1,2,..}=E. We suppose that G is
the locally convex hull of the family {G;:ieI} of normed barrelled spaces. Since E
is dense in G there exists an element i, in I such that Gi NE is dense in Gj,+ Let
j be the injective mapping of Gion E, with the by Gi, induced topology in E. If A,
is the closure of j~1(AyB,) in Gj, ME, then lJ{An:n=1,2,..}=GiorlE. According to
result b), we have that Gior]E is barrelled and, by result c), there exists a
positive integer ny such that Ano is a neighbourhood of the origin in Gior]E. Let L
be the linear hull of j'l(knano) with the by Gio induced topology. Let k be
the canonical mapping of L into E . Since k, considered from L into E is the
restriction of j to L we have that k is continuous from L into E and,therefore,
the graph of k is closed in LxEp - Obviously, k is almost continuous and,according
to result d), u is continuous since Eneg is a Banach space. Since L is dense in

Glor]E we have that L is dense in G: and, therefore, we can take a point Yo€Gji o?

lo
Y0¢Gior]E and a sequence {yn}g=1 in L converging to y, in Gig If u is the

canonical mapping of Gio in G, we have that
lim  u(yy) = lim k(y,) = Yo4E
n——>%° n—>o
and since Eno is a Banach space it results that
lim u(yn) = lim k(yn) = yernOCE

nN~—>o0 n—>m>w

which is a contradiction. q.e.d.
* We put now E, instead Ej (Tal) . -
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In |7, p.u34] G. Kothe gives an example of a non-complete (LB)-space which
is defined by a sequence of Banach spaces such that there exists a bounded set A in
E which is not a subset of E, n=1,2,.. If B is the closed absolutely convex hull
of A, then EB is not a Banach space, (see [3], proof of Theorem 2), and, therefore,
E is not locally complete. We take x¢E, xeﬁ. If G is the linear hull of E LJ{XO},
with the by é induced topology, then G is barrelled and,by resulta), G is

bornological and, according to Theorem 2, G is not inductive limit of normed

barrelled spaces.

In [ 8] Markushevich proves the existence of a generalized basis for every
Banach separable space of infinite dimension, (see also [9] p. 116). In the
following Lemma we give a proof of the existence of basis of Markushevich, which
is valid for Fréchet spaces, and we shall need it after. Given a space E we
represent by E' the topological dual of E and by o(E',E) and B(E',E) the weak

and strong tooologies on E', respectively.

LEMMA. Let E be a separable Fréchet space of infinite dimension. If G is a total

subspace 9£.B'[0(E',E)] of countable dimension, there exists a biorthogonal

system {Xn’un}gEl for E, such that {xn} is total in E and the linear hull of
{un}§E1 coincides with G.

[y

Proof: In E let {yn};;l be a convergent to the origin total sequence and let B
be the closed absolutely convex hull of this sequence. Let {kn}g=1 be a sequence
of non-zero elements of K, such that z = A,yp, ||zn| €1/n, being ||.]|| the

norm in the Banach space EB. Let f be the mapping of £2 into EB such that 1if

{an}gzle 12, then

f({an}g=1) = ngl az,
Since -
- L =y @ @ 2.1/2
|£({a t=_) ] < o1 | a |-z 1< L | an|2)1/2(n§1||zn|| )
© 2.1/2, = 2,1/2
<(n§1| [) (n§11/n )

we have that f is well defined and it is continuous. Let U be the closed unit ball
in £°2 and we set f(U)=A. Then the Hilbert space KQ/f'1(0) can be identified with
BA and, therefore, EA is a Hilbert space. Obviously, EA is total in E and thus E!
is weakly dense in (Ep)'. Let {Vn}§=1 be a Hamel basis in G. In

(EA)' [B((BA)',EA)] we apply the orthonormalization method od Gram-Schmidt and
we obtain an orthonormal sequence {un}§=1 from {vn}gzl. If {xn};:1 is the

sequence in EA such that «<up,,xp>=1, <up,x,>=0, n#m, n, m=1,2,.., then the

biorthogonal system {xn,un}:=1 verifies that {xn}:=1 is total is E and {un}n:1

has G as linear hull. q.e.d.

THEOREM 3. Let E and F be Banach spaces of infinite dimension. If F'[B(F',F)] is

S3



Some properties of the barnological spaces

separable, there exists in E a family .{BS:SQS } of precompact absolutely convex

sets such that (J{Bg:s¢S)=E, Ep,=F and EF_ is che second conjugate of F for every

seS, and E is the locally convex hull of the family {BBS:SES}'

Proof:We shall use the symbol ||.|| for the norm of every normed space.By the Lemma
we can choose a Markushevich basis - {xpsu} @, for F such that {un};;i is total
in F'[R(F',F)] and ]lxn|]=1, n=1,2,.. Let {’;} -4 be a strictly increasing
sequence of positive integers such that ||un||<xn. Let S be the family of all the
sequences in E such that if s={yn}g=15'3 then {yn}:=1 is topologically free and
||yn||< 2'nx;2. Let f_ be the mapping of F into E such that if x¢F then

fs(x)=n§1<un,x>yn.
Since
o
HESCO T B gl - T Hyg I =2 T zk 2
we get that f_ is well defined and it is continuous. If x$0 there exists a positive
integer n_ such that <uno,X>#0 and there exists a weE' such that <Ws¥n3 =1,
wW,y,>=0, ning, since {ypl®_4 is topologically free. Then

o0
<fs(x),w>=nz

=1<un,x>.<w,yn>=<uno,x>.<w,yno>=<uno,x>+0

and, thus, fS is Injective. If U is the closed unit ball in F let fS(Q)?BS. We shall
see that BS is precompact. Indeed, given xegU it results that

- ; -1,-n n. _ E -1,-n
fs(x) 21 n 2 <un,x>xn2 Y ne1rn 2 <UL SX>Z

-n. -2_,-1
Hzp =2 2% Hy 1 e 227 %=

aipAgi2 e %o € 2 -n||u H-11x] 1< 82

and, therefore, fs(x) is in the closed absolutely convex hull of the sequence

{zn}:=1' Since Ilzn]|=x;1, {zn}:=1 converges to the origin in E and, thus, Bg

is precompact. Obviously F coincides with EBS. We shall show that E is the locally
convex hull of the family {EBS:SES}. In E let V be an absorbent absolutely convex
set such that WﬂEBS is a neighbourhood of the origin in EBS for every seg. We
suppose that V is not a neighbourhood of the origin in E. We take t4¢E, wleE' such
that ||tq]]|< 1A1 » <wp,ty>=1. Since Vf\WIl(O) is not a neighbourhood of the
origin in w 1(O), considered as subspace of E, we take t25w1 (0) and w2€B' such
that tp4V, [ty ||<2'2x23, <Wpsty>=0,  <W,,ty>=1. We suppose we have
constructed {tp,wp}P 1and according to the fact that Vf]w‘i(o)f]w'l(o)f]..f)w'l(o)
is not a neighbourhood of the origin in w11(0)flw51(0)r].. Nw 1(0), we take nti

. . -3 s W
belonging to this last subspace such that tn+1¢V, ||tn+1|| (n+1)x I’ n+1eE

such that <w >=0, p=1,2,..,0, <W t ,>=1. 1If Pnzxntn’ then

n+1’tp n+i’ n+l

|’rn ||<2-D&£2 and {rn};=1 is topologically free since <W ST Ans <Wps Py =0,
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msn, m, n=1,2,.., and, thus, r= £ kzle S VITEBr is a neighbourhood of the origin
in EBr and rn=fr(xn)gBr and, therefore, {tpl=a ;lrn converges to the origin in
EBr’ which is contradiction with tniv, n >2., From the way we chose t) it results
that lJ{BS;ssS}=E. We shall show now that Eﬁs is the second conjugate of F. If

F" is the bidual of F and s={y,}%_jeS, let g5 be the mapping from F" into E such
that if xeF"

gs(x)=n§1<un,x>yn.

Since {yn}:=1 is topologically free and {un}:=1 is total in F'[B(F',F)] and also

in F'[o(F',F")], following the same patterns as we did for fg we prove that g, is

injective. Obviously, f_ is the restriction of gg to F. If U* is the closure of U

in F"|o(F",F')] and we prove that gg(U*)=Bg then Eﬁé is the second conjugate of

F. Let z be a point of U*, In F"[g(F",F')], U*¥ is metrizable and U is demse in U%*
and, therefore, there exists a sequence {zn}:=1 in U o(F",F)~-converging to z.

Given an arbitrary '€>0, we can find two positive integers n, and p, such that

o]

2—n+1)\"'1< E /2
n=n n

o+l

ng —2
|<un’z-zp>;<€ /nélz n*-lxn ’ n=1’2’ .. ’no) p >p0.

Then, it follows for p>p,

8 (2)-g (2 ) |= lnzl<un,z-zp>yn|

g -
< nz‘l]«ln’z—zp)I'l|ynl|+n§no+1|<un,z-zp>|.|IynH
2.
n JHk L NIy

ngo o +1
< nél(e-llynlllnélz A n=no+1||un|l.

P @ -n
Z€/2+ § )\n.2.2 .ln < €,
and since g_(z )=f_.(z,)eBy we have that g.(z)cBs. On the other hand, if x' is a
s 2p/Ttsl?p/els s s
point of By we can find a sequence {x'n}:=1 in By converging to x'. If y'y is the
point of U such that f (y',)=x',, then, since U* is g(F",F)')-compact we can
choose a subsequence {y'np}‘;=1 of {y'n};=1 o (F",F')-converging to a point y'

of U*. Then g (y')=x' and, therefore gS(U*)¥§S. q.e.d.

In [10] we prove the following result : e) Let F be a sequentially complete

infinite-dimensional space with the following properties: 1) There is in F a
bounded countable total set

. 2) There is in F'[g(F',F)] a countable total set

which is equicontinuous in F. 3) If u is an injective linear mapping from F into

F, with closed graph, then u is continuous. Then if E is an infinite-dimensional

Banach space it results that E is the inductive limit of a family of spaces equal

to Fp spanning E.
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According to the Lemma and using the same kind of proof as we did for result

e) it is possible to prove Theorem 4.

THEOREM 4. FEet E and F be two infinite-dimensional Banach spaces. If F'[B(F',F)] is

separable, there exists in E a saturated family {B_:seS}, directed by inclusion, of

precompact absolutely convex sets such that U{Bg:seS}=E, E is the locally convex

hull of the family {EBS:SES}, Ep,=F and ER_ is the second conjugate of F for
every seS.
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