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i SCHAARTZ SFACES AND MACKEY CCMNVERGENCE

Hans Jarchow

The purpose of this article is to give c survey on some of the re=-
cent results in the theory of Schwartz spaces ana to show how they
are connected with the theory of Mackey converzence of sequences in
locally convex spaces. These results are scattered over various pa-
pers, see e.g. (11, [14] ' [19-22‘) ’ [26] ' [2'7—3C] . [33] . [34] . For some of

them we will present here new and (or) simplified proofs.

There are at least twoc concepts which ars highly appropriatec *c
provide us with a satisfactory language for our purpose, nanely the
concept of spaces with bornology, see Hogbe-iilend (13]. ana the con-

cert of limit spaces, see Fischer [11}. It is not hard to sce ihct in

the case we are interested in the latter concept includes the first

one in a natural way. Morecover, Buchwalier's theory on compactologi-

cal spaces [4) appears as «a special case of the theory of limit sga-

ces. Since this theory is clso important in our context, anc since we
are concernec here mainly with guestions of conversence rather than
of bouncecness, we will work wholly within the cctegory of limit

spaces.

1. GENERALITIES Ch LIMIT SPACES

We denote by F(M) the s

(6]

t of ¢ll filters on a given set M anc by
P{F(M)) the power set of F(M). Following Fischer C11] we call a map
A —— P(F(M))

a 1limit structure on M if it sctisfies (L1) anc {L2), for all xe&:

(L1} The ultrafilter generatec by {x} belongs to A(x).
(L2} For all F,Ge F(r): F.GeA(x) Fagen(x).

The orcered pair CM,}J is cglled a limit space,

Since each topology on o set determines canonically a unique limit
structure on this set, we will consider topological spaces as special

limit spaces throughout this paper. Generalizing the corresponding
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On Schwartz spaces and Mackey convergence

notations from topology, we are led to the following definitions:

Let (,A) be a limit space., If F€ F(M) satisfies Fe A(x) for some
x€lt, then ¥ is said to converge to x., If, for all x,yed , A(x)n A(y)

is void unless x=y, then we say that[M,) (or A ) is Hausdorff or

separated.

Letﬁi¢d be a second limit space. A map f:M —» N is called (%.r)-

-continuous, or simply continuous, if f(A(x)) ¢ r(f(x)) holds for all
xe€rM, If A and p are limit structures on M such that the identity map
of M is (Q,P)-continuous, we say that A is finer (or stronger) thon/bg

anc that p is coarser (or weaker) than A, and we write ﬁh’u or ,46% .

Together with their continuous mappings the limit spaces form a ca-
tegory L containing the category TOP of all topological spaces as a
full subcategory. L is complete and co-complete. Products, co-products,
subobjects, quotients, and, more generally, projective and inductive
limits in L are obtained in the usual way.

Let now PM,A) be the inductive limit in L of a family ([Mi,’xi])iel of
lirmit spaces, with respect to the continuous mappings fi.:M. —_ M.,
i€ j. Possibly aofter some elementary manipulations, we may assume
that Mic'Mj for i€ j and that fij is the corresgonding inclusion

mapping. We will reserve the notation

iAl= 1im ing M. ,2.]
. i'7g
1€l
exclusively for this special situation, and we will only consider in-

cuctive limits in L of this type.

The behavior of this "lim ind" is rather good. We start with the

following proposition which is mainly due to Fischer [11] (see also’

(), (23] ) :

(1.1} A filter ¥ in [M,2)= lim ;nd [l*-uif.’hi] converges to xeM if and only
if we have xeM, , MiETl.::Lq S'Ee’Ai(x) for some ie€l, rwr‘ﬂere .3']._ is |

the trace of gﬁgg Mi'

It follows that [M,A}is Hausdorff iff this is true for all [Mi,-',\i] SO

Another important property of L, namely to be a cartesian closed

category, is expressed in the following theorem, the proof of which
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can pe founc in [T] cand [2]=

(1.2) Let[M,2] anc [H'f"] be limit spaces. Let €(M,N) denote the set of

all (ﬁ,ﬂ)-continuous maps _from M into N. Among gll 1limit struc-
tures A on €(r:,) such that the evaluation map
@: (6, 1) Al x MA] —— INW) 2 (£, %) > F(x)

. . . . c
1s continuous, there 1s a coarsest one which we denote by A .

Af is caolled the limit structure of continuous convergence. It is
Hausdorff iff w has this property. A filter @ in 9(M,N) belongs to
C,
N (f) for some fe8(M,N) if cnd only if, for every xeM and every

FeA(x), we have Ww(PxT e 'L(f(x))-

The limit structure inauced from A on Hec €(M,N) will be denotec
by N acain. Sometimes we will write H_ instead of ELAF], cndfﬁ#M,M‘
instecd OftziN:N)-Ac]. Also, if [M,A)is any 1limit space, and if no
confusion is to be feared, we someitimes will omit the A and write M
instead of [,A).

For limit spoces M and N, (1.2) yields the following universal
property of the spaces HC for He€(M,N)

(1.3)

If Z is any limit space, then a map f:Z ———bHc is continuous

if and only if f:Z XM —> N: (z,x) — f(z){x) is continuous.

It is clear that

{1.3) actually characterizes the limit siructure
C
A on H.

We take the occasion to esicblish the connectiocn with the

tological spaces of 2Buchwalter [4]:

comMpCce~

n

A compactological space is an orcered pair {(*, %), where M is a

set anad K, the compactology of (h,%), is an upwards directec cover-

inz of M, each of its menbcrs K being supplied with a fixed Hausdorff

compact topology cK such that (C1l) anc (C2) are satisfied:

(Cl) If K,Le X and KEL , then [K.'I:;’,] is a subspace of [L.tLJ .
N
(C2) 1f KeX and HEK , then the CR-CIOSure H of H, supplied with

the topology induced from T, ., telongs to XK.
N

wWe will call the compactology X of (M, K) maximal if there exists

a limit structure r.on M such that all coiipact subsets of ﬂmrJ are
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tbopological spaces under the induced limit structure, and X consists
exactly of these compact sets. A subset S in [M,,.] is said to be compact

if every ultrafilter in M containing S converges to some x€S .,

Let (M,X) and (M',X') be compactological spaces. A map f:M —— g

is called compactological if it maps continuously each member of X

into some member of X'. In this case, f(K) is an element of X' under

the final topology of K —» f(K), for every KeX.

1f (M,X) is a compactological space, we can introduce a limit
structure 'Al on M by means of

™, = lim ind[Kx ).
A Ke X K

If (M',X') is another compactological space and f:M — M' is a com- |
pactological map, then f is clearly (A“.Ax,)econ-tinuous. Conversely,
if f is (kl,lz,)—continuous and if ¥' is maximal, then it is easy to
see that f is also compactological. In this case, XK' consists exactly

of the compact subsets of [M',‘xw]. So we have:

(1.4) The category of all maximal compactological spaces (compacto-

logical maps) can be considered as a full subcategory of L .

2. LIMIT STRUCTURES ON DUAL SPACES

~ limit vector space is a limit space {E,A) consisting of a (real or

complex) vector spcce £ and a limit structure A on E such that cddi-
tion ExXxE = E and scalar multiplication KXxE — E are continuous
for the respective product limit structures. Here K denotes the field

of real or complex numbers, with its euclidean topology.

If [E,A] is a limit vector space, then, for every x€E, A(x) is obtai=-
ned from Mo) by A(x)= x+%(o) . Therefore a linear map T:E ———s F ,
[EA] ancd [F,u] 1imit vector spaces, is (4 ,/L)—COﬂ'tinUOUS iff it saotisfies

T(A(0))c plo) .

Again, the limit vector spaces form, together with their continuous
linear maps, a category LVR having arbitrary limits and co-limits. For"
details we refer to [11], [36) , [23] , [16], and others.

If [E,A] is a limit vector space, then the family of all continuous
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semi-norms on [E.A] defines a locally convex topology () on £ which
is uctually the finest among all locally convex topologies on E ma-
jorizecd by A . This topclogy, however, need not be separatea, even

if A is. we will not consider the obvious functorial interpretation
of this construction here.

Lur interest mcinly goes into the properties of special limit

structures on the dugl '

Z' of a given locally convex space E, the
latter being tacitly assumed to be Hausdorff throughout this note.

By %E we always will denote a given neighborhood basis of zero in c.

Firstly, we examine some of the properties of the limit structure
of continuous convergence on £'. We start with the following zenercl
result the easy proof of which may be founc in [2):

(2.1) Let M be a limit space and F a limit vector space. For every

linear subspace H of €(M,F), He is a limit vector space.

In our situation, where M is the locclly convex space E and F is

the scalar field K, we take for H the dual E' of £E. The canonical

s - . . Cc .
vilinear form w:téx.E —— K is continuous, and A" is even the coar-

sg¢st limit structure on E' having this property.
We will give a concrete representation of Eé Qs a maximal compactc-

logical space now. while our proof given in [19] referrec to inhc sene-

ral theory of locclly compact limit spaces of SchroderﬁBﬂ, we now

give a direct proof using only someé well-known facts on topoiogical

vector sgaces: .

ro
r
r
o
ot
ni
U
[t
Q

locally convex space. For each Ue®h_, let us cencte
[

=Y GLO the (coripact; topology inducec fron the weak topology

¢{Z',E) on the polar uU° of U. Then we have

[2'.A°] = 1im ing [UO.GUQ]

Uc&:
{independently from the specicl choice of QE.. of course),
Proof. The inductive limit occurrin. on the right hanc sice cf the

above equation clearly exists. Let us denote the corresponcing limit

Structure on Z' by A. It is ecsy tc see thcﬁ.Eﬂ.A]is a limit veczor
space.,
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1f & is in A°(o), then the filter (generated by) w(?&:ﬁt) conver-
ses to zero in K. Thus we have U%T for some Ueq%. Since 6(E',E) is
obviously coarser than ﬁf it follows that the trace of F on U° con-
verges to zero in on.U'Uo). Hence we have, bycontinuity, TeA(o) which"
croves ACaA. '

on the other hand, w:E',6(z',E)] x £ —s K is ®_-nhypocontinuous,
Be the family of all equicontinuous subsets of E'. Therefore the re-
striction of @ to each of the spaces [UO,C J.x E 1is continuous, cf.
[3]. From this we get continuity of @:fE"\A) x E — K and thus I\QAC’

from the universal property of A° .

AS a conseqguence we have:

(2.3) AC is the finest limit structure on E' inducing on every egui-

continuous subset of E' the same topology as -@(E£',E).

The topclogy I(AC) is therefore the finest locally convex topology
on &' which induces on every equicontinuous subset of E' the weak to-
pology. Her.ce we get from the Grothendieck construction of the come

pletion of 3 locally convex space (cf. [24]):

(2.4) The dual of Eé is (algebraically isomorphic with) the comple-

. ~
tior £ of E.

Moreover, the dual of Eé, supplied with the corresponding limit
structure cf continuous convergence, 1s a locally convex spcce which

e - » . - -~ -
is eaven togologically isomorphic with E ; cf. Butzmann [6]).

The family ee of all 6(E',E)-closea equicontinuous subsets of E' -
is o compactology on E£'. From a theorem of Cook-Fischer [7} it follows

that ee cornsists excctly of the compact subsets of Eé. So we have:

(2.5) (E',ee) is a maximal compactological space, and A{ is the
, e

s s C .
limit structure A~ of continuous convergence.

We now will introduce a second canonical limit structure on the
cual E' of a locally convex space E.
To begin with, let [F,A) be any limit vector space. We will say that

[F.Alis o convex limit space, and A is a convex limit structure on F
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f.arinescu space and Marinescu limit structure in 18]}, if it has a
rcpresentation of the form
{F.2) = 1im ind [Fi.'ci] ,
iel
where the[Fq,tQ«are locally convex spaces (not necessarily Hausdorff).
Cf course, wec reguire here the linearity of all continuous embedcaings

F. —F,, 1¢& 3.
1 J

The convex limit spaces form a full subcategory CLVR of LVR. In

CLVR, we have arbitrary co-limits and limits again, the latter, how-
ever, not being necessarily identical with the corresponding ones
formed in LVR, cf. ﬁé]. In general, the limit structure of continuous
convergzsnce on spaces of continuous linecr functions between convex
limit spaces is not a convex limit structure, sce below. There is, how-
ever, a substitute for this limit structure in CLVR. For the construc-
tion which is basec on ideas of Marinescu [25) see [16], [23] . Here we
only will zive an explicit formula for this limit structure on the

ducl E' of a locclly convex space E.
Before coing this, we will establish the connection with the work
of Hogbe-ihlend [13] on bornological vector spaces.

Let £ be g K-vector space, and let B be a convex bornclogy on £

This means that we arc given an upwcras cdirected covering B of E, sta-
ble under the operations of forming subsets, vectorial sums, homoihe-
tic images und absolutely convex hulls of its members. The pair (2,8

is collec & convex pornological {vector) space.

For each B€WB, we dencte by E. the linear space generated by 3. This
5
decomes < semi-normed locally convex space by means of the topolo:y T
cenerateag by the cauge of(the absolutely convex cover of)B. With B,
we may thus associate the convex limit structure AB on E definec by

[E,A'J = 1lim indf{z _,r].
Be® -~ °

Let (F,B') be a second convex bornolociccl space. A linear rmag
f:E — F is callec poundec if it satisfies f(B)c®W . Using (1.1} one
proofs that this is the case if anc only if f is (Aa,aw)-continuous,
cf.[23 ). 1f a convex limit space [E,A) is represzntable in the fornm

!".90= lim ind [Eﬂ.,'tJ.] with semi-normed spaces [Ej,‘tj]. then the system
j€Jd v
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B of all subsets of £ which are contcined and bounded in some [Ej,'t'j]

is a convex bornology on E. Since ﬂ=ﬁ% holds we have:

(2.6) The category ot all convex bornological spaces (bounded linear

maps) can be identified with the full subcategory of CLVR con-

sisting of those convex limit spaces which have a representation

gs_inductive limits of semi-normed locally convex Spaces.

“e will name the objects in this subcategory bornologicul (convex)

limit spaces.

t is clear, that the term "Mackey convergence" for convex borno-
legical spaces (cf.ﬁjﬂ) means just convergence in the corresponding

bornological limit space.

Let now £ be a locally convex space again, and let %E be ¢ basis
for the neighborhood filter of zero in E. We prove as promised the

"Lornolosical" analogue of (2,2):

{(2.7) There exists a coarsest among all convex limit structures A

on &' such that u:[E',A]x E —» K is continuous. We denote

this limit structure by Am.

. filg ., . .
&J,A ]15 bornological and may be represented in the form

jra m — = 4 Lol §
Y i ltn;q‘::nd [-Uo,'r:uo'.l

(the representation being clearly independent from the spe-

cial choice of QJ.E again).

. . . m . .
By means of (2.5) we may therefore icentify A" with the equicon-

tinuous bornology E% on &' , cf.[lﬂ .

a:r‘OOf. Jefine a (= “B ) L)y [:',A) = lim ind [E'O'T OJ . wWe have to
(] qu& v U
show, that A has the recuired universal pFoperty.

A2 K is easily seen, hence Q:E’S','A] x £ — K 1is continuocus. To
see that A is the coarsest convex limit structure on E' having this

property, we prove ¢ litile lemmag (see[23] and[id]for generalizations).

Let & be a topological vector space, and let T:F ——’Eé be linear>

and continuous. Then T:F —[g',a] is continuous.

Let us denote by q“__ the neighborhood filter of Zeroi (or a basi$

86


http://liiT.it

On Schwartz spaces and Mackey convergence

o7 it} in F. For the filter (generatec by) T(%F) we have T@M:)eﬁf(o).
Tihis yields thz existence of some Ue€&_. such that U°¢T(Q?). or T(V)eu®
o
for sociie VGQF. Hence T maps F continuously into[?:o,TUé]which means
that T:F-——*E?,X]is continuous,.
The leming remains clearly true if we replcce F by any convex liinit

srcece, anc from this follows our assertion.

AS @ consequence we set (cf. [23)) that Nﬂ is o topology if anc on-

. . . m —_— s e e
1y if € is < normed space, in which case we have N':p(c',;). If £ is

not normed, then there is no vector space topology Q on E' such that

Q:Eer]X T — K is continuous.

vie sive an cprlication to Schwertz spcces. For our purpose it is
conver.ient to choose the following cefinition (ﬁs],Ba]): A locally

convex space E is cullec o Schwartz sgace if for every UeQE there is

o . . e
¢ Ve&_ such that U~ is compact in[E'. ., T
= \’/O VO

)
J

o,

(2. For every locally convex space E the following statements are

eyuivalent:

{(a) E is a Schwartz space.
5y E'VAN) is convex.

() EAY=[A.

4 A Y

The implications {co)=a(b)&(c) are easy to crove. (c)=#(a) is c con-
secuencs of (1.1) and a lemma of Grothencieck (cf.§21,6.(5) in[24)).

For « ceitciled proof see ﬁ9].

As G corollary we get:

{2.5) Let E be g locally convex space. E' is a topological space if

and only if E is finite dirensional,

This follows from the Tact that Schwartz space which is noriea is
cf firite cimension.
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Z. nwULL SEQUENCES I THE DUAL

It is well known, cf. [15), [24]), that in every metrizable locally
convex space £ a fundamental system of precompact subsets is given
oy the closed absolutely convex covers of the null sequences in &£.
Using this together with the description (1,1 of convergence in
convex limit spaces, we are led to the following characterization

of Schwartz spaces ([34),019),[14)):

(3.1} A locally convex space £ is a Schwartz space if and only if its
topology is that of uniform convergence on the null sequences .

in [£'.A7).

. m c . -
It one replaces hare A by AN then one obtains exactly Buchwalter's

cefinition of an "espace semi-faible", cf. [5] (in this lecture note) .

From {2.8) it follows also that every Schwartz space is semi-faible.

A separable Fréchet space is a Schwartz space if and only if "the
null seqguences in [E',€(E',E)) anc in [E',A ] are the same, see [12],

(1s). Hence we have:

(3.2) If £ is a fFréchet-Schwartz space, then it has the topology of

uniform convércence on the null sequences in EU,G(E',EH .

In this case we may even choose a countable family {(fn ncm'k =1, 2,4
of null sequences in [E',6(&" ,hﬂ such that {f lnem}c{f +l|nem} holds
for every k ana the U {f lncm} form a nelghoorhood basis of zero

in & . The locally convex incuctive limit of the Banach scaces [E* o’t oJ
)

. 'k k
t',P(;',cﬂ . Cenoting by [F.£] the locally convex inductive limit of

the linear hulls F of the {f:’nem}, suppliecd with the topology indue
n 1

ced from ¢b° y Gnd extendiny slightly an argument of Kothe, cf. §31,
K

6.(1) in [24), one fincs that [Fa) is a sequentially dense subspace of

E?-P(E'.E)]- Since all F,. have countable (algebrcic) ditension, one

obtains:

(3.3) Every Fréchet-Schwartz space is the strong dual of a bornolo g -

cal (DF)-Schwartz space of countable cimension.

For details we refer to [20].
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Let now[E.,€l be an arbitrary (Hausdorff) locally convex space. The
family d of all Schwartz topologies X on E satisfying X«T contains

6(E,2'), hence it is non-empty. The supremum to of § belongs to J

(see [15]) ond is called the Schwartz topology associated with T.

Cften we will write E_ instead of [E,€ ).

The topology T was first introduced and studied by Ralkov [26] .
Later contributions can be found e.g. in (1, [2A),014},[33]).

. R . . . . mn
The dual of uo is £E' again. Hence we have,besides A ., another con-

L. m . . . . . —
vex limit structure Ao on E' which is defined by [E',Ar:;]= lim 1inc [n;'f'c' ‘],
Uehe v

where QE is a neighborhood basis of zerc in Eo. In every case,

A“ is coarser than A: . Equality holds if and only if E= Eo is true
which is equivalent with the statement that E is a Schwartz space.
There are, however, some more connections between Am and A: . First

of all, we have the following characterization of T (see 14], [33) ):

(3.4) to is the topology of uniform convergence on the null se-

guences in [E'.Am].

. . e !
This yields that A" and AZ have always the same null sequences,

cf.[33]1. A little rore can be saic:

(3.5) A: is the finest bornological limit structure on E' which de-

fines the same null sequences Qs Am.

Using the result of Schwartszd concerning the ultrabornological
character of the strong dual of a complete Schwartz space one finds
the following characterization of the locally convex topology u(Am)
on £' {cf.[1], [33])):

(3.6) For every locally convex space £ we have on E£!
m Iae] =4
(A7) = ®(A) = P 5.

Here E; denotes the completion cof EO.

We can now give a simple proof of the following result of RaYkov

el :
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E

3.7) Let E be o locally convex space and let F be a Banach space.,

The continuous linear maps from EO into F are exactly the

compact linear maps from E into F.

Proof., If T:Eo —> F is continuous, then it is compact as a map

T:€ — F since EO is a Schwartz space. Conversely, if T:E —> F is

a compact linear mcp, then there is a continuous semi-norm p on E

such that T factors through a compact operator T E/Sl(o) —_—F
where _/p (0)is normed in the canonical way. Hence T':F' — (E/p (o)f
is compact which means that T':F!' ———»Eﬂ,Aolls continuous (use (3.4)).

Hence T:Eo —— F is continuous by [17).

From (3.1) we deduce the following representation theorem for

Schwartz spaces:

(3.8) A locally convex space E is a Schwartz space if and only if

it is isormorphic with a subspace of some product space ﬂ%JI

I a suitably chosen set.

Here we denote by &O] the space .co of all scalar null sequences,
together with the topology of uniform convergence on the compact
subsets of 14. This space, however, is not complete. The completion
is the space .e” y together with the topology of uniform convergence
on the compact subsets of & » which is nothing else but the Mackey
topology. So we may replcce, in the theorem, ﬁ:o] by [z“,‘t'( lw,24 )] .

we only scetch the proof of [21] For another proof see f3OJ. First
of all, it is clear that E%J is a Schwartz space and that its topolo="
gy i1s the Schwartz topology associcted with the sup~-norm topology. ifl

PRV |
Cu)emd st
if £ is a Schwartz space, then we define continuous linear mappings

now is the family of all null sequences in [E',A"], and

i E ———06 X > «u,,x},kem:whose kernels coincide w1th the kernels}
of the 3GU3GS of the corresponding neighborhoods {u Ikem}® in E. If
£. denotes the corresponding quotlent space, normed by the gauge, then’
tz admits ¢ unique linear factorizagtion Ti:Ei ———)co which is an i$§;

netry. Identifying the completion E; of Ei with a closed linear sub— -

space °f“b we see that we not only have g = 1im proj El but even
i€l
£ = lim proj (E;)o y» Since the completion £ of the Schwartz space E
ie

is also a Schwartz space. Since the (E ) ore subspaces of &,] it fole

lows that £ and hence E are subspaces of [c ]
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The existence of a Schwartz space, universal in the above sense,
has been predicted clready oy Diestel, Morris aond Saxon in their pa=-

per 10]Jon varieties of locally convex spaces.

From (3.7), (2.&) we obtain the following result of Randtke [2£] :

{2.¢) Let = be a locally convex space ancd F a Banach space., A linear

rmap T:E —> F is compact if and only if there exist a closed

linear subspace GT of co and compact linear maps Tl:E — G
T2:GT — F such that T=T Tl'

T [ ]

2
Proof. If T is compact, then it is continuous as a map T:Eo —_— F,
writing £ =1im proj (E.) = 1lim proj E., as above with closed linear
© ier o iel .

subspaces Ei of ,co, we find, that ?, the extension of T to 'E:, factors
through a continucus linear map T2:(E:i)o — F for some i€1l. T2 is

compact as a map T tE —*Ei is com=~

2:!-:i -— £ , the canonical map T
pact, and T=T,T holds. '

1

in his original proof in [28] Randtke used the following result (see
(zs]ana [27) ) :

(3.10) Let E and F be Banach spaces. A linear map T:E —3 F is compact

if and only if there is null seguence (un)n in the dual Ba-

€M
nach space E! of E such that
tTxh£ Sup{Kun.x)(‘neN},Ver .

This is now also a simple consequence of (3.4) and (3.7).

4. MACKEY CONVERGENCE OF SELQUENCES

Let £E be a locally convex space with dual E'. By 8 ,68,... we will
genote coverings of E consisting of bounded subsets of E. We require
B,S,... to be saturated, i.e. closed under the operations of forming
subsets, scalar multiples, finite unions and closed absolutely convex
covers of their members, Thus 8,8 ,... are convex bornologies on E.
The corresponding topologies of uniform convergence on the sets in B,
§,... on E' is denoted by 'ib,'fe.... . Not every locally convex topolo-
gy  on E' satisfying 6(E',E)% g <p(E',E) is expressible in this way

since we are working with a fixed duality, namely <E',E>.
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With each of the above B we associate the (Hausdorff) bornological

limit structure ﬁa on E by means of
[EAy) = 1im ind [E

BED
14} ,(23) .[33}] we call Ag @ Schwartz limit structure and

B"’B]'

In analogy with

[EA‘] a Schwartz limit space if for each Be® there is a Ce® containing

8 such that the inclusion map [EB. 1’8]

—'[Ec.tc] is precompact. If F is
Q Schwartz space, then F",AP]is a Schwartz limit space. Moreover:
(4.1) Z‘ is a Schwartz 1imit structure on E if and only if 15 is a
Schwartz topology on E'.

For arbitrary B, we denote by '60 the saturated hull of the system

of all null sequences in fE.’J\..]. (If T is the finest locally convex topo-

logy on E such thot every Be® is T-bounded, then the null sequences in

[E,ll'lare just the Mackey null sequences [24) in[E,£] . It is easy to see
that rct(ﬁ‘) holds). We have 'Bo - Boo (see [14), [23), [33)). Moreover:

(4.2) a‘o is a Schwartz limit structure on £E. It is the finest bor=-

nological limit structure on E which defines the same null
guences than 2'.

As another consequence we get:
(4.3) 1‘b is_the finest Schwartz topology on E' which is coarser

than i‘ and which is simultaneously an B-topolggy in the sense
defined above.

If TpeT(E',E), then we have of course T, = (7.‘)o . But in gen#-
ral only %4

Q,“(mﬂ)o is true, and both topologies may very well be
different, see [331.

Of course, ﬁ‘ is a Schwartz limit structure if and only if it c@e
incides with ’A\‘ .
o

Let now E denote the dual of the locally convex space [E',‘{‘].
Since G(E',E)&« Ty, we may identify E with a subspace of E It is

not hard to see (cf. [17]) that [E.’;\'] is @ subspace of E under it¥s

m .
A -structure, and even under its Ac-structure provided [E.lnl is a
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Schwartz limit space.

we are mainly interested in two special cases of the above situ-
ation. Namely, we take for B the system & of all bounded subsets of

E (the von Neumann bornology in [13)), or we take for B the saturated

hull [ of all absolutely compact subsets of E. The null sequences of

&LA']cre the Mackey null! secuences on E, cf.[24l The null seguences
of‘fé

,%‘c] are the fast null seguences introduced by de Wilde [8].[9].

Following Kothe [24] we denote the topology 7*. on E' by 'L’C (' ,E) .
Similarly, we write 1% (E',E) instead of ¥, . These two topglogies
are Schwartz topologieg, a fact which seems to have been completely

overlooked during the developrient of the theory of bornological and

ultrabornological spaces,

It is quite clear that t;.(E"E) is independent from the special
choice of the topology on E which is only required to be consistent
with the duality {E£,E'>. The same result is true for c; (E*,E}, but
this is less obvious. One proof of this uses the fact tﬁat in a Ba-
nach space or even in a Fréchet space every null sequence converges
fast. But this result is proved by making o more or less complete
copy of the corresponding proof of the fact that in a metrizable
locally convex space every null sequence is a Mackey null sequence.

There is, however, another way to get the desired result and even a

little more (see [33])):

(4.4 T (E',E) is the finest Schwartz topology on E' which is an
GLtgpolggy in our sense.
1;f(E',E) is the finest Schwart:z topology on E' which is con-
sistent with {E£',2», i.e.
T (E7.8) = (T(E".E), -
~roof, The first statement follows from (4.3). To prove the second

one, we observe first that T E',E) & (c(E',E))o is a triviality.
f

Let us cznote by & the saturated hull of the system of all absolu-
tely convex, compact sets in[E,6(E,E')]. Then we have (r(E',E))Q=.15.
( J

f {(x ) i i i Y
I (xn;ne"& is a null sequence in [E,‘As] we find some absolutely convex

6 (E,E')-compact set KCE such that (xn)new is a null sequence in the

Banach spcce [EK,TQJ.It follows that the closed absolutely convex
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cocver or‘{xnlncmi}is compact in E. So we get ('I‘:(E',E))o"i,ﬁ v(e',E),
hence T_ (',€) =7£'= (?t)o = (v(E 'E))o'
f
AS a corollary we obtaoin:

(4.5 [E.o(=,2)) anc [E.T(E.E'X] have the same fast null seguences.

~r

5. APPLICATIONS TC SORNOLOGICAL AND ULTRABORNOLOGICAL SPACES

A locclly convex space £ is saoic to satisfy the Mackey convergence

condition (MCC) if every null sequence in E is a Mackey null sequence.

£ satisfies the fast convergence condition (FCC) if every null sequen-—

ce in £ is even fast convergent. Every metrizable locally convex Spa=-
ce satisfies MCC and is easily seen to satisfy FCC if and only if it
is a Fréchet space. Moreover, there are even comglete (DFM)=spaces

which do not sotisfy KCC. For details we refer to [33).

The problem of giving a precise internal characterization of those
locally convex spaces which satisfy MCC (or FCC) is still open. But
something can be said in the case of bornological or ultrabornologi=-

cal spaces, as we shall see below,.

First of all, the above results yield a simple dual characteriza-
tion of the spaces in question, If tﬁ(E',E) is the topology of uni-
form convergence on all null sequences in the locally convex space E,

then one has (cf. [33)):

(5.1) £ satisfies MCC if and only if Q%(E',E) is a Schwartz topology.
E satisfies FCC if and only if C%(E',E) is o Schwartz topology

and consistent with the duality (E', E).

As an easy consequence it follows that every (DS)-space (see [34})
satisfies MCC, and that in these spaces every bounded (=preco.ipact)
subset 1is containec in the closed absolutely convex hull of some n&fl-

sequence.
wWe now turn to bornological and ultrabornological spaces and refer
on some of the results recently provea in [22].

A locally convex space £ is bornological (ultraobornological) if

and only if it has its Mackey topology and v (€',E) (cc (E*',E))
o f

ok
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is complete ([24],[5]).

To begin with, let £ be bornological. Then [E' ,té (E* ,E)] is a com~
plete Schwartz space. Hence it is semi-reflexive, 8na its dual E is
ultrabornological with respect to T(¥,E') = P(?_,E') (f1s) ,[32)). using

the Grothendieck construction of the completion £ of E we see that

rme

is isomorphic with o subspace of . Thus T(E,E') induces T(E,E*') on

E which 1s the original topology since E is bornological.

8y (32.8) we may 1dent1fyfﬂ.,f (',E))with a closec subspace of the
product LC t(&,.z4;] where I is®a sultcbly chosen set. From duality
theory (see e.g.[24)) it follows thct we may regord‘ﬁ,c\E.E'ﬂ as c

certain quotient space @&/\k . Hence E occurs as a dense subspcce of

this guotient. wWriting the cirect sum @L‘, as the locally convex in-
. .. . o

ductive linit lim.a ’ A ".gu., where & ranges over all finite sub-

[ 4
sets of I, we get a representation of the ultrabornological space C&

f Y iin B = - _ “.m
of the form £= {ik b Where £ 1s the separable Sanach spoce.k/(un .
So we have:

(5.2) Every bornological space £ is isomorphic to a dense subspace

of ¢ locglly convex sgace ¥ with the following properties:

(a)

ultrobornolog}ccl and can be written in the form

S
. o . =
= Lém —w With separable Bangch spaces E_.

(b) Every hackey null sequence in £ can be considered as ¢

. w
Nnull seguence in some Eg -

working with r (E'.E} instead of T (E',E) and using that this to-

pology is con515tent with €E',EY we obt3in in the same :anner:

(5.3) Every ultrabornologiccl space & has o representation as the in-

ductive limit €= lim §, of separcble Sanach spaces &, such that

every fast null seguence in & converces in some Ea *

Anc making use of the construction of the E“ we Tind:

rl

{5.4) An ultrabornological space £ satisfies FCC if anc only if it is

isomorphic to some quotient @L/Q such that the corresponcing
-

guotient map is sequentially invertible.

Cf course, every space of the above type is sequentially complete.
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