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QUOTIENT OVERRINGS

By Hans H. STORRER

§ 1. Let R be an associative ring with unit element and let Q be its maximal
right quotient ring. (See D(ﬂ for details. Insofar torsion theories are concerned
our basic references are h1] and ﬁh]). A right overring S of R is a ring such
that R¢S cQ. Left overrings are defined similarly.

Overrings of commutative integral domains have been studied rather exten-

sively. We quote the following result for further reference

1.1. PROPOSITION. - Let R be a commutative integral domain.
Then the following conditions are equivalent :
(a) R 28 a Priifer domain (i.e. every finitely generated ideal is invertible).
(b) every overring is integrally closed,

(c) every overring ie a flat R-module.

Proof. For an account in book form as well as generalizations to commutative
rings with zero-divisors, gee ﬁ2, p. 132-134, 237].

Thus it would seem useful to have means of describing the overrings of R
in terms of the ring R itself. This can obviously be done for quotient overrings.

By a right quotient overring S of R we mean a right overring of R, which is the
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quotient ring ﬁé of R relative to some idempotent filter (topology)€ﬁ1of right

ideals. Since Q = Ry » vhere % is the idempotent filter of dense right ideals

{10, p. 96) , S is a right quotient overring if and only if S = R4 ={q€Qiq—1R e}

vhere ¥ is an idempotent filter contained in 9. Notice, that 4 is not uniquely

determined by S in general.
The following result, due to Lambek f11, p. 39] characterizes the quotient
overrings :

1.2. LEMMA. - The right overring S is a right quotient overring of R if and only
1f for every seS and for every qe€Q\S there exists an reR such that sr e S,
qr¢S.

1.3. LEMMA. - L[Let S be a right quotient overring of R, let 5,€5 (k = 1,...,n)

and q¢Q\S. Then there exists an reR such that s, reR (k = 1,...,n), ar ¢s.

Proof. By 1.2. there is an r _¢R such that 54T €R, qr1§iS. Next, there exists an

1 1

rgeR such that (52r1)r2€R, (qr1)r2$S. Continuing in this way, we obtain r = r1r2...rn

with the desired property.

We will now restrict our attention to rings having the property, that every
right overring is a right quotient overring. Such a ring will be called a right

L-ring. The class of L-rings includes a large variety of rings

1.4. EXAMPLES :

(a) A right rationally complete ring [b,10] is trivially a right L-ring, since

R = Q. As particular examples, we mention the right se}f—injective and the commu-
tative Artinian rings.

(b) The ring of 242 triangular matrices over a field (Q is then the full matrix

ring) is a (left and right) L-ring, since there are no proper overrings.
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(c) Let the following conditions be satisfied :
(i) The inclusion map R -~ Q is a ring epimorphism (i.e. the canonical
map Q 8, Q@ ¥ Q is an isomorphism).
(ii) Q is left and right R-flat.
(iii) Every overring S is flat as a left R-module.

Then R is a right L-ring.

Proof. By (ii) and (iii) the map i 8 i : S 8. S—>Q® S5—»Q8& Q induced by

the inclusion i : S -» Q is injective.

Thus the map in the top row of the commutative diagram

1

Q8 @ ——>Q

is injective and hence bijective.
Its follows, that every overring S is a right flat epimorphic extension,
and these are well known to be right quotient overrings (see e.g. 01Q).

The conditions (i), (ii) and (iii) are satisfied in the following cases (4)

and (e).
(d) R is a Priifer domain (use 1.1.).
(e) R is a hereditary noetherian prime ring (all notions are two-sided), cf. L9].
(f) Every right overring S of a right L-ring R is a right L-ring. This follows

from 1.2. and the fact, that the maximal right quotient rings of R and S coincide.

(g) A left L-ring need not be a right L-ring :
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Let Q be the ring consisting of all UxL matrices over a field, having the follo-

wing form.

The matrices with x = O form & subring S of Q and those with x =y = z = 0

and ¢, = ¢

1 form a subring R of S.

2
Using the methods of ﬁ?] , one finds, that R is left rationally complete,
thus a left L-ring, and that Q is the maximal right quotient ring of R.

Let novw x and y be non-zero and consider

0 0 0 0 0 0 0 0
0 0 0 0 0 0 x 0

n = €S £ = € Q\S
0 y 0 0 0 0 0 0
0 0 o} 0 0 0 0 0

The npeR implies £peS for all peR, thus R is not a right L-ring.

We now wish to show, that the property of being a right L-ring is Morita

invariant. We shall use the following description of Morita equivalence (3, p. u7] .

1.5. PROPOSITION. - Two rings R and R' are Morita equivalent if and only if

R' ¥ eRne , where e is an idempotent of the n X n matrix ring R~ 8such that

1.6. PROPOSITION. - Let Q be the maximal right quotiemt ring of R. Then
(a) Q 18 the maximal right quotient ring of R,
(b) if ecR i8 an idempotent such that ReR = R, then eQe is the maximal right

of eRe.
28
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(e¢) the property of being right rationally complete is a Morita invariant

property of rings.

Proof. (a) is due to Utumi [18, (2.3)] .

(b) and (c) : We first show, that eRe ¢eQe is a rational extension [h] of right
eRe-modules. Let epe, eqe e eQe, epe # O. Then since R¢Q is a rational extension
of right R-modules, there exists an r € R such that eper # O, eqer € R. Since

ReR = R, we have eperRe # O, eqerRe ¢R. Thus there exists an r1eR such that
(epe)(err1e) # 0, (eqe)(err1e)e eRe. To prove (b) it therefore remains to show,
that eQe is right rationmlly complete, and this will follow, if we prove (c).

Now if eRe is right rationally complete, then so is R. Indeed RCQ rational implies
eRe ¢ eQe rational, hence eRe = eQe and since ReR = R, this impli;:s R = Q. If

R ¥ eR e as in 1.5. and if R is not rationally complete, then neither is R nor

R'. This implies (c) and completes the proof of (b).
1.7. LEMMA, - If R is a right L-ring for some n, then so is R.

Proof. Let R&¢5&Q, s€ S, g€ Q\S, consider the nxn diagonal matrices diag(s,...,s)

and diag(q,...,q), and apply 1.2 to Rng 5, Q-

1.8 LEMMA. - Let e be an idempotent of R such that ReR = R. If eRe is a right

L-ring, then so is R.

Proof. Let RS5£Q, s €S, qeQ\S. Since ReR = R, there exist elements

2y, bkéR (k = 1,...,n) with Zakebk = 1. For the same reason, there exist u, ve¢R
such that euqve %eSe (for eRqRe¢S implies qeS). Consider now the elements
ebksveeeSe (k = 1,...,n) and eugve€eQe \ eSe. Since eQe is the maximal right quo-
tient ring of eRe by 1.6 , eSe is a right overring of eRe and hence a quotient

overring. By 1.3 there exists an ereceRe with (ebksve)(ere)ceRe for k = 1,...,n
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(euqve)(ere)#eSe. This implies q(vere)¢ S, and T a, eb svere = s(vere) € R. Thus

R is a right L-ring by 1.2.

1.9 PROPOSITION. - The property of being a right L-ring is a Morita invariant

property of rings.

Proof. As before, we show, that the negation of the property under consideration
is Morita invariant. If R' = eRne as in 1.5 and if R is not a right L~ring, then

the result follows form 1.7 and 1.8.
Another straightforward result is

1.10. PROPOSITION. - A finite product of rings as a right L-ring if and only if

every factor is a right L-ring.

Proof: One uses the fact, that the quotient ring of a product is the product of

the quotient rings [10 p. 100] and 1.2.

§ 2. In this section, R always denotes a commutative integral domain with quotient
field Q. We consider the following types of overrings, each more general than the

preceding one.

(QR) s = RZ , the ring of fractions relative to a multiplicatively closed subset

£ of R. (R = I 'R).

T
(F) S is a flat epimorphic extension of R.

(QQR) S is the intersection of rings of type (QR), i.e.
s=Nrg
L)
(L) s = Rg » & quotient overring.

(GQR) s = Ry . Pa multiplicatively closed set of ideals or R .
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2.1. REMARKS.

(a) Rings of type (GQR) - generalized quotient rings - are defired as follows :
J is a set of ideals of R such that K,LeY implies KLeS . R_z,o is the set of all
g € Q such that there is a Ked with gK¢R.

(see [2] and [7] for results and further literature on overrings of this type).
(b) The implication (QR) =¥ (F) is well -known.

(¢) S is a flat epimorphic extension of R if and only if S is a flat overring
(using the argument of 1.4. e¢.). It is know, that S is a flat overring if and
only if S is the intersection of localizations R vhere P runs through the

PN R!
prime ideals of S. [12, p. 91]. Thus (F) => (QQR). (See [2] and [5] for results

concerning overrings of type (QQR)).

(a) (QeR) =¥ (L) : Every ring of fractions R%‘ is a also a quotient overring
N = 4 = N .(i: .

R{}{ ) and Rcﬁ)\ Rgi s Where X

(e) (L) = (GQR) since every idempotent filter is multiplicatively closed.

(f) As we shall see below, none of the above implication is reversible.
2.2 LEMMA. - If R is noetherian, then the classes (QQR), (L) and (GQR) coincide.

Proof. One has to show, that an overring of type (GQR) is of type (L), and that
one type (L) is of type (QQR). Let . be any multiplicatively closed set of ideals
of R, then 4 » the set of all ideals containing an ideal from ¥ is closed under
intersection and is multiplicative. Since R is noetherian, & well-know result
(see e.g. [19, 1.22]) shows, that 4is an idempotent filter. Since Ré = Rf/ , the
classes (GQR) and (L) coincide.

If nowﬂ{ is an arbitrary idempotent filter, then there exists an injective module
E such that‘ﬂ{='[ I l HomR(R/I,E) = O} . Write E as a sum of indecomposable injec-

tives E, = E(R/P,) (injective hulls), then ¥ = nfﬁ}\ and R = N Rg) )+ Since Rg)

is just the localization Ry, R is of type (QQR).
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Thus the classes (L) and (QQR) coIncide as well.

Using different methods, the equality of the classes (GQR) and (QQR) can be
extended to certain non-noetherian domains (see [8] and a remark in [7]).

We shall say, that R is a QR~domain if every overring of R is of type (QR)
and similarly for the other types. Thus one has the implications :

QR-domain => F-domain => QQR-domain = L-domain =3 GQR-domain.

By 1.1, the F-domains are just the Priifer domains.

For noetherian domains, most of the classes coincide :

2.3 PROPOSITION. - Let R be a noetherian domain.
(a)JR 18 a QR-domain if and only if R 8 a Dedekind domain such that
a power of every ideal is principal.
(b) R is8 an F-domain if and only <if R 78 a Dedekind domain.

(c) R i8 a GQR~domain if and only if R is a Dedekind domain.
Proof. For (a) see (61, and for (c) see {7]. (v) follows from the remark above.

We now quote four counter-examples, which show, that none of the implications
above is reversible. This also validates the claim made in 2.1. f.

(1) A QR-domain, which is not an F-domain : It suffices to take a Dedekind
domain, which does not satisfy 2.3. a. For an example, see e.g. [6].

2} In [5] there is an example of a QQR-domein, which is not a Priifer domain
hence not an F-domain.

(3) An L-domain, which is not a QQR-domain : In [2.5. 11], an integral domain
R (called D in the reference quoted) is constructed whith the following properties -
R has only one overring S different from R and Q.R has only one non-zero prime
ideal M and M = M. Furthermore S = Ry , vhere Y is the set consisting of M

done. Since W = M, however, f‘= {M, R} is a idempotent filter and S = Ry = Rﬁ‘
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Thus every overring of R is of type (L), i.e. R is an L-domain. On the other hand,
it is not hard to see, that every overring of type (QR) is an intersection of
localizations at prime ideals (in fact RZ =N RPA s where PA are the ideals of R
maximal with respect to not meeting I), and therefore every overring of type
(QQR) is also an intersection of such localizations. It follows, that S is not of
type (QQR) ; R is not a QQR-domain.

(4) In [7,2.9} » there is an example of a GQR—domain having an overring

(in fact a localization) which is not a GQR-domain. Since, by 1.4.f, an overring

of an L-domain is again an L-domain, we obtain an example of a GQR-domain, which

is not an L-domein.

2.4. PROPOSITION. - For an integrally closed domain, the following eonditions are

equivalent :

(a) R 18 a Priifer domain,
(b) R is a QQR-domain,
(e) R i¢ an L~domain,

(d) R 28 a GQR-domain.

Proof. The implications (a) = (b) =% (¢) = (d) have already been noted.
(d) = (a) is in [7,2.h] . A different proof (c) = (a) is also available : By
ﬁ9,2.7] any quotient overring of an integrally closed domain is integrally closed,

and 1.1 may be applied. (In fact, this proof also works for (GQR)).

Since an overring of an L-domain is an L-domain 1.4.f., we obtain
2.5. COROLLRY . - The integral closure of an L-domain is a Priifer domain.

An analoguous result holds for QQR~-domains [5,1.7] and is conjectured for

GQR-domains [7].

33



Quotient overrings

2.6. PROPOSITION. - R <s an L-domain if and only of Ry 28 an L-domain ofor every

maximal ideal M of R.

Proof. If R is an L-domain, then so is its overring R,,. To prove the converse, we
first show, that the assumption implies, that every local overring S of R is a
quotient overring. Let N be the maximal ideal of S, then P = NAR is a prime ideal
of R and if M denotes a maximal ideal of R containing P, then RMQRP_C_ S. By assump-
tion, S is a quotient overring of R.M , hence of R, according to the lemma below.

If T is now an arbitrary overring, then T is equal to the intersection of its

localizations at the maximal ideals [1, chap. II, §3, n° 3] , and since each loca-

lization is a quotient overring, so is T. Thus R is an L-domain.

2.7. LEMA. - Let S¢ T .be overrings or R, let R¢S be a flat epimorphic extension

and let T be a quotient overring of S . Then T is a quotient overring of R.

Proof. Let % be an idempotent filter of S such thet T = Sy, . Following [13] we
define an idempotent filter 9 on R : g, is the set of all ideals I of K such that
15€$ . We claim, that Rg = &, - If Q6 Rg , then qGCR for some G in {, but then
QGS & S and since Gseﬂf , we have q¢& Sg/ .

Conversely, assume, that xe Sdg . Then there is an Fe‘f such that xF ¢S,
and xy €S for all y €F. Since R¢S is a flat epimorphism, the ideals (xy)-1R and
qu belong both to the filter 8, consisting of all ideals K of R with KS = S. Thus
((xy)—mn qu)S = S , and we can find COPERIIT R, S1s-+sS € S such that xya.ch,
ya€R for k = 1,...,n and Ia,s, = 1. Let Jy be the ideal of R generated by ya,,. esya
Then chyS and if J denotes the sum of the ideals Jy for all y¢F, then F¢JS,

thus Jeg. Since xJCR, it follows, that x ¢R.
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§ 3. There is another type of overring, which is of some interest : We will say,
that an overring S of R is an epimorphic overring, if the inclusion map Rc S is
a ring epimorphism. (Notice, that a general epimorphic extension of R need not be
an overring of R, take e.g. the epimorphism Z-> @ * 22).

In [16] , it has been shown, that the integral domain R is a Priifer domain
if and if every overring is epimorphic. The existence of I~domains which are not
Priifer domains shows, that not every quotient overring is epimorphic. Conversely,
not every epimorphic overring need be a quotient overring. We shall give a counter-
example, in which, however, R is not an integral domain, but only a commutative
semiprime ring.

Let X be the real numbers with the discrete topology, X" its one-point
(Alexandroff) compactification and R the ring of continuous real-valued functions
on X%, Q can be described as the product ring]RX. Let S be the subring of Q consis-
ting of all those functions f : X — 1R which are constant (f(£) = y) except for
at most countably meny values of £. R is then t e subring of S consisting of all
those functions in § satisfying the additional property, that for any €> O
|£(£) - vy|ge for all but finitely meny values of £ .

This example has already been used in (15, 11.6] and it was shown,
that R¢S is an epimorphic extension (in fact the largest epimorphic extension
of R which is an overring). It remains to show, that S is not a quotient overring.

Let Y be an uncountable subset of X whose complement is also uncounteble.

Let qeQ\S be defined by q(§) = 1 if Ee¢Y and q(£) = 0 otherwise. Further, let

Y' be a countable subset of Y and let seS be defined by s(E) = 1 if EeY' and

s(€) = 0 otherwise. Then one shows, that if sr €R for some r €R, then the constant
value Y vhich r takes on almost everywhere has to be O, and from this it follows,

that qréReS. Thus 1.2 is not satisfied and S is an epimorphic overring which is not

a quotient overring.
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