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QUOTIENT OVERRINGS 

By Hans H- STORRER 

§ 1 . Let R te an associative ring with unit element and let Q be its maximal 

right quotient ring. (See [lu] for details. Insofar torsion theories are concerned 

our "basic references are ¡11*] and (î^]). A right overring S of R is a ring such 

that R c S c Q. Left overrings are defined similarly. 

Overrings of commutative integral domains have been studied rather exten­

sively. We quote the following result for further reference : 

1 . 1 . PROPOSITION. - Let R be a commutative integral domain. 

Then the following conditions are equivalent : 

(a) R is a Priifer domain (i.e. every finitely generated ideal is invertible). 

(b) every overring is integrally closed, 

(c) every overring is a flat R-module. 

Proof. For an account in book form as well as generalizations to commutative 

rings with zero-divisors, see [ l2 , p. 132-13*+, 237 ] . 

Thus it would seem useful to have means of describing the overrings of R 

in terms of the ring R itself. This can obviously be done for quotient overrings. 

By a right quotient overring S of "R we mean a right overring of R, which is the 
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quotient ring R v of R relative to some idempotent filter (topology) of right 

ideals. Since Q = 1 ^ , where oO is the idempotent filter of dense right ideals 

[10, p. 96] , S is a right quotient overring if and only if S = R̂ J = {q£Q|q 1R e^j 

where £ is an idempotent filter contained in §D. Notice, that ^ is not uniquely 

determined by S in general. 

The following result, due to Lambek [11 , p. 39] characterizes the quotient 

overrings : 

1 . 2 . LEMMA. - The right overring S is a right quotient overring of R if and only 

if for every seS and for every qeQ\S there exists an rcR such that sr e S, 

qr<{.S. 

1 . 3 . LEMMA. - Let S be a right quotient overring of R, let s^GS (k = 1,...,n) 

and qeQVS. Then there exists an r£R such that s^r^R (k = 1,...,n), qr<£S. 

Proof. By 1 . 2 . there is an r^cR such that s^r^R, qr^f S. Next, there exists an 

r €R such that (s nr i)r oeR, (qr,)r04S. Continuing in this way, we obtain r = r„r^...r 
d d \ d \ d* 1 2 n 

with the desired property. 

We will now restrict our attention to rings having the property, that every 

right overring is a right quotient overring. Such a ring will be galled a right 

L-ring. The class of L-rings includes a large variety of rings : 

1.U. EXAMPLES : 

(a) A right rationally complete ring U,10] is trivially a right L-ring, since 

R = Q. As particular examples, we mention the right self-infective and the commu­

tative Artinian rings. 

(b) The ring of 2x2 triangular matrices over a field (Q is then the full matrix 

ring) is a (left and right) L-ring, since there are no proper overrings. 
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(c) Let the following conditions be satisfied : 

(i) The inclusion map R Q is a ring epimorphism (i.e. the canonical 

map Q ® R Q Q is an isomorphism). 

(ii) Q is left and right R-flat. 

(iii) Every overring S is flat as a left R-module. 

Then R is a right L-ring. 

Proof. By (ii) and (iii) the map i 8 i : S ® R S Q ® R S -*> Q « R Q induced by 

the inclusion i : S Q is infective. 

Thus the map in the top row of the commutative diagram 

S ® R S > S 

i % i i 

Q ® R Q • Q 

is infective and hence bijective. 

Its follows, that every overring S is a right flat epimorphic extension, 

and these are well known to be right quotient overrings (see e.g. [lU^ ). 

The conditions (i), (ii) and (iii) are satisfied in the following cases (d) 

and (e). 

(d) R is a Prüfer domain (use 1 . 1 . ) . 

(e) R is a hereditary noetherian prime ring (all notions are two-sided), cf. [ 9 J . 

(f) Every right overring S of a right L-ring R is a right L-ring. This follows 

from 1 - 2 . and the fact, that the maximal right quotient rings of R and S coincide. 

(g) A left L-ring need not be a right L-ring : 



28 

Quotient overrings 

Let Q be the ring consisting of all k*h matrices over a field, having the follo­

wing form. C a 0 0 0 \ 

b c 1 x 0 

d y c 2 0 

e z f a / 

The matrices with x = 0 form a subring S of Q and those with x = y = z = 0 

and ci = c 2 ^ o r m a subring R of S. 

Using the methods of [IT] * one finds, that R is left rationally complete, 

thus a left L-ring, and that Q is the maximal right quotient ring of R. 

Let now x and y be non-zero and consider 

/ o o o o \ / o o o o \ 

0 0 0 0 / 0 0 x 0 
n = €S £ = € Q\S 

0 y 0 0 / 0 0 0 0 

\ o o o o / ^ 0 0 0 0 / 

The np€R implies £peS for all peR, thus R is not a right L-ring. 

We now wish to show, that the property of being a right L-ring is Morita 

invariant. We shall use the following description of Morita equivalence [3 , p. Uj] . 

1 . 5 . PROPOSITION. - Two rings R and R 1 are Morita equivalent if and only if 

R f « eR^e j where e is an idempotent of the n x n matrix ring R^ such that 

R eR = R . n n n 

1 . 6 . PROPOSITION. - Let Q be the maximal right quotient ring of R. Then 

(a) is the maximal right quotient ring of R n, 

(b) if e£R is an idempotent such that ReR * R, then eQe is the maximal right 

of eRe. 

file:///oooo/
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(c) the property of being right rationally complete is a Morita invariant 

property of rings. 

Proof, (a) is due to Utumi [18, ( 2 . 3 ) ] . 

(b) and (c) : We first show, that eReceQe is a rational extension [h\ of right 

eRe-modules. Let epe, eqeeeQe, epe ̂  0. Then since R Q Q is a rational extension 

of right R-modules, there exists an r € R such that eper ^ 0, eqer€R, Since 

ReR = R, we have eperRe # 0, eqerRecR. Thus there exists an r^R such that 

(epe) (err ̂e) ̂  0, (eqe) (err^ek eRe. To prove (b) it therefore remains to show, 

that eQe is right rationally complete, and this will follow, if we prove (c). 

Now if eRe is right rationally complete, then so is R. Indeed R5Q rational implies 

eRe £ eQe rational, hence eRe = eQe and since ReR = R, this implies R = Q. If 

R f = eR^e as in 1.5« and if R is not rationally complete, then neither is R^ nor 

R 1. This implies (c) and completes the proof of (b). 

1 . 7 . LEMMA. - If R^ is a right lf-ring for some n, then so is R. 

Proof. Let R C S & Q , s€S, q€Q\S, consider the nxn diagonal matrices diag(s..,s) 

and diag(q,. . . ,q), and apply 1 . 2 to R^C £ Q^. 

1.8 LEMMA. - Let e be an idempotent of R such that ReR = R. If eRe is a right 
h-ring, then so is R. 

Proof. Let R S S £ Q , s€S, qeQ^S. Since ReR = R, there exist elements 

ak* "^k6^ ̂ k * 1 > , , , » n ) ^ ^ h ^ aj c
e t >j c

 = 1- F o r the same reason, there exist u, vsR 

such that euqve^feSe (for eRqReCS implies qeS). Consider now the elements 

eb^sveteSe (k = 1,...,n) and euqve€eQe \ eSe. Since eQe is the maximal right quo­

tient ring of eRe by 1 .6 , eSe is a right overring of eRe and hence a quotient 

overring. By 1 . 3 there exists an ereeeRe with (ebksve) (ere )Q eRe for k = 1,.. . ,n 
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(euqve) (ere) ̂ . eSe. This implies q(vere)^S, and S a^e^svere = s(vere)eR. Thus 

R is a right L-ring "by 1 . 2 . 

1.9 PROPOSITION. - The property of being a right L-ring is a Morita invariant 

property of rings. 

Proof. As "before, we show, that the negation of the property under consideration 

is Morita invariant. If R 1 = eR ne as in 1 . 5 and if R is not a right L-ring, then 

the result follows form 1 . 7 and 1 . 8 . 

Another straightforward result is 

1 . 1 0 . PROPOSITION. - A finite product of rings as a right L-ring if and only if 

every factor is a right L-ring. 

Proofi One uses the fact, that the quotient ring of a product is the product of 

the quotient rings flO p. 10o] and 1 . 2 . 

§ 2 . In this section, R always denotes a commutative integral domain with quotient 

field Q. We consider the following types of overrings, each more general than the 

preceding one. 

(QR) S a Rj, , the ring of fractions relative to a multiplicatively closed subset 

Z of R. (Rj, = Z~ 1R). 

(F) S is a flat epimorphic extension of R. 

(QQR) S is the intersection of rings of type (QR), i.e. 

S = O R 

(L) S = R̂ l , a quotient overring. 

(GQR) S = R^J , !f a multiplicatively closed set of ideals or R % 
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2 . 1 . REMARKS. 

(a) Rings of type (GQR) - generalized quotient rings - are defined as follows : 

/ is a set of ideals of R such that YL9L€jf implies KL e^ 7 . is the set of all 

q e Q such that there is a Ke^f with qKcR. 

(See [2] and [7I for results and further literature on overrings of this type). 

(b) The implication (QR) ̂  (F) is well -known. 

(c) S is a flat epimorphic extension of R if and only if S is a Hat overring 

(using the argument of 1.U. c ) . It is know, that S is a flat overring if and 

only if S is the intersection of localizations R^-T., where P runs through the 

prime ideals of S. [ 1 2 , p. 9l] . Thus (F) (QQR). (See [2] and [5] for results 

concerning overrings of type (QQR)), 

(d) (QQP) (L) : Every ring of fractions R^ is a also a quotient overring 

R̂ J and r\R^ = R^ , where 4 = f\ 4^ 

(e) (L) =^ (GQP) since every idempotent filter is multiplicatively closed. 

(f) As we shall see below, none of the above implication is reversible. 

2 .2 LEMMA. - If R is noetherian^ then the classes (QQR), (L) and (GQR) coincide. 

Proof. One has to show, that an overring of type (GQF) is of type (L), and that 

one type (L) is of type (QQR). Let if be any multiplicatively closed set of ideals 

of R, then £r , the set of all ideals containing an ideal from J*is closed under 

intersection and is multiplicative. Since R is noetherian, a well-know result 

(see e.g. f l 9 , 1 • 2^1) shows, that ̂ i s an idempotent filter. Since R^ = R^, , the 

classes (GQP) and (L) coincide. 

If novlfi is an arbitrary idempotent filter, then there exists an injective module 

E such that HomR(R/l,E) = 0 ] . Write E as a sum of indecomposable infec­

tives E x • E(R/PX) (injective hulls), then ̂  « C\ 4 ^ and R̂ j{ = 0 R̂ J y Since R<rJ? x 

is just the localization R p, R is of type (QQR). 
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Thus the classes (L) and (QQP) coincide as well. 

Using different methods, the equality of the classes (GQP) and (QQR) can be 

extended to certain non-noetherian domains (see [8] and a remark in [7^). 

We shall say, that R is a QR-domain if every overring of R is of type (QR) 

and similarly for the other types. Thus one has the implications : 

QR-domain F-domain QQR-domain L-domain = ^ GQR-domain. 

By 1 . 1 , the F-domains are just the Prüfer domains. 

For noetherian domains, most of the classes coincide : 

2 . 3 PROPOSITION. - Let R be a noetherian domain. 

(a)R is a Qß-domain if and only if R is a Dedekind domain such that 

a power of every ideal is principal. 

(b) R is an F-domain if and only if R is a Dedekind domain. 

(c) R is a GQß-domain if and only if R is a Dedekind domain. 

Proof. For (a) see [öl, and for (c) see [7] . (b) follows from the remark above. 

We now quote four counter-examples, which show, that none of the implications 

above is reversible. This also validates the claim made in 2 . 1 . f. 

(1 ) A QR-domain, which is not an F-domain : It suffices to take a Dedekind 

domain, which does not satisfy 2 . 3 . a. For an example, see e.g. (/)]. 

'2; In [5] there is an example of a QQR-domain, which is not a Prüfer domain 

hence not an F-domain. 

(3) An L-domain, which is not a QQP-domain : In [ 2 . 5 . 1 1 ] , an integral domain 

R (called D in the reference quoted) is constructed whith the following properties : 

R has only one overring S different from R and Q.R has only one non-zero prime 

ideal M and M 2 = M. Furthermore S « , where is the set consisting of M 

done. Since M 2 = M, however, (M, R] is a idempotent filter and S « Ry 8 5 
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Thus every overring of R is of type (L), i.e. R is an L-domain. On the other hand, 

it is not hard to see, that every overring of type (QR) is an intersection of 

localizations at prime ideals (in fact R v = A R , where are the ideals of R 

maximal with respect to not meeting E), and therefore every overring of type 

(QQP) is also an intersection of such localizations. It follows, that S is not of 

type (QQP) ; R is not a QQR-domain. 

(U) In [7 ,2 .9] , there is an example of a GQP-domain having an overring 

(in fact a localization) which is not a GQP-domain. Since, "by I.U.f, an overring 

of an L-domain is again an L-domain, we obtain an example of a GQR-domain, which 

is not an L-domain. 

2,h. PROPOSITION. - For an integrally closed domain^ the following conditions are 

equivalent : 

(a) R is a Prüfer domain^ 

(b) K is a QQjR-domainy 

(c) R is an L-domainj 

(d) R is a GQß-domain. 

Proof. The implications (a) (b) (c) (d) have already been noted, 

(d) =5 (a) is in [ 7 )2 .U] . A different proof (c) ̂ ? (a) is also available : By 

[19,2.7] any quotient overring of an integrally closed domain is integrally closed, 

and 1 . 1 may be applied, (in fact, this proof also works for ( GQR ) ). 

Since an overring of an L-domain is an L-domain I.U.f., we obtain 

2 . 5 - COROLURY . - The integral closure of an L-domain is a Prüfer domain. 

An analoguous result holds for QQR-domains [ 5 ) 1 . 7 ] and is conjectured for 

GQR-domains [7] . 
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2 . 6 . PROPOSITION. - R is an L-domain if and only of R M is an L-domain ofor every 

maximal ideal M of R. 

Proof. If R is an L-domain, then so is its overring R M. To prove the converse, we 

first show, that the assumption implies, that every local overring S of R is a 

quotient overring. Let N be the maximal ideal of S, then P = N/i R is a prime ideal 

of R and if M denotes a maximal ideal of R containing P, then R^£RpC S. By assump­

tion, S is a quotient overring of R^ , hence of R, according to the lemma below. 

If T is now an arbitrary overring, then T is equal to the intersection of its 

localizations at the maximal ideals [ 1 , chap. II, § 3 , n° 3] , and since each loca­

lization is a quotient overring, so is T. Thus R is an L-domain. 

2 . 7 . LEMMA. - Let Sc T .be overrings or R, let RcS be a flat epimorphio extension 

and let T be a quotient overring of S . Then T is a quotient overring of R. 

Proof. Let 4* be an idempotent filter of S such that T = . Following [13] we 

define an idempotent filter £ on R : £ is the set of all ideals I of R such that 

I S € $ . We claim, that R^ = §fi . If qC R^ , then qGcR for some G in^, but then 

qGSSS and since G S € ^ , we have qcS^/. 

Conversely, assume, that x€ Ŝ J . Then there is an such that xF c S. 

and xycS for all y€F. Since R $ S is a flat epimorphism, the ideals (xy)~1R and 

y 1R belong both to the filter £, consisting of all ideals K of R with KS = S. Thus 

((xy) 1Rn y 1R)S = S , and we can find a^,... R> ,... >s n* S such that xya^cR, 

yaj€R for k * 1,...,n and Za^s^ = 1 . Let be the ideal of R generated by ya^ $... tya 

Then yc J S and if J denotes the sum of the ideals J for all y^F, then Fc JS, 

thus J£ ̂  . Since xJCR, it follows, that x€R. 
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§ 3 . There is another type of overring, which is of some interest : We will say, 

that an overring S of R is an epimorphic overring, if the inclusion map Rc S is 

a ring epimorphism. (Notice, that a general epimorphic extension of R need not be 

an overring of R, take e.g. the epimorphism fj * 2^). 

In [16] , it has been shown, that the integral domain R is a Prüf er domain 

if and if every overring is epimorphic. The existence of L-domains which are not 

Prüfer domains shows, that not every quotient overring is epimorphic. Conversely, 

not every epimorphic overring need be a quotient overring. We shall give a counter­

example, in which, however, R is not an integral domain, but only a commutative 

semi prime ring. 

Let X be the real numbers with the discrete topology, X* its one-point 

(Alexandroff) compact if icat ion and R the ring of continuous real-valued functions 

X 

on X*. Q can be described as the product ring IR . Let S be the subring of Q consis­

ting of all those functions f : X —» IR which are constant (f(£) = Y) except for 

at most countably many values of R is then t e subring of S consisting of all 

those functions in S satisfying the additional property, that for any e> 0 

- y\$£ all but finitely many values of £ . 

This example has already been used in [*15, 11.6*1 and it was shown, 

that R e s is an epimorphic extension (in fact the largest epimorphic extension 

of R which is an overring). It remains to show, that S is not a quotient overring. 

Let Y be an uncountable subset of X whose complement is also uncountable. 

Let qeQ\S be defined by q(£) « 1 if £ € Y and q(£) = 0 otherwise. Further, let 

Y f be a countable subset of Y and let seS be defined by s(£) - 1 if £ Y f and 

s(C) * 0 otherwise. Then one shows, that if sr €R for some reR, then the constant 

value Y which r takes on almost everywhere has to be 0 , and from this it follows, 

that qrsRcs. Thus 1 . 2 is not satisfied and S is an epimorphic overring which is not 

a quotient overring. 
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