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NOTE ON CATEGORIES OF INDECOMPOSABLE MODULES

by Manabu HARADA

Let F be a ring with identity and M a unitary right R-module wich is a

directsum of indecomposable, injective modules. E. Matlis [13] posed the following

question : for any direct summand L of M, is L also a directsum of indecomposable

injective modules ? Recently, U.S. Kahlon [9] and K. Yamagata [16} studied this
problem under an assumption that the singular submodule of L is equal to zero.
In this short note, we shall show that if the singular submodule of I is

equal to zero, then the affirmative answer of Matlis' problem is an immediate
consequence from [6] and EWO]. Especially, in the section L, we shall give simpler

proofs of generalized Kahlon' results [9]. In sections 2 and 3, we shall give some

supplementary results of [7] and [8] .

I. DEFINITIONS

Let R be a ring with identity. We assume that all modules in this note are

unitary right R-modules. Let M be an R-module. If EndR(M) = SM is a local ring

(the Jacobson radical is a unique maximal ideal among left an right ideals), M

is called completely indecomposable.

Let £ be the induced full sub-category from all completely indecomposable
modules Ma in the category of right R-modules 04%, namely every object in A is a

direct sum of some family of {M } (see [6],§ 3). Let W . M be objects in & and
a

N TP 1 , 1,2, oI

M_Iaqa o > MoeM Y . Ve put [M M]a D = {f] e Homp (¥ M), pafin @ Mg ™ ¥y
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Note on categories of indecomposable modules

is non-isomorphic for all Be I*, B'¢I°, where ié, : Mé, > Ml is the injection

B

is a completely reducitle C

and pZB: M2 + M2 is the projection}. Then J' is an ideal in f and £/ J "
3-abelian category by [6], Theorem 7. If MJ = Mz,

t
we denote [MJ,MJ] And vy T

t

Let A and f be an object and a morphism in Jg, respectively. By 4 and
f.we denote the residue classes of 4 and f in#/J '. Let A > B te in A
and 7 the inclusion of B to A. If 7 is isomorphic in ﬂ{/;’] ', we say B is a
dense submodule of A (see [’(] ,D. 310-311). We assume 4 = C ® D as R-modules
and let e the projection of A onto C. By C we denote Im 2 in M/ J ! , even
though C is not in /. Next, we assume that A > Bare in% and B = § ® Ta as
R-modules. If F; @ Ta' is a direct summand of A for any finite subset XK'
of X, then we s:ay that B is a finitely direct swmmand of A (with respect to
the decomposition I @ Ta)° It is clear that every directsum of injective
modules is a finit]e(ly direct summand of its extension module.

We summarize here definitions of the exchange propérty given in [6] .
[71,(8) ana [10]

Let {Ma}I and {NB}J be sets of completely indecomposable modules. We

put M =ZI @ M, we recall Condition II given in [6] , §3.
I

II (Take out). For any subset I' of I and any other decomposition

M = 5 @ Ny, there exists a subset {N¢(Y)}Y€I' , Of {NB}J such that MYQNMY)

forallyeI'andM:ZGlV()e’ z oM.
I ¢Y aeI-I! o

I1' (Put in). For the same assumption as above, there existe a subset

{ }. ., such thatMY"ﬂ‘:IVw(Y) for all yeI'and M = L., M & I @ x

N
vy) el ael % pesycrr) B

where ¢ and Y are one-to-one mappings of I' into J.
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Note on categories of indecomposable modules

If we replace the subset I' by I-I', then II and II' are equivalent by
Azumaya's theorem [1]. Furtkermore, Azumaya [1] showed that II and II' are

satisfied for any finite subset I' of I.

We remark that if a given decomposition M = L @ Ma satisfies II or II',

I
then any decomposition M = T @ NB does the same property. Because, let
J
M=ZI8 T6 be another decomposition with TG indecomposable. Then there exists
K

an automorphism ¢ of ¥ such that O(NB) = ME(B) by Azumaya's theorem, where T

is a one-to-one mapping of J to I. We apply II or II' for the decompositions

M=ZI®6M =% ® o(Ty). Then we have M = I & o(T J® L &M
Z)T(B) X . 8 yed ! ¢( ) RBE J=dJ! r(B)
or M=~ ,8M ® ® o(T.).Hence,M=c—1(M)= @T ® I N, or M E®N

sex-u(ry s

We note II and II' are independent for fixed two decompositions

M=L®6 M =L

I @ 5 8

exist non-isomorphic monomorphisms f, of Mi to Mi+1 for all 7€ K¢ I. We put
T

M.
7

and a given subset I' of I. For example, we assume there

! =
ZQMSQ... GMO

M, &M M, &M & ... M , wvhere M = I &M . It is clear that
1 2 3 4 o

ael-X
N’ M; @ Mé ... ® Mo has the property II for the second decomposition in

A+ (m. € . LEM, f = M] /
motf,(m) | e M @M, ., meM) . Then ¥ = M} &M

the above. However, by the proof of [61 , Lemma 9 we know that if ¥ had the
property II', then {fg} wvould be a locally semi-T-nilpotent system (see

(see [T] , § 1 for the definition). Similarly, N = M, M, ® ... 8M has the
property II' for the first decomposition, however if N had the property II,

then {fé} would be a locally semi-T-nilpotent system.

We say that a direct summand T of M has the exchange property in M if

for any decomposition M = I @ U6 (U6 ere not necessarily indecomposatle),
J
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Note on categories of indecomposable modules

M=-T®L® Ué

perty, whenever all U g &re indecomposable , we say T has the exchange property

and UG 2 Ué for all § J. Especially, if T has the above pro-
in M for indecomposable modules. We refer the reader for terminologies to [6]

and [ﬂ .

2. DIRECT SUMMANDS

First we recall somme of main theorems in [7] and [10] .

THEOREM 1 ([7],[10]). - Let M be a direct sum of a family of completely
indecomposable modules {Ma} 1+ Then the following statements ave equi-
valent,

1) M satisfies the property of "take out"

2) Every direct summand of M has the exchange property in M

3) Every direct summand of M has the exchange property in M for inde-
composable modules

4) {Mcx} 1 8 a locally semi-T-nilpotent system

5) 7 ' is the Jacobson radical J of S = EndR(M)

6) Every finitely direct summand M' of M such ithat ' = L @ Ta i8 a
direct summand of M for any [K| and any family {Ta} g

6') 6) is valid for any K with K = ‘\’O, and

7) 6') is valid whenever all T, are completely indecomposable,

8) S/ 18 a regular ring (and self injeetive as a one sided module)
and every idempotents in S/#  are lifted to S, where |K| is the

ecardinal number of K.
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Note on categories of indecomposable modules

Proof. 2)«— 4) is proved by [8] , Corollary to Proposition 1. We note 1)_, L)
in § 1. 2)—3) —> 1) is clear. U)&—5) is proved by [10],Theorem.
6)—> 6') — T) is trivial. T)—3k). Let {Mai}c; be any countable sub-family
o] . . . — -
of {Ma}I and let {fi}l be a family of non-isomorphisms fi ; Mi = Mai - Mi+1-
r - % ’ (- ;
¥ iep+ FUC M )13 ® M! , where M! = {mi+fi(mi)‘€'M’ m, e Mi} . Since

7 n+l
TeM. oM = I ®M., M' is a finitely direct summand of M. Hence , M’
1 1 n+l 7 1

©

is direct summand of I & M, (=MO)S M by T). We know from [8] , Theorem 2
1

that M' is a dense submodule of Mo' Therefore, M' = Mo by [6] , lemma 7, which
means that {Mi}c; is a locally semi-T-nilpotent (cf. [6], the proof of Lemma 9).
b)—ob). Let M' = T 8 Ta be a finitely direct summand of M. We may assume

K
from 2) that all Ta are indecomposable. Now, we consider the above modules in

# /7 '. Let 7 be the inclusion of M' to M. Since M' is a finitely direct

summand of M and &/J ' is a C_-sbelian, 7 is the inclusion of M' into M and

3

M'= I ® ia . Then M' is a coretract of M by [6], Theorem T. {Ta}}{ is a
K
locally semi-T-nilpotent system. Therefore, ¢ is a coretract of M by 5)

(cf. [7], the proof of Proposition 2). 5)e—38) It is clear from [6], Lemma 7

and 13 Corollary to Lemma 6.

Remark 1. In the above proof of L)——3 €) we only make use of a fact that
{Ta}]( is a locally semi-T-nilpotent system.

Next, we study a general type of Matlis' problem. The following theorem
combines [10] and [1L].

THEOREM 2. - Let M be a directsum of completely indecomposable modules My s

M=TL@M and {MB} g the sub-family of countably gemerated R-modules M
I B

of {Moz}I . We assume {MY}I-J is a locally semi-T-nilpotent system. Then

every direct awmand of M is in .

15



Note on categories of indecomposable modules

Proof. Let M = NZ ® N, and X = I-J. Each Ni contains a dense submodule

2
Ti = I® MY"IJ such that M= TZ ® T2 by [6], Theorem 1 for 7 = 1,2, where
Lz
MY'i is isomorphic to some Ma ; o eI, We divide Li into two partitions

=J. . L& dJ. . K.) ML is i i M ;
Li JLUKt such that for Y,LC J7’ (resp Kz) MY7« 1s 1somorphic to some 4a,0t€J
. ) . s _— b
(resp. X) . Since {MY i}Ki is locally semi-T-nilpotent, T! ]Z%' ® MYi is a
direct summand of Ni by Remark 1 and [ﬂ » proposition 2, say N. = T‘[E ® IV_IE

Furthermore, T! ® ! has the exchange property in M by [7], Theorem 2,

1 2
Hence, N! # N! =T ®M_ & I & M . We consider those mecdules in &//J '.
1 2 J' B K'
M =Tt @ T! M'. @ oM. . M= %

Then M TI T2 ® Lo ¥i JZ MYL On the other hand, M A1 & IV2

~— — — — 1 — an -— —_—
= ' ' ' 14— me ' ' ' ra

Tref et} eh, T1$T25§'€BMB$K§®MY,whereMG M. Eence

$6 M'.eI @M .<TI ©M ® I &M . Since all M'. in the left side are
g, YU g, Y B 7Y Yi

countably generated, K' = Z by [_6J, Theorem 7. Therefore, Ni is in §f by {1&]

or [’T], Proposition 3. We have completed the proof.

In Theorem 2 if N1 is injective,NlV] is in &f by [h], [9] or [15] without

any assumption. Similarly
PROPOSITION 1. - Let M be in S and N a direct summand of M. If N is pro-
Jective, N is in .

Proof. By [1 1] » Theorem 1, N is a directsum of countably generated R-submodules

Pa . Furthermore, Pu is in ﬂ by [7], Proposition 3. Hence, N is in 9/

The following corollary was given with an assumption that J(P) is small in P

by [12] , Theorem 5.5 and [’Tl, Proposition 5.

16



Note on categories of indecomposable modules

COROLLARY. - Let M be in ¢ and R-projective. Then every direct summand P

of M is in A .

It is also clear.

We give a property of dense submodules.

PROPOSITION 2. - Let M be in J and N a direct swmand of M. Then there
exists a submodule N' of satisfying the following properties :

1) N' is in &4, 2) V' is a finttely direct swmmand of Nand 3) If T =
§ ® Ta is finttely direct swmand of N, T is isomorphic to a direct
swmand of N', where T, ’ & are indecomposable.

Especially, every countable generated B-submodule of N 1is isomorphic

to a submodule of N'. Every submodule N'' of N satisfying 1) and 2) is

isomorphic to a direct swmmand of any dense submodule of I.

Proof. Let N’ be a dense submodule of Y. Then N’ satisfies 1) and 2) by {7],
Proposition 2. Let e and N be projections of M to N and Ta with respect to
given decompositions. Then ee, = e, for all aeJ. Ve consider those modules
in A/% . Since T is a finitely direct summand of N( C M), T=1I8 faglm e
N'. Eence, T is isomorphic to & direct summand of N’ vy [€], Theoiem T. Ve
easily see that for two finitely generated submodules 7}.215 in N, we carn
find & direct summand Té of N such that Ié_gTi )Ti 2 Té and Té is a finite
directsum of indecomposable modules for 7 = 1,2 (cf. [7], the proof of
Proposition 3). Since Ti 2 T!, we can find a monomorphism cf T, to I’ wrich
is an extension of a given monomorphism of Ty to K' vy [6], Theorem T.

17



Note on categories of indecomposable modules

Hence, every countably generated R-submodule of N is isomorphic to a submodule
of N' by the sta.ndard‘argument. Let N'' be & submodule satisfying 1) and 2).

Then N'' N'. Hence, the last statement is clear from [6], theorem T.

3. EXCHANGE PROPERTY

It seems to the author that the difficulty of the exchange property in
M comes from the following facts. Let M be in & and M = Nl & N2 & NS as
R-modules. It is well known from [2] that if N, end N, have the exchange
property in M , then so is N1 ® NZ’ however the converse is not true. Fur-

thermore, even if neither IVJ nor IV2 has the exchenge property in M, it is

possitle that NZG N2 does.

We note that if a direct summand L of M has the exchange property, then
L is in d . The following theorem is a slight generalization of some parts

in Theorenm 1.

THEOREM 3. - Let M be in A and M = N, 8 NZ' Let f be the projection of ¥V
Ornto N,. Then FJ'f=7FJFfif and only If every direct summand of N,
hae the exchange property in M. In the cage v, also has the exchange
property in M, where T is the ideal defined in §1 and J 18 the Jacob-

son radical of S = EndR(M).

Proof. "Only if" . Let ¥ = I & M, and M(;. ' s are completely indecomposable.
I
We can find a subset J of I such that MJ =1 e Haam f in 9//4’/) by [6] R
J

lkeorem 7. Let e be the projection of M to M, . Then FS/FY ~ esley .

18



Note on categories on indecomposable modules

Hence, there exist a e eSf, b¢ fSe such that ba =z f (mod J'). Put f-ba = nej’,
then ne f J'f = f4 f, which tis the radical of SNJ = EndR(Nl). Hence, ba

is an automorphism of F£$ as an S-module. Therefore, eS = fJS @ fZS and

f}S = 7S, f2S = Ker b and ff = fé. Since b induces eS/e J'=~ fS/f1',

fo8 = f, J'c J'. Hence, fo =00y [1], Theorem 1 or [6], Lemma 7 and

e T fS , which implies Nl:c MJ. Therefore, {Mﬁ}J is a locally semi-T-nilpotent
system by Theorem 1. Thus, we have poved "only if" from [8], Corollary to
Theorem 2. "if", No= po® M{( and {MY'} is a locally semi-T-nilpotent system
by [8], Corollary to Theorem 2. Eence, £fy'f=f4Ff vy Theorem 1 and [_6] s

Lemma 5. The remaining part is clear from [8] y Theorem 2.

COROLLARY . - Let M and N] be as above. If for every monomorphism g in Sy -

Ir ¢ e a direct swmand of N (.e. gSN = eSN R 82 = e), ther N2 and
1 2
every direct summand of N, have the excharnge property in M. eEspecially,

O NZ i1s quasi-injective, Ni has the exchange property in M for 1 = 1,2,

(cf. [4]).

Proof. Let M = 1‘71 ] 1‘72 and f be the projection of ¥ to NJ' We take any
element ¢ in fJ'F. Then Ker (I-a) = O by [11, Theorem 2 and Im (I-a) =
Im((]-a)ll\/’l) ® NZ' Since Im ((1-a) [N]) is a direct summand of NZ ty the
assumption, Im(I-q) is a direct summand of M. On the other hand, Im (I-aq) is
a dense submodule of M by [_7] » Thecrem 2 and hence, M = Im (I-a). Therefore,
f-a is an automorphism of NJ swhich implies f J'Ff = fJ f.Hence, Ni has the

exchange property by the theorem. The remaining part of the corollary is

immediate from the above.

19



Note on categories of indecomposable modules

In Theorem 4 below, we shall show the converse of Corollary in a special
case.

Remark 2.[6], Proposition 10 and [91, Theorem I are special cases of
Corollary I.

It is shown in [8], Remark in p. 52 that the exchange property does not

imply the locally semi-T-nilpotency. In a special case we have

PROPOSITION 3. Let {Mi}w, be a set of completely indecomposable modules such
that M, 18 monomorphic, but not isomorphic to M; (ef. [6], p. 340 and
g» Then N, has the exchange

or N2 18 a directsum of indecom-

(8], Corollary 3). 1) Let M=% @ M, =N, ®FN
1
property in M if and only if either IVJ

posable modules {M ,E} which is a semi-T-nilpotent system, (in this case,
a finite directsum of Mé). 2) We further assume that each M, itself ie
a locally T-nilpotent system and M = L @ MG'. ; Mo't =M for some 1 and

M= IVJ ® 1V2. Then we have the same statement in 1).

Proof. 1) "If part" is clear from [8] , Theorem 2. We assume that IV1 has the
exchange property. Then Ni is in & : say N. = L : ® T;; s Where Tt 2 Mm

) T kes k
for some m. if J~ vere infinite for © = 1,2, we vould have a contradiction

from the assumption and [8], Lemma 2. 2) We can prove it similarly to 1).

PROPOSITION L. - Let M =L & Ma and Ma be isomorphic to a completely inde -
I

composable module M, for all ael. Let M = N,8 N,. Then N, has the

2.
exchange property in M if and only if M itself i a locally T-nilpotent

system or either N, or v, 18 1somorphic to a finite directsum of M

1 1°
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Note on categories of indecomposable modules

Proof. It is clear from [8], Lemma 2.

COROLLARY. - Let P be a completely indecomposable and projective module and

M= _);@Pa ; P % P Let M =N, 8N,
n M 1f and only i1f either N,orhH, is semi-perfect or equivalentely

Then Nl has the exchange property

J(Ni) 18 small in N, for i =1 or 2.

Proof. It is clear from Proposition 4 and [7], Theorem 7.

ly, MODULES WITHE ZERO SINGULAR SUBMODULES.

In this section, we study Matlis' problem and give simpler proofs of
slightly generalized results of [9], Theorems 2 and 3.

Let N be an R-module. We denote the singular submodule of N by Z(N),

namely Z(N) = {n|eN, (o:n) is large in R}. The following lemme is well known

and essential in this section.

LEWA. - Let {N }. be a set of indecomposable injective modules. If Z(N ,) =0
any homomorphism of Na to Na' i8 either isomorphic or zero. Especially,

if Z(N,) = 0 for all aelI, { N } is a locally T-nilpotent system.

Let M be in & anda M = Nl & N2 . Then we note that Nl always contains

direct summands which are finite directsums of indecomposable modules

(cr. [6], Corollary 1 in p. 33b).

PROPOSITION 5. — Let M be in o and M = N10 NZ' We assume that for any decom-

posable direct swmmand T,,T, of ¥, non-zero elements in Hme(TZ,Tz) are

always isomorphic. Then . is in d for i = 1,2.
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Note on categories of indecomposable modules

Proof. Let £ & TB be a dense submodule of IVJ, where TB 's are indecomposable.
J
Every TB is a direct summand of IV1 by [6], Proposition 2. Hence {TB}J is a

locally T-nilpotent system by the assumption. Therefore, NZ =L 9 TB and N
J
is in & by Remark 1, [7] , Proposition 2 and [8] , Theorem 2.

2

COROLLARY. - ([16], Theorem 4).Iet {Ma}I be a family of indecomposable injec-
tive modules and M = § ® Ma . If M= v, en, and Z(Nl) =0, then Ni Zs

in Jfor 1= 1,2 (cf. [91, Theorem 3).
Proof. It is clear from Lemma and Proposition 5.

THEOREM 4. - Let {Ea}I be a family of injective and indecomposable modules
and E = ; ® Ea . Then the following statements are equivalent.
1) {Ea}I is a locally semi~T-nilpotent system
2) Any extension module M, in ¥, of E contains E as a direct summand
3) There are no proper and essential extensions, in o¥, of E and

4) Img ie a direct swmmand of E for any monomorphism g in Spe

Proof. 4)<—3 1) is proved by Theorem 1 and Corollary 1 to Theorem 3. 1)—s )

by the assumption and Theorem ' Img = I @ EB 3 E’B' % Ea for some a. Since

X
Eé is injective, Im g is a finitely direct summand of M. On the other hand,
{Eé}K is a locally semi-T-nilpotent system by Theorem 1. Hence, Im g is a

direct summand of M from Remark 1. 1)—>»2) is clear from Theorem 1. 2)—y 3)

is trivial. 3)—> 1) We assume that {Ea}I is not locally semi-T-nilpotent.
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Note on categories of indecomposable modules

Then we have a sub-family {Ei}? of {Ea}I such that there exist non-isomor-
phisms fi:Ei——ﬁ»Ei+1 and an element x in F with a property : fhfh_l...f}(x)# 0
for all n. We note Ker fé # 0 for all Z, since Ei is injective an indecom-

L < = .
posable. Put E! = {x, + £, (x ) |€E, @ B, } < 3;’ ®E. eand E=J 8 E, 6

Then Eif\( g ® ?;)§>Ker f% # 0. Hence, e Ej ® Eo is essential in E. It is

Jd
clear x¢E-( L & Eé ® Eo)' Let E” be an injective hull cf E. Then we can
7 .
extend an isomorphism ¢ of I® E; 8 Eo onto E to a monomorphism of E*. Hence
d
! = < = .
¢(§®EJGEO) ES ¢(E) §®¢(Ea)ea/

COROLLARY 1. - We asswme further in Theorem 4 that all E, are noetherian.

Then we obtain all of 1) ~~ 4) in Theorem 4.

Proof. Let El’E2 and E'3 be injective, indecomposable and noetherian modules,
and fi:E%-——vEé+1 non-isomorphisme. Then Ker fé # O and Im f}fﬁKer f2 # 0 1if

£y # 0, since Ey is uniform. Hence, Ker f1 & Ker f2f1 if f, # O. Therefore,

{E_}, is a T-nilpotent system.
o'l y

COROLIARY 2. Let M be in o and L a submodule of M. We assume that Z(L) = O
and L is a directsum of injective modules. Then [ is a direct swummand

of M (cf. [9] » Theorem 2).

Proof. Since every injective submodule of M is in &f by Corollary to

Theorem 3. L is a direct summand of M by Lemma and Theorem L.

Remark 3. Let {Ea}I be a family of indecomposable, injective modules. In
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Note on categories of indecomposable modules

general, {E’a}I is not locally semi-T-nilpotent and hence, I & Ea is not quasi-
I
injective. Furthermore, even if all Ea is not injective. If either F = I® E&
I

is (quasi-)injective or Z(E) = 0, {EOL}I is a locally semi-T-nilpotent system.

However, the converse is not true as follows. Let X be a commutative, local

: : ; =Fe ; = = Hom ¥,,KX) =71K.
Frobenius ring with Z(K) # O,M21 § Ki ’Ki K ’M32 x oD ) ®
and M31 = K. Then

K 0
R= | My, k& = (KK, KM, )
Mzp Mzp K

is a ring (cf. [5], p. 23). Put e, = T(1,0,030) and ez = T(0,0,1;0), then
HomK(Rel,K)<: e33 is R-injective. Since esReg = K 1is local, esR is indecompo-
sable and e3R itself is a T-nilpotent system. It is clear that Z(egﬁ);;

[+ o]
(2(k),0,0) # 0 . Put S, = (My, T KJ.,K)QeSR. Then (0:S.) C(o:sj)R if i<j.

. 1I'R %

Hence, ? ® e3R is not injective %;1[3]. However, I do not know whether ?@esﬁ
is quasi-injective or not. If we can construct a self-injective and perfect,
but not I-injective ring S (or a self-injective and local, but not L-injective
ring with Z(S) = 0), then £ & S is not quasi-injective but {S}I is a T-nil-

I
potent system.
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